UNIVERSIDAD COMPLUTENSE DE MADRID

Facultad de Ciencias Químicas

Departamento de Ingeniería Química

ADSORCION SELECTIVA DE MEZCLAS ETANOL-BUTANOL-ACETONA EN FASE LIQUIDA

nonentinen toisen ukkenne onen allen energien. Und Robert allen deur deur einen einen einen einen einen einen Robert (Robert Facultad de Ciencias Outminos BIBLIOTECA Nº Fogistio 2.3.3.C. 7

Juan José Pedraza Ruiz Madrid, 1993 Colección Tesis Doctorales. N.º 206/93

Juan José Pedraza Ruiz

Edita e imprime la Editorial de la Universidad Complutense de Madrid. Servicio de Reprografía. Escuela de Estomatología. Ciudad Universitaria. Madrid, 1993. Ricoh 3700 Depósito Legal: M-30777-1993

La Tesis Doctoral de D. .. JUAN JOSE PEDRAZA RUIZ Titulada "ABSORCION SELECTIVA DE MEZCLAS ETANOL-BUTANOL-ACETONA EN FASE LIQUIDA" Director Dr. D. GUILLERMO CALLEIA PARDO y D. M.A. UGUINA ZAMORANO fue leida en la Facultad deCIENCIAS QUIMICAS de la UNIVERSIDAD COMPLUTENSE DE MADRID, el día de <u>Abril</u> de 19 92, ante el tribunal constituido por los siguientes Profesores: PRESIDENTE D. JOSE LUIS SOTELO SANCHO VOCAL D. ANTONIO DE LUCAS MARTINEZ VOCAL D. SEBASTIAN DELGADO DIAZ VOCAL D. DANIEL PRATS RICO SECRETARIO D. GABRIEL OVEJERO ESCUDERO habiendo recibido la calificación de Apto un Lande

Madrid, a 6 de Abril de 1992. EL SECRETARIO DEL TRIBUNAL.

Jabriel Vagers Komd

UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS QUIMICAS DEPARTAMENTO DE INGENIERIA QUIMICA

ADSORCION SELECTIVA DE MEZCLAS ETANOL-BUTANOL-ACETONA EN FASE LIQUIDA

TESIS DOCTORAL

por

JUAN JOSE PEDRAZA RUIZ

Madrid, 1992

Esta Tesis Doctoral fué presentada por D. Juan José Pedraza Ruiz en la Facultad de Ciencias Químicas de la Universidad Complutense de Madrid, para la obtención del GRADO DE DOCTOR EN CIENCIAS QUIMICAS. Realizada en el DEPARTAMENTO DE INGENIERIA QUIMICA, fué dirigida por los profesores del mismo D. Guillermo Calleja Pardo y Dña. María Angeles Uguina Zamorano.

Leída el 6 de abril de 1992 ante el Tribunal constituido por los proresores.

- D.	José Luis Sotelo Sancho	Presidente
~ D.	Antonio de Lucas Martínez	Vocal
- D.	Sebastián Delgado Díaz	Vocal
- Đ.	Daniel Prats	Vocal
- D.	Gabriel Ovejero Escudero	Secretario.

obtuvo la calificación de APTO CUM LAUDE por unanimidad.

AGRADECIMIENTOS

La presente investigación se realizó en el Departamento de Ingeniería Química de la Facultad de Ciencias Químicas de la Universidad Complutense de Madrid, bajo la dirección del Catedrático Dr. D. Guillermo Calleja Pardo y la Profesora Titular Dra. Dña. M^a Angeles Uguina Zamorano en quienes siempre encontré el estimulo, la ayuda y consejos que posibilitaron mi labor, y a los cuales quiero expresar mi más sincero agradecimiento.

También he de expresar aquí mi gratitud a todos los profesores y compañeros del Gepartamento de Ingeniería Química, en quienes encontré la ayuda necesaria para la realización de éste trabajo.

Por último, he de citar a quienes contribuyeron a mi formación científica, técnica e investigadora en la Facultad de Ciencias Químicas de la Universidad Complutense de Madrid, el Colegio Universitario San Pablo (C.E.U.), así como al Ministerio de Educación y Ciencia por la peca del Plan de Formación de Personal Investigador (F.P.I.) recibida, sin la cual no hubiera sido posible la financiación de esta investigación.

Madrid, Enero 1992

A mis padres

٩

y hermana.

Indice.

INDICE

1.	RESUMEN	1
2.	INTRODUCCION	4
	2.1 LA ADSORCION COMO METODO DE SEPARACION EN PROCESOS DE FERMENTACION	4
	2.1.1 La fermentación etanólica	5
	2.1.2 La fermentación butano}-acetónica	10
	2.2 ADSORCION EN FASE LIQUIDA	10
	2.3 ADSORBENTES INDUSTRIALES. TIPOS Y PROPIEDADES	20
	2.3.1 Carbón Activado	22
	2.3.2 Tamices Moleculares	25
	2.3.3 Adsorbentes polímeros	29
	2.4 SISTEMAS DE CONTACTO Y HODOS DE OPERACION	32
	2.4 SISTEMAS DE CONTACTO Y MODOS DE OPERACION	32 32
	2.4 SISTEMAS DE CONTACTO Y MODOS DE OPERACION	32 32 33
	 2.4 SISTEMAS DE CONTACTO Y MODOS DE OPERACION 2.4.1 Sistemas discontínuos y de flujo continuo 2.4.2 Curvas de rotura 2.4.3 Etapa de regeneración 	32 32 33 35
	 2.4 SISTEMAS DE CONTACTO Y MODOS DE OPERACION 2.4.1 Sistemas discontínuos y de flujo continuo 2.4.2 Curvas de rotura 2.4.3 Etapa de regeneración 2.5 EQUILIBRIO DE ADSORCION 	32 32 33 35 36
	 2.4 SISTEMAS DE CONTACTO Y HODOS DE OPERACION 2.4.1 Sistemas discontínuos y de flujo continuo 2.4.2 Curvas de rotura 2.4.3 Etapa de regeneración 2.5 EQUILIBRIO DE ADSORCION 2.5.1 Isotermas de adsorción de un solo componente 	32 32 33 35 36 41
	 2.4 SISTEMAS DE CONTACTO Y MODOS DE OPERACION 2.4.1 Sistemas discontínuos y de flujo contínuo 2.4.2 Curvas de rotura 2.4.3 Etapa de regeneración 2.5 EQUILIBRIO DE ADSORCION 2.5.1 Isotermas de adsorción de un solo componente 2.5.2 isotermas de adsorción de mezclas multicomponentes 	32 32 33 35 36 41 43
	 2.4 SISTEMAS DE CONTACTO Y MODOS DE OPERACION 2.4.1 Sistemas discontínuos y de flujo continuo 2.4.2 Curvas de rotura 2.4.3 Etapa de regeneración 2.5 EQUILIBRIO DE ADSORCION 2.5.1 Isotermas de adsorción de un solo componente 2.5.2 isotermas de adsorción de mezclas multicomponentes 2.6 CINETICA DE ADSORCION 	32 32 33 35 36 41 43 48
	2.4 SISTEMAS DE CONTACTO Y HODOS DE OPERACION 2.4.1 Sistemas discontínuos y de flujo continuo 2.4.2 Curvas de rotura 2.4.3 Etapa de regeneración 2.5 EQUILIBRIO DE ADSORCION 2.5.1 Isotermas de adsorción de un solo componente 2.5.2 isotermas de adsorción de mezclas multicomponentes 2.6 CINETICA DE ADSORCION 2.6.1 Difusión en el interior de los poros del	32 32 33 35 36 41 43 48
	 2.4 SISTEMAS DE CONTACTO Y MODOS DE OPERACION 2.4.1 Sistemas discontínuos y de flujo continuo 2.4.2 Curvas de rotura 2.4.3 Etapa de regeneración 2.5 EQUILIBRIO DE ADSORCION 2.5.1 Isotermas de adsorción de un solo componente 2.5.2 Isotermas de adsorción de mezclas multicomponentes 2.6 CINETICA DE ADSORCION 2.6.1 Difusión en el interior de los poros del adsorbente 	32 33 35 36 41 43 48 48

I	nd	ŝ	c	c	
_				-	

-

2.7 OBJETO Y ALCANCE DE LA PRESENTE INVESTIGACION	58
3. INSTALACION EXPERIMENTAL	50
3.1 INSTALACION I1	50
3.1.1 Sistema de contacto y agitación	62
3,1.2 Sistema de calefacción	52
3.1.3 Sistema de análisis	62
3.2 INSTALACION 12	63
3.2.1 Sistema de contacto	63
3.2.2 Sistema de control y medida de la temperatura	63
3.2.3 Sistema de alimentación	65
4. MATERIALES Y PROCEDIMIENTOS	66
4.1 MATERIALES	66
4.1.1 Adsorbentes	66
4.1.2 Adsorbatos	67
4.2 PROCEDIMIENTO OPERATIVO	67
4.2.1 Isotermas de equilibrio	67
4.2.2 Curvas de rotura	68
5. RESULTADOS EXPERIMENTALES	70
S.1 EXPERIMENTOS PREVIOS	71
5.1.1 Determinación del tiempo de equilibrio	71
5.1.2 Tratamiento previo del carbón activado	71
5.1.3 Reproducibilidad de los experimentos de equilíbrio	72
5.2 SELECCION DEL ADSORBENTE. EXPERIMENTOS DE EQUILIBRIG DE	
UN SOLO COMPONENTE	72

	5.2.1 Carbón Activado	72
	5.2.2 Silicalita	72
	5.2.3 ZSN-5 (a)	73
	5.2.4 ZSM-5 (b)	73
	5.2.5 Silicalita Aglomerada	73
	5.3 EXPERIMENTOS DE EQUILIBRIO DE MEZCLAS BINARIAS	73
	5.3.1 Sistema binario Etanol-Glucosa	73
	5.3.2 Sistema binario Etanol-Butanol	74
	5.3.3 Sistema binario Etanol-Acetona	74
	5.3.4 Sistema binario Butanol-Acetona	74
		74
	3.4 EXPERIMENTOS DE EQUILIBRIO DE REZOLAS TERMARTAS	74
	5.4.1 Sistema ternario etanol-butanol-acetona	74
	5.5 TIEMPOS Y CURVAS DE ROTURA	75
	5.5.1 Reproducibilidad de los experimentos cinéticos	75
	5.5.2 Curvas de rotura de etanol sobre silicalita en	
	polvo a 25°C	75
	5.5.3 Curvas de rotura de etanol sobre silicalita	
	aglomerada a 25°C	76
5.	DISCUSION DE RESULTADOS	153
		• = -
	6.1 EXPERIMENTOS PREVIOS	153
	6.1.1 Estabilidad de las disoluciones. Efecto del pH	153
	6.1.2 Determinación del tiempo de equilibrio	154
	6.1.3 Tratamiento previo del carbón activado	154
	6.1.4 Reproducibilidad de resultados	155
	6.2 EQUILIBRIO DE ADSORCION DE UN SOLO COMPONENTE	159
	6.2.1 Isotermas individuales de etanol y glucosa.	
	Selección del adsorbente.	159

6.2.2 Isotermas de adsorción de etanol, butanol y	
acetona sobre silicalita	172
6.2.3 Isotermas de adsorción de etanol sobre silicalita	174
6 2 4 Aiuste del emilibrio de adsorción a las isotermas	114
teóricas.	174
6.3 EQUILIBRIO DE ADSORCION DE MEZCLAS BINARIAS	189
6.3.1 Isotermas experimentales	189
6.3.2 Predicción y reproducción del equilibrio de	201
adsorcion de mezcias dinarias	201
6.4 EQUILIBRIO DE ADSORCION DE MEZCLAS TERNARIAS	217
6.5 EXPERIMENTOS CINETICOS EN LECHO FIJO	218
6.5.1 Reproducibilidad de experimentos	218
6.5.2 Initiuencia de las variables de operación	218
6.5.5 Fredicción de los clempos y curvas de rotura	200
7. CONCLUSIONES	253
8. RECOMENDACIONES	256
	0.50
9. APENUICE	257
9.1 CARACTERISTICAS DE LOS ADSORBENTES	257
9.1.1 Carbón Activado	257
9.1.2 Zeolitas	261
	170
SE ORGOLO DE LA DIFUSIVIDAD ROLECULAR DEL ETANOL EN AGUA	213
9.3 METODO DE ANALISIS	275
9.9 SECUENCIA DE CALCULU PARA LA PREDICCION Y REPRODUCCION	400
DEL EQUILIBRIU DE MESCLAS MULTICOMPONENTES	282

indice.

9.4.1 Solución Adsorbida Ideal (S.A.I.)	282
9.4.2 Solución Adsorbida Real (S.A.R.)	283
9.5 SIMULACION DEL LECHO DE ADSORCION	284
9.5.1 Predicción de los tiempos y curvas de rotura:	
Modelo matemático.	284
9.5.2 Reproducción de las curvas de rotura	288
9.6 REGRESION NO LINEAL	292
9.7 PROGRAMA DE CALCULO PARA LA SIMULACION DEL LECHO DE	
ADSORCION	297
10. NOMENCLATURA	306
11. BIBLIOGRAFIA	309

1. Resumen.

1. RESUMEN

El presente trabajo forma parte de un amplio programa de investigación sobre adsorción que viene desarrollándose en el Departamento de Ingeniería Química de la Facultad de Ciencias Químicas de la Universidad Complutense de Madrid, encaminado tanto a la determinación experimental de los parametros de equilibrio (isotermas de adsorción) y cinéticos (coeficientes de difusión), como a su predicción teórica.

El interés por reducir los costes de recuperación de los alcoholes de los medios de fermentación en que se generan, ha impulsado el desarrollo de la adsorción como método de separación, por tratarse de un proceso de menor consumo energético y de mayor selectividad.

En la presente investigación se han estudiado los sistemas formados por disoluciones acuosas de etanol, butanol, acetona y glucosa y carbón activado y tamices moleculares de diferentes relaciones Si/Al como adsorbentes.

Con el objeto de seleccionar un adsorbente selectivo apropiado para

la separación del etanol de mezclas acuosas diluidas en presencia de otros asdorbatos que pudieran interferir en la eliminación del etanol de los caldos de fermentación, (glucosa), se obtuvieron las isotermas experimentales de equilibrio de los adsorbatos con los diferentes adsorbentes antes mencionados en un sistema de tanque agitado y temperaturas comprendidas entre 25 y 55°C. De este estudio, se eligió la silicalita como adsorbente, comprobándose que:

 La cantidad de etanol adsorbida en el equilibrio es próxima al valor de la capacidad de adsorción máxima.

~ La elevada relación sílice/alúmina de la silicalita (SiO_/Al_O_= 149), confiere al adsorbente un marcado caracter hidrófobo.

- La adsorción de etanol en silicalita no se ve influenciada por la presencia de glucosa, ya que el tamaño de la molécula de ésta es superior al tamaño de los poros de la zeolita.

Se han determinado las isotermas experimentales de las mezclas binarias (etanol-butanol, etanol-acetona y butanol-acetona) a 25°C y de las mezclas ternarias (etanol-butanol-acetona) a 25°C, así como de las correspondientes curvas de rotura sobre silicalita en lecho fijo.

Las isotermas individuales de los adsorbatos empleados se ajustaron a las ecuaciones de Langmuir, Freundlich y Prausnitz, observándose un mejor ajuste de los datos experimentales a la ecuación de Prausnitz. El compuesto que más se adsorbe, es el butanol, seguido del etanol y la acetona, no adsorbiéndose nada la glucosa.

Se ha realizado la predicción teórica de las isotermas de equilibrio de mezclas binarias, a las que se aplicaron los modelos de la Solución Adsorbida Ideal (S.A.I.) para la predicción de los datos experimentales a una concentración total en la fase líquida de 1000 mol/m^3 , y los modelos de la Solución Adsorbida Real (S.A.R.) para la reproducción de los mismos, ya que estos requieren datos de mezclas binarias para su desarrollo. Se obtuvo una buena predicción para el sistema etanol-acetona mediante el modelo S.A.I., mejorada en pequeño grado por el modelo S.A.R., que sí ajustaba correctamente los sistemas etanol-butanol y butanol-acetona.

Del estudio del sistema ternario, (etanol-butanol-acetona), se deduce un gran efecto de desplazamiento del butanol sobre los demás adsorbatos, y de la acetona sobre el etanol, no obteniéndose puntos en los que coexistan en la fase adsorbida los tres adsorbatos estudiados. Este hecho demuestra que la silicalita posee la selectividad necesaria para separar estos compuestos de las mezclas en que se encuentren.

Se obtuvieron los tiempos y curvas de rotura del etanol sobre silicalita pura y silicalita aglomerada a 25°C, para distintos valores de las condiciones de operación (Altura de lecho de adsorbente, Caudal de la corriente alimento y Composición de la corriente de entrada).

Se observó que las curvas de rotura experimentales presentaban una gran pendiente, lo que es indicativo de una cinética de adsorción muy rápida.

Se desarrolló un modelo matemático simplificado, basado en un coeficiente global de transferencia de matería, para la simulación de la adsorción en el lecho fijo. La resolución de este modelo se realizó numéricamente, mediante incrementos finitos, obteniéndose los valores optimos del coeficiente de transferencia de materia con los que se obtiene la mejor reproducción de las curvas de rotura experimentales.

A partir de estos resultados, se comprobó que cuando el adsorbente utilizado es silicalita, la etapa controlante del proceso es la difusión interna, y cuando la silicalita está aglomerada hay dos resistencias significativas: la transferencia de materia externa y la difusión interna, En todos los casos, los experimentos fueron reproducidos con un error medio inferior al 15 %.

2. Introducción.

2. INTRODUCCION.

2.1 LA ADSORCION COMO METODO DE SEPARACION EN PROCESOS DE FERMENTACION.

Los procesos de adsorción se utilizan ampliamente en la Industria Quimica, Bioquímica y Petrolifera tanto en procesos de purificación (eliminación o recuperación de trazas) como en procesos de separación. Mientras que los sistemas de purificación por adsorción están en funcionamiento desde hace muchos años para el tratamiento del aire y del agua, decoloración de azucar, etc., la utilización a gran escala de la adsorción en los procesos de separación fue más tardía debido a la necesidad de obtener adsorbentes con la suficiente selectividad para diferenciar especies químicamente similares.

El descubrimiento y comercialización de las zeolitas sintéticas y sus derivados (silicatos porosos) como adsorbentes, ha representado el mayor estímulo para el desarrollo de la adsorción como proceso de separación (Ruthven, 1988).

Por otro lado, la fermentación conduce a un gran número de productos químicos, pero la acumulación de productos tóxicos en los caldos de fermentación inhibe la actividad de los microorganismos e impide alcanzar grandes conversiones, obteniéndose los productos en forma diluida. Los equipos de fermentación utilizados son de gran tamaño para poder manejar los grandes volúmenes de agua introducidos al proceso y se requiere, asímismo, gran cantidad de energia para recuperar el producto del caldo de fermentación. El efecto de inhibición de la producción puede reducirse mediante la recuperación in situ de los productos causantes de la mísma. Así, los productos de fermentación volátiles, como el etanol, pueden recuperarse de los caldos creando vacio en el fermentador, produciéndose con ello un proceso de destilación a baja presión (Lee y col., 1981; Ghose y col., 1984); también pueden recuperarse por agotamiento mediante una corriente de gas que se hace pasar directamente por el fermentador (Dale y col., 1985) o paralelamente a una membrana semiimpermeable (Groot y col., 1984). Para los productos inhibidores no volátiles se han propuesto métodos de adsorción sobre resinas cambiadoras iónicas (Tangu y col., 1981), carbón activado (Wang, 1981) y resinas poliméricas (Evans, 1984) así como de extracción líquido~líquido por adición de polímeros (Puzzis, 1965) v disolventes orgánicos (Taya, 1985). De todos esto métodos, la adsorción presenta a escala industrial ventajas sobre los demás, tales como, mayor simplicidad y facilidad de operación y un equipo más barato, siendo además aplicable a procesos contínuos, discontínuos o semicontínuos.

2.1.1 La fermentación etanólica.

La fermentación etanólica es un proceso conocido por el hombre desde hace mucho tiempo, disponiéndose de referencias de hasta 6000 años a. C. Sin embargo, la crisis energética de los años setenta, obligó a la búsqueda de nuevas energías, favoreciendo el desarrollo de las fermentaciones de biomasas primarias para conseguir productos energéticos. Fruto de este planteamiento se desarrolló la producción de etanol a partir de carbohidratos más o menos polimerizados (celulosa, almidón, sacarosa), utilizando el microorganismo Saccharomyces cerevisiae, del cual se tiene un amplio conocimiento de sus aspectos morfológico, fisiológico, bioquímico y genético. Estos carbohidratos pueden encontrarse libres, como en la caña de azucar, o en forma de polímeros, como el almidón o la celulosa. En este último

caso, es preciso someterlos previa o simultáneamente, a un proceso de hidrólisis (ácida o enzimática) para transformarlos en compuestos fermentables.

La fermentación de la glucosa a etanol se produce a través de una compleja secuencia de reacciones que puede resumirse en la siguiente reacción global:

$$C_{6_{12}}^{H}O_{6} \longrightarrow 2 CH_{3}^{-}CH_{2}OH + 2 CO_{2} + calor$$

En la figura 2.1 se resume el esquema general del proceso completo a partir de distintas materias primas (Weissermel K. y col., 1978). El rendimiento real en etanol es menor que el que teóricamente pudiera calcularse a partir de esta reacción, ya que aproximadamente un 5% de la glucosa inicial es utilizada por el microorganismo en la producción de masa celular y subproductos como glicercles, ácido acético y ácido láctico.

Así pues, de la fermentación se obtiene una solución con una concentración entre 8 y 12 % en peso de etanol (Goberna, 1988), debido fundamentalmente a las siguientes razones:

 a) Las elevadas presiones osmóticas que pueden producir las soluciones azucaradas concentradas (> 22 % peso)inhiben el crecimiento celular de los microorganismos encargados de la fermertación en las fases iniciales de la misma.

 b) Concentraciones de etanol en el medio de fermentación superiores al 12 - 14 % en peso pueden producir la destrucción de las levaduras antes de completarse la fermentación.

Por todo ello, se hace necesario una posterior etapa de separación y purificación del etanol de la masa de fermentación que suele realizarse por rectificación.

La recuperación del etanol del caldo de fermentación es un proceso que tiene, al menos, tres etapas: Introducción.

Figura 2.1 Esquema general del proceso de obtención de etanol por fermentación a partir de distintas materias primas de origen vegetal.

Introducción.

a) Rectificación de las disoluciones acuosas de alcohol hasta el azeótropo (95.57 % en peso de etanol) (Hatch, L.F., 1962).

 b) Rectificación extractiva utilizando un tercer componente (un disolvente orgánico o una solución salina) para romper el azeótropo y eliminar el agua residual (Fuster, 1933; Black y col., 1980).

c) Rectificación adicional para separar el agua del tercer componente utilizado en b) y pueda ser reciclado al sistema.

Las trazas de otros componentes como pentanol y metanol que pueden impurificar el etanol deben ser eliminados mediante una rectificación adicional, si bien esta etapa no es necesaria cuando el etanol va a utilizarse como combustible.

Un análisis de la destilación de la mezcla etanol-agua mediante el método de McCabe-Thiele, indica que el consumo de energía se incrementa de modo importante cuando:

a) disminuye la concentración de etanol por debajo del 4% debido al elevado volumen que es necesario rectificar para una misma producción de etanol. Normalmente, la tecnología de la fermentación da como resultado un producto que contiene de un 5 a un 12 % de etanol, evitándose este problema.

b) se destila para conseguir concentraciones superiores al 85 % de etanol, tal como muestra la figura 2.2 , donde se representa el cociente entre la energía obtenida por combustión del etanol y la consumida en su separación por destilación, frente a la concentración de éste en el producto.

Asímismo, en la figura 2.3 puede apreciarse que para obtener un destilado con un 92.2 % en peso de etanol, utilizando una razón de reflujo 1.5 veces la razón de reflujo mínima, se necesita una columna con un elevado número de pisos, ya que la línea de operación en el sector de enriquecimiento se aproxima a la línea de equilibrio. Si se deseara un menor número de pisos, sería presiso aumentar la pendiente de la línea de operación en dicho sector, esto implica aumentar la razón de reflujo de la

Figura 2.2 Consumo de energía en la destilación del etanol.

Figura 2.3 Diagrama de McCabe-Thiele del etanol.

columna y, por tanto, un mayor aporte de energía a la caldera (Ladish, 1979; Parkinson, 1981).

Resulta evidente, pues, el interés en reducir los costes de recuperación del etanol producido en las fermentaciones, recurriendo a otros procedimientos de separación más selectivos y de menor consumo energético. Estas dos últimas características son las típicas de los procesos de adsorción. En la tabla 2.1 (Parkinson, 1981) se muestra un resumen de las necesidades energéticas de los métodos convencionales y alternativos de deshidratación del etanol.

2.1.2 La fermentación butanol-acetónica.

La producción de butanol y acetona via fermentación de biomasa Se consigue por la actuación del microorganismo Clostrídium acetobutylicum sobre melazas que contienen un 55 % eu peso de azucares fermentables y un 30 % de sólidos no fermentables. El caldo inicial se diluve hasta una concentración de 60 g/l en azúcares y se mezcla con nutrientes en un tanque de mezcla. El efecto inhibidor del butanol impide el uso de mayores concentraciones en azúcares. Actuando sobre los caldos en las condiciones óptimas de operación se consiguen las siguientes concentraciones de productos (Roffler y col., 1987): 13.7 g/l de butanol, 5.4 g/l de acetona, 1.5 g/l de etanol, 0.2 g/l de ácido butírico y 0.3 g/l de ácido acético. Estos productos se recuperan del caldo de fermentación por agotamiento y se separan en sucesivas columnas de cestilación, purificánçose individualmente hasta el grado deseado. La complejidad y tamaño del equipo y, por tanto, su elevado coste, promueve el estudio de nuevos métodos de recuperación de estos productos. Ello lleva nuevamente a considerar la alternativa de los procesos de adsorción como técnicas de separación más selectivas y ventajosas.

2.2. ADSORCION EN FASE LIQUIDA.

La adsorción es un fenómeno superficial que consiste en la retención temporal de las moléculas de un fluido (adsorbato) sobre la superficie de un sólido (adsorbente). La definición de adsorción que propone la *International* of Pure and Applied Chemistry (Sing, 1985) es la siguiente: " Es el

TABLA 2.1

Timo de	V F4.			Frenzía
Separación	Inicial (en j	Final pesa)	Proceso	requerida (kJ/m 10 ⁺⁶)
completa	10	100	Doble destilación	7.64
completa	10	100	Extracción con CO ₂	2.23-2.79
completa	10	100	Extracción con disolventes	1.00
completa	10	100	Destilación a vacio	10.31 (*)
hasta azeótropo	o 10	95	Rectificación con- vencional	5.01
SI.	10	95	Recompresión de vapor	1.78
4	10	95	Destilación a vacio multiefecto	2.00 (**)
desde azeótropo	95	100	Destilación azeotrópica	2.62
41	95	100	Secado con CaO	0.33
81	95	100	Adsorción (zeolitas)	1.31

(*) para una sola columna.

(**) para tres columnas.

enriquecimiento, en uno o más componentes, de una superficie interfacial^{*}. La adsorción de un soluto en disolución sobre una superficie sélida se dá como consecuencia de las propiedades características del sistema disolvente-soluto-sólido.

La fuerza impulsora primaria de la adsorción puede ser el resultado del carácter liófobo del soluto respecto al dísolvente, o de una elevada afinidad del soluto por el sólido. Normalmente, la adsorción es el resultado de la acción combinada de estas dos tendencias. La solubilidad de una sustancia puede considerarse como el grado de compatibilidad guímica entre un soluto y un disolvente y es el factor que determina la intensidad de la primera fuerza impulsora. Por otro lado y de forma complementaria, la afinidad específica de un soluto por establecer una interacción fisico-química con la superficie de un sólido, constituye la segunda tendencia (la más importante) que determina la adsorción del componente. Así, si un cierto número de moléculas de un fluido incide continuamente sobre una superficial, permaneciendo sobre ella aigún tiempo antes de retornar al fluido, su concentración sobre dicha superficie será superior a la correspondiente al seno del mismo. Este aumento de la concentración de adsorbato en la superfice es precisamente el fenómeno que sirve de base para la aplicación de la adsorción como método de separacion.

Al ser la adsorción un fenómeno superficial que tiene lugar en la interfase líquido-sólido, las reacciones superficiales existentes darán como resultado fuerzas dentro de los limites de la fase, que dan lugar a energias de contorno características. Un ejemplo muy corriente de energía superficial tiene lugar cuando colocamos una gota de agua sobre una superficie plana. La gota de agua no se extendera, tendiendo a minimizar su área superficial y por tanto a minimizar su energía superficial libre. Este fenómeno es debido a las fuerzas atractivas entre las moléculas interiores de la gota de agua. y se expresaen términos de tensión superficial.

Un liquido puro siempre tiende a reducir su energía superficial libre por medio de la tensión superficial. Si queremos extender la superficie de un líquido necesitamos aplicar una energía adicional para compensar la tensión superficial. La tensión superficial influye en el contacto entre el sólido y el líquido, pudiendo distinguirse tres casos (Figura 2.4):

ъ)

Figura 2.4 Tipos de contacto entre un sólido y un líquido en función de la tensón superficial: a) Interfase sólido-líquido reducida. b) Interfase sólido-líquido extendida.

 a) Tensión superficial positiva: Predominan las fuerzas de cobesión sobre las de adsorción sólido-líquido.

 b) Tensión superficial compensada: Igualdad de las fuerzas de adsorción y cohesión.

c) Tensión superficial negativa: Predominan las fuerzas de adsorción.

Existen diversas sustancias solubles que pueden alterar efectivamente la tensión superficial de un líquido como por ejemplo los detergentes. Los compuestos que disminuyen la tensión interfacial son más fácilmente adsorbidos, tanto más cuando mayor sea dicha disminución, aunque esto no se cumpla siempre.

En el caso de sólidos porosos, la mayor parte de la superficie es interna con lo que el líquido tendrá que llenar los poros. Esto será tanto más dificil cuanto menor sea el radio del poro y mayor la tensión superficial.

Los sólidos adsorbentes pueden clasificarse en dos grandes grupos: polares y no polares. Así, las fuerzas que intervienen en la adsorción de un soluto serán fundamentalmente electrostáticas en los primeros, y de dispersión en los segundos. Tanto el soluto como el disolvente pueden clasificarse de la misma forma. De este modo, la competencia por el adsorbato puede considerarse como función de la fuerza resultante entre las interacciones polares y no polares. Un adsorbato polar tenderá, por lo tanto hacia la fase más polar y viceversa.

De igual forma, el agua puede adsorberse ("mojar") superficies polares como gel de silice, etc., por lo que este tipo de adsorbentes se denominan hidrófilos, mientras que no se adsorberá sobre superficies no polares (adsorbentes hidrófobos).

La molécula de soluto que combina en su estructura una parte polar y otra no polar presenta especiales características para la adsorción, puesto que puede orientarse fácilmente en la interfase sólido-líquido con sus partes polar y no polar orientadas hacia la fase polar y no polar, respectivamente. Un ejemplo típico de este tipo de sustancias son ios tensoactivos.

Por otra parte, muchos procesos de adsorción en los que intervienen moléculas orgánicas, se producen como consecuencia de interacciones especificas entre elementos estructurales identificables del adsorbato y el adsorbente. Estas interacciones se denominan adsorciones específicas (Mattson y col., 1969; Mattson y col., 1970; Mattson y col., 1971; Irwin, H. 1981), que no se identifican ni con las adsorciones de tipo físico ni con las quimisorciones, según la clasificación convencional. Según esto, atendiendo a la naturaleza de la atracción que tenga lugar pueden distinguirse tres tipos principales de adsorción (hagne,P; Walker,P.L.; 1986):

- Adsorción física. (Atracción de naturaleza física de Van der Wals.)

- Adsorción guímica. (Atracción de naturaleza guímica.)

 Adsorción específica. (Atracción entre elementos estructurales específicos, intermedia entre la física y la química.)

Las características de los dos primeros tipos de adsorción se reflejan en la tabla 2.2.

También puede considerarse la adsorción debida a una atraccion electrostática, que pertenece al campo del intercambio iónico y es un proceso mediante el cual, los iones de una sustancia se concentran en una superficie como resultado de la atracción electrostática en los lugares cargados de la misma.

Estos mecanismos de adsorción en fase líquida pueden verse favorecidos o impedidos por una gran variedad de factores. De entre ellos destacan por su importancia los siguientes(Weber W. Jr. 1979).

1. Area superficial.

La adsorción es un proceso mediante el cual se extrae materia de una fase y se concentra en la superficie de otra fase, y por ello se considera como un fenómeno superficial, donde el grado de adsorción es proporcional al área superficial específica. Esta a su vez puede

2. Introducción.

_ .__.

TABLA 2.2

COMPARACION ENTRE ADSORCION FISICA Y QUINICA			
ADSORCION FISICA	ADSORCION QUIMICA		
- Fenómeno general, no especi- fico.	- Fenômeno específico.		
- Bajo calor de adsorción (me+ nos de 2 ó 3 veces el calor latente de vaporización).	- Alio calor de adsorción (del mismo orden de magnitud del cambio energético en reacciones químicas).		
- Monocapa o multicapa.	- Sólo monocapa.		
- No hay disociación de las especies adsorbidas.	- Puede impilcar disociación.		
- Sólo significativa a niveles térmicos relativamente bajos.	- Posible en un ámplio inter- valo de temperaturas.		
- Rápida, no activada y rever- sible.	- Activada, puede ser muy lenta e irreversible.		
- Aplicación en operaciones de separación.	- Significativa en procesos de catálisis.		

Ł

definirse como la porción de área total que está disponible para la adsorción. La cantidad adsorbida por unidad de peso de adsorbente sólido es tanto mayor cuanto más finamente dividido y poroso esté el sólido.

2. Naturaleza del adsorbato.

La naturaleza del adsorbato tiene una gran importancia en la adsorción. En general, se cumplen las siguientes reglas:

 Los compuestos aromáticos son mejores adsorbatos que los compuestos alifáticos de tamaño molecular parecido.

 Las cadenas ramificadas presentan mayor tendencia a la adsorción que las lineales.

- El aumento del tamaño molecular disminuye la posibilidad de acceso del adsorbato al interior de la estructura porosa del adsorbente, disminuyendo el grado de adsorción. Pero cuanto mayor sea el peso molecular, mayor es la tendencia a adsorberse en una superficie libre.

- La influencia del grupo sustituyente depende de la posición que ocupe (orto, meta, para).

 Los estereoisómeros no muestran regla fija en cuanto a su diferente capacidad de adsorción, mientras que los isómeros ópticos presentan idénticas características.

 En los compuestos iónicos de estructura símple, la adsorción es mínima para las especies cargadas y máxima para las especies neutras.

Al aumentar la complejidad del compuesto el efecto de la ionización tiene menos importancia. También existen compuestos anfóteros que tienen la capacidad de actuar como ácidos o bases. Los estudios efectuados sobre éste tipo de compuestos indican una adsorción máxima en el punto isoeléctrico, es decir, al pR en el cual

ambos extremos (ácido y básico) del compuesto están ionizados y por lo tanto presenta una carga neta igual a cero (Anderson, A.H., 1947). Esto concuerda con la observación de que la adsorción es máxima para las especies neutras.

3. Solubilidad.

La solubilidad del adsorbato en el disolvente es un factor determinante del grado de adsorbién. En general, puede decirse que éste es inversamente proporcional a la solubilidad del adsorbato en el disolvente a partir del cual ocurre la adsorbién (Bolmes y col., 1928) (regla de Lundelius, 1920).

Los efectos observados en las relaciones entre solubilidad y adsorción pueden interpretacse diciendo que, para que la adsorción funga lugar, es preciso romper una especiede "enlace" entre el soluto y el disolvente. Cuanto mayor es la solubilidad, más fuerte es este enlace y menor el grado de adsorción. Aunque pueden citarse muchos ejemplos que cumplen la "egla de Lundelius, existen también muchas excepciones, por lo que sólo puede considerarse de forma orientativa.

4. pH de la disolución

El pH de la disolución influye en el grado de adsorción por dos razones principalmente. En primer lugar, por la fuerte adsorción que presentan los iones hidronio $(H_{J}^{0^*})$ e hidroxilo (OH^{*}). En segundo lugar, por su influencia en el grado de ionización de los compuestos ácidos o básicos, factor determinante para la adsorción.

5. <u>Temperatura.</u>

Las pequeñas variaciones de temperatura no influyen de manera notable en un proceso de adsorción en fase líquida, sin embargo, un cambio importante de temperatura puede alterarlo considerablemente. Algunos efectos de la temperatura pueden atribuirse a cambios en las propiedades de la disolución (como la solubilidad) o cambios que

۰¢،

aumentan o disminuyen la adsorción de otras sustancias competidoras, entre ellas el disolvente.

6. Naturaleza del adsorbente.

La naturaleza química del sólido y su configuración estructura) y superficial afectan tanto al tipo de moléculas que se adsorben de manera selectiva como a su capacidad de adsorción.

7. Competencia entre adsorbatos.

En la separación de mezclas multicomponentes puede ocurrir que sean varios los compuestos que puedan adsorberse simultáneamente, disputándose la superficie del adsorbente, con lo cual la adsorción de cada componente puede verse influida frente a la adsorción en el caso no competitivo. El poder desplazante depende de cada soluto, y no es siempre máximo en la sustancia que más fuertemente se adsorbe cuando está sola. Los efectos son muy especificos y dependen de las relaciones entre las propiedades de cada soluto.

Tal vez el ejemplo más familiar y convencional de un proceso de adsorción sea el de una columna rellena con un adsorbente higroscópico adecuado, que se utilice para eliminar la humedad de una corriente liquida o gaseosa (Fleming, 1966). De forma similar a estas operaciones de secado y también de uso común a gran escala, son las operaciones de eliminación de impurezas indeseables, tales como H_2S y mercaptanos del gas natural y la eliminación de los contaminantes orgánicos del agua. Con el mismo objetivo de purificación de corrientes fluidas (Sitting, 1967) y también de gran interés, se pueder citar operaciones tales como la retención de productos activos de fisión que escapan de los combustibles nucleares (Roi, 1966): recuperación de metales en las plantas de tratamiento de aguas residuales (Petrasek, 1983); eliminación de SO₂ de los gases de combustión por adsorción en silicalita (Gollakota, 1988), etc.

Todos estos procesos, así como otros análogos a los que acabamos de citar, se denominan procesos de purificación y se caracterizan, en

su conjunto porque el componente que es adsorbido está presente sólo en bajas concentraciones, tiene pequeño o nulo valor económico y, con frecuencia, no es recuperable.

De más reciente desarrollo es la aplicación de la adsorción como operación de separación de mezclas fluidas en dos o más corrientes, cada una de ellas enriquecida con un componente valioso, que será recuperado posteriormente. Los primeros ejemplos, en los años 50, incluyen los procesos AROSORB para la recuperación de hidrocarburos aromáticos (Davis, 1952) y al principio de los años 60, los procesos de separación de n-parafinas de sus lsómeros ramificados y cíclicos (procesos MOLEX, ISOVIV...)(Ruthven, 1984).

En las últimas décadas ha tenido lugar un incremento en el número de procesos industriales de adsorción, tan considerable como para que la adsorción se haya convertido en una importante operación de separación, competitivo en muchos casos con las de rectificación. extracción, absorción, etc.

2.3. ADSORBENTES INDUSTRIALES. TIPOS Y PROPIEDADES.

Los sólidos que se utilizan para llevar a cabo procesos industriales de adsorción deben poseer las siguientes características:

- Capacidad de adsorción:

Debe ser lo más elevada posible. Está directamente relacionada con la superficie específica (m^2/g) y el volumen específico de poros (cm^3/g) del adsorbente y limita el tamaño de los poros del sólido por debajo de pocas decenas de Angstroms.

- Selectividad:

Debe ser lo más elevada posible, para facilitar la separción. Depende no solo de la naturaleza química del adsorbente y los adsorbatos, sino también de sus concentraciones, presión total y temperatura. Cuanto mayor sea la selectividad, menores serán las dimensiones y consecuentemente el

coste de los equipos de separación por adsorción.

- Propiedades mecánicas y tamaño de partícula:

Los adsorbentes industriales suelen presentarse en forma de pastillas, cliíndricas o esféricas, con tamaños entre 1 cm. y 50 micras.Las operaciones de adsorción pueden intensificarse en el futuro por descenso simultáneo del tamaño de partícula y del cambio de escala de las columnas, de tai forma que las pérdidas de presión permanezcan constantes (Wankat, 1986). En muchas ocasiones, el adsorbente se mezcla con un aglomerante inerte, antes de proceder al empastillado, para comunicar al sólido resistencia mecánica y a la abrasión, produciendo la meior pérdida de carga posible cuando se utilice en lechos fijos, móviles o fluidizados.

- <u>Vida del adsorbente:</u>

La vida del adsorbente debe ser, lógicamente, lo mas prolongada posible. Teniendo en cuenta que en el caso de la adsorción física, por tratarse de un fenómeno reversible, la desorción es fácil de llevar a cabo, será fundamental que el sólido sea quimicamente inerte respecto a los adsorbatos a separar. De esta forma, una vez regenerado al finalizar un ciclo de adsorción, podrá ser utilizado en ciclos sucesivos.

En algunos casos, la pérdida progresiva de capacidad de adsorción en cada ciclo de regeneracion es el factor que puede encarecer más un proceso de adsorción, como ocurre en el caso de la eliminación de compuestos iencilicos del agua por adsorción con carbón activado (Magne, 1986). Por ello es de gran interés elegir el método de regeneración más adecuado para cada sistema, con el fin de retrasar lo más posible la pérdida de capacidad adsorbente.

- Coste:

Debe ser evidentemente lo más bajo posible. En el caso de los adsorbentes naturales deben ser lo suficientemente abundantes; y en el caso de los sintéticos deberán tener un bajo coste de fabricación y realizarse a partir de materias primas baratas, abundantes y seguras.

Los adsorbentes de uso industrial utilizados en la separación de mezclas líquidas son fundamentalmente de tres tipos: carbones activados, tamices moleculares y resinas sintéticas. La selección de: adsorbente mas adecuado dependerá del sistema que se trate

2.3.1 Carbón Activado.

a) Características generales.

El carbón activado es una forma amorfa del carbón que presenta un alto grado de porosidad, obtenido durante el proceso de fabricación (proceso de "activación"). Es precisamente esta elevada porosidad y la gran superficie específica que lleva asociada, lo que le convierte en un excelente adsorbente de una gran variedad de sustancias tanto en fase líquida como gaseosa. Existen cientos de carbones activados, cada uno con propiedades determinadas y diferentes aplicaciones, por lo que el término "carbón activado" engloba a todo un grupo de sustancias.

Los carbones activados pueden dividirse en dos grandes grupos: los empleados en procesos de adsorción en fase gaseosa y fase líquida. La principal diferencia entre ambos es la distribución del tamaño de poros. En los primeros, la mayor parte son microporos (3 a 50 Å) y macroporos (1000 a 5000 Å), con un volumen pequeño de mesoporos (50 a 1000 Å). Los segundos, sin embargo, presentan una cantidad importante de mesoporos, permitiendo el acceso de los líquidos a la estructura microporosa del adsorbente.

b) Fabricación.

Los carbones activados se obtienen industrialmente a partir de una gran variedad de materias primas. Entre las más importantes cabe destacar carbones bituminosos, turba, serrín, residuos de industrias papeleras y petroquímicas, lignito, cáscaras de almendra y coco, huesos de aceitunas, maderas, y más reclentemente, plásticos (Abram, 1973; Mattson, 1971; Kasaoka y col., 1980).

El primer paso en la preparación del carbón activado es la carbonización de la materia prima en ausencia de aire a temperatura inferior

a 600°C. Durante este proceso, la mayor parte de los elementos no carbonosos, especialmente hidrógeno y oxígeno. se eliminan en forma gaseosa durante la descomposición pirolítica del material de partida, y los átomos de carbono elemental liberados se agrupan en una especie de formaciones cristalinas relativamente organizadas, llamadas cristales grafíticos elementales (Smith, 1952). El carbón resultante es poco adsorbente, por lo cual es necesario un segundo tratamiento: la activación; y el método que más se emplea es el de la oxidación controlada del carbón con vapor de agua o gas carbónico a 800°C ó con aire a 300 - 600°C. Los gases oxidantes eliminan los hidrocarburos residuales y producen la erosión en la superficie del carbón. Un tiempo large de activación produce mayor poder adsorbente. Durante esta etapa se consume aproximadamente el 50% cel carbón residual, creándose una estructura porosa dentro del residuo pirolizado.

c) Estructura interna.

En términos generales, el carbón activado puede considerarse como una disposición irregular de microcristales bidimensionales dispuestos en planos paralelos. Cada microcristal está formado por átomos de carbono ordenados hexagonalmente, similares a los de los anillos aromáticos, constituyendo una estructura similar a la del grafito, y que está formada por 5 a 15 capas de planos aromáticos. Esta estructura recibe el nombre de iurbostrática (figura 2.5).

Pueden suponerse dos tipos de superficie para el carbón activado:

- Una superficie plana, no polar, que comprende el seno de la superficie del carbón. La adsorción sobre esta superficie se produce mediante fuerzas de Van der Wals.

- Otra, formada por los contornos de los planos de carbón que constituyen los cristales. Sobre estos bordes se encuentran localizados grupos funcionales carbono-oxígeno formados por oxidación durante el preceso de activación, cuya presencia ha sido detectada mediante técnicas de espectroscopia infrarroja (Mattson y col., 1970). Son precisamente estos grupos los que juegan un papel fundamental en los procesos de adsorción de fenoles y otros compuestos aromáticos.

2.7

2. Introducción.

(a)

Figura 2.5 Comparación entre las estructuras de grafito ideal (a) y carbón activado (b)
d) Propiedades características.

Las propiedades más importantes de los carbones activados son aquellas que le confieren su gran capacidad adsorbente. Estas pueden dividirse en dos grupos: físicas y químicas. Las primeras, derivadas de la estructura porosa, son la superficie específica y la distribución de tamaño de poros. Las segundas son responsables de la afinidad entre el adsorbente y el adsorbato, que depende esencialmente de los grupos funcionales residuales de que dispone el carbón activado y de la naturaleza química ; estructura de la molécula de adsorbente.

