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Abstract

This paper is devoted to the explanation of a new methodology in bonus malus
system design, capable of taking into account very well known theoretical condi-
tions like fairness and …nancial equilibrium of the portfolio, in addition to market
conditions that could …t the resulting scale of premiums into competitive commer-
cial settings. This is done through the resolution of a classical Bayesian decision
problem, by means of minimization of the absolute error instead of the classical
quadratic error. It is at this stage that we apply Goal Programming methods,
which are linear thanks to the equivalence between the minimization of the ab-
solute error and the minimization of the sum of some deviation variables which
have a natural interpretation as rating errors. We show in an example how does
the new methodology work. All the linear programs have been solved using the
simplex method.

Keywords: Goal Programming, Simplexmethod, Bonus-malus system, Bayes
scale, Rating error, Bayesian decision.
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1 Introduction

This paper is devoted to the problem of bonus-malus systems design combining
e¢ciency properties with a certain ‡exibility to …t the requirements demanded
by both the insurance companies and market conditions.

It is well known that a priori rating techniques cannot eliminate the risk
heterogeneity into the policyholders classes, due to the fact that some of the
most important risk factors are unobservable. This fact forces many insurance
companies to adopt bonus-malus rating systems, in order to adjust the premium
to the policyholders claims experience.

The design of optimal or e¢cient bonus-malus premium scales for a given
set of transition rules has been addressed in the literature as early as in 1963
(see Pesonen (1963)), proposing that the premium for a given bonus-malus class
should be the expected claim amount per year of an in…nitely old policy in that
class. In Norberg (1976), it was proved that Pesonen’s premiums minimize the
expected squared rating error for a randomly chosen in…nitely old policy. The
premium scale obtained this way is called the Bayes Scale.

Although reasonable from a theoretical point of view, the Bayes Scale may
give rise to some drawbacks when applied to practical problems. For instance,
the premium levels may not form a monotonous sequence; the di¤erence between
the premiums associated with two consecutive classes may be too large or too

1



short, as it may also be the di¤erence between the premiums of the two extreme
classes; it can strongly penalize the members of a certain class... . In short,
the Bayes Scale may be inadequate because of its lack of ‡exibility in order to
perform reasonable characteristics of real world bonus-malus scales.

Although there exist in the literature several references addressing these ques-
tions (see for example Borgan, Hoem and Norberg (1981), Sundt (1984), Lemaire
(1985, 1995)), we develop in this paper a new methodology that combines sim-
plicity and ‡exibility. Under certain hypothesis, an alternative scale for a bonus-
malus system can be de…ned as the optimal solution of a certain linear program,
using a multiobjective technique known as Goal Programming. The same tech-
nique has been applied very recently in actuarial mathematics (see Vilar (2000))
to avoid the obtention of negative masses in the discretization process of distri-
butions. To our knowledge, these are the only applications of goal programming
into the domain of actuarial mathematics. A brief résumé of this optimization
technique can be found in the last reference, though a deeper and complete in-
troduction to the topic of goal programming methods can be found for instance
in Romero (1991, 1993).

2 De…nition of a bonus malus system

Consider a group of policies which is homogeneous with respect to some observ-
able risk characteristics. Nevertheless, there remain risk di¤erentials within the
group, due to unobservable factors. As it is usual in the literature, we assume
that the risk characteristics of each policy are resumed in the value of a certain
parameter ¤, and that the claim numbers from di¤erent years are conditionally
independent and identically distributed given the risk parameter of the policy.
We also assume that the individual claim amounts are independent of the claim
numbers and the risk parameter, and mutually independent and identically dis-
tributed. Such claim numbers and amounts are also independent of the choice of
the bonus-malus system, that is, bonus hunger and moral hazard are not taken
into account.

Following several authors (see for example Lemaire (1985,1995), Walhin and
Paris (1999)), we identify the value of the risk parameter of a policy with his
mean claim frequency. Such mean claim frequency is assumed to be stationary
in time, i.e. not time dependent. In this case, taking the mean individual claim
cost as one monetary unit, our objective is to calculate a pure premium for the
insured as close as possible to the (unknown) true value of his parameter. We
will try to perform this objective by means of a bonus-malus system. Of course,
such a system will be based on the number of claims and not on their amount.
In fact, almost all the real bonus-malus systems around the world are exclusively
based on the number of claims (see Lemaire (1985, p. 129)).

Finally, we assume that the risk parameter ¤ is a random variable with known
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cumulative function U(:). Such a distribution is not a subjective distribution in
the pure Bayesian sense, it has a frequency interpretation as di¤erent policies will
have di¤erent values of their risk parameters.

Following Lemaire (1995, p. 6), we say that an insurance company uses a
bonus-malus system when the following conditions hold:

² There exists a …nite number of classes (C1; :::; Cn) such that each policy
stays in one class throughout each insurance period (usually a year).

² The premium for each policy depends only on the class where it stays.

² The class for a given period is determined by the class in the preceding
period and the number of claims reported in that period (Markovian Con-
dition).

Every bonus-malus system is determined by three elements:

² The initial class, where the new policies are assigned.

² The premium scale (P1; :::; Pn), where Pi is the premium for policies in the
class Ci.

² The transition rules, that is, the rules that establish the conditions under
which a policy in class Ci is transferred to class Cj in the next period.

Focusing the last point, such rules are usually de…ned by means of transfor-
mations Tk such that Tk(i) = j when policyholders in class Ci reporting k claims
are transferred to class Cj in the next period. Transformations Tk are usually
described by means of matrices,

Tk =
³
tkij

´

where

tkij = 1 if Tk(i) = j

tkij = 0 if Tk(i) 6= j

The conditional transition probability from Ci to Cj in one period, given that
¤ = ¸ , can be calculated as

pij(¸) =
1X

k=0

pk(¸)t
k
ij

where pk(¸) is the conditional probability of reporting k claims in one period
given that ¤ = ¸, that is,

pk(¸) = Pr [N = k j ¤ = ¸]
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The conditional transition matrix, given that ¤ = ¸, is de…ned as

P (¸) = (pij(¸))

These de…nitions allow us to look at the bonus-malus system as a Markov
chain. This chain is homogeneous, since we have assumed that each claim fre-
quency ¸ is stationary in time. The previously de…ned transition matrix P (¸)
will be the transition matrix of the corresponding Markov chain.

