UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS FÍSICAS DEPARTAMENTO DE FISICA APLICADA III

"ANÁLISIS Y MODELOS DE LOS MECANISMOS DE DETECCIÓN DE GASES CONTAMINANTES URBANOS CON SENSORES DE ESTADO SÓLIDO"

Tesis Doctoral

JOSÉ PEDRO SANTOS BLANCO

INSTITUTO DE MATERIALES AVANZADOS / CENTRO COMÚN DE INVESTIGACIÓN (Ispra, ITALIA)/ COMISIÓN DE LAS COMUNIDADES EUROPEAS 1995

UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS FÍSICAS DEPARTAMENTO DE FISICA APLICADA III

"ANÁLISIS Y MODELOS DE LOS MECANISMOS DE DETECCIÓN DE GASES CONTAMINANTES URBANOS CON SENSORES DE ESTADO SÓLIDO"

TESIS

para optar al grado de DOCTOR EN CIENCIAS FÍSICAS presentada por JOSÉ PEDRO SANTOS BLANCO

Director : Prof. Juan Andrés de Agapito Serrano Catedrático de Electrónica

INSTITUTO DE MATERIALES AVANZADOS / CENTRO COMÚN DE INVESTIGACIÓN (Ispra, ITALIA)/ COMISIÓN DE LAS COMUNIDADES EUROPEAS 1995

Per me si va nella cittá dolente, Per me si va nel eterno dolore, Per me si va tra la perduta gente. Giustizia mosse il mio atto fattore: Fecemi la divina potestate, La somma sapienza e 'l primo amore.

۰

DANTE

Ετσι στο μπαρ προχθες – βοηθωντας κιολας πολυ ο ευσπλαχνικος αλκολισμος– ειχα μιση ωρα τελεια ερωτικη. Και το καταλαβες με φαινεται, κ εμεινες κατι περισσοτερον επιτηδες. Ηταν πολλη αναγκη αυτο. Γιατι μ ολην την ψαντασια, και με το μαγο οινοπνευμα, χρειαζονταν να βλεπω και τα χειλη σου, χρειαζονταν ναναι το σωμα σου κοντα.

C. P. CAVAFIS

A mis vecinos: Niki, Mari Cruz y Yannis.

Agradecimientos

Este trabajo de investigación ha sido realizado en el Instituto de Materiales Avanzados (I.M.A.) del Centro Común de investigación (C.C.I) de la Comisión de las Comunidades Europeas (Ispra, Italia).

Las personas que cito a continuación han ayudado, en algún modo, a que este trabajo llegase a su fin. A ellas va todo mi agradecimiento.

Mis padres; a pesar de los dos mil kilómetros que nos separaban siempre han estado cerca de mí apoyándome y dándome ánimos en todo momento.

Mi director de tesis, Prof. Juan Andrés de Agapito; su constancia, su fe en mis posibilidades y su acertada labor de dirección han hecho posible este trabajo.

José Manuel Donoso; tantos años de amistad han tenido una importancia fundamental en mi vida personal y científica.

El jefe del Laboratorio de Sensores del C.C.I. de Ispra, Dr. G.B. Barbi; juntos hemos puesto en pie el Laboratorio de Sensores y hemos sabido encontrar un sistema de trabajo enriquecedor.

El jefe del Laboratorio de Sensores del C.S.I.C., Dr. Javier Gutiérrez Monreal; su disponibilidad y su amistad ha permitido que gran parte de la preparación de los sensores haya podido ser realizada en dicho laboratorio contando con la valiosa experiencia que poseían en este campo.

El jefe de la división Materiales Funcionales y Ciclotrón del I.M.A. (C.C.I., Ispra), Dr. Livio Manes; los recursos humanos y materiales del Instituto que ha puesto a mi disposición han sido imprescindibles para la investigación en que se basa esta memoria.

Maria del Carmen Horrillo e Isabel Sayago; su experiencia y ayuda en la preparación de los sensores en el C.S.I.C. ha sido inestimable.

Alberto Noriega; sin él las medidas en el ERLAP no hubieran sido posible, pero sobre todo, todos estos años pasados en Italia no hubieran sido tan enriquecedores.

Mis compañeros de trabajo, Marinella, Patrizia y Bren; el clima humano que han creado en el laboratorio y su colaboración científica han sido fundamentales. Roberto Hernández; he contado siempre con su amistad en los buenos y malos momentos de mi estancia en Ispra.

Neil Gibson; su ayuda en la realización y análisis de los espectros de rayos X ha sido fundamental.

Los técnicos del I.M.A, entre los que debo destacar a J. Hofman y F. Guaitani por su continua ayuda en el montaje del laboratorio y por haberme distinguido con su amístad y L. Mammarella por la realización de los espectros AES y XPS.

A. Manara; su ayuda en las medidas elipsométricas y en la interpretación de los espectros AES y XPS ha sido inapreciable.

Mis ex-compañeros del C.S.IC., especialmente Julio Rino; su ayuda ha sido muy importante para la realización de esta tesis.

Mi hermano Juan; su contribución al programa de cálculo numérico ha sido fundamental.

A. Hoffmann; su disponibilidad ha hecho posible la preparación de las últimas series de sensores en Ispra.

F. Laghi; siempre encontraba la solución para los problemas insolubles.

R. Feduzi; su ayuda en la preparación de los programas de control y las valiosas discusiones científicas han sido inestimables.

Inés Galván; los momentos terribles y maravillosos que pasamos juntos y su ayuda en el cálculo numérico han tenido una influencia capital en este trabajo.

L. Belloti e I. Carmina por su ayuda desinteresada.

F.J. Gallego; con él he aprendido muchas cosas, sobre todo de enología.

Todos mis amigos de Ispra; el ambiente humano que han creado ha sido decisivo para la realización de un trabajo sereno.

OBJETIVO DEL TRABAJO

El objetivo del presente trabajo de investigación es el estudio del SnO_2 como material sensor para la detección de NO_2 en atmósferas urbanas basado en los cambios de conductividad eléctrica y el desarrollo de un modelo que explique estos cambios.

Las fases en las que se desarrolla el trabajo son las siguientes:

1.- Deposición del material sensible por puverización catódica con diferentes parámetros de deposición. Modificación del mismo mediante la adición de dopantes con el fin de mejorar su selectividad y/o sensibilidad mediante la técnica citada y la implantación iónica.

2.- Caracterización físico-quimica del semiconductor mediantes las técnicas de conductiviad eléctrica, espectroscopía fotoelectrónica de rayos-X (XPS), espectroscopía electrónica Auger (AES), difracción de rayos-X a ángulo rasante (GAXRD), elipsometría y espectroscopía Rutherford de retrodifusión (RBS).

3.- Medida de la respuesta del sensor a diferentes concentraciones de NO_2 en diferentes condiciones de trabajo (temperatura, gases de interferencia).

4.- Propuesta de modelo teórico de funcionamiento.

En este sentido el desarrollo de la presente memoria es el siguiente:

En el capítulo I se da una panorámica de la contaminación atmosférica, con especial hincapié en los contaminantes urbanos como los compuestos del nitrógeno y los sistemas de detección actuales de los mismos.

El capítulo II está dedicado a las propiedades del material sensible así como a las técnicas de deposición y caracterización.

<u>ÍNDICE</u>

I. INTRODUCCIÓN	
I.1 Problemática relacionada con la emisión de gases en áreas urbanas	1
I.1.1 Polución atmosférica	1
I.1.2 Compuestos del nitrógeno	4
I.2 Situación actual de los detectores de NO ₂	7
I.2.1 Sensores ópticos	7
I.2.1.1 Absorción	7
1.2.1.2 Quimioluminiscencia	13
I.2.2 Sensores electroquímicos	14
I.2.2.1 Electrolito sólido	14
1.2.2.2 Electrolito líquido	17
I.2.3 Captadores pasivos	20
I.2.4 Sensores semiconductores	21
I.2.4.1 Sensores inorgánicos	22
I.2.4.2 Sensores orgánicos	23
Bibliografía	24
II. EL MATERIAL SENSOR: SnO,	27
II.1 Propiedades químico-físicas	27
II.1.1 Estructura cristalina	27
II.1.2 Estructura electrónica	29
II.1.3 Defectos y conducción en el SnO ₂	35
II.2 Preparación	39
II.2.1 Pulverización catódica	41
II.2.2 Implantación iónica	46
II.3 Técnicas de caracterización	52
II.3.1 Difractometría de rayos-X a ángulo rasante	52
II.3.2 Espectrometrías fotoelectrónica de rayos X y Auger	55
II.3.2.1 XPS	55
II.3.2.2 AES	57
II.3.3 Elipsometría	60
II.3.4 Espectrometría Rutherford de retrodispersión (RBS)	66
Bibliografía	69
III. INTERACCIÓN SÓLIDO-GAS	71
III.1 Introducción	71
III.2 Adsorción	71
III.2.1 Adsorción física y adsorción química	71
III.2.2 Enlaces fuertes y débiles en la quimiadsorción	72
III.2.3 El enlace monoelectrónico	74
III.2.4 El enlace fuerte	78
III.3 Transiciones electrónicas en la quimiadsorción	84
III.4 Equilibrio entre las distintas formas de quimiadsorción	88

III.5 Interacción de los estados superficiales con las bandas	92
III.5.1 Transferencia electrónica con grandes cambios en la barrera superficial	94
III.6 Conductividad en función de la presión parcial	96
III.6.1 Efecto de carga espacial	96
III.7 Modelos	100
III.7.1 Modelo simplificado	100
III.7.2 Modelo generalizado.Cálculo numérico	104
III.7.2.1 Adsorción competitiva del O ₂ y del NO ₂	107
III.8 Aplicación: Biestable de cuatro capas controlado por la concentración de NO ₂	113
III.8.1 El diodo MOS de efecto túnel	113
III.8.1.1 Carcterísticas tensión-corriente	113
III.8.1.2 Diagrama de bandas de energía	114
III.8.2 El biestable de cuatro capas como sensor de NO_2	122
Bibliografía	123
IV. TÉCNICAS EXPERIMENTALES	127
IV.1 Laboratorio de sensores	127
IV.1.1 Celda de medida	127
IV.1.2 Línea de gases	129
IV.1.3 Instrumentación electrónica	131
IV.1.4 Software de control y adquisición de datos	131
IV.2 ERLAP	134
Bibliografía	137
V. RESULTADOS	139
V.1 Técnicas superficiales	139
V.1.1 Difractometría de rayos-X a ángulo rasante	139
V.1.2 Espectrometrías fotoelectrónica de rayos X y Auger	149
V.1.3 Elipsometría	156
V.1.4 Espectrometría Rutherford de retrodispersión (RBS)	158
V.2 Medidas eléctricas	160
V.2.1 Películas delgadas	160
V.2.1.1 Sensibilidad en aire para sensores no dopados	161
V.2.1.2 Sensibilidad en aire para sensores dopados	176
V.2.1.2.1 Dopante: aluminio en película superficial	176
V.2.1.2.2 Dopante: platino en película superficial	178
V.2.1.2.2 Dopante: platino implantado	179
V.2.1.3 Interferencias	180
V.2.1.3.1 Monóxido de carbono	180
V.2.1.3.2 Ozono	185
V.2.1.3.3 vapor de agua	186
V.2.2 Dispositivo de cuatro capas	188
Bibliografía	194

VI. ANÁLISIS DE LOS RESULTADOS Y CONCLUSIONES	195
Bibliografía	205
APÉNDICE A	207
APÉNDICE B	215
APÉNDICE C	217
APÉNDICE D	245

Capítulo I

INTRODUCCIÓN

I.1 PROBLEMÁTICA RELACIONADA CON LA EMISIÓN DE GASES EN ÁREAS URBANAS

I.1.1 POLUCIÓN ATMOSFÉRICA

La polución atmosférica puede definirse como una condición de la atmósfera en la que hay substancias presentes con concentraciones suficientemente altas respecto sus valores ambientales normales para producir efectos medibles sobre el hombre, animales, vegetación o materiales. Estas sustancias puden ser elementos o compuestos naturales o producidos por el hombre.

El problema de la polución atmosférica puede ser esquematizado como un sistema con tres componentes básicos [1]:

Figura I.1 Esquema del sistema de polución atmosférica

Probablemente la eliminación de la contaminación atmosférica en las áreas más pobladas del mundo requeriría una inversión sustancial y, seguramente, cambios importantes en la forma de vivir y en el uso de la energía. De todas formas sería imposible eliminar por completo toda la emisión de sustancias de origen humano en la atmósfera. Un objetivo más realista es la reducción de la emisión de contaminantes hasta el punto que los efectos adversos asociados con éstos sean eliminados.

Los esfuerzos realizados hasta ahora en la formulación de una estrategía coherente para el control de la polución han sido en gran parte infructuosos debido, principalmente, a la incapacidad de demostrar con claridad la relación entre niveles de emisión y concentración en el aire y entre concentración en el aire y efectos adversos (sobre todo para la salud humana) de la contaminación atmosférica.

La polución atmosférica es un fenómeno característico de los grandes centros urbanos y de las áreas industrializadas donde las concentraciones de contaminantes pueden alcanzar valores varios ordenes de magnitud mayores que los niveles del ambiente normal. Sin embargo, en un sentido más amplio, la polucion atmosferica es un problema global ya que, al final, los contaminantes se dispersan en la totalidad de la atmósfera.

El origen de la polución del aire está en las fuentes de emisión. Las mayores fuentes de emisión son [1]:

- 1) Medios de transporte
- 2) Generación de energía eléctrica
- 3) Incineración de residuos
- 4) Combustión industrial y doméstica
- 5) Procesos industriales

Asociados con las fuentes de emisión existen unos dispositivos (dispositivos de control de las fuentes) o procedimientos de operación que previenen que algunos de los contaminantes producidos por la fuente alcancen la atmósfera. Ejemplos típicos son los filtros, la sustitución de combustibles muy contaminantes, como el carbón, por otros menos contaminantes, como el gas natural y la modificación del mismo proceso. Los contaminantes son emitidos hacia la atmósfera que actúa como medio de transporte, de dilución y de transformación fisica y química. Estos contaminantes pueden ser detectados posteriormente por instrumentos o por seres humanos, animales, plantas o materiales. La detección por estos "sensores" se manifiesta en una respuesta como la irritación. Finalmente, como consecuencia de estas respuestas, las fuentes de emisión pueden ser modificadas bien mediante sistemas de control automáticos o mediante acciones legislativas.

La figura I.2 describe el diagrama de bloques del sistema de contaminación del aire.

Fig. 1.2 Sistema de polución del aire

Se pueden clasificar los contaminantes atmosféricos por su composición química en seis grandes grupos:

- 1. Compuestos del azufre
- 2. Compuestos del nitrógeno
- 3. Compuestos del carbono
- 4. Compuestos halogenados
- 5. Sustancias tóxicas
- 6. Compuestos radiactivos

El objetivo de esta tesis se centra en el segundo tipo de compuestos y más concretamente en el dióxido de nitrógeno aunque otros compuestos como el monóxido de carbono y el ozono también son analizados.

Los contaminantes atmosféricos pueden clasificarse asimismo de acuerdo a la forma con la que llegan a la atmósfera:

1. Contaminantes primarios. Son aquellos emitidos directamente por las fuentes.

2. Contaminantes secundarios. Son aquellos que se forman en la atmósfera por reacciones químicas entre los contaminantes primarios y los constituyentes atmosféricos normales.

I.1.2 COMPUESTOS DEL NITRÓGENO

Los compuestos principales del nitrógeno en la atmósfera son N₂O, NO, NO₂, NH₃ y sales de NO₃, NO₂, y NH₄⁺. El primero de ellos es producido casi totalmente por fuentes naturales. Es químicamente inerte a temperatura ambiente y no se considera un contaminante atmosférico. El monóxido de nitrógeno (NO) tiene fuentes de emisión humanas y naturales. La combustión a alta temperatura es la principal fuente humana de NO. El dióxido de nitrógeno (NO₂) se emite en pequeñas cantidades junto con el NO y se forma también en la atmósfera por la oxidación de este último. Tanto el NO como el NO₂, cuya suma se denota por NO_x, son considerados contaminantes atmosféricos. El amoníaco (NH₃) tiene su origen principalmente en fuentes naturales. En la tabla I.1. se muestran los flujos globales del NO_x [2]

FUENTES	Tg/año	
Combustión de materiales fósiles	21(14-28)	
Incendios de la biomasa	12(4-24)	
Rayo	8(2-20)	
Actividad microbiana	8(4-16)	
Oxidación del amoníaco	0-10	
Procesos fotolíticos y biológicos en el océano	<1	
Inyección estratosférica	~0.5	
TOTAL	25-99	
SUMIDEROS		
Precipitación	12-42	
Deposición seca	11-22	
TOTAL	23-64	

Tabla I.1 Flujo global del NO_x

Debe notarse el nivel de incertidumbre en el flujo total asociado con los errores parciales. Con estos datos se puede estimar el tiempo medio de residencia del NO_x en la troposfera como de 1 a 4 días. Debido a un tiempo tan corto se puede considerar que los efectos de la emisión del NO_x tienen una naturaleza local.

Tiene gran importancia conocer los valores típicos de la concentración de contaminantes en la atmósfera "limpia" y en el aire de las zonas urbanas contaminadas. En la tabla I.2 se presentan los rangos de concentraciones atmosféricas para varios de los mayores contaminantes [1].

	Concentración (ppb) ¹		
Contaminante	Atmósfera limpia	Aire contaminado	
SO ₂	1-10	20-200	
со	120	1000-10000	
NO	0.01-0.05	50-750	
NO ₂	0,1-0.5	50-250	
O ₃	20-80	100-500	
HNO ₃	0.02-0.3	3-50	
NH ₃	1	10-25	
PAN	-	5-35	
 ppb (parts per billion) y ppm (parts per million): aunque en rigor son fracciones volumétricas adimensionales se utilizan normalmente para expresar concentraciones: concentración de la especie i en ppm = 10⁶ x c_i / c concentración de la especie i en ppb = 10⁹ x c_i / c donde c_i y c son los moles / volumen de la especie i y el aire respectivamente 			

Tabla I.2 Concentración de contaminantes en la atmósfera limpia y en el aire de zonas urbanas

Influencia sobre la salud

Los experimentos con diferentes especies animales han demostrado que el NO_2 causa enfisema pulmonar. Otros estudios muestran una creciente susceptibilidad a las infecciones bacterianas pulmonares. Varios trabajos señalan efectos en infecciones víricas y en el sistema inmunológico. El NO_2 es un irritante conocido de los alvéolos dando lugar a síntomas parecidos a los del enfisema en condiciones de exposición prolongada a concentraciones del orden de 1 ppm [3]. Una dosis de 100 ppm es extremamente peligrosa incluso para exposiciones breves, mientras que una dosis de 200 ppm suele ser mortal [4]. Para exposiciones prolongadas se define un valor de umbral (TLV) que es la concentración a la que se puede exponer una persona durante ocho horas diarias sin efectos negativos para la salud. De todas formas debe notarse que un cierto número de personas pueden resultar afectadas por debajo de esa concentración debido a una susceptibilidad inusual. El valor fijado por las autoridades sanitarias americanas (tomado como referencia en muchos países europeos) es de 3 ppm para el NO_2 [5].