2.3.2 Tamices Moleculares.

La característica principal de éstos productos es que su estructura cristalina presenta cavidades con aberturas aproximadamente circulares y de diámetro único. Los más importantes son las zeolitas sintéticas y sus silicatos porosos de los que se hablará a continuación. Por otra parte, en los últimos años han aparecido otros materiales que también se pueden incluir en el grupo de los tamices moleculares y que están adquiriendo creciente importancia:

- Aluminofosfatos: Se trata de una familia de sólidos inorgánicos microporosos, desarrollada recientemente por Union Carbide Corp. Tienen propiedades semejantes a las zeolitas, por lo que ofrecen una atractiva ampliación del espectro de tamaños de tamiz molecular que permiten aquellos (Haggin, 1983; Jahn y col., 1989).

- Tamices moleculares de carbón: son carbones activados preparados por oxidación controlada de antracita y tratamiento térmico posterior, que proporciona una distribución de tamaño de poros muy estrecha (Nandi, 1975; Koresh, 1980). Así, es posible preparar tamices moleculares de carbón con un intervalo de diámetros de poro efectivo que puede oscilar de 4 a 9 Å; los cuales se pueden obtener " a medida ", variando las condiciones de preparacion. De esta forma se podrá disponer del tamiz molecular más ad cuado a cada proceso de separación. En la actualidad, los procesos más importantes, a gran escala, que utilizan estos materiales son los de separación de los componentes del aire, como es por ejemplo, el enriquecimiento de oxígeno por

bombeo peristáltico de presión (Knoblauch, 1978).

a) Zeolitas y Silicatos porosos.

Las sustancias llamadas zeolitas (del griego: piedras que hierven) son ya conocidas desde hace siglos por sus yacimientos naturales. Sin embargo, el verdadero interés por estas materias minerales no se despertó hasta que, después de la Segunda Guerra Mundial, se obtuvieron en el laboratorio las primeras zeolitas sintéticas (Barrer, 1944, 1948, 1952) y, hace algo más de 40 años, también a escala industrial (Breck, 1956; Milton, 1959).

Las zeolitas son alumino-silicatos cristalinos con estructura en andamiaje o tectosilicatos de origen natural o artificial, con la siguiente constitución:

- Poseen una red cristalina tridimensional, formada por tetraedros de SiO₄ y AlO₄⁻. Dado el desequilibrio de cargas eléctricas (Si⁺⁴, Al⁺³), la neutralidad eléctrica de la red requiere la existencia de cationes, normalmente alcalinos, que se alojan en la misma.

- Un sistema de espacios huecos (*celdillas*) dentro de la red cristalina, unidos entre si por canales de diámetro bien definide y rigurosamente constante; que constituyen los *poros*.

 Cationes que se mueven libremente y son intercambiables en solución, los cuales compensan la carga negativa de la red aniónica.

Las zeolitas sintéticas tienen mucha mayor importancia que las naturales desde el punto de vista de su aprovechamiento industrial, pues existen innumerables variedades de bajo coste de fabricación que se obtienen puras y con el tamaño de poro deseado (entre 3 y 10 Å); mientras que de las naturales sólo existen unas pocas variedades (chabazita, mordenita, etc.) que presentan numerosas impurezas y tienen un tamaño de poro limitado (no adsorben moléculas de volumen mayor que las n-parafinas).

La fórmula general de las zeolitas puede escribirse:

Me_(A10_) (Si0_) _ m H_0

siendo x, y, m y n números enteros y Me un catión de valencia x/n.

Los tetraedros SiO₄, AlO₄ que forman su red cristalina, están enlazados por medio de átomos de oxígeno, dando lugar a estructuras poliédricas de diferentes tamaños donde se alojan cationes y moléculas de agua. Las diferentes formas de coordinarse los tetraedros y las distintas relaciones Si/Al originan los diversos tipos de zeolitas, determinando también el tamaño de sus cavidades y aberturas.

Las más conocidas y de mayor aplicación industrial son las correspondientes a los grupos A, X e Y, así como la mordenita y las zeolitas de la familia pentasil (ZSM-5 y 11) (Vaughan, 1988).

Recientemente se han sintetizado unos silicatos porosos con estructuras idénticas a las de ciertas zeolitas comerciales. De entre ellos, el denominado Silicalita (Grose y col., 1977), con estructura análoga a la de la zeolita ZSM-5, es el que presenta mayor interés desde el punto de vista de la aplicación industrial.

La estructura de la Silicalita (figura 2.6) posee dos sistemas de canales que se cruzan: uno recto de sección elíptica $(5,7 \times 5.)$ Å) y otro er. zig-zag de sección casi circular (5.4 Å) que discurre perpendicularmente al primero. Debido a la ausencia de alumínio en su estructura, presenta un marcado caracter hidrófobo, lo que le permite adsorber selectivamente compuestos orgànicos en medio acuoso. Esta selectividad puede hacer de la silicalita un serio competidor de los carbones activados en procesos de depunación de aguas, separación de compuestos orgánicos en mezclas acuosas, etc.

<u>bl</u><u>Aplicaciones industriales de las zeolitas y de los siluçatos</u> porosos como adsorbentes.

Es característica común de las zeolitas y de los silícatos porosos, que en estado de deshidratación, presenten gran apetencia por adsorber selectivamente cualquier molécula que pueda penetrar en sus poros, de

Figura 2.6 Estructura de la Silicalita.

preferencia molèculas polares si la zeolita es de baja relación Si/Al y apolares si dicha relación es elevada o infinita, como en el caso de los silicatos porosos, siendo esté proceso totalmente reversible (Dwyer, 1984).

De esta característica se han derivado una serie de aplicaciones de interés industrial que pueden clasificarse en:

~ Procesos de secado: adsorción de agua.

 Procesos de depuración: adsorción también de otras sustancias que se hallan presentes en concentración muy inferior a la del componente principal a purificar.

 Procesos de separación: separación por adsorción de varias sustancias en análoga concentración, para su posterior aprovechamiento.

En las tablas 2.3 y 2.4 se han resumido las principales aplicaciones industriales actuales de las zeolitas como adsorbentes (Ruthven D.M. y col. 1984; Wankat P.C., 1986; Yang R.T., 1987).

2.3.3 Adsorbentes polimeros.

Actualmente, existe una gran variedad de polímeros sintéticos macroporosos utilizables como materiales adsorbentes. Aunque su campo de aplicación es más reducido que el de los carbones activados y tamices moleculares, algunos de ellos comienzan a emplearse con éxito a escala industrial (Faust, 1987), como las amberlitas.

En general, están formadas por una matriz aromática o alifática. diferenciándose de las resinas de intercambio iónico por la ausencia de grupos funcionales iónicos. La preparación de éstas resinas se realiza mediante polimerización de un monómero en suspensión y un agente reticulante, en presencia de un disolvente y determinados catalizadores de la reacción. Se consigue así una elevada área superficial, en el interior de la particula, bastante homogénea. Las características de esta superficie, así como la distribución de tamaño de poro son controlables durante el proceso de fabricación.

Las principales características de éstos adsorbentes son:

TABLA 2.3

APLICACIONES DE INTERES INDUSTRIAL DE LAS ZEOLITAS: PROCESOS DE PURIFICACION.

	ALIHENTO	сл•	ADSORBENTES	REGENERACION DEL ADSORBENTE
	gas natural	G	4 A	aumento de T
Secado de	a)"C	ū	4 A	aumento de T tramulén dismi- nución de P)
	refrigerantes (clorocarbonos)	G7L	4 A modificada	no regenerati- vo è disminu- ción d e P
	gas de craqueo	G	3 A	aumento de T
	disolventes orgànicos	L	ЭА	aumento de T
	gas ácido	G	chabacita	aumento de T
Recuperación de CO ₂	aire	G	4 🔺	disminución de P (vacio)
Recuperación de SH ₂	gas ácido	G	Ca A ó chabacita Ca	aumento de T
Recuperación de SO _x , NO	aire	G	silicalita	aumento de T
Recuperación de Kr ⁸⁵	aire	5	silicalita o mordenita H desaluminizada	د
Recuperación de I ¹²⁹	aire	G	X Ag ó mordenita Ag	aumento de T
Concentración de alcoholes	disoluciones acuosas diluidas	L	ЭА, 4А	aumento de T

• GAS / LIQUIDO

TABLA 2.4

APLICACIONES DE INTERES INDUSTRIAL DE LAS ZEOLITAS: PROCESOS DE SEPARACION.

	PROCESO	AL IMENTO	G/L*	ADSORBENTE	NETODO DE RECENERACION
SEFARACION DE FARATUAS LINEALES	ISOSIV	Destilado C _a -C _{ro}	G	5 A	ISA con desorción a vacio
	BP		G	5 A	PSA con desorción a vacio
	1 S F	CC_0 Queroseno	G	5 A	Desplazamiento-nafta ligera
	ENSORB	CC_Queroseno	G	5 A	Desplazamiento - NH 3
	ELF-K-ISELF	Naíta ligera	G	5 X	
	HOLEX	Queroseno	L	5 A	Sorbex
SEPARACION DE	FAREX	Aromáticos C	L	Sr-BaX	Sorbex-desorbente PDEB
	EBEX	Aromáticos C	L	Sr -KX	Sarbex-desorbente Toluena
SEF MANDEN DE DEPTIMAS DE L'ABAFINAS	or.Ex	Gestilado C	L	·	Serbex
SEFARACION DE	Producción de C ₂	Alre	G	5 A / 13X	PSA (separación de equilibric)
	Productión de N ₂	Alre	G	4 A	TSA [separacion cinetica]
SEFARACION DE NONOSACARIDOS	SAREX	Jarabe de maiz	L	Ca Y	Sorbex

- Facilidad de regeneración mediante disolventes apropiados recuperables posteriormente.

- No se producen adsorciones irreversibles.

- Presentan una amplia variedad de polaridades, según el tipo, lo que implica una mayor selectividad en sus aplicaciones.

- Buena homogeneidad de sus superficie adsorbente.

- Presentan excelentes características hidrodinámicas en sistemas de flujo descendente convencionales.

 Gran estabilidad térmica, pudiendo utilizarse incluso a temperaturas de 250°C.

2.4 SISTEMAS DE CONTACTO Y MODOS DE OPERACION.

Un aspecto muy importante en la aplicación en gran escala tanto del carbón activado como de los tamices moleculares, es la forma con que dichos adsorbentes entran en contacto con la solución que deba tratarse.

La velocidad de adsorción en fase líquida para adsorbentes granulares depende del tamaño de la partícula del adsorbente y parece deseable utilizar partículas de tamaño tan pequeño como lo permitan las condiciones de operación.

2.4.1 Sistemas discontínuos y de flujo contínuo.

En el sistema discontínuo, una cantidad de adsortente se mezcla con un líquido de volumen determinado hasta que la concentración de soluto en la disolución ha alcanzado un nivel deseado. Entonces se separa el adsorbente y se regenera. Si utilizamos un adsorbente finamente dividido, suele ser dificil separarlo de la disolución, contrarlamente a cuando se emplean partículas de adsorbente de mayor tamaño, en cuyo caso los tiempos de contacto que se requieren son más largos.

En el método de flujo contínuo, el adsorbente está contínuamente en contacto con una solución fresca, por la que la concentración de la disolución en contacto con una capa de adsorbente es prácticamente constante.

En el sistema de contacto por lecho fluidizado, la disolución fluye en sentido ascendente a través de una columna de adsorbente con una velocidad suficiente como para suspender las partículas sólidas.

En el método de flujo contínuo utilizando lecho móvil, el adsorbente se añade a la cabeza de la columna y el adsorbente agotado se retira por el fondo.

2.4.2 Curvas de rotura.

En las operaciones de adsorción con lecho fijo, (las más frecuentes), la disolución a tratar pasa a través de un lecho estacionario de adsorbente, parte del cual se va saturando con el tiempo debido al progreso de la adsorción.

La figura 2.7 presenta un gráfico del modelo de adsorción que se obtiene para un lecho de este tipo. El soluto se adsorbe más eficazmente en las capas más superiores de adsorbente fresco durante la fase inicial de la operación, y las pequeñas cantidades de soluto que escapan de estas primeras capas se separan en las capas inferiores del lecho. La zona primaria de adsorción se encuentra inicialmente cerca de la entrada de la columna. Cuando las capas superiores de adsorbente se saturan de soluto, la zona primaria de adsorción se desplaza hacia abajo en donde el adsorbente se encuentra más fresco; a medida que sucede ésto, la cantidad de soluto que tiende a salir con el efluente es mayor. El punto de saturación o punto de rotura del lecho representa el punto de operación para el cual la columna está próxima al equilibric con la disolución de alimentación, y más allá de este punto, la adsorción de soluto será pequeña. Constituye un parámetro importante para el diseño de un lecho fijo de adsorción. Esta curva se denomina curva de rotura del lecho fijo, y presenta una forma en "S" característica, con un grado determinado de inclinación y una posición del punto de saturación. Constituye también uno de los parámetros más importantes que caracterizan el comportamiento de un lecho fijo de adsorción.

Los factores que influyen en la forma de la curva son: concentración del soluto, pH, tamaño de la patícula, altura del lecho de adsorbente y

Figura 2.7 Curva de rotura de un lecho fijo de adsorción.

velocidad de flujo.

2.4.3 Etapa de regeneración.

La regeneración del adsorbente como se indico anteriormente es de gran importancia en la economía del proceso. Requiere un gran control de las condiciones de reactivación, a fin de recuperar la capacidad adsorbente de forma óptima con el mimino coste posible (Magne y col., 1986; Poggenburg y col., 1986). Existen numerosos métodos de regeneración:

 <u>Regeneración química.</u> Se realiza haciendo reaccionar el material adsorbido con una sustancia regenerante.

 <u>Gases calientes. Cuan</u>do hay que eliminar moléculas orgánicas de bajos puntos de ebullición.

 <u>Disolventes</u>. Se lleva a cabo realmente una lixiviación, haciendo pasar a través del lecho de adsorbente un disolvente adecuado del adsorbato.

El discivente puede recuperarse fácilmente por destilación y volver a utilizarse.

 <u>Biológica</u> Supone la degradación biológica del material adsorbido mediante microorganismos aerobios, anaerobios o umbos simultáneamente

 <u>Térmica</u>. La tecnología actual de la regeneración se dirige fundamentaimente a dos tipos de sistemas:

i) Regeneración en hornos de múltiples etapas.

Es el equipo más utilizado. En la figura 2.8 se muestra un esquema del mismo. En él, la eliminación de la materia adsorbida se produce por descomposición y exidación térmica a temperaturas cercanas a los 1000°C, quedando resíduos en forma de coque. A continuación, una corriente de CC_2 y H_2O gasifica el coque depositado, recuperandose así la estructura porosa de) adsorbente original.

11: Regeneracion en hornos infrarrojos.

La regeneracion se realiza de forma anàloga al caso de los hornos de múltiples etapas. La diferencia reside en que la energía necesaria se suministra en forma de radiación infrarroja. Además, el proceso requiere un

riguroso control de las condiciones de operación, lo cual conduce a una excelente recuperación de las propiedades adsorbentes del material, a la vez se reducen pérdidas del mismo, minimizándose así los costes del proceso, en la figura 2.9 se muestra un esquema de este tipo de sistemas. (Hashimoto y col., 1982).

- <u>Regeneración a presión variable.</u> (Pressure Swing Adsorption. <u>P.S.A.</u>) (Ruthven, 1984). La regeneración del adsorbente durante el ciclo de desorción se alcanza reduciendo la presión total y purgando el lecho a baja presión con una pequeña fracción de corriente del producto. El proceso opera entre dos puntos diferentes sobre la misma isoterma de equilibrio tal y como se indica en la figura 2.10. El método de regeneración a presión variable (P.S.A.) (figura 2.11), consiste en dos lechos que alternativamente se presurizan y despresurizan de acuerdo con una secuencia programada previamente.

Las unidades de P.S.A. son ampliamente utilizadas en la separación por adsorción de aire. En pequeña escala para la producción de 0_2 y a gran escala como alternativa a los procesos criogénicos para la producción de 0_2 y N₂ industrial.

2.5 EQUILIBRIO DE ADSORCION.

La adsorción en un sistema sólido-líquido produce la separación de un soluto de la disolución y su concentración en la superficie de un sólido adsorbente hasta que se establece un equilibrio dinámico en la superficie, entre la concentración de soluto que permanece en disolución y la concentración superficial del soluto. La distribución de adsorbato entre las fases sólida y líquida representa el equilibrio de adsorción, que es función de la concentración de soluto, concentración y naturaleza de los solutos competidores, pH, temperatura, etc.

Esta distribución se presenta como la cantidad de soluto adsorbido por unidad de peso de adsorbente frente a la concentración de soluto que permanece en disolución en el equilibrio, para una temperatura determinada. Esta representación recibe el nombre de *isoterma de adsorción*.

Figura 2.8 Horno de regeneración.

Figura 2.9 Horno de infrarrojos.

Figura 2.10 Isoterma de equilibrio.

Figura 2.11 Regeneración a presión variable. (P.S.A.)

Existen diferentes formas de isotermas dependiendo del sistema que se trate, que se clasifican según el estudio de Giles (Giles y col., 1960) en los siguientes tipos (Figura 2.12):

<u>a) Isotermas S:</u>

La curva es convexa respecto al eje de abcisas, por tanto, aumenta la facilidad de adsorción al aumentar la concentración. Las moléculas se disponen perpendicularmente a la superficie del adsorbente.

b) Isotermas L (Tipo Langmuir):

Es la más común de todas. Es cóncava respecto al eje de abcisas, por tanto, al aumentar la concentración se hace más dificil la adsorción. Las moléculas se disponen paralelamente a la superficie del adsorbente.

<u>c) Isotermas C:</u>

Se caracterizan por presentar una relación constante entre la concentración en la fase adsorbida y líquida, hasta alcanzar un máximo, a partir del cual se transforma en una linea horizontal. Presentan, por lo tanto, una forma lineal.

d) Isoterma H:

Es una caso particular de las isotermas L, ya que presenta elevados valores de la capacidad de adsorción incluso para pequeñas concentraciones en la fase líquida.

Desde un punto de vista práctico, se pueden considerar cuatro tipos idealizados de isotermas a los que se ajustan bastante bien los sistemas de mayor interés (Hall y col., 1966) (Figura 2.13):

a<u>] De equilibrio irreversible:</u> La capacidad de adsorción no varía con la concentración en el líquido.

b) <u>De equilibrio favorable:</u> El adsorbente presenta grandes

Figura 2.13 Clasificación de las isotermas desde un punto de vista práctico.

capacidades de adsorción para pequeñas concentraciones de soluto en la fase líquida (tipo L de Giles).

<u>c) De equilibrio lineal:</u> En las que existe una relación lineal entre la capacidad de adsorción y la concen ración en la fase líquida (tipo C de Giles).

<u>d) De equilibrio desfavorable:</u> El adsorbente presenta capacidades de adsorción pequeñas a baja concentración en la fase líquida (tipo S de Giles).

2.5.1 Isotermas de adsorción de un solo componente.

De entre las ecuaciones existentes en bibliografía que tratan de describir el equilibrio de adsorción en sistemas líquido-sólido caben destacar las siguientes:

a) Isoterma de Langmuir (Langmuir, 1921):

Se basa en las siguientes suposiciones:

 La adsorción máxima corresponde a una monocapa saturada de moléculas de soluto sobre la superficie del adsorbente.

- La energía de activación es constante.

- No existe migración de adsorbato sobre la superficie del adsorbente.

La ecuación a la que conduce el modelo de Langmuír es la siguiente:

$$n = \frac{Q K C}{1 + K C}$$
(2.1)

siendo n la cantidad de adsorbato adsorbido por unidad de peso de adsorbence en equilibrio con una disolución de concentración C; Q es la cantidad de adsorbato por unidad de peso de adsorbente que forma una monocapa completa; K es una constante que depende de la energía o entalpía neta de adsorción, AH.

$$K = K \exp \left(-\Delta H / R T\right)$$
(2.2)

en la que K es una constante relacionada con la entropía de adsorción.

b) Isoterma de Freundlich (Freundlich, 1926):

Esta ecuación es un caso especial para superficies heterogéneas en la que el término energético, K, de la ecuación de Langmuir, varia en función de la superficie cubierta, n, debido estrictamente a variaciones del calor de adsorción (Adamson, 1967). Dicha ecuación tiene la forma:

$$n = b C^{1/e}$$
 (2.3)

siendo b y e constantes, representando la última, la magnitud de las interacciones sobre el adsorbente.

c) Isoterma de Prausnitz (Radke y col., 1972):

Esta ecuación es válida para todo tipo de superficies, e introduce un parámetro que tiene en cuenta las interacciones entre moléculas de adsorbato a dilución infinita y la superficie del adsorbente. La ecuación es:

$$\frac{1}{n} = \frac{1}{MC} + \frac{1}{BC^{1/e}}$$
(2.4)

donde M representa las interacciones entre el adsorbato y el adsorbente a dilución infinita; B es medida de las interacciones entre las moléculas de adsorbato en la disolución y de las interacciones entre adsorbato-adsorbente a altas concentraciones; y "e" refleja la importancia de las interacciones entre las distintas moléculas de adsorbato en la capa superficial sobre el adsorbente.

En realidad, esta ecuación es una combinación de las de Freundlich y Langmuir, ya que con ciertas suposiciones se llega a ellas:

- Para adsorción a bajas concentraciones (ley de Henry de la adsorción).

$$n = M C$$
 (2.5)

ya que el parámetro "e" es la unidad, indicando que no existen interacciones entre las moléculas de adsorbato retenidas sobre la superficie cuando la dilucion es infinita.

- Para elevadas concentracines:

$$n = B C^{1/e}$$
 (Freundlich) (2.6)

- Tomando 1/e = 0 :

$$n = \frac{M}{1 + \frac{M}{B}} C \qquad (Langmuir) \qquad (2.7)$$

2.5.2 Isotermas de adsorción de mezclas multicomponentes.

En la mayor parte de las aplicaciones industriales de la adsorción en fase líquida, los sistemas están constituidos por mezclas de solutos y no por sustancias puras. En estos casos, es imprescindible el estudio de las mezclas multicomponentes para determinar los posibles fenómenos de inhibición o competencia que pudieran darse, modificando las capacidades de adsorción de los solutos individuales.

Existen numerosos modelos termodinámicos que intentan describir el equilibrio de adsorción de mezclas, algunos de los cuales se exponen a continuación:

a) Modelo de Langmuir:

Es un modelo utilizado por numerosos autores (Johanson y col., 1908; Rodrìguez, 1980: Sheindorf, 1981; Kaul, 1984; Jaroniec y col., 1983). La cantidad adsorbida de cada soluto en presencia del resto se calcula mediante la siguiente expresión:

$$n_{i} = \frac{Q_{i} K_{i} C_{i}}{1 + \sum_{j} K_{j} C_{j}}$$
(2.8)

siendo n_i y C_i las concentraciones de equilibrio del soluto i en la fase sòlida y liquida respectivamente; K_i y Q_i las constantes determinables a partir del sistema de un solo componente, y cumple las mismas suposiciones que este sistema.

b) Modelo de la solución adsorbida ideal (S. A. I.):

El modelo de la solución adsorbida ideal, desarrollado originalmente por Myers y Prausnitz (Myers y Prausnitz, 1965) para la descripción del equilibrio de mezclas gaseosas, fue modificado para mezclas líquidas por Radke y Prausnitz (Radke y Prausnitz, 1972).

Este modelo pretende la predicción del equilibrio de adsorción de mezclas a partir únicamente de los datos de equilibrio de los componentes puros que la componen. Tienen su base en una formulación exacta de la termodinámica de adsorción de soluciones diluidas, con las siguientes suposiciones:

 La interfase sólido-solución puede considerarse como una fase bidimensional independiente.

 El sólido puede considerarse como inerte y posee una superficie específica igual para todos los adsorbatos, viniendo dada la energía libre de Helmholtz de forma diferencial por la siguiente ecuación:

$$dF^{a} = -S^{a} dT + \sigma dA + \sum_{i} \mu_{i}^{a} dn_{i}^{a} + \mu_{s}^{a} dn_{s}^{a}$$
(2.9)

siendo σ la tensión interfacial. A el área interfacial, μ_i^a los potenciales químicos en la fase adsorbida, n_i^a la cantidad de soluto i adsorbido, n_s^a la cantidad de disolvente s adsorbido.

Haciendo uso del teorema de Euler, la ecuación (2.9) se integra llegándose a:

$$F^{a} = \sigma A + \sum_{i} \mu_{i}^{a} dn_{i}^{a} + \mu_{s}^{a} n_{s}^{a}$$
(2.10)

Diferenciando la ecuación (2.10) y comparándola con la ecuación

diferencial de la energía libre de Helmhotz, se obtiene la isoterma de Gibbs para la adsorción:

$$- A d\sigma = \sum_{i} n_{i}^{a} d\mu_{i}^{a} + n_{s}^{a} d\mu_{s}^{b}$$
(2.11)

Por otro Jado, la isoterma de Gibbs-Duhem puede expresarse como:

$$\sum_{i} C_{i} d\mu_{i}^{a} + C_{s} d\mu_{s}^{b} = 0$$
 (2.12)

donde C_i y C_i son las concentraciones en el líquido de soluto y disolvente. Sustituyendo esta ecuación en la isoterma de Gibbs-Duhem se obtiene:

$$- A d\sigma = A d\pi = \sum_{i} n_{i}^{m} d\mu_{i}^{o} \qquad (2.13)$$

donce π es la presión superficial, definida como la diferencia entre la tensión superfical de la interfase sólido-disolvente y la correspondiente a la interfase sólido-disolución a la misma temperatura; y n_i^m es un invariante de adsorción del soluto i:

$$n_i^{n} = n_i^{a} + n_s^{a} + C_i \wedge C_s$$
(2.14)

En disolución diluida n_i^m se calcula midiendo la disminución de la concentración de soluto debido al contacto de una solucion de concentracion y volumen conocído con una cantidad determinada de adsorbente:

$$n_j^m = V C_j$$
(2.15)

cumpliéndose para disoluciones diluidas $n_i^m = n_i^a$.

Teniendo en cuenta la ecuación (2.15) y

$$\mu_{j}^{NO} = R T \ln C_{j}^{O}$$
 (2.16)

se integra la ecuación (2.13) conduciendo a:

$$\pi = \frac{R T}{A} \int_{0}^{c_{i}^{\circ}} \frac{n_{i}^{\bullet \circ} (C_{i}^{\circ})}{C_{i}^{\circ}} dC_{i}^{\circ}$$
(2.17)

representando el superíndice "o" al componente puro.

También se define la fracción molar de la fase adsorbida como:

$$x_{i} = \frac{n_{i}^{a}}{\sum_{i} n_{i}^{a}} = \frac{n_{i}^{a}}{n_{t}^{a}}$$
 (2.18)

El invariante total de adsorción n_t^m , a una temperatura y presión superficial dada, es función sólo de la composición x_t de la fase adsorbida y de los invariantes de adsorción de los solutos individuales a la misma temperatura y presión superficial. Para verificar ésto, la ecuación (2.13) se puede reescribir de la siguiente forma:

$$\frac{A}{n_{t}^{a}} = \sum_{i} x_{i} \left[\frac{d\mu_{i}^{a}}{d\pi} \right]_{T, x_{i}}$$
(2.19)

que aplicada a cada componente puro, toma la forma:

$$\frac{1}{n_t^a} = \sum_i \frac{x_i}{n_i^{ao}}$$
(2.20)

Cuando varias especies se adsorben en disolución acuosa diluida, a temperatura y presión superficial constante, la teoría supone que la fase adsorbida forma una solución ideal y en analogía con el equilibrio líquido-vapor se puede decir que:

$$C_{i} = C_{t} y_{i} = x_{i} C_{i}^{0}$$
 (2.21)

siendo y_i la fracción molar del soluto en la fase líquida, C_t la concentración total de todos los solutos en la fase líquida, y C_i° la concentración de equilibrio del componente i en la disolución cuando se adsorbe sólo a la misma temperatura y presión superficial de la mezcla.

Para emplear las ecuaciones (2.20) y (2.21) es necesario determinar las presiones superficiales de los solutos individuales presentes en la mezcla. Esa presión superficial se evalúa mediante la expresión (2.17), representando para cada componente puro $n_i^{\circ \alpha}/C_i^{\circ}$ frente a C_i° y hallando el valor del área bajo la curva. Sin embargo, la extrapolación de dicha curva a bajas concentraciones ($C_i^{\circ} \rightarrow 0$) presenta grandes dificultades, por lo que en esta zona se hace necesario sustituir la ecuación (2.17) por su análoga:

$$\pi = \frac{R T}{A} \int_{0}^{\pi} \frac{d \ln C}{d \ln n_{i}^{ao}} dn_{i}^{ao}$$
(2.22)

La resolucion de las ecuaciones (2.17), (2.20) y (2.21) conduce a la predicción de mezclas multicomponentes. El método de cálculo se detalla en apartado 9.4 del Apéndice.

<u>c) Modelo de la Solución Adsorbida Real (S.A.R.):</u>

Este modelo considera un comportamiento no ideal de la mezcla adsorbida, introduciendo unos coeficientes de actividad en dicha fase.

Se aplica principalmente para la predicción de mezclas de más de dos componentes tomando como datos de partida los correspondientes a las isotermas de los componentes puros y las de sus mezclas binarias.

El método de predicción de las isotermas de mezclas multicomponentes es análogo al de la solución adsorbida ideal, introduciendo en la ecuación (2.21) el coeficiente de actividad correspondiente, el cual representa el grado de desviación del sistema respecto a la idealidad.

$$C_{i} = C_{i} y_{i} = \gamma_{i} x_{i} C_{i}^{o}$$
(2.23)

Esta écuación junto con la (2.17) y (2.23), se emplea para el cálculo del equilibrio. El método de cálculo para la predicción del equilibrio multicomponente según este modelo se encuentra en el apartado 9.4 del apéndice.

Análogamente al caso del equilibrio líquido-vapor, algunos autores (Radke y col., 1972) proponen la posibilidad de correlacionar los

:7

coeficientes de actividad en la fase adsorbida mediante ecuaciones ya utilizadas en aquel tipo de sistemas. Se puede considerar la ecuación de Wilson, para el equilibrio líquido-vapor, cuya forma es:

$$\ln x_{i} = 1 - \ln \left[\sum_{j} x_{j} \wedge_{j} \right] - \sum_{k} \frac{x_{k} \wedge_{ki}}{\sum_{j} x_{j} \wedge_{kj}}$$
(2.24)

Sustituyendo la ecuación (2.24) en la ecuación (2.23), y tomando como datos de partida las curvas de presión superficial frente a la concentración (a partir de los componentes puros) y el diagrama de equilibrio del sistema binario correspondiente, se podrá obtener, mediante regresión no lineal, los parámetros de la ecuación de Wilson que menor desviación producen respecto de los datos experimentales. De esta forma, se consigue la reproducción del equilibrio binario, y se obtienen los parámetros necesarios para la predicción del equilibrio de más de dos componentes mediante el modelo de la solución adsorbida real.

2.6 CINETICA DE ADSORCION.

En el proceso global de adsorción, se pueden distinguir diversas etapas en serie, además de la adsorción superficial propiamente dicha:

- Transferencia externa de adsorbatos desde el seno de la fase fluida hasta la superficie exterior de las partículas del adsorbente. La resistencia de esta etapa se caracteriza por un coeficiente indivídual de transferencia de materia.

~ Difusión interna a través del líquido que llena los poros, desde la superficie externa de la partícula hasta los centros de adsorción internos. La resistencia de esta etapa se caracteriza por un coeficiente de difusión interno en los poros del sólido.

~ Adsorción de las moléculas de adsorbato sobre la superficie del adsorbente, con un cierto desprendimiento de energía (calor de adsorción). La velocidad con que transcurre esta etapa suele ser muy superior a la de

las anteriores, por lo que casi nunca resulta controlante.

En el fenómeno inverso de desorción, también pueden distinguirse otras tres etapas similares a las anteriores para expresar la transferencia de los adsorbatos hasta el seno de la fase líquida.

En la adsorción física se considera que la velocidad con que transcurre la adsorción del adsorbato sobre la superficie del adsorbente, es elevada comparada con la de las dos anteriores. Por lo tanto esta etapa no se suele tener en cuenta a la hora de determinar la velocidad global del proceso de adsorción.

Las dos etapas de difusión transcurren en serie, por lo que la velocidad del proceso global vendrá determinada por la que sea más lenta, que se denomina *etapa controlante*. Sin embargo, no siempre una de las etapas es mucho más rapida que la otra, por lo que en estos casos la velocidad del proceso global vendrá determinada en mayor o menor grado por *ambas etapas*.

La transferencia de las moléculas de adsorbato, desde el seno de la fase fluida hasta la superficie de las partículas del sólido adsorbente, se expresa mediante un coeficiente de transferencia de materia, k_1 , función de las variables del sistema, que se determina experimentalmente. Son numerosas las correlaciones existentes en la bibliografía para poder calcular dicho coeficiente, que alcanzará valores bastante elevados cuando las condiciones fluidodinámicas sean las adecuadas. Entre otras, se, pueden citar las propuestas por Gamson (Gamson, 1943), que reproduce bastante bien los datos experimentales tanto en lecho fijo como en lecho fluidizado.

Suponiendo una mezcla líquida totalmente homogénea alrededor de ias partículas de adsorbente, la velocidad del proceso global de adsorción, vendrá determinada por la difusión en el interior de los poros (etapa segunda).

2.6.1 Difusión en el interior de los poros del adsorbente.

En la etapa del transporte de las moléculas de adsorbato en el

interior de la partícula cabe destacar la existencia de dos mecanismos:

- Difusión molecular ordinaria a través del fluido que ocupa los poros del sólido adsorbente, caracterizada por el coeficiente de difusión en los poros (D_{2}) .

- Difusión de las moléculas en estado adsorbido, denominada migración superficial, caracterizado por el coeficiente de difusión superficial (D).

Hay que tener en cuenta que el volumen de los poros es menor que el volumen donde ocurre la difusión molecular libre ordinaria, y que el diámetro medio de los poros es en muchos casos del mismo orden que el recorrido libre medio de las moléculas, provocando ambos factores una disminución del coeficiente de difusión molecular en los poros \mathcal{D}_p respecto al de difusión molecular ordinaria \mathcal{D}_m . Ambos coeficientes están correlacionados por la siguiente expresión:

$$\mathcal{D}_{p} = \mathcal{D}_{m} - \frac{c}{\tau}$$
(2.25)

donde:

 $\sim \tau$: es el factor de tortuosidad, relacionado con la porosidad de las partículas del adsorbente.

- ε : es la porosidad de la partícula.

i) Modelos matemáticos de difusión.

Estos modelos deben ser capaces de representar las tres etapas de las que consta el proceso global de la adsorción, diferenciándose entre sí, principalmente en el modo de describir la etapa de difusión y el equilibrio de adsorción. Además, deben considerar la relación existente entre la concentración en el seno de la disclución y en el interior del adsorbente (balance de matería externo)

Las suposiciones de partida comunes a los diferentes modelos matemáticos son las siguientes:

- Etapa de adsorción muy rápida comparada con las demás, suponiéndose

que se alcanza el equilibrio de forma instantánea. Por ello, la relación entre la concentración de adsorbato en la fase adsorbida y en los poros vendrá definida mediante la isoterma de adsorción.

$$n = f(c) \tag{2.26}$$

- En el caso de adsorción de varios compuestos se considera que no existen interacciones entre los adsorbatos, difundiéndose cada uno de ellos de forma independiente. Sólo se tienen en cuenta las interacciones que pudieran presentarse en las ecuaciones que describen los equilibrios de adsorción de cada especie.

Los modelos matemáticos existentes se clasifican en dos categorías: modelos homogéneos (básicamente uno sólo) y modelos heterogéneos. A continuación se pasa revista a ambos tipos.

A) MODELO HOMOGENEO.

Es el modelo más sencillo, supone que las partículas del sólido adsorbente tienen una estructura homogénea e isotrópica. Las moléculas de adsorbato se adsorben difundiéndose por el interior de la misma en fase adsorbida. Se supone por tanto, que la cantidad de adsorbato presente en el líquido que llena los poros es despreciable frente a la que se encuentra adsorbida. Para el caso de partículas esféricas el fenómeno viene descrito por la siguiente ecuación:

$$\frac{\partial n(\mathbf{r}, \mathbf{t})}{\partial \mathbf{t}} = \frac{1}{\mathbf{r}^2} \frac{\partial}{\partial \mathbf{r}} \left(r^2 \mathcal{D}_{\mathbf{g}} \frac{\partial n(\mathbf{r}, \mathbf{t})}{\partial \mathbf{r}} \right)$$
(2.27)

donde:

n : es la concentración del soluto en la fase adsorbida.
r : es la distancia al centro de la partícula (geometría esférica).
D es el coeficiente de difusión efectivo en las partículas del sólido.

Este modelo presenta el inconveniente de que no tiene en cuenta la

estructura del adsorbente.

B) MODELOS HETEROGENEOS.

Estos modelos distinguen la existencia de dos fases en el interior de la particula del adsorbente: la correspondiente a la fase adsorbida y la correspondiente a la fase líquida. Dentro de ellos y dependiendo del mecanismo de difusión del adsorbato se distinguen:

B.1) Modelo de difusión en los poros.

En este modelo, la difusión tiene lugar a través del líquido que ocupa los poros de la partícula, suponiendo un equilibrio instantáneo entre el soluto en la fase fluida y el adsorbido en la superficie de los poros de la partícula, no existiendo por tanto difusión superficial. La ecuación que describe este modelo es la siguiente:

$$\frac{\rho_{p}}{c_{p}} \frac{\partial n(r,t)}{\partial t} + \frac{\partial c(r,t)}{\partial t} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \mathcal{D}_{p} \frac{\partial c(r,t)}{\partial r} \right)$$
(2.28)

siendo ahora:

- c : porosidad de las partículas.

- $\rho_{\rm p}$: densidad de las partículas.

- c : concentración del adsorbato en la fase fluida que llena los poros.
- \mathcal{D}_{\perp} : coeficiente de difusión en los poros.

B.2) Modelo de difusión superficial.

Considera que la difusión de las moléculas por el interior de los poros ocurre en fase adsorbida, migración superficial; siendo despreciable la difusión molecular en el fluido. La ecuación representativa es:

$$\frac{\rho_{p}}{c_{p}} \frac{\partial n(r,t)}{\partial t} + \frac{\partial c(r,t)}{\partial t} = \frac{\rho_{p}}{c_{p}} \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \mathcal{D}_{a} \frac{\partial n(r,t)}{\partial r} \right)$$
(2.29)

siendo ahora: - D_{\perp} : coeficiente de difusión superficial.

<u>B.3) Modelo mixto de difusión en los poros y en la superficie de los poros del adsorbente (difusión en paralelo).</u>

En este modelo, la difusión tiene lugar tanto en el líquido que llena los poros como en la superficie de las partículas; los dos mecanismos se dan en paralelo, existiendo una relación de equilibrio entre la fase adsorbida y la fase fluida, tanto en la superficie externa como en la totalidad de la interna. Este modelo es una combinación de los dos modelos anteriores, siendo la ecuación representativa la siguiente (combinación de las dos anteriores):

$$\frac{\rho_{\rm p}}{\varepsilon_{\rm p}} = \frac{\partial n(r,t)}{\partial t} + \frac{\partial c(r,t)}{\partial t} =$$

$$\frac{1}{r^2} \left[\frac{\partial}{\partial r} \left(r^2 \mathcal{D}_{\rho} \frac{\partial c(r,t)}{\partial r} + \frac{\rho_{\rho}}{\varepsilon_{\rho}} r^2 \mathcal{D}_{s} \frac{\partial n(r,t)}{\partial r} \right) \right]$$
(2.30)

B.4) Modelo de "biporos" o modelo de difusión en serie.

Este modelo considera la partícula de adsorbente, a la que denomina macropartícula, como un sistema constituido por unidades más pequeñas de estructura microporosa, denominadas micropartículas, y conectadas entre sí a través de macroporos. Para simplificar el tratamiento matemático se ha realizado una serie de suposiciones:

 Las micropartículas son esféricas, iguales entre si, homogéneas e isotrópicas con respecto a la distribución de microporos.

- El transporte de adsorbato en los microporos viene descrito por un coeficiente de difusión superficial en los microporos, \mathcal{D}_{μ} .

 El equilibrio de adsorción se mantiene a nivel local en los macroporos.

La ecuación de balance de materia en las micropartículas es la siguiente:

$$\frac{\partial \mathbf{n}_{1}(\mathbf{r}_{1}, \mathbf{t})}{\partial \mathbf{t}} = \frac{1}{\mathbf{r}_{1}^{2}} \quad \frac{\partial}{\partial \mathbf{r}_{1}} \left(\mathbf{r}_{1}^{2} \mathcal{D}_{\mathbf{m}} \quad \frac{\partial \mathbf{n}_{1}(\mathbf{r}_{1}, \mathbf{t})}{\partial \mathbf{r}_{1}} \right)$$
(2.31)

y la ecuación de balance de matería en la macropartícula:

$$\frac{\rho_{p}}{\varepsilon_{p}} \frac{\partial n(r,t)}{\partial t} + \frac{\partial c(r,t)}{\partial t} = \frac{\partial t}{\partial t}$$

$$\frac{1}{r^2} \left(\begin{array}{cc} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial r} \end{array} \left(\begin{array}{cc} r^2 \mathcal{D}_p & \frac{\partial c(r,t)}{\partial r} \\ \frac{\partial}{\partial r} \end{array} + \begin{array}{c} \frac{\rho_p}{\rho_p} & r^2 \mathcal{D}_s & \frac{\partial n(r,t)}{\partial r} \\ \frac{\partial}{\partial r} \end{array} \right) \right)$$
(2.32)

siendo:

- n_e : Concentración de soluto en las micropartículas.

- r : Coordenada radial de la micropartícula.

- n : Concentración de soluto en los macroporos.

- c : Concentración de soluto en el fluido contenido en los macroporos.

il) Modelo basado en el coeficiente de transferencia de materia.

Como se ha comentado anteriormente, la etapa de difusión en el interior de la partícula implica realmente dos mecanismos, uno de difusión ordinaria de las moléculas de adsorbato en el seno del fluido que ocupa los poros de las partículas de adsorbente, cuyo coeficiente se representa por \mathcal{D}_p y otro de migración de dichas moléculas sobre las superficies de los poros cuyo coeficiente se representa por \mathcal{D}_p . El coeficiente de difusión interna global que se representa por \mathcal{D}_p está relacionado con los dos anteriores por

la expresión aproximada:

$$\mathcal{D}_{i} = \mathcal{D}_{p} + K_{E} \mathcal{D}_{S}$$
(2.33)

expressión que sólo resulta válida para isoterma de adsorción lineal, siendo K_g la razón de equilibrio de adsorción adimensional, [concentración superficial del adsorbato en el adsorbente / concentración del adsorbato en la fase fluida en contacto con el adsorbente). La determinaciónexperimental de los coeficientes de difusión interna es complicada, disponiéndose sólo de escasos y dispersos valores de algunas sustancias (Costa y col., 1974, 1984). La resistencia de esta etapa de difusión suele expresarse también por un coeficiente de transferencia de materia interno, que representaremos por k_c , y que se define:

$$k_{i} = \mathcal{D}_{i} / \delta \tag{2.34}$$

siendo δ , la longitud media de recorrido en los poros, cuyo significado físico es el de la distancia media que recorren las moléculas de adsorbato en la fase fluída por el interior de la partícula antes de adsorberse en el sólido.

Por consiguiente, de acuerdo con la ecuación general que expresa el caudal de transferencia de un cierto adsorbato al adsorberse tendrá por expresión:

$$N dA \approx \frac{C - C^{5}}{1} = \frac{C^{5} - C^{5}}{1} \approx \frac{C - C^{5}}{1} = \frac{C - C^{5}}{1} =$$

siendo:

- N : flujo másico de adsorbato.

 dA: un elemento diferencial de superficie externa de las particulas.

- C : concentración de adsorbato en la fase fluida.

- C^S : concentración de adsorbato en la superficie externa de las partículas sólidas.

 $\sim C^{\bullet}$: concentración de adsorbato en el fluido en equilibrio con el adsorbente en la superficie interfacial de los pores.

- k : coeficiente de transferencia de materia externo.

- k : coeficiente de transferencia de materia interno.

- K : coeficiente de transferencia de materia global.

De la <u>e</u>cuación (2.35) se puede obtener una expresión en la cual se relacionan los coeficientes de transferencia de materia.

$$\frac{1}{K} = \frac{1}{k} + \frac{1}{k}$$
(2.36)

2.6.2 Adsorción sobre la superficie del adsorbente.

Como ya se ha dicho, la velocidad con que se da la etapa de adsorción propiamente dicha es muy elevada respecto de la de las etapas de transporte. Esto hace suponer que se alcanza el equilibrio de adsorción inmediatamente quedando ligadas las concentraciones de adsorbato en la fase adsorbida y en la fase fluida en el interior de las partículas mediante la ecuación de equilibrio. Esta es pues la ecuación que completa el modelo representativo del proceso global de la adsorción.

La ecuación de equilibrio para una temperatura dada es la isoterma de adsorción, en general:

n = f(C) (2.37)

siendo:

n : concentración de soluto en la fase adsorbida.

C : concentración de soluto en la fase líquida.

Dependiendo de la relación anterior el modelo matemático tomará una forma u otra.

Los modelos cinéticos de la adsorción se obtienen combinando las tres etapas anteriormente citadas: transporte externo, interno y adsorción propiamente dicha. En la tabla 2.5 se representan las diferentes maneras de combinar las tres etapas que dan lugar a los distintos modelos.

TABLA 2.5

COMBINACION DE LAS ETAPAS IMPLICADAS EN EL PROCESO DE ADSORCION.

TRANFERENCIA EXTERNA	DIFUSION INTERNA	ADSORCION	
Sin Resistencia	Modelo Komogéneo (D _B) Modelo difusión en los poros (D _p) Modelo difusión su-	Coefic. ctes.	Isoterma lineal
Con Resistencia (K ₁)	perficial (\mathcal{D}_{g}) Modelo difusión en paralelo $(\mathcal{D}_{p}, \mathcal{D}_{g})$ Modelo difusión en se- rie $(\mathcal{D}_{p}, \mathcal{D}_{g}, \mathcal{D}_{m})$	Coefic. variab.	Işoterma no lineal

En general, estos modelos constan de las siguientes ecuaciones:

- Ecuación diferencial que describe la etapa de difusión.

 Isoterma de equilibrio que relaciona la concentración de adsorbato en la fase líquida de los poros con la de la fase sólida.