If we also assume that the chain is ergodic and without cycles, then it is
well known (see for instance Grimmett and Stirzaker (1992)) that there exists a
stationary (conditional) probability distribution (¼1(¸); :::¼n(¸)), where ¼i(¸) is
de…ned as the limit value (when the number of periods ! 1) of the conditional
probability that a policy belongs to the class Ci, given that ¤ = ¸.

It can be shown that the stationary probability distribution coincides with the
left eigenvector associated with the eigenvalue 1 of the corresponding transition
matrix, and whose components add the unit.

It is also possible to de…ne the stationary (unconditional) probability distri-
bution (¼1; :::; ¼n) for an arbitrary policy as the mean value of the stationary
conditional probability distributions (¼1(¸); :::¼n(¸)). That is,

¼i =
Z
¼i(¸)dU(¸) (1)

It is clear that the probabilities ¼i and ¼i(¸) can also be interpreted as the fraction
of arbitrary policies and policies conditioned to ¤ = ¸, respectively, that belong
to class Ci when stationarity is attained.

It should be clear that the knowledge of the stationary distributions could be
very useful in order to design a bonus-malus system, because it informs us about
the long term distribution of the policies.

3 The Bayes Scale

There are three problems related to the construction of a bonus-malus system:

² How to choose the number of classes and the transition rules.

² How to choose the initial class.

² How to choose the premium associated with every class.

This paper focuses mainly in the third problem, though some comments will
be also made about the choice of the number of bonus-malus classes.

The …rst problem still constitutes an open problem: it is not possible in
general to …nd the optimal number of classes and the optimal set of transition
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rules (see Lemaire (1995)), although it is possible to conclude that a certain set
of classes and rules is better than another set.

The selection of the initial class cannot be based on the stationary distribution,
since the last one does not depend upon such a choice. However, this initial class
has a certain in‡uence into the time the system needs to approach stationarity.

The standard solution to the calculation of the scale of premiums is based
on the stationary distribution. As we mentioned in the introduction, Norberg
(1976) has proposed (following an idea explained in Pesonen (1963)) to de…ne
the premium associated with a certain class as the expected yearly loss of an
in…nitely old policy in that class, that is, of a policy that stays in the class once
the system has reached stationarity:

Pi = E [¸ j P olicy 2 Ci after infinite periods]

that is,

Pi =
1

¼i

Z
¸¼i(¸)dU(¸)

Norberg (1976) showed that such a scale (known as the Bayes Scale) minimizes
the expected squared rating error, de…ned as the expected squared di¤erence be-
tween the mean claim frequency and the premium actually paid, for an in…nitely
old randomly chosen policy. This expected squared rating error is also useful in
order to compare the Bayes Scales associated with di¤erent transition rules.

It is important to remark that Norberg’s result can be obtained as the optimal
solution of a certain Bayesian Decision Problem.

In general decision problems it is well known (see, for instance, DeGroot
(1970)) that, if the decision maker’s preferences over the possible consequences
of his decisions are consistent with certain axioms of rational behavior, then it
is possible to de…ne a function over those consequences (called the utility of the
consequences) such that one feasible decision will be preferred to another if, and
only if, the expected utility of the possible consequences is larger for the …rst
decision than it is for the second. In decision problems it is usual to specify
the negative of the utility, instead of the utility, and to call it the loss. Then the
decision maker should choose as optimal the decision that minimizes the expected
loss of his consequences.

Speci…cally, the decision maker must proceed as follows: …rst, he must de…ne
a consequence for every feasible decision and every possible realization of the ran-
dom parameters; second, he must specify a numerical loss associated with every
consequence; …nally, he calculates the expected loss of every feasible decision, and
he chooses as optimal the decision with minimal expected loss.

In order to apply this general framework to our particular problem, let us
consider an arbitrary policy in the stationary state. If we formulate a Bayesian
decision problem in which the random states are the parameter ¸ associated with
the policy and the class Ci to which the policy belongs, the feasible decisions are
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the possible scales (P1; :::; Pn) and the loss associated with every state (¸;Ci) and
every feasible decision (P1; :::; Pn) is a quadratic loss (Pi ¡ ¸)2, then the optimal
decision is the one that minimizes the expected loss

Z nX

i=1

(Pi ¡ ¸)2¼i(¸)dU(¸)

which coincides with the previously de…ned expected squared rating error. The
optimal decision is therefore to adopt the Bayes Scale.

An equivalent expression for the expected squared rating error would be

E(PI ¡ ¤)2

where I denotes the class as a random variable with conditional probabilities
¼i(¸) given ¤ = ¸.

As we commented in the Introduction, the Norberg model based on Bayes
scales constitutes the standard mathematical model for the construction of an
optimal bonus-malus. Indeed, the use of the quadratic loss function implies that
the expected premiums will be equal to the expected claims, that is, the system is
…nancially balanced. This is a very attractive property in premium calculation as
it guarantees an expected equilibrium between claims and premiums. Neverthe-
less, the Bayes scale su¤ers from several drawbacks. For example, in Sundt (1984)
it is remarked that Bayes scales do not necessarily form monotonous sequences,
and a solution is proposed to restrict the class of admissible scales. Moreover,
in Borgan, Hoem and Norberg (1981) the basic model is modi…ed in order to
include young policies that have not had enough time to approach stationarity.

But we think that there are some other drawbacks not yet discussed in the
literature about Bayes scales. Let us brie‡y comment some of them:

² The use of quadratic loss functions implies the equal valuation of over-
achievements and underachievements around the true value of the param-
eter ¸. Nevertheless, it could be interesting to distinguish between the
policyholders’ and insurer’s extraordinary earnings, respectively.

² The formula for the expected squared rating error equally weights the errors
in all the bonus-malus classes. But we think that the weights could depend
of the value of ¤: it seems clear that an error (Pi¡¸)2 = 1 is less important
when ¸ = 10 than when ¸ = 1

2, for instance.