Una directiva de la Comunidad Europea fija en 100 ppb la concentración máxima de NO_2 que no debe superarse en ambientes urbanos [6]. La superación de este nivel repetidamente ha dado lugar a acciones gubernativas drásticas como la prohibición del uso privado de vehículos en las ciudades durante períodos de tiempo variables (por ejemplo en los últimos años en Milán y Roma) o, al menos, la limitación de la circulación de vehículos (matrículas alternas) y del funcionamiento de los sistemas de calefacción.

El valor reportado del TLV para el NO es de 25 ppm.

Aparte de los efectos directos sobre la salud el NO_2 tiene una gran importancia en las reacciones fotoquímicas atmosféricas. De hecho es la principal fuente de formación del ozono, contaminante extremadamente tóxico. La formación del ozono resulta de la fotólisis del NO_2 :

$$NO_2 + h\nu \rightarrow NO + O$$
 (1)

$$O + O_2 + M \to O_3 + M \tag{2}$$

donde *M* representa N_2 , O_2 u otra molécula que absorba el exceso de energía vibracional para estabilizar la molécula de O_3 . No existen fuentes significativas de producción de ozono en la atmósfera aparte de la reacción (2). El TLV para el ozono es de 0.1 ppm.

I.2 SITUACIÓN ACTUAL DE LOS DETECTORES DE NO_x

En el apartado anterior se ha mostrado la necesidad del control continuo de la concentración de NO_x en atmósferas urbanas. Los sistemas utilizados actualmente para la detección de los óxidos de nitrógeno bien sean comerciales o en fase de investigación se pueden agrupar en cuatro tipos.

1.2.1 SENSORES ÓPTICOS

Existen dos tipos fundamentales de analizadores ópticos dependiendo del principio de funcionamiento en que se basan: absorción y quimioluminiscencia.

I.2.1.1 ABSORCIÓN

La identificación de especies moleculares se puede conseguir con la espectroscopía de absorción. Es una técnica que se basa en la propiedad de ciertas moléculas de absorber la radiación a ciertas longitudes de onda características de la estructura química de la molécula. La absorción de la radiación sigue la ley de Beer-Lambert que establece que la transmitancia T de la radiación a través de un medio absorbente (relación entre la intensidad transmitida y absorbida) decrece exponencialmente con el producto del coeficiente de absorción a, la concentración c y el camino recorrido l:

$$T = \exp(-acl) \tag{3}$$

El coeficiente de absorción depende de la longitud de onda de la radiación y de la propiedades de las moléculas gaseosas.

Para los óxidos de nitrógeno se utilizan analizadores basados en la absorción en el infrarrojo o en el ultravioleta.

En el caso de la absorción ultravioleta la radiación produce transiciones electrónicas. Las características de la absorción infraroja están predominantemente definidas por los niveles de energía vibracionales de la molécula de gas.

En general un grupo químico no tiene una una longitud de onda fija para una absorción máxima. Las demás especies gaseosas y el entorno tienen una cierta influencia en la absorción. Ésta se produce en una banda característica de cada molécula.

Existen dos categorías de instrumentos de absorción: instrumentos no dispersivos e instrumentos dispersivos [1]. En éstos últimos la radiación viene separada en logitudes de onda discretas.

Técnicas no dispersivas

Existen tres técnicas principales: estado sólido, detección de Luft y espectroscopía de correlación.

Los analizadores de estado sólido contienen un filtro pasabanda que transmite las longitudes de onda de interés y un detector fotoconductivo o piroeléctrico que mide el grado de absorción.

Los instrumentos de celdas de Luft contienen un detector basado en el efecto fotoacústico con un diafragma móvil y un micrófono [7]. Estos instrumentos tienen una alta sensibilidad pero pueden verse sometidos a vibraciones externas de gran amplitud.

La espectroscopía de correlación es la más usada por su precisión ya que elimina los efectos de fondo que se dan en las otras técnicas. Un ejemplo de esta técnica [8] está representado en la Fig. I.3.

En este instrumento la luz es emitidad por una fuente y filtrada por un filtro pasabanda. Este espectro es mayor que la banda de absorción del gas. La luz viene moduladad por un "chopper" que contiene dos celdas selladas, una con un gas de referencia que no absorbe en esas longitudes de ondas y la otra con el gas puro a detectar. Cuando la rueda del chopper gira la intensidad del haz luminoso viene alternativamente atenuado y dejado pasar sin ser afectado. El haz pasa posteriormente por la celda de medida y se focaliza en un detector de estado sólido. Por tanto, cuando la rueda gira, el detector observa la intensidad I_1 del haz transmitido a través del filtro del gas de prueba y de la celda de medida y, después, la intensidad I_2 del haz transmitido a través del filtro del gas de referencia y de la celda de medida. Cuando el filtro del gas de prueba se encuentra en el haz solamente la parte del haz que no es absorbida por el gas pasa a través de la

celda de medidad hacia el detector. Este haz de referencia da las características del emisor y del detector y la absorbancia del cámino óptico.

Figura I.3 Analizador de gas basado en la espectroscopía de correlación

Cuando no hay ningún gas en la celda de medida una serie de pulsos son generados. Los correspondientes a la celda del gas de referencia (I_2) son los mayores debido a la atenuación del haz por el filtro del gas de prueba. Aumentando la concentración del gas en la celda de medida, la intensidad I_2 disminuye mientras que la intensidad I_1 permanece constante (la porción del haz que podría absorber el gas de prueba ha sido ya absorbida por el gas de la celda de referencia. Dos amplificadores *lock-in* funcionando a la frecuencia del filtro y al doble de esta frecuencia dan dos señales S_1 (proporcional a $I_2 - I_1$) y S_2 (proporcional a $I_2 + I_1$). Tomando la razón de estas dos señales, $S_1 : S_2$, la concentración buscada se puede calcular independientemente de las intensidades absolutas.

Técnicas dispersivas

Para la separación del haz en las longitudes de onda necesarias se emplean prismas o filtros regulables, en general fotoacústicos, que permiten el ajuste a la frecuencia deseada en pocos segundos. Estas técnicas usan soluciones ópticas para aumentar la resolución y métodos de proceso de datos como la transformada de Fourier o microprocesadores que acceden y comparan los datos con espectros almacenados anteriormente.

Los métodos espectrales de alta resolución usan tanto los picos de absorción en banda ancha como la estructura periódica de las líneas finas de absorción. Esta estructura fina consiste en un número de absorbancias discretas espaciadas en una banda estrecha de longitudes de onda con una periodicidad característica de cada molécula.

Los instrumentos que usan principios interferométricos contienen dispositivos ópticos similares a los analizadores simples pero se diferencian en el método de detección. Así mientras en un espectrómetro normal cuando la concentración del gas aumenta la señal del haz transmitido es atenuada en una cantidad igual al total de las líneas finas no resueltas, en un interferómetro con un filtro de peine (que genera una serie de espacios similares a los producidos por el gas) se produce una caída de la señal cuando las líneas de absorción del gas y del filtro coinciden. La selectividad a un gas particular se consigue por la correlación de las líneas espectrales con el espaciado del interferómetro. La ventaja de esta técnica es el alto nivel de discriminación que se consigue con un solo canal.

Otro método alternativo en la resolución del espectro fino es el uso de filtros optoacústicos [9]. Estos filtros están basados en el Tl_3AsSe_3 cristalino y son activados por un transductor ultrasónico. Es posible ajustar la frecuencia del filtro en el rango de 2 a 5.5 µm en pocos milisegundos.

Existe la posibilidad de utilizar la espectroscopía de correlación para la medida a distancia de los contaminantes. Los instrumentos pueden ser empleados en tres configuraciones distintas [10] :

1) La fuente emisora y el receptor se encuentran a una cierta distancia entre ellos.

2) Se utiliza solamente el receptor y se usa como fuente la luz del sol, o la luz difusa del cielo.
 En este caso el camino óptico está indeterminado.

3) La fuente y el receptor se encuentran situados en el mismo aparato. En este caso se mide la intensidad de la luz retrodifusa.

Los instrumentos más utilizados, aparte el espectrómeto de correlación, son el LIDAR y el espectrómetro de absorcion óptico diferencial.

LIDAR

El LIDAR (LIght Detection and Ranging) tiene como fuente emisora un laser pulsado de alta potencia. El impulso láser emitido viene desviado continuamente por el gas y las partículas de la atmósfera. Cuando vuelve es recogido por un telescopio que lo manda a un analizador. Esta técnica puede ser aplicada en dos modos diferentes: en el primero se opera el láser a una longitud de onda fija (útil sobre todo para determinar partículas y aerosoles); en el segundo modo el láser se opera a longitudes de ondas variables (LIDAR diferencial) [11].

La precisión y el límite de detección del LIDAR depende de factores como la visibilidad atmosférica, la resolución espacial requerida, el intervalo de concentración en el que se hace la medida y el tiempo de resolución que depende del número de impulsos.

Espectrómetro de absorción óptica diferencial

La espectroscopía de absorcion óptica diferencial es una variante de la espectroscopía de absorción [12] en la que la intensidad de la luz transmitida se mide en tres longitudes de onda diferentes con la que se calcula un coeficiente de absorción diferencial (en general menor que el coeficiente de absorción real [13]).

El instrumento que implementa esta técnica, el OPSIS [14], consiste en una lámpara de xenón que tiene un espectro de emisión en la región entre 200 y 700 nm. La luz, colimada por un espejo parabólico, recorre en el aire un camino variable entre centenares de metros y varios kilómetros. El haz viene capturado por otro espejo parabólico, focalizada a la entrada de una fibra óptica y analizada por un espectrómetro. Éste consiste en un retículo que aísla del haz un intervalo espectral de 40 nm. En el plano focal de la ranura de salida del retículo hay un disco con distintas ranuras que gira con velocidad constante montado antes de un tubo fotomultiplicador. Mientras una ranura explora el intervalo espectral, se mide la intensidad de la

luz en las distintas longitudes de onda mediante un fotomultiplicador cuya salida viene registrada en un ordenador a través de un conversor analógico-digital. La posición de la ranura y, por tanto, la longitud de onda correspondiente, es detectada por una barrera de luz infrarroja que envía una señal al ordenador. De este modo el espectro se registra en aproximadamente 10 ms lo cual permite eliminar la influencia de la turbolencia atmosférica.

Para cada especie molecular a medir se cambia la posición del retículo mediante un motor con el fin de registrar la región de longitudes de onda donde se encuentra el espectro de absorción característico de la sustancia y donde se halle la menor sobreposición con los espectros de otros gases.

La técnica de espectroscopía de absorción óptica diferencial ofrece una alta sensibilidad (~0.5 ppb en 10 Km), gran selectividad, rapidez de respuesta y posibilidad de medir varias sustancias al mismo tiempo. El gran inconveniente es su alto precio y su complejidad.

Con este instrumento se han realizado medidas de NO_2 en el Centro Común de Investigación, establecímiento de Ispra (Italia) - lugar donde se ha desarrollado el trabajo experimental de esta tesis. La zona de Ispra está considerada, desde el punto de vista de la contaminación, un sitio semirural: el tráfico de vehículos es limitado y no existen industrias que emiten contaminantes primarios. Sín embargo es posible un transporte de contaminantes por efecto del viento desde zonas adyacentes (Gallarate, Busto Arsizio, Milán, etc).

Fig. I.4 Medias mensuales de la concentración de NO2 en Ispra entre junio 1989 y agosto 1990

Como ejemplo la figura I.4 muestra las medias mensuales de NO_2 entre los meses de julio de 1989 y agosto de 1990 [10].

I.2.1.2 QUIMIOLUMINISCENCIA

La oxidación de moléculas de NO por el ozono produce moléculas de NO_2 en un estado excitado [15, 16]:

$$NO_2 + O_3 \rightarrow NO_2^* + O_2 \tag{4}$$

El retorno al estado electrónico fundamental se realiza mediante la emisión de un fotón en un espectro de longitudes de onda entre 600 y 1200 nm:

$$NO_2^* \to NO_2 + h\upsilon$$
 (5)

La luz producida en la cámara de reacción se hace pasar por un filtro que elimina la radiación con logitud de onda menor de 610 nm con el fin de suprimir la interferencia de los hidrocarburos.

La radiación filtrada llega a un fotomultiplicador cuya señal de salida es amplificada y digitalizada para su posterior tratamiento por un microprocesador.

Para llevar a cabo la medidad del NO_2 éste debe ser convertido previamente a NO. Un convertidor catalítico de molibdeno calentado a 320 °C realiza esta reducción:

$$3NO_2 + Mo \rightarrow 3NO + MoO_3 \tag{6}$$

El ozono necesario para la reacción de quimioluminiscencia se genera mediante un ozonador de descarga.

Los aparatos más evolucionados basados en esta técnica poseen dos canales, uno para el NO y el otro para el NO_x total. El aire aspirado por una bomba se hace pasar por las dos cámaras de reacción a la vez. Las dos cámaras de reacción están conectadas al mismo fotomultiplicador evitándose así los inconvenientes asociados con el uso de dos detectores. Un *chopper* con tres

zonas (NO-NO_x-oscura) gira delante del fotomultiplicador dejando pasar sucesivamente la señal de la cámara de NO, la de NO_x y ninguna señal. El oscuramiento de las dos cámaras permite la medida del cero eléctrico. La radiación emitida por la cámara del NO_x es proporcional a la suma de NO y NO₂ mientras que la radiación de la celda de NO es sólo proporcional a éste. La determinación del NO₂ se realiza por diferencia entre las dos señales.

1.2.2 SENSORES ELECTROQUÍMICOS

Los sensores electroquímicos están basados en la medida de la diferencia de potencial que se crea entre dos celdas que contienen especies químicas a distintas concentraciones separadas por un conductor iónico (electrolito). Dependiendo del tipo de electrolito se clasifican en sensores de electrolito sólido y sensores de electrolito líquido.

I.2.2.1 ELECTROLITO SÓLIDO

El esquema de un sensor electroquímico de electrolito sólido se muestra en la figura I.5. El electrolito sólido se encuentra entre dos conductores electrónicos porosos que están en contacto con el gas que se quiere analizar y con el gas de referencia.

En cada electrodo se produce una reacción del tipo:

$$\frac{1}{2}X_2(gas) + ne^{-}(Me) \to X^{n-}(E.S.)$$
⁽⁷⁾

La diferencia de potencial entre los electrodos en el caso ideal viene dada por la ley de Nerst [17]:

$$V = \frac{RT}{2nF} \ln \frac{\overline{P}}{P(ref)}$$
(8)

donde

R = constante de los gases ideales (R = 8.32 J/mol K)

F = constante de Faraday (96500 C)

n = número de electrones intercambiados en la reacción

T = temperatura absoluta de la celda

Figura I.5 Celda electroquímica de electrolito sólido

Los electrolitos sólidos más utilizados son los basados en los oxidos refractarios del grupo IVB $(ZrO_2, HfO_2, CeO_2, ThO_2)$ con adición de óxidos alcalinos (CaO_2, MgO) u óxidos de tierras raras (Sc_2O_3, MgO) , aunque para los óxidos de nitrógeno se utilizan otros tipos menos comunes. En la tabla I.3 se presentan los principales tipos de sensores para óxidos de nitrógeno.

Celda	Temperatura (°C)	Gas	Referencia
Ag/Ba(NO ₃) ₂ -AgCl/Pt,NO ₂	500	NO ₂	[18]
AI,Cr/LaF ₃ /Au+Ag,NO,NO ₂	ambiente	NO,NO ₂	[19]
M/(AIPcF)n/M	-200	NO ₂	[20]

Tabla I.3 Sensores de electrolito sólido para óxidos de nitrógeno

Además existen otros tipos de sensores electroquímicos basados en conductores protónicos poliméricos como el Nafión, que es un copolímero de tetrafluoroetileno y éter vinílico sulfofluorado. Los dispositivos realizados tienen una configuración de tres electrodos (sensores amperimétricos) y funcionan generalmente a temperatura ambiente [21]. El eléctrodo de trabajo se elige entre distintos materiales electrocatalíticos dependiendo del gas a detectar. En la tabla I.4 se sumariza los diversos tipos de sensores amperimétricos que trabajan a temperatura ambiente junto con el límite de detección. Nótese que ninguno de ellos consigue determinar el primer nivel de alarma para el NO_2 .

Gas	Eléctrodo de trabajo	Electrolito	Límite de detección (ppm)	Referencia
NO	oro -Teflón	$4 \text{ M} \text{H}_2 \text{SO}_4$	0.3	[22]
NO	grafito -Teflón	Nafión	0.8	[23]
NO ₂	grafito -Teflón	Nafión	0.7	[23]
NO ₂	oro -Teflón	4 M H₂SO₄	0.25	[22]

Tabla I.4 Sensores electroquímicos amperimétricos

El desarrollo de la tegnología planar en la electrónica ha permitido la construcción de dispositivos de electrolito sólido basados en películas delgadas. Las estructuras microiónicas se basan en una película delgada de electrolito sólido en contacto con electrodos de referencia y de medida. La aplicación más conocida de estas estructuras son las llamadas sondas lambda que miden la relación entre el aire y el combustible en los automóviles.

Para los óxidos de nitrógeno dispositivos multisensores microiónicos han sido construidos basándose en LaF, como electrolito sólido [24, 25].

I.2.2.2 ELECTROLITO LÍQUIDO

El esquema de un sensor electroquímico de electrolito líquido está representado en la figura I.6

Figura I.6 Diagrama esquemático de un sensor electroquímico de electrolito líquido

Los elementos básicos son [26]:

- Dos eléctrodos de difusión de gas. Uno de ellos, el contraeléctrodo, está localizado en el interior de la celda donde la difusión de los gases atmosféricos está muy restringida. El otro eléctrodo, el eléctrodo de medida, está situado de forma que los gases externos tienen fácil acceso.

- Un electrolito acuoso de conducción iónica concentrado (por ejemplo ácido sulfúrico, soluciones alcalinas).

- Un circuito externo de baja impedancia que conecta los eléctrodos y proporciona una tensión a través de una resistencia para medir la corriente de salida de la celda.

- Una barrera de difusión que controla la difusión de los gases reactivos hacia el eléctrodo de medida, previniendo una rección inversa en el contraeléctrodo y haciendo que la reacción en el eléctrodo de medida y la corriente resultante estén limitadas solamente por la velocidad de difusión a través de la barrera.