 Balance de materia que relaciona la concentración de adsorbato en el seno de la disolución, con la existente dentro de las partículas de adsorbente.

- Ecuación que describe la transferencia externa que se utiliza como condición de contorno para acoplar el balance de materia a la ecuación diferencial.

2.7 OBJETO Y ALCANCE DE LA PRESENTE INVESTIGACION.

Como anteriormente se ha puesto de manifiesto, el etanol es un compuesto de amplia utilización en la Industria Química, presentando un futuro prometedor por la posibilidad de utilizarlo como combustible de calidad mezclado con gasolina. La via prioritaria de producción de etanol es la fermentación alcohólica de azúcares. El producto obtenido es generalmente una mezcla acuosa diluida, en donde la recuperación del etanol puro es dificil (forma un azeótropo con el agua, de 96%) y de elevado coste (gran consumo energético en la destilación). Con objeto de minimizar estos dos inconvenientes, se ha recurrido a la *adsorción* como método alternativo de separación, presentando como ventajas fundamentales su simplicidad y bajo coste.

El desconocimiento de los parámetros básicos necesarios para el diseño de equipos industriales destinados a la adsorción, parámetros que permiten la predicción de las curvas de rotura (operaciones en lecho fijo) y la determinación del tiempo de contacto (operaciones en tanque agitado), hicieron que la presente investigación pueda resumirse en los siguientes puntos:

 Montaje y puesta a punto del equipo de adsorción (tanque agitado y lecho fijo).

 Establecimiento y puesta a punto del sistema de análisis de los componentes en la fase líquida (cromatografía de gases y cromatografía líquida de alta presión).

- Selección del adsorbente, preferentemente de carácter hidrófobo, mas adecuado para la recuperación del etanol de los caldos de fermentación, mediante el estudio del comportamiento de los diferentes adsorbentes en la adsorción de mezclas etanol-agua, atendiendo fundamentalmente a la capacidad, selectividad y velocidad de adsorción; así como de la posible influencia de otras especies, tales como la glucosa. butanol y acetona.

- Obtención experimental de las isotermas de equilibrio individuales

del etanol, butanol y acetona y sus mezclas binarias y ternarias sobre el adsorbente seleccionado.

- Obtención experimental de los tiempos y curvas de rotura en lecho fijo de mezclas etanol-agua sobre el adsorbente seleccionado, en función de la composición de la mezcla hidroalcohólica, del caudal de alimento líquido y del peso de adsorbente.

- Ajuste de los puntos experimentales obtenidos para componentes puros a las ecuaciones teóricas de Langmuir, Freundlich y Prausnitz, con la obtención de los parámetros característicos correspondientes, y determinación de las curvas de presiones superficiales a partir de los mismos datos.

- Predicción del equilibrio de adsorción binario mediante el modelo de la Solución Adsorbida Ideal (S.A.J.) a partir únicamente de datos de componentes puros.

- Reproducción del equilibrio de adsorción binario mediante el modelo de la Solución Adsorbida Real (S.A.R.) a fin de obtener los coeficientes de actividad en la fase adsorbida correspondientes a los solutos de dichas mezclas.

 Aplicación de modelos cinéticos para la obtención de los coeficientes globales de transferencia, así como la simulación de los experimentos desarrollados en lecho fijo.

- Análisis y discusión de los resultados obtenidos.

3. Instalation Experimental.

3. INSTALACION EXPERIMENTAL.

Los experimentos realizados se desarrollaron en dos instalaciones diferentes, una para la determinación de las isotermas de equilibrio (Instalación I1), y otra para la determinación de los tiempos y curvas de rotura (Instalación I2). A continuación se describe cada una de ellas:

3.1 INSTALACION I1.

Esta instalación de tanques agitados se esquematiza en la Figura 3.1 y para su descripción se considera dividida en cuatro partes:

- Sistema de contacto y agitación.

- Sistema de calefacción.

- Sistema de medida y control de la temperatura.
Instalación Experimental.

Figura 3.1 Experimentos de equilibrio. Instalación II.

- Sistema de análisis.

3.1.1 Sistema de contacto y agitación.

Constituido por siete recipientes de vidrio de 250 ml. de capacidad en los cuales se consigue la mezcla completa entre el sólido y el liquido. Cada recipiente está provisto de un cierre hermético de agitación para evitar las pérdidas por evaporación y la posible contaminación de las disoluciones.

La agitación uniforme y simultánea de los recipientes se consigue mediante dos motores, cada uno de los cuales acciona simultáneamente, mediante el adecuado sistema de engranajes, cuatro ejes, a los que se conectan otros tantos agitadores de vidrio de 6 mm. de diámetro, con una velocidad de agitación de 250 r.p.m.. Estos agitadores disponen de cuatro paletas de 21 mm. de diámetro y proporcionan un buen contacto entre las fases líquidas y sólida. Uno de ellos se utiliza para la agitación del baño termostatizado en el que se sumergen los recipientes.

3.1.2 Sistema de calefacción.

Consiste en un baño termostático de agua que se mantiene a la temperatura deseada mediante una resistencia eléctrica y un termómetro de contacto conectados a un relé electrónico tipo SES T - 01. Un agitador de turbina conectado al propio sistema de agitación produce la necesaria turbulencia para la calefacción uniforme. La precisión con que se controla la temperatura es de \pm 1°C.

3.1.3 Sistema de análisis.

El equipo de anàlisis està constituido por un cromatógrafo de gases Hewiett-Packard serie 5880 A dotado con una columna Porapak Q 80/100 mallas de 1/8 de pulgada de diámetro y 2 metros de longitud; y un cromatógrafo de líquidos KONIK serie KNK 500 A dotado con una columna Tracer - Acidos CKO8EH de dimensiones 10 x 0.4 cm. Las características de éste equipo se encuentran detalladas en el apartado 9.3 del Apéndice.

6Z

3.2 INSTALACION 12.

En la fígura 3.2 se esquematiza esta instalación de lecho fijo que consta de las siguientes partes:

- Sistema de contacto.

- Sistema de control y medida de la temperatura.

- Sistema de alimentación, medida y control de la velocidad de alimentación.

3.2.1 Sistema de contacto.

Consiste en una columna de lecho fijo y flujo descendente, constituido por un tubo de acero inoxidable de 22 mm de diámetro interno y 14 cm de altura, provista de una camisa exterior por la cual circula el fluido calefactor. A ella se acoplan, mediante uniones roscadas, la entrada lateral de alimentación y la vaina del termopar de medida por la parte superior. En su parte inferior dispone de una conducción vertical para la salida del efluente.

El adsorbente se soporta con una pequeña cantidad de lana de vidrio, con el fin de que la pérdida de carga en el interior del reactor no sea elevada.

3.2.2 Sistema de control y medida de la temperatura.

Para mantener el lecho de adsorción en la temperatura deseada, se utiliza como fluido calefactor agua que se impulsa hasta la camisa desde un baño termostatizado.

Asímismo, la alimentación puede precalentarse en un baño termostatizado hasta alcanzar la temperatura de trabajo, que se mide con un termómetro de mercurio situado a la entrada del lecho. Para medir la temperatura del propio lecho se utiliza un termopar situado en el interior del mismo. Este dispositivo permite mantener la temperatura del lecho con

Figura 3.2 Experimentos cinéticos. Instalación 12.

oscilaciones inferiores a ± 1°C alrededor de la temperatura deseada.

3.2.3 Sistema de alimentación.

El alimento líquido se introduce al lecho de adsorción mediante una bomba de pistón (MINIPUMP SIMPLEX, DOSAPRO MILTON ROY), conectada directamente con una entrada lateral del lecho. La bomba se ajustaba y calibraba previamente a la realización de cada experimento.

4. MATERIALES Y PROCEDIMIENTO.

4.1 MATERIALES.

4.1.1 Adsorbentes.

a) Carbón Activado.

Dicho adsorbente granular sin forma geométrica definida y de 1.5 mm de diámetro nominal, fue fabricado por Lurgi y suministrado por la firma Merck. Las características del mismo se detallan en el Apartado 9.1 del Apéndice, de las que pueden destacarse su elevada microporosidad (1/3 del volumen de poros tiene diámetros de poro menor de 30 Å) y su superficie específica BET 1400 m²/g. Antes de su utilización el adsorbente se sometía a un proceso de ebullición en agua destilada y desionizada tal y como se describe en el Apartado 5.1.2 de resultados, con el fin de eliminar el aire ocluido en los poros del carbón y permitir que se llenen de agua. b) Zeolitas.

Se utilizaron Zeolitas tipo ZSM-5 de diferentes relaciones Silice/Alúmina (56, 24) y Silicalita (Blanes, 1985), sintetizadas en el Departamento de Ingeniería Química de la Facultad de Ciencias Químicas de la Universidad Complutense de Madrid y cuyas características se presentan en el apartado 9.1 del apéndice.

4.1.2 Adsorbates.

Los adsorbatos empleados fueron:

- Etanol absoluto suministrado por Normapur (99.85 % pureza).

- Butanol suministrado por Panreac (99 % pureza).

- Acetona suministrada por IQA analitica (99.5 % pureza).

 Glucosa anhidra (Dextrosa) suministrada por Probus (Químicamente pura).

4.2 PROCEDIMIENTO OPERATIVO.

4.2.1 Isotermas de equilibrio.

Para la obtención de las isotermas de equilibrio, tanto de componentes puros como de mezclas, se utilizó la instalación experimental II descrita en el apartado 3, siguiendo el procedimiento que a continuación se insica: En cada uno de los recipientes se ponían en contacto 100 ml de la disclución acuosa recién preparada, de concentración (o concentraciones, en el caso de más de un componente) inicial conocida (C_{10}), junto con una cantidad de adsorbente, W, determinada por pesada con una precisión de \pm : 10⁻⁴ g.

A continuación, se cerraban herméticamente los recipientes y se introducían en un baño termostatizado a la temperatura deseada. Las condiciones de operación se mantenían constantes durante 2 horas, tiempo

suficiente para alcanzar por completo el equilibrio. Al finalizar dicho periodo, se extraian muestras de cada recipiente y se centrifugaban a 4000 rpm en una centrífuga ORTO modelo Digigen, con el fin de eliminar el polvo en suspensión.

La disolución así obtenida, se analizaba por Cromatografía de Gases (CG) o Cromatografía de Líquidos a Alta Presión (HPLC).

La concentración en la fase adsorbida se obtenía por un balance de materia cuya expresión es:

$$n_{i} = \frac{V}{W} \left(C_{oi} - C_{i} \right)$$
(3.1)

donde:

- n_i : concentración de equilibrio en la fase adsorbida del soluto i (mol/kg).

- W : Peso de adsorbente (kg).

- V : Volumen de disclución (m³).

- C_:: Concentración inicial de soluto i en la disolución (mol/m²).

- C : Concentración de equilibrio del soluto i en la disclución (mol/m^3) .

4.2.2 Curvas de rotura.

Para la obtención de las curvas de rotura se procedia de la siguiente forma: Se cargaba el lecho con una determinada cantidad de adsorbente, se hacía pasar agua procedente de un baño termostatizado por la camisa del lecho a fin de mantener el reactor a la temperatura de operación. Dicha temperatura se controlaba mediante un termopar introducido en el lecho. A tontinuación, mediante una bomba dosificadora y con el caudal seleccionado para el experimento, se alimentaba agua destilada y desionizada a fin de saturar el lecho. Una vez finalizada esta operación, se alimentaba con el mismo caudal la mezcla hidroalcoholica de concentración C_o conocida, momento que se consideraba como tiempo cero y a partir del cual, se tomaban muestras de la corriente efluente. Dichas muestras se analizaban por cromatografía de

gases. El experimento se daba por finalizado cuando la composición de la corriente de salida era igual que la de entrada.

En cada experimento se medían las siguientes variables:

- T : Temperatura en el interior del lecho (°C).

- C : Concentración inicial de etanol en la disolución (% vol).
- C₁: Concentración de la disolución en la corriente efluente a tiempo t (% vol).
- -t : Tiempo (min).
- Q : Caudal de entrada de la mezcla hidroalcohólica (ml/min).
- W . Peso de adsorbente (g).
- H : Altura del lecho de adsorbente (cm).

5. RESULTADOS EXPERIMENTALES.

Se presentan a continuación los resultados experimentales en forma de tablas. Cada una de ellas tiene un cabecero en el que se especifica el tipo de experimento, compuesto y adsorbente utilizado, así como la temperatura a la que se realizó el experimento. El significado de cada variable recogido en el Apartado 10 se incluye a continuación, haciendo referencia los subíndices 1, 2, 3 y 4 a los adsorbatos Etanol, Butanol, Acetona y Glucosa, respectivamente:

t : Tiempo de contacto (min).

₩ : Peso de adsorbente (g).

 $\frac{C}{eqi}$: Concentración de equilibrio del soluto i en la disolución (mol/m³ o % vol).

n: Concentración de equilibrio en la fase adsorbida del soluto i $(mol/kg \ o \ mg/g)$,

C_.: Concentración total de equilibrio de los solutos en la

displución (mol/m^3) .

 n_{t} : Concentración total de equilibrio de los solutos en la fase adsorbida (mol/kg).

En la presentación de resultados se hace referencia a las zeolitas ZSM-5 (a) y ZSM-5 (b), nomenclatura que corresponde respectivamente a lo siguiente:

ZSM-5 (a): zeolita de relación molar Si/Al = 56. ZSM-5 (b): zeolita de relación molar Si/Al = 24.

5.1 EXPERIMENTOS PREVIOS,

5.1.1 Determinación del tiempo de equilibrio.

Se realizaron un total de 8 experimentos con el fin de determinar el tlempo necesario para alcanzar el equilibrio para cada uno de los adsorcatos y adsorbentes utilizados. Los resultados quedan recogidos en las tablas 5 t a 5.8

5.1.2 Tratamiento previo del carbón activado.

Se realizaron dos experimentos con objeto de comparar la capacidad de adserción que proporcionaba el carbón activado sometido a dos tratamientos previos diferentes. Estos fueron los siguientes:

- al Secado en estufa a 110°C durante al menos 48 horas.
- b) Secado en estufa a 110°C durante al menos 48 horas.
 - Ebullición en agua destilada y desionizada durante 15 minutos previamente a su introducción en las disoluciones.

En las tablas 5.9 y 5.11 se presentan los resultados obtenidos. El tratamiento finalmente elegido para la experimentación fue el bl, como se comenta en el apartado 6.1.3.

5.1.3 Reproducibilidad de los experimentos de equilibrio.

Con objeto de estudiar la reproducibilidad de los experimentos de equilibrio, se realizó la misma isoterma y en las mismas condiciones dos veces para el carbón activado y la silicalita. Los resultados se presentan en las tablas 5.9 y 5.10 por un lado y 5.15 y 5.16 por otro, respectivamente.

5.2 SELECCION DEL ADSORBENTE. EXPERIMENTOS DE EQUILIBRIO DE UN SOLO COMPONENTE.

Para la obtención de las isotermas de equilibrio de cada uno de les adsorbatos con cada uno de los siguientes adsorbentes: carbón activado, silicalita, ZSM-5(a), ZSM-5(b) y silicalita aglomerada, se realizaron experimentos a diferentes temperaturas. En dichos experimentos se variaba la concentración inicial de adsorbato para una cantidad fija de adsorbente y para el mismo volumen de disolución.

5.2.1 Carbón Activado.

Se han obtenido las isotermas de equilibrio de etanol sobre carbón activado a 25, 35, 45 y 55°C. Los resultados obtenidos se presentan en las tablas 5.9 y 5.12 a 5.14.

Análogamente se obtuvieron las isotermas de adsorción de glucosa solce carbón activado a 25 y 55°C., presentándose los resultados en las rablas 5.28 y 5.29.

5.2.2 Silicalita.

Se han obtenido las isotermas de equilibrio de etanol sobre silicalita a 25, 35, 45 y 55°C. Los resultados obtenidos se presentan en las tablas 5.15 a 5.19.

Análogamente, se obtuvieron las isotermas de adsorción de butanol y acetona sobre silicalita a 25°C, cuyos resultados se recogen en las tablas 5.26 y 5.27.

De la misma forma se obtuvo la isoterma de adsorción de glucosa sobre

silicalita a 25°C, cuyos resultados se presentan en la tabla 5.30.

5.2.3 ZSM-5 (a).

Se han obtenido las isotermas de equilibrio de etanol sobre ZSM-5 (a) (relación Si/Al = 56) a 25, 35, 45 y 55°C. Los resultados obtenidos se presentan en las tablas 5.20 y 5.23.

5.2.4 ZSM-5 (b).

Se han obtenido las isotermas de equilibrio de etanol sobre ZSM-5 (b) (relación Si/Al = 24) a 25 y 55°C. Los resultados obteridos se presentan en las tablas 5.24 y 5.25.

5.2.5 Silicalita Aglomerada.

Se ha obtenido la isoterma de adsorción de etanol sobre silicalita aglomerada a 25°C, presentándose los resultados en la tabla 5.31.

5.3 EXPERIMENTOS DE EQUILIBRIO DE MEZCLAS BINARIAS.

Para la obtención de las isotermas de adsorción de mezclas binarias sobre Silicalita a 25°C, se realizaron series de experimentos tomando como parámetro en cada serie la relación de concentraciones volumétricas iniciales. Dichas series corresponden a cada una de las mezclas binarias posibles con los adsorbatos estudiados.

5.3.1 Sistema binario Etanol-Glucosa.

Para detectar la posible interferencia de la glucosa residual dei caldo de fermentación en la adsorción del etanol se llevó a cabo un experimento utilizando las concentraciones máximas de ambos adsorbatos en los caldos de fermentación (Atkinson, 1983). La relación de concentraciones volumétricas iniciales de etanol/glucosa fué de 6/1. Los resultados quedan recogidos en la tabla 5.32.

5.3.2 Sistema binario Etanol-Butanol.

Para la determinación de las isotermas binarias a 25°C, se plantearon cinco experimentos, con distintas relaciones de concentraciones volumétricas de ambos adsorbatos. Las relaciones iniciales de concentraciones etanol/butanol fueron las siguientes: 7:1, 5:1, 3:1, 1:1, 1:3. La obtención de datos no útiles por parte de una de ellas, 1·3, debido al efecto de desplazamiento por parte del butanol, presencia mayoritaria de éste y errores en el método de análisis, obligó al planteamiento de un nuevo experimento de relación 2:1. En las tablas 5.33 a 5.38 se encuentran recogidos los resultados.

5.3.3 Sistema binario Etanol-Acetona.

Se plantearon cinco experimentos, con distintas relaciones de concentraciones volumétricas de ambos adsorbatos, para la determinación de las isotermas binarias a 25°C. Las relaciones iniciales de concentraciones etanol/acetona fueron las siguientes: 5:1, 3:1, 1:1, 1:3, 1:5. En las tablas 5.39 a 5.43 se recogen los resultados.

5.3.4 Sistema binario Butanol-Acetona.

Para la determinación de las isotermas binarias a 25°C, se plantearon cinco experimentos, con relaciones de concentraciones volumétricas butanol/acetona 1:7, 1:5, 1:3, 1:1, 3:1. La obtención de datos no útiles por parte de uno de ellos, 3:1, debido al efecto de desplazamiento por parte del butanol, presencia mayoritaria de éste y errores en el método de análisis, obligó al planteamiento de un nuevo experimento de relación 1:8. Los resultados quedan recogidos en las tablas 5.44 a 5.49.

5.4 EXPERIMENTOS DE EQUILIBRIO DE MEZCLAS TERNARIAS.

5.4.1 Sistema ternario etanol-butanol-acetona.

Como en el caso de las mezclas binarias, para la obtención de las isotermas de adsorción de los tres componentes sobre Silicalita a 25°C, se plantearon 5 experimentos, con distintas relaciones de concentraciones volumétricas de los tres adsorbatos etanol/butanol/acetona, éstas fueron:

1:1:1, 3:1:1, 1:1:3, 5:1:1, 1:1:5. Los resultados se presentan en las tablas 5.50 a 5.54. Se observa como en los experimentos de equilibrio de mezclas ternarias el etanol no se adsorbe de modo alguno sobre la silicalita y la acetona lo hace sólo cuando aumenta su proporción relativa en la mezcla, debido al efecto de desplazamiento que ejerce el butanol sobre el resto de los adsorbatos.

5.5 TIEMPOS Y CURVAS DE ROTURA.

En las tablas que se presentan a continuación se resumen los resultados experimentales obtenidos. En ellas se indica el tipo de adsorbente utilizado, condiciones de operación y una serie de parámetros definidos de la siguiente forma:

- T ('C): temperatura en el interior del lecho.

- C_ (%vol): concentración inicial de la mezcla hidroalcohólica.

- Q (ml/min): caudal de entrada de la corriente alimento.

- W (g): peso de adsorbente.

- t (min): tiempo que tarda la corriente alimento en llenar el volumen muerto de la instalación y llegar ha alcanzar la primera capa de adsorbente.

- t (min): definido como: t_{real} - t_r - Y (min): tiempo transcurrido durante la variación de la composición de adsorbato de salida, desde un 10 % hasta un 90 % del valor de entrada.

5.5.1 Reproducibilidad de los experimentos cinéticos.

De forma análoga al punto 5.1.3 se procedió al estudio de la reproducibilidad de los experimentos cinéticos cuyos resultados se presentan en las tablas 5.97 a 5.98.

5.5.2 Curvas de rotura de etancil sobre silicalita en polvo a 25°C.

Se realizaron un total de 32 experimentos, tablas 5.55 a 5.86, modificando las variables en los valores que se especifican a continuación:

Peso de adsorbente en el reactor, W (g): W = 20 y 30 g
Caudal de la corriente alimento, Q (mi/min): Q = 1.0, 1.5, 2.0 y 2.6 ml/min
Composición de la corriente de entrada, C_o (%vol): C_o = 1, 2, 4, 6, 8, 10 y 12 %vol
5.5.3 Curvas de rotura de etanol sobre silicalita aglomerada a 25°C.

Se realizaron un total de 13 experimentos, tablas 5.87 a 5.100, tomando los valores de las variables que se especifican a continuación:

- Peso de adsorbente en el reactor, W (g): W = 20 g
- Caudal de la corriente alimento, Q (ml/min): Q = 1.0 y 2.6 ml/min
- Composición de la corriente de entrada, C (%vol): C = 1, 2, 4, 6, 8, 10 y 12 %vol

. ..

TABLA 5.1

t (min)	W (g)	W C ₀₁ (g) (% vol)		n _j (mg/g)	
15	9.9591	10	8.7047	102.75	
30	9. 9533	10	8.5748	112.97	
60	9.9797	10	8.6613	105.84	
120	9.9663	10	8.6421	107.50	
240	9.9802	10	8.7059	102.31	

TENDENCIA AL EQUILIBRIO DEL ETANOL SOBRE CARBON ACTIVADO A 25°C.

TABLA 5.2

TENDENCIA AL EQUILIBRIO DEL ETANOL SOBRE SILICALITA A 25°C.

t (min)	W (g)	C 01 (% VOl)	C eqi (% vol)	n ₁ (mg/g)
15	9.9591	10	8.7047	102.75
30	9.9533	10	8.5748	112.97
60	9.9797	10	8.6613	105.84
120	9.9663	10	8.6421	107.50
240	9.9802	10	8.7059	102.31

TABLA 5.3TENDENCIA AL EQUILIBRIO DEL ETANOL SOBRE 25M-5 (A) A 25°C.

t (min)	W (g)	C (% vol)	C eq1 (% vol)	n (mg/g)
15	10.0187	10	8.7040	102.09
30	10.0183	10	8.6500	106.37
60	10.0183	10	8.6630	105.34
120	10.0048	10	8.7630	97.60
240	10.0028	10	8.7770	96.48

TABLA 5.4

TENDENCIA AL EQUILIBRIO DEL ETANOL SOBRE ZSM-5 (B) A 25°C.

t (min)	W (g)	C 01 (% vol)	C eq1 (% vol)	n ₁ (mg/g)
15	9.9835	10	8.9453	83.38
30	9.9758	10	8.9516	82.95
60	9.9545	10	8.9727	81.45
120	9.9889	10	8.9742	81.05
240	9.9784	10	8.9665	81.75

TABLA 5.5

t (min)	₩ (g)	C ₀₂ (% vol)	C eq2 (% vol)	n ₂ (mg/g)
0	-	5	5	0.0
85	9, 9981	5	3. 2224	124.2
145	9.9878	5	3.2443	122.6
180	9.9927	5	3.5084	101.1
265	9.9844	5	3.2396	122.9
325	10.0120	5	3. 2026	125.6

TENDENCIA AL EQUILIBRIO DEL BUTANOL SOBRE SILICALITA A 25°C.

TABLA 5.6

TENDENCIA AL EQUILIBRIO DE LA ACETONA SOBRE SILICALITA A 25°C.

t (min)	W (g)	C (% vol)	C eq3 (% vol)	n ₃ (mg/g)
0	-	7.5	7.5	0.00
10	10.0430	7.5	6.448	100.05
20	10.0268	7.5	6.374	106.05
30	10.0544	7.5	6.397	103.95
45	10.0040	7.5	6.393	104.79
60	10.0207	7.5	6.412	103.06
90	10.0149	7.5	6.333	109.36
120	9.9940	7.5	6.417	102.93

TABLA 5.7

TENDENCIA AL EQUILIBRIO DE LA GLUCOSA SOBRE SILICALITA A 25°C.

t. (min)	₩ (g)	C4 (g/1)	C eq4 (g/1)	n 4 (mg/g)
o	-	10	10.000	0.0000
15	10.0003	10	10.344	-3.4000
30	10.0058	10	10.549	-5.8000
60	10.0357	10	10.375	-3.7000
120	10.0039	10	10.227	-2.3000
240	9.9989	10	10.327	-3.3000

TABLA 5.8

TENDENCIA AL EQUILIBRIO DE LA GLUCOSA SOBRE CARBON ACTIVADO A 25°C.

t (min)	₩ (g)	C 04 (g/1)	C eq4 (g/1)	n ₄ (mg/g)
0	~	10	10,000	0.0000
15	10.0976	10	6.400	35.628
30	9.8215	10	5.742	43.328
60	9. 9662	10	5.373	46.403
120	9.3764	10	5, 181	51.370
240	9. 8397	10	4.951	51.289
360	9.5842	10	4.977	52.381

TABLA 5.9

W (g)	C ₀₁ (% vol)	C (mol/m ³)	C eq1 (% vol)	C eq1 (mol/m ³)	n ₁ (mg/g)	n 1 (mol/kg)
10. 2509	1.0	171.52	0.488	83.73	39, 36	0.855
10.0697	2.0	343.04	1.108	190. 11	69, 85	1.518
10.1210	4.0	686.08	2.428	416.61	122.57	2.664
10.0073	6.0	1029.13	3.929	674.16	163.26	3.549
9.8251	8.0	1372.17	5.418	929.65	207.37	4. 508
10.1743	10.0	1715.21	6,909	1185.49	239.74	5.211
9.6893	12.0	2058.26	8, 567	1469.98	279.63	6.078

ISOTERMA DE ADSORCION DE ETANOL SOBRE CARBON ACTIVADO A 25°C. TRATAMIENTO PREVIO (B)

TABLA 5.10

ISOTERMA DE ADSORCION DE ETANOL SOBRE CARBON ACTIVADO A 25°C. REPRODUCIBILIDAD.

₩ (g)	C ₀₁ (% vo])	C 01 (mol/m ³)	C eq1 (% vol)	C eq1 (mol/m ³)	n ₁ (mg/g)	n ₁ (mol/kg)
10. 3 428	1. D	171.52	0, 482	82.70	39.47	0. 858
10.2437	2.0	343.04	1,099	188.57	69.39	1.508
9.9135	4.0	686.08	2.463	422.61	122.33	2.659
9,7808	6.0	1029.13	3.988	684.28	162.29	3.528
9,7140	3.0	1372.17	5.514	946,13	201.96	4.390
10.1283	10.0	1715.21	6.903	1184.46	241.29	5.245
10,0677	12.0	2058.26	8.401	1441.50	282.14	6.133

TABLA 5.11

¥ (g)	C ₀₁ (% vol)	C 01 (mol/m ³)	C eqi (% vol)	C •q1 (mol/m ³)	n i (mg/g)	n 1 (mol/kg)
10.0640	1.0	171.52	0.622	106.72	29.60	0.630
10.2099	2.0	343.04	1.388	238.16	47.29	1.028
10. 1360	4.0	686.08	2.911	499.48	84.77	1.842
10.2599	6.0	1029.13	4,606	790.32	107.17	2.329
10.3095	8.0	1372, 17	6,532	1120.80	112.38	2. 443
9.9862	10.0	1715.21	8, 354	1433.43	130.04	2.826
10.8655	12.0	2058.26	10.011	1717.75	144.48	3.140

ISOTERMA DE ADSORCION DE ETANOL SOBRE CARBON ACTIVADO A 25°C. TRATAMIENTO PREVIO (A).

TABLA 5.12

ISOTERMA DE ADSORCION DE ETANOL SOBRE CARBON ACTIVADO A 35°C.

W (g)	C 01 (% vol)	C 01 (mol/m ³)	C eq1 (% vol)	C eqi (mol/m ³)	n i (mg/g)	n 1 (mol/kg)
10. 4561	1.0	171.52	0.551	94.54	33.89	0.736
9.8238	2.0	343.04	1.165	199.89	67,03	1.457
9.6694	4.0	686.08	2,531	434.28	119.86	2.605
10.1770	6.0	1029.13	3.940	676.20	159.69	3. 471
10.3468	8.0	1372.17	5,317	912.32	204.62	4.448
10.0251	10.0	1715.21	7.012	1203.16	235.18	5.112
9. 9906	12.0	2058.26	8.536	1464.66	273.60	5.947

W (g)	C ₀₁ (% vol)	C o1 (mol/m ³)	C eqi (% vol)	C eqi (mol/m)	n (mg/g)	n _t (mol/kg)
9.7838	1.0	171.52	0. 577	99.00	34.04	0.740
10.1581	2.0	343.04	1.170	200.75	64.41	1.400
9,9335	4.0	686.08	2. 531	434.28	116.65	2.535
9.7533	6.0	1029. 13	4.078	699.73	155.53	3, 381
() 9.7598	8.0	1372.17	5. 594	959.85	194.56	4.229
) 9.7013	10.0	1715.21	7.089	1216.37	236.79	5.147
10.1004	12.0	2058.26	8.603	1441.33	265.40	5.769

TABLA 5.13

ISOTERMA DE ADSORCION DE ETANOL SOBRE CARBON ACTIVADO A 45°C.

TABLA 5.14

ISOTERMA DE ADSORCION DE ETANOL SOBRE CARBON ACTIVADO A 55°C.

¥ (g)	C ₀₁ (% vol)	C (mol/m ³)	C eqi (% vol)	C eq1 (mol/m ³)	n(mg/g)	n 1 (mol/kg)
10. 479 5	1.0	171.52	0.639	109.64	27.11	0.589
9.6457	2.0	343,04	1.187	203. 67	66.47	1.445
9.9751	4.0	686.08	2.453	420.90	122.33	2.659
9.6245	6.0	1029.13	3.962	679.82	167.09	3.632
10.0914	8.0	1372.17	5.482	940.63	196.88	4.280
10.3365	10.0	1715.21	7.030	1206.25	226.78	4.930
10. 5010	12.0	2058.26	8.474	1454.02	264.98	5.760

W (g)	C ₀₁ (% vol)	C (mol/m ³)	C eq1 (% vol)	C eq1 (mol∕m ³)	n 1 (mg/g)	n 1 (mol/kg)
10.0009	1.0	171.52	0.406	69.66	46.89	1.019
9.9922	2.0	343.04	1.143	196.12	67, 69	1.472
9. 9914	4.0	686.08	2.908	498.97	86.26	1.875
10.0055	6.0	1029.13	4.802	823.96	94.51	2.054
9.9966	8.0	1372.17	6.694	1148.60	103. 12	2.242
10.0048	10.0	1715.21	8.694	1491.78	103.03	2.240
9.9742	12.0	2058.26	10.682	1832.89	104.29	2.267

TABLA 5.15

ISOTERMA DE ADSORCION DE ETANOL SOBRE SILICALITA A 25°C.

TABLA 5.16

ISOTERMA DE ADSORCION DE ETANOL SOBRE SILICALITA A 25°C. REPRODUCIBILIDAD.

¥ (g)	C ₀₁ (% vol)	C ₀₁ (mol/m ³)	C eq1 (% vol)	C eq1 (mol/m ³)	n 1 (mg/g)	n 1 (mol/kg)
9. 9802	1.0	171.52	0. 391	67.06	48.16	1.047
10.0116	2.0	343.04	1.129	193.64	68.66	1.492
10.0039	4.0	686.08	1.928	330.52	81.75	1.777
10.0214	6.0	1029.13	3.652	626.39	92.47	2.010
9.9712	8.0	1372.17	5.466	937.54	100.27	2.179
10.0291	10.0	1715.21	7.418	1272.34	101.60	2.209
9, 9721	12.0	2058.26	10.609	1819.67	110, 27	2. 397

и (g)	C ₀₁ (% vol)	C ₀₁ (mol/m ³)	C eq1 (% vol)	C eq1 (mol/m ³)	n ₁ (mg/g)	n 1 (mol/kg)
9.995 4	1.0	171.52	0.464	79 .62	42.32	0.920
10.0190	2.0	343,04	1.192	204.53	63.65	1.384
10.0119	4.0	686.08	2.889	495.71	87.58	1.904
9.9923	60	1029.13	4.770	818.47	97.16	2.112
10.0182	8.0	1372.17	6.686	1147.23	103.53	2,251
10.0197	10.0	1715.21	8.711	1494.69	101.54	2.207
9.9940	12.0	2058.26	10.674	1831.52	104.72	2.277

TABLA 5.17

ISOTERMA DE ADSORCION DE ETANOL SOBRE SILICALITA A 35°C.

TABLA 5.18

ISOTERMA DE ADSORCION DE ETANOL SOBRE SILICALITA A 45°C.

W (g)	C ₀₁ (% vol)	C (mol∕m³)	C eq1 (% vol)	C eq1 (mol/m ³)	n ₁ (mg/g)	n 1 (mol/kg)
9, 9947	1.0	171.52	0.445	76.36	43.82	0.953
10.0006	z. 0	343.04	1.170	200.76	65.51	1.424
10.0013	4.0	686.08	2.911	499.49	85.94	1.868
10.0048	6.0	1029.13	4. 799	823.45	94.75	2.060
10.0057	8.0	1372.17	6.705	1150.49	102.16	2.221
10.0056	10.0	1715.21	8.690	1491.09	103.34	2.247
9.8883	12.0	2058.26	10.707	1837.18	103.21	2.244

	TA	BLA	5.19
--	----	-----	------

¥ (g)	C ₀₁ {% vol}	C (mol/m ³)	C eq1 (% vol)	C eq1 (mol/m ³)	n ₁ (mg/g)	n 1 (mol/kg)
10.0074	1.0	171.52	0.408	70.01	46.69	1.015
9.9769	2.0	343.04	1.182	202.82	64.71	1.407
9.9951	4.0	686.08	2. 938	504.12	83.86	1.823
9. 9885	6.0	1029.13	4.849	832.03	90. 95	1.977
10.0015	8.0	1372.17	6.810	1168.51	93, 90	2.042
10.0057	10.0	1715.21	8.690	1491.09	103.34	2.247
9. 9993	12.0	2058.26	10.694	1834.95	103.09	2.241

ISOTERNA DE ADSORCION DE ETANOL SOBRE SILICALITA A 55°C.

TABLA 5.20

ISOTERMA DE ADSORCION DE ETANOL SOBRE 25M-5 (A) A 25°C.

W (g)	C ₀₁ (% vol)	C ₀1 (mol∕m ³)	C eqi (% vol)	C eqi (mol/m ³)	n 1 (mg/g.)	n 1 (mol/kg)
10.0064	1.0	171.52	0.412	70.69	46.36	1.007
10.0035	2.0	343.04	1.166	200.07	65.82	1.430
9.9881	4.0	686.08	2.895	496.74	87.29	1.897
9.9785	6.0	1029.13	4.865	834.77	89.79	1.951
9.9842	8.0	1372.17	6.808	1168.16	94.25	2.048
9.9919	10.0	1715.21	8.774	1505.50	96.86	2.105
10.0145	12.0	2058.26	10.782	1850.05	96.00	2.086

W (g)	C ₀₁ (% vol)	C 01 (mol/m ³)	C #g1 (% vol)	C € ¢q1 (mol/m ³)	n ₁ (mg/g)	n ₁ (mol/kg)
9.9862	1.0	171.52	0.426	73.09	45.37	0.986
9.9974	2.0	343.04	1.196	205.21	63.51	1.380
10.0012	4.0	686.08	2.971	509, 78	81.24	1.766
10 0151	6.0	1029.13	4.946	848.66	83.07	1,805
9,9743	8.0	1372.17	6.856	1176.40	90.52	1.967
9.9939	10.0	1715.21	8.824	1514.08	92.85	2.018
9.9824 	12.0	2058 26	10.833	1858.80	92.26	2.005

TABLA 5.21

ISOTERMA DE ADSORCION DE ETANOL SOBRE 25M-5 (A) A 35°C.

TABLA 5.22

ISOTERNA DE ADSORCION DE ETANOL SOBRE ZSM-5 (A) A 45°C.

W (g)	C (% vol)	C _{σ1} (mo]/m ³)	C eq1 (% vol)	C eq1 (mol/m ³)	n (mg/g)	n ₁ (mol/kg)
9 9722	3.0	171.52	0.420	72.06	45.92	0, 998
10.0013	2.0	343, 04	1.207	207 10	62, 59	1.360
10.0339	4.0	686.08	3.007	515.96	78.14	1.698
10.0478	6.0	1029.13	4.944	848.32	82.95	1.803
9.9402	10.0	1715.21	8.830	1515.11	92.90	2.019
10.0090	12.0	2058.26	10.816	1855.88	93.39	2.03C

¥ (g)	C .1 (% vol)	C o1 (mol/m ³)	C eq1 (% vol)	C eq1 (mol/m ³)	n ₁ (mg/g)	n ₁ (mol/kg)
9.9978	1.0	171.52	0.407	69.83	46.79	1.017
10.0047	2.0	343.04	1.168	200.41	65.61	1.426
9, 9983	4.0	686.08	2.921	501.20	85.21	1.852
9.9785	6.0	1029.13	4.859	833.74	90.22	1.961
9.9986	8.0	1372.17	6.815	1169.36	93.54	2.033
10.0229	10.0	1715.21	8.819	1513.22	93.04	2.022
9,9960	12.0	2058.26	10.799	1852.96	94.87	2.062

TABLA 5.23

ISOTERMA DE ADSORCION DE ETANOL SOBRE 25H-5 (A) A 55°C.

TABLA 5.24

ISOTERMA DE ADSORCION DE ETANOL SOBRE 25M-5 (B) A 25°C.

W (g)	C ₀₁ (% vol)	C 01 (mol/m ³)	C eq1 (% vol)	C eq1 (mol/m ³)	n 1 (mg/g)	n 1 (mol/kg)
10.0604	1.0	171.52	0.396	67.94	47.38	1.030
10.0604	2.0	343.04	1.206	206.93	62.27	1.353
10.0301	4.0	686.08	3.046	522.65	75.10	1.632
10.0283	6.0	1029.13	4.968	852,44	81.25	1.766
10,0040	8.0	1372.17	6.973	1196.47	81.05	1.761
10.0199	10.0	1715.21	8.976	1540.16	80.67	1.753
10.0449	12.0	20 5 8.26	10.979	1883, 85	80.24	1.744

	T	ABL	Α.	5,	25
--	---	-----	----	----	----

ISOTERMA DE ADSORCION DE ETANOL SOBRE ZSM-5 (B) A 55°C.

¥ (g)	C ₀₁ (% vol)	C 01 (mol/m ³)	C eq1 (% vol)	C *q1 (mol/m ³)	n 1 (mg/g)	n i (mol/kg)
10.0109	1.0	171.52	0.397	68.12	47.506	1.032
10.0128	2.0	343.04	1.184	203. 15	64.33	1.398
9.9984	4.0	686.08	3.027	519.39	76.78	1.669
10.0106	6.0	1029.13	4.978	854. 15	80. 53	1.750
9, 9966	8.0	1372.17	6.977	1197.16	80.71	1.754
9, 9991	10.0	1715.21	8.971	1539, 30	81.21	1. 765
10.0172	12.0	2058.26	10.949	1878.70	82.81	1.800

TABLA 5.26

ISOTERMA DE ADSORCION DE BUTANOL SOBRE SILICALITA A 25°C.

ਮ (g)	C 02 (% vol)	C ₀₂ (mol/m ³)	C eq2 (% vol)	C eq2 (mol/m ³)	n ₂ (mg/g)	n2 (mol/kg)
10.0166	1.5	164. 19	0.281	30.76	98.79	1.332
10.0182	2.0	218.92	0.713	78.05	104.10	1.406
9.9692	3.0	328. 38	1.649	180. 49	109.80	1.483
10.0010	4.0	437.84	2.641	289.08	110.01	1.487
9,9419	5.0	547.29	3.637	398.10	111.10	1. 501
9.9584	6.0	656.76	4.672	511.39	108.30	1.460
10.0278	7.0	766.22	5.653	618.77	108.80	1.470

¥ (g)	C ₀₃ (% vol)	C 03 (mol/m ³)	C _{eq3} (% vol)	C eq3 (mol/m ³)	n ₃ (mg/g)	n ₃ (mol/kg)
10.0184	1.0	136.21	0.252	34-32	59.02	1.018
10.0149	2.0	272.41	1.007	137.16	78.35	1.351
10.0088	3.0	408.62	1.948	265.33	83.02	1.431
10.0216	4.0	544. 83	2. 898	394. 73	86.86	1.498
9, 9851	5.0	681,03	7, 908	532.29	86.41	1.490
10.0190	6.0	817.24	4.880	664.69	85. 30	1.522
10.0155	7.0	953.45	5. 877	800.48	88.57	1.527

ISOTERMA DE ADSORCION DE ACETONA SOBRE SILICALITA A 25°C.

TABLA 5.28

ISOTERMA DE ADSROCION DE GLUCOSA SOBRE CARBON ACTIVADO A 25°C.

W (g)	C 04 (g/l)	C eq4 (g/1)	n ₄ (mg/g)
10.1041	1.0	0.273	7.186
9.8079	2.5	0.851	16.802
9.6368	5.0	2.200	29.044
9. 5704	7.5	3.677	39, 926
9.4590	9.0	4.670	45.755
9.2218	10.0	5.367	50.218

TABLA 5.29

ISOTERNA DE ADSORCION DE GLUCOSA SOBRE CARBON ACTIVADO A 55°C.

¥ (g)	C 04 (g/1)	C eq4 (g/1)	n ₄ (mg/g)
10. 8296	1.0	0.343	6.053
10. 0854	2,5	1.022	14.638
9.6306	5.0	2.576	25.133
9.7227	7.5	4.064	35.297
9.7764	9.0	5.051	40.344
9. 7870	10.0	5.668	44.205

TABLA 5.30

ISOTERMA DE ADSORCION DE GLUCOSA SOBRE SILICALITA A 25°C.

W (g)	C •4 (g/1)	C eq4 (g/1)	n ₄ (mg/g)
10.0089	1.0	0. 989	1.099
10.0384	2.5	2.503	-0.299
10.0865	5.0	4.989	1.091
9. 9 870	7,5	7.502	-0.200
9.9537	9.0	8.999	0.105
10.0301	10.0	9.9596	4.087

TAB	ILA.	5.	31	

ISOTERMA DE ADSORCION DE ETANOL SOBRE SILICALITA AGLOMERADA A 25°C.

W (g)	C (% vol)	C o1 (mol/m ³)	C ::q1 (% vol)	C eq1 (mo]/m ³)	n ₁ (mg/g)	n 1 (mol/kg)
10.0195	1.0	171.52	0.684	117.31	24.89	0.541
9.9970	2.0	343.04	1.517	260.19	38.12	0.828
10.0285	4.0	686.08	3, 345	573.73	51, 48	1.119
10.0151	6.0	1029.13	5, 335	915.05	52, 37	1, 13 8
10.0079	8.0	1372.17	7,313	1254 32	54,18	1.177
10.0031	10.0	1715.21	9, 2 9 2	1593. 76	55.39	1, 204

TABLA 5.32

ISOTERMA BINARIA ETANOL/GLUCOSA SOBRE SILICALITA A 25° C. $C_{o1}^{\prime}/C_{o4}^{\prime} = 6/1$

W (g)	C 01 (% VOl)	C ₀₄ (g/1)	C edi (% vol)	C eq4 (g/l)	n ₁ (mg/g)	n_4 (mg∕g)
10,0167	1.0	0.166	0, 363	0.178	50.83	-1. 1437
9. 9976	2.0	0, 333	1.169	0.350	66.27	-1.6101
9.9806	4.0	0.666	3.022	0.668	78.16	-0.4152
9.9990	6.0	1.000	4.710	0. 957	102.99	3.9652
10.0261	8.0	1.333	6.513	1.288	118.34	4.0799
9.9940	10.0	1.666	8.684	1.667	105.09	-0.6459
9.9774	12.0	2.000	10.581	2.031	113.51	-3.7436

5. Resultados Experimentaies,

TABLA 5.33 ISOTERMA BINARIA ETANOL/BUTANOL SOBRE SILICALITA A 25°C.

$C_{01}/C_{02} = 1 / 1$

ע (g)	(mol/m3)	C ∘2 (⊪ol∕m ¹)	C 491 (mol/m ¹)	C •e2 (mol/m ¹)	n ₁ (mol/kg)	n ₂ (mol/kg)	C (mol/m ³)	n (mc1/kg]
10.0172	171.52	109, 46	161.98	0.00	0.096	1.093	161 98	0.096
9.9633	343.04	218, 92	324.47	94, 79	0.1 88	1. 246	419.26	1.434
9.9702	514.50	328.38	504.64	194.29	0.102	1.345	698. 93	1 446
9.9462	686.08	437.84	673.45	300.79	0.128	1.378	974 45	1.506
0 0194	857 60	547, 30	838.72	407.08	0. 192	1. 399	1245.79	1.591
10.0044	1029.12	656.76	1017.68	522.45	0.204	1.342	1546-13	1.461
4 9957	1200-64	766,22	1180.69	624.58	. <u>9</u> . 39	1.417	1805-27	1 621

 TABLA 5.34

 ISOTERMA BINARIA ETANOL/BUTANOL SOERE SILICALITA A 25°C.