² And it is also unclear how to obtain a smoothed bonus-malus system if the
original one resulted too harsh to the policyholders and therefore they were
tempted to quit the insurance company. The same can be said about the
inclusion in the bonus-malus system of certain desirable features such as up-
per (or lower) limits for the di¤erences between two consecutive premiums,
or for the di¤erence between the two extreme premiums, etc.
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In summary, we think that another drawback of the model is its lack of ‡ex-
ibility in order to incorporate several reasonable properties. This is due to the
major di¢culty of solving a quadratic program with a great number of con-
straints. Moreover, if we succeed in solving the constrained quadratic program,
the optimal solution does not verify in general the desirable properties previously
mentioned, such as the …nancial equilibrium. Let us illustrate this fact with an
easy example:

Let us suppose three possible values of the random parameter ¤ (¸1 = 0:5
(with probability 1

3
), ¸2 = 1 (with probability 1

3
) and ¸3 = 1:5 (with probability

1
3
)), and three bonus-malus classes (C1, C2 and C3). The transition rules imply

the following conditional stationary probability distributions:

² If ¤ = ¸1 , ¼1(¸1) = 3
5 , ¼2(¸1) = 1

5 , ¼3(¸1) = 1
5 .

² If ¤ = ¸2 , ¼1(¸2) = 1
3 , ¼2(¸2) = 1

2 , ¼3(¸2) = 1
6 .

² If ¤ = ¸3 , ¼1(¸3) = 1
4 , ¼2(¸3) = 1

4 , ¼3(¸3) = 1
2 .

The unconditional stationary probability distribution is

¼1 = (
3

5
+
1

3
+
1

4
)£ 1

3
=
71

60
£ 1

3

¼2 = (
1

5
+
1

2
+
1

4
)£ 1

3
=
19

20
£ 1

3

¼3 = (
1

5
+
1

6
+
1

2
)£ 1

3
=
13

15
£ 1

3

The Bayes scale is de…ned as the premiums (P1; P2; P3) that minimize the
value of the following objective function:

(P1 ¡ ¸1)2
3

5
£ 1

3
+ (P1 ¡ ¸2)2

1

3
£ 1

3
+ (P1 ¡ ¸3)2

1

4
£ 1

3
+

+(P2¡ ¸1)2
1

5
£ 1

3
+ +(P2 ¡ ¸2)2

1

2
£ 1

3
+ (P2¡ ¸3)2

1

4
£ 1

3
+

+(P3¡ ¸1)2
1

5
£ 1

3
+ (P3 ¡¸2)2

1

6
£ 1

3
+ +(P3¡ ¸3)2

1

2
£ 1

3

The optimal solution of this program is

P1 =
121

142
»= :85211; P2 =

39

38
»= 1:0263; P3 =

61

52
»= 1:1731

We know that Bayes scales give rise to …nancially balanced bonus-malus sys-
tems. It is easy to check the …nancial equilibrium in this example: the expected
claims are E (¤) = 1, while the expected premiums are

P1¼1 +P2¼2 + P3¼3 = 1
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But let us imagine that this system becomes inadequate for practical pur-
poses, perhaps because the policyholders prefer larger di¤erences between the
two extreme premiums. In such a case marketing reasons could recommend the
construction of a bonus-malus system such that the good drivers pay, for ex-
ample, half as much as bad drivers. That is, in mathematical terms, such that
P3 = 2P1: If we add this constraint to our objective function, we obtain a con-
strained quadratic program. The optimal solution is now,

P1 = 0:6541; P2 = 1:0263; P3 = 1:3082

Unfortunately, we have lost the …nancial equilibrium property: in fact, the ex-
pected premium takes now the value of 0:96, and the company will get ruined in
the long run.

The introduction of additional constraints in the quadratic program is not
a good idea, since we lose, in general, the …nancial equilibrium property, which
is the most important property of Bayes scales. Moreover, the resolution of the
constrained quadratic program becomes di¢cult in many real world problems
with a great number of classes and constraints. An alternative procedure could
be to change the transition rules and/or the number of classes. But again in real
world bonus-malus systems it may be di¢cult to …nd the transition rules giving
scales with the appropriate properties.

In the next section we build an alternative bonus-malus scale obtained as an
optimal solution of a linear program. In such a program it is easy to introduce the
desirable properties of the bonus-malus system, related for instance to fairness,
commercial requirements and …nancial equilibrium, by means of additional linear
constraints.

4 An alternative model for the construction of
an optimal bonus malus system.

4.1 Theoretical settings

Pursuing the objective of solving all the problems previously mentioned, we sug-
gest a change in the formulation of the Bayesian problem that gave rise to the
bonus-malus system.

The Bayesian decision problem de…ned in the previous section is not the
only possible formulation in order to design an optimal bonus-malus system. An
arbitrary policy that reaches the stationary state does not necessarily stay forever
in a same class. It is the probability ¼i(¸) of (temporarily) belonging to class
Ci that remains constant for a policy with parameter ¸ in the stationary state.
Such policy can change the class according to these probabilities, and therefore
the mean value of the premiums paid by that policyholders will be

Pn
i=1 Pi ¼i(¸).
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Consequently, we propose a new Bayesian decision problem in which the fea-
sible decisions are again the scales (P1; :::; Pn), the random states are the values
of ¤ and the loss associated with every feasible decision (P1; :::; Pn) and every
realization ¸ of the random parameter ¤ is not the squared rating error, but the
absolute value of such a rating error

j
nX

i=1

Pi ¼i(¸)¡ ¸ j

In this case, the optimal decision will be a scale (P1; :::; Pn) that minimizes

Z
j
nX

i=1

Pi ¼i(¸) ¡ ¸ j dU (¸) (2)

This expression is, in general, rather di¢cult to solve. Nevertheless, if we assume
a discrete distribution for the parameter ¤ (taking the values ¸1; :::; ¸m with
probabilities q1; :::; qm, respectively), then it becomes equivalent to both:

mX

j=1

j
nX

i=1

Pi ¼i(¸j) ¡ ¸j j qj

and the linear program

min
mX

j=1

³
y+j + y

¡
j

´
qj; s:t:

8
>>>><
>>>>:

P1 ¼1(¸1) + :::+ Pn ¼n(¸1) + y
¡
1 ¡ y+1 = ¸1

...
P1 ¼1(¸m) + :::+ Pn ¼n(¸m) + y¡m ¡ y+m = ¸m
y+j ; y

¡
j ¸ 0; j = 1; : : : ;m

(3)
where the optimal values of the new variables y+j ; y

¡
j (let us denote them as

y¤+j ; y
¤¡
j ) represent the positive and negative rating error, respectively, for a policy

with parameter ¸j. This fact, as well as the equivalence between both previous
programs, are consequences of the fact that the optimal solution of the linear
program veri…es y¤+j y

¤¡
j = 0;8j (see for instance Sawaragi, Nakayama and Tanino

(1985, p. 253)), that is, only one of them can be non null, and therefore

8j; j
nX

i=1

Pi ¼i(¸j)¡ ¸j j= y¤+j + y¤¡j

It is important to remark that program (3) is a particular case of the multiobjec-
tive technique known as Goal Programming. This fact has an easy interpretation:
by means of Goal Programming the decision maker tries to …nd the values of the
decision variables such that certain objective functions take values as close as
possible to a set of targets previously de…ned. In our problem such targets are
¸1; :::; ¸m, the possible values of the parameter ¤, and we try to …nd the val-
ues of the decision variables P1; :::; Pn in order to approximate, for every policy
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with parameter ¸j, the mean value of the premiums paid by that policyholder
(
Pn
i=1 Pi ¼i(¸j)) and his real mean claim frequency ¸j.
Goal Programming methodology has become one of the most important tools

for solving multicriteria optimization problems, perhaps because it is an easy
way to handle technique with a high ‡exibility in …tting the characteristics of
real world problems. We see below that this ‡exibility allows to incorporate in
our bonus-malus system all the reasonable features mentioned in the previous
section.

For instance, if we de…ne the objective function of the linear program as

min
mX

j=1

³
!+j y

+
j + !

¡
j y

¡
j

´
qj

then it would be possible to assign di¤erent weights (even depending on the
di¤erent discrete values of ¤) to positive and negative rating errors.

It is also possible to establish a relation between the optimal solution of our
linear program and the degree of …nancial equilibrium: in fact, this is measured
by the expression

nX

i=1

Pi ¼i ¡
mX

j=1

¸j qj (4)

where ¼i =
Pm
j=1 ¼i(¸j) qj is now a discretization of (1). Positive values of (4)

denote a gain for the insurance company, while negative ones denote a loss (i.e.
a gain for the policyholders). Multiplying each constraint of the linear program
by the corresponding probability and adding all these constraints, we obtain a
third equivalent expression for the degree of …nancial equilibrium:

mX

j=1

³
y¤+j ¡ y¤¡j

´
qj (5)

where y¤+j ; y
¤¡
j are the optimal deviation variables of our linear program.

On the other hand, the linear formulation of the decision problem allows
to easily incorporate any characteristic that could be considered necessary. For
instance, making null any of the previous expressions (4) or (5), allow us the in-
troduction of the …nancial equilibrium condition in our linear program, by means
of a new linear constraint.

The nonnegativity of the premiums should be introduced as

Pi ¸ 0;8i

Linear constraints as
Pi+1 ¡ Pi ¸ d

introduce a lower limit d > 0 for the distance between two consecutive premiums.
Similarly, the constraints

0 � Pn ¡ P1 � D
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introduce an upper limit D > 0 for the distance between the two extreme premi-
ums.

As in the case of Bayes scales, the premiums obtained as optimal solutions of
our linear program do not necessarily form a monotonous sequence. In order to
get that monotony property we only need to include some additional constraints:

P1 � P2 � ::: � Pn

It is also possible to modify our program in the sense of Borgan, Hoem and
Norberg (1981), allowing the existence of policies that have not yet approached
stationarity.

Finally, we must remember that the previous results …nd a premium scale
only for some given classes and transition rules. As in the case of Bayes scales,
alternative sets of di¤erent classes and transition rules should be evaluated and
compared according to the optimal value of the objective function.

As an easy example of the methodology, we can apply it to the construc-
tion of the bonus-malus discussed at the end of section 3. Remember that we
calculated the Bayes scale, and we supposed that it was unsatisfactory because
the range of the scale was too narrow. Of course, in such a case one should try
to de…ne new classes and/or change the transition rules, in order to get a new
Bayes scale with the desired properties. Such methodology may be successful in
many cases, but also may be inadequate when the system has a great number of
classes and complicated transition rules. In that case, it may be reasonable to in-
troduce the desired properties as linear constraints using our Goal Programming
methodology. In this example, the linear program is

min
³
y+1 + y

¡
1 + y

+
2 + y

¡
2 + y

+
3 + y

¡
3

´ 1
3
; s:t:

8
>>>>>>>>>>><
>>>>>>>>>>>:

P1
3
5 + P2

1
5 +P3

1
5 + y

¡
1 ¡ y+1 = 0:5

P1 13 + P2
1
2 +P3

1
6 + y

¡
2 ¡ y+2 = 1

P1 14 + P2
1
4
+P312 + y

¡
3 ¡ y+3 = 1:5

Pi ¸ 0;8i
y+j ; y

¡
j ¸ 0;8j

P3 ¡ 2P1 = 0
P1

71
60
1
3
+ P2

19
20
1
3
+P3

13
15
1
3
= 1

The last constraint establishes the …nancial equilibrium condition. The optimal
solution of this linear program is easy to …nd by means of the simplex method:

P1 = 0:6666; P2 = 1:1114; P3 = 1:3332

In the following sections we are going to apply the methodology step by step in
a more precise way.

4.2 Exempli…cation of the new methodology

In this section we will proceed to the application of the new methodology of
bonus-malus system design to a theoretical portfolio of policies. Along the exem-
pli…cation we will de…ne and discuss the following points:
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² The density function that models the portfolio heterogeneity, and its dis-
cretizations.

² The transition rules and the number of bonus malus-classes.

² The feasible set of the linear program.

² The objective function and the linear program that furnishes the scale of
premiums.

² The behavior of the solution.