Con la inclusión de la barrera la concentración del gas reactivo se aproxima a cero en el eléctrodo de medida. El flujo de gas reactivo a través de la barrera es proporcional al gradiente de concentración a través de la misma:

flujo de gas
$$\alpha$$
 C₁ - C₂

donde C_1 y C_2 es la concentración del gas en el ambiente y en la celda respectivamente. Como C_2 tiende a cero en la condición de corriente limitada

flujo de gas
$$\alpha C_1$$

Por la ley de Fick, la corriente límite de la celda es directamente proporcional al flujo de gas (Φ)

$$\Phi(mol \bullet s^{-1}) = \frac{i_L}{nF} = K \times C_1 \tag{9}$$

donde n es el número de electrones transferidos por mol, F es la constante de Faraday y K es la difusibilidad de la barrera. Por tanto la corriente límite del sensor es proporcional a la concentración del gas en el ambiente.

Este principio se puede aplicar para medir cualquier sustancia gaseosa que pueda reaccionar con el eléctrodo apropiado.

La detección del NO se realiza mediante oxidación electroquímica en el eléctrodo de medida:

$$NO + H_2O \rightarrow NO_2 + 2H^+ + 2e^- \tag{10}$$

La reacción en el contraeléctrodo sería la reducción del oxígeno:

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O \tag{11}$$

La detección del NO₂ se realizaría mediante la reducción electroquímica siguiente:

$$NO_2 + 2H^+ + 2e^- \rightarrow NO + H_2O \tag{12}$$

En este caso en el contraeléctrodo se produciria una oxidación electroquímica, bien en forma de producción de oxígeno:

$$2H_2O \to O_2 + 4H^+ + 4e^- \tag{13}$$

o en forma de corrosión metálica:

$$Pb + 2OH^{-} \rightarrow Pb(OH)_{2} + 2e^{-} \tag{14}$$

La forma más simple de sensor electroquímico comprende sólo dos eléctrodos. Éste tiene el inconveniente de la polarización del contraeléctrodo que en la práctica conlleva un rango de concentración medible limitado. El problema se puede resolver con un diseño con tres eléctrodos, el último denominado eléctrodo de referencia [27, 28].

Un aspecto clave en cualquier sensor, electroquímico o no, es su selectividad, o sea, su capacidad de detectar un gas sin que otros gases que pudieran estar presentes interfieran en la respuesta. La selectividad en los sensores electroquímicos se consigue por una combinación de estros tres métodos:

- a) desarrollo de un eléctrodo catalizador y un electrolito específicos;
- b) control del potencial del eléctrodo de referencia;
- c) uso de filtros químicos para eliminar los gases de interferencia de forma selectiva.

Cada uno de estos métodos tiene sus limitaciones prácticas. Por ejemplo en el primer caso es muy difícil preparar un catalizador que sea suficientemente activo a sustancias poco reactivas mientras que sea poco activo a sustancias de interferencia muy reactivas.

Los filtros químicos pueden ser muy selectivos. Su principal inconveniente es que, expuestos a la totalidad del flujo de gas, tienen una vida muy corta. Un método más eficiente es colocar el filtro entre el eléctrodo y la barrera [29], aumentando así considerablemente el tiempo de vida del filtro.

Una aproximación al problema de la selectividad común a todos los sensores químicos es el uso de varios sensores conjuntamente y el recurso a técnicas de reconocimiento de esquemas basadas

en microprocesadores. Si una mezcla de gases que contiene varios componentes es expuesta a una matriz de sensores cada uno de ellos con una respuesta diferente conocida a cada gas, es posible descomponer la señal combinada en sus componentes separados. Esta técnica puede llegar a ser muy costosa y depende de un conocimiento preciso de las respuestas individuales.

I.2.3 CAPTADORES PASIVOS

Desde hacie varios años se utiliza el método de los tubos de difusión para la medida del nivel de NO₂ en aglomeraciones urbanas.

Estos captadores recogen el contaminante por difusión molecular y fueron introducidos en 1976 por Palmes [30].

El esquema de uno de estos captadores se muestra en la figura I.7. Está compuesto por un tubo de plástico de dimensiones precisas (en este caso 7 cm de longitud x 1 cm de diámetro interno). Una rejilla doble de acero inoxidable, humedecida en toda su superficie por trietanolamina (un absorbente del NO_2) se fija a la extremidad superior del tubo. Una cápsula cierra esta extremidad. Una segunda cápsula, que se retira antes de comenzar el muestreo, cierra la otra extremidad del tubo. El NO_2 avanza por difusión a través de la sección del tubo hasta la rejilla donde se absorbe. La cantidad absorbida depende de las características geométricas del tubo y del coeficiente de difusión del NO_2 .

Al final del muestreo los tubos se llevan al laboratorio donde el NO_2 es analizado por espectrofotometría mediante una variante del método de Griess-Salztman. La concentración media atmosférica se determina por la duración de la exposición.

Entre las ventajas de este método caben destacar:

-sensibilidad: el límite de detección es de aproximadamente 200 ppb / hora, por tanto, en 200 horas de exposición se pueden detectar cantidades del orden de 1 ppb;

-simplicidad: no necesita alimentación eléctrica ni mantenimiento;

-preparación y utilizaciones sencillas;

-posibilidad de utilización en número elevado;

-coste muy bajo.

Figura I.7 Esquema de un tubo de difusión

Entre los principales inconvenientes se encuentran:

-no se pueden utilizar para muestreos de corta duración salvo para concentraciones elevadas;

-no existe la posibilidad de adquisión de datos en tiempo real

-los cambios bruscos de concentración pueden provocar errores.

I.2.4 SENSORES SEMICONDUCTORES

Los sensores semiconductores están basados en la propiedad de ciertos semiconductores de cambiar sus propiedades eléctricas en presencia de diferentes gases [31, 32, 33].

Se acepta generalmente que el proceso que lleva a estos cambios es la adsorción del gas en la superficie del semiconductor.

1.2.4.1 SENSORES INORGÁNICOS

En general los materiales semiconductores empleados son óxidos metálicos como ZnO, SnO_2 , Ti O_2 , V_2O_5 , etc, pues son materiales que no se oxidan en aire y son bastante inertes químicamente.

En la figura I.8 se muestra un esquema de un sensor resistivo.

Figura I.8 Esquema de un sensor resistivo

La clasificación más general de los materiales en los que se basan los sensores de gases es en tipo n y tipo p dependiendo de la conductividad del semiconductor. Los materiales de tipo n reaccionan a los gases oxidantes disminuyendo su conductividad y a los gases reductores aumentando la misma. Lo contrario sucede a los sensores de tipo p [34].

La mayoría de los sensores de gases utilizados actualmente están basados en el SnO_2 [35] debido a su gran sensibilidad, a pesar de su falta de selectividad. Una cierta selectividad se puede

conseguir mediante el uso de catalizadores [36], diferentes configuraciones geométricas del sensor [37] o diferentes temperaturas de operación [38].

En el caso de los óxidos de nitrógeno no existen sensores comerciales de este tipo. Los trabajos realizados sobre estos gases hasta la fecha centran el estudio en concentraciones de gas muy por encima de las concentraciones típicas (incluso máximas) de estos contaminantes en las áreas urbanas [39, 40, 41,42].

El principal inconveniente de estos sensores, aparte la selectividad, es la estabilidad a largo plazo debido a la progresiva eliminación de defectos, vacantes de oxígeno, cerca de la superficie [42]. Entre sus mayores ventajas cabe destacar el amplio rango de utilización, su alta sensibilidad, su facilidad de operación y su bajo coste.

I.2.4.2 SENSORES ORGÁNICOS

Los grandes cambios de conductividad inducidos por los gases adsorbidos en los materiales orgánicos son conocidos desde hace tiempo [43]. La gran desventaja de los materiales orgánicos en la detección de gases es que generalmente son malos conductores y térmicamente inestables. Existe, sin embargo, un grupo de materiales orgánicos que son estables hasta temperaturas de 400 °C con propiedades semiconductoras: las phtalocianinas (Pc).

Estos materiales suelen ser semiconductores de tipo p y se depositan en forma de monocristales, [44], películas delgadas por medio de sublimación en vacío [45, 46, 47] o, incluso, en películas de Langmuir-Blodgett [48].

La mayoría de las phtalocianinas metálicas tienen una estructura planar. Una excepción importante es la PbPc, usada extensivamente como material sensor, donde el átomo de plomo se sale fuera del plano de la molécula.

El NO₂, así como otros gases oxidantes, causa un aumento de conductividad en las phtalocianinas. Experimentos con este gas han sido realizados por varios investigadores [49, 50, 51] mostrando que el sensor produce una señal medible en el rango de concentraciones de NO₂ entre 1 ppb y 20 ppm y, por tanto, en el rango adecuado para las medidas en áreas urbanas.

Los problemas más importantes de estos sensores son su corta vida y sus tiempos lentos de respuesta y recuperación. Hasta la fecha no existen dispositivos comerciales basados en las phtalocianinas.

Bibliografía del capítulo I

- 1. J. H. Seinfeld, "Atmospheric Chemistry and Physics of Air Pollution", John Wiley & Sons eds., p.2 ss., New York (1986).
- 2. J. A. Logan, J. Geophys. Res., 88, 10, 785-807 (1983).
- 3. U.S.Environmental Protection Agency, "Air Quality Criteria for Particulate Matter and Sulfur Oxides", Report No EPA-600/ 8-82-029 (1982).
- 4. H. W. Haggard, "Noxious gases", A.C.S. Monograph series n.35 Reinhold, New York, 134-137, 141(1943).
- American Conference of Governmental Industrial Hygienists, "Threshold Limit Values and Biological Exposure Indices for 1991-92".
- 6. Official Journal of the European Communities Nr. L87/5 (1985).
- 7. K. V. Luft, Z. Tech. Phys., 24, 97 (1943).
- 8. R. G. Coombes and D.J. Stroud, Int. Environ. Safety, 24 (1987).
- 9. R. L. Nelson, Proc. SPIE, 753, 103 (1987).
- 10. C. Paqualotto, "Misure a Distanza di Inquinanti Atmosferici", Tesi di Laurea, Universitá degli Studi di Milano (1991).
- H. Edner, B. Galle, A. Sunesson, S. Svanberg, L.Uneus, S. Wallin, *Appl. Opt.*, 25, 403 (1986).
- H. Edner, B Galle, A. Sunesson, S. Svanberg, L. Uneus, S. Wallin & W. Wendt, *Proc. SPIE*, 701, 385 (1986).
- U. Platt and D. Perner, "Optical and Laser Remote Sensing", K. D. Killinger and A. Mooradian Eds., Springer Verlag, Berlin, 39, 97-105 (1983).
- 14. Opsis, "Analysis of Gases with Opsis Technology" (1989).
- 15. A. Fontijn, A. J. Sabadell and R. J. Ronco, Anal. Chem., 42, 575 (1970).
- D. H. Stedman, E. E. Daby, F. Stuhl and H. Niki, J. Air Poll. Control Assoc., 22, 260 (1972).
- M. J. Madou, S. R. Morrison, "Chemical Sensing with Solid State Devices", Academic Press, New York (1992).

- M. Gauthier, A. Belanger, Y. Meas and M. Kleitz, "Solid Electrolytes: General Principles, Characterization, Materials, Applications", P. Hagenmuller and W. Van Gool eds., Academic Press, 497-517, New York (1978).
- 19. S. Sekido, National Tech. Report Jpn, 22, 803-817 (1986).
- 20. G. Berthet, J. P. Blanc, J. P. Germain, A. Larci, C. Marleysson and H. Robert, Synthetic Metals, 18, 715 (1987).
- 21. R.M. Dempsey, A. B. Laconti and M.E. Nolan, U.S. Patent 4227984 (1980).
- 22. J. M. Sedlak and K. F. Blurton, J. Electrochem. Soc., 123(10), 729 (1976).
- 23. A.B. LaConti, M. E. Nolan, J. A. Kosek and J. M. Sedlak, "Recent Developments in Electrochemical solid Polymer Electrolyte Sensors Cells Measuring Carbon Monoxide and Oxides of Nitrogen", in *Chemical Hazards in the Workplace: Measurement and Control*, G. Choudhary, ed., ACS Symposium Series 149, 551-573 (1981).
- 24. B.C. LaRoy, A. C. Lilly and C.O. Tiller, J. Electrochem. Society, 120(12), 1668 (1973).
- 25. A. Yamaguchi and T. Matsuo, Automatic Measurement and control, Academic Journal (Japan), 17(3) (1981).
- 26. B. S. Hobbs, A. D. S. Tantram and R. Chan-Henry, "Liquid Electrolyte Fuell Cells", in *Techniques and Mechanisms in Gas Sensors*, P.T. Moseley, J.O.W. Norris and D.E. Williams eds., Adam Hilger, New York (1991).
- 27. A.C. Blazenov, G. I. Krukov and R. N. Saifi, U.K. Patent 1101101 (1968).
- 28. H.G. Oswin and H. W. Bay, U.S. Patent 3909386,(1975).
- 29. A.D. S.Tantram and Y. S. Chang, U.K. Patent 2049952 (1980).

-U.S. Patent 4633704 (1984)

- E.D. Palmes, A.F. Gunnisson, J. Dimattio and C. Tomczyck, Am. Ind. Hyg. Assoc. J., 37, 570-577 (1976).
- 31. W. Brattain and J. Bardeen, Bell System Technical J., 32, 1 (1953).
- 32. S.R. Morrison, Avd. Catal., VII, 259 (1955).
- 33. S.R. Morrison, J. Phys. Chem., 57, 860 (1953).
- 34. P.T. Moseley, A. M. Stoneham and D. E. Williams, "Oxide Semiconductors: Patterns of Gas Response Behaviour according to Material Type", in *Techniques and Mechanisms in Gas Sensors*, P. T. Moseley, J.O. W. Norris and D.E. Williams eds., Adam Hilger, New York (1991).

- 35. N. Taguchi, U.K. Patent 280809 (1970).
- 36. S.J. Gentry and T. A. Jones, Sensors & Actuators, 4, 581 (1983).
- D.E. Williams, "Solid State Gas Sensors", P.T. Moseley and B. C. Tofield eds., Adam Hilger, Bristol (1987).
- G. Barbi, J.P. Santos, P. Serrini, P. Gibson, M.C. Horrillo and L. Manes, Sensors and Actuators B, (1995) in press.
- 39. S.C. Chang, IEEE Trans. Electron. Devices, ED-26, 12, 1875-1880 (1979).
- 40. G. Sverbeglieri, S. Groppelli and P. Nelli, Sensors and Actuators B, 1, 79-82 (1990).
- 41. G. Sverbeglieri, G.P. Benussi, G. Coccoli, S. Groppelli and P. Nelli, *Thin Solid Films*, 186, 349-360 (1990).
- 42. K.D. Schierbaum, H. D. Wiemhöfer and W. Göpel, *Solid State Ionics*, **28-30**, 1631-1636 (1988).
- 43. M.M. Labes, "Surface Effects in Detection", J. I. Bergman and and A. Dravnieks eds., Spartan Books, Washington DC (1965).
- 44. R.L. Van Ewyck, Ph. D. Thesis, University of Kent at Canterbury (1978).
- 45. Y. Sadaoka, N. Yamazoe and T. Seiyama, Denki Kagadu, 46, 597 (1978).
- 46. B. Bott and T. A. Jones, Sensors and Actuators, 5, 43 (1984).
- 47. T.A. Jones and B. Bott, Sensors and Actuators, 9, 27 (1986).
- 48. M., Cook, A.J. Dunn, M.F. Daniel, R.C.D. Hart, R.M. Richardson And S. J. Roser, *Thin Solid Films*, **159**, 395 (1988).
- 49. R. L. Van Ewyck, A.V. Chadwick and J.D. Wright, J. Chem. Soc. Faraday Trans., 1 76, 2194 (1980).
- 50. B. Bott and T.A. Jones, Sensors and Actuators, 5, 65 (1984).
- 51. T.A. Jones B. Bott and S. C. Thorpe, Sensors and Actuators, 17, 467 (1989).

<u>Capítulo II</u>

EL MATERIAL SENSOR: SnO₂

Este capítulo está dividido en tres partes fundamentales. En la primera parte se estudiarán las propiedades del material sensible al gas, el dióxido de estaño. La segunda parte se dedica a las técnicas de deposición y modificación del material. Por último se estudian las técnicas de análisis para la caracterización del mismo.

II.1 PROPIEDADES QUIMICO-FÍSICAS

El dióxido de estaño se encuentra en la naturaleza en la forma del mineral casiterita. Su color es blanco aunque frecuentemente se muestra colorado debido a las impurezas que contiene. Una propiedad importante es que es inerte a los ácidos y bases.

II.1.1 ESTRUCTURA CRISTALINA

El SnO₂ en el estado sólido tiene una estructura cristalina tetragonal del tipo rutilo (fig.II.1) que pertenece al grupo puntual P4/mnm (tabla II.1). La celda unitaria contiene seis átomos: dos de estaño y cuatro de oxígeno. Cada átomo de estaño se coloca al centro de seis átomos de oxígeno que están situados en los vértices de un octaedro regular, mientras que cada átomo de oxígeno se encuentra rodeado por tres átomos de estaño situados en los vértices de un triángulo equilatero.

Fig. II.1 Celda unidad de la estructura cristalina del SnO_2 (rutilo)

SIMETRIA	TETRAGONAL	
GRUPO PUNTUAL	P4/mnm	
a = b	4.7372 Å	
с	3.1864 Å	
c/a 0.67		
O-Sn-O	77° 20'	

Tabla II.1 Constantes cristalográficas del SnO₂

Aunque la coordinación del estaño con el oxígeno es muy próxima a la octaédrica regular, medidas precisas de las distancias Sn-O muestran que el estaño está más cerca de 4 de los seis átomos de oxígeno con una distancia igual a 2.03 Å mientras que los 2 oxígenos restantes distan 2.07 Å. Estas dos distancias son comparables a la suma de los radios iónicos del O²⁻ y del Sn⁴⁺

que son respectivamente 1.4 Å y 0.71 Å. Las distancias O-O son 2.53, 2.90 y 3.16 Å. La estructura de coordinación es 6:3 [1].

II.1.2 ESTRUCTURA ELECTRÓNICA

El cálculo del diagrama de bandas del SnO_2 ha sido realizado por J. Robertson [2] usando un método de "tight-binding" con LCAO (combinación lineal de orbitales atómicos). Este cálculo contiene todas las interacciones de dos centros, es decir, entre catión y anión, anión y anión, catión y catión, para tener en cuenta tanto el potencial debido a los vecinos de cada átomo como de los efectos de covalencia. La base de las autofunciones utilizadas en LCAO es la de los estados atómicos de las órbitas externas de los dos átomos, que son los estados que pueden experimentar transferencia de carga o formar enlaces covalentes. Los estados más internos, como el 1s del oxígeno, están excluidos de la base.

La configuración del estado fundamental de los dos átomos es la siguiente:

Aunque los orbitales 4d del estaño pueden contribuir al enlace, el cálculo de J. Robertson no parece tenerlo en cuenta.