$C_{01}/C_{02} \approx 1 / 3$

и (g)	C (anc)_/m³)	C 02 (mcl/m ³)	C eq1 (mol/m ³)	C	n ₁ (mol/kg)	n ₂ (mol/kg)	ິ (πol/ສ ³)	n (mol∕kg)
> 1734	85 76	164,19	94.37	43 89		1 206	138.26	1 206
10.0309	134.23	218,92	116.69	87.02		1 315	203.69	1.315
9 9946	171 52	328.38	178.45	185.86	—	1 426	364.31	1.426
9 9715	228.64	437.84	231.64	289.41		1 489	521 05	1.489
) 4 9904	285.75	547.30	295.13	402.59	-	1.448	697 72	1 448
9 9831	343.04	656.76	346.61	503 84		1 532	850 45	1 532
9 9710	400.16	766.22	408.38	623 48		1.432	1031.86	1 432

TABLA 5.35 ISOTERMA BINARIA ETANOL/BUTANOL SOBRE SILICALITA A 25°C. $C_{01}/C_{02} = 2 / 1$

u (g)	C ₀₁ (mol/± ³)	C _{o2} (no1∕∎ ³)	C eq1 (mol/m ³)	[ຂຕ2] (ສດ)./ຫີ]	n ₁ (mol/kg)	n _z (ec)/kg)	C, (mol∕m ⁰)	л (mol∕kg)
9.9828	343.04	109.46	295 03	13.87	0.482	0.958	308.89	1.444
10.0120	686.08	218.92	653.71	94-15	0.326	1.246	747.86	1, 572
10.0078	1029. 13	328.38	994.16	201.34	0.353	1.269	1195.49	1.623
9.9998	1372. 17	437.84	1349.86	313 63	0.22B	1 242	3663, 49	1 470
10.0091	1715.22	547. 29	1696.52	435.35	0. 193	3.118	2131.87	1 312

 TABLA 5.36

 Isoterna binaria etanol/butanol sobre silicalita a 25°C.

C_01/C_02	=	3	/	1	
-----------	---	---	---	---	--

¥ (g)	[+1 (mol∕m ³)	C2 (mo1∕m³)	C •¶1 (mol∕m³)	C (mol/m)	n ₃ (mo1∕kg)	n _z (mol/kg)	C, (mol∕m ³)	n _t (mol/kg)
9.9906	514.56	109.46	458.00	16 18	0.568	5. 934	474.18	1 502
9.9889	686.D8	145.91	642.25	47.07	0.441	0 990	689-32	1 431
10.0325	1029.13	218.92	988.04	105.85	0.410	\$ 127	1094.19	1 538
10.0137	1372.17	291.82	1031, 34	175 90	0.408	1 144	1507.25	1 551
9.9830	1715.22	364.83	1673.49	248.25	0 425	1 168	1921.74	1 592
9.9975	2058.26	437.84	2019.58	319-16	0 395	1 187	2308.76	1 582

5. Essuitados Experimentales.

 TABLA 5.37

 ISOTERMA BINARIA ETANOL/BUTANOL SOBRE SILICALITA A 25°C.

$C_{01}/C_{02} = 5 / 1$

ц (g)	C _{al} (mol∕m ³)	C ₀₂ (mol/m ³)	C eq1 (mol/m ³)	C •93 (mol/m [*])	n 1 {wol/kg}	h ₂ (mal∕rg)	Cر (nol/m ³)	n (mol/kg)
10.0123	686.09	87.57	586.54	16. 66	0.997	0.708	603. 19	1. 705
10. 0392	857 61	109.46	782.61	35. 5 7	0. 750	D. 735	818.1S). 48 6
10.0695	1029, 13	136.82	1008.07	49, 49	0.639	0.867	1057 57	: 506
10.0661	1200.65	164. 19	1236. 29	74. 42	0. 503	0. 892	1310.71	1. 395
10.0121	1715 22	218.92	1665. 42	124. 35	0.504	0.945	1789 77	1.448
10.0177	2058.26	273.65	2101-43	176.40	0.433	0 971	2277 83	1 404
10 0224	1572 83	328.38	2539.49	224.69	3 342	1 035	2764-17	1 377

 TABLA 5.38

 isoterma binaria etanol/butanol sobre silicalita a 25°C.

 $C_{01}/C_{02} = 7 / 1$

Ч (g)	C ₀₁ (mol∕m ¹)	C (mo]∕a ³)	C eqi (moi∕m³)	C •42 (mol/m ²)	n 1 (mol∕kg)	h_2 (mol/kg)	С _г (по)./м ³)	n (mol/kg)
10.0018	900.49	82.09	803. 32	26.72	0.975	0.554	830.04	1. 529
9 9860	1200.65	109.46	1130.76	39.99	0.704	0.696	1170.76	1.400
9 9770	1500.62	136.82	1438, 45	58,21	0,631	0. 788	1496.66	1.419
10.0192	1800.98	164.19	1745.28	81.07	0, 563	0.830	1826.35	1 392
10.002Z	2101.14	191.55	2057 08	104, 99	0.448	0.865	2162.08	1-314
9.9951	Z401.30	218, 92	2370. 85	129.06	0. 314	0.899	2499-92	1.213
9. 992 5	2701.47	246.28	2672.66	156.06	0. 299	0. 903	2928.71	1.202

TABLA 5.39 ISOTERMA BINARIA ETANOL/ACETONA SOBRE SILICALITA A 25°C. $C_{01}^{}/C_{03}^{} = 1 \ / \ 1$

น (g)	C (mol/m ³)	C	C €eq1 (moi/æ ³)	C (rej (moi/m)	n 1 (mol/kg)	n ₃ (mol∕kg)	C ₁ {mol/m ³ }	n _t (mol/kg)
10.0347	171.52	136.21	126 51	5R.47	0.453	0.775	184.62	1. 227
10.0189	343.04	272. 41	298-03	168 ::	0 451	1.041	466.12	1.492
9, 9915	686.08	544.80	625 54	424 80	0.609	1 201	1050, 34	1 610
10.0436	1029.13	817.24	962.52	681 85	0.667	1 348	1644.37	2 015
9.9768	1372.17	1089.66	1305.74	964 47	0 671	1.255	2270.21	1.926
9 9893	1715.22	1362.07	1643. 24	1225.71	0.727	1 365	2868.95	2, 092
9 9 9 9 7 9	2058-26	1634.4£	1963 46	1502 45	0 756	1 021	5495 92	? 077

TABLA 5.40 ISOTERMA BINARIA ETANOL/ACETONA SOBRE SILICALITA A 25°C.

 $C_{01}/C_{03} = 1 / 3$

	h	{m.ci/mi }	(mo1/m ³)	imol∕kg)	″3 (mol∕kg)	(mo1/m ³)	ⁿ t (anoi∕kg)
57.11	136.21	42.19	45 93	0 150	0.904	88.12	1 054
114.23	272.41	96.39	142.95	0.179	1 294	209.35	1 473
228.64	544.83	208.65	397 2.9	0.201	1.477	605.94	1 678
343.04	817.24	319.36	€55.1B	0.238	1.€18	974.54	1 856
457.28	1089.66	432.23	927.95	0.252	1.619	1360.12	1.870
571.68	1362.07	551.88	1198.79	0.200	1.629	1750. 67	: 828
686, 09	1634.48	669.86	1473.34	0.165	1.611	2143.19	1.776
	57, 11 114, 23 228, 64 343, 04 457, 28 571, 68 686, 09	57, 11 136, 21 114, 23 272, 41 228, 64 544, 83 343, 04 817, 24 457, 28 1089, 66 571, 68 1362, 07 686, 09 1634, 48	57.11 136.21 42.19 114.23 272.41 96.39 228.64 544.83 208.65 343.04 817.24 319.36 457.28 1089.66 432.23 571.68 1362.07 551.88 686.09 1634.48 669.86	57. 11 136. 21 42. 19 45. 93 114. 23 272. 41 96. 39 142. 95 228. 64 544. 83 208. 65 397. 29 343. 04 817. 24 319. 36 655. 18 457. 28 1089. 66 432. 23 927. 95 571. 68 1362. 07 551. 88 1198. 79 686. 09 1634. 48 669. 86 1473. 34	57.11 136.21 42.19 45.93 0.150 114.23 272.41 96.39 142.95 0.179 228.64 544.83 208.65 397.29 0.201 343.04 817.24 319.36 655.18 0.238 457.28 1089.66 432.23 927.95 0.252 571.68 1362.07 551.88 1196.79 0.200 686.09 1634.48 669.86 1473.34 0.165	57.11 136.21 42.19 45.93 0.150 0.904 114.23 272.41 96.39 142.95 0.179 1.294 228.64 544.83 208.65 397.29 0.201 1.477 343.04 817.24 319.36 655.18 0.238 1.618 457.28 1089.66 432.23 927.95 0.252 1.618 571.68 1362.07 551.88 1196.79 0.200 1.629 686.09 1634.48 669.86 1473.34 0.165 1.611	57. 11 136. 21 42. 19 45. 93 0. 150 0. 904 88. 12 114. 23 272. 41 96. 39 142. 95 0. 179 1. 294 239. 35 228. 64 544. 83 208. 65 397. 29 0. 201 1. 477 605. 94 343. 04 817. 24 319. 36 655. 18 0. 238 1. 618 974. 54 457. 28 1089. 66 432. 23 927. 95 0. 252 1. 618 1360. 12 571. 68 1362. 07 551. 88 1196. 79 0. 200 1. 629 1750. 67 686. 09 1634. 48 669. 86 1473. 34 0. 165 1. 611 2143. 19
5. Resultados Experimentales.

TABLA 5.41 ISOTERHA BINARIA ETANOL/ACETONA SOBRE SILICALITA A 25°C.

$C_{01}/C_{03} = 1 / 5$

ម្ភ (g)	C (mol/m ¹)	C •3 (mol/m³)	C •q] (mol/m ³)	C (mol/m)	n (mo1∕kg)	n_ (mol∕kg)	ີ (mol∕mີ)	n _t (mol/kg)
10.0029	34.30	136.21	30.65	38.11	0.037	0.991	68.76	1.017
10.0154	68.61	272.41	61.96	133.85	C. 067	1.384	195.81	1 450
10.0452	137.22	544.83	129.27	389.31	Q. 080	1.548	518.58	1.628
10.0040	205.83	817.24	200.84	665.11	0.051	1.521	865.95	1 571
10.0204	274.43	1089.66	264.21	937.38	0.103	1.520	1201.59	1 623
10.0097	343.04	1362.07	336.52	1207.46	0.067	1.545	1543 98	1.611
9.8047	428.80	1634.48	418.09	1484.61	G 11	1 529	1902 70	1.639

 TABLA 5.42

 ISOTERMA BINARIA ETANOL/ACETONA SOBRE SILICALITA A 25°C.

 $C_{01}/C_{03} = 3 / 1$

ע (g)	C. (mol/m ³)	C (MO1/m ¹)	C eqi (mol/m ³)	С •яа3 (вю1∕в ³)	n _i (moi∕kg)	n ₃ (naol∕kg)	С ₁ (mol/m ³)	n _t (moi/kg)
10 0129	171.52	46.98	91 19	26.63	0.803	0.185	118 03	0 988
10.0355	343.04	93, 95	249.95	45.34	0. 929	0.452	295.29	1.381
10.0012	686.08	188.05	594.72	113.50	0. 916	0.681	708.22	1.597
9.9842	1029.13	282.14	940.14	195.36	0.895	0.772	1135 50	1.667
10.0108	1372.17	376.09	1285. 53	281.61	0.871	0.814	1567-14	1.665
10.0206	1715.22	470, 19	1625. 56	367.94	0.901	0.859	1993, 49	1.760
9, 9868	2058-26	564.28	1970.68	460.99	0.885	0.839	2431.67	1.724

97

TABLA 5.43 ISOTERMA BINARIA ETANOL/ACETONA SOBRE SILICALITA A 25°C.

 $C_{01}/C_{03} = 5 / 1$

	- <u> </u>							
ч (g)	C _{ol} (mol∕m ³)	C _{e3} (mol∕m ³)	C •q1 (mol/m ³)	C	n _i {mol∕kg)	h (mol/kg)	C _t (mol∕m³)	n _t (mol/kg)
10.0009	171.52	27.24	86.29	ΰ,	0. 853	0 272	86.29	1.125
10 0086	343.04	54.48	226.55	31. 38	1.165	0.231	257. 93	1.396
10.0045	686.DE	108.96	559.76	62 76	1.265	0.462	622.55	1.727
10.0189	1029.13	163.45	g93 95	97.17	1.353	J 662	991.12	2 015
10.0110	1372.17	217.93	1233.95	145.81	1,386	C. 720	1379.76	2 106
9.9849	1715.22	272 41	1590.83	201.89	1.352	0.709	1782.42	2 062
9.9985	2058.26	340.52	1922.70	270.99	1.364	0.695	2193.69	2.059

TABLA 5.44 ISOTERMA BINARIA BUTANOL/ACETONA SOBRE SILICALITA A 25°C.

с,,	/د ور	Ŧ	1	/	1	

¥ (g)	C .2 (mol/m ³)	C	C ##2 (mol/m ³)	C eq3 (mol/m)	n ₂ (mol/kg)	n ₃ (mol/kg)	C (No1/8 ³)	n _t (Bol/kg)
10 0265	109.46	136 21	25. 95	116. 33	0. 833	0.198	142.28	1.031
9. 9866	218.92	272. 41	100.68	249.55	1.184	0.229	350.26	1.413
10.0151	328.38	408 62	204.08	380.37	1.241	0.282	584.46	1.523
10 0220	437.84	544. 83	313. 44	504.59	1.241	0. 401	818.03	1.643
10 0009	547 29	681.03	429.19	640.53	1.181	0.405	1069.72	1.586
9.9941	656.76	817.24	543. 37	782.56	1.135	0. 347	1325.93	1 482
9.9967	766 22	953. 45	653. 83	916.71	1.124	0.367	1570.55	1.492

w (ع)	C.2 (mol/m ³)	C ₆₃ (mol/m ³)	C eq2 (mol/m ³)	C •43 (mol/m)	n ₂ (mol/kg)	n ₃ (mol∕kg)	C _t (mol/m ³)	n [mol/kg]
9.9794	109.46	408.62	41.08	370.44	0.685	0. 39 3	411.52	1.068
10.0174	164.19	612, 93	81.65	558.31	D. 824	0.545	639. 96	1.369
9.9824	218.92	817, 24	126.48	755.23	0.926	0.621	881.71	1, 547
9. 2845	273 65	1021.55	163.47	957.60	0.903	0.640	1141.08	1. 544
10.0052	326.38	1225, 86	237.51	1166.83	0,908	0.590	1404 34	1.498
9. 9849	383.11	1430.17	295.99	1375.31	0.873	0.549	1671.29	1.422
10.0308	437.54	1634.48	350.29	1581.67	0 873	0, 526	1931.97	t. 399

TABLA 5.45 ISOTERNA BINARIA BUTANOL/ACETONA SOBRE SILICALITA A 25°C. $C_{01}/C_{03} \approx 1 \neq 3$

 TABLA 5.46

 ISOTERNA BINARIA BUTANOL/ACETONA SOBRE SILICALITA A 25°C.

$C_{01}/C_{03} = 1 / 5$

(g)	С •2 (mol/m³)	С (то]/ь ³)	C •e7 (mol/m ³)	C •1] (mol/m ³)	n ₂ (mo1/kg)	n ₃ (mol∕kg)	C _t (mol/m ³)	n _t (pol/kg)
්. 98 04	109.46	681.03	57, 69	619.61	0.519	0.615	677.30	1.134
10.0141	142.29	685.34	78.29	815.05	0. 639	0.702	893.35	1.341
°, 9977	175.14	1089 66	104.48	1020, 79	0.707	0.689	1125.27	1.396
9. 9971	218.92	1362.07	148.11	1297.71	0.708	0.644	1445.82	1 352
10.0005	262.70	1634.48	189.52	1571.89	0.732	0.626	1761.41	1.358
9.9870	295.54	1836.79	224.23	1779.43	0.714	0.594	2003.66	1,308
9 9846	328.38	2043.10	258.20	1986.65	0.703	0.565	2244 - 85) 268

TABLA 5.47 ISOTERNA BINARIA BUTANOL/ACETONA SOBRE SILICALITA A 25°C.

$C_{01}/C_{05} = 1 / 7$

¥ (g)	C (moì∕m ³)	C_03 [mol/m ³]	C. +q2 (mol/m ³)	C (mol/m)	n _z imol/kg)	n lmol/kg)	C _L (mol/m ³)	n _t (mol/kg)
10.0185	87.57	762. 76	41.36	S78.69	0.461	0.839	720. 16	1 300
9.9759	131. 35	11\$4.14	*5.9 9	1048, 13	0.555	9,962	1124-11	1 517
10.0297	153.24	1334, 83	97, 34	(233, 79	0.557	1.007	1331.13	1.565
10.0275	175.14	1525.52	121.93	1424.51	0. 531	1.007	1546.43	1.538
10.0096	197.03	1716.21	140.50	1619.84	0.565	0.963	1760. 34	1.527
10 0081	218.92	1906.89	163.06	1511.61	0.558	0.952	1974-67	: 510
9.0806	240.81	2097.58	190.44	2023. 97	0.555	0.811	2214 40	1.365

TABLA 5.48 ISOTERMA BINARIA BUTANOL/ACETONA SOBRE SILICALITA A 25°C.

¥ (g)	C	C *3 (mol∕m³)	C (mol/m ²)	C (mol/s)	b ₂ [mol∕kg]	n ₃ (mol/kg)	C _t (mol/m ³)	п _t (до1/жд)
10.0070	87.57	871.72	40.06	772-16	0.475	0.995	812.22	1.470
9. 9797	109.46	1089.66	61.13	988.73	0.484	1.011	1049.86	1 496
10.0014	101.35	1307.59	80.99	1205.16	0.504	1.024	1286.15	1.528
10 0336	153, 24	1525.52	103.82	1420.64	0. 493	1.045	1524.46	1.538
10 0300	175.14	1743. 45	125.28	1634 07	0.497	1.090	1759.35	1.586
10 02 12	197.02	1961.38	341.63	1860.49	G. 553	1.007	2002.09	1.560

5. Resultados Experimentales.

 TABLA 5.49

 isoterma binaria butanol/acetona sobre silicalita a 25°C.

(g.) V	C _{m3} - (mo1/m ³)	C 53 (mol/m ³)	C (mol/m ³)	C (mo)/w ³)	n ₃ (ao3/kg)	n ₃ (1ao]/kg)	С ₁ (до]/д ³)	n _t [sol/kg
10.0119	131.35	54.48	22.33	59.56	1. 089	-	81.89	1.089
9.9838	229.86	95. 34	89.99	102 67	1.401	-	192.66	1.401
10.0198	328.38	136.21	185.98	139 88	1. 421	-	325.86	1.421
10.0091	459.73	190.69	314.64	217 05	1.449	-	531.69	1.449
10.0098	558.24	231.55	410.44	200.10	1. 476	-	643. 57	2.476
11. 0209	e56.76	2/2.41	516.45	275 19	1 400		789.64	. 400
10.0052	755.27	313.27	616.33	319.21	1. 388		935.54	1.386

$$C_{01} / C_{03} = 3 / 1$$

----- ····

		TABLA 5.50			
ISOTERMA	TERNARIA	ETANOL/BUTANOL/ACETONA	SOBRE	SILICALITA A	25°C.

 $C_{01}/C_{02}/C_{03} = 1 / 1 / 1$

ч (g)	Coi (mol∕m ³)	C ∘2 (moi∕m ³)	C3 (mol/m ³)	C eq1 (mot/m ³)	C eq2 (mol/m ³)	ີ ແລະ (ການ:/ກາງ	n (mol/kg)	n ₂ (mol/kg)	n ₃ (mol∕kg)
9.9810	171.52	109.46	136.21	179.38	31.92	152, 55	-	0.7 77	1.7
9.9773	343.04	218.92	272.41	349. 95	105.86	273-61	-	1.445	-
9.9956	514, 56	328. 38	408.62	529. 52	215.97	415,06	~	1.124	-
9.9 699	686.08	437.84	544.83	708.38	311.83	548, 32	-	1.613	-
9.9831	857.60	547.30	681.03	892.76	433.76	692, 19	-	1.137	-
9.9974	1029. 12	656.76	817.24	1113.11	546.11	856,84	~	1, 107	
9.9847	1200 .64	766.22	953. 45	1272.68	658.57	1006, 45	-	1.078	~

ŗ
Feaul tados
Experimentales.

TABLA 5.51							
ISOTERHA	TERNARIA	ETANOL/BUTANOL	/ACETONA	SOBRE	SILICALITA	٨	25°C.

 $C_{01}/C_{02}/C_{03} = 3 / 1 / 1$

W (g)	C _{o1} (mo1/m ³)	C °2 (mol∕m ³)	C •3 (mol/m ³)	C ∘qi (ncl/m³)	C eq2 (mol/m)	C eq3 (mol/m ³)	n, (mol/kg)	n ₂ (mol/kg)	n _g (mol/kg)
9,9878	514.56	109.46	136.21	690.05	38.05	162. 52	-	0.715	~
9.9896	771.85	164.19	204.31	802.24	75, 02	213.12	-	0.893	-
9.9807	1029-13	218.92	272.41	1066.02	123.17	278.20	-	0,959	-
9, 9695	1286.41	273.65	340. 52	1374.06	174. 22	355.89	-	0.997	-
9 . 9900	1543.69	328. 38	408.62	1660.54	226.16	411.86	~	1.023	-
9.9825	1800. 98	383.11	476.72	1861.01	292. 62	480.10	-	0,906	
9.9809	2058.26	437.84	544.83	2279.52	350, 25	552.01		0.877	-
				 				l	1

TABLA 5.52 ISOTERMA TERNARIA ETANOL/BUTANOL/ACETONA SOBRE SILICALITA A 25°C.

 $C_{01}/C_{02}/C_{03} = 5 / 1 / 1$

W (g)	C 01 (mol/m ³)	C ₀₂ (mol/m ³)	C 03 (mol/m ³)	C eq1 (mol/m ³)	C eq2 (mol/m ³)	C eq3 (mol/m ³)	n _i (mel/kg)	n ₂ (mol/kg)	n ₃ (mol∕kg)
9. 9842	857.61	109.46	136.21	867.19	42.65	152.37	-	0, 669	
10. 0281 9. 9643	1114.89 1372.17	142.29 17 5.14	177.07 217.93	1118.32 1455.84	64.65 89.36	194.09 222.02	yn Br	0, 774 0, 861	-
9. 9704	1715.22	218.92	272.41	1762.48	132.47	287.39	-	0.867	
10.0346 9.9685	1972.50 2229.78	251.76 284.59	313.27 354.14	2058.17 2317.25	162, 13 196, 85	330.98 369.12	-	0,893 0,880	
9, 9864	2572.83	328.38	408.62	2678.29	235, 63	409.55	-	0.929	-

ğ,

1

1

TABLA 5.53							
ISOTERMA	TERNARIA	ETANOL/BUTANOL/ACETONA	SOBRE	SILICALITA	٨	251	C.

 $C_{01}/C_{02}/C_{03} = 1 / 1 / 3$

C _{o1} (mol∕m ³)	C 02 (mol/m ³)	C _{o3} (mol∕m ³)	C egi (mol/m ³)	C •q2 (mol∕m ³)	C •43 (mol∕m ³)	n (mol/kg)	n ₂ (mol/kg)	n ₃ (mol∕kg)
171.52	109.46	408.62	174.59	50.12	344.44	-	0.594	0.643
257.28	164.19	612.93	275, 45	90, 89	550.67	-	0.734	0.623
343,04	218.92	817.24	359,06	139.94	758.7 8	-	0. 790	0.585
428,80	273.65	1021.55	456.14	178.73	979.01	÷	0, 946	0.424
514,56	J28, 38	1225.86	561.65	243.93	1204. 41	-	0.841	0.214
600.32	383.11	1430, 17	653.96	299, 02	1408.12	-	0.842	0. 221
686.08	437.84	1634.48	752.16	357, 37	1686.24	-	0.805	-
(C ₀₁ mol/m ³) 171.52 257.28 343.04 428.80 514.56 600.32 686.08	C C 2 mo1/m ³) (mo1/m ³) (mo1/m ³) 171.52 109.46 257.28 164.19 343.04 218.92 428.80 273.65 514.56 328.38 600.32 383.11 686.08 437.84	$\begin{array}{c c} C_{01} & C_{02} & C_{03} \\ \hline m01/m^3) & (m01/m^3) & (m01/m^3) \\ \hline 171.52 & 109.46 & 408.62 \\ 257.28 & 164.19 & 612.93 \\ 343.04 & 218.92 & 817.24 \\ 428.80 & 273.65 & 1021.55 \\ 514.56 & 328.38 & 1225.86 \\ 600.32 & 383.11 & 1430.17 \\ 686.08 & 437.84 & 1634.48 \\ \end{array}$	$\begin{array}{c c} C_{01} & C_{02} & C_{03} & C_{041} \\ \hline m01/m^3) & (m01/m^3) & (m01/m^3) & (m01/m^3) \\ \hline \end{array}$ $171.52 & 109.46 & 408.62 & 174.59 \\ 257.28 & 164.19 & 612.93 & 275.45 \\ 343.04 & 218.92 & 817.24 & 359.06 \\ 428.80 & 273.65 & 1021.55 & 456.14 \\ 514.56 & 328.38 & 1225.86 & 561.65 \\ 600.32 & 383.11 & 1430.17 & 653.96 \\ 686.08 & 437.84 & 1634.48 & 752.16 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

105

TABLA 5.54 ISOTERMA TERNARIA ETANOL/BUTANOL/ACETONA SOBRE SILICALITA A 23°C.

 $C_{01}/C_{02}/C_{03} = 1 / 1 / 5$

W (g)	Cot (mol∕m ³)	C_02 (mol∕m ³)	C 03 (mol/m ³)	C eq1 (mol/m ³)	C	C (mol/m ²)	n _i (mol/kg)	n ₂ (mol∕kg)	n ₃ (mol∕kg)
10.0223	171.52	109.46	681.03	188.67	55.99	624.49	-	0.534	0. 564
10.0179	222. 98	142.29	885, 34	231.38	81.96	830. 94	-	0.602	0.543
9. 9853	274.43	175.14	1089.66	283.01	109. 11	1052.82		0.661	0.369
10. 0222	343.04	218, 92	1362.07	362.57	150.58	1314, 14		0.681	0.478
10.0038	394. 50	251.76	1566.38	423.61	180.08	1529.60		0.716	0.367

TABLA 5.55

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.6 ml/min)

C ₀ (Zvol) = 1 C ₀ (ml/min) = 2. * (min) = 21	5835 . 869	T ('C) = 23 V (g) = 20.0035 Y (min) = 9.0
t (m/m	C (X vol)	670
54.00	0.0000	0-000
55.00	0, 0003	0000
55.30	0,0000	e. 560
57,30	0.0000	5 - 0KAB
58.30	0.1337	0.433
$E(\mathbf{Q}_{i}) = H$	0.1650	i neS
60, 30	0.2190	019
od. 10	n. 280°	A. 280
£2.50	0.363_	0.145
£ 3. 30	0.497).	0.497
64.30	0.6050	$C_{i,j}(\phi^*) \forall \gamma$
5. 30	0.7310	(*. 1.1) (*.
66.30	0.3220	0. KU (1
67.30	0.8841	6.854
eS. 30	0.9405	0, 940
69.30	0.9807	0.960
°0 30	0.9882	P. 988
11) AG	1.0095	1,009
0.5 00	1.0177	3 1.3

and and the state of the second state of the second state of the second state of the second state of the second

TABLA 5.56 CURVA DE ROTURA DE ETANOL SOBRE SILICALITA INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.6 ml/min)

 $C_{0}(%vol) = 2$ $T_{1}(C) = 23$ $Q_{0}(ml/min) = 2.5835$ $V_{1}(g) = 20.0035$ $t_{r}(min) = 11.365$ $V_{1}(min) \neq 3.57$

t (min)	C (% vo))	C / C _
35.13	6,0000	0.0000
36.13	ù. 0000	0.0000
37.13	0 S406	0.2703
38, 13	1.0914	0.5457
39.13	1.4792	(). 7396
40.13	1.7414	0.8707
41.13	1.9072	0.9536
42.13	1.9648	0.9824
43.13	1.9850	0.9925
44.13	1.9963	0.9981
45.13	1 9928	0. 969
46.13	2.0012	1.0006
47.13	2.0062	1.0031
48.13	2.0000	1.0000
49-13	1 9950	0. 9975
50.13	1.9950	0.9925

TABLA 5.57

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.6 ml/min)

 $C_{0}(\%vol) = 4$ $T(^{\circ}C) \approx 24$ $Q'(ml/min) \approx 2.5619$ $W'(g) \approx 20.0072$ $t_{r}(min) \approx 10.240$ $Y(min) \approx 2.8$

t (min)	C (Z vol)	C / C
18.75	0.0000	0,0000
19.75	0.0000	D. 0000
20.75	0.0000	0.0000
21.75	0.0000	0.0000
22.75	1.7499	0.4374
23.75	2.8705	0.7176
24.75	3. 5707	0.8926
25.75	3. 8769	0,9692
26.75	3.9635	0,9908
27 75	3, 9773	0, 9943
28.75	3. 9497	0.9874
29.75	3.9409	0.9852
30.75	3.9196	0,9799
31.75	3.9623	0, 9905

TABLA 5.58

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.6 ml/min)

 C_{a} (Xvol) = 6 $T(^{*}C) = 23$ Q_{a} (ml/min) = 2.5835W(g) = 20.0035 t_{r} (min) = 11.869Y (min) = 2.8

t (min)	C (% vol)	с / с
14.24	0.0000	0.0000
15.24	0, 00 00	0.0000
16.24	0.0000	0.0000
17.24	0.0000	0.0000
18.24	2.4526	0.4087
19.24	4.9920	0.8320
20.24	5.6638	0, 9439
21.24	5.8248	0.9708
22.24	5,8753	0.9792
23.24	5.8447	0.9741
24.24	5,8673	0.9778
25.24	5.8740	0.9790

TABLA 5.59

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1.0 ml/min)

 $C_{o}(Xvol) = 1$ T(C) = 25o'(m1/min) = 1.0318V(g) = 30.0012 $t_{r}(min) = 10.86$ Y(min) = 20.0

t (min)	C (% vol)	c / c
189.14	0.0000	0.0000
191.14	0.0000	0.0000
193.14	0.0837	0.0837
195.14	0.1553	0.1553
197.14	0.2247	0.2247
199.14	0.3001	0.3001
201. 14	0. 3873	0. 3873
203.14	0.4659	0.4659
205.14	0.5462	0.5462
207.14	0.6307	0.6307
209.14	0.7221	0.7221
211.14	0.8019	0.8019
213.14	0.8717	0.8717
215.14	0.9323	0.9323
217.14	0.9532	0.9532
219.14	0.9653	0.9653
221.14	0.9727	0.9727
223.14	0.9837	0.9837
225.14	0. 9 925	0.9925

TABLA 5.60

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1.0 ml/min)

 $C_{o}(\%vol) = 2$ $T(^{\circ}C) = 26$ $Q^{-}(mi/min) = 1.0415$ W(g) = 30.0116 $t_{r}(min) = 10.76$ Y(min) = 15.0

t (min)	C (Z vol)	C / C ₀
127.24	0.0000	0.0000
129,24	0.0000	0.0000
131.24	0.2107	0.1054
133.24	0.5063	0.2532
135, 24	0.7845	0. 3923
137.24	0.9696	0.4848
139.24	1.1832	0.5916
141.24	1.4416	0.7208
143.24	1.6067	0.8034
145.24	1.7334	0.8667
147.24	1.8626	0.9313
149.24	1.9210	0.9605
151.24	1.9135	0.9568
153.24	1.9371	0.9686
155.24	1.9905	0.9953

TABLA 5.61 CURVA DE ROTURA DE ETANOL SOBRE SILICALITA INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1.0 ml/min)

 $C_{o}(2vol) = 4$ $T(^{\circ}C) = 26$ Q(ml/min) = 1.0520W(g) = 30.0024 $t_{r}(min) = 10.65$ Y(min) = 7.0

t (min)	C (X vol)	C / C
84.35	0.0000	0.0000
85.35	0.2927	0.0732
86.35	0.7262	0.1816
87.35	1.2330	0. 3082
88.35	1.7944	0.4486
89.35	2.2887	0.5722
90.35	2.8104	0.7026
91.35	3.2712	0.8178
92.35	3.5494	0.8873
93.35	3.7891	0.9473
94.35	3,8587	0.9647
95.35	3.9096	0.9774
96.35	3. 9928	0.9982
97.35	4.0164	1.0041

TABLA 5.62

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1.0 ml/min)

C (%vol) = 6T (°C) = 25 $Q^{(m1/min)} = 0.9754$ W(g) = 30.0143 t_{r} (min) = 11.49Y (min) = 5.5

t (min)	C (Z vol)	c / c
67.51	0,0000	0.0000
68.51	0.0000	0.0000
69.51	0.0000	0.0000
70.51	0.0000	0.0000
71.51	1,2093	0.2015
72.51	2.0141	0.3356
73.51	3.0512	0, 5085
74.51	4.0262	0.6710
75.51	5.0049	0.8341
76.51	5.5253	0.9208
77.51	5.8706	0.9784
78.51	6.0450	1.0076
79.51	6.0320	1,0053

TABLA 5.63

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1.0 ml/min)

 $C_{(%vol)} = 8$ $T_{(C)} = 25$ $Q_{(ml/min)} = 1.0479$ $W_{(g)} = 30.0015$ $t_{r}^{(min)} = 10.70$ $Y_{(min)} = 5.5$

t (min)	C (% vol)	c / c
52.30	0.0000	0.0000
53.30	0.0000	0.0000
54.30	1.0069	0.1259
55.30	2.1110	0.2639
56.30	4.0970	0.5121
57.30	5.3862	0.6733
58.30	6.4221	0.8028
59.30	7.1052	0.8882
60.30	7.5871	0.9484
61.30	7.6641	0.9580
62.30	7.7473	0.9684
63.30	7.7113	0.9639
64.30	7.7225	0.9653

TABLA 5.64

INFLUENCIA DE LA CONCENTRACION INICIAL À CAUDAL CONSTANTE (Q=1.0 ml/min)

 $C_{o}(%vol) = 10$ T(*C) = 25Q(ml/min) = 1.0525W(g) = 30.0091 $t_{r}(min) = 10.65$ Y(min) = 4.5

C (Z vol)	C / C
0.0000	0.0000
0.0000	0.0000
0.2207	0.0220
3.0525	0.2053
4.6125	0.4613
5.8172	0.5817
6.9437	0.6944
7.5933	0, 7593
7.8343	0.7834
8.4540	0.8454
8.9012	0.8901
9.2725	0.9273
9.5272	0.9527
9.5520	0.9552
9.6054	0.9605
9.7184	0.9718
	0.0000 0.2007 3.0525 4.6125 5.8172 6.9437 7.5933 7.8343 8.4540 8.9012 9.2725 9.5272 9.5272 9.5520 9.6054 9.7184

TABLA 5.65

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1.0 ml/min)

 C_{0} (Xvol) = 12
 T (°C) = 25

 Q (ml/min) = 1.0425
 W (g) = 30.0023

 t_{r} (min) = 10.75
 Y (min) = 2

t (min)	C (% vol)	<i>c × c</i> ,
40.25	0.0000	0.0000
41.25	0.0000	0.0000
41.75	0.2207	0.0937
42.25	3.0525	0.4225
42.75	4.6125	0.7338
43.25	5.8172	0.8877
43.75	6.9437	0.9158
44.25	7.5933	0.9432
44.75	7.8343	0.9725
45.25	8.4540	0.9839
46.25	8,9012	0.9825
47.25	9.2725	0.9822

TABLA 5.66

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1.5 ml/min)

 $C_{0}(2vo1) = 1$ $T(^{*}C) = 25$

 Q''(m1/min) = 1.5094 W(g) = 30.0173

 $t_{r}(min) = 7.42$ Y(min) = 12.0

t (min)	C (Z vol)	c / c
125.58	0.0000	0.0000
127.58	0.0000	0.0000
129.58	0.0000	0.0000
131.58	0.1593	0.1593
133.58	0.2326	0, 2326
135.58	0.3506	0.3506
137.58	0.4834	0.4834
139.58	0.6698	0.6698
141.58	0.7940	0.7940
143.58	0.8722	0.8722
145. 58	0.9790	0.9790
147.58	1.0014	1.0014
153.58	1.0060	1.0060

TABLA 5.67

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1.5 ml/min)

C (%vol) = 2T (°C) = 26Q (ml/min) = 1.5142W (g) = 30.0075t (min) = 7.40Y (min) = 9.0

t (min)	C (Z vol)	C/C
83.60	0.0000	0,0000
85.60	0.0000	0.0000
87.60	0.0000	0.0000
89.60	0.0000	0.0000
91.60	0.3804	0.1902
93.60	0.8946	0.4473
95.60	1.3032	0.6516
97.60	1.5492	0.7746
99.60	1.7416	0.8708
101.60	1.8534	0.9267
103.60	1.9902	0.9951
107.60	2.0112	1.0056

TABLA 5.68

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1.5 ml/min)

C_o(%vol) ≈ 4 Q (ml/min) ≈ 1.5178 t_r (min) ≈ 7.39

 $T (^{C}) = 26$ W (g) = 30.0082 Y (min) = 4.0

t (min)	C (Z vol)	c / c _o
52.61	0.0000	0.0000
53.61	0.0000	0.0000
54.61	0.0000	0.0000
55.61	0.0000	0.0000
59.61	0.4020	0.1005
60.61	1.1397	0.2849
61.61	2.4700	0.6175
62.61	3.2860	0.8215
63.61	3.5716	0.8929
64.61	3.8424	0.9606
65.61	3.9244	0.9811
66.61	4.0262	1.0065
67.61	4.0237	1.0059

TABLA 5.69

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1.5 ml/mir.)

 C_{0} (%vol) = 6T (*C) = 25Q (ml/min) = 1.5071W (g) \approx 30.0233 t_{r} (min) = 7.45Y (min) \approx 3.0

t (muni)	C (% vol)	C / C
 43.05	0.0000	0.0000
44.05	0.0000	0.0000
45.55	0.7386	0.1231
46.05	1.3708	0.2284
46.55	2.3557	0.3926
47.05	3. 3344	0.5557
47.55	4.0473	0 6745
48.05	4.6323	0.7720
48.55	5.4682	0.9113
49 55	5.8060	0.9676
50.35	5. 9923	0.9987
\$1.55	6.0433	1.0072

TABLA 5.70

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1.5 ml/min)

 $C_{0}(Xvol) = 8$ $T(^{\circ}C) = 25$ $Q_{-}(m1/min) = 1.5149$ V(g) = 30.0126 $t_{r}(min) = 7.40$ Y(min) = 2.5

t (min)	C (7 vol)	C / C
30.10	0.0000	0.0000
35.10	0.0000	0.0000
36.10	0.0000	0.0000
37.10	0.2729	0.0341
37.60	1.3274	0.1659
38.10	3.5419	0.4427
38.60	5.0572	0.6322
39.10	6.3862	0.7983
39.60	6. 8992	0.8624
40, 10	7.3451	0.9181
40.60	7.5662	0. 9458
41.10	7.6879	0.9610
41.60	7.9251	0,9906
42.10	7.9326	0.9916
43.10	7.9376	0.9922

TABLA 5.71

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1,5 ml/min)

 $C_{0}(%vol) = 10$ $T(^{*}C) = 26$ Q(ml/min) = 1.5113W(g) = 30.0082 $t_{r}(min) = 7.42$ Y(min) = 2.25

t (min)	C (% vol)	C / C
23.58	0,0000	Ø. D000
24.58	0.0000	0.0000
25.58	0.0000	0.0000
26.58	0.0000	0.0000
27.58	2.6327	0.2632
28.08	5.1180	0.5118
28.58	7.3573	0.7357
29.08	8.6689	0.8668
29.58	9.4626	0.9462
30.08	9.8749	0.9874
30.58	9,9631	0,9963
31.68	10.0451	1.0045
32.58	10.1258	1.0125
33. 58	10.1308	1.0130

TABLA 5.72

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1.5 ml/min)

 $C_{0}(\%vol) = 12$ T(`C) = 24Q(ml/min) = 1.5159W(g) = 30.0108 $t_{p}(min) = 7.40$ Y(min) = 1.5

t (min)	C (% vol)	C / C
20.60	0.0000	0.0000
21.60	0.0000	0.0000
22.60	0,0000	0.0000
23.60	1.4614	0.1217
24.10	6.8083	0.5673
24.60	9.8985	0.8248
25.10	10.9356	0,9113
25.60	11.479 6	0,9566
26.10	11.8224	0.9852
26.60	12.0137	1.0011
27.10	12.0273	1.0022
27.60	12.0658	1.0054
28.60	11.9429	0.9952

5. Resultados Experimentales.

TABLA 5.73

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA

INFLUENCIA DE LA CONCENTRACION INICIAL À CAUDAL CONSTANTE (Q=2.0 ml/min)

 $C_{o}(%vol) = 1$ $T(^{\circ}C) = 26$ Q(ml/min) = 2.0001W(g) = 30.0091 $t_{r}(min) = 5.60$ $Y(min) \neq 9.5$

t (min)	C (Z vol)	c/c
99.40	0.0000	0.0000
102.40	0.0000	0.0000
105,40	0.0000	0.0000
108.40	0.1594	0.1594
111.40	0.4637	0.4637
114.40	0,7283	0 7283
117.40	0.8723	0.8723
120.40	0.9307	0.9307
123.40	0.9655	0.9655
126,40	1. 3027	1.0027
129.40	0, 9965	0.9965
132.40	1.0027	1.0027

TABLA 5.74

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.0 ml/min)

 $C_{p}(%vol) = 2$ Q(ml/min) = 2.0004 t_{p}(min) = 5.60

- $T (^{*}C) = 25$ W (g) = 30.0026
 - Y (min) = 8.5

t (min)	C (Z Vol)	C / C
54.40	0.0000	0.0000
55.40	0.0000	0.0000
56.40	0.0000	0.0000
57.40	0.0000	0.0000
58.40	0.0087	0.0043
59.40	0.0260	0.0130
60.40	0.3126	0.1563
61.40	0.7485	0.3742
62,40	0.9534	0.4767
63.40	1.1062	0.5531
64.40	1.2503	0.6251
65.40	1.3782	0.6891
66.43	1.5074	0.7537
7.40	3.6925	0.8462
68.40	1.7968	0.8984
69,40	1.8713	0.9356
70.40	1.9011	0.9505
71.40	1.9422	0.9711
72.40	1.9422	0.9711
73.40	1.9596	0. 9798
74.40	1 98%9	0.9934
75.40	1.9881	0.9941

TABLA 5.75

INFLUENCIA DE LA CONCENTRACION INICIAL À CAUDAL CONSTANTE (Q=2.0 ml/min)

C (%vol) = 4 T (°C) = 25 $\Psi(\mathbf{g}) = 30.0160$ Q (ml/min) = 1.9912 t (min) = 5.64 Y (min) = 3.25 $C \neq C_{i}$ t (min) C (% vol) 40.36 0.0000 0.0000 41.36 0.0000 0.0000 42.36 0.0000 0.0000 43.36 0.0000 0.0000 44 36 0.2442 0.0610 44.86 0.4566 C.1141 45.36 1.0429 0.2607 45.86 1.3273 0.3315 16.3E 1.9011 0.4752 46.86 2.4724 0.6181 47.36 6.7368 2.8674 47.86 3.2475 0.9118 48.36 3.4611 C. P052 48.86 3.7070 0.9267 49 86 3.8995 3 9748 50.86 3.8660 0 4665 51.86 3.8809 0.9702

T**ABL**A 5.76

INFLUENCIA DE LA CONCENTRACION INICIAL À CAUDAL CONSTANTE (Q=2.0 ml/min)

C_o(%vol) = 6 Q(ml/min) = 1.9906 t_o(min) = 5.67 T (°C) = 25 W (g) = 30.0015 Y (min) = 2.5

t (min)	C (2 vol)	c/c
21 36	0.0000	0.0000
32.36	0.0000	0.0000
33.36	0.0000	0.0000
34.36	0. 00 06	0.0000
34.86	0 407 0	0.0678
35.36	1.2119	0.2019
35.86	2.6352	0.4391
36.36	3.6289	0.6048
36.86	4 3369	0. 7227
37.36	4. 9330	D. 8221
37.86	5.6037	0.9339
38.36	5.8559	0.9759
39.36	5.8844	0.9807
40.36	5.9689	0.9947

TABLA 5.77 CURVA DE ROTURA DE ETANOL SOBRE SILICALITA INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.0 ml/min)

C_(%vol) = 8 Q (ml/min) = 1.9966 t_(min) = 5.62

T ('C) = 25 ₩ (g) = 29.9989 Y (min) = 2.25

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
t (min)	C (7 vol)	c / C	
25.38	0.0000	0.0000	
26.38	0.0000	0.0000	
27.38	0.0000	0.0000	
28.38	0.0000	0.0000	
28.88	0.2405	0.0300	
29.38	2.0303	0.2537	
29.88	3.9442	0.4930	
30, 38	5.4421	0.6802	
30.88	6.1985	0.7748	
31.38	7.1288	0.8911	
31.88	7.5585	0.9448	
32.38	7.7548	0.9693	
32.88	7.6952	0.9619	
33.38	7.7287	0.9660	
34.38	7.7299	0.9662	

TABLA 5.78

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.0 ml/min)

C (Xvol) = 10T (°C) = 25Q (ml/min) = 1.9931W (g) = 30.0020t (min) = 5.63Y (min) = 1.5

	t (min)	C (Z vol)	c / c
	18.37	0.0000	0,0000
	19.37	0.0000	0.0000
	20.37	0.0000	0.0000
	21.37	0.0000	0.0000
3	21.87	0.3685	0.0368
İ	22.37	6.4978	0.6497
	22.87	8.1932	0.8193
	23.37	8.8068	0.8806
-	23.87	9.3222	0.9322
- 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	24.37	9.6265	0.9626
	24.87	9.6675	0.9667
	25.37	9.6737	0.9673
ļ	26.37	9, 7221	0.9722
	27, 37	9.6128	0.9612
	28.37	9.7892	0, 9789
1	29.37	9.7234	0.9723
i	1		

.....