4.2.1 The density function u(¸)

We will consider a portfolio with claims distributed by means of a Poisson distri-
bution mixed with a Gauss Inverse. This model states that given¤ = ¸; the claim
numbers are conditionally independent and identically Poisson distributed with
parameter ¸; and ¤ has an inverse Gaussian distribution with density function:

u(¸) =

s
µ

2¼¸3
e
¡ µ(¸¡¹)2
2(¸¡¹2) ; ¸ > 0:

In our example we arbitrarily set the two parameters to be ¹ = 0:5 and µ = 3:5,
obtaining the density over a time unit period represented graphically in …gure 1.

FIGURE 1

In a real application this density function should be obtained as the result of
a classical …tting process of some mixed Poisson distribution to the number of
claims data over a certain period.

Once the number of claims model has been set out, our method requires the
discretization of the density function. At this stage it is worth noting that the
function u(¸) is an endogenous element describing the quality of the selected
portfolio (its heterogeneity), while any discretization will be just a representation
of that function. For example, we must arbitrarily choose the mesh and the
class markers among an in…nity of possible ¤ values. Though we expect that
the discretized version tends towards the real function when this mesh vanishes,
we cannot a priori tell anything about the e¤ect of changing the representation
on the …nal result (i.e. on the bonus malus scale). In other words, if we are
interested in measuring any possible sensitivity of the method with respect to
di¤erent discretizations of the density function, we will have to investigate it
using several discretizations of u(¸): Given the shape of this one, we have chosen
three di¤erent values of the mesh h > 0 in the aim of recreating a gradually
closer representation of the density function. These are h = 0:3; 0:15; 0:075;
with supports containing 5; 10; 20 values of ¤ respectively:
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With regard to the discretization method, we proceed in the three cases to
the arithmetization of u(¸) by applying linear goal programming as explained in
Vilar (2000). The only di¤erence is that the …rst mass has been placed at the
end of the …rst subinterval instead of the origin. As a result we get an arithmetic
probability function with …rst and second moments very near to the original ones
( the non exactness is due to the mass transfer operated in the …rst subinterval).

We next summarize the probability functions obtained for the three cases,
that will be used in the sequel:

h = 0:3 : The probabilities are

q1 = :4655835; q2 = :4088527; q3 = :1209949; q4 = :002537622;

q5 = :0020313:

placed over the points

¸1 = 0:3; ¸2 = 0:6; ¸3 = 0:9; ¸4 = 1:2; ¸5 = 1:5:

For instance ¸1 is to be interpreted as representing all the policyholders
with Poisson parameters comprised between 0 and 0:6; ¸2 stands for the
ones whose parameters lies between 0:6 and 0:9. The last point ¸5 stands
for the ones having ¤ ¸ 1:5: In raw, we can interpret that this portfolio
consists in 46% of ”good” policies (that is, they have Poisson parameter
comprised between 0 and 0:6), 41% of ”less good” policies (with Poisson
parameter comprised between 0:6 and 0:9), etc...

h = 0:15 : The probabilities are

q1 = :03384627; q2 = :1923699; q3 = :4448879; q4 = :1462023;
q5 = :1364640; q6 = :02036232; q7 = :02039220; q8 = :002342893;
q9 = :002511476; q10 = :0006207

(6)
placed over the points

¸1 = 0:15; ¸2 = 0:3; ¸3 = 0:45; ¸4 = 0:6; ¸5 = 0:75;
¸6 = 0:9; ¸7 = 1:05; ¸8 = 1:2; ¸9 = 1:35; ¸10 = 1:5:

The same comments as in the …rst case could be made.

h = 0:075 : The probabilities are

q1 = :00008576107; q2 = :0004790433; q3 = :06647720; q4 = :09503722;
q5 = :2356366; q6 = :1228080; q7 = :1937991; q8 = :07100643;
q9 = :09909049; q10 = :03105860; q11 = :04144804; q12 = :01201900;
q13 = :01571538; q14 = :004368267; q15 = :005650766; q16 = :001533364;
q17 = :001970548; q18 = :0005272460; q19 = :0006751511; q20 = :0006138;
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placed over the points

¸1 = 0:075; ¸2 = 0:15; ¸3 = 0:225; ¸4 = 0:3; ¸5 = 0:375;

¸6 = 0:45; ¸7 = 0:525; ¸8 = 0:6; ¸9 = 0:675; ¸10 = 0:75;

¸11 = 0:825; ¸12 = 0:9; ¸13 = 0:975; ¸14 = 1:05; ¸15 = 1:125;

¸16 = 1:2; ¸17 = 1:275; ¸18 = 1:35; ¸19 = 1:425; ¸20 = 1:5:

From hereafter when referring in general to the probability masses of the
arithmetized density function we will note (qj)

m
j=1
:

4.2.2 The transition rules and the number of bonus malus classes.

The transition rules are a design element very important indeed, and its exoge-
nous character is also clear, as they are chosen by the designer. Another element
open to the designer’s choice is the number n of bonus malus classes. As we want
to investigate the in‡uence of a growing number of classes into the resulting so-
lutions, our transition rules will consist always in the same idea applied as many
times as n:

Having in mind that a typical policy of the portfolio has claim frequency
¸ = 0:5 (i.e. 5 claims each ten years); the idea for de…ning the rules is the
following: if a policy has one or two claims during the year, it will stay in the
same class; it will climb one class for three or more claims; and it will descend
one class for zero claims. These rules must be adapted for the lowest (cheapest)
and highest bonus malus class: in the …rst case the policy remains in the same
class if it has 0; 1, 2 claims and goes to the superior class for 3 or more claims; in
the second case it remains in the upper bonus malus class for 1 or more claims
and descend to the previous bonus malus class for 0 claims. When writing down
the transition rules, we will use the notation

i
fk1;:::;kng¡! j

meaning that in case a policy had k1; : : : ; kn claims during the time period, it
would be transferred from class i to class j. For instance for the case n = 5 the
rules are the following:

1
f0;1;2g¡! 1; 1

f3;4;:::g¡! 2

2
f0g¡! 1; 2

f1;2g¡! 2; 2
f3;4;:::g¡! 3

3
f0g¡! 2; 3

f1;2g¡! 3; 3
f3;4;:::g¡! 4

4
f0g¡! 3; 4

f1;2g¡! 4; 4
f3;4;:::g¡! 5

5
f0g¡! 4; 5

f1;2;:::g¡! 5
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While for n = 3 we get:

1
f0;1;2g¡! 1; 1

f3;4;:::g¡! 2

2
f0g¡! 1; 2

f1;2g¡! 2; 2
f3;4;:::g¡! 3

3
f0g¡! 2; 3

f1;2;:::g¡! 3

We will let n vary from 3 to 10 bonus malus classes, and then look to the resulting
scales of premiums and rating errors.