En la base están incluidos también las autofunciones de los orbitales no ocupados del estado fundamental, es decir, los primeros estados excitados de los dos átomos. Además la degeneración de espín del mismo orbital del estado fundamental viene desdoblada por el campo cristalino por lo que las autofunciones correspondientes deben ser consideradas en la base del LCAO.

El método utilizado tiene en cuenta las siguientes interacciones de dos centros:

que introducen explícitamente la covalencia (como en el caso de moléculas).

Fig. II.2a Estructura de bandas del SnO₂ (cálculo teórico [2]) : 1-incluyendo las interacciones Sn-O y O-O 2- solo con las interacciones Sn-O

El cálculo de las bandas ha sido realizado en un campo cristalino formado por los primeros y seguidos vecinos de los dos elementos. Los resultados se muestran en la figura II.2a.

Este esquema hace referencia a la representación irreducible de los pequeños grupos de la simetría D_{4h}^{14} (P4₂/mnm) tabuladas por J.G. Gay et al. [3] considerando las traslaciones primitivas del retículo tetragonal y las operaciones puntuales de rotación, reflexión e inversión en la notación de Köster [4]. La figura II.2b representa la zona de Brillouin con los elementos de simetría en los que se basa la notación.

Fig. II.2b Zona de Brillouin para el retículo tetragonal de Bravais. (Los puntos de simetría están clasificados según la notación de Koster)

Las informaciones más importantes para este trabajo son las que nos proporcionan el máximo de la banda de valencia y el mínimo de la banda de conducción.

En el punto Γ , cuando la interacción con los segundos vecinos no se incluye los estados siguientes son importantes para el mínimo de la banda de conducción (E_c) y para el máximo de la banda de valencia (E_v) :

Ec: Γ_1^+

Ev:
$$\Gamma_2^+, \Gamma_3^+, \Gamma_5^-$$
 (degenerados)

En esta notación el sufijo indica las operaciones de simetría presentes en el grupo [3,5] y los signos \pm indican un cambio de signo de los elementos de matriz correspondientes (cambio del sentido de rotación).

Si se introduce en el cálculo la interacción de dos centros anión-anión (O-O, segundos vecinos) se destruye la degeneración del Ev, alzando el estado Γ_3^+ con relación a los otros dos. El cálculo que incluye todas las interacciones deja en el punto Γ la siguiente situación:

- mínimo de la banda de conducción : estado Γ_3^+ - máximo de la banda de valencia : estado Γ_1^+ - separación energética en el punto Γ ("gap" directo): ~ 3.6 eV

Es interesante observar la reducción del valor del "gap" de energía respecto a los 5 eV obtenidos en ausencia de la interacción O-O. Valores cercanos a 3.6 eV han sido obtenidos con medidas de espectroscopía óptica [6], y de la constante de la serie hidrogenoide del excitón en el SnO₂ [7]. En este último trabajo se afirma la naturaleza directa del gap de energía: el espectro excitónico del SnO₂ no se muestra asistido por fonones. El estado Γ_3^+ en el E_{ν} proporciona, además, una buena hipótesis de interpretación del espectro.

La inspección del diagrama de bandas muestra una curvatura acentuada en el E_c de la cual deriva una pequeña masa eficaz m*[13]:

$$\left(\frac{1}{m^*}\right)_{ij} = \left(\frac{\partial^2 E}{\partial k_i k_j}\right) \tag{1}$$

Un valor pequeño de m^{*} ha sido confirmado experimentalmente con medidas de resonancia ciclotrónica [7, 14]. El valor encontrado ha sido de .275 m_0 .

Se puede hipotizar que el electrón de conducción tenga una movilidad bastante alta, a pesar de que la banda de conducción sea bastante estrecha (~3eV). Esta situación, bastante anómala para un sólido iónico, ayuda a explicar la buena conducción eléctrónica del sólido. Como se verá más adelante, esto tiene consecuencias importantes para los estados defectivos del sólido, sobre todo por la estructura de los centros donores asociados a las vacantes de oxígeno.

El estado Γ_1^+ del E_c tiene un 80% de caracter p_{π} (orbitales p del estaño); el estado Γ_3^+ del E_v tiene también un carácter preferentemente p_{π} (orbitales p del oxígeno): los orbitales externos de los átomos constituyentes mantienen su identidad. Esto significa un pequeño tanto por ciento de enlace covalente en el óxido. Un cálculo de la polarizabilidad del SnO₂ a partir de los resultados del cálculo de bandas parece confirmar el carácter fuertemente iónico del compuesto. Sin embargo, el carácter iónico o covalente del sólido permanece un problema no resuelto teóricamente. En el cálculo de bandas que se ha analizado la covalencia podría haber sido subestimada por la exclusión de los orbitales 4d del estaño.

La comparación de los perfiles teóricos de la densidad de estados con medidas de UPS (espectrofotometría electrónica ultravioleta, fig.II.2c) confirma los resultados del cálculo de J. Roberston[2].

Fig.II.2c DOS comparado con UPS y contribución parcial de los orbitales para el SnO_2 incluyendo las interacciones O-O.

En la figura se puede apreciar que la banda de valencia se extiende por aproximadamente 9 eV y se puede dividir en tres zonas :

- de -9 a -5 eV, caracterizada por la interacción entre los orbitales s del estaño y p del oxígeno;

 - de -5 a -2 eV, caracterizada por la interacción entre los orbitales s del estaño y p del oxigeno y de una pequeña fracción de los orbitales p del estaño;

- de -2 eV al E_{ν} , constituida esencialmente por los orbitales p del oxígeno, los cuales contribuyen poco al enlace químico.

La banda de conducción está constituida:

- en la parte inferior, por los orbitales s del estaño;

- en la parte superior por los orbitales p del estaño, con una pequeña contribución de los estados p del oxígeno.

El mismo Roberston [8] usa el método de la función de Green "tight binding" para calcular las energías de los estados defectivos e impurezas dentro del SnO₂. Brevemente se puede afirmar:

a) <u>Vacantes de oxígeno</u>: la vacante de oxigeno neutra V_0 , con un alto potencial positivo en el retículo, forma estados que se sitúan en la banda de conducción o inmediatamente por debajo del Ec y, por tanto, se ioniza facilmente. Los niveles energéticos asociados con las vacantes ionizadas son de 30±5 meV y 150± meV para el primer y segundo nivel de ionización respectivamente [12].

El estado electrónico está fuertemente deslocalizado (radio característico 20 Å). La masa eficaz del electrón añadido a la banda de conducción es similar a la calculada en el tratamiento del SnO_2 no defectivo (m*=.275 m₀).

<u>b)Impurezas</u>: las impurezas trivalentes (Al³⁺, In³⁺) se encuentran en niveles de energías muy bajos. El hueco que se forma se localiza en uno de los oxígenos adyacentes. El acoplamiento electron-red cristalina se localiza aún más en un solo orbital π del oxígeno. Las ímpurezas pentavalentes como el Sb⁵⁺ se situan en niveles cercanos a la banda de conducción.

Se pueden subrayar, resumiendo, tres puntos importantes para el desarrollo de esta memoria:

1.- El gap de energía relativamente bajo y la alta movilidad de los electrones en la banda de conducción hacen del SnO₂ un semiconductor de tipo n.

2.- La pequeña masa eficaz de los electrones en la banda de conducción permite una fácil ionización de de los niveles donores (como las vacantes de oxígeno) con el consiguiente aumento de la conductividad eléctrica de tipo n (conductividad extrínseca).

3.- La naturaleza del enlace Sn-O, importante para el tipo de adsorción superficial de moleculas y para la fuerza del mismo, no está completamente clara. La alta polarizabilidad calculada autoriza, sin embargo, el uso del mecanismo de ionosorción, que es el utilizado en esta tesis.

II.1.3 DEFECTOS Y CONDUCCIÓN EN EL SnO₂

El diagrama de fase de los óxidos de estaño [9] se ilustra en la fig. II.3.

Fig. II.3 Diagrama de fase O-Sn a 1 atm

Se puede observar que:

- el SnO existe solo en un estado metaestable

- por encima de 400 °C el SnO de descompone en Sn + Sn₃O₄

- las únicas fases estables en el intervalo de temperatura 300 - 1127 °C son el Sn líquido, el SnO₂ sólido y el SnO gaseoso.

Esto hace posible la creación de la fase estable SnO_2 en el intervalo de temperaturas usado en este trabajo. Medidas realizadas con GAXRD y XPS (ver §V.1.1 y §V.1.2) confirman que la única fase presente en las películas es SnO_2 .

El óxido de estaño es un sólido no estequiométrico: en el diagrama de fases, para ciertos valores de temperatura y presión, existen fases estables con contenido de oxígeno inferior a el de la estequiometría del óxido.

En el caso del SnO_2 el compuesto SnO_x es normalmente estable con x<2. La falta de estequiometría se puede asociar con vacantes de oxígeno (V_o^{++}) o con intersticiales catiónicos (I_m) . El superíndice indica el signo y la entidad de la carga en exceso representada por el defecto "desnudo".

Los defectos puntuales indicados están, en general, en equilibrio entre ellos, pero aquel cuya concentración es mayor se considera el origen de la desviación de estequiometría del óxido.

La distinción entre los diferentes tipos de defectos es importante para la discusión de la conductividad iónica y la difusión química. Por lo que respecta a los fenómenos de transporte eléctrico las dos especies tienen el mismo efecto, es decir, introducen portadores de carga negativos en exceso (electrones).

El estado defectivo predominante en el SnO_2 son las vacantes de oxígeno [8]. Desde el punto de vista de la génesis del defecto se pueden encontrar dos situaciones [10]:

1- Pérdida del oxígeno reticular en los estratos superficiales.

2- Cambio de la estequiometría del "bulk".

En el primer caso la extracción del oxígeno puede ser debida a agentes reductores o por la simple disociación del óxido [11].

Las vacantes de oxígeno, como se ha dicho anteriormente, se comportan como donores: cuando se elimina un átomo de oxígeno se pierden los orbitales enlazantes entre el oxígeno y los cationes adyacentes. Los electrones correspondientes pueden pasar facilmente a la banda de conducción.

Del mismo modo la vacante catiónica sería un aceptor. De hecho los átomos de oxígeno adyacentes tienen un orbital libre atractivo para los electrones. De esta forma los electrones de la banda de valencia pueden ser capturados por un estado localizado al interno del gap generando un hueco.

El balance de los portadores en la banda de conducción viene determinado por las vacantes de oxígeno mediante la pérdida o captura de electrones :

$$V_o \leftrightarrow V_o^{++} + 2e^- \tag{2}$$

La conductividad depende de todos los portadores móviles, electrones, huecos y los propios defectos. A las temperaturas de trabajo de este material la movilidad de estos últimos es despreciable por lo que la conductividad vendrá dada por:

$$\sigma = ne\mu_e + pe\mu_e \tag{3}$$

donde:

e = carga del electrón

n, p = concentración de electrones, huecos

 μ_{e},μ_{p} = movilidad de electrones, huecos

La concentración de portadores en un semiconductor intrínseco viene dada por [13]:

$$n_i = p_i = \sqrt{N_c N_v} \exp(-E_g/(2kT))$$
(4)

con:

 N_c , N_ν = dendidad efectiva de estados en la banda de conducción, valencia

 $E_g = \text{gap de energía}$

En el caso de un semiconductor extrínseco de tipo n, en presencia de una concentración de centros donadores que exceda la concentración de huecos, la concentración de electrones libres, en el límite de temperaturas bajas será:

$$n_e = \sqrt{N_c N_D} \exp\left(-(\Delta E)/(2kT)\right)$$
(5)

donde:

 N_D = concentracion de donadores

 ΔE = energía del centro donador (E_c - E_D)

La densidad efectiva de estados en la banda de conducción viene dada por la expresión:

$$N_c = 2 \left(\frac{2\pi m^* kT}{h^2} \right) M_c \tag{6}$$

donde m^* es la masa efectiva en la banda de conducción y M_c es el número de mínimos equivalentes en la banda de conducción. Sustituyendo los valores para el SnO₂ se obtiene un valor de 5 x 10¹⁸ cm⁻³ a 300 K.

El óxido de estaño corresponde a este caso ya que la concentración de vacantes de oxígeno es muy alta y el gap es lo suficientemente elevado para que la concentracion de huecos sea despreciable frente a éstas.

Por tanto la conductividad del SnO₂ viene dada por:

$$\sigma = n_e e \mu_e \tag{7}$$

$$\mu_e = e\tau/m^* \tag{8}$$

donde:

 μ_e = movilidad del electrón m^* = masa efectiva del electrón τ = tiempo de vida medio del electrón

II.2 PREPARACIÓN

Los sensores estudiados en esta memoria han sido preparados en forma de películas delgadas con la técnica de la pulverización catódica. Esta técnica se describe en el apartado II.2.1.

Se han realizado dos tipos de sensores: películas resistivas sobre sustratos de alúmina y estructuras sobre uniones p⁺-n de silicio.

El esquema del primer tipo se muestra en la fig. II.4. El substrato de Al_2O_3 es un substrato comercial (MRC) de dimensiones $20x10x0.635 \text{ mm}^3$, pulido ópticamente con una rugosidad superficial media de 250 Å. Sobre él se deposita una película delgada de SnO₂ y dos contactos de Au o Pt.

Fig. II.4 Esquema del sensor de película resistiva

El segundo tipo de sensor es una estructura de cuatro capas: una unión p+-n de silicio, una capa de óxido delgada y una película de SnO_2 . El esquema de este sensor se muestra en la figura II.5 El material de partida en este caso son obleas de silicio de 600 µm de espesor de tipo p+ con una capa epitaxial n de 6 µm de espesor. La densidad de donores de la capa epitaxial es de $2x10^{14}$ cm⁻³ y su resistividad de 18 ohm x cm. Generalmente estas uniones están recubiertas por una capa de óxido nativo de espesor entre 20 y 40 Å. En los extremos de la estructura se depositan los contactos eléctricos de oro bien de tipo puntual central, bien de tipo de red. Este último tipo de contacto se ha realizado para hacer más homogéneo el campo eléctrico en la estructura.

Fig. II. 5 Esquema del sensor estructurado de cuatro capas con las dimensiones típicas de cada una.

Algunos sensores han sido modificados con la introducción de aluminio o platino metálicos con el fin de comprobar los posibles efectos catalizadores de estos metales en la adsorción.

La introducción de estos metales se ha llevado a cabo mediante la pulverización catodica en forma de película delgada superficial y mediante la implantación iónica, con la introducción del dopante en profundidad. Esta segunda técnica se describe en el apartado II.2.2.

II.2.1 PULVERIZACIÓN CATÓDICA

Es una de las técnicas más usadas para la deposición de películas delgadas debido fundalmente a tres características sobresalientes:

1. Las películas depositadas se adhieren mejor al substrato ya que la energía cinética de los átomos pulverizados es mucho más grande que en cualquier otro proceso de deposición.

2. Es fácil depositar compuestos y mantener la composición inicial.

3. La técnica posee una gran flexibilidad, ya que pueden depositarse un gran número de compuestos diferentes, ya sean metales, aislantes o semiconductores.

La pulverización catodica es una técnica de deposición caracterizada por el transporte de material desde una fuente llamada blanco (cátodo), hasta un substrato (ánodo) en una atmósfera gaseosa a presión reducida [15].

Los elementos fundamentales de la pulverización catodica se muestran en la figura II.6

Fig. II.6 Elementos esenciales de un sistema de pulverización catódica: 1.-cátodo, 2.-generador de potencia, 3.-argón a presión reducida, 4.-plasma, 5.-substrato, 6.-ingreso del gas, 7.-masa, 8.-sistema de bombeo.

El proceso de pulverización catodica se basa en la presencia de un plasma (gas ionizado) generalmente de argón, entre el substrato y el blanco. Los iones de argón, cargados positivamente son acelerados por el campo eléctrico y atraidos hacia el blanco, cargado negativamente. Como resultado de las colisiones se transfiere energía desde los iones incidentes a los átomos del blanco. Cuando la energía transferida a un átomo superficial del blanco es mayor que la energía de enlace del material se produce la expulsión de aquel. Parte de los átomos expulsados atraviesan la cámara de vacío y se depositan sobre el sustrato, creándose de este modo una película delgada.

De los distintos modos de excitación del plasma, el utilizado en esta tesis es el modo magnetrón. En este modo un campo magnético viene aplicado perpendicularmente al campo eléctrico creado por el cátodo. El resultado es el confinamiento del plasma en una zona cercana a la superficie del cátodo creándose así corrientes iónicas y velocidades de pulverización altas. Para materiales semiconductores se suele usar el modo magnetrón de radiofrecuencia, preferible al modo DC porque impide la formación de un depósito aislante sobre la superficie del blanco.

Cuando además del gas inerte se inyecta en la cámara de vacío un gas que es químicamente activo respecto al material del blanco, el tipo de deposición se denomina pulverización catódica reactiva [16]. Por este método, la reacción química puede tener lugar en el cátodo, durante el transporte de los átomos, en la superficie de la película o por una combinación de las tres.

Este modo se utiliza en el caso de que uno de los elementos del blanco sea volátil (por ejemplo el oxígeno en los óxidos) ya que este puede incorporarse al gas residual y provocar un déficit en la estequiometría. Utilizando un gas activo durante la pulverización se puede restablecer la composición superficial del blanco y de la película en el sustrato.

Todas las películas de SnO_2 han sido preparadas mediante esta técnica.

Los aparatos usados han sido dos:

- SCM 450 ALCATEL del Laboratorio de Sensores del Consejo Superior de Investigaciones Científicas (Madrid).

- Z400 LEYBOLD-HERAEUS del Instituto para los Materiales Avanzados del Centro Común de Investigación (Ispra, Italia).

La única diferencia importante entre las dos máquinas está en las dimensiones del blanco (diámetro 10 cm para el modelo SCM450 y de 20 cm para el modelo Z400) y en la posición del portasubstrato en la cámara de deposición (en la parte superior de la cámara para el modelo SCM 450, en la parte inferior para el modelo Z400). Un esquema de la última máquina se muestra en la fig. II.7.

Fig. II. 7 Esquema del sistema de pulverización catódica Z400:1. interruptor principal, 2. fuente de corriente, 3. Unidad de control del oscilador, 4. Unidad de control de la bomba turbomolecular 5. sonda de vacío, 6. alta tension e interruptor, 7. cámara de deposición, 8. caudalímetros, 9.ventanas.

Para la mayoría de los sensores fabricados se han utilizado blancos de SnO_2 , aunque una pequeña parte ha sido depositada con blancos de Sn.

Los parámetros fijos de deposición se muestran en la tabla II.2 para las dos máquinas, mientras que los parámetros variables se muestran en la tabla relativa a las películas preparadas, así como el tipo de blanco utilizado.