TABLA 5.79

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.0 ml/min)

$C_{p}(Xvol) = 12$ Q(ml/min) = 1.9970 $t_{r}(min) = 5.62$		T ('C) = 25 W (g) = 29.9903 Y (min) = 0.4	
t (min)	C (% vol)	C / C,	
,5-38	0.0000	0.0000	
16.38	0.0000	0.0000	
. A. SE	0.0000	e. 0000	
18.38	0.0000	G. 9000	
18.88	1.2081	0.100	
19.3S	11.3669	0.9472	
19 38	11 3898	0. 990)	
20.38	11.8600	0.9883	
21.38	12.5990	1.0050	
22.08	11.9394	0.9950	
23, 38	12 0438	1.00%	

TABLA 5.80

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.6 ml/min)

 $C_{v}(%vol) = 1$ Q(ml/min) = 2.5990 t_{r}(min) = 4.31 T ("C) = 25 W (g) = 30.0093 Y (min) = 8.4

1 (00111) - 0.4

t (min)	C (% vol)	C / C ₀
85.69	0.0000	0.0000
86.69	0.0000	0.0000
87.69	0.0000	0.0000
88.69	0,0000	0.0000
89.69	0.2364	0.2287
90.69	0.3295	0.3186
91.69	0.4253	0.4113
92.69	0.5105	0.4937
93.69	0.6209	0.6005
94.69	0. 0 47	0.6815
95.69	0.7965	0.7703
96.69	0.8683	0.8398
97.69	0.9255	0.8951
98.69	0.9588	0.9273
99.69	0.9960	0.9633
100.69	1.0173	0.9839
101.69	1.0359	1.0019
102.69	1.0319	0.9980
TABLA 5.81 CURVA DE ROTURA DE ETANOL SOBRE SILICALITA INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.6 ml/min)

 $C_{o}(%vol) = 2$ $T(^{\circ}C) = 25$ Q(ml/min) = 2.6033W(g) = 30.0072 $t_{r}(min) = 4.30$ Y(min) = 6.0

t (min)	C (% vol)	c / C
51.70	0.0000	0.0000
52.70	0.0000	0.0000
53.70	0.0000	0.0000
54.70	0.0000	0.0000
55.70	0.1868	0.0934
56.70	0.3718	0.1859
57.70	0.5806	0.2903
58.70	0. 9544	0.4772
59.70	1.2872	0.6436
60.70	1.5394	0.7697
61.70	1.7333	0.8666
62.70	1.8262	0.9131
63.70	1.8996	0, 9498
64.70	1.9630	0.9815
65.70	1.9704	0.9852
66.70	2.0065	1.0032
67.70	2.0053	1.0026
68.70	1.9990	0.9995

TABLA 5.82 CURVA DE ROTURA DE ETANOL SOBRE SILICALITA INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.6 ml/min)

 $C_{0}(%vol) = 4$ $T(^{\circ}C) = 24$ Q(ml/min) = 2.6107V(g) = 30.0016 $t_{r}(min) = 4.30$ Y(min) = 3.25

1-		· · · · · · · · · · · · · · · · · · ·	
	t (min)	C (Z vol)	c / c
	32.20	0.0000	0.0000
	32.70	0.0000	0.0000
	33.20	0.0000	0.0000
	33.70	0.0000	0.0000
	34.20	0.1752	0.0438
	34.70	0.7605	0.1901
	35.20	1.3445	0.3361
	35.70	1.9897	0.4974
	36.20	2.5537	0.6384
	36.70	3.0126	0.7531
	37.70	3.6046	0.9011
	38.70	3.8041	0.9510
1	39.70	3,8573	0.9643
1	40.70	3. 9332	0.9833
	41.70	3.9145	0.9786
1			

TABLA 5.83

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q \approx 2.6 ml/min)

C (%vol) ≈ 6 Q (ml/min) ≈ 2.6042 t_r (min) ≈ 4.31

T (C) = 24W (g) = 30.0069

Y (min) = 1.75

t (min)	C (% vol)	c / c
22.69	0.0000	0.0000
23.69	0.0000	0.0000
24.69	0.0000	0.0000
25.69	0.2710	0.0451
26.19	1.6039	0.2673
26.69	3.5221	0.5870
27.19	4.5118	0.7519
27.69	5.3007	0.8834
28.19	5.7077	0.9512
28.69	5.8367	0.9727
29.69	5.8407	0.9734
.30, 69	5.8620	0.9770
31.69	5.8394	0. 9732

TABLA 5.84

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.6 ml/min)

C_o(%vol) = 8 Q(ml/min) = 2.5944 t_(min) = 4.33

T ("C) = 24 ¥ (g) = 30.0045 ₩ (s. Y (min) = 1.5

t (min)	C (Z vol)	c / c
16.67	0.0000	0.0000
17.67	0.0000	0.0000
18.67	0.0000	0.0000
19.67	0.0000	0.0000
20.67	4.7153	0.5894
21.67	7.1138	0.8892
22.67	7.7390	0.9673
23.67	7.7470	0.9683
24.67	7.7962	0.9745
25.67	7.8654	0.9831
26.67	7.8148	0.9768
27.67	7.8671	0.9833

~

TABLA 5.85

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.6 m1/min)

 C_{o} (%vol) = 10T (°C) = 25Q (ml/min) = 2.6172W (g) = 30.0050t_{r} (min) = 4.29Y (min) = 1.0

t (min)	C (Z voi)	C / C _o
13.71	0.0000	0.0000
14.71	0.0000	0.0000
15.71	0.0000	0.0000
16.71	0.0000	0.0000
17.71	0.5091	0.0509
18.71	5.8687	0.5868
19.71	9. 4962	0.9496
20.71	9.7929	0.9792
21.71	9. 8288	0.9828
22.71	9.8208	0.9820
23.71	9.8102	0.9810

TABLA 5.86

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.6 ml/min)

 $C_{o}(Xvol) \neq 12$ Q(ml/min) = 2.6028 $t_{p}(min) = 4.31$ $T (^{C}) = 25$ W (g) = 30.0073Y (min) = 0.5

t (min)	C (Z vol)	C / C
11.69	0.0000	0.0000
12.69	0.0000	0.0000
13.69	0.0000	0.0000
14.69	0.0000	0.0000
15.19	0.6519	0.0543
15.69	8.5478	0.7123
16.19	10.35 5 6	0.8629
16.69	11.4464	0.9538
17.19	11.6153	0.96 79
17.69	11.7350	0. 9 779
18.19	11.8414	0.9867
19.19	11.8454	0.9871
19.69	11.8308	0.9859

TABLA 5.87

CURVA DE ROTURA DE ETÀNOL SOBRE SILICALITA AGLOMERADA INFLUENCIA DE LA CONCENTRACION INICIAL & CAUDAL CONSTANTE (Q=1.0 ml/min)

 $C_{0}(Xvol) = 1$ Q(ml/min) = 1.0055 $t_{1}(min) = 15.51$

T (°C) ≈ 25 W (g) ≈ 20.0326

(B) ------

Y (min) = 51.0

t (min)	C (Z vol)	C / C
70.49	0.0000	0.0000
72.49	0.0184	0.0184
76.49	0.0354	0.0354
80.49	0.0646	0.0646
88, 49	0.2696	0.2696
92.49	0.3296	0.3296
96.49	0.3897	0.3897
100.49	0.4621	0.4621
104.49	0.5406	0.5406
108.49	0.6000	0.6000
112.49	0.6607	0.6607
116.49	0.7054	0.7054
120.49	0.7531	0.7531
124.49	0.7977	0.7977
128.49	0.8501	0.8501
132.49	0.9025	0. 9025
136.49	0.9438	0.9438
140.49	0.9545	0.9545
142.49	0.9657	0.9657
146.49	0.9763	0.9763
150.49	0.9723	0.9723

TABLA 5.88

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA AGLOMERADA

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1.0 ml/min)

C_o(Xvol) = 2 Q(ml/min) = 1.0275 t_o(min) = 15.18 $T (^{\circ}C) = 25$ W (g) = 20.0036Y (min) = 32.82

c / c t (min) C (% vol) 39,82 0.0000 0.0000 41.82 0.0200 0.0100 43.82 0.0307 0.0153 44.82 0.0600 0.0300 51.82 0.2819 0.1409 53.82 0.3620 0.1810 55.82 0.4652 0.2326 57.82 0.6114 0.3057 59.82 0.6807 0.3403 61.82 0.7916 0.3958 63.82 0.9086 0.4543 65.82 1.1550 0.5775 67.82 1.3505 0.6752 69.82 1.4830 0.7415 71.82 1.5353 0.7676 73.8 1.5630 0.7815 77.82 1.6631 0.8315 79.82 1.7262 0.8631 81.82 1.7524 0.8762 83.82 1.8417 0.9208 85.82 1.8874 0.9437 1.9304 87.82 0.9652 89.82 1.9094 0.9547

TABLA 5.89

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA AGLOMERADA INFLUENCIA DE LA CONCENTRACION INICIAL A GAUDAL CONSTANTE (Q=1.0 ml/min)

> C_o(%vol) = 4 Q (ml/min) = 1.0295 t_r (min) = 15.16

 $T (^{\circ}C) = 25$ W (g) = 19.9967 Y (min) = 12.0

t (min)	C (Z vol)	c / c
26.84	0.0000	0.0000
28.84	0.0000	0.0000
30.84	0.0000	0.0000
35.84	0.2485	0.0604
37.84	0.6823	0.1705
39.84	0.9055	0.2263
41.84	1.4445	0.3611
43.84	2.3853	0.5963
45.84	3.0751	0.7687
47.84	3. 3969	0.8492
49.84	3.7264	0.9316
51.84	3.7850	0.9462
53.84	3.7092	0.927:
55.84	3.7292	0.9323
57.84	3.7540	0.9385
59.84	3.8820	0.970
61.84	3.8188	0, 9541
63.84	3.8248	0.9562

TABLA 5.90

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1.0 ml/min)

 $C_{v}(%vol) = 6$ Q(ml/min) = 1.0343 t_v(min) = 15.08 T ('C) = 25 W (g) = 20.0190

Y (min) = 12.5

i		
t (min)) G (% vol)	C / C
28.92	0.0000	0.0000
29.92	0.0000	0.0000
30.92	6.0570	0.0094
31.92	0.5430	0.0906
32.92	1.2289	0.2048
34.92	3, 3400	0.5566
36.92	4. 3050	0.7175
38.92	4.5179	0.7529
40.92	5.1585	0.8597
42.92	5. 3340	0.8890
44.92	5.4520	0.9087
46.92	5.5370	0.9228
48.92	5,6770	0.9462
50.92	5, 8038	0.9673
56.92	5.6220	0.9370
1		

•

TABLA 5.91

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1.0 m1/min)

 $C_{0}(%vol) = 8 \qquad T(^{C}) = 25$ $Q^{0}(ml/min) = 1.0925 \qquad W(g) = 20.0208$ $t_{1}(min) = 14.28 \qquad Y(min) = 10.5$

	t (min)	C (% vol)	C / C
Ĭ	22.72	0.0000	0.0000
	23.72	0.0000	0.0000
	34.72	D. 3743	0.0467
	15.72	0. 5806	0.0725
	26.72	1.1026	0.1378
	.17.112	2.7825	G.347S
	25.72	3.6094	0.4511
	29.72	4.8659	0.6082
	30.72	5.9268	0.7408
	3: 72	6.6536	0.8317
	34.72	6.7799	0.8474
	36.72	7.2002	0.9000
	38.72	7.4600	0.9325
	40.72	7,4690	0.9337
	42.73	7.5790	G. 9473
	46.72	7.7453	0.9681

TABLA 5.92

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1.0 ml/min)

 $C_{0}(\%vol) = 10 T(^{*}C) = 25$ Q(ml/min) = 1.0255 W(g) = 19.9731 $t_{r}(min) = 15.21 Y(min) = 8.0$

	t (min)	C (Z vol)	C / C ₀
	20.78	0.0000	0.0000
:	21.78	0. 0000	0.0000
	22.78	0.0000	0.0000
1	23.78	0.0708	0.0070
	24.78	0 4036	C.0403
	25.78	0.9841	0.0984
	26.78	1.8771	0.1877
	27.78	4.0280	0.4028
	28.78	5.9560	0.5956
	29.78	7.2156	0.7215
:	31.78	8 2250	0.8225
	32.78	S. 6960	0.8696
	33.78	8.9 81 0	0.8981
	34.78	9.2020	0.9202
1	36.78	9.63 70	0.9637
	38.78	4. 489 0	0.9489

1

TABLA 5.93

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA AGLOMERADA INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=1.0 ml/min)

 $C_c(\%vol) = 12$ T("C) = 25Q(ml/min) = 1.0694V(g) = 19.9813 $t_r(min) = 14.59$ Y(min) = 7.5

t (min)	C (% vol)	C / C ,
18.41	0.0000	0.0000
19.41	0.0000	0.0000
20.41	0.0000	0.0000
21.41	0.0230	0.0019
2.2.41	0.3096	0.0258
23.41	0,7054	0.0587
24.41	1.7185	0.1432
25.41	5.2462	0.4371
26.41	7.1125	0.5927
27.41	8.3766	0.6980
28.41	9.5469	0.7955
29.41	10.4785	0.8732
30, 41	10.5816	0 8818
31.41	10.8542	C. 9045
32.41	11.1525	0.9294
53.41	11.2776	0.9398
34.40	11.4684	0,9557
55.41	11.7288	C.9774
36.41	11.6052	0.9671
37 41	11.6748	0.9729

TABLA 5.94

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA AGLOMERADA

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.6 ml/min)

C_c(Xvol) = 1 Q (ml/min) = 2.7262 t_r (min) = 5.73 T (°C) = 25 W (g) = 20.005 Y (min) = 24.0

t (min)	C (% vol)	C / C	
18.27	0.0000	0.0000	
20.27	0.0166	0.0166	
22.27	0.0302	0.0302	
24.27	0.0559	0.0559	
26.27	0.1073	0.1073	
30.27	0.2677	0.2677	
32.27	0.3716	0.3716	
34.27	0.4728	0.4728	
36.27	0.5574	0.5574	
38.27	0.6663	0.6663	
40.27	0.7312	0.7312	
42.27	0.8174	0.8174	
44.27	0.8355	0.8355	
48.27	0.8718	0.8718	
52.27	0.9139	0.9139	
56.27	0.9473	0.9473	
60.27	0.9751	0.9751	
62.27	0.9879	0.9879	

TABLA 5.95

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA AGLOMERADA INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.6 ml/min)

 $C_{0}(xvol) = 2$ T(C) = 25Q(ml/min) = 2.7048V(g) = 20.0331 $t_{r}(min) = 5.77$ Y(min) = 11.5

र ८ व	tin)	C (% vol)	C / C
10.	23	0,0000	0,0000
12.	23	0.0000	0.0000
14.	2.3	0.0000	0.0000
16.	25	0.0000	0.0000
18.	.33	0.1466	0.0733
20.	20	0, 3906	0.1953
24.	20	0, 9398	0.4699
26.	23	1.3524	0.6762
28.	23	1.6350	0.8175
30.	23	1.7816	0.8908
32.	23	1.8587	0.9293
.54.	23	1.8693	0.9346
36	23	1.9040	0.9520
38	23	1.9176	0,9588
40	23	1.9373	0.9686
42.	23	1.9576	0.9788
44	23	1,9750	0.9875
46	23	1.9866	0.9933

TABLA 5.96

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA AGLOMERADA INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.6 ml/min)

 $C_{(\%vol)} = 4$ $T(^{C}) \approx 26$ Q(ml/min) = 2.6229W(g) = 19.9874 $t_{r}(min) = 5.95$ Y(min) = 8.5

t (min)	C (Z vol)	c / c
12.05	0.0000	0.0000
14.05	0.0089	0.0022
16.05	1.1685	0.2921
19.05	2.6140	0.6535
22.05	3.3212	0.8303
24.05	3.6210	0. 9052
26.05	3. 8233	0.9558
30.05	4.0213	1.0053

TABLA 5.97

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA AGLOMERADA INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (9=2.6 ml/min)

 $C_{v}(2vol) = 6$ T(C) = 25Q'(ml/min) = 2.6029W(g) = 19.9961 $t_{r}(min) = 6.00$ Y(min) = 8.3

	t (min)	C (% vol)	C / C _
	9.00	0.0000	0.0000
	10.00	0.0000	0.0000
	11.00	0.5679	0.0946
	12.00	1.3317	0.2176
	13.00	1.9865	0.3311
	14.00	2.4872	0 4145
	15.00	3.4024	0.5670
	16.00	4.1746	0.6957
	17.00	4.6513	0.7752
:	18.00	4. 9964	0.\$327
	19.00	5.2227	0.\$704
1	20.00	5.8026	0.9671
	21.00	5.8309	0.9718
;	22.00	5.8917	0.9810

TABLA 5.98 CURVA DE ROTURA DE ETANOL SOBRE SILICALITA AGLOMERADA INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.6 ml/min) REPRODUCIBILIDAD

C_(%vol)	= 6	T (*C) = 26
Q (ml/min)	= 2.6165	¥ (g) = 19.9953
t _r (min)	= 5.97	Y (min) = 8.0

1	t (min)	C (% vol)	C / C o
	10.03	0,0000	0,0000
-	11.03	0.3312	0.0552
	12.03	0.4229	0 1538
:	14.03	2.8946	0.4824
	16.03	4.5494	0.7582
	17.03	4.9087	0.8181
:	18.03	5.1704	0.8617
	19.03	5.3528	0.8921
	20.03	5.8125	0.9687
1			

TABLA 5.99

CURVA DE ROTURA DE ETANOL SOBRE SILICALITA AGLOMERADA INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.6 ml/min)

C (%vol) = 8T (°C) = 26Q (ml/min) = 2.6371W (g) = 19.9997t (min) = 5.91Y (min) = 7.0

t (min)	C (Z vol)	c / c
8.09	0.0000	0.000
9.09	0.0880	0.098
10.39	1.7015	0.221
11.09	0.0559	0.340
13.09	0.1073	0.643
15.09	0.3277	0.812
16.09	0.3716	0. 901
17.09	0.4728	0.925
20.09	0.5574	0.966
21.09	0.6663	0.970
22.09	0.7312	0.976

TABLA 5.100

INFLUENCIA DE LA CONCENTRACION INICIAL A CAUDAL CONSTANTE (Q=2.6 ml/min)

 $C_{0}(\%vol) = 10$ $T(^{*}C) = 25$ Q(ml/min) = 2.5841W(g) = 20.0045 $t_{r}(min) = 6.03$ Y(min) = 5.0

t (min)	C (Z vol)	с / с
5.97	0.0000	0,0000
6.97	0.0000	0.0000
7.97	0.0000	0.0000
S. 97	0.3544	0.0354
9.97	1.5707	0.1570
10.97	3.9412	G. 39 4 1
11.97	6.5890	0.6589
12.97	7.8323	0.7823
13.97	8.7318	0.8731
14.97	9.2792	0.9272
15.97	9.6325	0.9625
16.97	9.8940	0.9894

6. Discusion de Resultados.

6. DISCUSION DE RESULTADOS.

6.1 EXPERIMENTOS PREVIOS.

6.1.1 Estabilidad de las disoluciones. Efecto dej pE.

Se comprobo que las disoluciones eran perfectamente estables en las condiciones de trabajo habituales y durante un tiempo superior al empleado en los experimentos de equilibrio, no observándose degradación alguna y comprobándose de esta manera la adecuada hermeticidad del sistema de cierre utilizado en el equipo experimental. Dada la volatilidad de la acetona durante la manipulación de sus disoluciones, los cierres de los recipientes se hicieron de forma hermética e inmediata, conservandolos en fric.

Por otro lado, se comprobó que el efecto del pH resultaba despreciable en el intervalo comprendido entre 5 y 8, en el cual quedaban englobadas todas las discluciones de los sistemas estudiados, tanto antej como despues de alcanzar el equilibrio.

• < >

6.1.2 Determinación del tiempo de equilibrio

El tiempo necesario para alcanzar el equilibrio de adsorción es un parámetro que depende de las características de cada sistema en particular. Así, aún para el mismo adsorbente e igual temperatura de trabajo, el tiempo de equilibrio varia de forma importante de unos adsorbatos a otros, oscilando desde algunas horas hasta varias semanas, según los casos. Para ello se realizaron experimentos cinéticos para cada uno de los adsorbatos y adsorbentes utilizados (tablas 5.1 a 5.8). De ellos se deduce que la adsorción es muy rápida, incluso instantánea, lo cual está de acuerdo con otras investigaciones similares (Bui y col., 1985; Chiang y col., 1987). No obstante, se mantuvieron las disoluciones en contacto con el adsorbente durante 90 minutos, tiempo más que suficiente para garantizar el equilibrio.

6.1.3 Tratamiento previo del carbón activado.

La capacidad de adsorción del carbón activado depende de la superficie disponible para la adsorción y de su naturaleza química, por lo que para obtener una buena reproducción de resultados con este adsorbente es preciso tratarlo previamente.

Se probaron los dos tratamientos descritos en el apartado 5.1.2 consistentes básicamente en: secado en estufa a 110°C durante 48 horas, para el primero de ellos y posteriormente, para el segundo de los tratamientos, ebulición del adsorbente en agua destilada y desionizada durante 15 minutos previamente a su introducción en las disoluciones. Los resultados obtenidos (tablas 5.9 y 5.11) indican que la capacidad de adsorción de etanol aumenta considerablemente cuando el carbón, es sometido al segundo de los tratamientos. Ello se atribuye en la mayor facilidad de difusión del etanol en el sistema de poros ocupado previamente por el disolvente. Por ello, durante toda la investigación se sometió al carbón activado a éste tratamiento previo. 6.1.4 Reproducibilidad de resultados.

i) Carbón activado.

Para comprobar la validez del método experimental se procedió a la reproducibilidad de experimentos, consistente en la repetición de la isoterma de etanol sobre carbón activado a 25°C en las mismas condiciones (tablas 5.9 y 5.10). Para la comparación de ambos experimentos se utilizó la ecuación de Prausnitz a la cual se ajustaron los puntos experimentales de la tabla 5.9, obteniéndose a partir de ella los valores $C_{eq} - n_{expl}$ (tabla 6.1). Los puntos experimentales de la tabla 5.10 se compararon con la ecuación de Prausnitz ajustada, determinando las diferencias entre la cantidad adsorbida en el experimento repetido (n_{expl}) j la proporcionada por la ecuación de Prausnitz (n_{expl}) , para una misma concentración en la fase líquida (C_{eq}) . En la tabla 6.1 se expresan las diferencias obtenidas, expresadas como E = $\{n_{expl} - n_{expl}\}^{100/n}$

TABLA 6.1

REPRODUCIBILIDAD DE RESULTADOS. ETANOL/CARBON ACTIVADO T = 25° C.

С еч (%)	n expi (mg/g)	n exp2 (mg/g)	E (%)
0.482	39. 35	39. 4 7	0, 30
1.099	69,88	69.39	-0.70
2.463	121.18	122.33	0.94
3.988	167.57	162.29	-3.25
5.514	208.02	201.96	-3.00
6.903	241.49	241.29	-0.08
8.401	275.02	282.14	2.52

La representación de estos datos quedan reflejados en la figura 6.1. El error medio obtenido fue de 1.54%, siendo además el mayor de los errores obtenidos de un 3%, por lo que se considera suficientemente buena la reproducibilidad de experimentos.

ii) Silicalita.

Análogamente se comprobó la reproducibilidad de resultados con la silicalita como adsorbente, reproduciendo la isoterma de adsorción del etanol (tablas 5.15 y 5.16). Realizando la comparación de ambos experimentos de forma similar al punto anterior, se obtuvieron los valores resumidos en la tabla 6.2. El error medio, calculado de análoga forma, fue de 2.72 %, considerando por tanto adecuado el método de trabajo. La representación de estos datos se incluyen en la figura 6.2.

TABLA 6.2

REPRODUCIBILIDAD DE RESULTADOS. ETANOL/SILICALITA T = 25° C.

C eq (%)	n expl (mg/g)	n exp2 (mg/g)	E (%)
0.391	45, 22	48.16	6.11
1.129	68.74	68.66	-0.11
1.927	79.35	81.75	2.94
3.652	90.45	92.47	2. 18
5.466	96.69	100.27	3.57
7.418	101.12	101.60	0.47
10.609	106.05	110.27	3.41

Fig. 6.1 Reproducibilidad de la isoterma de etanol sobre carbon activado a 25°C. (• Exp.1, □ Exp.2).

6.2 EQUILIBRIO DE ADSORCION DE UN SOLO COMPONENTE.

6.2.1 isotermas de adsorción de etanol y de glucosa. Selección del adsorbente.

Los criterios que deben considerarse en la selección de adsorbentes para la eliminación del etanol de los caldos de fermentación, son básicamente los siguientes (apartado 2.3):

- <u>Selectividad</u>; el adsorbente debe adsorber selectivamente etanol con mínimas cantidades de agua y glucosa.

- <u>Capacidad</u> <u>de adsorción</u>; debe ser lo más elevada posible, sin detrimento de las restantes propiedades.

- <u>Características</u> <u>de la desorción</u>; la desorción de etanol debe ocurrir a bajas temperaturas o alternativamente, la adsorción debe ser débil.

- <u>Velocidad de adsorción y desorción</u>: el equilibrio de adsorción y desorción debe alcanzarse lo más rápidamente posible para evitar elevados tiempos de contacto con el caldo de fermentación o con el gas que será usado para la posterior desorción del etanol.

De acuerdo con estos criterios se probaron los siguientes adsorbentes, cuyas características se resumen en el apartado 9.1:

- <u>Carbón activado:</u> adsorbente muy utilizado en la adsorcion en fase líquida, caracterizado por una gran capacidad de adsorcion. Sus características fisicoquímicas se incluyen en el apartado 9.1.1.

- <u>Tamices moleculares</u>: con estructura tipo pentasil y tamaño de poro constante (= 5.4 Å) de distinta relación sílice/alúmina, a fin de estudiar tanto su efecto de tamiz como su diferente selectividad hacia compuestos con distinta polaridad. Los tamices moleculares estudiados fueron: Silicalita (Si/A1 = 149); ZSM-5 (a) (Si/A1 = 56) y ZSM-5 (b) (Si/A1 = 24⁺).

(*) relaciones molares.

Con estos adsorbentes se determinaron las isotermas de adsorción de etanol y glucosa a varias temperaturas, comentándose a continuación los resultados obtenidos:

1) Carbón activado:

En la figura 6.3 se representan las isotermas de etanol en carbón activa o obtenidas a 25, 35, 45 y 55°C (tablas 5.9 y 5.12 a 5.14), de la forma concentración de adsorbato retenido en el sólido (n, mol/kg y mg /g) frente a la concentración de la disolución en equilibrio (C, mol/m³ y % vol.).

Se puede observar que en el equilibrio la cantidad adsorbida disminuye ligeramente con la temperatura, lo que indica la existencia de interacciones energéticas entre las moléculas de etanol y el carbón activado, siendo el proceso de adsorción ligeramente exotérmico (Bui y col., 1985).

Asímismo, en la figura 6.4 se muestran las isotermas individuales de glucosa sobre carbón activado a 25 y 55° C (tablas 5.28 y 5.29).

De forma análoga a lo observado para el etanol, la cantidad de glucosa adsorbida es función de la concentración de glucosa en disolución y de la temperatura. La adsorción de glucosa sobre carbón activado puede deberse a los puentes de hidrógeno entre los grupos CH de la molécula de glucosa y la superficie del adsorbente.

ii) Tamices moleculares:

En las figuras 6.5 y 6.6 se han representado las isotermas de etanol a 25, 35, 45 y 55°C sobre silicalita (tablas 5.15 a 5.19) y zeolita ZSM-5 (a), de relación molar Si/Al = 56 (tablas 5.20 a 5.23) respectivamente, y en la figura 6.7 las isotermas de etanol sobre zeolita ZSM-5 (b) de relación molar Si/Al = 24 a 25 y 55°C (tablas 5.24 y 5.25).

De la observación de estas figuras se deduce que para una relación Si/Al del tamiz molecular determinada:

160

Fig. 6.4 Isotermas de glucosa sobre carbon activado a diferentes temperaturas.(• 25°C y ¤ 55°C).

Fig. 6.7 Isoterma de ctanol sobre ZSM-5 (b) (Si/Al=24) a diferentes temperaturas. (• 25°C y \triangle 55°C).

1- Parece alcanzarse un valor máximo de la concentración en la fase adsorbida, que estaría próximo a la saturación.

2- Las isotermas de etanol sobre estos adsorbentes son prácticamente independientes de la temperatura en el intervalo de temperaturas estudiado (25 - 55°C). Este hecho y el que la cinética de adsorción de etanol sobre ellos (tabla 5.2) sea instantánea, indica la existencia de una débil interacción entre las moléculas de etanol y los centros activos del adsorbente, que se trata de un proceso sin activar y que la adsorción es débil, con calor de adsorción prácticamente despreciable.

Sin embargo, la cantidad maxima adsorbida varia con la relación Si/Al. Así en la figura 6.8 se han representado las tres isotermas juntas a 25°C y en la figura 6.9 las capacidades de adsorción alcanzadas con los tres tamices moleculares para una concentración en el líquido de 1600 mol/m³ frente a la correspondiente relación Si/Al.

Puede observarse que la cantidad maxima de etanol adsorbida aumenta con la relación Si/Al del adsorbente, tendiendo probablemente a un valor asintótico para una relación Si/Al infinita.

Esto puede explicarse teniendo en cuenta que cada atomo de Al³⁺ que sustituve isomorficamente a uno de Si⁴⁺ en la estructura del tamiz, genera una carga negativa que debe ser compensada por un catión. Al aumentar la relacion Si/Al disminuve el numero de cationes libres en la red capaces de crear fuerzas electrostáticas adicionales de atracción adsorbato-adsorbente. que favorecen la adsorción de moleculas polarizables, siendo este efecto mas apreciable para bajas relaciones Si/Al. Así, al aumentar el contenido en aluminio del adsorbente aumenta la cantidad de agua adsorbida, al ser una molecula más polar que la del etanol, disminuyendo por tanto las cantidades màximas de etanol adsorbidas (92 y 80 mg/g para las zeolítas 2SM-5 (a) y (b) respectivamente). Por el contrario, los adsorbentes con poco contenido en aluminio poseen prácticamente la misma capacidad máxima de adsorción: 104 mg/g para la silicalita utilizada en este trabajo y 160 ~ 113 mg/g para el tamiz siliceo reseñado en la bibliografia (Klein S.M.; 1983, Bui S. y col.) 1985, Einicke W.D. y col.; 1988, Lin Y.S. y col.; 1988, Farbad Pour A.A y Sonc A : 1988).

166

Fig. 6.8 Isotermas de adsorcion de etanol sobre silicalita (\times), ZSM-5 (a) (\oplus) y ZSM-5 (b) (\bullet) a 25°C.

Por último y para comprobar el carácter de tamiz molecular de estos adsorbentes, se obtuvo la isoterma de adsorción de la glucosa sobre silicalita representada en la figura 6.10. Puede apreciarse que la glucosa no se adsorbe en la silicalita en cantidades apreciables, debiéndose la pequeña escilación de los resultados (tabla 5.30) al error de análisis. Este hecho se justifica por el gran tamaño molecular de la glucosa, 3.9 x 6.3 x 9.8 Å, frente al tamaño de poro de la silicalita, 5.4 Å. Análogos resultados se hubieran obtenido de haber utilizado las zeolitas ZSM-5 (a) y (b) como adsorbentes de la glucosa, ya que poseen el mismo tamaño de poro que la silicalita.

A fin de verificar estos resultados, se realizó una isoterma binaria de una mezcia de etanol y glucosa sobre silicalita a 25°C (tabla 5.32) con una relación volumètrica inicial etanol/glucosa de 6 a 1, proporción en la cual se encuentran como producto final de un caldo de fermentación (Atkinson, 1983). En la figura 6.11 se han representado las isotermas individuales de etanol y de glucosa de la citada mezcla binaria sobre silicalita a 25°C, comprobándose que la glucosa no se adsorbe y que la adsorción de etanol no se ve influenciada por la presencia de glucosa, obteniéndose la misma isoterma que en el caso de la adsorción de etanol por separado (figura 6.2).

De todo ello se deduce que la silicalita, frente a los otros adsorbentes ensavados, posee las siguientes características:

 A.to carácter hídrófobo, debido a su elevada relación silice/alúmina.

 Capacidad de adsorción practicamente independiente de la temperatura y de la concentración inicial de etanol en la disolución.
 Cinetica de adsorción prácticamente instantanea.

- Exclusión de la glucosa por el efecto de tamiz molecular, consecuencia de su estructura cristalina.

A la vista de estos resultados se decidió seleccionar la silicalita como adsorbente para proseguir el estudio del equilibrio y la cinetica de adsorción.

Fig. 6.10 Isoterma de glucosa sobre silicalita a 25°C.

Fig. 6.11 Isoterma binaria etanol-glucosa (6/1) sobre silicalita a 25° C. Isotermas individuales de etanol (•) y glucosa (□).

6.2.1 Isotermas de adsorción de etanol, butanol y acetona sobre silícalita.

En la fermentación butanol-acetonica ya comentada en el apartade 2.1.2, se consiguen las siguientes concentraciones de productos (Roffler y col., 1987): 10.7 g/l de butanol, 5.4 g/l de acetona y 1.5 g/l de etanol, como compuestos mayoritarios. Por ello v con objeto de estudiar la validez del adsorbente seleccionado (Silicalita) para la recuperación del butanol de los caldos de fermentación acetobutíricos, se procedio al estudio de las isotermas de butanol y acetona sobre silicalita a 25° C.

En efecto, los datos experimentales obtenidos (tabias 5.15, 5.26 y 5.27) se representan en la figura 6.12 en forma de isotermas de adsorcion de etanol, butanol y acetona sobre silicalita a 25°C. Puede observarse que las protermas de etanol y acetona pertenecen al grupo L de la clasificación de Giles (Giles y col., 1960) mientras que la isoterma del butanol, parece alcanzar el nivel de saturación incluso para muy bajas concentraciones. perteneciendo por tanto al grupo H de la clasificación de Giles. Asimismo, puede apreciarse que es el butanol el componente que se adsorbe en mayor medida, del orden de 110 mg/g, seguido del etanol (104 mg/g) y la acetona :SS mg/g). La adsorción preferencia) del butanol se justifica desde el punto de vista de la solubilidad de dicho adsorbato en la disclución acuosa. Según la regia de Lundellus (Lundellus, 1920) puede decirse que el grado de adsorción es tanto mayor cuanto menor sea la solubilidad del adsorbato, ya que para que la adsorción tenga lugar, es preciso vencer las interacciones entre el soluto y el disolvente, y por tanto, cuanto más insoluble sea un adsorbato, menor es la interacción con el disolvente.

Por otro lado, al disponer la silicalita de una elevada relación SilAL, el numero de cationes libres en la red es muy pequeño y por tanto también lo serán las fuerzas electrostáticas adicionales de atracción adsorbate-adsorbente que favorezcan la adsorción preferente de las moléculas polarizables sobre las que no lo son. Esto justificaria la baja afinidad por las sustancias polarizables. De este modo, y a la vista del orden de los momentos dipolares (μ) de los adsorbatos estudiados.

 $\mu \rightarrow \mu \rightarrow \mu_{ekanol} \rightarrow \mu_{butanol}$

Fig. 6.12 Isotermas de etanol (a), butanol (•) y acetona (\wedge) sobre silicalita a 25°C.

se justifica plenamente el orden de adsorción encontrado.

6.2.3 Isotermas de adsorción de etanol sobre silicalita aglomerada.

Con objeto de determinar la capacidad de adsorción de la silicalita aglomerada al 35 % en peso de montmorillonita sódica, tal y como se describe en el apartado 9.1 del apéndice, se procedió a la obtención experimental de la correspondiente isoterma de equilibrio de adsorción de etanol sobre silicalita aglomerada a 25°C. En la figura 6.13 (tablas 5.15 y 5.31) se representan de forma comparativa las isotermas de etanol sobre cilicalita en polvo y silicalita aglomerada.

La isoterma, en silicalita aglomerada, que pertenece al grupo <u>1</u> de la clasificación de Giles (Giles y col., 1960), presenta la misma forma que cuando el adsorbente utilizado es silicalita en polvo, si bien la cantidad maxima adsorbida de etanol pasa de ser 104 mg/g (silicalita en polvo) a 55 mg/g, debido a que la adsorción sólo se produce en la zeolita, no en el agiomerante.

6.2.4 Ajuste del equilibrio de adsorción a las isotermas teóricas.

Las isotermas experimentales de etanol, butanol, acetona y glucosa como componentes puros en disolución, sobre los diferentes adsorbentes ensayados, se ajustaron a las ecuaciones teóricas propuestas por Langmuir, Freundlich y Prausnitz. Dienas ecuaciones, descritas en el apartado 2.5.1, se resumen en la tabla 6.3.

El ajuste se realizo mediante el algoritmo de Marquardt de regresión no lineal (Marquardt, 1965), obteniéndose así los parametros característicos de las mismas, cuyos valores se encuentran recogidos en las tablas 6.4 a 6.10.

A modo de ejemplo y con el fin de discutir la bondad de estos ajustes, en las figuras 6.14 a 6.21 se han representado gráficamente 143 datos experimentales de las isotermas obtenidas a 25°C sobre los distintos ausorbentes, junto con las curvas feoricas ajustadas, pudiéndose observar en todos los casos los siguientes hechos:

Fig 6.13 Isoterma de etanol a 25°C sobre silicalita en polvo (\boxdot) y silicalita aglomerada al 35% (\bullet).

ç

TABLA 6.3

Isoterma	Ecuación	Parámetros
Langmuir	$n = \frac{QKC}{Y+KC}$	K,Q
Freundlich	$n = b c^{1/e}$	b, e
Prausnitz	$\frac{1}{n} = \frac{1}{MC} + \frac{1}{BC^{1/e}}$	М, В, е

ECUACIONES DE LAS ISOTERMAS DE ADSORCION.

1) Ecuación de Langmuir.

La reproducción del equilibrio de adsorción mediante esta ecuación no es del todo adecuada para los sistemas estudiados, presentando importantes desviaciones respecto de los datos experimentales. Este resultado es debido, a que estos sistemas no cumpler las hipótesis de partida de la ecuación, en cuanto que el modelo supone el adsorbente con superfície homogenea, adsorción en monocapa y no tiene en cuenta las interacciones entre moléculas adsorbidas.

ii) Ecuación de Freundlich.

Esta ecuación permite ya una buena reproducción de los valores experimentales debido a la consideración de las interacciones intermoleculares, pero al no cumpir la ley de Menry a bajas concentraciones, en dicha zona de la curva, es donde se producen las mayores desviaciones entre los valores experimentales y los predichos. Sin embargo, las subo utilizada con exito por numerosos autores en otros sistemas (Mckay 7 col., 1988; Seidel, A., 1988).

TABLA 6.4

PARAMETROS DE AJUSTE DE LA ISOTERMA DE ADSORCION DE ETANOL SOBRE

CARBON ACTIVADO A DIFERENTES TEMPERATURAS

		LANGHU I R			FREUNDLICH		PRAUSN 112				
т (°с)	ĸ	Q fmg≠g}	Error (%)	ь	1/e	Егтот (%)	H	В	1/e	Error (%)	
25	0 1165	\$45.338	6.9	65.916	0.6720	1.4	406, 914	78.035	0.6312	1.0	
35	0. 1223	499 531	3.3	62.185	0.6701	5.1	86.905	181.946	0 3625	1.8	
45	0. 1065	5.15. 42.2	4. 7	56.757	0.7252	3.5	138.020	94.433	0.6026	3.0	
55	Q. 0949	561.528	2.6	55. 492	0.7135	4.6	66 . 561	230. 941	0. 3174	1.0	

TABLA 6.5

PARAMETROS DE AJUSTE DE LA ISOTERMA DE ADSORCION DE ETANOL SOBRE

SILICALITA A DIFERENTES TEMPERATURAS

		LANGMU1R			FREUNDLICH		PRAUSNITZ				
т (*C)	ĸ	Q (mg∕g)	Error (%)	b	l/e	Error (%)	м	B	1/e	Error (%)	
25	1 5811	109. 347	3.5	64 495	0. 2247	4.8	260. 404	88.717	0. 0921	1.4	
35	1.1785	113.524	2.2	61.301	0.2519	7, 1	136.371	111.806	0.0065	2.1	
45	1 3168	111 069	2.4	62.092	0.2414	5.8	176.731	98 046	0.0541	1.4	
55	1 5631	105.769	5.0	61 951	0.2285	3.4	363, 367	76.3A5	0.1423	17	
55	1 5631	105.769	5.0	61.951	0.2785	J. 9					

TABLA 6.6 PARAMETROS DE AJUSTE DE LA ISOTERMA DE ADSORCION DE ETANOL SOBRE

· · · · · ·		LANGHU I R	an i na tanàna kaominina dia kaominina dia kaominina dia		FREUN DL, 1 CH		PRAUSHTZ				
T 1°C)	ĸ	0 {mB\B}	Etror (%)	b	1/e	Ertor (%)	H	8	j/e	Error (%)	
25	1 9645		2.4	63.489	0.1992	5.3	211.597	95.183	0.0278	2.1	
35	1.8653	96.091	2.9	60.151	0.2005	4.2	250.150	82. 050	0,0702	1.9	
45	1 8567	95,299	4.6	59.191	0.2048	a. 2	059.165	72.686	0.1198	1.1	
55	1 9858	99.149	2. O	60, 337	0 1920	5.6	201 805	93, 173	0 0279	2.0	

ZSM-5 (A) A DIFERENTES TEMPERATURAS

TABLA 6.7 PARAMETROS DE AJUSTE DE LA ISOTERMA DE ADSORCION DE ETANOL SOBRE ZSM-5 (B) A DIFERENTES TEMPERATURAS

		LANGMU I R			FREUNDLICH		PRAUSNITZ				
т (*с)	ĸ	Q (mg∕g)	Error (%)	ь	1/e	Error (%)	М	B	1/e	Error (%)	
25	2. 9939	83,888	2, 3	59.876	0 1479	4.9	283. 557	80.042	0.0216	2.3	
55	4 5474	75.825	2.7	59.940	0.1017	66	282 452	81.838	0.0152	1.J	

TABLA 6.8 parametros de ajuste de la isoterma de adsorcion de glucosa sobre carbon activado a diferentes temperaturas.

		LANGHU TR			FREUNDLICK		PRAUSNITZ				
т (•с)	ĸ	0; (mg∕g)	Ertor (%)	ь	1∕ e	Error {%}	м	B	1/e	Error (%)	
25	0.2604	83,800	7.2	17.853	0.6148	2.8	76-213	23.481	0. 5263	1.9	
5 5	0.1684	98. 30.3 500 - 5	7.1	13-551	0 6781	3. 2	229 357	14.404	0.6624	Э. О	

TABLA 6.9

PARAMETROS DE AJUSTE DE LAS ISOTERMAS DE ADSORCION DE ETANOL, BUTANOL

Y ACETONA SOBRE SILICALITA A 25°C.

		LANGHUIR			FREUNDLICK		PRAUSNITZ				
COMPUESTO	K	Q {mg/g}	Error (%)	Ъ	1/e	Error (%)	м	В	1/e	Error (%)	
ETANOL BUTANOL ACETONA	1, 5811 29, 0046 7, 3664	109, 347 110, 594 90, 609	3.5 1.1 1.1	64. 495 105. 594 74. 164	0. 2247 0. 0324 0. 1110	4.8 3.0 4.0	260. 404 274. 869 716. 871	88.717 111.673 88.165	0. 092 1 0. 0010 0. 0143	1.4 1.2 1.0	

TABLA 6.10										
PARAMETROS	DE	AJUSTE	DE	LA	ISOTERMA	DE	ADSORCION	DE	ETANOL	SOBRE
			. ~ .				4 07 10			

		LANGHUIR				FREUNDLICH		PRAUSNITZ				
(т •с)	ĸ	Q (mg∕g)	Ennor (%)	b	1/e	Error (%)	м	B	1/e	Ertor (%)	
	25	1.0523	62. 2 32	2.4	33.077	0.2597	7.7	49,979	84. 173	0, 1363	1.6	

SILICALITA AGLOMERADA A 25°C.

¢

Fig. 6.11 Isoterma de adsorcion de etanol sobre carbon activado a 25° C. Ajuste a las ecuaciones de Langmuir (----), Freundlich (---) y Prausnitz (----).

Fig. 6.15 Isoterma de adsorcion de etanol sobre silicalita a 25° C. Ajuste a las ecuaciones de Langmuir (----), Freundlich (---) y Prausnitz (----).

Fig. 6.16 Isoterma de adsorcion de ctauol sobre ZSM-5 (a) a 25° C. Ajuste a las ecuaciones de Langmuir (----), Freundlich (---) y Prausnitz (----).

Fig. 6.17 Isoterma de adsorcion de etanol sobre ZSM-5 (b) a $25^{\circ}C$. Ajuste a las ecuaciones de Langmuir (---), Freundlich (---) y Prausnitz (----).

6. Discusión de Resultados.

Fig. 6.19 Isoterma de adsorcion de acetona sobre silicalita a 25° C. Ajuste a las ecuaciones de Langmuir (----), Freundlich (---) y Prausnitz (----).

Fig. 6.20 Isoterma de adsorcion de glucosa sobre carbon activado a 25°C. Ajuste a las ecuaciones de Langmuir (---), Freundlich (--) y Prausnitz (---).

Fig. 6.21 Isoterma de Etanol sobre Silicalita Aglomerada al : 35, ajustada a las ecuaciones de Langmuir (----), Freundlich (---) y Prausnitz (----).

iii) Ecuación de Prausnitz

Esta ecuación, al ser una combinación de las anteriores, tiene en ruente todo tipo de superficies, coincide cor la ley de Henry para bajas concentraciones, e introduce un tercer parámetro, cuyo valor está comprendido entre el cero y la unidad, que tiene en cuenta las interacciones entre moléculas de adsorbate y la superficie del adsorbente. Por tanto, ajusta de un modo excelente los puntos experimentales en todo el intervalo de conceptraciones estudiado, sirviendo para representar el equilibrio de adsorción de los sistemas investigados, resultado obtenido también en anteriores trabajos (Suzuki, M y col., 1982; Alvarez J., 1989; Serna, J., 1990)

Si comparamos el valor del parámetro, 1/e, obtenido por el ajuste a los datos experimentales de adsorción del etanol sobre carbón activado y sobre silicalita (tablas c.4 y 6.5, respectivamente), se observa que se obtiene un valor menor cuando el adsorbente utilizado es la silicalita. Este indica que las interacciones entre moléculas de adsorbate y la superficie del adsorbente son menores para este adsorbente, por lo que la confiere la selectividad suficiente para la separación del etanol de los caldos de fermertacion.