In all these cases we will have to obtain the corresponding transition matrix
P (¸); and calculate the stationary distribution ¼(¸): Thanks to the last we will
be able later to write down the fairness and …nancial equilibrium constraints. As
an example we give here the results corresponding to n = 5: Writing down only
the non zero coe¢cients of the transition matrix:

p11(¸) = e¡¸ + ¸e¡¸ +
1
2
¸2 e¡¸

p12(¸) = p23(¸) = p34(¸) = p45(¸) = 1 ¡ e¡¸ ¡ ¸ e¡¸ ¡ 1
2 ¸

2 e¡¸

p21(¸) = p32(¸) = p43(¸) = p54(¸) = e
¡¸

p22(¸) = p33(¸) = p44(¸) = ¸ e¡¸ +
1
2 ¸

2 e¡¸

p55(¸) = 1¡ e¡¸

It is worth using a symbolic calculator assistant to get the stationary distribu-
tions. In the case n = 5, a …ne use of it will give us the …ve coordinates of the left
eigenvector associated to the unit eigenvalue of P (¸): We write it L1-normalized,
where k¼k1 stands for the sum of the …ve coordinates of the eigenvector:

¼1(¸) =
1

k¼k1
¼2(¸) = ¡ 1

2k¼k1 e¡¸
(¡2 + 2 e¡¸ +2¸ e¡¸ + ¸2 e¡¸)

¼3(¸) =
1

4 k¼k1 e¡2¸
(¡2 + 2 e¡¸ +2 ¸e¡¸ + ¸2 e¡¸)2

¼4(¸) = ¡ 1

8k¼k1 e¡3¸
(¡2 + 2 e¡¸ + 2¸ e¡¸+ ¸2 e¡¸)3

¼5(¸) =
1

16k¼k1 e¡4¸
(¡2 + 2 e¡¸ +2 ¸ e¡¸+ ¸2 e¡¸)4

For the sake of brevity we do not write down either P (¸) or ¼(¸) in the other
seven cases.

4.2.3 The feasible set

The feasible set is de…ned by means of three types of restrictions, corresponding
to di¤erent properties that we want to see veri…ed by the solutions.
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Fairness of the bonus malus system A …rst set of m equality constraints,
de…nes the fairness or equity of the bonus malus-system. They state that a policy
belonging to class j; should pay through its path over the bonus malus classes in
the long run, its marked value ¸j:

j = 1; : : : ;m :
nX

i=1

Pi ¼i(¸j) + y
¡
j ¡ y+j = ¸j

This set of constraints should be always included in the de…nition of any feasi-
ble set as it stands for a good property that should be veri…ed by any scale of
premiums.

Financial equilibrium The last observation also applies to the second set,
which in fact consists in taking (4) as an equality that ensures the …nancial
equilibrium of the portfolio, that is to say, when there is no gain for the insurance
company or the policyholders in the long run. Remember this constraint wasPn
i=1 Pi ¼i =

Pm
j=1 ¸j qj; where ¼i was to be interpreted as a discretization (1). In

other words the expected premiums have to equal the expected claims.

Market constraints Here we want to translate into the feasible set some mar-
ket conditions. Thus these constraints will depend upon some estimation of the
policyholders preferences, the market characteristics (the scales of premiums used
by the other insurance companies, for instance), the subjective appreciation of
the bonus malus designer in tying to catch the former and the later, and also the
targets of the insurance company which wants to introduce the new bonus malus
system.

We also recall that we are going to construct and solve not just one linear
program but a family of them in order to extract some conclusions. For instance,
we wrote that we were going to let the number n of bonus malus classes growing
from 3 to 10. As we have to use the same type of feasible sets in all these
resolutions, our de…nition of the market constraints should be therefore enough
general to be particularized in all these cases.

Having this in mind, we have proceeded as follows. Our constraints are always
de…ned in such a way that they seek for the cheapest (lowest) bonus malus class a
maximal bonus of 60% of the premium PCentral corresponding to a central bonus
malus class (say the third class if we had previously chosen …ve or six bonus
malus-classes), and a maximal malus in the more expensive (highest) class of
100% of PCentral. Thus we obtain the following two constraints:

P1 ¸ 0:6PCentral; Pn � 2 PCentral

This is to guarantee that the cheapest premium is signi…cant for the insurance
company and represents an appreciable global bonus level for the policyholder,
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while the most expensive one does not exceed some kind of policyholder’s toler-
ance. We could also think that these inequalities try to translate some kind of
usual fork between the extreme premiums of bonus malus systems found in the
market. As an additional comment, we could see the central class as the initial
class for the new policies entering the portfolio. Moreover, we want the bonus
between two consecutive classes Pi and Pi+1; to be the larger the better (so they
will be signi…cantly appreciated by present and future policyholders), so we have
imposed a minimum amount for it in terms of percentage (10%) of the cheapest
premium Pi :

Pi+1 ¸ 1:1 Pi ; i = 1; : : : ; n¡ 1
We have not written nonnegativity constraints in the hope that these will be
ful…lled by the solution in a natural way. In fact, this is the case as it will be
seen in the solutions. Monotony conditions are implicitly assumed through the
last n ¡ 1 inequalities. As an example, the case n = 5 gives us the following
constraints:

P1 ¸ 0:6 P3; P5 � 2 P3; Pi+1 ¸ 1:1 Pi (i = 1; : : : ; 4)

Another example with n = 9 :

P1 ¸ 0:6 P5; P9 � 2 P5; Pi+1 ¸ 1:1 Pi (i = 1; : : : ; 8)

4.2.4 Objective functions and linear programs

As told earlier in this paper, our linear programs seek the minimization of the sum
of the rating errors. Alternatively we can call them under and overachievements
(y¡j ,y+j respectively), or simply deviations.