PARAMETRO	SCM450	Z400
potencia RF (W)	50-100	72
Tensión de aceleración (V)	500	1.000
Presión total (mbar)	5x10 ⁻³	5x10 ⁻³
Velocidad de deposición(Å/min.)	60-100	20

Tabla II.2 Parámetros de deposición de las dos máquinas de pulverización catódica.

Los sensores han sido preparados en grupos de 4 u 8 para las películas resistivas y en grupos de 16 para los dispositivos de cuatro capas. Estos últimos han sido depositados sobre láminas 4x4 cm y posteriormente cortados en cuadrados de 1x1 cm con una punta de diamante. A cada grupo de sensores se los denomina serie y se le asigna un número precedido por la letra S para las películas resistivas y una letra precedida por la letra D para los dispositivos de cuatro capas.

Siempre por medio de la pulverización catódica, sobre algunos sensores se ha depositado una película de aluminio o platino. En este caso la atmósfera está compuesta totalmente por argón y la potencia de la radiofrecuencia es de 100 W. La deposición de los contactos eléctricos de oro o de platino sigue el mismo proceso. El espesor aproximado de los contactos usados es de 5000-6000 Å.

En las tablas II.3 y II.4 y se muestran los parámetros de deposición para las distintas series. Las series S1-S19 y la totalidad de las series del dispositivo de cuatro capas han sido preparadas con el modelo SCM 450, el resto ha sido frabicado con el modelo Z400.

,	,			·
SERIE	Tdeposición (°C)	O ₂ (%)	Espesor ¹ (Å)	dopante (A)
S1 ²	250	15	200	
S2 ²	250	15	400	Y
S3 ²	250	15	800	
\$4 ²	250	15	1.000	
S4A ²				Pt 120
\$5	250	15	2.000	
\$6	250	15	2.000	
S7	250	15	1.500	AI 300
	250	15	1.000	Al
S9	250	15	2.000	
	200	5	4.500	AI 400
S12	25	15	1.500	
S12A	+			Pt 120
S13	25	15	1.500	
S13A				Pt 120
	25	15		AI 280
S15	25	15	7.500	
S16	250	15	1.000	AI 270
\$17	250	15	1.000	
S19	25	15	10.000	
S19A				Pt 140
\$20	25	15	4.000	
\$30	25	4	3.000	
S31	25	2	3.000	
\$32	25	4	3.000	
\$33	25	6	3.000	
S34	25	12	3.000	
\$35	25	20	2.000	
\$36	25	8	3.000	
\$37	25	8	5.000	
u		L	<u> </u>	J

 Tabla II.3 Parámetros de deposición para los sensores resistivos.(1) Espesor medido con el cristal de cuarzo

 de la máquina de pulverización catódica, (2) blanco de Sn metálico.

SERIE	Tdeposición (°C)	O ₂ (%)	Espesor SnO ₂ (Å)	Dopante (Å)
DA	100	5	2.000	
DB	100	5	2.000	
DC	25	15	1.000	AI 300
DD	25	15	1.000	Al 300

Tabla II.4 Parámetros de deposición para los sensores estructurados.

Π.2.2 ΙΜΡΙΑΝΤΑCΙÓΝ ΙÓΝΙCΑ

La implantación iónica es una técnica usada para la introducción de átomos en profundidad en un sólido.

La implantación del platino se realiza como sigue: un blanco de platino se excita mediante pulverización con iones de argón, el platino emitido se preacelera mediante un campo eléctrico. Un imán deflecta el haz permitiendo la elección del ión de interés. El haz elegido se acelera a la energía deseada. Después de la aceleración el haz es focalizado electrostáticamente y realiza un barrido lineal a través de una apertura situada frente a la muestra.

El implantador utilizado es el modelo 1090 DANFYSIK de alta corriente instalado en el Laboratorio de Ingeniería de Superficie del Instituto para los Materiales Avanzados (Ispra, Italia). La energía de implantación de este instrumento va desde 50 a 200 KeV con corrientes iónicas de hasta 10 mA.

El esquema del instrumento se muestra en la fig. II.8

Fig. II.8 Esquema del implantador iónico DANFYSIK 1090.

47

Para la elección de las energías y las dosis de implantación se utilizan dos codigos de simulación: TRIM y PROFILE.

1.-TRIM (TRansport of Ions in Matter)[17]: proporciona informaciones teóricas sobre las colisiones de iones energéticos en un sólido. El programa sigue la historia de cada ión implantado individualmente. Cada trayectoria comienza con una energía, posición y dirección dadas. La energía se reduce a causa de las colisiones con los átomos de la red y la dirección cambia. Se termina cuando la energía del ión desciende por debajo de un valor determinado o cuando la posición es exterior a la muestra. TRIM se puede aplicar en un rango de energías entre 100 eV y varios MeV.

La información más importante que se obtiene con este programa es la estimación de los defectos creados por la implantación, en particular el número de vacantes de oxígeno. Un ejemplo de esto se muestra en las figuras 11.9a y 11.9b donde se han estimado el número de vacantes de oxígeno producidas por la implantación a dos energías diferentes 50 y 170 KeV. El resultado obtenido es de 698 vacantes creadas por cada ión implantado en el primer caso y de 2110 vacantes por cada ión en el segundo caso.

2. PROFILE. Permite el cálculo de la distribución de átomos resultantes de la implantación iónica. En las figuras II.10a, II.10b, II.10c y II.10d se muestran los perfiles de concentración para diferentes energías y dosis de implantación. Los valores se presentan bien como átomos de Pt por cm³ o en porcentaje de átomos implantados por átomos de Sn. Otra información del programa es el espesor de la capa superficial del material que se pierde por pulverización [18]. Las dosis utilizadas en la implantación van desde 1.15×10^{14} at/cm² hasta 3×10^{15} at/cm² y las energías desde 50 a 170 KeV.

En la tabla II.5 se muestran las películas modificadas mediante esta técnica junto a los parámetros de implantación.

SERIE	Energia implantacion (KeV)	Dosis (at/cm²)	Concentración (%at)
S5a	170	3x10 ¹⁴	.1
S5b	170	1.3x10 ¹⁵	.5
S6a	170	3x10 ¹⁴	.1
S6b	170	1.3x10 ¹⁵	.5
S7a	170	3x10 ¹⁴	.1
S8a	170	3x10 ¹⁵	.6
S9a	170	3x1014	.1
S17d	100	1.15x10 ¹⁵	.7
S17e	50	1.15×10 ¹⁵	1
S17f	50	1.15x10 ¹⁴	.1

Tabla II.5 parámetros de implantacion de los sensores preparados mediante implantacion iónica

Figura II.9 Perfil teorico de las vacantes de oxígeno obtenidas mediante el TRIM para películas de SnO2 implantadas con Pt: a) energía de implantación 50 KeV, b) energía de implantación 170 KeV.

Fig. II.10a. Perfil de concentración del Pt implantado sobre SnO_2 a una energía de 150 KeV y una dosis de 1.15×10^{15} at/cm² (PROFILE).

Fig. II.10b. Perfil de concentración del Pt implantado sobre SnO_2 a una energía de 170 KeV y una dosis de $3x10^{14}$ at/cm² (PROFILE).

Fig. II.10c. Perfil de concentración del Pt implantado sobre SnO_2 a una energía de 50 KeV y una dosis de 1.15x10¹⁵ at/cm² (PROFILE).

Fig. II.10d. Perfil de concentración del Pt implantado sobre SnO_2 a una energía de 170 KeV y una dosis de $3x10^{14}$ at/cm² (PROFILE).

II.3 TÉCNICAS DE CARACTERIZACIÓN

II.3.1 DIFRACTOMETRÍA DE RAYOS X A ÁNGULO RASANTE (GAXRD)

Esta técnica , basada en la difracción de rayos X, se usa para la determinación de la estructura cristalina, tamaño de grano, tensión y orientación preferencial de películas delgadas y superficies. El haz de rayos X que incide sobre la muestra a analizar lo hace con un ángulo muy pequeño (próximo a cero grados) lo cual permite un área de difracción muy grande. Existen dos geometrías que puede adoptar el difractómetro: GIXS (Grazing Incidence X-Ray Scattering) y GIAB (Grazing Incidence Asymmetric Bragg) [19]. La primera se utiliza normalmente para peliculas epitaxiales en sustratos monocristalinos y la segunda para películas policristalinas. Es esta segunda configuración la que se ha utilizado para la obtención de los espectros de este trabajo y se muestra en la fig II.11.

Fig II.11 Difractómetro en la geometría GIAB.

El espectrómetro consta de un tubo catódico de cobre (blanco) de 2Kw que emite un haz de rayos X de longitud de onda 1.5418 Å. Un colimador ajustable de precisión entre la fuente y la muestra proporciona un haz incidente con una divergencia vertical de 0.2 miliradianes. Esto es adecuado para obtener buenas curvas de reflectividad y para controlar con precisión la profundidad de penetración del haz en la muestra. El tubo de rayos X y el colimador se montan en un goniómetro para proporcionar movimiento en el plano vertical.

Para obtener una resolución angular aceptable son necesarios o bien un colimador de alta precisión o un monocromador para el haz difractado. Aquí se utiliza un colimador de rejilla con divergencia angular de 0.2 grados y un monocromador de germanio que proporcionan líneas estrechas, bajo ruido de fondo y una intensidad razonable. La resolución angular del instrumento varía entre 0.2 y 0.3 grados.

El hecho de que tanto el haz incidente como la muestra permanezcan estacionarios durante la medida tiene la desventaja de que los planos altamente orientados paralelos a la superficie no pueden difractar.

La adquisición de los espectros está completamente automatizada y controlada por un ordenador personal compatible IBM.

El parámetro más importante de las películas de SnO₂ que se determina con esta técnica en relación a su funcionamiento como sensores es, sin duda, el tamaño de grano. El ensanchamiento de las líneas en un difractograma es debido a dos efectos: el tamaño de grano y la deformación de la red cristalina. La determinación cuantitativa detallada de estos dos efectos requiere un análisis de Fourier del perfil del pico [20]. Recientemente se han desarrollado métodos más simples donde el perfil se aproxima a una función de Voight, combinación de funciones de Cauchy (tamaño de grano) y gausianas (deformación). Un programa informático (CONFIT), basado en el modelo de Kierjser [21], ha sido desarrollado en el Instituto para los Materiales Avanzados (C.C.E. Ispra) para el ajuste mediante mínimos cuadrados del ensanchamiento de las líneas de difracción a una función pseudo-Voight.

Se ha demostrado [22] que utilizando la aproximación de la función de Voight, llamada pseudo-Voight, se obtienen resultados de gran precisión. Dicha función se escribe como:

$$PV = I_0[\eta C + (1 - \eta)G]$$
(9)

donde I_0 es la intensidad máxima del pico, G y C corresponden a la función gausiana y de Cauchy respectivamente y η es el factor de peso.

El programa puede realizar el ajuste de hasta cuatro picos, lo cual presenta ventajas a la hora de separar las contribuciones de picos parcialmente superpuesto. Asimismo existe la posibilidad de ajuste a funcione gausianas, Cauchy o pseudo-Voight. Una cuarta función incorpora el efecto sobre los picos debido al doblete K_{α} del cobre.

Cada pico viene descrito por la suma de dos funciones pseudo-Voight [23]:

$$I(2\theta) = PV(I_{\alpha 1}, 2\theta_{\alpha 1}, 2w\eta) + PV(I_{\alpha 2}, 2\theta_{\alpha 2}, 2w\eta)$$
(10)

donde $I_{\alpha I} = 2I_{\alpha 2}$ $w = w_{\alpha I} = w_{\alpha 2}$ $\theta_I = \theta_2 + \Delta \lambda / \lambda \tan \theta$

Cada pico tiene cuatro parámetros independientes: intensidad (I), posición angular (2q), anchura a mitad de altura (2w) y el peso de la función pseudo-Voight. Se incluyen dos parámetos más para ajustar la función a un fondo lineal.

Los parámetros resultantes de los ajustes se introducen en la fórmula de Scherrer [24]:

$$D = \frac{\lambda}{B\cos\theta} \tag{11}$$

donde D es el tamaño de grano

B es el área integrada del pico (área bajo el pico dividida por la intensidad máxima)

20 posición angular del pico

 λ la longitud de onda del haz de R-X

El error máximo obtenido por este método es de aproximadamente el 20 %.

II.3.2 ESPECTROMETRÍAS FOTOELECTRÓNICA DE RAYOS-X Y AUGER (XPS Y AES)

La espectrometría electrónica comprende la espectrometría fotoelectrónica de rayos X (XPS), la espectrometría fotoelectrónica ultravioleta (UPS) y la espectrometría electrónica Auger (AES). De éstas solo la primera y al última se han utilizado en este trabajo. La base de estas técnicas es el análisis de la energía de los electrones emitidos por una superficie cuando es expuesta a radiación (XPS, UPS) o a un haz de electrones primarios (AES) [25].

II.3.2.1 XPS

La generación de los fotoelectrones es producida por por una fuente monocromática de rayos X. Los electrones emitidos son separados de acuedo a su energía cinética y el espectro subsiguiente puede ser considerado como una descripción de los niveles de energía orbitales del átomo estudiado. La energía cinética de un fotoelectrón viene dada por:

$$E_{k} = h\upsilon - E_{B} - \phi \tag{12}$$

donde E_k es la energía cinética del fotoelectrón , hv la energía del fotón incidente, E_B la energía de enlace del electrón emitido por el sólido y ϕ la función de trabajo del espectrómetro. La transición electrónica y los niveles energéticos se muestran en la figura II.12.

Esta técnica tiene un potencial analítico muy grande por diversas razones:

- La energía de enlace medida para un pico es específica del orbital desde donde se ha generado el fotoelectrón (y por tanto del átomo de donde deriva). Así se obtiene una información elemental cualitativa excelente.

-Las energías de estos niveles pueden cambiar con el enlace químico por lo tanto es muy probable que haya un desplazamiento en el espectro energético de un pico del mismo elemento en distintos entornos químicos. Entonces es posible obtener información sobre el enlace químico [26].

- El área de un pico XPS puede ser facilmente relacionada con la concentración de especies superficiales y por tanto se puede obtener una información cuantitativa absoluta.

Fig II.12 Esquema del proceso fotoelectrónico.

Las limitaciones de esta técnica son:

-Debido a su baja sección de fotoionización el hidrógeno y el helio no pueden ser detectados.
-La resolución lateral es pobre (el área de análisis es de varios mm de diámetro).

Instrumentación

La mayoría de los instrumentos XPS utilizan:

-una fuente monocromática de rayos X, generalmente se usa la radiación K_{α} del Mg(1253.6 eV) o del Al (1486.6 eV).

-Un analizador de energía de espejo cilíndrico o de semiesferas concéntricas.

-Un equipo de vacío capaz de llegar a 10⁻⁵ Torr.

П.3.2.2 AES

La emisión electrónica Auger se produce cuando uno de los níveles electrónicos más internos de un átomo se ioniza por la excitación de un fotón, un electrón o un ión. AES se refiere especificamente a la excitación electrónica de impacto [27].

La energía cinética de un electrón secundario (electrón Auger) E_{xyw} debido a un nivel de energía ionizado E_w con la participación de los niveles de energía E_x y E_y viene dada por :

$$E_{XYW} = E_W(Z) - E_X(Z) - E_Y(Z + \Delta) - \phi$$
(13)

donde ϕ es la función de trabajo del espectrómetro, Z es el número atómico del elemento que emite el electrón Auger y $\Delta = (Z+I)/2$ es una corrección debida al estado doblemente ionizado.

La energía del electrón Auger es función del número atómico e independiente de la energía del electrón primario $E_p > E_W$. La probabilidad de transición Auger es alta para valores de E_{XYW} menores de 2500 eV lo que implica una gran sensibilidad para elementos ligeros. Todos los elementos por encima del helio producen electrones Auger en el rango 0 - 2000 eV.

Los niveles de energía involucrados en el proceso Auger están representados en la figura II.13. Las transiciones más importantes son las KLL, LMM y MNN

Como en el caso de XPS, AES puede proporcionar identificación elemental esta vez considerando la diferencia entre energías de enlace ya que es un proceso en dos pasos. Sin embargo, aunque el desplazamiento energético debido al enlace químico es evidente en el espectro Auger su interpretación es bastante complicada y, por tanto, esta técnica no se suele utilizar para la determinación del estado de valencia de un átomo. También la determinación cuantitativa ofrece ciertos problemas debido a que las secciones de impacto electrónicas son menos conocidas que las secciones de fotoionización y este es un proceso en el que participan tres electrones. Asimismo, como en XPS, el hidrógeno, el helio y el litio atómico no pueden ser detectados.

Una de las ventajas fundamentales del AES es su gran resolución lateral (hasta 500 Å) ya que el haz de electrones incidente puede ser focalizado, posicionado y controlado en energía en la superficie de la muestra. Asimismo, la inclusión de un cañón iónico permite la realización de un perfil en profundidad de la composición de la muestra (Auger Depht Profiling).

Fig. II.13 Proceso de emisión de un electrón Auger.

Instrumentación

En general un espectrómeto AES consta de:

-Una fuente electrónica con un cátodo de alta luminosidad (LaB₆).

-Un sistema de enfoque electrostático o magnético.

-Un analizador de espejo cilíndrico o de semiesferas concéntricas.

-Un cañón de iones para la realización de perfiles en profundidad.

-Un equipo de vacío que alcance 10⁻⁸ Torr.

Como los picos Auger están superpuestos a un fondo bastante grande se detectan más facilmente diferenciando la función de distribución de energías N(E). Así, el espectro Auger convencional es la función dN(E)/dE.

El aparato utilizado para estas medidas es un híbrido de estas dos técnicas de la casa PERKIN ELMER (ESCA - SAM - AUGER 560) que se muestra en la fig. II.14

Fig. II.14 Esquema del espectrómetro AES-XPS.

II.3.3 ELIPSOMETRIA

Se puede definir la elipsometría, en general, como la medida del estado de polarización de un vector de onda. En el caso de la luz se habla de elipsometría óptica. Esta técnica se utiliza para obtener información acerca de un sistema óptico que modifica el estado de polarización de la luz [28].

Este sistema óptico puede cambiar el estado de polarización de la luz de tres formas:

1) Reflexión o refracción: cuando una onda luminosa es reflejada o refractada en la interfaz de dos medios ópticamente distintos el estado de polarización cambia abruptamente.

2) Transmisión: el estado de polarización cambia continuamente a medida que la luz penetra en un medio que exhibe anisotropía óptica (refractiva, de absorción o ambas).

3) Dispersión: tiene lugar cuando una onda luminosa atraviesa un medio con un índice de refracción inhomogéneo espacialmente causado por la presencia de centros de dispersión como en aerosoles y emulsiones.

Nuestro interés se centra en el primer tipo de interacción que da lugar a la llamada elipsometría superficial o de reflexión y, dentro de esta, en el caso de la reflexión y transmisión por un sustrato cubierto con una película.