6.3 EQUILIBRIO DE ADSORCION DE MEZCLAS BINARIAS

(1.3.1 Isotermas experimentales.

Los resultados experimentales de las isotermas de adsorcion de cada una de las mezclas binarias cobre silicalita, resumidos en las tablas 5.32 a 5.49, se ban representado gráficamente de dos formas distintas.

17. Isotermas de idsorción individuales de cada uno de los componentes de la mezcla, en forma de cantidad adsorbida de cada uno. n, frente a su concentración en la fase líquida. C, en el equilibrio.

 \mathbb{C}^{2} . Isotermas de adsorción de la mezcla total, en forma de cantidad total adsorbida de ambos solutos, n_e, frente a la concentración total de los mismos en la fase líquida. C_e, en el equilibrio.

Las curvas experimentales correspondientes a estas isotermas aparecem en las siguientes figuras:

- Etanol - Butanol, 6.22 a 6.24 (tablas 5 33 a 5.38)

- Etanol - Acetona: 6.25 a 6.27 (tablas 5.39 a 5.43)

- Butanol - Acetona: 6.28 a 6.30 (tablas 5.44 a 5.49)

Puede observarse, como era de esperar, que todas las isoiermas individuales de cada componente ducdan por debajo de la correspondiente al compuesto puro y tanto más alejadas del mismo cuante menor sea su proporción inicial en la mezcla.

Sin embargo, se ebservan algunos comportamientos atipicos, que conviene comentar. En la mezcla etanol-butanol, por ejemplo, aparecen unos maximos en las isotermas individuales del etanol, que revelan un efecto de desplazamiento por parte del butanol, el cual presenta mayor catacidad de adsorción a bajas concentraciones en la fase líquida. Este efecte ya se ha observado en anteriores investigaciones, con sistemas distintos, tales como las mezclas gaseosas CO_/Propano y Etileno/Propano sobre silicalita agramerada a 25°C (Jimenez, A.; 1989). No obstante, la notable dispersion experimental hace difícil precisal la localización exacta de las isotermas de las mezclas totales (figura 6.24), por lo que no se han trazado más que las curvas correspondientes a las isotermas de los componentes pures, etanol y butanol.

En la mezcla etancl-acctena no se observan efectos claros de desplazamiento, si bien la dispersión experimental dificulta de nuevo el trazado de las curvas de las isotermas de mezclas totales (figura 6.27).

En la mezcia butanol-acetona, se observa que aunque no aparecen claros efectos de desplazamiento, las curvas individuales de la acetona (a pesar de la falta de puntos experimentales en los tramos iniciales) muestran cligura 5.29) un mayor alejamiento de la isoterma de la acetona pura, le que indica una mayor afinidad del adsorbente por el butanol, al menos en el intervalo de bajas concentraciones en la fase líquida (sus concentraciones de equilibrio en la fase adsorbida permanecen casi constantes a partir de cierto valor, figura 6.28). De nuevo, la notable dispersión experimental

1.00

impide localizar con exactitud la posición de las isotermas globales de esta mezcla (figura 6.30), que tienden a quedar por debajo de la franja comprendida entre las isotermas de los correspondientes componentes puros.

Debe añadirse, además, que en todos los casos resulta dificil determinar las isotermas de mezcla globales (suma de las individuales) por la falta de puntos experimentales en los mismos intervalos de concentración en la fase líquida.

A pesar de lo anterior, puede deducirse que, en general, en las mezclas en que interviene el etanol, aparece un efecto de desplazamiento de éste por parle del otro adsorbato de mayor capacidad de adsorcion (especialmente por el butanol), presentando sus isotermas los máximos comentados. El butanol, debido a que produce un efecto de desplazamiento hacia el resto de los adsorbatos, presenta unas isotermas de mezcla de forma anàloga a la correspondiente al componente puro, siendo mayor la cantidad adsorbida cuanto mayor es la concentración de equilibrio en la fase líquida y su proporción relativa en el medio (figuras 6.23 y δ.28). La acetona ocupa un lugar intermedio en cuanto al desplazamiento: es ligeramente desplazada por el butanol (figura 6.29), pero no en la misma medida que el etanol (figura 6.22), y a su vez, desplaza muy ligeramente al etanol, debido posiblemente a su mayor longitud de cadena. La falta de información a bajas concentraciones de las isotermas con relación inicial 1:7 y 1:8, introduce una cierta incertidumbre en el trazado inicial de las curvas, como ya se ha indicado

Así pues, puede deducirse un orden preferencial de adsorción debido al efecto del desplazamiento que puedan ejercer los adsorbatos:

Este orden está de acuerdo con el orden decreciente de las pendientes en el origen de las respectivas isotermas de los componentes puros (ley de Henry).

Fig. 6.22 Isotermas de adsorcion en silicalita de mezclas de etanol (E)-butanol (B) a 25°C. Isotermas individuales de etanol.

Fig. 6.23 Isotermas de adsorcion en silicalita de mezclas de etanol (E)-butanol (B) a 25°C. Isotermas individuales de butanol.

Fig. 6.24 Isotermas de adsorcion en silicalita de mezclas de Etanol (E)-Butanol(B) a 25°C. Isotermas de mezcla tot**a**l.

Fig. 6.25 Isotermas de adsorcion en silicalita de mezclas de etanol (E)-acetona (A) a 25°C. Isotermas individuales de etanol.

Fig. 6.26 Isotermas de adsorcion en silicalita de mezclas de etanol (E)--acetona (A) a 25°C. Isotermas individuales de acetona.

Fig. 6.27 Isotermas de adsorcion en silicalita de mezclas de etanol (E)-acetona (A) a 25°C. Isotermas de mezcla total.

Fig. 6.28 Isotermas de adsorcion en silicalita de mezclas de butanol (B)-acetona (A) a 25°C. Isotermas individuales de butanol.

Fig. 6.29 Isotermas de adsorcion en silicalita de mezclas de butanol (B)-acetona (A) a 25°C. Isotermas individuales de acetona.

Fig. 6.30 Isotermas de adsorcion en silicalita de mezclas de butanol (B)-acctona (A) a 25°C. Isotermas de mezcla total.

6.3.2 Predicción y reproducción del equilibrio de adsorción de mezclas binarias.

Los resultados experimentales anteriormente presentados han sido utilizados para aplicar los métodos teóricos de predicción y reproducción del equilibrio binario, comentados en el apartado 2.6.2 de la Introducción. A continuación se resumen los métodos empleados para ello, exponiéndose posteriormente un estudio comparativo de los mismos. Con objeto de establecer adecuadamente dicha comparación, se han obtenido los diagramas de equilibrio x ~ y (siendo x e y las fracciones molares de soluto en las fases adsorbida y líquida respectivamente) correspondientes a una concentración total de 1000 mol/m³, mediante interpolación de los dat:s experimentales de equilibrio.

i) Modelo de la Solución Adsorbida Ideal (S.A.I.).

Este modelo pretende la predicción del equilibrio de mezclas multicomponentes tomando como únicos datos de partida las isotermas de sus componentes puros. La secuencia de cálculo empleada para la predicción de los sistemas binarios se detalla en el apartado 9.4.1 del Apéndice, resumiéndose a continuación los pasos a seguir (Alvarez, J., 1989):

1/. Mediante la ecuación 2.17:

$$\pi(C_{i}^{\circ}) = \frac{R}{A} \int_{0}^{C_{i}^{\circ}} \frac{n_{i}^{\circ}(C_{i}^{\circ})}{C_{i}^{\circ}} dC_{i}^{\circ} (T=cte)$$
(6.1)

se determina la curva de presiones superficiales frente a concentraciones en la fase líquida por integración gráfica a partir de los datos de la isoterma experimental de cada componente puro. Los valores de las presiones superficiales así obtenidos para cada adsorbato se encuentran resumidos en la tabla 6.11, y se han representado comparativamente en la figura 6.31.

2/. Para un valor de la fracción molar en la fase adsorbida x_i , obtenido experimentalmente, se supone un valor de la presión superficial de la mezcla, π^{-} .

TABLA 6.11

PRESIONES SUPERFICIALES DE LOS COMPONENTES PUROS ETANOL, BUTANOL Y ACETONA SOBRE SILICALITA A 25°C PARA DISTINTAS CONCENTRACIONES EN LA FASE LIQUIDA.

Eta	nol	But	anol	Ace	tona
C (mol∕na)	πA/RT (mol/kg)	C (mol/m)	πA/RT (mol/kg)	C (mo)/m³)	πA/RT (moi/kg)
0.	0.0000	0.	0.0000	0.	0.0000
100.	1.2038	100.	6.9634	100.	4.0588
200.	2.0634	200.	8.0550	150.	4.6115
300.	2.6975	300.	8.6724	200.	5.0153
400.	3.2006	400.	9. 1073	250.	5. 3339
500.	3.6179	500.	9, 4439	300.	5. 5975
600.	3.9746	600.	9.7187	350.	5.8222
700.	4. 2861	700.	9.9511	400.	6.0182
800.	4.5625	800.	10.1523	450.	6. 1919
900.	4.8110	900.	10.3299	500.	6.3480
1000.	5.0368	1000.	10.4888	550.	6.4897
1100.	5.2436	1100.	10.6326	600.	6.6196
1200.	5.4343	1200.	10.7639	650.	6.7394
1300.	5.6114	1300.	10.8846	700.	6.8505
1400.	5.7766	1400.	10.9965	750.	6.9541
1500.	5.9314	1500.	11.1007	800.	7.0512
1600.	6.0771	1600.	11.1981	850.	7.1425
1700.	6.2146	1700.	11.2896	900.	7.2287
1800.	6.3449	1800.	11.3759	950.	7.3104
1900.	6.4687	1900.	11.4576	1000.	7.3880
2000.	6.5865	2000.	11.5351		
2100.	6.6989	2100.	11.6088	1	
2200.	6.8065	2200.	11.6791		
2300.	6.9096	2300.	11.7463		
2400.	7.0085	2400.	11.8106		
2500.	7.1036	2500.	11.8723		
2600.	7.1952				
2700.	7.2836				
2800.	7.3688				
2900.	7.4512				
3000.	7.5309				

Fig. 6.31 Presiones Superficiales de Etanol (--), Butanol (--) y Acetona (--) a 25°C en Silicalita.

37. Mediante las curvas de presiones superficiales frente a la concentración, obtenidas para cada componente puro, se determina el valor de C_1° y C_2° , cuyo significado ya se comentó en el apartado 2.5.2 de la Introducción.

4/. Para un valor experimental de la fracción molar en la fase adsorbida, se determina la correspondiente en la fase líquida para la concentración total C:

$$y_{1} = \frac{x_{1} C_{1}^{o}(\pi)}{C_{2}}$$
(6.2)

57. Se repiten los pasos 2 a 5 hasta que se cumpla:

 $\sum y_i = 1$

Los resultados obtenidos con este modelo para cada mezcla binaria se encuentran resumidos en las tablas 6.12 a 6.14. Asímismo en las figuras 6.32 a 6.34, se presentan los diagramas de equilibrio con las predicciones del modelo S.A.I. Como puede observarse, existe una importante desviación respecto a los datos experimentales, excepto en el sistema etanol-acetona, en los que la predicción es aceptable. Todo lo comentado hasta el momento coincide con la principal limitación del modelo: la suposición de comportamiento ideal de la mezcla en la fase adsorbida, hipótesis que no se cumple en los sistemas en los que el butanol es uno de los componentes, cosa lógica debido al gran efecto de desplazamiento que ejerce éste adsorbato cuando se encuentra en presencia de etanol o de acetona. El que el sistema etanol-acetona presente una menor desviación de la idealidad, puede deberse a la similitud química de las moléculas de los adsorbatos que la componente.

El modelo presenta otra limitación adicional y es la necesidad de datos experimentales a muy bajas concentraciones. El butanol, al tratarse de un adsorbato de gran afinidad, incluso en disoluciones muy diluidas, se adsorbe completamente, no siendo detectable su concentración en la fase líquida. For ello presenta una isoterma de elevada pendiente en el origen, siendo de gran dificultad la obtención de datos experimentales a muy bajas concentraciones. Si se tiene en cuenta que el cálculo de la presión superficial se realiza mediante integracion gráfica de la curva n/C frente a
TABLA 6.12

SISTEMA ETANOL-BUTANOL

Composiciones de equilibrio experimentales y calculadas. (S.A.I.)

×	У _{ехр}	y _{col}	E (%)
0,090	0 690	0. 501	27.4
0, 185	0.845	0.779	7.8
0.275	0. 920	0. 879	1.5
0.440	0.952	0. 945	0.7
0.565	0 967	0.961	0.7

Error medio = 8.2 %

TABLA 6.13

SISTEMA ETANCL-ACETONA

Composiciones de equilibrio experimentales y calculadas. (S.A.I.)

	×	y _{exp}	y cal	Е (%)
	ი 0 5 8	0.222	0.153	31.3
i i	0.130	0.325	0.315	3.2
	0.323	0.600	0. 623	-3.9
-	0.550	0.832	0.829	0.4
	0.671	0.901	0. 895	0.6

Error medio = 7.9 %

TABLA 6.14

SISTEMA BUTANOL-ACETONA

x	y exp	y _{cal}	E (%)
0. 252	0.602	0.601	0.2
0.408	0.847	0.797	5.9
0. 508	0.910	0.867	4.7
0.637	0. 935	0. 925	1.1
0.676	0.943	0.937	Q.6

Composiciones de equilibrio experimentales y calculadas. (S.A.I.)

Error medio = 2.5 %

C (ecuación 6.1), y que lógicamente ésta presenta una pendiente en el origen mucho mayor, el problema se acentúa. La solución utilizada en la presente investigación, consiste en la sustitución de esta curva por la de $S(lnC)/\partial(lnn)$ frente a n, la cual es equivalente a la anterior, pero con límite de integración conocido para n = 0 y por lo tanto fácilmente integrable de forma gráfica (Cabra L., 1983; Alvarez J., 1989). Todos estos errores se transmiten posteriormente al cálculo de las presiones superficiales para concentraciones elevadas.

117. Modelo de la Solución Adsorbida Real. (S.A.R.).

Como ya se comentó en el apartado 2.6.2 de la Introducción, el modelo se basa en los mismos conceptos que el de la solución adsorbida ideal, pero teniendo en cuenta que las mezclas adsorbidas pueden presentar un comportamiento no ideal en la fase adsorbida, debido a las interacciones existentes entre las distintas moléculas adsorbidas. Para ello, en él aparecen unos coeficientes de actividad para cada componente en la fase adsorbida, $\gamma_{\rm c}$, según la ecuación:

Fig. 6.32 Diagrama de equilibrio del sistema Etanol(1)-Butanol(2) sobre Silicalita a 25°C. $(C_1=1000 \text{ mol/m}^3).(---S.A.I. ----S.A.R.).$

Fig. 6.33 Diagrama de equilibrio del sistema Etanol(1)-Acetona(3) sobre Silicalita a 25°C. $(C_1=1000 \text{ mol/m}^3).(--S.A.I. \cdots S.A.R.).$

Fig. 6.34 Diagrama de equilibrio del sistema Butanol(2)-Acetona(3) sobre Silicalita a 25°C. $(C_1=1000 \text{ mol/m}^3).(---S.A.I. \cdots S.A.R.).$

$$C_{t} y_{i} = \gamma_{i} C_{i}^{\circ} (\pi) x_{i}$$
(6.2)

donde $C_{j}^{o}(\pi)$ es la concentración de equilibrio en el líquido para cada uno de los componentes puros, para un valor de la presión superficial π .

El modelo necesita de los datos de mezclas binarias para la determinación de los coeficientes de actividad, por lo que en nuestro caso se trata de una reproducción de los datos de equilibrio más que de una predicción propiamente dicha. El procedimiento seguido es el siguiente:

1/. A partir de las isotermas de los componentes puros que forman la mezcla, se determinan las curvas de presión superficial frente a concentración en el líquido, tal y como se indicó en el paso 1 del modelo de la solución adsorbida ideal.

27. Por analogía con el equilibrio líquido-vapor se toma la ecuación de Wilson para representar la variación de los coeficientes de actividad con la fracción molar en la fase adsorbida (Radke y col., 1972):

$$\gamma_{i} = f\left(\Lambda_{i1},\Lambda_{i1}\right) \tag{6.3}$$

en la que aparecen les parámetros binarios característicos de cada mezcla binaria, $\Lambda_{_{11}}$.

37. Se supone un valer de los parámetros característicos de la ecuación de Wilson.

47. A partir de las fracciones molares en la fase adsorbida experimentales (x_1, x_2) y la ecuación de Wilson, se determinan los coeficientes de actividad en dicha fase (z_1, z_2) .

57. Se supone un valor de la presión superficial de la mezcla π^{m} .

6/. Mediante las curvas de presión superficial frente a concentración obtenidas para cada componente puro, se determinan por interpolación los valores de C_i^o correspondientes a n^m

77. Se determina la fracción molar en la fase líquida, y, para la

concentración total correspondiente mediante la ecuación:

$$y_{i} = \frac{x_{i} C_{i}^{o} \tau_{i}}{C_{i}}$$
(6.4)

8/. Se repiten los pasos 5 a 8 hasta que se cumple:

$$\sum y_i = 1$$

9/. Se repiten los pasos 3 a 9 hasta conseguir que las diferencias entre los valores experimentales y predichos de "y" sean mínimas. Una vez conseguida la convergencia, el método proporciona el valor de los parámetros de la ecuación de Wilson que mejor ajustan los datos experimentales, obteniéndose simultáneamente la reproducción del equilibrio.

Estos parámetros son los que proporcionan mínimo error entre los datos experimentales y los datos calculados mediante el modelo. Sin embargo, las ecuaciones utilízadas han conducido a la obtención no de mínimos claros, sino de auténticos valles a lo largo de un amplio intervalo de parejas de valores de los parámetros que proporcionaban el mínimo error, hecho ya constatado por otros autores (Silverman y col., 1984; Tao, L.C. y col., 1986). Para ello se recurre a unos planos de errores en los que quedan representados los cuadrados de las diferencias entre las fracciones molares experimentales y las reproducidas por el modelo al tomar una determinada pareja de valores \bigwedge_{ii} , \bigwedge_{ii} . Una vez delimitada la región donde se encuentra el punto de mínimo error, se aplica un método de regresión basado en el criterio de mínimos cuadrados que busca parejas Λ_{11} , Λ_{11} que minimicen los cuadrados de las diferencias entre las fracciones molares experimentales y reproducidas por el modelo (Jimenez, 1989). En las figuras 6.35 a 6.37 quedan reflejados dichos mapas, en los que se representa una función inversa del error, interesando por tanto, aquellos puntos en los que esta magnitud sea mayor. La predicción del equilibrio mediante este modelo queda recogido en las tablas 6.15 a 6.17 (figuras 6.32 a 6.34), en las cuales se presentan las parejas de valores \bigwedge_{ij} , \bigwedge_{ij} que proprorcionan el menor error entre los valores experimentales y reproducidos por el modelo.

Las diferencias observadas entre los datos experimentales y los obtenidos mediante el modelo S.A.R. son menores que los obtenidos con el

^ 21 •	100		۸ ₁	2+100	>												
	10	15	20	25	30	35	40	45	50	55	60	65	70	75	60	85	90
10	1.2	1.2	1 - 2	1.2	1.2	1.2	1.3	1.3	1.3	1.4	1.4	1.5	:.5	1.5	1.6	1.6	1.7
15	1.2	1.2	1.2	1.2	1.2	1.3	1.3	1.3	1.4	1.4	1.4	1.5	1.5	1.0	1.6	1.7	1.8
20	1.Z	1.2	1.2	1.2	1.2	1.3	1 - 3	1.3	1.5	1.4	1.5	1.5	1.6	1.6	1.7	1.8	1.9
25	1.2	1.2	1.2	1.2	1.3	1.3	1.3	1.4	1.4	1.5	1.5	1.0	1.6	1.7	1.8	1.9	2.0
30	1.2	1.2	1.2	1.3	1.3	1.3	1.4	1. 4	1.5	1.5	1.0	1.1	1.7	1.8	1.9	:.0	ž • :
75	1.2	1.2	1.2	1.3	1.3	1.3	1.4	1.4	1.5		1.6	1.7	>	1.4	2.0	2.1	1.1
40	1.2	1.3	:.3	1.3	1.3	1.4	1	1.5	1.5	:	1.7	1.7	1.4	2.0	2 - 1	2.3	2.5
4.5	1.2	1.3	1.3	1.3	1.3	1.4	1.5	1.5	1.0	1.6	:.7	1.8	2.0	ž . 1	2.3	7.5	2.2
50	1.0	1.2	1.2	1.3	1.5	:.	1	1.0	1.0	1.7		2.0	2.1	1.3	5	2.5	9.0
5.5	1.3	1.3	1.3	1.3	1.4	1.5	1.5	1.0	1.7	1.8	1.9	2.1	2.3	ž.5	3.7	3.0	3.2
60	1.3	1.3	1.3	1.4	1.4	1.5	1.5	1.0	1.7	1.9	2.0	2.2	2.4	2.7'	3.0	• - Z	3.0
: 5	1.3	1.3	1.3	i.4	1.5	4.5	1.6	1.7	1.5	2.0	2.2	2.4	2.71	2.0	2.2	, ² • •	2.7
70	1.3	1.4	1.4	1.4	i.5	1.0	1.7)."	ι.γ	2.1	2.3	2.0	5.c	5.2	3.5	2.5	2.4
75	1.3	3.4	1.4	1.5	1.5	1 . C	3.7	:	2.1	2.3	2.5	ڊ. <i>ي</i> ر	5 . 2	3.0'	2.2	2.4	222
٩c	:.3	1.4	1.4	1.5	1.6	7	1.0	i.:	2.52	7 - 5	2.8	3.2	2.2	2.6'	2.5	 2	2.0
e 5	1.4	4	1	1.5	1.6	5.7	1.7	1	2.00	2.7'	3.1	5.2	1.8	12.5	2.2	2.0	1.4
00	1.4	:.5	1.5	1.5	1.7	1.8	2.0	1.13	2.07	5.0	3.2	2.9	2.6	0.3	2-1	:••	:.8
95	1.4	:.5	1.5	1.6	1.7	1.9	2 - 2	2 - 4	2.5	3.2	3.1	2.7	2.3	2.1	1.9	1.8	1.7
1 % 2	1.5	:.6	1.6	1.7	: . E	2.0	2.3	1.6	3.1	3.2	2.8	z . 4	2.1	ζ.θ	1.5	1.°	1.5
105	1.5	t	1.6	1.7	1.9	2-2	2.5/	/	(84)) i i s	1.5	7.12	2.0	1-8	:.7	. e.	1.5
::0	1.5	1.7	1.7	1.5	2.0	2.2	7.7	3.3	<u> S.</u>	7.6	2.3	2.0	2.9	3.7	1.5	1.5	1.4
115	1.5	1.7	1.7	1.9	. 1	= - 5/	2.9	3.2/	12.8	2.4	2.1	1.9	2.7	:-6	1 - 5	1.4	1.3
115	1. ^	1.4	1.*	2.0	2 - 3	2.1	3.2	9-ú	1.00	ī. • Ē	2.0	1.2	1.0	1.0	1.4	3	:.1
12.5	1.7	1.8	1.0	2.1	- 1	i.9	3.4	(z, i)	• • *	0	1.5	:.?	۰.,	۱	1.3	1.3	
:19	:.?	1.4	1.9	2.2	1.0	3.6	7.0	1.00	a - 1	4	:.7	:	1.5	i.4	1.3	1.7	:.:
134	1.8	2.0	2.0	2.4	/2.s	2.2/	2.7	2.5	2.0	:.0	1.5	1.5	1.4	ι.3	1.2	2.1	·•• •
199	1.9	2.1	2.1	2.4	3.1	1.0/	2.5	2.1	1.9	1.7	1.5	3.4	1.3	:	1.2	1.1	1.0
4.4	1.9	2.3	2-3	2.7	3.2	4.5	2.3	210	1.8	1.0	1.5	:.3	1.3	1.2	1.1	1.0	۱.۹

Figura 6.35 Plano de errores obtenido en la reproducción (modelo S.A.R.) del equilibrio del sistema etanol-butanol.

۸ • 10	100		٨	3+100-	>													
	10	30	50	70	90	110	130	150	170	190	21D	230	250	270	290	310	330	350
:0	• 2	.6	۰ô	1.0	1.2	1.4	1.5	1.7	1.7	1.9	2.1	2.2	2.2	2.1	Z.O	1.9	1.8	1.7
20	. 3	.7	.9	1.1	1.3	1.5	1.8	2.0	2.0	2.1	2.2	2.2	2.1	2.0	1.9	1.8	1.7	1.:
30	. 3	. B	1.0	1.3	1.5	1.7	2.0	z.2	z.z	2.3	z . 2	2.1	1.9	1.8	1.7	1.6	1.5	1.4
4 O	. •	.9	1.2	1.4	1.7	2.0	2.2	2.3	2.3	2.2	Z.1	1.9	1.8	1.6	1.6	1.5	1.4	1.3
50	. 4	1.0	1.3	1.6	. .9	z . z	Z.3	Z . 2	2.Z	2.1	1.9	1.7	1.6	1.5	1.4	1.4	1.3	1.2
60	. 5	2.1	1.4	1.6	6.5	2.3	2.3	2.1	2.1	1.9	:.7	1.0	5.5	1	1.7	143	1.	1.5
70	. 6	1.2	1.6	2.0	2.3	2.3	2.1	1.9	1.9	1.7	1.6	1.5	1.4	1.3	1.3	1.2	1.1	1.1
FÖ	• 6	1.4	1.8	7.2	2.3	2 .2	Z.0	1.8	1.8	1.6	1.5	1.4	1.3	1.3	1.2	1.1	1.1	1.0
¢0	, 7	1.5	2.0	2.3	2.3	2.G	1.8	1.6	1.6	1.5	۱.4	1.3	1.3	1.2	1.1	1.1	1.0	1.0
100	. 5	3.7	2.1	2.3	2.1	1.9	1.7	1.5	1.5	1.4	1.3	1.3	1.2	1.1	1.1	1.0	1.0	1.0
110	. 8	3.1	2.3	1.3	2.0	1.8	1.6	1.5	1.5	1.4	1.3	1.2	1.1	1.1	1.0	1.0	1.0	• "
120	. 9	2.0	2.4	2.1	1.9	1.7	1.5	1.4	1.4	1.3	1.2	2.1	1.1	. 1.0	1.0	1.0	۰.	•
190	1.0	2.2	2.3	2 - D	1.7	1.6	1	1.3	1.3	1.2	1.2	1.1	1.1		1.0	• • 9	. 9	۰،
1+0	1.1	2 . 4	2.2	:.9	1.6	1.5	1.4	1.3	1.3	1.2	1.1	1.1	1.0) 1.0) _<	.9	• • •	• 0
150	1.3	2.4	2.3	1.6	1.6	1.4	1.3	1.2	1.Z	1.1	1.1	1.0	> 1.0	•••	, .	• • •	• •	. ŧ
180	:.)	2	:.9	1.7	1.5	1.4	1.3	1.2	1.2	1.1	. 1.1	1.340) t.(. c	÷ .'			. ÷
170	1.4	2.3	1.8	:	1.4	1.3	1.2	1.1		1.1	. 1.0) 1.0	, o	· ·	• •	• .		• • •
140	r.	2.1	1.7	ι.5	1.4	1.3	1.2	1.1	1.1	1.0	0 1.0) I.:	· ·	÷ •	· ·	· ·	÷	8 . E
190	1.7	2.0	1.7	2.4	1.3	1.2		1.1.1	1 1.1	. 1.0	0 1.0	· - ·	9 - ¹	۰ e	9 -	8.8		s
200	1.9	1.9	1.6	1.4	1.3	1.2	1.1	1 1.1	0 1.0)]-() . '	э.	9.	۰ ،	ε.	5.	e .I	8 🗤
210	2.1	1.0	1.5	1.3	:-:	2 1.1	1.1		1.0	1.	• • ·	ə -	φ.	9 •	е.	е.	e .:	8 .:
270	2.4	1.7	1.5	1.3	1.1	2 1.3	1.	0 1.	0 1.		· ·	φ.	ς.	θ.	ε.	6.	8.	7
230	2.7	1.6	1.4	1.3	1.	2 1.3	1 1.	0 1.	0 1.	•		۹.	9.	8.	в.	8 .	8.	7
239	-3.0	1.6		1.2	1.	1 I.	1 1.	0 1.	o 1.		φ.	۰ ۹	8.	в.	б.	5.	7 ·	? •"
510	<u>.</u>))p.s	1.3	1.2	1.	1 1-	0 1.	ο.	9.	9.	q.	. .	8.	в.	ε.	ĵ.	·	7.
349		1/2.15	i.3	1.2	1.	11.	01.	ο.	•••	9.	φ.	э.	в.	8 -	δ,	8.	7.	7 •
269	2.7	1	- i.2	1.1	. 1-	1 1.	0 l.	σ.	9.	۰ ،	۰ ،	8.	в.	ε.	8.	7.	?.	7.7
279	12.4	1.4		. 1.1	. 1.	o 1.	ο.	, .	9.	۰ و	ç.	ε.	8.	8.	6.	7.	7.	, . ·

Figura 6.36 Plano de errores obtenido en la reproducción (modelo S.A.R.) del equilibrio del sistema etanol-acetona.

	179	189	199	209	219	229	239	249	259	269	279	289	299	339	319
0	1.8	1.9	2.1	2.2	2.3	2.4	2.5	2.7	2,8	2.8	2,0	2.7	17.5	2.4	2.3
0	1.8	1.9	2.1	2.2	2.3	2.5	2.5	2.7	2.8	2.0	p. 7	1.4	2.5	2.4	2.3
1	1.8	1.9	2.1	z . 2	2.3	2.5	2.6	12.11	2.8	2.8/	2.7	2.0	2.5	2.3	2.2
1	1.8	1.9	2.1	2.2	2.4	2.5	2-6	2.8	2.8	2,8	2.7	2.6	2.4	2.3	2.2
z	1.8	1.9	2.1	2.3	Z.4	2.5	2.7	2 - 8	Z.0	2.7	2.7	/2.5	2.4	2.3	2.2
2	1.8	1.9	2.1	z.3	2.4	2.5	2.7	12.8	2.8	12.7	12.6	2.5	2.4	2.3	2.2
2	1.3	1.7	2.2	z.^	۰. د	-266	2-7	120	2.1	2.3	12/2	2	2.1	2.2	
3	1.9	2.0	2.2	2.3	2.4	2.6	2.7	3.5	2.8	z./	2.6	2.4	2.3	2.2	2.1
4	1.9	2.0	2.2	Z.3	2.5	12.0	2.7	2.8	p 7	2.7	/2.5	2.4	2.3	2.2	2.1
4	1.9	2.0	2 . Z	2.3	2.5	1 2.6	2.7	2.0	2.7	2.6	2.5	2.4	2.3	2.2	2.1
5	1.9	2.0	2.2	2.4	2.5	2.t	2.7	2,7	2.7	/ 2.6	2.5	2.4	2 - 2	2.1	2.1
5	1.9	2.0	2.3	2.4	275	2.0	120	2.7	2.1	2,6	2.5	2.3	2.2	2.1	2.0
6	1.9	z .0	2.3	2.4	2.5	2.4	2.7	2.7	2.7	2.6	2.4	2.3	2 • 2	2.1	2.0
ь	1.9	2.0	2.3	2.4	þ.5	2.7	2.7	2.7	12.0	12.5	2.4	2.3	2.2	7.1	2.0
7	1.9	2.0	2.3	2.4	2.0	2.7	2.7	2.7/	2.0	/ 2.5	2.4	2.3	2.2	2.1	2.0
7	2.0	2.1	2.3	2.4	2.6		2.7	- 1,7	2.0	2.5	2.4	Z .Z	2.1	2.0	2.0
8	2.0	2.1	2.3	2.5	2.6	2 - 7	2.7	2.7	2.6	2.4	2.3	2.2	2.3	2.0	1.9
ê	2.0	2.1	2.3	2.5	2.0	2.7	2.7	12.0	,z.5	2.4	Z.3	:.2	2.1	2.0	1.9
Ģ	2.0	2.1	2.4	2,5	2.0	2.7	2.7	2.6/	2.5	2.4	Z.3	2 . 2	2.1	2.0	1.9
a,	Z.D	2.1	2.4	2.5	2.6	2.7	2.1	2.0	2.5	2.4	Z.3	2.2	Z.1	ž. 5	:
10	°.0	2.1	2.4	25	2.6	2.7	2 17	2.6	2.5	2.4	2.2	2-1	2 - 0	1.9	1.9
10	Z.0	2.2	2.4	2.5	2.6	2.7	2.6	/2.6	2.4	2.3	2.2	2.1	2.0	1.9	1_8
11	2.0	2.2	2.4	2,6	2.6	2.7	\$.0	2.5	2.4	2.3	2.2	2.1	Z.O	1.9	i.8
11	2.1	2 - 2	2.4	2.6	2.6	2.7	12.6	2.5	2.4	2.3	2.2	2.3	2.0	1.9	1.8
12	2.1	2.2	2.4	2.6	0.4	2.7	12.6	2.5	2.4	2.3	2.2	Z • 1	Z.D	1.9	1.3
12	2.1	2.2	2.5	2.6	2.6	2.7	/ 2:0	2.5	2.4	2.2	2.1	2.0	1.9	1.9	1.5
; ?	2.1	2.2	2.5	12.0	2.5	2.6	2.6	7.4	Z.3	2.2	Z.1	2.0	1.9	:.8	1-8

Figura 6.37 Plano de errores obtenido en la reproducción (modelo S.A.R.) del equilibrio del sistema butanol- acetona.

S.A.I., excepto en el sistema etanol-acetona, en el que los resultados son totalmente coincidentes. En efecto, este sistema presenta un comportamiento casi ideal, por lo que sus coeficientes de actividad son prácticamente la unidad. El modelo S.A.R., al tener en cuenta el comportamiento no ideal de la fase adsorbida, confirma la necesidad de introducir los coeficientes de actividad para una adecuada caracterización del equilibrio binario, muy especialmente en las mezclas en las que está presente el butanol.

TABLA 6.15

SISTEMA ETANOL-BUTANOL

Composiciones de equilibrio experimentales y calculadas. (S.A.R.)

×	y _{exp}	y _{cal}	E (%)
0.090	0.690	0.686	0.6
0.185	0.845	0.858	-1.6
0.275	0.920	0.912	0.9
0.440	0.952	0. 941	1.1
0.565	0,967	0.954	1.3

$$\Lambda_{12} = 0.499$$
 $\Lambda_{21} = 1.049$

Error medio = 1.1 Z

TABLA 6.16

SISTEMA ETANOL-ACETONA

Composiciones de equilibrio experimentales y calculadas. (S.A.R.)

×	y _{exp}	y _{cal}	E (%)
0.058	0.222	0.222	0.1
0.130	0.325	0.345	-6.2
0.323	0.600	0.601	-0.2
0.550	0.832	0.814	2.2
0.671	0.901	0.888	1.4

 $\Lambda_{13} = 0.075$ $\Lambda_{31} = 2.494$

Error medio = 2.0 %

SISTEMA BUTANOL-ACETONA

Composiciones de equilibrio experimentales y calculadas. (S.A.R.)

		23	32	
	x	У _{е×р}	У _{саl}	E (%)
	0.252	0.602	0.609	-1.3
	0.408	0.847	0.816	3.7
the second s	0.508	0.910	0.885	2.7
	0.637	0.935	0.936	-0.1
	0.676	0.943	0.947	-0,4
				1

$$\Lambda_{22} = 2.837$$
 $\Lambda_{22} = 0.010$

Error medio = 1.6 %

6.4 EQUILIBRIO DE ADSORCIÓN DE MEZCLAS TERNARIAS.

Los resultados alcanzados en el estudio del equilibrio ternario se presentaban en las tablas 5.50 a 5.54. En ellas puede observarse que el butanol es el adsorbato que principalmente se adsorbe, desplazando a los otros, disminuyendo la cantidad adsorbida de butanol a medida que lo hace su proporción en la mezcla. La acetona se adsorbe cuando su proporción relativa es elevada, relación inicial etanol/butanol/acetona 1:1:3 y 1:1:5. El etanol no se adsorbe de modo alguno sobre la silicalita o si lo hace es en tan pequeñas cantidades que no son detectables con el método de análisis utilizado, aún forzando su proporción en la mezcla, 3:1:1 y 5:1:1.

Los resultados anteriormente expuestos están totalmente de acuerdo con los efectos de desplazamiento comentados en las isoterams binarias, dejando claramente de manifiesto el efecto de desplazamiento que ejerce el butanol sobre el resto de los adsorbatos. Al no poderse obtener las isotermas de equilibrio en las que se encuentren los tres adsorbatos en la fase sólida, carece de sentido la representación de los puntos de equilibrio resultantes, pues se encontrarían sobre alguno de los ejes del diagrama triangular, haciéndose inviable la predicción del equilibrio ternario mediante los modelos S.A.I. y S.A.R. Sin embargo, se llega a la conclusión de que la silicalita tiene la selectividad suficiente para recuperar el etanol y el butanol procedentes de los caldos de fermentación etanólica y acetobutírica, respectivamente, sin la interferencia de otras sustancias presentes en el medio.

6.5 EXPERIMENTOS CINETICOS EN LECHO FIJO.

6.5.1 Reproducibilidad de experimentos.

A fin de comprobar la reproducibilidad de los experimentos de adsorción en lecho fijo, se realizaron dos experimentos comparativos en idénticas condiciones de operación (tablas 5.97 y 5.98). En la figura 6.38 se representan las curvas de rotura de etanol experimentales sobre silicalita aglomerada a 25°C. Se puede observar que los datos experimentales se ajustan a una única curva, lo que indica que los experimentos son reproducibles.

Para todos los experimentos, el tiempo de la curva de rotura se determinó de la siguiente forma:

$$t = t - t$$
(6.5)

donde:

t_{real} (min): es el tiempo que trascurre desde que se alimenta la mezcla hidroalcohólica con un caudal y concentración conocidos, hasta que la composición de la corriente de salida es igual que la de entrada.

 $t_r(min)$: es el tiempo que tarda la corriente alimento en llenar el volumen muerto de la instalación, determinado como el cociente entre el volumen muerto y el caudal de alimentación.

Interesa en cualquier caso reducir el volumen muerto de la instalación, procurando trabajar con la máxima cantidad de adsorbente, a fin de no enmascarar la curva de rotura obtenida experimentalmente.

6.5 2 Influencia de las variables de operación.

i) <u>Silicalita.</u>

Con el objeto de estudiar las distintas variables de operación (peso de adsorbente, W, caudal de la corriente alimento, Q y composición de la

Fig. 6.38 Curva de rotura de ctanol en silicalita aglomerada: Reproducibilidad de experimentos. Q=2.6 ml/min, W=20 g, $C_o=6 \approx vol$.

corriente de entrada, C_o, se realizaron 32 experimentos, tablas 5.55 a 5.86, modificando las mismas en los valores que se especifican a continuación:

- Peso de adsorbente en el reactor, W (g): W = 20 y 30 g
- Caudal de la corriente alimento, Q (ml/min): Q = 1.0, 1.5, 2.0 y 2.6 ml/min
- Composición de la corriente de entrada, C (%vol): C = 1, 2, 4, 6, 8, 10 y 12 %vol

En todos ellos se utilizó el adsorbente en forma de polvo con un diámetro medio de partícula de 16.5 µm. En las figuras 6.39, 6.40, 6.41, 6.42 y 6.43 se representan las curvas de rotura obtenidas experimentalmente.

Para observar más claramente la influencia de las variables estudiadas, se discuten los resultados en función del parámetro Y (anchura de la curva de rotura, directamente relacionado con la velocidad de adsorción del etanol sobre el tamiz molecular) que se define como el tiempo transcurrido cuando la composición de adsorbato de salida varía desde un 10 hasta un 90 % del valor de entrada.

~ Influencia del peso de adsorbente.

Con el fin de estudiar la influencia de la longitud del lecho en la pendiente de la curva de rotura, se ha trabajado con dos cantidades diferentes de adsorbente (20 y 30 g), fijando el caudal de la corriente alimento en 2.6 ml/min. Observándo las figuras 6.39 y 6.43 se comprueba la elevada pendiente que presentan en ambos casos las curvas de rotura y permaneciendo casi constante a medida que disminuye la concentración inicial de la mezcla hidroalcohólica, como consecuencia de presentar una cinética casi instantánea, tal y como se describió en el apartado 6.1.2., por lo que la influencia de esta variable sobre las formas de las curvas de rotura es prácticamente despreciable en el intervalo estudiado.

Fig. 6.39 Curvas de rotura de etanol sobre silicalita a 25° C en funcion de la concentracion para Q = 2.6 ml/min y y W = 20 g; \circ C_o=1 % vol; \Box C_o=2 % vol; Δ C_o=4 % vol y × C_o=6 % vol.

Fig. 6.40 Curvas de rotura de etanol sobre silicalita a 25° C en funcion de la concentración para Q = 1.0 ml/min y y W = 30 g; \oplus C_o=1 % vol; \oplus C_o=2 % vol; \wedge C_o=4 % vol; \oplus C_o=6 % vol; \bullet C_o=8 % vol; \bullet C_o=10 % vol y \bullet C_o=12 % vol.

Fig. 6.41 Curvas de rotura de etanol sobre silicalita a 25° C en funcion de la concentracion para Q = 1.5 ml/min y y W = 30 g; \odot C₀=1 % vol; \Box C₀=2 % vol; \land C₀=4 % vol; \land C₀=6 % vol; \bullet C₀=8 % vol; \bullet C₀=10 % vol y \blacktriangle C₀=12 % vol.

Fig. 6.42 Curvas de rotura de etanol sobre silicalita a 25° C en funcion de la concentracion para Q = 2.0 ml/min y y W = 30 g; $\odot C_0=1 \text{ g vol}; \Box C_0=2 \text{ g vol}; \Delta C_0=4 \text{ g vol}; \\ \sim C_0=6 \text{ g vol}; \bullet C_0=8 \text{ g vol}; \blacksquare C_0=10 \text{ g vol} \text{ y } \land C_0=12 \text{ g vol}.$

Fig. 6.43 Curvas de rotura de etanol sobre silicatita a 25° C en funcion de la concentración para Q = 2.6 ml/min y y W = 30 g; $\odot C_0=1 \oplus \text{vol}; \odot C_0=2 \oplus \text{vol}; \land C_0=4 \oplus \text{vol};$ $\times C_0=6 \oplus \text{vol}; \bullet C_0=8 \oplus \text{vol}; \bullet C_0=10 \oplus \text{vol}; \vee C_0=12 \oplus \text{vol}.$

- <u>Influencia</u> <u>del caudal.</u>

Esta variable determina el nivel de influencia de la única resistencia del proceso sobre la que se puede actuar a temperatura constante, la difusión externa. En la figura 6.44 se han representado las pendientes de las curvas de rotura (la variable Y representa la anchura de la curva de rotura) para una cantidad fija de silicalita (W = 30 g), frente al caudal (Q = 1, 1.5, 2 y 2.6 ml/min) y un mismo intervalo de concentraciones (C = 1, 2, 6 y 12 %voll. Pueden observarse dos regiones correspondientes a las distintas etapas controlantes del proceso. Para caudales bajos y bajas concentraciones, se observan ciertas limitaciones difusionales, que harían aumentar considerablemente la anchura de la curva de rotura. En el otro extremo existe un valor casi asintótico del parámetro Y, que no podrá disminuirse aumentando el caudal. Este valor de Y correspondería a unas condiciones de operación en que controlase exclusivamente la difusión de etanol en los microporos de la silicalita. Esta circunstancia podría darse a partir de un caudal superior al cual se ha trabajado. En cambio, cuando las concentraciones son altas, la influencia del caudal es muy inferior, siendo da difusión externa despreciable. presentando en casi todos los casos unas cinéticas de adsorción rápidas.

- Influencia de la concentración inicial.

En la figura 6.45, se representan los mismos resultados anteriores, empleando ahora la composición inicial de la mezcla hidroalcohólica (%vol), como abcisa de las curvas y el caudal como parámetro. Análogamente a lo que sucedia con el caudal, las curvas son todas del tipo exponencial decreciente, siendo más acusada la curva que presenta el menor caudal. Se observa que la velocidad de adsorción es lenta para valores pequeños de la concentración inicial (menor pendiente en la curva de rotura), aumentando dicha velocidad al aumentar la concentración. Se deduce por tanto, que el aumento de concentración, lleva consigo un paulatino cambio en la etapa controlante del proceso, pasando de ser significativa la resistencia a la difusión externa (caudales bajos) y la difusión interna en los microporos, para concentraciones pequeñas, a desaparecer prácticamente el control difusional para concentraciones superiores a 10 %vol. En este caso, al ser la velocidad de adsorción tan rápida, las moléculas de etanol saturan el

Fig 6.44 Variacion de la anchura de la curva de rotura con el caudal. Silicalita en polyo. (• $C_0=4$ % vol, $C_0=2$ % vol, $C_0=6$ % vol, $C_0=12$ % vol).

Fig 6.45 Variacion de la anchura de la curva de rotura con la concentracion inicial. Silicalita en polvo. ($\circ Q=1.0 \text{ ml/min}$, $\bullet Q=1.5 \text{ ml/min}$, $\oplus Q=2.0 \text{ ml/min} \text{ y} = Q=2.6 \text{ ml/min}$).

lecho a su paso de forma instantánea (flujo pistón), obteniéndose unos tiempos de rotura que prácticamente coinciden con los tiempos de residencia del paso del fluido a través del lecho de adsorbente. A modo de ejemplo en la figura 6.46 se representan los tiempos de rotura (t) frente a la concentración (C) para unos caudales de trabajo de 1 y 2.6 ml/min. Se observa que los tiempos de rotura aumentan al disminuír tanto la concentración ínicial como el caudal.

ii) Silicalita Aglomerada.

Un tamaño de partícula tan pequeño como el que tiene la silicalita en polvo (dp = 16.5 μ m), provoca una elevada pérdida de carga en el interior del lecho, lo cual es un inconveniente para su utilización a escala industrial. Por ello se procedió a la aglomeración de la silicalita con un 35 % en peso de montmorillonita sódica, tal y como se describe en el apartado 9.1 del apéndice. En el apartado 6.2.3 se presenta la isoterma de etanol sobre silicalita aglomerada a 25°C, así como los parámetros de las ecuaciones teóricas propuestas por Langmuir. Freundlich y Prausnitz (tabla 6.10), descritas en el apartado 2.5.1 de ja introducción.