In our objective function are contained another kind of variables that can
be substituted by the bonus malus designer at his own will, the weights !+i ; !

¡
i :

These could be quite practical because taking di¤erent weights could produce
new optimums -scales of premiums- to be submitted to the choice of the bonus
malus designer. This is a well known technique in mathematical programming.
Nevertheless it is not the case in the present example, as it will be seen: when
setting the …nancial equilibrium constraint, the method produces the same op-
timal scale of premiums and rating errors for di¤erent values of the weights (at
least for the values we have substituted!).

Thus taking all the weights equal (!+j = !¡j = 1)we obtain the following
linear program:

min
mX

j=1

³
y+j + y

¡
j

´
qj ; s:t: :

8
>>><
>>>:

Pn
i=1 Pi ¼i(¸j) + y

¡
j ¡ y+j = ¸j ; j = 1; : : : ;mPn

i=1 Pi ¼i =
Pm
j=1 ¸j qj

P1 ¸ 0:6PCentral ; Pn � 2PCentral
Pi+1 ¸ 1:1 Pi ; i = 1; : : : ; n¡ 1

(7)
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Recall this is a general form that is going to be solved in the particular cases
m = 5; 10; 20 and n = 3; 4; : : : ; 10: For these n-values the central classes have
been chosen as Central = 2; 3; 3; 3; 3; 4; 5; 5; respectively.

4.2.5 Resolution for a growing number of discretization classes

We have solved (7) for the cases n = 5 and m = 5; 10; 20: The results have been
reported in tables 1 and 2.

TABLE 1

TABLE 2

The …rst one contains the scales of premiums obtained for each m, the respective
bonus/malus values between two consecutive classes, and …nally the values of the
objective function (deviation from equity) and the …nancial balance (always 0).
The second one reports the rating errors obtained for each discretization class
in the three cases h = 0:3; 0:15; 0:075: Having a look to tables 1 and 2, two
important facts must be noted.

² The scales of premiums are almost the same in the three cases. This is par-
ticularly true in the last two (corresponding to the meshes h = 0:15; 0:075).
Therefore it seems in this example as if the method were not sensitive to
changes in the discretization of u(¸). We conclude that our method has
succeeded in calculating the scale of premiums associated to the density
function given all the others elements de…ning the bonus malus system.

² Looking to the optimal values of the objective function, we see that there
is a light improvement between the cases m = 5 and m = 10: Afterwards
the value remains almost the same, in a neighborhood of 0:13.

We have plotted, in the case m = 20; the points with abscissas the class
marker ¸j and ordinate the respective non null rating error, multiplying this last
by (¡1) if it is y¡j > 0: The resulting …gure 2 illustrates the shape of the rating
errors.

FIGURE 2

Founded on these observations, we will from hereafter work our calculations
using the arithmetization of u(¸) with mesh h = 0:15 and 10 points in its support
(see (6)).

Discussing deeper about our scale of premiums, we can see (looking to the
case h = 0:15) that its range, which goes from 0:4892 to 1:6309; is in accord with
the claims number distribution selected at the beginning (see …gure 1). On the
other hand the minimal di¤erence of 10% of the lower class premium, that we
asked to be ful…lled between two consecutive bonus malus classes, is veri…ed for
classes second and third, and also fourth and …fth. This is not the case for classes

18



…rst and second, with a di¤erence of 51:5%, and classes third and fourth with a
di¤erence of 81:8%:

The rating error is to be interpreted as the mean value that a policyholder
belonging to that discretization class will pay in excess or in defect in the long
run. For example, if we take the discretization class ¸3 = 0:45, every member
of this class will pay in mean an excess of 0:043602254 monetary units. This is
near to an excess of 9:6% over their mean ¸3 or, alternatively, a 4:3% over the
mean individual claim cost in the portfolio. An extreme case is represented by
policyholders with Poisson parameter belonging to the highest class (¸10 = 1:5);
who are going to pay in mean a defect of approximately 37:3% over their mean
¸10, which is the same as saying a 55:97% over the mean individual claim cost in
the portfolio. It is to notice that our bonus malus system is advantageous for the
worst policies, as can be seen in table 2. We insist in the important fact that this
scale of premiums satis…es all the previous requirements that were translated into
the feasible set, including the …nancial equilibrium of the portfolio. Finally we
recall that in this example, changing the weights in the objective function does
not change the optimal scale of premiums or the rating errors.

4.2.6 Resolution for a growing number of bonus malus classes

In the precedent section the choice n = 5 was arbitrarily made. Now we want
to distinguish between bonus malus systems that only di¤erentiate among them
because of the di¤erent numbers of bonus malus classes. The aim is to be able to
answer what would be the optimal number of bonus malus classes if the others
elements of the bonus malus system were given.

With this aim we have proceeded to the resolution of the linear program (7)
in the cases m = 10, n = 3; : : : ; 10: All the weights were set to be equal to one
because there is no gain in varying them (at least for the values we tried!), as
was told earlier. The results have been reported in tables 3 and 4.

TABLE 3

TABLE 4

Looking to these tables we can note the following facts.

² The range of the scale of premiums is almost invariant for a growing number
of bonus malus classes. For n = 3 it is [0:485; 1:617]; while for n = 10 it
becomes [0:494; 1:648]: This stability in the range is certainly produced by
the type of market constraints introduced in the de…nition of the feasible
set.

² If we have a look to the optimal values of the objective function, we will see
that the minimal value 0:1309 is attained for n = 3; though the eight opti-
mal values are neighbors contained in the interval [0:1309; 0:1399]: Strictly
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interpreting these values, we shall conclude that we will have to choose the
number of bonus malus classes to be n = 3: But we carefully think that the
di¤erences among the eight optimal values are so short that other consider-
ations could possibly prevail in the …nal choice for n: For instance, in Spain
it is a well known fact in automobile insurance that an excess of malus in the
higher classes of any scale could drive the policyholders to quit the insur-
ance company for another one, as there does not exist a collective data base
recording the claim history of the policyholders. This simple and real fact
could justify the preference of the bonus malus designer for a bigger value
of n; for instance n = 5; that introduces the same level of malus (remember
this was set to be the 100% of a central premium) in a more gradual way.
Perhaps the preservation of the total number of policyholders (the …nancial
equilibrium being guaranteed) could compensate the little loss in equity of
the bonus malus system …nally adopted.