Se considerará un sistema simple ambiente-película-sustrato. Suponemos que la película tiene bordes plano-paralelos de separación (espesor de la película) d y está situada entre un sustrato y un medio semiinfinitos. El ambiente(0), la película(1) y el sustrato(2) son isótropos y tienen índices complejos de refracción N_o , N_i y N_2 . En la mayoría de los casos el ambiente es transparente por lo que N_o es real.

Una onda plana incidente en el medio con un ángulo Φ_0 dará lugar a una onda reflejada en el mismo medio y a una onda transmitida en el sustrato. El objetivo es relacionar las amplitudes de las ondas reflejada y transmitida con la amplitud de la onda incidente. Se seguirá el método ideado por Airy [29].

Es útil determinar las amplitudes de de las ondas reflejada y transmitida en función de una onda incidente con polarización lineal paralela al plano de incidencia (p) y perpendicular al plano de incidencia (s) porque una onda con polarización arbitraria siempre se puede expresar en función de sus componentes p y s cada una de estas se puede tratar separadamente y combinar finalmente el resultado.

Se representan las componentes de la amplitud compleja del vector eléctrico de las ondas incidente, reflejada y transmitidas en puntos opuestos inmediatamente por encima y por debajo de una interfaz como (E_{ip}, E_{is}) , (E_{rp}, E_{rs}) y (E_{tp}, E_{rs}) . Igualando las componentes tangenciales de los vectores eléctrico y magnético recabamos las expresiones:

$$\frac{E_{rp}}{E_{ip}} = r_p = \frac{N_1 \cos \phi_0 - N_0 \cos \phi_1}{N_1 \cos \phi_0 + N_0 \cos \phi_1}$$

$$\frac{E_{rs}}{E_{ps}} = r_s = \frac{N_0 \cos \phi_0 - N_1 \cos \phi_1}{N_0 \cos \phi_0 + N_1 \cos \phi_1}$$

$$\frac{E_{tp}}{E_{ts}} = t_p = \frac{2N_0 \cos \phi_0}{N_1 \cos \phi_0 + N_0 \cos \phi_1}$$

$$\frac{E_{ts}}{E_{is}} = t_s = \frac{2N_0 \cos \phi_0}{N_0 \cos \phi_0 + N_1 \cos \phi_1}$$
(14)

que son los coeficientes de Fresnel de reflexión(r) y transmisión(t) para las polarizaciones p y s. Cuando la onda incidente encuentra la interfaz 0-1 parte se refleja en el medio 0 y parte se refracta en la película. La onda refractada dentro de la película sufre múltiples reflexiones internas en las interfases 1-2 y 1-0. Si llamamos r_{01} , t_{01} , r_{02} y t_{02} a los coeficientes de Fresnel para las interfases 0-1(1-0) y 1-2 las amplitudes complejas de las sucesivas ondas que dan lugar a la onda reflejada resultante en el medio 0 vienen dadas por : r_{01} , $t_{01}t_{10}r_{12}e^{-j2\beta}$, $t_{01}t_{10}r_{12}^{2}e^{-j4\beta}$, ..., dode β es el cambio de fase que experimenta la onda reflejada múltiples veces dentro de la película mientras la atraviesa desde una superficie a la otra. Expresándola en función de la longitud de onda λ , el espesor de la película d_{1} , del índice de refracción N_{1} y del ángulo de refracción dentro de la película ϕ_{1} :

$$\beta = 2\pi \left(\frac{d_1}{\lambda}\right) N_1 \cos \phi_1 \tag{15}$$

o, aplicando la ley de Snell ($N_0 sen \phi_0 = N_1 sen \phi_1$):

$$\beta = 2\pi \left(\frac{d_1}{\lambda}\right) (N_1^2 - N_0^2 sen^2 \phi_0)^{1/2}$$
(16)

En la discusión anterior se ha supuesto una onda incidente de amplitud unidad polarizada p o s. La suma de todas las ondas parciales da lugar a una serie geométrica infinita para la amplitud reflejada R cuya suma es:

$$R = r_{01} + \frac{t_{01}t_{10}r_{12}e^{-j2\beta}}{1 - r_{10}r_{12}e^{-j2\beta}} = \frac{r_{01} + r_{12}e^{-j2\beta}}{1 + r_{10}r_{12}e^{-j2\beta}}$$
(17)

Como la onda incidente tiene amplitud unidad R es el coeficiente total de reflexión de la amplitud compleja. Esta ecuación es válida sea para ondas polarizadas lineal o perpendicularmente al plano de incidencia. Por tanto, añadiendo los subíndices correspondientes se obtienen un coeficiente de reflexión paralelo, R_p , y un coeficiente de reflexión perpendicular, R_s .

Para aplicar esta teoría a sistemas prácticos película-sustrato se deben cumplir tres condiciones [30]: 1) la dimensión lateral de la película debe ser mucho mayor que el espesor para que las ondas parciales reflejadas se puedan sumar hasta el infinito, 2) la anchura de banda de la fuente, el diámetro del rayo, el grado de colimación y el espesor de la película deben ser tales para que las ondas reflejadas y transmitidas múltiplemente se combinen coherentemente, y 3) el material de la película no debe ser amplificador. Estas tres condiciones se cumplen en nuestro sistema experimental.

Para examinar el cambio de amplitud y fase separadamente, cuando una onda plana se refleja oblicuamente en un sistema película-sustrato los coeficientes totales de reflexión se expresan por sus valores absolutos y ángulos:

$$R_p = |R_p|e^{j\Delta_{rp}} \quad , \qquad R_s = |R_s|e^{j\Delta_{rs}} \tag{18}$$

 R_p y Δ_p representan la atenuación de amplitud y el desplazamiento de fase respectivamente que experimenta una onda luminosa con polarización paralela cuando se refleja en un sistema película-sustrato. R_s y d_s tienen el mismo significado para una onda con polarización perpendicular.

Es evidente que, debido a que los coeficientes de reflexión de Fresnel para las polarizaciones p y s son diferentes ecs.(18), también lo serán los coeficientes totales de reflexión para estas dos polarizaciones. En este hecho se basa la elipsometría de reflexión en un sistema ambiente-película-sustrato, donde un cambio de polarización tiene lugar debido a las distintas atenuaciones y desplazamientos de fase que experimentan las componentes p y s.

A partir de las medidas de las polarizaciones incidentes y reflejadas se determina la relación:

$$\rho = \frac{R_{\rho}}{R_s} \tag{19}$$

Comúnmente ρ se suele expresar en función de los ángulos elipsométricos ψ y Δ :

$$\tan \Psi = \left| \frac{R_p}{R_s} \right| \quad , \quad \Delta = \Delta_p - \Delta_s \tag{20}$$

La dependencia funcional de ψ y Δ respecto a los parámetros del sistema puede expresarse simbólicamente como:

$$\tan \psi e^{j\Delta} = \rho(N_0, N_1, N_2, d_1, \phi_0, \lambda) \tag{21}$$

Como se puede apreciar ρ es una función explícita de nueve argumentos: las partes reales e imaginarias de los tres índices de refracción, el espesor de la película, el ángulo de incidencia y la longitud de onda.

El principal uso de la elipsometría de reflexión es la determinación precisa de espesores de películas delgadas por lo que la dependencia más importante de ρ es en el espesor. Se puede demostrar que para medio y película transparentes ρ es una función periódica del espesor. El valor de dicho período viene dado por la expresión [28]:

$$D = \frac{1}{2}\lambda \left(N_1^2 - N_0^2 sen^2 \phi \right)^{-\frac{1}{2}}$$
(22)

El esquema general de un elipsómetro se muestra en la figura II.15.

Figura II.15. Esquema general de un elipsómetro

Un haz de luz monocromático procedente de una fuente (L) se hace pasar a través de un polarizador variable (P) para producir una luz de polarización conocida. La luz interacciona con el sistema que se desea estudiar (S) el cual modifica el estado de polarización del haz luminoso. El estado de polarización modificado es analizado a la salida del sistema por un analizador de polarización variable (A) seguido de un fotodetector (D).

Instrumentación

El elipsómetro utilizado para la determinación de los espesores de películas delgadas es un modelo L 116B de autoganancia con analizador giratorio. El esquema detallado se reproduce en la fig. II.16.

La fuente luminosa es un láser de helio-neón de baja potencia con una longitud de onda de 6328 Å. La salida de la fuente contiene un despolarizador de cuarto de onda para lograr una polarización circular máxima. La luz pasa después por un polarizador (fijado a 45° para obtener una sensibilidad máxima) que la convierte en polarizada linearmente. En este punto del camino óptico se puede inserir un compensador de cuarto de onda que convierte el haz en uno polarizado circularmente o puede seguir en polarización lineal. La inserción y desinserción del compensador es automática, controlada por el programa del ordenador de control.

La luz reflejada, con la polarización alterada por las propiedades ópticas de la muestra, pasa por un prisma analizador giratorio y después por un fotodetector que convierte la energía luminosa en en una corriente eléctrica proporcional a la intensidad de la luz reflejada que pasa por el analizador. Un filtro óptico de interferencia colocado entre el analizador y el fotodetector permite el paso sólo a la longitud de onda del láser, eliminando los efectos de la iluminación ambiental.

Figura II.16. Diagrama funcional del elipsómetro

Durante la medida el analizador gira a una velocidad regulada por un motor de ciclo cerrado. La intensidad reflejada se toma a intervalos de 5° durante la rotación del analizador. Se hacen dos series de medidas, una con el compensador insertado en el camino óptico y otra sin él.

El estado de polarización de la luz se determina por la amplitud relativa y el desplazamiento de fase relativo de las dos componentes de la onda plana determinadas por el campo eléctrico del haz. Si la diferencia de fase es 0° o 180° el haz está polarizado linearmente. Otros ángulos resultan en una polarización elíptica. Para obtener la mejor precisión, la medida de Δ se obtiene a partir de la serie de medidas con compensador si el ángulo está comprendido entre -45° y 45° o entre 135° y 225°. El parámetro ψ se obtiene siempre de la serie de medidas sin compensador.

II.3.4. ESPECTROMETRÍA RUTHERFORD DE RETRODISPERSIÓN (RBS)

La espectroscopía RBS es una técnica de análisis cuantitativo muy importante debido a su alta precisión y a que no requiere el uso de standards [31].

Esta técnica se basa en el análisis de energías de partículas alfa retrodispersas por un material.

Cuando un haz de iones de masa m_i , número atómico ZI y energía E_o se hace incidir sobre un material cuyos átomos tienen masa m_2 ($m_2 > m_i$), algunos iones sufren colisiones elásticas (fig. II.17) retrocediendo con una energía E_i a un ángulo θ , dada por:

$$E = kE_0 = E_0 \left(\frac{\left(m_2^2 - m_1^2 sen^2 \theta\right)^{1/2} + m_1 \cos \theta}{m_1 + m_2} \right)$$
(23)

con una probabilidad proporcional a la sección eficaz de Rutherford:

$$\frac{d\sigma}{d\Omega} = \left(\frac{Z_1 Z_2 e^2}{4E}\right) \frac{4}{sen^4(\theta/2)} \frac{\left(\left(1 - \left((m_1/m_2)sen\theta\right)^2\right)^{1/2} + \cos\theta\right)^2\right)}{\left(1 - \left((m_1/m_2)sen\theta\right)^2\right)^{1/2}}$$
(24)

donde d Ω es el ángulo sólido en el que viene retrodisperso el haz.

Fig. II.17. Colisión elástica entre dos masas desiguales

El número total de iones retrodispersos a un ángulo determinado vendrá dado por:

$$dY_{m_2} = \left(\frac{d\sigma}{d\theta}\right) d\Omega N_{m_2} Q dx \tag{25}$$

donde N_{m2} es la concentración de átomos del blanco por cm³, <u>O</u> es la carga total del haz transferida a la muestra y dx el espesor del material analizado.

En un espectro RBS se muestra el rendimiento dY por intervalo de energía retrodispersa dE en función de la energía E, que es una medida de la masa m_2 [32]. Sin embargo, la señal debida a una especie m_2 puede desplazarse a energías menores, y este desplazamiento de energía es una medida de la profundidad de los átomos dentro de la película.

La ordenada (dY/dE) es proporcional a la concentración N (átomos/cm³) de la especie m_2 a una profundidad x. Por tanto podemos escribir la ec.(25) como:

$$\frac{dY_{m_2}}{dE} = \left(\frac{d\sigma}{d\Omega}\right) d\Omega Q N_{m_2} \left(\frac{dE}{dx}\right)^{-1}$$
(26)

 $(d\sigma/d\Omega)$ puede ser calculado exactamente con la ec.(24), conociendo las masas y números atómicos de los átomos del haz y del blanco y la energía y el ángulo de retroceso del ión. $d\Omega$, Q, (dY_{m2}/dE) y (dE/dx) pueden ser todos medidos experimentalmente. Por tanto, N_{m2} (x) puede ser determinado exactamente.

La técnica RBS tiene una resolución en profundidad de 100-300 Å y su resolución espacial está determinada por los haces relativamente anchos empleados (~ 1mm).

El esquema de un espectrómetro RBS se muestra en la figura II.18.

Fig. II.18 Diagrama del espectrómetro RBS

...

Bibliografía del capítulo II

- 1. Z.M. Jarzebski and J.P. Marton, J.electrochem. Soc., 123, 1990 (1976).
- 2. J. Robertson, J. Phys. C: Solid St. Phys., 12, 476 (1979).
- 3. J. G. Gay, W.A. Albers Jr. and F.J. Arlinghaus, J. Phys Chem. Solids, 29, 1449 (1968).
- 4. G.F. Koster, Solid St. Phys., 5, 173 (1957).
- 5. J.M. Ziman, "Elements of Advanced Quantum Theory", Cambridge University Press, London (1969).
- 6. J. Melsheimer, D.Ziegler, Thin Solid Films, 129, 35 (1985).
- 7. V.T. Agekyan, Phys. Stat. Sol.(a), 43, 11 (1977).
- 8. J.Robertson, Phys. Review B, 30, 3520 (1984).
- 9. U. Kuxmann and R. Dobner, Metall (Berlin), 34(9), 821-827 (1980)
- 10. I. Aso, M.Nakao, N.Yamazoe, T. Seiyama, J. Catal., 57, 287 (1979).
- M.J. Madou, S.R. Morrison, "Chemical Sensing with Solid State Devices", Academic Press, Inc., Boston, (1989).
- 12. S Samson and C.G. Fonstad, J. Appl. Phys., 44, n.10, 4618 (1973).
- 13. S.M. Sze, "Physics of Semiconductor Devices", John Wiley & Sons, New York (1981).
- 14. K. J. Button, C.G. Fondstad, W. Deybrodt, Phys. Rev., B4, 2911 (1971).
- 15. A. J. Aronson, "The Thin Film Book of Basics", Material Research Corporation (5th ed.) (1988).
- 16. M.C. Horrillo, Tesis de Doctorado, Universidad Complutense de Madrid (1992).
- 17. J.F. Ziegler, J.P. Biersack and U. Littmark, "The Stopping and Range of Ions in Solids", Pergamon Press, New York (1985).
- Matsunami et al., "Energy dependence of the Ion-induced Sputtering Yield of Monoatomic Solids", Atomic Data and Nuclear Data Tables, 31, 1-80 (1984).
- 19. G. Lim, W. Parrish, M. Belloto and M. Hart, J. Mat. Res. 2(4), 471 (1987).
- 20. B.E. Warren, "X-Ray Diffraction", Addison-Wesley, Massachusetts, (1969).
- 21. T.H. Kierjser, E.J. Mittemeijer and H.C. Rozendal, J. Appl. Cryst., 16, 309 (1983).
- 22. R.A. Young and D.B. Wiles, J. Appl. Cryst., 15, 430 (1982).
- 23. S. Enzo, S. Polizzi and A. Benedetti, Z. Fuer. Krist., 170, 285 (1980).

- 24. H. Spandau, E.J.Kohlmeyer, Z. Metalkunde, 40, 374 (1979).
- 25. A. W. Czanderna, "Methods of Surface Analysis", Elsevier Publishing, New York (1975).
- 26. P.F. Kane and G.B. Larrabee, "Characterizations of Solid Surfaces", Plenum Press, New York (1975).
- 27. I. Wagner, C.V. Van Nutt and J.F. Smith, "The Principles of Thin Film Analysis", Materials Research Corporation (1974).
- 28. R.M.A. Azzam and N.M. Bashara, "Ellipsometry and Polarized Light", Notrh Holland, Amsterdam (1987).
- 29. G. B. Airy, Phil. Mag. 2, 20 (1833).
- 30. O. S. Heavens, "Physics of Thin Films", Vol. 2, Academic Press, New York (1964).
- 31. W.K. Chu, J. Mayer and M. Nicolet, "Backscattering Spectroscopy", Academic Press, New York (1968).
- 32. C.A. Evans and M. Starhman, "RBS Technique Exposes Surfaces Properties of Materials" Industrial Research and Development (1983).

<u>Capítulo III</u>

INTERACCIÓN SÓLIDO-GAS

III.1 INTRODUCCIÓN

En este capítulo se estudiará la interacción del gas con el semiconductor en su aspecto fundamental: la adsorción. La teoría presentada está basada en los trabajos de Volkenstein y su escuela [1] relacionados con la teoría electrónica de la catálisis en semiconductores, aplicada con éxito recientemente por Geistlinger [2, 3] a la adsorción de oxígeno en el ZnO. En §III.7 se presenta un modelo generalizado de multiadsorción de especies aceptoras en la superficie del SnO₂ capaz de tener en cuenta la competición del oxígeno y del dióxido de nitrógeno por los centros de adsorción disponibles en la superficie del semiconductor y su efecto en las propiedades eléctricas (fundamentalmente la conductividad) de éste. En la última parte del capítulo se presenta un modelo de un dispositivo sensor estructurado basado en el cambio de otra propiedad eléctrica debida a la adsorción : la función de trabajo.

III.2 ADSORCIÓN

III.2.1 ADSORCIÓN FÍSICA Y ADSORCIÓN QUÍMICA

Se pueden distinguir dos tipos de adsorción: adsorción física o fisiadsorción y adsorción química o quimiadsorción dependiendo del tipo de fuerza que una la molécula adsorbida a la superficie del sólido [4]. Estas fuerzas pueden tener un origen electrostático, como las fuerzas de Van der Waals debidas a la polarización electrostática caso de la fisiadsorción, o, por el contrario, ser de

naturaleza química (combinación química de las moléculas con el sólido) caso de la quimiadsorción. Como en cualquier compuesto químico, las fuerzas que producen el enlace son de tipo covalente, pero puede estar presente en mayor o menor grado una interacción iónica.

La figura III.1a representa una curva de adsorción, en la que se representa la energía del sistema W en función de la distancia r entre la superficie del sólido (adsorbente) y la partícula que se adsorbe (adsorbato) [5]. El calor de adsorción (energía de enlace) es q y r_0 es la distancia de equilibrio. En otras palabras, en el caso de la quimiadsorción la molécula está enlazada más firmemente a la superficie que en el caso de la fisiadsorción. Las energías de enlace q son del orden de .01-.1 eV para la fisisorción y ~1 eV para la quimiadsorción [1]. Al mismo tiempo el valor r_0 es considerablemente menor para la quimiadsorción que para la fisiadsorción.