Para estudiar la influencia de las variables de operación, sobre la forma de las curvas de rotura de etanol sobre silicalita aglomerada a 25°C, se realizaron un total de 13 experimentos y todos ellos sobre la misma cantidad de adsorbente, la cual se fijó en 20 g.

Las variables de estudio fueron por tanto el caudal y la composición de la corriente de entrada, modificando las mismas en los valores que a continuación se especifican:

- Caudal de la corriente alimento, Q (ml/min): Q = 1.0 y 2.6 ml/min
- = Composición de la corriente de entrada, C (%vo;): C = 1, 2, 4, 6, 8, 10 y 12 %vol

En todos ellos se utilizó el adsorbente aglomerado con un diámetro de partícula medio de 0.75 mm. En las figuras 6.47 y 6.48 (tablas 5.87 a 5.100)

Fig 6.46 Variation del tiempo de rotura con la concentration inicial. Silicalita en polvo. (\bullet Q=1.0 ml/min, \Box Q=2.6 ml/min).

23

Fig. 6.47 Curvas de rotura de etanol sobre silicalita aglomerada a 25° C en funcion de la concentración inicial para Q=1.0ml/min y W = 20 g; $\odot C_0=1 \text{ g vol}; \Box C_0=2 \text{ g vol}; \land C_0=4 \text{ g vol};$ $\times C_0=6 \text{ g vol}; \bullet C_0=8 \text{ g vol}; \bullet C_0=10 \text{ g vol} \text{ y } \land C_0=12 \text{ g vol}.$

Fig. 6.48 Curvas de rotura de ctanol sobre silicalita aglomerada a 25° C en funcion de la concentración inicial para Q=2.6ml/min y W = 20 g; \odot C_o=1 % vol; \Box C_o=2 % vol; \triangle C_o=4 % vol; $C_{o}=6 \%$ vol; \bullet C_o=8 % vol; \bullet C_o=10 % vol se representan las curvas de rotura experimentales de la forma concentración adimensional, C/C_{o} , frente al tiempo, t. De forma similar a como se hizo para la silicalita sin aglomerar, se estudió la influencia de estas variables sobre el valor del parámetro Y (anchura de la curva de rotura).

- Influencia del caudal.

En la figura 6.49 se han representado las anchumas de las curvas de rotura (Y) frente al caudal (Q = 1 y 2.6 ml/min) para distintas concentraciónes iniciales de adsorbato (C = 1, 2, 6 y 10 \times vol). En realidad. las rectas mostradas en la figura deberían ser curvas, análogas a las obtenidas con la silicalita pura (figura 6.44). Sin embargo, al tener sólamente dos puntos en la representación (caudales máximo y mínimo), se ha preferido representarlo así para mayor claridad. Puede observarse que para caudales pequeños (Q = 1 ml/min) la resistencia a la difusión del etanol en la película que rodea las partículas de adsorbente es significativa, teniendo más importancia cuanto menor es la concentración inicial de la mezcla. En cambio, al aumentar el caudal, el parámetro Y disminuye. En nuestro caso, para concentraciones altas, ese valor de Y correspondería a la resistencia a la difusión de etanol en los poros de partícula de silicalita aglomerada, en cambio cuando la concentración es del 1 %vol, las etapas controlantes del proceso serían dos, por un lado la resistencia a la difusión externa y por otro la resistencia a la difusión en los poros del adsorbente.

- Influencia de la concentración inicial.

En la figura 6.50 se representa el valor del parámetro Y frente a la composición incial de la mezcla expresada en % vol. En dicha gráfica se puede observar que la anchura de la curva de rotura disminuye con la concentración inicial. Asímismo, para bajas concentraciones, se observan ciertas limitaciones difusionales, que hacen disminuir de forma considerable la pendiente de la curva de rotura; en cambio en el otro extremo, las curvas vuelven a tender hacia un valor asintótico.del parámetro Y, correspondiente a unas condiciones de operación en las que sólo controla la difusión de etanol en los poros de la partícula aglomerada. Estos resultados son análogos a los obtenidos con la silicalita pura, en polvo.

Fig. 6.49 Variacion de la anchura de la curva de rotura con el caudal. Silicalita aglomerada. ($\sim C_0=1$ % vol, $\odot C_0=2$ % vol, $\bullet C_0=6$ % vol, $\sim C_0=12$ % vol).

Fig 6.50 Variacion de la anchura de la curva de rotura con la concentracion inicial. Silicalita aglomerada. (•Q=1 ml/min, $\cup Q=2.6$ ml/min).

En la figura 6.51 se representan los tiempos de rotura frente a la concentración para los diferenctes caudales de alimentación de la mezcla hidroalcohólica. Se observa que los tiempos de rotura disminuyen de forma exponencial al hacerlo la concentración inicial, tendiendo en ambos casos a un valor asintótico. Para un mismo valor de la concentración inicial, los tiempos de rotura aumentan al disminuir el caudal como consecuencia de la menor velocidad de saturación del lecho. Análogo efecto se observó para la silicalita en polvo, obteniéndose sin embargo mayores tiempos de rotura al haber experimentado con una altura de lecho superior (mayor cantidad de adsorbente).

6.5.3 Predicción de los tiempos y curvas de rotura.

Para la predicción de los tiempos y curvas de rotura, se planteó un modelo matemático basado en el coeficiente global de transferencia de materia, que no tiene en cuenta la dispersión axial ni la acumulación de etanol en el líquido en el interior de las partículas y que está constituido por las siguientes ecuaciones diferenciales , con las siguientes condiciones límite:

- Balance de materia del componente que se transfiere, en la fase líquida, en un elemento diferencial del lecho:

$$v - \frac{\partial C}{\partial z} + c_{i} - \frac{\partial C}{\partial t} + \rho_{i} - \frac{\partial n}{\partial t} = 0 \qquad (6.6)$$

- La acumulación de adsorbato en la fase sólida se puede expresar en función del flujo del componente que se difunde en el interior de la partícula de silicalita, mediante la ecuación:

$$\rho_{p} = \frac{\partial n}{\partial t} = \frac{3 c_{p}}{R} \mathcal{D}_{1} \left[\frac{\partial \overline{C}}{\partial r} \right]_{r=\overline{N}}$$
(6.7)

 Relación entre la concentración de adsorbato en el interior de los poros con la del exterior a través del coeficiente de transferencia de materia k , mediante la ecuación:

$$\mathbf{k}_{e} \left[\begin{array}{c} \varepsilon_{1} \\ 1 - \varepsilon_{1} \end{array} \mathbf{C} - \varepsilon_{p} \overline{\mathbf{C}} \end{array} \right] = \varepsilon_{p} \mathcal{D}_{i} \left[\begin{array}{c} \frac{\partial \overline{\mathbf{C}}}{\partial r} \\ \frac{\partial r}{\partial r} \end{array} \right]_{r \in \overline{\mathbf{R}}}$$
(6.8)

Fig 6.51 Variacion del tiempo de rotura con la concentracion inicial. Silicalita aglomerada. (• Q=1.0 ml/min, o Q=2.6 ml/min).

Т

- La relación entre el coeficiente de transferencia de materia externa, \mathbf{k}_{\perp} , y el coeficiente de difusión, \mathcal{D}_{\perp} , viene dada por la ecuación:

$$\frac{1}{K} = \frac{1}{k} + \frac{\delta}{\mathcal{D}_{+}}$$
(6.9)

donde K es el coeficiente global de transferencia de materia.

- La concentración de adsorbato en el líquido que llena los poros estará relacionada con la concentración de éste en la fase sólida mediante la isoterma de equilibrio de Freundlich. Se eligió esta ecuación por la posibilidad de poder expresar C = f(n); y ser facilmente derivable:

$$n = b C^{1/e}$$
 (6.10)

Condiciones límite:

t = 0	0 < z < L	C = n = 0	(6.11)
t ≥ 0	z = 0	C = C	(6.12)

siendo:

- v = velocidad media superficial del líquido referida a la sección total del lecho vacio (m/s).
- C = Concentración de adsorbato en la fase líquida (%vol).
- n = Concentración del adsorbato en la fase adsorbida (mg/g).
- t = tiempo (min).
- z =altura de lecho (m).
- $\rho_{,}$ = densidad de lecho (g/m³).
- $\varepsilon_i = \text{porosidad} \text{ de lecho.}$
- $\rho_{\rm e}$ = densidad de particula (g/m³).
- \overline{C} = concentración de adsorbato en el interior de los poros del adsorbente (%vol).

R = radio medio de las partículas de adsorbente (m).

- D_i = coeficiente de difusión interno (cm²/s).
- δ = longitud media de difusión de las moléculas de etanol en el interior del adsorbente (cm).

El desarrollo y resolución detallados del modelo matemático se presentan en el apéndice 9.5. La resolución de las ecuaciones diferenciales que constituyen el modelo matemático junto con las condiciones límite, se realizó mediante la aproximación de incrementos finitos, combinado con el Algoritmo de Marquardt de regresión no lineal (apartado 9.6). El programa de cálculo utilizado (apéndice 9.7) genera curvas de rotura para diferentes valores del coeficiente global de transferencia K, que comparadas con la correspondiente curva cinética experimental, permiten la determinación de dicho coeficiente. Así se seleccionaron los coeficientes de transferencia de materia, K, que minimizaban los errores relativos entre los valores experimentales y teóricos de la concentración de etanol a la salida del lecho fijo en función del tiempo, para cada uno de los experimentos.

i) Silicalita.

En la tabla 6.18 se muestran los valores del coeficiente global de transferencia de materia, K, así como el error medio de cada experimento. calculado mediante la ecuación:

$$E_{g} = \frac{\sum_{i=1}^{N} (C_{i}^{P} - C_{i}) \times C_{i}}{N}$$
(6.13)

siendo $C_i^P \ge C_i$, las concentraciones de etanol a la salida del lecho fijo para cada tiempo predichas por el modelo y experimentales respectivamente y N el numero de observaciones hechas en cada experimento. Tambien se incluyer los valores del coeficiente de difusión \mathcal{D}_i , que se determinan como se indica más adelante.

Como se puede observar, los valores del coeficiente global de transferencia de materia K, presentan un valor casi constante en el intervalo experimental de caudales y concentraciónes investigado. Lo que es indicativo de que la etapa controlante del proceso de adsorción es la difusión interna $(k_e > k_j)$ Con el fin de corroborar dicha suposición se procedió al calculo del coeficiente de transferencia de materia externo (k_e) en lecho fijo, mediante la correlación de Gamson B.W. y col., 1943):

TABLA 6.18

COEFICIENTES GLOBALES DE TRANSFERENCIA DE MATERIA.

Y DE DIFUSION INTERNA.

Q (ml/min)	۲ ۲ ۲	K (can.∕s)	$\mathfrak{D}_{i} * 10^{9}$ (cm ² /s)	E (%)
······································				
1.0	4	7.680E-6	1.556	10.5
1.0	6	4.220E-6	0.854	4.9
1.0	8	S. 725E-6	1.159	8.0
1.0	10	4.534E-6	0.918	8.6
· · · · · · · · · · · · · · · · · · ·				
1.5	4	1.783E-5	3.611	7.1
1.5	6	9.890E-6	2.003	4.5
1.5	8	1.677E-5	3.396	12.4
2.0	4	9.855E-6	1.996	11.0
2.0	6	1.534E-5	3, 105	8.1
2.0	8	1,209E-5	2.448	9.4
2.6	2	1.049E-5	2.124	4.9
2.6	4	9.062E-6	1.835	8,0
2.6	6	2.404E-5	4.868	8.5
$$\frac{k}{\underline{D}} = 2 + 1.1 \left[\frac{(\mu/\rho)}{\underline{D}_{AB}} \right]^{1/3} \left[\frac{d}{\underline{P}} \frac{V c}{\mu} \rho \right]^{0.6} (6.15)$$

donde:

k_e: coeficiente de transferencia de materia externa (cm/s).
d_p: diâmetro de partícula (cm).
D_{AB}: difusividad del etanol en agua (cm²/s).
μ : viscosidad (cp).
ρ : densidad (g/cm³).
V : velocidad del fluido referida a la sección transversal de la columna (cm/s).

 ε_i : porosidad del lecho.

El cálculo de la difusividad del etanol en agua (\mathcal{D}_{AB}) , viene descrito en el apartado 9.2 del apéndice. En la tabla 6.19 se presentan los valores del coeficiente de transferencia de materia externa obtenidos mediante la ecuación 6.15.

TABLA 6.19

COEFICIENTES DE TRANSFERENCIA DE MATERIA EXTERNA.

Q (ml/min)	k * 10 ² (cm/s)
1.0	1.37
1.5	1.78
2.0	1.79
2.6	1.80

Al ser el coeficiente de transferencia de materia externa mayor que el coeficiente de transferencia de materia interna $(k_1 = D_1/\delta)$, la ecuación 6.9 queda de la siguiente manera, expresando el control de la difusión interna:

$$K \approx k_{i} = \frac{\mathcal{D}_{i}}{\delta} = \frac{4 \mathcal{D}_{i}}{R}$$
(6.16)

ecuación que permite calcular los coeficientes de difusión interna (\mathcal{D}_i) (tabla 6.18) a partir del coeficiente de transferencia global. Estos valores de los coeficientes de difusión interna, son del mismo orden de magnitud que los obtenidos en otros estudios (Ma, Y.H. y col.; 1983).

A modo de ejemplo en las figuras 6.52 a 6.55 se representan las curvas de rotura de etanol sobre silicalita a 25°C obtenidas experimentalmente, y las predichas por el modelo. Como se observa, este modelo simplificado reproduce muy bien los resultados experimentales con un error inferior al 12.4 %.

For último, se calculó un valor medio ponderado de dicho coeficiente mediante la ecuación:

$$\frac{\sum_{j=1}^{N} D_{j} (100 - E_{j})}{\sum_{j=1}^{N} (100 - E_{j})}$$
(6.17)

siendo, $\overline{\mathcal{D}_i}$, el coeficiente de difusión medio, \mathcal{D}_i , el coeficiente de difusión calculado para cada experimento, E_{m} , el error medio para cada experimento y N el número de experimentos, obteniéndose así el valor de :

$$\overline{D}$$
 = 2.291 • 10⁻⁹ cm²/s

11) Silicalita Aglomerada.

Las curvas de rotura de etanol sobre silicalita aglomerada a 25°C obtenidas experimentalmemte, fueron igualmente reproducidas mediante el

242

Fig. 6.52 Curva de rotura de etanol sobre silicalita en polvo a 25° C experimental (Q=1.0 ml/min, W=30 g y C_o=6 \approx vol) y predicha por el modelo (K=4.220 E-6 cm/s, E_m=4.9 %).

Fig. 6.53 Curva de rotura de etanol sobre silicalita en polvo a 25°C experimental (Q=1.5 ml/mín, W=30 g y $C_o=6 \times \text{vol}$) y predicha por el modelo (K=9.890 E-6 cm/s, $E_m=4.5 \times$).

Fig. 6.54 Curva de rotura de etanol sobre silicalita en polvo a $25^{\circ}C$ experimental (Q=2.0 ml/min, W=30 g y C_o=6 % vol) y predicha por el modelo (K=1.534 E-5 cm/s, E_m=8.1 %).

Fig. 6.55 Curva de rotura de etanol sobre silicalita en polvo a 25° C experimental (Q=2.6 ml/min, W=30 g y C_o=6 *vol) y predicha por el modelo (K=2.404 E-5 cm/s, E_m=8.5 *).

modelo anteriormente descrito, presentado con mayor detalle en el apéndice (apartados 9.5, 9.6 y 9.7).

Como consecuencia de la aglomeración de los cristales de zeolita con montmorillonita sódica, el diámetro de partícula del adsorbente ha variado considerablemente, pasando de 16.5 μ m a 0.75 mm. La resistencia de la película en la superficie de una partícula (k_e), depende de numerosos factores, tales como la velocidad relativa entre la partícula y el fluido, las propiedades del fluido y del tamaño de partícula. Así, mediante la ecuación 6.15, se obtuvieron los coeficientes de transferencia de materia en lecho fijo en estas nuevas condiciones (zeolita aglomerada). En la tabla 6.20 se presentan sus correspondientes valores.

TABLA 6.20

COEFICIENTES DE TRANSFERENCIA DE MATERIA EXTERNA. (Silicalita aglomerada)

Q (ml∕min)	k *10 ⁴ (cma/s)
1.0	5.0840
1.5	5. 4597
2.0	5.7875
2.6	6.1416

A la vista de esta tabla, y dada la pequeña variación del coeficiente de transferencia de materia en la película externa dentro del intervalo de caudales estudiado, se calculó un valor medio del coeficiente, que resultó ser

 \overline{k} = 5.618 * 10⁻⁴ cm/s

Comparando éste valor con el obtenido para la silicalita en polvo, se observa que es dos órdenes de magnitud inferior a los de la tabla 6.19, debido a que además de ser dependiente de la velocidad de paso del fluido por la sección transversal del lecho, lo es también del diametro de partícula.

En la tabla 6.21 se presentan los valores del coeficiente global de transferencia de materia así como el error medio de cada experimento, calculado mediante la ecuación 6.13. Se observa que dicho coeficiente no permanece constante en el rango de caudales estudiados, siendo mayor cuanto mayor es el caudal. Esto indica que existen dos etapas controlantes en el proceso, por un lado la resistencia de la película en la superficie del adsorbente y por otro la difusion interna, a diferencia de lo que ocurria con la silicalita pura.

La relación entre ambas resistencias viene dada por la misma ecuación 6.9, la cual queda de la siguiente forma

$$\frac{1}{K} = \frac{1}{k_{\perp}} + \frac{R}{4\mathcal{D}}$$
(6.9)

a partir de la cual se pueden obtener los coeficientes de difusión interna $\langle T_{j} \rangle$, que se resumen también en la tabia 6.21.

Puede observarse que los valores de los coeficientes de difusión interna obtenidos para la silicalita aglomerada, son mucho mayores (menor resistencia difusional) que los de la silicalita en polvo. En realidad, dichos coeficientes de difusión interna, en el caso de la silicalita aglomerada, son el resultado de la contribución de la difusión tanto en los cristales de la zeolita, como en los macroporos de la partícula aglomerada, (este último efecto pierde su significación en el caso de la zeolita pura en polvo, sin aglomerante) (tabla 9.4). Esta diferencia de resultados puede explicarse teniendo en cuenta que se ha aplicado un modelo matemático deducido para un modelo microporoso, a un adsorbente con micro y macroporosidad, por lo que el valor del coeficiente de difusión deducido será el de la partícula considerada como un todo y no solo el debido a la resistencia difusional en los microporos de la silicalita. En dicha partícula, la resistencia a la difusión del etanol en los macroporos es

24P

TABLA 6.21

COEFICIENTES GLOBALES DE TRANSFERENCIA DE MATERIA.

Y DE DIFUSION INTERNA.

Q (m1/min)	C (%vol)	K (cmu/s)	D _i *10 ⁶ (cm²/s)	E (%)
			<u> </u>	
1.0	2	1.476E-4	1.877	15.3
1.0	4	1.792E-4	2.467	9. 3
1.0	6	2.463E-4	4.112	13.9
1.0	8	2.233E-4	3.474	10.3
1.0	10	2.477E-4	4.153	12.5
1.0	12	2.645E-4	4.686	13.4
2.6	1	2.727E-4	4.968	15.2
2.6	2	3.089E-4	6.433	6.6
2.6	4	5.035E-4	45.473	10.2
2.6	6	2.208E-4	3.410	10.9
2.6	8	1.707E-4	2.298	10.3
2.6	10	3.890E-4	11.856	12.1

(Silicalita aglomerada)

menor que las correspondientes en los microporos. Asimismo, la fracción másica de silicalita es menor y, debido al proceso de aglomeración, su capacidad de adsorción puede haber disminuido, al quedar parte de su estructura porosa bloqueada. Todo ello explicaría la diferencia tan grande de valores obtenidos para uno y otro adsorbente.

A modo de ejemplo, en las figuras 6.56 y 6.57 se representan ias curvas de rotura de etanol sobre silicalita aglomerada a 25°C, obtenidas tanto experimentalmente como predichas por el modelo, observándose una reproducibilidad aceptable de los resultados experimentales con un error en todos ellos inferior al 15.3 %.

Fig. 6.56 Curva de rotura de etanol sobre silicalita aglomerada a 25°C experimental (Q=1.0 ml/min, W=20 g y C_{σ} =6 % vol) y predicha por el modelo (K=2.463 E-4 cm/s, \mathbb{E}_m =13.9 %).

Fig. 6.57 Curva de rotura de etanol sobre silicalita aglomerada a 25°C experimental (Q=2.6 ml/min, W=20 g y $C_{p}=6 \approx vol$) y predicha por el modelo (K=2.208 E-4 cm/s, $E_{m}=10.9 \approx$).

7. Conclusiones.

7. CONCLUSIONES

De los resultados obtenidos en la presente investigación sobre la adsorción de mezclas etanol-agua sobre adsorbentes selectivos, se deducen las siguientes conclusiones:

 A la vista de las isotermas de adsorción experimentales de etanol sobre carbón activado y tamices moleculares a diferentes temperaturas, el adsorbente más recomendable resultó ser la silicalita, por las siguientes razones:

- El etanol adsorbido en el equilibrio no depende de la concentración inicial de etanol existente en la disolución.

- Las isotermas de adsorción son independientes de la temperatura, deduciéndose una débil interacción entre las moléculas de etanol y los centros activos del adsorbente.

 Debido a su alta relación silice/alúmina, es un adsorbente hidrófobo.

- La glucosa no se adsorbe debido a su gran tamaño molecular.

2) De las isotermas de adsorción obtenidas para el etanol, butanol y acetona sobre silicalita a 25° C, el componente que más se adsorbe es el butanol, con 110 mg/g, seguido por el etanol, 104 mg/g y la acetona con 80 mg/g. El orden de capacidades de adsorción obtenido se explica en función de la mayor insolubilidad del butanol y la mayor polaridad de la molécula de acetona.

3) De las ecuaciones teóricas utilizadas para el ajuste de los datos de equilibrio experimentales de los componentes puros, es la ecuación de Prausnitz la que conduce a un mejor ajuste, siendo el error inferior a un 2.1%.

4) Del estudio de los sistemas binarios se comprueba la existencia de un efecto de desplazamiento del butanol sobre la acetona y el etanol, y de la acetona sobre el etanol.

5) El modelo de la Solución Adsorbida Ideal (S.A.L.) conduce a una buena predicción para el sistema etanol-acetona, mostrando gran error para los sistemas etanol-butanol y butanol-acetona, lo cual pone de manifiesto el comportamiento no ideal de estas mezclas en la fase adsorbida.

6) El modelo de la Solución Adsorbida Real (S.A.R.) conduce a una buena reproducción de los datos experimentales, por tener en cuenta la no idealidad de las mezclas adsorbidas (etanol-butanol y butanol-acetona).

7) El estudio del sistema ternario pone nuevamente de manifiesto el gran efecto de desplazamiento que ejerce el butanol sobre los demás adsorbatos, por lo que la silicalita posee la selectividad necesaria para separar este producto de los caldos de fermentación en presencia de otros adsorbatos.

8) De las curvas de rotura de etanol sobre silicalita a 25°C, se deduce que la velocidad de adsorción es instantánea. Asímismo, la resistencia a la difusión externa es despreciable en el intervalo de caudales experimentales, debido al pequeño tamaño de partícula del adsorbente, siendo por tanto la difusion de etanol en los microporos de la silicalita, la etapa controlante.

254

9) A la vista de las curvas de rotura experimentales de etanol sobre silicalita aglomerada a 25°C se deduce la existencia de dos etapas controlantes, por un lado la correspondiente a la difusión externa y por otro la de la difusión interna.

10) El modelo cinético simplificado, basado en el coeficiente global de transferencia de materia y propuesto para realizar la simulación del lecho fijo, reproduce satisfactoriamente las curvas de rotura experimentales de etanol a 25°C, especialmente en el caso de la silicalita pura. Los máximos errores en el caso de la silicalita aglomerada no superan el 15 %.

11) Los resultados y conclusiones alcanzados en este estudio demuestran la viabilidad y atractivo de la silicalita, tamiz molecular hidrófobo, para la separación del etanol, por adsorción, de las mezclas en que se encuentra como resultado de los procesos de fermentación industriales.

8. RECOMENDACIONES

 Obtención de curvas de rotura de los otros adsorbatos utilizados (butanol y acetona) sobre silicalita, esi como de sus mezclas.

2. Plantear modelos cinéticos más rigurosos que permitan la obtención de los coeficientes de difusión de los diferentes adsorbatos sobre silicalita aglomerada a través de los macroporos del aglomerante y de los microporos de los cristales de zeolita , así como del coeficiente de transferencia de materia externa.

25 F

9. APENDICE.

9.1 CARACTERISTICAS DE LOS ADSORBENTES.

9.1.1 Carbón Activado.

Dicho adsorbente granulado, sin forma geomètrica definida y con un diàmetro nominal de 1.5 mm, fuè fabricado por Lurgi y suministrado por la casa Merck, cuyas características más importantes se detallan a continuación.

i) Densidad Aparente.

Se determinó por picnometría de mercurio en un porosímetro AMINCC 5-7137, después de permanecer 48 horas en estufa a 110 °C. El valor obtenido fue:

$$\rho_{\rm p} = 0.67 \, {\rm g/cm}^3 \, {\rm de} \, {\rm partícula}$$

11) Volumen de poros y porosidad de partículas.

Para su determinación se empleó una modificación de la técnica descrita por Satterfield (Hassler, 1974). Se pesaba una determinada cantidad W (g) de carbón activado que se sometía a ebullición con agua destilada en un matraz aforado durante media hora; a continuación, se dejaba enfriar y se enrasaba con agua destilada hasta 100 cm³, obteniéndose un peso P_i. Posteriormente, se pesaba el mismo matraz lleno únicamente de agua hasta 100 cm³, obteniéndose un peso P₂. El volumen de poros se determinaba mediante el siguiente balance de materia:

siendo ρ_1 , la densidad del agua a la temperatura de trabajo. El valor obtenído para la fracción utilizada fue de:

La porosidad se calculó mediante la expresión:

$$\varepsilon_{\mathbf{p}} \neq \Psi_{\mathbf{p}} = \rho_{\mathbf{p}} = 0.615 \text{ cm}^3 \text{ poro/cm}^3 \text{ particula}$$
 (9.3)

De aqui se deduce la densidad real del sólido:

$$\rho_{\rm R} = \frac{1}{\frac{1}{\rho_{\rm p}} - v_{\rm p}} = 1.662 \text{ g/cm}^3 \text{solido}$$
(9.4)

<u>iii)</u> Distribución de <u>tamaño</u> de <u>poros</u> y <u>superficie</u> <u>específica</u> de las <u>partículas</u>.

Se determinaron mediante la técnica de porosimetría de mercurio para diámetros mayores de 30 Å. Se basa en la existencia de una relación entre el tamaño de los poros que son penetrados por el mercurio y la presión ejercida sobre el sistema, según la relación:

$$P = \frac{2 \gamma \cos \theta}{r}$$
(9.5)

siendo γ la tensión superficial, θ el ángulo de contacto y r el radio de poro. De esta forma, se puede determinar la distribución del volumen de poros a partir del volumen acumulado que penetra en la muestra al aumentar la presión. El resultado obtenido fue:

$$V_{p} = 0.638 \text{ cm}^{3} \text{ porc/g}$$

Superficie específica =
$$127 \text{ m}^2/\text{g}$$

La superficie específica total se determinó por el método B.E.T. en un aparato DIGISORB 2500, resultando ser de 1400 m^2/g , lo cual indica, comparando con el valor obtenido mediante porosimetria de mercurio, que la mayor parte de dicha superficie corresponde a poros de diametro inferior a 30 Å.

La representación del volumen acumulado de poros frente al diámetro de los mismos se muestran en la figura 9.1. De ella puede establecerse la siguiente distribución de tamaño de poros:

TABLA 9.1

DISTRIBUCION DE TAMAÑOS DE PORO DEL CARBON ACTIVADO

	Diáme	tro	de	ро	ro (Å)	$V_p(cm^3/g)$
Volumen de empaquetamiento			θ	>	10000	0.35
Macroporos	10000	>	θ	>	500	0.12
Mesoporos	500	>	е	Þ	20	0.16
Microporos	20	>	8			0.32

Figura 9.1 Distribución de Lamaños de poro del carbón activado utilizado.

9.1.2 Zeolitas.

Se utilizaron zeolitas tipo ZSM-5 de diferente relación Sílice/Alúmina y Silicalita, sintetizadas en el Departamento de Ingeniería Química de la Facultad de Ciencias Químicas de la Universidad Complutense de Madrid (Blanes, 1985).

1) Análisis guímico de las zeolitas.

- Determinación de silicio.

Para el análisis cuantitativo de la cantidad de silicio en la zeolita se ha utilizado el método gravimétrico; este método se basa en la diferencia de peso de la muestra antes y después de ser tratada con ácido fluorhídrico. Dicho ácido reacciona con el silicio formándose tetrafluoruro de silicio que se desprende en forma de humos blancos.

- Determinación de aluminio.

El análisis cuantitativo de la cantidad de aluminio se efectuó por espectroscopía de absorción atómica, utilizando un aparato INSTRUMENTATION LABORATORY AA/AE SPECIROPHOTOMETER Modelo 357.

Las condiciones en que se llevaron a cabo los análisis fueron:

- Intensidad: 8 mA.
- Longitud de onda: 309.3 nm.
- Anchura de rendija: 320 nm.
- Llama: óxido de nitrógeno-acetileno. Rica en fuel.

Para posibilitar el análisis las muestras de zeolita fueron disueltas con ácido fluorhídrico; diluyéndose a continuación hasta que la concentración de alumínio fuese menor de 50 ppm, con el fin de analizar siempre dentro del intervalo de respuesta lineal.

En la siguiente tabla se presenta el resultado del análisis químico de las zeolitas:

9. Apendice.

TABLA 9.2

ANALISIS QUINICO DE LAS ZEOLITAS

Relación molar	Silicalita	2SM-5 (a)	ZSM-5 (b)	
5102/A1203	149	56	24	

<u>ii) Caracterización física de las zeolítas.</u>

- Difracción de rayos X.

Para la determinación del grado de cristalinidad de las zeolitas se utilizó un difractómetro de polvo SIEMENS KRISTALLOFLEX 0500, provisto de contador de centelleo y cristal analizador de FNA. La radiación utilizada fué la CuK α con filtro de Ni. El difractómetro está conectado a un microordenador DACO-MP V2.1 con salida grafica de resultados a traves de una impresora LETTERWRITER 100

De acuerdo con las características de las muestras a analizar, se fijaron los siguientes parametros:

- Voltaje: 40 KV.
- Intensidad: 20 mA.
- Rendijas: 1°, 1°, 1°, 0.15°.
- Tamaño del paso: 0.1 grados de 20.
- Tiempo de contaje por paso: 15.
- Sensibilidad: 4 x 10³ imp/s.
- Velocidad del goniómetro: 2º/min.
- Velocidad del registro: 1 cm/min

En la siguiente tabla se indica el grado de cristalinidad de las zeolitas utilizadas:

TABLA 9.3

CRISTALINIDAD DE LAS ZEOLITAS

	Silicalita	ZSX-5 (а)	25N-5 (b)
Cristalinidad (%)	99.5	99.0	99.0

En las figuras 9.2, 9.3 y 9.4 se muestran los difractogramas de Rayos X de las zeolítas.

~ Microscopía electrónica de barrido.

Las microfotografías de las muestras de zeolita se realizaron con un microscópio electrónico de barrido PHILIPS modelo SEM-505. En todos los casos se trabajó con una tensión aceleradora de 25 KV. Dado el carácter aislante del material, y para hacer factible la absorción electrónica, las muestras se metalizan con polvo de oro.

En las figuras 9.5, 9.6 y 9.7 se presentan las microfotografías de las zeolitas utilizadas como adsorbentes.

- Distribución de tamaños de partícula.

La distribución de los tamaños de partícula de las zeolitas se determinó con un granulómetro de laser CILAS modelo 715, en el laboratorio de la factoría de Portland Valderribas. Previamente al análisis, las muestras en suspensión fueron sometidas a un tratamiento con ultrasonidos para asegurar la total disgregación hasta el tamaño de partícula.

En las gráficas 9.8, 9.9 y 9.10 se presenta la distribución de tamaños de partícula para cada una de las zeolítas utilizadas como adsorbente; de laforma porcentaje en peso de zeolíta en cada intervalo frente al tamaño de los mismos, en micras.

263

Intensidad (mA)

28

Figura 9.2 Patrón de difracción de Rayos X de la Silicalita.

Figura 9.3 Patrón de difracción de Rayos X de la 25M-5 (a).

Figura 9.4 Patrón de difracción de Rayos X de la ZSM-5 (b).

Figura 9.5 Microfotografías de la silicalita.

Figura 9.6 Microfotografía de la ZSM-5 (a) (Si/Al = 56).

Figura 9.7 Microfotografía de la ZSM-5 (b) (Si/Al = 24).

Figura 9.8 Distribución de Tamaño de Partícula de la silicalita.

Figura 9.9 Distribución de Tamaño de Partícula de la ZSM-5 (a) (Si/Al = 56)

9. Apéndire.

Figura 9.10 Distribución de Tamaño de Partícula de la ZSM-5 (b) (Si/A) = 24).

- Densidad aparente, Densidad real y Volumen total de poros.

Dichas características se determinaron, para la silicalita y silicalita aglomerada, mediante picnometría de mercurio en un porosímetro Micromerítics modelo 9310, en el Departamento de Microestructura de la empresa Repsol Petróleo, siendo los resultados obtenidos los presentados en la tabla 9 4:

TABLA 9.4

Adsorbente	Densidad aparente (g/cc)	Densidad real (g/cc)	Volumen total de poros (cc/g)
Silicalita	0.9200	1.1350	0.2100
Silicalita aglomerada	0.9834	1.8167	0 4664

DENSIDADES Y VOLUMENES DE PORO

iii) Propiedades del lecho.

- Densidad.

La densidad del lecho se determinó de la siguiente forma: se coloca, formando un lecho fijo en la columna, una cierta cantidad de adsorbente, W, midiéndose a continuación la altura del lecho formado, L. Conocida la sección del lecho, A, se puede deducir la densidad del lecho $\rho_{\rm c}$.

$$\rho_{1} = \frac{Peso \ de \ adsorbente}{Volumen \ del \ lecho} = \frac{W}{LA}$$
(9.6)

representándose los valores obtenidos en la tabla 9.5.

+ Porosidad.

Se determinó por la siguiente ecuación, fácil de deducir:

 $\varepsilon_1 = \frac{\text{Volumen de huecos}}{\text{Volumen de lecho}} = \frac{LA - W \neq \rho_p}{LA}$ (9.7)

.

representándose estos valores también en la tabla 9.5.

TABLA 9.5

DENSIDAD Y POROSIDAD DE LECHO

Adsorbente	Densidad de lecho (p _i) (g∕cc)	Porosidad (E ₁) (cc huecos/cc lecho)
Silicalita	0 7142	0.2236
Silicalita aglomerada	0 5810	0.4091

111) Técnica de aglomeración de la Zeolita.

El agente utilizado para aglomerar la zeolita es montmorillonita sódica. Fara ello, la arcilla se diluye en agua manteniéndose la suspensión con agitacion constante durante una hora. Se añade una suspensión acuosa de zeolita en la proporción adecuada para que el porcentaje de la misma sea un 65 % respecto del peso total de catalizador y se mantiene la mezcla a una temperatura de 60°C durante otra hora.

Una vez conseguida la homogeneidad de la mezcla, se filtra y se seca a 110°C en estufa durante 18 horas. El sólido filtrado y seco se tamiza hasta conseguir un tamaño de partícula comprendido entre 0.5 y 1 mm y se calcina a 550°C durante 14 horas a fin de destruir la estructura cristalina de la arcilla y aumentar su resistencia mecánica.

9.2 CALCULO DE LA DIFUSIVIDAD MOLECULAR DEL ETANOL EN AGUA.

Para el cálculo de los coeficientes de difusión libre (difusividad molecular) dei etanol en agua, se ha utilizado la correlación de Wilke y Chang (Wilke y Chang, 1955), que resulta ser una modificación de la ecuación de Stokes-Einstein:

$$\mathcal{D}_{AB}^{0} = 7.4 \cdot 10^{-8} \frac{(\phi M_{B})^{0.5} T}{\mu_{B} V_{A}^{0.6}}$$
(9.8)

donde:

- ϕ : Factor de asociación del disolvente B (adimensional).
- M_n: Peso molecular del disolvente B (g/mol).
- T : Temperatura (K).
- μ_{i} : Viscosidad del disolvente (cp).
- V.: Volumen molar del soluto a su temperatura de ebullición normal (cm^3/mo)).

Para el cálculo del volumen molar del soluto a su temperatura de ebullición normal, se ha utilizado el método de Le Bas (Le Bas G., 1915), a partir del número de átomos de C, H y O, obteniendo el siguiente valor:

Teniendo en cuenta que para el agua el factor de asociación (ϕ) vale 2.6, los valores de la difusividad resultante es:

$$\mathcal{D}_{EtOH}^{\circ} = 1.3037 * 10^{+5} (cm^2/s)$$

Vignes (Vignes, A; 1966), sugirió la siguiente correlación para expresar la variación de la difusividad con la concentración:

$$\mathcal{D}_{AB} \approx \left(\mathcal{D}_{AB}^{o} \right)^{X}_{B} \left(\mathcal{D}_{BA}^{o} \right)^{X}_{A}$$
(9.9)

representando \mathcal{D}_{AB} la difusividad real. Asi, análogamente al cálculo de $\mathcal{D}_{EtOH}^{\circ}$ se obtuvo el valor de la difusividad del agua en etanol, mediante la ecuación 9.7, resultando ser:

$$\mathcal{D}_{H_20} = 3.99 * 10^{-5} (cm^2/s)$$

En la tabla 9.6 se presentan les valores de la difusividad real del etanol en agua obtenidos mediante la ecuación 9.9.

TABLA 9.6

DIFUSIVIDADES DEL ETANOL EN FUNCION DE LA CONCENTRACION.

X (% vol)	$\frac{\mathcal{D}_{\text{EGH}} \bullet 10^5}{(\text{cm}^2/\text{s})}$
2	1.3332
4	1.3634
6	1.3942
ε	1.4257
10	1.4580

Dada la pequeña variación de la difusividad del etanol en funcion de la concentración, se puede obtener una difusividad media, la cual es:

$$\overline{D}_{ELOH} = 1.3949 \cdot 10^{-5} \text{ cm}^2/\text{s}$$

9.3 METODO DE ANALISIS.

El método de análisis empleado para determinar las concentraciones de etanol, acetona en sus disoluciones, ya sean individuales o de mezcia tanto binaria como ternaria, fué la Cromatografía de Gases. Para ello se utilizo un cromatógrafo Newlet-Packard serie 5880 A con las siguientes condiciones de operación.

- Detector de Conductividad Térmica (TCD).
- Columna: Porapak Q 80/100 mallas; diametro, 1/8 de pulgada; longitud, 2 metros.
- Gas portador: helio N-45 (pureza 99.995 %).
- Caudal de Helio: 30 cm³/min.
- Temperatura del horno: 170°C (isotermo).
- Temperatura del inyector: 200°C.
- Temperatura del detector: 250°C.
- Volumen de inyección: 2 µl.

En la figura 9.11 se presenta, a modo de ejemplo, un cromatograma tipico obtenído con estas condiciones de operación.

Para las disoluciones binarias de etanol y glucosa en agua, el método de anàlisis usado fué la Cromatografía de Líquidos a Alta Presión (HPLC) en un cromatógrafo KONIK 500 A utilizando una columna Tracer-Acidos CKOSEH de dimensiones 10 x 0.4 cm. y resina de relleno polimérico funcionalizado con grupos intercambiadores catiónicos fuertemente ácidos, las condiciones de ensayo fueron las siguientes:

- Eluyente: ácido sulfúrico 0.02 N.
- Flujc: 0.3 ml/min.
- Presión: 60-70 atm.
- Detector de Indice de Refracción.
- Volumen de inyección: 20 µl.

En la figura 9.12 se presenta, a modo de ejemplo, un cromatograma típico obtenido con estas condiciones de operación. En las figuras 9.13 a 9.22 se presentan, asimismo, los calibrados obtenidos para cada sistema en estudio 9. Apendice.

Figura 9.11 Cromatograma de gases correspondiente al analisis de la mezcla ternaria etanol/butanol/acetona."

Figura 9.12 Cromatograma de líquidos correspondiente al anâlisis de la mezcia binaria etanoi/giucosa.
9. Apéndice.

Figura 9.14 Calibrado de Butanol por CG.

Figura 9.15 Calibrado de Acetona por CG.

Figura 9.16 Calibrado binario Etanol(●)-Butanol(□) por CG.

Figura 9.17 Calibrado binario Etanol(2)-Acetona(•) por CG.

Figura 9.18 Calibrado binario Butanol(⊡)-Acetona(●) por CG.

Figura 9.20 Calibrado de Glucosa por HPLC.

2E+005

2

0 0E+000

Area

4E+005

6E+005

Figura 9.21 Calibrado binario Etanol-Glucosa por HPLC. Calibrado de Etanol.

Figura 9.22 Calibrado binario Etanol-Glucosa por HPLC. Calibrado de Glucosa.

9.4 SECUENCIA DE CALCULG PARA LA PREDICCION Y REPRODUCCION DEL EQUILIBRIO DE MEZCLAS MULTICOMPONENTES.

9.4.1 Solución Adsorbida Ideal (S.A.I.).

La secuencia de cálculo utilizada para la predicción del equilibrio de mezclas multicomponentes mediante el modelo de la solución adsorbida ideal fué la siguiente:

9.4.2 Solución Adsorbida Real (S.A.R.).

La secuencia de cálculo para la predicción del equilibrio de mezclas multicomponentes mediante el modelo de la solución adsorbida real fue la siguiente:

9.5 SIMULACION DEL LECHO DE ADSORCION.

9.5.1 Predicción de los tiempos y curvas de rotura: Modelo matemático.

El sistema en estudio consiste en un lecho fijo cilíndrico, formado por partículas de silicalita y una corriente líquida alimento constituida por una mezcla hidroalcohólica.

El balance de componente que se transfiere, en la fase líquida en un elemento diferencial del lecho (Figura 9.23), despreciando la dispersión axial y la acumulación de dicho componente en el líquido en interior de las partículas, se podrá expresar por la ecuación:

$$v = \frac{\partial C}{\partial z} + c_1 = \frac{\partial C}{\partial t} + \rho_1 = 0$$
 (9.10)

siendo:

- v: velocidad media superficial del líquido referida a la sección total del lecho vacio (m/s)
- C: concentración de adsorbato en la fase líquida (%vol).
- n: concentración del adsorbato en la fase adsorbida (mg/g).
- t: tiempo (min).
- z: altura de lecho (m).
- ρ_1 : densidad de lecho (g/m^3).
- + ε_i: porosidad de lecho.

Por otra parte la acumulación de adsorbato en la fase sólida se podrá expresar en función del flujo del componente que se difunde en el interior de la partícula de silicalita mediante la ecuación:

$$\rho_{\mathbf{p}} = \frac{\partial \mathbf{n}}{\partial t} = \frac{3 c}{\mathbf{p}} \underbrace{\mathcal{D}}_{i} \begin{bmatrix} \frac{\partial \overline{\mathbf{C}}}{\partial \mathbf{r}} \end{bmatrix}_{\mathbf{r} = \overline{\mathbf{R}}}$$
(9.11)

siendo:

 $-\rho_{\rm p}$; densidad de la partícula (g/m³). - \overline{C} :concentración de adsorbato en el líquido en el interior de los poros de la silicalita (%vol). - R · radio medio de las partículas de silicalita (m). - D_c : coeficiente de difusión interno (cm²/s).

Figura 9 23 Lecho fijo.

Suponiendo que el fenómeno de adsorción es muy rápido, la concentración de adsorbato en el líquido que llena los poros estara relacionada con la concentración de éste en la fase sólida mediante la isoterma de equilibrio correspondiente:

$$\mathbf{n} \neq \mathbf{f}(\mathbf{C}) \tag{9.12}$$

Por otro lado, la concentración de adsorbato en el interior de los poros estara relacionada con la del exterior a través del coeficiente de transferencia de materia K_{\perp} , mediante la ecuación:

$$K_{e}\left[\begin{array}{c} \frac{\varepsilon_{1}}{1-\varepsilon_{1}} & C & -\varepsilon_{p}\overline{C} \\ \frac{1-\varepsilon_{1}}{1-\varepsilon_{1}} & C & -\varepsilon_{p}\overline{C} \end{array}\right] = c_{p}\mathcal{D}_{L}\left[\begin{array}{c} \frac{\partial \overline{C}}{\partial r} \\ \frac{\partial r}{\partial r} \end{array}\right]_{r=\overline{R}}$$
(9.13)

La resolución del sistema de cuaciones (9.10) y (9.13) con ayuda de la isoterma de equilibrio, (9.12) y la ecuación (9.11), con las condiciones límites adecuadas, conducirá a las curvas de rotura teóricas. Esta resolución es bastante compleja incluso habiendo despreciado la dispersión axial y la acumulación de líquido en el interior de las partículas.

A fin de simplificarla se introduce un coeficiente de transferencia de materia interno $k_{,}$, definido como:

$$k_1 = \frac{D_1}{\delta}$$
(9.14)

donde ò representa una longitud media de difusión de las moléculas de etanol en el interior del adsorbente. (Figura 9.24).

Para calcular la longitud media de difusión, consideremos el volumen diferencial ($4\pi r^2 dr$), a una distancia r del centro de una partícula esférica de adsorbente de radio \overline{R} , tal y como se esquematiza en la figura 9.25. Las moléculas de adsorbato han de difundirse a lo largo de una distancia ($\overline{R} + r$) desde el exterior de la partícula.

Si n es la capacidad de adsorción del adsorbente, uniforme en todo el volumen de la partícula, entonces n ($4\pi r^2 dr$) será la cantidad de moléculas a una distancia r del centro y que por consiguiente lo habrán hecho tras recorrer una distancia ($\overline{R} \sim r$).

El valor medio de las distancias recorridas por todas las moléculas, antes de adsorberse, en el volumen total, (4/3 m \overline{R}^{-3}), será:

$$\frac{\int_{0}^{\overline{R}} (\overline{R} - r) (4\pi r^{2}) dr}{4/3 \overline{R}^{3}} = \frac{\overline{R}}{4}$$
(9.15)

Por lo tanto, la longitud media que han de recorrer las moléculas antes de adsorberse en la superficie del adsorbente es:

$$\delta = \frac{R}{4}$$
(9.16)

Asi, las ecuaciones (9.11) y (9.13) se pueden sustituir por la

Figura 9.24 Perfil de concentraciones en nuestro sistema.