² Observing the rating errors reported in table 4, we can see the same pat-
tern through the variation of n = 3; : : : ; 10: classes of discretization j =
1; 2; 3 are paying mean excesses over their true parameter, while classes
j = 4; 5; 6; 7; 8; 9; 10 are paying mean defects, either in the long run.

In summary we would like to insist that our method has been able to furnish,
in this example, important elements to adopt a decision about the best value of
n; solving the problem from a strictly mathematical point of view.

4.2.7 Comments about the …nancial equilibrium constraint.

Along the discussion, the …nancial balance has been modeled by means of an
equality constraint, re‡ecting the fact that no total mean gain can be made by
either sides in the long run. Another possibility would be to investigate the
optimums found when solving a linear program where the equality constraint is
substituted by the inequality

nX

i=1

Pi ¼i ¸
mX

j=1

¸j qj; (8)

which makes possible a favorable …nancial balance for the insurance company.
In order to explore this possibility we have built linear programs identical to (7)
except in the …nancial equilibrium constraint is substituted by the inequality (8).

Solving this new program in the cases n = 5; and m = 5; 10; 20, all the weights
being equal to one, we have noted the following facts (see table 5).

TABLE 5

Firstly, the solution is dependent of the discretization of the density function,
and secondly, when we take a smaller mesh the optimum tends to be the same
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than in the preceding case of program (7): this is easily seen looking to the last
row of table 5 and comparing with the results reported in table 1.

We have tried to change the weights in order to …nd other optimal scales of
premiums. For example the substitution !+j = 1=10; !

¡
j = 9=10 8j = 1; : : : ;m;

makes this technical trick succeed. The meaning of these weights is that we
are giving nine times more importance to the underachievements y¡j than to the
overachievements y+j ; thus the former will be minimized more intensively than the
later, simplex algorithm running (this is a kind of penalty strategy). As a result,
we can expect the new scale of premiums to be higher than the one calculated
already. This is in fact the case, as is re‡ected in table 6

TABLE 6

Here we can make the same remarks as in the last case: the scale is not indepen-
dent of the discretization of the density function, though the optimum seems to
become quite stable for values of the mesh below h = 0:15. The range of the scale
of premiums is now [0:71; 2:38]. This optimum is di¤erent because it corresponds
to a …nancial balance equal to 0:2326 worth to the insurance company, as was
seek. The reason is that the bad policies are now paying less in defect, though
the good ones now pay a bigger excess than in the precedent optimum. This is
easily seen comparing the two tables number 7 and 2.

TABLE 7

5 Conclusions

This paper focuses in the resolution of the problem consisting in the calculation
of a scale of premiums given the claim number distribution, the transition rules
and the number of bonus malus classes. We begin showing how it is possible to
interpret this problem as a Bayesian decision problem. This new point of view
opens the resolution to settings properly suited for designing purposes. This
is because it gives us the possibility of modelling all the characteristics to be
veri…ed by the resulting scale of premiums by means of constraints included
in a mathematical program. Nevertheless some serious drawbacks would arise
when expressing this program following the usual tendency found in the actuarial
literature, as it is to minimize the expected squared rating error. Firstly there is
a di¢culty in solving a quadratic program with many restrictions, and secondly,
even if it was solvable this technique would not in general preserve the …nancial
equilibrium of the portfolio (as shown in the example given at the end of section
3). This last has a deeper nature as it tells us that the optimums would not be
acceptable from an actuarial point of view.

The Bayesian decision problem de…ned …rstly is not the only possible for-
mulation in order to design an optimal bonus-malus system, thanks that it is
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possible to give another interpretation for the stationary distribution. An arbi-
trarily policy that approaches stationarity does not necessarily stay forever in
the same class. It is the probability ¼i(¸) of (temporarily) belonging to bonus
malus class Ci that remains constant for a policy with parameter ¤ = ¸ in the
stationary state. Such policy can change the class according to these probabil-
ities, and therefore the mean value of the premiums paid by that policyholders
will be

Pn
i=1 Pi ¼i(¸). Therefore, it make sense to set a Bayesian decision problem

where the optimal decision is the one that minimizes the expected absolute error
between ¸ and

Pn
i=1 Pi ¼i(¸).

The following step consists in applying Goal Programming methods, which
are linear thanks to the equivalence between the minimization of the absolute
error and the minimization of the sum of some deviation variables which have a
natural interpretation as rating errors.

As it is shown in the exempli…cation of section 4.2, the design of a bonus malus
system following our method would consist in adding linear constraints into the
de…nition of the feasible set. These constraints model the fairness (or equity)
of the system, the …nancial equilibrium, the commercial settings, the monotony
of the scale of premiums, and also the nonnegativity of the rating errors. Then
minimizing the sum of the rating errors over the discretization classes of the
density function, drives us to an optimal scale of premiums (in the sense of an
optimal Bayesian decision minimizing the expected absolute error) satisfying all
the precedent requirements, particularly the …nancial equilibrium of the portfolio.

We have seen that, at least in our example, our method is robust with respect
to the discretization of u(¸), and also with respect to the weights of the objective
function. We have also seen that it can give us some hints about the choice in
the number of bonus malus classes, given a general frame for the transition rules.

When changing the …nancial equilibrium by a …nancial balance worth to the
insurance company, it does not drive us to new optimums except when we take
di¤erent the weights of the objective function in order to penalize the under-
achievements (i.e. negative deviations). This gives way to a scale of premiums
quite advantageous for the insurance company.

We have to stress that the rating errors y¡j , y+j are such a valuable information
furnished by our method, as they tell us the mean defect or excess for a policy of
Poisson parameter ¸ to be paid in the long run (transition rules working), if the
scale of premiums is the optimal one.

For all these reasons, we may think that our methodology could be able to
furnish solutions that

² Answer the third main problem of section 3 (how to determine the premium
associated with every bonus malus class), respecting the well established
good properties (as equity of the system or …nancial balance of the portfolio)

² while preserving real world conditions expressed along the paper as the
market conditions or commercial settings.
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