Fig. III.1 Curvas típicas de adsorción

El tratamiento teórico de las adsorciones química y física es totalmente diferente. En el caso de la fisiadsorción la molécula adsorbida y la red del adsorbente se pueden considerar como dos sistemas independientes. La acción del adsorbato sobre el adsorbente se puede tratar como una pequeña perturbación y el problema se puede resolver con los métodos de la teoría de perturbaciones.

En el caso de la adsorción química, la molécula y la red forman un único sistema mecánico-cuántico.

Generalmente se ha venido explicando el mecanismo de adsorción como la cooperación de la fisiadsorción y la quimiadsorción tal como se muestra en la fig. III.1b, con dos mínimos separados por una barrera de energía. El primer mínimo en $r = r_1$ correspondería a la fisiadsorción, mientras que el segundo en $r = r_2$ se considera quimiadsorción. La transición del sistema desde el punto A al punto B a través de la barrera de energía C, se atribuye a la transferencia de la partícula desde un estado de fisiadsorción a un estado de quimiadsorción.

Desde el punto de vista mecánico-cuántico la adsorción representada en la figura III.1b no puede ocurrir en realidad. En una misma curva de adsorción (que corresponde a un estado electrónico determinado de un sistema) no puede haber dos mínimos. El tramo AC de la curva de la fig. III.1b indica la existencia de una interacción de intercambio entre la partícula adsorbida y la red del adsorbente, dando lugar a una fuerza de repulsión. Por otra parte el tramo CB representa la atracción debida a la misma interacción. Interacciones de intercambio que dan lugar a una fuerza de repulsión a valores grandes de r no pueden dar lugar a atracción a valores pequeños de r [1]. Por tanto, una curva de adsorción cuyo mínimo corresponde a fisiadsorción no puede dar lugar a quimiadsorción. Por otra parte, en un estado electrónico que da lugar a quimiadsorción, la fisiadsorción no puede ocurrir. La fisiadsorción tienen lugar a distancias grandes entre adsorbente y adsorbato. Como consecuencia el solapamiento entre las funciones de Bloch del electrón de la banda de conducción del adsorbente y las funciones de onda del electrón del adsorbato tiende a cero [2] y, por tanto, es suficiente restringir la teoría de perturbaciones a la aproximación de segundo orden de interacción dipolo-dipolo [6]. La fisiadsorción y la quimiadsorción corresponden necesariamente a dos curvas de adsorción diferentes que expresan dos estados electrónicos del sistema.

Existe, por supuesto una interacción cinética entre los estados fisiadsorbidos y los estados quimiadsorbidos, similar a la que existe entre la fase gaseosa y las especies quimiadsorbidas. En la siguiente discusión se supondrá que los sitios de quimiadsorción y los de fisisorción están aislados en el sentido estadístico-cuántico y sólo se considerará la interacción cinética entre la fase gaseosa y los sitios de quimiadsorción.

III.2.2 ENLACES FUERTES Y DÉBILES EN LA QUIMIADSORCIÓN

A menudo se ha tratado un sistema de partículas adsorbidas como un gas bidimensional que cubre la superficie del adsorbente. Este tratamiento es sólo válido cuando se refiere a la adsorción física, donde la influencia del adsorbato en el adsorbente se puede asimilar a una perturbación débil. Sin embargo, en el caso de la quimiadsorción este modelo resulta inaceptable ya que, como se ha dicho más arriba, las partículas adsorbidas y la red del adsorbente forman un único sistema mecánico-cuántico. En este tratamiento los electrones de la red cristalina participan directamente en los procesos químicos que se desarrollan en la superficie del sólido y, en muchos casos, regulan éstos procesos.

El tratamiento que se hará de las partículas quimiadsorbidas será el de impurezas [7,8], una especie de defectos estructurales que destruyen la periodicidad estricta de la superficie. Este modelo no requiere una localización fuerte de las partículas, ya que es necesario preservar su capacidad de migrar sobre la superficie en mayor o menor grado. En estas migraciones deben ser superadas ciertas barreras de energía, pero si la altura de éstas es menor que la energía de enlace con la red, la partícula puede moverse por la superficie sin quedar desligada de ésta. En este caso la movilidad de la partícula aumenta con la temperatura.

Tratando las partículas quimiadsorbidas como impurezas superficiales se asemejan a los defectos "biográficos" (defectos que surgen de la historia pasada de la superficie). La diferencia entre unas y otros es que las partículas quimiadsorbidas son capaces de pasar desde la superficie a la fase gaseosa y desde ésta a la superficie mientras que los defectos biográficos se pueden considerar firmemente ligados a la superficie sin posibilidad de intercambio con la fase gaseosa.

Dependiendo de su naturaleza una partícula quimiadsorbida desde el punto de vista de defecto superficial es un centro de localización para un electrón libre de la red, actuando como una trampa para él (por tanto, desempeñaría el papel de un aceptor), o podría actuar como un centro de localización para un hueco, desempeñando el papel de donador. En general una misma partícula en el mismo adsorbente puede actuar simultáneamente como aceptor y como donador en cuanto posee una afinidad definida tanto para electrones como para huecos libres. Desde el punto de vista de la física del solido centros de estas características por ejemplo son los *centros-F*.

Se pueden distinguir dos tipos de quimiadsorción [1]:

1. Quimiadsorción débil: la partícula quimioadsorbida C (considerada conjuntamente a su centro de adsorción) permanece eléctricamente neutra. El enlace entre la partícula y la red se realiza sin la participación de un portador de carga. Este tipo de enlace se designará como CL.

2. Quimiadsorción fuerte: la partícula quimiadsorbida atrapa en su vecindad un portador libre de la red cristalina. En este caso el portador libre actúa directamente en la creación del enlace químico.

A su vez, dependiendo del tipo de portador atrapado se pueden distinguir dos tipos de enlaces fuertes: el enlace fuerte tipo n, que se denominará CeL, y el enlace fuerte tipo p, que se denominará CpL.

En cuanto a su naturaleza, los enlaces fuertes pueden ser iónicos, homopolares o, en el caso más general, una combinación de ambos. Como se verá más adelante dependerá de como está distribuido el portador capturado por la partícula entre ésta y el centro de adsorción.

La idea de las distintas formas de quimiadsorción que se diferencian en el enlace entre la partícula adsorbida y el adsorbente es el primer resultado importante de la teoría electrónica de la catálisis [1]. La posibilidad de realizar distintos tipos de enlace es debida a la capacidad de la partícula adsorbida de capturar un electrón o hueco de la red del adsorbente para la formación del enlace o, visto de otra forma, la capacidad de donar un hueco o electrón a la red.

III.2.3 EL ENLACE MONOELECTRÓNICO

Para el estudio de la quimiadsorción es conveniente comenzar con un modelo simple de enlace débil: la adsorción de un átomo monovalente electropositivo C en un cristal monodimensional MR compuesto de iones M^+ y R^- que se tratarán en primera aproximación como cargas puntuales.

Este modelo se representa en la fig. III.2. El átomo C se aproxima a la red perpendicularmente siendo $r \ la$ distancia entre el átomo y la red. En este modelo estamos considerando el problema de un solo electrón: el electrón de valencia del átomo C. Este electrón está situado en el campo del ión C⁺ y de los iones M⁺ y R⁻.

Fig.III.2 Modelo de adsorción de un átomo sobre un cristal monodimensional

La función de onda que describe el comportamiento del electrón, $\psi(x,y,x;r)$ donde r entra como un parámetro, es la solución de la ecuación de Schrodinger:

$$\mathbf{H}\boldsymbol{\Psi} = \boldsymbol{W}\boldsymbol{\Psi} \tag{1}$$

donde el operador H tiene la forma:

$$\mathbf{H} = -\frac{\hbar^2}{2m}\Delta + V(x, y, z) + V_c(x, y, z; r) + U(r)$$
(2)

Aqui, V es la energía potencial del electrón asociada a los iones M^+ y R^- de la red, V_c es la energia potencial del electrón asociada al ión C^+ y U es la energia de interacción entre el ión C^+ y los iones de la red.

El autovalor W del operador H, que es la energía total del sistema en el estado ψ es una función del parámetro r.

Una solución aproximada a la ecuación de Schrodinger viene dada por la combinación lineal de las funciones de onda atómicas del electrón en el campo del ión C^+ y en el campo del *g*-iésimo ión M^+ aislado:

$$\Psi = a_c \varphi_c + \Sigma a_g \varphi_g \tag{3}$$

Como las funciones de onda atómicas que aparecen en (3) pueden considerarse conocidas, el problema se reduce a encontrar los coeficientes a_c y a_g que aparecen en el desarrollo. Esto se puede lograr mediante un método variacional. Estos coeficientes tienen un significado físico preciso: $|a_g|^2$ es la probabilidad de que el electrón se encuentre en el g-iésimo ión M⁺ y $|a_c|^2$ es la probabilidad de que el electrón se encuentre en el átomo C.

En el caso límite $r = \infty$ el problema tiene dos soluciones:

(i)
$$a_c = 1, a_g = 0$$

(ii) $a_c = 0, a_g = a_0 \exp(i\lambda g)$ (4)

donde λ es un parámetro real arbitrario, $g = 0, \pm 1, \pm 2, \dots$ La primera solución corresponde a un estado del sistema en el que el electron está completamente en el átomo C. En este caso

$$\psi = \varphi_c, \quad W = W_c \tag{5}$$

donde W_c es la energía del electrón en el átomo aislado C.

La segunda solución corresponde a un estado del sistema en el que el electrón se ha transferido a la red con la misma probabilidad de encontrarse en cualquier ión M⁺.

En este caso:

$$\Psi = a_0 \sum \exp(i\lambda g) \varphi_g, \quad W = W_M + \alpha + 2\beta \cos \lambda \tag{6}$$

donde W_M es la energia del electrón en el átomo M y α y β son las integrales de superposición de Bloch [9]. El espectro de energía tiene la forma de la parte derecha de la fig.III. 3 con un nivel discreto W_c correspondiente a la solución (4i) y una banda de energía de anchura $4|\beta|$ (formando una banda de conducción en el cristal) correspondiente a la solución (4ii).

Fig. III. 3 Espectro energético del del sistema para el enlace débil

La fig. III.3 se ha construido asumiendo que la banda de energía está situada por encima del nivel W_c , es decir, suponiendo que el potencial de ionización del átomo C es mayor que la afinidad electrónica del sólido.

Al acercarse el átomo a la red el espectro de energía del sólido cambia como se muestra en la fig.III.3. El centro de la banda de energía, W_I , sube continuamente y el nivel $W_c = W_0$ baja alcanzando un mínimo en una cierta posición $r = r_0$ y después empíeza a subir. Es evidente que la adsorción tiene lugar en el estado normal (baja energía) del sistema, mientras que en el estado excitado no se produce.

En el estado más bajo de energía (W_0) para $r \neq \infty$ todos los coeficientes a_g y a_c son distintos de cero y cumplen las siguientes relaciones:

$$|a_g|^2 = |a_{-g}|^2$$

$$|a_0|^2 > |a_{\pm 1}|^2 > |a_{\pm 2}|^2 > \dots$$
(7)

Esto significa que ahora el electrón está compartido entre el átomo C y la red y distribuido siméticamente respecto al ión g = 0. La probabilidad de encontrar al electrón disminuye al aumentar g, es decir, al alejarse del ión central.

En el caso en que la distancia entre el centro de la banda de energía y el nivel W_0 sea mucho mayor que la anchura de la banda, es decir:

$$\left|\frac{W_1 - W_0}{\beta}\right| >> 1 \tag{8}$$

Los coeficientes a_g pueden ser calculados de forma explícita:

$$a_{g} = \frac{w_{1} - w_{0}}{\beta} \Big|^{-|g|}$$
(9)

Por tanto, se pueden despreciar los coeficientes distintos de g = 0 sin cometer un error apreciable. La funcion de onda tomaría la forma:

$$\psi = a_c \varphi_c + a_0 \varphi_0 \tag{10}$$

y, obviamente, los coeficientes cumplirían:

$$|a_c|^2 + |a_0|^2 = 1 \tag{11}$$

El electrón, en este caso, estaría compartido por el átomo C y por el ión g = 0, que desempeña el papel de centro de adsorción. El grado de atracción que la red ejerce sobre el electrón está dado por la cantidad:

$$\mu = 1 - |a_c|^2 \tag{12}$$

que muestra la "fracción" de electrón transferida a la red, es decir, la probabilidad de que el electrón se encuentre en la red.

El valor de μ en $r = r_0$ viene determinado por la naturaleza de la red y del átomo C. En particular depende de los potenciales de ionización, $I_M \in I_C$, de los átomos C y M siendo mayor cuanto mayor es la diferencia $I_M - I_C$. Al mismo tiempo la profundidad del pozo q (Fig.III.3) depende del valor de μ en el punto $r = r_0$: cuanto mayor es μ mayor es q.

No solamente el ión M⁺ puede actuar como centro de adsorción, en ciertos casos también el ión R⁻ puede hacerlo [10].

III.2.4 EL ENLACE FUERTE

El mecanismo de formación de un enlace fuerte es un problema de dos electrones: el electrón del átomo adsorbido y un electrón libre de la red.

Utilizando el modelo simple del apartado anterior, el electrón 1 será el electrón libre de la red y el electrón 2 será el del átomo C.

Para simplificar el problema se despreciará la interacción del electrón 2 con la red, o sea, se despreciará el enlace débil entre el átomo C y la red. El problema consiste en determinar en que forma varía la energía W del sistema con la distancia r y al mismo tiempo como se comporta el electrón 1.

La ecuación de Schrodinger para los dos electrones tiene la forma:

$$H\psi = W\psi \tag{13}$$

donde H ahora es:

$$\mathbf{H} = -\frac{h^2}{2m}(\Delta_1 + \Delta_2) + V(1) + V(2) + V_c(1) + V_c(2) + V(1, 2) + U$$
(14)

Aquí los números 1 y 2 son símbolos que representan la posición de los electrones 1 y 2 (x_1 , y_1 , z_1 y x_2 , y_2 , y z_2 respectivamente); V(1,2) es la energía de interacción entre los dos electrones y los demás símbolos tienen el mismo significado que en el apartado anterior.

La solución de la ecuación (13) tiene la forma:

$$\psi(1,2) = \sum a_g \{ \varphi_g(1) \varphi_c(2) \pm \varphi_g(2) \varphi_c(1) \}$$
(15)

 φ_g y φ_c son las funciones de onda atómicas. El signo + en (15) corresponde al caso de spin antiparalelos y el signo - al caso de spin paralelos. Este último corresponde a un estado excitado del sistema.

 $|a_g|^2$ es la probabilidad de que uno de los electrones esté en el g-iésimo ión mientras el otro está en el átomo C. Los coeficientes a_g se calculan por el método variacional. Como antes, la distancia r entra como parámetro.

En el caso límite $r = \infty$ donde $V(2) = V_c(1) = V(1,2) = U = 0$ se encuentra que [1]:

$$a_{g} = a_{0}e^{i\lambda g}, W = W_{c} + W_{M} + \alpha + 2\beta\cos\lambda$$
(16)

donde λ , α , β , W_c y W_M tienen el mismo significado que en el apartado anterior. En este caso el electrón de la red permanece libre, o sea, está uniformemente distribuido entre los iones M⁺. El espectro de energía del sistema es una banda continua representada en la Fig. III.4.

Fig. III.4 Espectro de energía del sistema en el caso de enlace fuerte

Cuando la distancia disminuye el espectro cambia como se muestra en la figura [11]: el centro de la banda W_1 crece y el mínimo W_0 se desdobla y pasa por un mínimo en $r = r_0$. La diferencia entre las Figs. III.3 y III.4 es que mientras en aquélla se muestran los niveles de energía de un electrón introducido por un átomo extraño, en ésta se muestran los niveles energéticos de un electrón de la red.

En las condiciones que corresponden a la banda de energía no existe adsorción, mientras que sí existe en las condiciones correspondientes al nivel W_0 . En este caso obtenemos para los coeficientes:

$$|a_g|^2 = |a_{-g}|^2$$

$$|a_0|^2 > |a_{\pm 1}|^2 > |a_{\pm 2}|^2 > \dots$$
(17)

En esta condición el electrón está más o menos localizado en el ión g = 0. Si se cumple (como es el caso para valores no muy grandes de r) que:

$$\left|\frac{W_1 - W_0}{\beta}\right| >> 1 \tag{18}$$

entonces

$$\frac{a_g = a_0}{\beta} \frac{|W_1 - W_0|}{\beta} |^{-|g|}$$
(19)

Practicamente solo el primer término del desarrollo es significativo y, por tanto, la solución a la ecuación (13) se puede aproximar como:

$$\psi(1,2) = a_0 \{ \phi_0(1)\phi_c(2) + \phi_0(2)\phi_c(1) \}$$
(20)

Esto quiere decir que el electrón está localizado en el ión g = 0. Para W_g se obtiene:

$$W_{0} = W_{c} + W_{M} + \frac{C + A}{1 + S^{2}}$$
(21)

donde S es la integral de no ortogonalidad, C es la integral culombiana y A es la integral de intercambio.

El átomo C y la red están enlazado por fuerzas de intercambio. Cuando el átomo adsorbido se extrae de la red se asciende en la curva W_{θ} desde la izquierda hacia la derecha desde el mínimo. Al mismo tiempo el enlace del átomo C con la red se debilita, el electrón de este átomo se mueve con él y el electrón de la red se deslocaliza gradualmente. En el límite $r = \infty$ el electrón vuelve a la banda de conducción y, por tanto, queda completamente deslocalizado. Si el átomo C se mueve desde el infinito hacia la red se puede subir permaneciendo en la banda de conducción o descender en la curva W_{θ} . En el primer caso el electrón de la red permanece libre no entrando a formar parte de un enlace con el átomo C, al mismo tiempo el átomo C es repelido por la red y la adsorción no puede tener lugar. En el segundo, el electrón y el átomo C están enlazados por una interacción que se vuelve más fuerte cuando r disminuye dando lugar a la adsorción del átomo C y a la localización del electrón libre en la vecindad de éste y, por tanto, desapareciendo de la banda de conducción. Este segundo caso es el que corresponde a la adsorción fuerte. En consecuencia, el electrón libre actúa como un centro de adsorción.

Hasta ahora se ha despreciado el enlace débil entre el átomo C y la red. Esta simplificación está contenida en la forma de la función de onda (15). Teniendo en cuenta el enlace débil la funcion de onda tendrá la forma:

$$\psi(1,2) = \sum \sum a_{gh} \{ \varphi_g(1) \varphi_h(2) \pm \varphi_g(2) \varphi_h(1) \}$$

$$(22)$$

donde g y h toman los valores

$$g, h = C, 0, \pm 1, \pm 2, \dots$$

Los términos g = h indican la presencia de ambos electrones en el mismo ión M⁺ o C⁺ correspondiendo por tanto a estados iónicos polares.