Figura 9.25 Recorrido medio de las moléculas.

siguiente:

$$\rho_{p} = \frac{\partial n}{\partial t} = \frac{3k_{s}}{\overline{R}} (C - C_{s}) = \frac{3k_{i}}{\overline{R}} (C_{s} - C^{*}) =$$
$$= \frac{3K}{\overline{R}} (C - C^{*}) \qquad (9.17)$$

donde C^e es la concentración en la fase líquida en equilibrio con la fase sólida, C_e es la concentración en la superficie de la partícula y K es el coeficiente global de transferencia de materia:

$$\frac{1}{\kappa} = \frac{1}{\kappa} + \frac{\delta}{\mathcal{D}_1}$$
(9.18)

Así el modelo matemático queda reducido a las ecuaciones (9.10), (9.17), (9.18) y la isoterma de equilibrio, (9.12), con las siguientes condiciones iniciales y de contorno:

$$t = 0$$
 $0 \le z \le L$ $C = n = 0$ (9.19)
 $t \ge 0$ $z = 0$ $C = C$ (9.20)

siendo L la longitud total del lecho.

9.5.2 Reproducción de las curvas de rotura.

La resolución de las ecuaciones diferenciales que constituyen el modelo matemètico planteado en el apartado anterior, se realizó, mediante la aproximación de incrementos finitos. Para poder resolver dichas ecuaciones, es necesario disponer de valores para el coeficiente de transferencia de materia global. K. Este coeficiente se puede expresar en función de los correspondientes coeficientes de transferencia de materia externo e interno, k_e y k_i, mediante las ecuaciones (9.14) y (9.18):

$$\frac{1}{K} = \frac{1}{k_{e}} + \frac{1}{k_{i}} = \frac{1}{k_{e}} + \frac{\delta}{\mathcal{D}_{i}}$$
(9.21)

donde \mathcal{D}_{i} es el coeficiente de difusión interna y δ la longitud media de difusión definida anteriormente. Suponiendo despreciable la resistencia a la transferencia de materia en el exterior de las partículas sólidas (k_e), la ecuación 9.21, se transforma en:

$$\mathbf{K} = \mathbf{k}_{1} = \mathcal{D}_{1} / \boldsymbol{\delta} \tag{9.22}$$

Para ello se desarrolló un programa de cálculo en el cual se utilizaba un algoritmo que permitia el cálculo del coeficiente, K. Dicho algoritmo consiste básicamente en partir de una aproximación inicial para dicho coeficiente con el cual se realiza la simulación del lecho fijo. A continuación por comparación de los resultados predichos por el modelo con los experimentales se varía dicho coeficiente hasta que el error entre ambos resultados sea mínimo, obteniéndose el valor óptimo del coeficiente de transferencia de materia global que mejor reproduce los resultados experimentales.

i) Aproximación de incrementos finitos.

La técnica de aproximación de incrementos fínitos establece la hipótesis de que la derivada de una variable dependiente, y, con respecto a otra independiente, x, en un intervalo muy pequeño de variación de esta última, es constante en dicho intervalo y de la forma:

$$\frac{dy}{dx} = \frac{y(x) - y(x-\Delta x)}{\Delta x} = \frac{y(x+\Delta x) - y(x)}{\Delta x}$$
(9.23)

En consecuencia, teniendo en cuenta las ecuaciones diferenciales que resultan del modelo matemático planteado en el Apartado 9.5.1:

$$v \frac{\partial C}{\partial z} + \varepsilon_1 \frac{\partial C}{\partial t} + \rho_1 \frac{\partial n}{\partial t} = 0 \qquad (9.24)$$

$$\rho_{p} \frac{\partial n}{\partial t} = \frac{3 K}{\overline{R}} (C - C^{*}) \qquad (9.25)$$

las derivadas que aparecen en estas dos últimas ecuaciones pueden sustituirse por las siguientes expresiones en incrementos cuando t y z sean suficientemente pequeños:

$$\frac{\partial n(z,t)}{\partial t} = \frac{n(z,t) - n(z,t-\Delta t)}{\Delta t}$$
(9.26)

$$\frac{\partial p(z,t)}{\partial t} = \frac{p(z,t) - p(z,t-\Delta t)}{\Delta t}$$
(9.27)

$$\frac{\partial p(z,t)}{\partial z} = \frac{p(z,t) - p(2-\Delta z,t)}{\Delta z}$$
(9.28)

Sustituyendo estas expresiones en (9, 24) y (9, 25) se puede llegar a deducir:

$$n(z,t) = n(z,t-\Delta t) + \frac{\varepsilon_{L}}{\rho_{L}} C(z,t-\Delta t) + \frac{v \Delta t}{\rho_{L} \Delta z} C(z-\Delta z,t) - \frac{\Delta t v + \Delta z \varepsilon_{L}}{\rho_{L} \Delta z} C(z,t)$$
(9.29)

$$C(z,t) = \left[n(z,t) - n(z,t-\Delta t)\right] \frac{\overline{R} \rho_p}{3 K \Delta t} + C^{\bullet}(z,t) \qquad (9.30)$$

ecuaciones que junto con la isoterma de equilibrio (9.10):

permiten la simulación de las curvas de equilibrio para un valor determinado dei coeficiente de transferencia de materia global, siguiendo los siguientes pasos:

1). Fijado un tiempo determinado, t, y suponiendo un valor para

C(z,t), la ecuación (9.30) permite el cálculo de n(z,t) a partir de los valores obtenidos en un incremento de tiempo anterior: n(z,t- Δ t), $C(z,t-\Delta$ t) y $C(z-\Delta z,t)$.

2). Mediante la isoterma de equilibrio (9.12), se calcula $C^{\{z,t\}}$ para el valor de n(z,t), calculado en el paso anterior.

3). Una vez obtenidos estos dos valores mediante la ecuación (9.30) se recalcula el valor de C(z,t), comparándose con el supuesto en el paso l. Si ambos valores coinciden se continua en el paso 4, en caso contrario se vuelve al paso 1 para otro valor supuesto de C(z,t).

4). Se repiten los pasos 1 a 3 para un nuevo incremento de longitud del lecho, Δz , hasta alcanzar la longitud total del lecho.

5). Se repiten los pasos 1 a 4 hasta que se alcance el tiempo de rotura.

Para acelerar la convergencia de los tanteos implicados en los pasos 1 a 3, se utilizó el método del acelerador de la convergencia de Wegstein (Wegstein, 1958).

<u>ii) Cálculo del coeficiente de transferencia de materia global óptimo.</u>

Como se ha mencionado anteriormente, para realizar la simulación del lecho fijo, es necesario determinar el valor del coeficiente de transferencia de materia global. Para su obtención se utilizó un algoritmo de cálculo (Marquardt, 1963), el cual se describe en el Apartado 9.6 y que básicamente su aplicación particularizada al presente caso es:

a). x, una variable independiente (tiempo).

 b). Y, una variable dependiente única (concentración de adsorbato a la salida del lecho en un instante t).

c). Y = f(x, K), una relación funcional supuesta entre Y, x y K,

291

(Ecuaciones diferenciales y de equilibrio que componen el modelo matemático).

Dada una serie de valores observados de la variable x, y los correspondientes valores de Y, se desea determinar el valor que debe adoptar el parámetro, K, de modo que la relación funcional, f, sea óptima, en el sentido de que la suma de los cuadrados de las desviaciones entre los valores observados de Y, y los predichos por el método sea minima.

Así pues, el programa de cálculo determina el valor del parámetro de forma que se cumpla:

$$D = \sum_{i=1}^{N} d_{i}^{2} = minimo$$
 (9.31)

donde:

$$d_1 = \overline{y}_1 - y_1 \tag{9.32}$$

siendo $\overline{y_i}$ el valor observado, y_i el predicho para la variable independiente en la enésima observación, y N es el número de observaciones hechas.

9.6 REGRESION NO LINEAL.

El ajuste de los puntos experimentales se realizó mediante el método de regresión no lineal por mínimos cuadrados de Marquardt (Marquardt, 1965). Esto permitió la obtención de los parámetros característicos de cada ecuación.

El algoritmo propuesto por Marquardt consiste en una extensión del método de Gauss-Newton, para lograr la convergencia hacia el óptimo con aproximaciones iniciales de los parámetros muy alejadas de sus valores óptimos. Se resumen a continuación las bases del método y el proceso de cálculo seguido.

Si se representara por y₁ el valor predicho mediante la ecuación propuesta para cada uno de los datos experimentales, por x₁ los valores de las variables independientes y por b_1 , b_2 , ... b_n los parámetros a

292

determinar, se tendrá:

$$y_{j} = f(x_{11}, x_{21}, \dots, x_{m1}, b_{1}, b_{2}, \dots, b_{k})$$
 (9.33)

siendo f la función objetivo a minimizar:

$$Y = \sum_{i} (y_{i} - y_{i})^{2}$$
(9.34)

El algoritmo determina simultáneamente en su acercamiento al óptimo, la dirección y longitud del recorrido del siguiente modo:

Se linealiza la ecuación (9.34) mediante el desarrollo en serie de Taylor, obteniéndose:

$$\langle y(\mathbf{x}_{i}, \mathbf{b} + \delta \mathbf{t}) \rangle \approx \mathbf{f}_{0}(\mathbf{x}_{i}, \mathbf{b}) - \sum_{i} \frac{\delta \mathbf{f}_{i}}{\delta \mathbf{f}_{i}}(\delta \mathbf{t})$$
(9.35)

ecuación en la que el símbolo < > se emplea para distinguir el valor obtenido mediante la linealización de la ecuación del valor y, que se obtendría una vez ajustada la ecuación no lineal, e indicando δ t que aquel valor se ha calculado mediante el desarrollo en serie de Taylor.

Definiendo la matriz $P^{(n,\kappa,k)}$ como:

$$p^{(n,x,k)} = \frac{\delta f_{i}}{\delta b_{j}} \qquad i = 1, 2, \dots, n \text{ datos}$$

$$j = 1, 2, \dots, k \text{ parametros}$$

la ecuación (9.35) puede expresarse de la forma:

$$\langle \mathbf{y} \rangle = \mathbf{f} + \mathbf{P} \, \delta \mathbf{t}$$
 (9.36)

en la que aparecen los parámetros öt de forma lineal.

Hasta aquí el método utilizado es idéntico al método de Gauss-Newton; en este punto el algoritmo de Marquardt introduce un nuevo parámetro λ . factor variable según se explica más adelante, obteniéndose ahora los valores de δ (equivalentes a tutilizado en el método de Gauss-Newton) como soluciones del sistema de ecuaciones lineales, expresado de forma matricial 9. Apendice.

$$(A + \lambda I) \delta = g \qquad (9.37)$$

donde l representa la matriz identidad, y A y g representan la matriz y el vector que se indican a continuación:

$$A^{(k,x,k)} = P^{t} P \qquad (9.38)$$

$$g^{(k,x,1)} = \sum_{i} (y_i f_i) \frac{\delta_i f_i}{\delta_i} = P^t (y - f)_o$$
 (9.39)

siendo P^t la matriz traspuesta de P.

A continuación es necesario normalizar la matriz A y el vector g; así, si se expresa la matriz A^{\bullet} y el vector g^{\bullet} de la forma:

$$A_{ij}^{\bullet} = (a^{\bullet}) = \frac{a_{ij}}{\sqrt{a_{i1}} \sqrt{a_{ij}}}$$
(9.40)

$$g^{\bullet} = (g_{1}^{\bullet}) = \frac{g_{1}}{\sqrt{a_{11}}}$$
 (9.41)

La ecuación (9.34) toma la forma:

$$\left(A_{r}^{\bullet}+\lambda_{r}^{\bullet}\right)\delta_{r}^{\bullet}=g_{r}^{\bullet}$$
(9.42)

expresión que representa un sistema de ecuaciones lineales, cuya resolución por el método de eliminación gaussiana conduce al valor de y teniendo en cuenta que:

$$\delta_1 = \frac{\delta_1}{\sqrt{a_{11}}}$$
(9.43)

los nuevos valores de los parámetros serán:

$$b_r = b_{r-1} + \delta_{r-1}$$
 (9.44)

Si los nuevos valores de los parámetros se aproximan a los optimos, el nuevo valor de la suma de los cuadrados de las diferencias, será inferior al valor anterior, siendo el valor del factor $\lambda_{\rm c}$ el correcto.

Así pues, el objetivo es encontrar el mínimo valor del factor λ_r para el que se cumple la condición:

que conducirá a una rápida convergencia del algoritmo.

Con este fin, se parte de un valor suficientemente pequeño del factor λ , a continuación se incrementará este multiplicándolo por un factor arbitrario ν , hasta que se cumpla la condición expresada por la ecuación (9.45). Por otra parte, a medida que nos acercamos al valor mínimo los valores del factor λ deberán disminuirse.

El proceso iterativo continuará hasta lograr la convergencia de los valores de los parámetros, con una tolerancia prefijada ε , definida como el error relativo entre los valores obtenidos en dos iteraciones consecutivas respecto a la primera, es decir:

$$\frac{b_{r-1} - b_r}{b_{r-1}} \leq \varepsilon \tag{9.46}$$

El desarrollo del algoritmo se esquematiza en el diagrama de bloques de la figura 9.26.

Figura 9.26 Diagrama de flujo del Algoritmo de Marquardt.

9.7 PROGRAMA DE CALCULO PARA LA SINULACION DEL LECHO DE ADSORCION.

```
С
С
       -- ALGORITMO DE MAROUARDT --
      *****************************
Ç
С
С
    MARQUARDT, D. W., 'AN ALGORITHM FOR LEAST-SQUARES ESTIMATION OF NON-
С
    LINEAR PARAMETERS', J. SOC. INDUS. APPL. MATH., VOL. 11, N 2, JUNE, 1963
С
С
    REPRODUCCION DE CURVAS DE ROTURA EN LECHO FIJO, PARA EL SISTEMA
C
    ETANOL - AGUA SOBRE SILICALITA AGLOMERADA Y EN POLVO.
¢
     C
     COMMON/BES/B(5), BMIN(5), BMAX(5), BB(5)
     COMMON/YY/Y(200), Z(200)
     COMMON/XX/X(200), PF(200)
     COMMON/CONSI/NIZ, NIT, INCZ, INCT, TR, CO, TEMP, TF
     COMMON/CONSIL/EQUIA, EQUIB, CK1, CK2, CC3
     DIMENSION LL(5)
     REAL INCZ, INCT, ZT
     CHARACTER*80 NOMERE
C
C LECTURA DEL NOMBRE DEL EXPERIMENTO
С
   1 READ(5,15,END=1000) NOMBRE
     WRITE(6.66) NOMBRE
  15 FORMAT(A80)
     DO 33 I=1 5
  33 EB(I)=0.
Ċ.
C LECTURA DEL N. DATOS Y N. DE PARAMETROS
C
     READ(5,*) NN, KK
     N=NN
     K=KK
     ERR=1.E-4
С
C LECTURA DE LAS VARIABLES DEPENDIENTES E INDEPENDIENTES
C
     DO 61 I=1,N
     READ(5,*) X(1), Y(1)
 61 CONTINUE
C
C LECTURA DE MINIMOS Y MAXIMOS PARAMETROS
C********************
С
     DO 50 J=1,KK
     READ(5,*) BMIN(J), BMAX(J)
  50 CONTINUE
С
C LECTURA DE APROXIMACIONES INICIALES
            C********
```

```
С
      DO 5 J=1.KK
      READ(5, *) B(J)
   5 CONTINUE
C
C LECTURA DE DATOS Y PARAMETROS DE SISTEMA
C
      READ(5,*) CO. CAUTOT, TF. KKEYY
      READ(5,*) EQUIA, EQUIB, NIZ
C
      DATA ROP, RAD, ROL, EPL/9. 834E5, 3. 75E-4, 5. 810E5, 0. 4091/
      DATA ROP, RAD, ROL, EPL/9, 200E5, 8, 25E-6, 7, 142E5, 0, 2236/
      SECC=3.8013E-4
      1NCT=0.25
      IF (KKEYY.EQ.0) ZT=9.0550E-2
      IF (KKEYY.EQ.1) ZT=11.0500E-2
      INCZ=ZT/NIZ
C INICIALIZACION
С
      VELOC=CAUTOT/SECC
      CK1=VELOC* (INCT*60.)/(INCZ*EPL)
      CK2=(ROL/EPL)
      CC3=3.*(INCT*60.)/(ROP*RAD)
      NIT=TF/INCT
      FNU=0.0
      FLA=0.0
      TAU=0.0
      EPS=0.0
      PHMIN=0.0
      1=0
      KD=KK
      1CON=KK
      ITER=0
      KCON=0
      DO 7 M=1,KK
  7
      LL(M)=M
      WRITE (6,14)(LL(J), J=1,KK)
   14 FORMAT(1H1///,20X,'ALGORITMO DE MARQUARDT'//,10X,40('=')//,
     1 2X, 'ITERACION', 5X, 'SCUAD', 12X, 11)
      IF (ITER . EQ. 0) GO TO 250
  200 DO 210 1I=1,KK
      IF(ABS((BB(II)-B(II))/B(II)) .GE. ERR/100.)GO TO 210
       KCON=KCON+1
  210 CONTINUE
      IF(KCON . EQ. KK) GO TO 300
      DO 220 IX=1.KK
  220 BB(IX)=B(IX)
C
  250 CALL BSOLVE (KK, NN, PH, FNU, FLA, TAU, EPS, PHMIN, J, JCON, GAMM)
C
      ITER=ITER+1
      WRITE(7. *)'ITER=', ITER, 'COEFIC=', B(1)
      WRITE(7,*)
      IF(ITER .LT. 100) GO TO 230
   16 FORMAT (5X, 'NO CONVERGE EN 100 ITERACIONES')
      WRITE (6,16)
      GO TO 300
```

```
230 ITERM=ITER-1
      WRITE (6, 17) ITERM, PH, (B(L), L=1, KK)
   17 FORMAT(//5X, 12, 6X, 1PE9. 2, 5X, 1PE10. 3)
      1CP≈ICON+5
      GO TO (90,80,70,60,300), ICP
      GO TO 200
   60 WRITE (6,19)
   19 FORMAT (//, 2X, '**** NO ES POSIBLE EL AJUSTE ****')
      GO TO 300
   70 WRITE (6,20)
   20 FORMAT (//, 2X. '**** MAS INCOGNITAS OUE ECUACIONES *****)
      GO TO 300
   80 WRITE (6,21)
   21 FORMAT (//, 2X, * **** EL NUMERO DE VARIABLES ES CERO ***** )
      GO TO 300
   90 WRITE (6,22)
   22 FORMAT (//.2X,' **** SE SATISFACE LA CONVERGENCIA, PERO EL
           FACTOR LAMBDA (FLA), ES DEMASIADO ELEVADO ****')
     1
Ċ
C
      ESCRITURA DE RESULTADOS
C
  300 WRITE (6,23)
      WRITE(6,66) NOMBRE
   66 FORMAT (5X, '***** EXPERIMENTO : ', 1X, 80A//)
   23 FORMAT (77. '1
                     **** RESULTADO DEL AJUSTE ****', /, 9X, 20('-'))
      DO 310 J=1.KK
  310 WRITE (6,24) J,B(J)
   24 FORMAT (25X, 'X(', I1, ')=', 1PE10.3)
      WRITE (6,25)
   25 FORMAT (777, 3X, 'CASO NO.', 9X, 'X', 11X, 'YOBS', 10X, 'YPRED', 16X,
     1 'ERROR'. /)
      ER≠0.
      DO 320 I=1.NN
      2(I)=Z(I)*Y(I)
      IF (Y(I).NE.0) GOTO 330
      WRITE(6,26)
   26 FORMAT(/,2X,'**** Y(1)=0 ****')
      GOTO 320
  330 E=(Z(I)-Y(I))/Y(I)*100.
      ER=ER+ABS(E)
      WRITE (6,27) I,X(I),Y(I),Z(I),E
  320 CONTINUE
   27 FORMAT (5X, 12, 7X, 3(1PE10.3, 5X), OPF6.1)
      ERM=ER/NN
      WRITE (6,28) ERM
   28 FORMAT (//, 25X, 'ERROR MEDIO=', F6.1)
      KGG≈0.
      WRITE(6,*)
      DO 978 J=1, TF
      A=PF(I)
      IF (A.GT.0.02) GOTO 838
  978 CONTINUE
      WRITE(6,*) 'ERROR EN LA COMPARACION DE LA CURVA'
      STOP
 1111 WRITE(6,*)'CURVA DE ROTURA PREDICHA'
      DO 789 I=KGG, (TF+1, )/0.25,2
      WRITE(6,*) 'T=',I,' C/CO=',PF(1)
  789 CONTINUE
```

```
9. Apéndice.
```

```
GOTO 1
 1000 STOP
 838 KGG=I
     COTO 1111
     END
Ċ
С
      SUBROUTINE BSOLVE (KK, NN, PH, FNU, FLA, TAU, EPS, PHMIN, I, ICON, GAMM)
С
      ......
                                        С
     COMMON /BES/ B(5), BMIN(5), BMAX(5), BB(5)
     COMMON /YY/ Y(200), Z(200)
     COMMON /XX/ X(200), PF(200)
     COMMON/CONSI/NIZ, NIT, INCZ, INCT, TR, CO, TEMP, TF
     COMMON/CONSII/EQUIA, EQUIB, CK1, CK2, CC3
     DIMENSION A(6,8), AC(6,8), P(990)
     REAL INCT. INCZ
     K=KK
     N=NN
     KP1=K+1
     KP2=KP1+1
     KBI1=K*N
     KBI2=KBI1+K
     KZI=KB12+K
      IF(FNU .LE. 0.) FNU=10.0
      IF(FLA .LE. 0.) FLA=0.01
      IF(TAU.LE. 0.) TAU=0.001
      IF (EPS .LE. 0.) EPS=0.00002
      IF (PHMIN . LE. O. ) PHMIN=O.
      IF( K .GT. 0.) GO TO 170
  162 ICON=-3
  163 GO TO 2120
  170 IF (N.GE.K) GO TO 500
  180 ICON=-2
  190 GO TO 2120
  500 J1=1
  530 IF (I.GT.0) GO TO 1530
  550 DO 560 J1=1.K
      J2=KBI1+J1
      P(J2)=B(J1)
      J3=KBI2+J1
  560 P(J3)=ABS(B(J1))*1.005
      GO TO 1030
  590 IF (PHMIN .GT. PH .AND. I .GT. 1) GO TO 625
      DO 620 J1=1,K
      N1=(J1-1)*N
  605 DO 606 J2=1,K
      J3=KBI1+J2
  606 P(J3)=B(J2)
      J3=KBI1+J1
      J4=KB12+J1
С
      DEN=0.010*AMAX1(P(J4), ABS(P(J3)))
      DEN=0.05*AMAX1(P(J4), ABS(P(J3)))
      IF(P(J3)+DEN , LE. BMAX(J1)) GO TO 55
      P(J3)=P(J3)-DEN
      DEN=-DEN
      GO TO 56
   55 P(J3)=P(J3)+DEN
```

```
56 CALL SISTEM (K, P(KBI1+1), N, Y, P(N1+1))
      DO 610 J2=1.N
      JB=J2+N1
  610 P(JB) = (P(JB) - Z(J2))/DEN
  620 CONTINUE
С
С
      DISPOSICION DE LA CORRECION DE LAS ECUACIONES
С
  625 DO 725 J1=1.K
      N1=(J1-1)*N
      A(J1.KP1)=0.
  630 DO 640 J2=1.N
      N2=N1+J2
  640 A(J1,KP1)=A(J1,KP1)+P(N2)*(1.-Z(J2))
  650 DO 680 J2=1,K
  660 A(J1, J2)=0.
  665 N2=(J2-1)*N
  670 DO 680 J3=1.N
  672 N3=N1+J3
  674 N4=N2+J3
  680 A(J1, J2)=A(J1, J2)+P(N3)*P(N4)
      IF(A(J1, J1) .GT. 1.E-20) GO TO 725
  692 DO 694 JZ=1, KP1
  694 A(J1, J2)=0.
  695 A(J1, J1)=1.0
  725 CONTINUE
      GN=0
      DO 729 J1=1,K
  729 GN=GN+A(J1,KP1)**2
С
Ç
      ECUACIONES CORREGIDAS ESCALONADAMENTE
C
      DO 726 J1=1,K
  726 A(J1, KP2)=SQRT(A(J1, J1))
      DO 727 J1=1,K
      A(J1, KP1)=A(J1, KP1)/A(J1, KP2)
      DO 727 J2=1.K
  727 A(J1, J2)=A(J1, J2)/(A(J1, KP2)*A(J2, KP2))
  730 FL=FLA/FNU
      GO TO 810
  800 FL=FNU*FL
  810 DO 840 J1=1,K
  820 DO 830 J2=1, KP1
  830 AC(J1, J2) = A(J1, J2)
  840 AC(J1, J1)=AC(J1, J1)+FL
C
С
      RESOLUCION DE LAS ECUACIONES CORREGIDAS
С
      DO 930 L1=1.K
       L2=L1+1
       DO 910 L3=L2, KP1
  910 AC(L1,L3)=AC(L1,L3)/AC(L1,L1)
       DO 930 L3=1.K
       IF(L1-L3) 920, 930, 920
  920 DO 925 L4=L2, KP1
  925 AC(L3,L4)=AC(L3,L4)-AC(L1,L4)*AC(L3,L1)
  930 CONTINUE
С
```

```
DN=0.
     DG≖0.
     DO 1028 J1=1 K
      AC(J1, KP2) = AC(J1, KP1)/A(J1, KP2)
      J2=KBI1+J1
      P(J2)=AMAX1(BMIN(J1), AMIN1(BMAX(J1), B(J1)+AC(J1, KP2)))
      DG=DG+AC(J1, KP2)*A(J1, KP1)*A(J1, KP2)
     DN=DN+AC(J1,KP2)*AC(J1,KP2)
1028 AC(J1, KP2) = P(J2) - B(J1)
      COSG=DG/SORT(DN*GN)
      JGAM=0
      IF(COSG) 1100,1110,1110
1100 JGAM=2
      COSG = -COSG
1110 CONTINUE
      COSG=AMIN1(COSG, 1.0)
      GAMM=ARCS(COSG)*180./(3.14159265)
      IF(JGAM .GT. 0) GAMM=180.-GAMM
1030 CALL SISTEM(K, P(KBI1+1), N, Y, P(KZI+1))
1500 PHI=0.
      DO 1520 J1=1.N
      J2=KZ1+J1
 1520 PHI=PHI+(P(J2)-1.)**2
      IF(PHI .LT. 1.E-10) GO TO 3000
      IF(I .GT. 0) GO TO 1540
-1521 1CON=K
      GO TO 2110
1540 IF(PHI .GE. PH) GO TO 1530
С
С
      TEST DE EPSILON
С
 :200 ICON=0
      DO 1220 J1=1.K
      J2=KBI1+J1
 1220 IF(ABS(AC(J1, KP2))/(TAU+ABS(P(J2))) .GT. EPS) ICON=ICON+1
      IF(ICON . EQ. 0) GO TO 1400
С
С
      TEST DE GAMMA-LAMBDA
Ċ
      IF(FL .GT, 1.0 .AND. GAMM .GT. 90.0) ICON=-1
      GO TO 2105
С
      TEST GAMMA-EPSILON
C
C
 1400 IF(FL .GT, 1.0 .AND. GAMM .LE. 45.0) ICON=-4
      GO TO 2105
 1530 IF(11-2) 1531,1531,2310
 1531 I1=I1+1
      GO TO (530,590,800),11
 2310 IF(FL .LT. 1.0E+8) GO TO 800
1320 ICON=-1
С
 2105 FLA=FL
      DO 2091 J2=1.K
      J3=KB11+J2
 2091 B(J2)=P(J3)
 2110 DO 2050 J2=1.N
```

```
J3=KZ1+J2
2050 Z(J2)=P(J3)
     PH=PHI
     1=1+1
2120 RETURN
3000 ICON=0
     GO TO 2105
C
     END
     FUNCTION ARCS(2)
С
     X∓Z
     KEY=0
     IF(X, LT, (-1, )) X \approx -1,
     IF(X.GT.1.) X=1.
     IF(X.GE.(-1) . AND. X.LT.O.) KEY≃1
     IF(X, LT, 0, ) X=ABS(X)
     IF(X.EQ.0.) GO TO 10
     ARCS=ATAN(SORT(1, -X*X)/X)
     IF(KEY.EO.1) ARCS=3.14159265-ARCS
     GO TO 999
  10 ABCS=1.5707963
С
  999 RETURN
     ËND
·····
     SUBROUTINE SISTEM (NK, COE, ND, Y, Z)
С
     COMMON/CONSI/NIZ, NIT, INCZ, INCT, TR, CO, TEMP, TF
     COMMON/CONSI1/EQUIA, EQUIB, CK1, CK2, CC3
     COMMON/XX/ X(100), PF(100)
     REAL CX(0: 100, 0: 400), CY(0: 100, 0: 400), CYE(0: 100, 0: 400), CF(0: 400)
     REAL INCZ, INCT
     DIMENSION COE(5), Z(500), Y(500)
     CK3=CC3*COE(1)
     DO 10 1=0, NIZ
     CY(I,0)=0.
     CYE(I,C)≈0.
     CX(1,0)=0.
   10 CONTINUE
     DO 20 I=1,NIT
     CY(0, 1) = C0
  20 CONTINUE
С
C
     DESARROLLO DEL MODELO
C
     ER1=1E-3
     ER2=5E3
     APRO≈100.
     DO 70 J=L.NIT
     X1=C0/2.
     DO 30 J=1.NIZ
      VNO=CX(I, J-I)
     CYANTZ=CY(1-1, J)
```

```
CYANTT=CY(I, J-1)
      JJ=0
      VIN1 = (X1 + (1 + cK)) - cK1 + cYANTZ - CYANTT)/(-cK2)
      IF (VIN1.LE.O.) VIN1=1, E-6
      VN1=VN0+VIN1
      CYE1=((VN1/EQUIA)**(1./EQUIB))
      XC1 = (VIN1/(CK3)) + CYE1
      X2=X1*1.1
      VIN2=(X2^{\circ}(1, +CK1)-CK1^{\circ}CYANTZ-CYANTT)/(-CK2)
      IF (VIN2.LE.O.) VIN2=1.E-6
      VN2=VN0+VIN2
      CYE2=((VN2/EOUIA)**(1./EOUIB))
      XC2=(VIN2/(CK3))+CYE2
  310 X3=(X1*XC2-XC1*X2)/(X1-X2+XC2-XC1)
      VIN3=(X3*(1.+CK1)-CK1*CYANTZ-CYANTT)/(-CK2)
      IF (VIN3, LE. 0, ) VIN3=1. E-6
      VN3=VN0+VIN3
      IF (VN3.LT.0) VN3=1.E-6
      CYE3=((VN3/EOUIA)**(1,/EQUIB))
      XC3=(VIN3/(CK3))+CYE3
      AA = ABS((X3 - X2)/X2)
      IF (AA.LT.ER1) GOTO 200
      X1 = X2
      XC1=XC2
      X2=X3
      XC2=XC3
      JJ=JJ+1
      IF (JJ.GT. 500) GOTO 505
      GOTO 310
  200 CY(I,J)=X3
      CYE(I,J)=CYE3
      CX(1, J) = VN3
      IF(X2.LT.ER2) GOTO 14
      X1=X3/2.00
   30 CONTINUE
   SS CONTINUE
      X1 = CY(1, J)
      CF(J) = CY(NIZ, J)
      PF(J)=CF(J)/CO
      IF ((CF(J)-CO), GT. 0) GOTO 1414
   70 CONTINUE
~
С
     COMPARACION DE EXPERIMENTALES Y CALCULADOS
С
   9 LLL=0
      WRITE(6,*)'COMPARACION'
      T=0.
      DO 100 I=1.ND
      DO 110 J=1,NIT
      T=J*INCT
      IF ((X(I)+0.1), GE, T. AND. (X(I)-0.1), LE, T) GOTO 120
  110 CONTINUE
      WRITE(6.*)'ERROR EN LA COMPARACION'
      GOTO 100
  120 LLL=LLL+1
      Z(I)=CF(J)/(CO"Y(I))
      WRITE(6,*)'Y(1)=',Y(1),' Z(1)=',Z(1)*Y(1)
  100 CONTINUE
```

```
WRITE(6,*)'ITERACION=', ITER+1,'COEFICIENTE=', COE(1)
RETURN
14 DO 508 L=1,NI2
CY(L,J)=0.
CYE(L,J)=0.
GOTO 88
505 WRITE(6,*) 'NO CONVERGE WEINSTEIN, T=',J,'Z=',Z
STOP
1414 DO 3 L=J,NIT
CF(L)=C0
PF(L)=1.
3 CONTINUE
GOTO 9
END
```

10. NOMENCLATURA.

```
A : área interfacial.
```

- b, B : constantes.
- C : concentración de soluto en disolución $(mol/m^3, %vol o g/l)$.
- \overline{C} : concentración de adsorbato en el interior de los poros del adsorbente (%vol).
- d_: diámetro de partícula (cm).
- e : constante.
- E : error medio (%).
- F : energía libre de Helmholtz.

K_: constante.

- k_: coeficiente de transferencia externa (cm/s).
- k : coeficiente de transferencia interna (cm/s).
- K : coeficiente de transferencia de materia global (cm/s).
- M : constante.
- n : cantidad de soluto adsorbido por unidad de peso de adsorbente (mol/kg o mg/g).
- n,": invariante de adsorción.
- H : entalpía neta de adsorción.
- Q : cantidad de soluto por unidad de peso de adsorbente que forma una

```
monocapa completa (mol/kg).
```

- R : constante de los gases (J/mol K).
- R : radio medio de las partículas de adsorbente (m).
- S : entropía.
- t : tiempo (min).
- T : temperatura (°C).
- v : velocidad media superficial del líquido referida a la sección total del lecho vacio (m/s).
- V : volumen (m^3 o 1).
- W : peso de adsorbente (kg o g).
- x : fracción molar de soluto en la fase sólida.
- y : fracción molar de soluto en la fase líquida.
- Y : anchura de la curva de rotura.
- z : altura del lecho (m).

LETRAS GRIEGAS.

```
\begin{split} y &: & \text{coeficiente de actividad.} \\ & \land & \text{parametro de la ecuación de Wilson.} \\ & \mu^* & : & \text{potencial químico en la fase adsorbida (J/mol).} \\ & \mu & \land & \text{viscosidad (cp).} \\ & \pi &: & \text{presión superficial.} \\ & \sigma &: & \text{tensión interfacial.} \\ & \rho_i & \text{densidad de lecho } (g/m^3). \\ & \tau_i & \text{porosidad de lecho.} \\ & \rho_p &: & \text{densidad de partícula } (g/m^3). \\ & \delta &: & \text{longitud media de difusión de las moléculas de etanol en el interior del adsorbente (cm).} \\ & \mathcal{D}_i & \text{coeficiente de difusión interno } (cm^2/s). \\ & \mathcal{D}_{an}^* & \text{difusividad del etanol en agua } (cm^2/s). \end{split}
```

SUBINDICES.

```
i, j, k : componente i, j, k.
eq : equilibrio.
m : medio.
o : inicial.
```

s : disolvente.
t : total.
1, 2, 3, 4: componente etanol, butanol, acetona y glucosa.

11. BIBLIOGRAFIA.

- ASRAM, J. C. Water Research Association Conference. 1-29 Abril (1973)
 ADAMSON A. W., "Physical Chemistry of Surfaces' Interscience Publishers, Inc. New York (1967).
- ALVAREZ J., Tesis Doctoral. Universidad Complutense de Madrid (1989)
- ANDERSON, A. H. Acta Pharmacol. Toxicol, 3, 199-218 (1947).
- ATKINSON B., MAVITUNE F.; "Biochemical engineering and Biotechnology handbook": The Nature Press, New York (1983).
- BARRER R.M., Disc. Faraday Soc., 40, 206 (1944).
- BARRER R.M., J. Chem. Soc. 2158 (1948).
- BAHRER R M., J. Chem. Soc. 1561 (1952).
- · BLACK C , Chem Eng. Prog., 76, (9), 78 (1980).
- BLANES, J.; "Sintesis de zeolitas pentasil" Tesis doctoral: Univ Complutense, Madrid (1985).
- BRECK D.W., EVERSALE W.G., J. Am. Chem. Soc., 18, 2338 (1956).
- Bud S., VERYKLES X., MUTHARASAN R.; Ind. Eng. Junear Process. Des. Dev. <u>14</u>, no. 4 (1985).
- CABRA L.: Tesis Doctoral. Universidad Complutense de Madrid (1983).

- COSTA, E.; Adsorción. Real Acad. de C.C. Exactas, Fis. y Naturales.
Madrid, (1974).
- COSTA, E.; CALLEJA, G.; CABRA, L. Adsorption Science and Technology 1.
307-316 (1984).
- CHIANG A.S.T., YANG Y.; Journal of The Chin. I. Ch. E., 18, no.2 (1987).
- DALE M.C., OKOS M.R., WANKAT P.C.; Biotech. Bioengn. 27, 943 (1985).
~ DAVIS W.H., HARPER J.I. y WEATHERLY E.R.; Pet <u>rojeum Refiner, 31</u> , 109
(1952).
- DWYER J., DYER A.; Chemistry and Industry, 237, 2 April (1984).
- EINICKE W.D., MESSOW U., SCHOLLNEP R.; J. Coll. and Interf. Sci., 122, 1,
(1985).
- EVANS P.J., WANG H.Y.; Applied Environ. Microbiol., 47, 1323 (1934).
- FARHADPOUR A.A., BONO A.J.; J. Coll. and Interf. Sci., 124, 1, (1998).
- FAUST, D.S., ALY,O.H.; "Adsorption Processes for water treatment".
Butterworths, Boston, (1987).
- FLEMING J.B. y col.; Chem. Eng. <u>71, 69 (1966).</u>
- FREUNDLICH H., Colloid and Capillary Chemistry, Londres, Methuen (1926).
- FUSTER, W.F.; Int. Sugar J. <u>35</u> , 266 (1933).
- GAMSON B. W., THODOS G. Trans. AFOne 1 33 (1943).
- GHOSE T.K., ROYCHOUDHURY P.K., GHOSE P.; blotech, Bloengn, 26, 377 (1984).
- GILES C., MCEWAN T., NAKHWA S., SMITH D.; J. Chem. Soc. 3973 (1960)
- GOBERNA C., SANCHO-TELLO M., MARTINEZ A.: Ingenieria Química, Marzo
(1985).
- GOLLAKOTA, S.V. y COLLIN D.C.: Ind. Eng. Chem. Res., <u>27.</u> 139 (1988).
- GROOT W.J., SCHOUTENS C.H., VAN BEELEN P.N., VANDEN C.E., KOSSEN N.W.F.;
Biotechn. Ltrs. 6, 789 (1984).
- GROSE R., FLANIGEN M.: U.S. Patent 4064724 (1977).
- RAGGIN J.C. & EN. Chicago, 36-37, June 20 (1983).
- HALL K.R., EAGLETON L.C., Ind. Eng. Chem. Fundam. \S (2) 212 (1966).
- HASHIMOTO K., MIURA K., WATANABE T., <i>AICHE J. <u>28</u>,</i> (5), 737 (1982).
- HASSLER J.W. "Purification with activated carbon" Chemical Publishing Co.,
INC. Nueva York (1974).
- HATCH, L.F. "Ethy) Alcohol". Enjay Chemical Co., Nueva York (1962).
HOLMES H.N., MCKELVEY J.B.; J. Phys. Cnem. <u>32</u> , 1522-1523 (1928).
- IRWIN, R. "Activated Carbon Adsorption of Organics from the Aqueous
Phase", Vol. 1. Ann. Arbor, Science, Michigan (1951).

- JAHN, E. y col. Zeolites, 9, 177-181 (1989)

- JARONIEC M., DERYLO A., MARCEWSKI A.; Monatshefte für Chemie 114, 393
(1983).
- JIMENEZ A.; Tesis Doctoral. Universidad Complutense de Madrid, (1989).
- JOHANSON R., NERETRIEKS J.; Chem. Eng. Sci. <u>35</u> (4), 979 (1908).
- KARABELAS, A. J. y col.; Chem. Eng. Sci. Vol. 26, 1581-1589, (1971).
- KASAOKA, S.; SCKATA, Y.; MIMURA, A.; YAMATO, H. International Chemical
Engineering. <u>20</u> , (3), 446-457, Julio (1980).
- KAUL B.K.; Ind. Eng. Chem. Proces. Des. Dev. <u>23</u> , (4), 711 (1984).
- KLEIN S.M., ABRAHAM W.H.; Adsorption and Ion Exchange, 230, Vol. 79,
(1983).
~ KNOBLAUCH K., Chem. Eng., <u>85</u> (25), 87 (1978).
- KORESH J., SOFFER A.; J. Chem. Soc. Faraday Trans, 76, 2457 y 2472
(1980).
- LADISH M.R., DICK K.; Science <u>205,</u> 898 (1979).
- LANGMUIR I., J. Amer. Chem. Soc. 40, 1361 (1921).
- LE BAS G. The Molecular Volumes of Liquid Chemical Compounds, Longmans,
Green, Nueva York, (1915).
- LEE J.H., WOODWARD J.C., PAGAN R.J., ROGERS P.L.; Biotech. Ltrs., 3, 177
(1981).
- LIN Y.S., MA Y.H.; American Chemical Society, 28, (1988).
- LUNDELIUS E.F.; Colloid Z. <u>26</u> , 145 (1920).
- MA, Y. H. y col. AIChE Symposium Series 259 (83) (1983).
- MAGNE P., WALKER P.L.; Carbon, <u>24</u> (2), 101 (1986).
- MARQUARDT D.; Soc. Ind. Appl. Math. J. <u>11</u> , 121 (1965).
- MATTSON, J.; MARK, H. B.; MALBIN, M. D.; WEBER, W. J.; CRITTENDEN, J. C.
Journal of Colloid and Interface Science, <u>31</u> (1), Septiembre (1969).
- MATTSON, J.; MARK, H.; LEE, L. Journal of Colloid and Interface Science,
<u>32</u> , 284 (1970).
- MATTSON, J. S.; MARK, H. B. Jr. "Activated Carbon" Marcel Dekker, INC. New
York, (1971).
- MILTON R.M.; Patent U.S. 2.882.243 y 2.882.244, 14 April (1959).
- McKAY, G.; AL-DURI, B.; Chem. Eng. Sci. <u>43</u> , (5), 1133-1142 (1988).
- MYERS, A. L.; PRAUSNITZ, J. M. AICHE J. <u>11</u> , 121 (1965).
- NANDI S.P., WALKER R.L.; <i>Fuel</i> , <u>54</u> , 169 (1975).
+ PARKINSON G.; Chem. Eng., pp 29-30, 1 Junio (1981).
- PETRASEK, A.C. y KUGELMAN, I. Journal IWPCF, <u>55</u> (9), 1183 (1983).
- POGGENGURG, W.; SCHUBERT, J.; Aqua (2) 69-71 (1986).

717

- PUZZIS M., HEDEN G.G.; Biotech. Bioengn. 7, 355 (1965).

- RADKE C.J., PRAUSNITZ J.M.; AIChe J. 18, 761 (1972).
- RADKE C.J., PRAUSNITZ J.M.; J. Chem. Physic. 57, (2) (1972).
- RODRIGUEZ F. Memoria Universidad de Madrid (1980).
- ROFFLER S., BLANCH H.W., WILKE C.R.; Biotechnology Progress 3, No 3. Sept. (1987).
- ROI R.S.; Radio Chim. Acta, 5, 30 (1966).
- RUTHVEN D.M.; "Principles of Adsorption and Adsorption Proceses", John Wiley, New York, (1984)
- RUTHVEN D.M.; Chem. Eng. Prog. pp 42-50, February (1988).
- SEIDEL, A.; GELBIN, D.; Chem. Eng. Sci. 43, (1), 79-89 (1988).
- SERNA J., Tesis Doctoral, Universidad Complutense de Madrid (1990).
- SHEINDORF C.H., REBHUM M., SEINTUCH M.; J. of Colloid and Interface Science <u>79</u>, (1), 136 (1981).
- SILVERMAN, N., TASSLOS, D.; Ind. Eng. Chem. Process Des. Dev. 23, 586-589 (1984).
- SING K.S.W., EVERETT D.H., HAUL R.A.W., MOSCOU L.; "Reporting Physisorption Data for Gas/Solid Systems" Pure and Applied Chem., <u>57</u> (4), 603 (1985).
- SITTING, M. "Industrial Gases Manufacture y Applications" NDC, <u>London</u> (1967).
- SMITH, T. D. J. Chem. Soc., 923 (1952).
- SUZUKI, M., FUJHI, T.; AIChE J. 28, (3), 380, Mayo (1982).
- TANGU S.K., GHOSE T.K.; Process. Biochem., Aug/Sept. 24 (1981).
- TAO, L.C., CEPLECHA, S.P.; Ind. Eng. Chem. Fundam. 25, 504-506 (1986).
- TAYA M., ISHII S., KOBAYASHI T.; J. Ferment. Technol. 63, 181 (1985).
- · VAUGHAN D.E.W.; Chem. Eng. Prog., pp. 25-31 Febrero (1938).
- VIGNES, A.; Ind. Eng. Chem. Fundam., 5, 189 (1966).
- WALKER P.L. (1986).
- WANG H.Y., ROBINSON F.M., LEE S.S.; Biotech. Bioeng. Symp. No 11, 555 (1981).
- WANKAT, P.C.; Ind. Eng. Chem. Res., 26, 1579 (1986).
- WANKAT, P.C.; "Large Scale Adsorption and Chromatography", CRC Press, Boca Raton (1986).
- WEBER Jr, W. J.; Van VLIET, B. M. Technical Memorandum EWRE 010379.
 Environmental and Water Resources Engineering Laboratories. The University of Michigan. Ann. Arbor. H. 1, (1979).
- WEGSTEIN J. H., Comm. Assoc. Computing Machinery, 1, 9. (Junio, 1958).
- WEISSERMEL K., Industrial Organic Chemistry, Verlag Chemie, Weinheim, Nueva York (1978).
- WILKE C.R., CHANG P.; AICHE J., 1, 264 (1955).
- YANG R.T.; "Gas separation by Adsorption Processes", Butterworths, Boston 1987.