El espectro energético se muestra en la Fig.III.5. Este espectro se diferencia del anterior (Fig. III.4) por la presencia de un mínimo en la banda de conducción. El mínimo S⁰ (energía q^{θ}) corresponde al enlace débil del átomo C con la red.

Fig. III.5 Espectro energético del sistema teniendo en cuenta el enlace débil.

El mínimo S⁻ (energía q^-) corresponde al enlace fuerte. La transición del sistema desde S⁰ a S⁻ implica la localización de un electrón libre e indica el reforzamiento del enlace entre el átomo C y la red. La quimiadsorción del átomo C, previamente enlazado por un enlace débil, actúa como una trampa para los electrones libres de la red y puede ser representado en el espectro de energía del electrón como un nivel aceptor local situado debajo de la banda de conducción a una energía $v^- = q^- - q^0$ como se representa en la Fig.III.5.

Para resumir se puede decir que la quimiadsorción débil se lleva a cabo sin la participación de un electrón de la red mientras que en la quimiadsorción fuerte un electrón de la red permanece localizado. Las diferentes formas de quimiadsorción se distinguen no sólo por el carácter del enlace y su fuerza sino también por la reactividad de la partícula adsorbida.

La existencia del estado débilmente quimiadsorbido ha sido objeto de controversia [12,13]. Recientemente se ha desarrollado un método variacional tratable analíticamente [14] basado en la teoría monoelectrónica de la quimiadsorción [15], que muestra la existencia de un estado estable débilmente quimiadsorbido. Los detalles de estos cálculos se incluyen en el apéndice A.

III.3 TRANSICIONES ELECTRÓNICAS EN LA QUIMIADSORCIÓN

Los distintos tipos de quimiadsorción pueden cambiar entre sí: una partícula quimioadsorbida puede cambiar el carácter del enlace con la superficie permaneciendo adsorbida. Estas transiciones comportan la localización o deslocalización de un electrón o hueco libres en la propia partícula o en sus inmediaciones.

La descripción de estas transiciones por medio del diagrama de bandas de energía se representa en la Fig. III.6. Una partícula quimiadsorbida por un enlace débil se refleja en el diagrama de energías [7,16]: una particula que tiene afinidad por el electrón se representa por un nivel aceptor local A; una particula que tiene afinidad por un hueco se representa por un nivel donor local. En el caso general que la partícula tuviera afinidad por ambos se representaría por dos niveles, uno aceptor y uno donador. La posición del nivel A en la Fig. III.6 depende de la naturaleza de la red y de la partícula adsorbida.

Las transiciones electrónicas dentro de un semiconductor tienen en general un origen térmico y pueden darse entre las bandas de valencia y conducción y entre éstas y los niveles locales de energía. Se restringirá el estudio al caso de un nivel aceptor A, ya que los gases objeto de interés O_2 y NO₂ son moléculas que tienen afinidad por los electrones.

La presencia de un electrón en el nivel A indica la transición de la partícula quimioadsorbida desde un estado de enlace débil a un estado de enlace fuerte con la superficie. Ésto puede tener lugar de dos formas: un electrón pasa desde la banda de conduccion al nivel A o un electrón pasa desde la banda de valencia al nivel A.

Las transiciones electrónicas pueden describirse mediante la notación introducida en la sección III.2:

(1)
$$eL + pL \leftrightarrow L$$
 E_g
(2) $CL + eL \leftrightarrow CeL$ v^{+}
(23)
(3) $CeL + pL \leftrightarrow CL$ v^{+}

Fig. III.6 Diagrama de bandas de energía de un semiconductor

Fig. III.7 Diferentes curvas de adsorción para un átomo monovalente

Las reacciones cuyo sentido es de izquierda a derecha son exotérmicas y en el sentido contrario, endotérmicas.

Las transiciones electrónicas representadas en la Fig.III.6 corresponden a transiciones del sistema entre estados caracterízados por diferentes curvas de adsorción [7,8]. Estas curvas de adsorción representan la energía del sistema en función de la distancia entre la particula C y la superficie y se muestran en la Fig. III.7 para el caso de un átomo monovalente.

La curva *l* es la curva de adsorción para el cristal carente de portadores libres. La curva *l'* es la curva l desplazada una distancia E_g , o sea corresponde a la adsorción sobre un cristal que contiene un electrón libre en la banda de conducción. La curva *n* es la curva de adsorción de un aceptor fuerte. Los estados CL, CeL + pL y CL + eL + pL corresponden a los mínimos de las curvas *l*, *n*, y *l'*.

El desplazamiento desde el mínimo de las curvas de la Fig. III.7 hacia la derecha corresponde a la desorción del átomo C. Este proceso de desorción puede ser descrito como sigue:

$$(l) \qquad CL \to C+L \qquad q^{\theta}$$

(n)
$$CeL + pL \rightarrow C + eL + pL \qquad q^{-1}$$
 (24)

$$(l') \qquad CL + eL + pL \to C + eL + pL \qquad q^{\theta}$$

Las energías involucradas en estos procesos están señaladas en la parte derecha. De las Figs.III.6 y III.7 se desprende que:

$$q^{\dagger} = q^{\theta} + v^{\dagger} \tag{25}$$

El producto de desorción en estos casos es la partícula neutra C. Cuando aumenta la distancia entre la partícula y la superficie se puede demostrar [11] que el nivel A sube hacia la banda de conducción y en el límite cae dentro de ella. En otras palabras un electrón localizado en el nivel A se deslocaliza al aumentar la distancia y en el límite cuando $r = \infty$ vuelve a la banda de conducción.

El átomo C puede desasorberse desde los estados CeL en forma de ión C⁻ en este caso:

$$CeL + pL \rightarrow C^- + pL \qquad Q^{-}$$
 (26)

donde Q toma el valor:

$$Q^{*} = q^{\theta} + (\phi - \chi) \tag{27}$$

donde ϕ es la función de trabajo del semiconductor y χ es la afinidad electrónica de la partícula C.

Entre los estados l, $n \neq l'$ pueden existir transiciones. De hecho son las transiciones representadas en la Fig. III.6. Debe notarse que estas transiciones electrónicas (ecs. 23) están caracterizadas por energías del mismo orden de magnitud que las energías de los procesos de adsorción y desorción (ecs. 24). En los semiconductores estas energías suelen ser del orden de décimas de electrón-voltio. Consecuentemente los procesos de adsorción y desorción ocurren en paralelo con las reacciones de transición electrónicas.

III.4 EQUILIBRIO ENTRE LAS DISTINTAS FORMAS DE QUIMIADSORCIÓN

Existe una serie de trabajos [17-22] donde se pone de manifiesto que la existencia de una partícula quimiadsorbida viene reflejada en el espectro de energía del cristal por un nivel local. La extracción de un electrón considera como desorción de la partícula, desaparaciendo como consecuencia el nivel local, o como paso a la forma fisioadsorbida. En el primer caso el concepto de nivel local carece de sentido ya que los niveles locales pueden estar en distintos estados de carga y, según estas teorías, sólo existiría en cuanto que ocupado por un electrón. El segundo caso es cuestionable desde el punto de vista mecánico-cuántico ya que la fisiadsorción se considera dentro del marco de la aproximación de segundo orden de la teoría de perturbaciónes [23] y por tanto la adsorción física no produce ningún nivel.

La extracción de un electrón de un nivel local significa el paso de un estado de adsorción "fuerte" a un estado de adsorción "débil" con la superficie y por tanto la descripción mediante niveles locales en el diagrama de bandas adquiere un significado [1,2].

Cuando se establece un equilibrio electrónico con la superficie del número total de particulas quimiadsorbidas por unidad de área N, una parte se encontrará en el estado de enlace débil con la superficie, N^{θ} , y el resto en el estado de enlace fuerte, N^{-} .

Las probabilidades de ocupación electrónica de los centros de adsorción viene dada por la estadística de Fermi-Dirac [24]. Se considera el caso más simple donde en el proceso de transferencia de carga entre cada centro y las bandas del semiconductor solamente un electrón toma parte y el estado del electrón está asociado a un único nivel de energía E_t . En general un centro con una energía E_0 (g_0 veces degenerada) cuando está vacío y una energía E_1 (g_1 veces degenerada) cuando está lleno introduce un nivel de energía $E_t = E_1 - E_0$ para la ocupación electrónica. La probabilidad de que un centro esté ocupado (es decir, la concentración relativa de especies en el estado de adsorción fuerte) viene dada por:

$$f^{-} = \frac{1}{1 + (g_0/g_1) \exp[(E_t - E_F)/kT]}$$
(28)

Si se define un nivel efectivo de energía

$$E_t^f = E_t + kT \ln(g_0/g_1)$$
⁽²⁹⁾

La función de distribución se reduce a la de los electrones casí libres:

$$f^{-} = \frac{1}{1 + \exp[(E_{t}^{f} - E_{F})/kT]}$$
(30)

Este caso sirve para ilustrar la relación entre las energías de un centro bajo diferentes condiciones de carga $(E_0 \ y \ E_1)$ y el nivel de energía electrónico E_t^f introducido por el centro en el diagrama de bandas convencional. La conexión entre las dos representaciones es la energía de ionización $E_c - E_t^f$, que es la energía media necesaria requerida para llevar un electrón desde el centro cargado hasta la banda de conducción.

En el caso del modelo simplificado del átomo monovalente adsorbido presentado en este capítulo $g_0 = 2$ y $g_1 = 1$ con lo que la energía efectival del nivel introducido es

$$E_t^f = (E_1 - E_0) + kT \ln 2 \tag{31}$$

Con la nomenclatura usada anteriormente $E_t = q^2 - q^0$ y la concentración relativa de especies fuerte y débilmente adsorbidas es:

$$\frac{N^{-}}{N} = f^{-} = \frac{1}{1 + \exp[(E_{t}^{f} - E_{F})/kT]}$$
(32)

$$\frac{N^0}{N} = f^0 = 1 - f^- = \frac{1}{1 + \exp[(E_F - E_0^f/kT)]}$$
(33)

De las ecuaciones (32) y (33) se puede extraer la conclusión que cuando se alcanza el equilibrio electrónico en la superficie la concentración relativa de las diferentes formas de quimiadsorción está determinada por la posición del nivel de Fermi.

Asumiendo que junto al equilibrio electrónico existe también equilibrio entre la superficie y la fase gaseosa, la condición de equilibrio de adsorción se puede expresar, en el caso de adsorción no activada y no disociativa, como [20, 25, 26]

$$\alpha p(1-\theta) = \upsilon^0 \theta^0 \exp(-q^0/kT) + \upsilon^- \theta^- \exp(-q^-/kT)$$
(34)

donde θ , el recubrimiento, es la relación entre el número de especies quimioadsorbidas y el número total de sitios de adsorción:

$$\theta = \frac{N}{N_{\overline{ad}}} = \frac{N^0 + N^-}{N_{ad}} = f^0 \theta + f^- \theta = \theta^0 + \theta^-$$
(35)

 α es el coeficiente cinético de la isoterma de Langmuir y viene dado por[26]:

$$\alpha = \frac{s_0 N_A}{(2\pi M R T)^{1/2}}$$
(36)

donde s_0 es el área del sitio de adsorción, M es el peso molecular de la partícula adsorbida y N_A el número de Avogadro. Los términos υ^o y υ^- son frecuencias fonónicas típicas de la molécula adsorbida y suelen ser del orden de 10^{13} s⁻¹ [2].

Usando las ecuaciones (31) a (35) se obtiene la isoterma de adsorción:

$$\Theta(p) = \frac{\beta p}{\beta p + 1} \tag{37}$$

con

$$\beta = b \left\{ f^0 \left[1 + \frac{\upsilon^- f^-}{\upsilon^0 f^0} \exp\left(\frac{E_L^f - E_c}{kT}\right) \right] \right\}^{-1}$$
(38)

que se puede aproximar considerando $E_F - E_t^f > kT$:

$$\beta = b \left\{ f^{0} \left[1 + \frac{\upsilon}{\upsilon^{0}} \exp\left(\frac{E_{F} - E_{c}}{kT}\right) \right] \right\}^{-1}$$
(39)

donde b es el coeficiente de la isoterma de Langmuir [25]:

$$b = \frac{\alpha}{v^0} \exp(q^0/kT) \tag{40}$$

A pesar de la semejanza de la isoterma de adsorción de la ecuación (37) (isoterma de Volkenstein [1]) con la isoterma de Langmuir, existe una gran diferencia : el coeficiente β de la isoterma de Volkenstein depende de la posición del nivel de Fermi del sistema mientras que el coeficiente de la isoterma de Langmuir solo depende de la temperatura.

III.5 INTERACCIÓN DE LOS ESTADOS SUPERFICIALES CON LAS BANDAS

En el apartado anterior se ha hablado de la concentración de especies quimiadsorbidas en equilibrio. En éste se tratará el proceso que lleva a este equilibrio, para ello se estudiará la velocidad de intercambio de electrones entre un estado superficial y la banda de conducción.

La suposición de que la transferencia electrónica sea de primer orden implica que la velocidad de captura electrónica sea proporcional a la densidad de portadores en la banda de conducción en la superficie, n_s , y a la densidad de estados superficiales vacíos; asimismo la velocidad de inyección de electrones en la banda de conducción es proporcional a la densidad de estados ocupados superficiales N^2 y a la densidad de estados vacíos en la banda de conducción.

La variación de la densidad de electrones del estado superficial debida a intercambio con la banda de conducción es, por tanto:

$$\frac{dn}{dt} = K_n [n_s (N - N^-) - n_1 N^-]$$
(41)

donde el primer término representa la velocidad de transferencia de electrones hacia el estado superficial y el segundo la velocidad de inyección hacia la banda de conducción, siendo n_i la constante de emisión y K_n es la constante del proceso de captura electrónica que viene dada [24] por la expresión:

$$K_n = \langle v \rangle \sigma_c \tag{42}$$

donde $\langle v \rangle$ es la velocidad térmica del electrón y σ_e es la sección de captura del centro superficial vacío. El producto $K_n n_i$ es la constante del proceso de inyección electrónica.

El término n_i se puede expresar en función de parámetros de equilibrio. Cuando se alcanza el equilibrio termodinámico

$$\frac{dN^{-}}{dt} = 0 \tag{43}$$

y usando el subíndice cero para los valores de equilibrio se obtiene

$$n_1 = n_{s0} (N - N_0) / N_0^- \tag{44}$$

Para el caso de un semiconductor no degenerado la concentración de electrones en la superficie se puede expresar como

$$n_s = N_c \exp\left[-(E_{cs} - E_F)/kT\right] \tag{45}$$

donde E_{cs} es la posición del borde de la banda de conducción en la superficie. Usando las ecuaciones (32) y (45) se llega a la siguiente expresión para n_j :

$$n_1 = N_c \exp\left[-(E_{cs} - E_t)/kT\right]$$
(46)

La ecuación (40) queda, por tanto:

$$\frac{dN^{-}}{dt} = K_n[(N - N^{-})N_c \exp\left[-(E_{cs} - E_F)/kT\right] - N^{-}N_c \exp\left[-(E_{cs} - E_t)/kT\right]]$$
(47)

La transferencia electrónica a la superficie es un proceso activado con una energía de activación E_{cs} - E_F . La inyeccion electrónica a la banda de conducción también es un proceso activado con una energía de activación E_{cs} - E_F .

Los valores típicos de la constante K_n se pueden calcular suponiendo velocidades medias $\langle v \rangle$ del orden de 10⁵ m/s y secciones de captura del orden del área atómica (10⁻¹⁹ m²). Sin embargo, la sección de captura puede variar varios ordenes de magnitud dependiendo de factores como la carga del estado superficial. Con los valores citados el valor típico de K_n es de 10⁻¹⁴ m³/s.

Cuando la concentración de estados en la superficie es muy pequeña la variación de Ncon respecto a su valor de equilibrio no provocará una variación apreciable de n_s y por tanto N y N^{0} (= N - N) serán las variables predominantes en la ecuación (47). Por ejemplo si $N_{D} = 10^{15}$ cm³ y la constante dieléctrica es 10, una variación de N desde 0 hasta 10^{8} cm⁻² cambiaría la magnitud de de $E_{cs} - E_{c}$ menos de 0.01 eV, por tanto la variación de n_s sería despreciable. Cuando N^{c} y N^{0} son las variables dominantes la integración de la ecuación (47) da como

Cuando N y N° son las variables dominantes la integración de la ecuación (47) da como resultado transitorios exponenciales de N° con el tiempo.

III.5.1 TRANSFERENCIA ELECTRÓNICA CON GRANDES CAMBIOS EN LA BARRERA SUPERFICIAL

Si existe una gran cantidad de estados superficiales, N, y estos están parcialmente ocupados puede suceder que una variación ΔN^2 , aun representando una pequeña perturbación en N^2 o N^0 , afecte sensiblemente el término $\exp(-eV_s/kT)$, donde se ha hecho $eV_s = E_{cs} - E_c$, y, por tanto, a bajas temperaturas, la barrera de potencial tomará valores considerables [20].

En estas condiciones, la ecuación (46) se reduce a:

$$\frac{dN^{-}}{dt} = B'\left[\exp\left(-eV_s/kT\right) - \exp\left(-eV_{s0}/kT\right)\right]$$
(48)

donde eV_{s0} es la barrera superficial de equilibrio y B' es una colección de constantes. En el caso de una variación de la barrera superficial ΔV_s :

$$\frac{dN^{-}}{dt} = B[\exp(-e\Delta V_s/kT) - 1]$$
(49)

donde $B = B' [\exp(-e\Delta V_{s0}/kT)]$.

Con los términos exponenciales dominando las ecuaciones (48) y (49) la integral temporal ya no es una exponencial simple. Asumiendo que la variación de la barrera superficial respecto al valor de equilibrio, ΔV_s es pequeña y proporcional a ΔN la ecuación (49) se convierte en

$$\frac{d\Delta N^{-}}{dt} = B[\exp(-\beta\Delta N^{-}) - 1]$$
(50)

e integrando:

$$1 - \exp(\beta \Delta N^{-}) = A_0 \exp(-\beta B)$$
⁽⁵¹⁾

donde B y β son constantes y A_{ρ} es la constante de integración.

La velocidad de retorno al equilibrio de la ecuación (50) es muy asimétrica dependiendo del signo de ΔN^{-} . Si ΔN^{-} es positivo y mayor que β^{-1} el último término de la ecuación (50) es dominante y la velocidad de inyección electrónica independiente del tiempo. Si ΔN^{-} es negativo y mayor que β^{-1} la ecuación que describe la transferencia electrónica inicial es la ecuación de Elovich:

$$\frac{d\Delta N^{-}}{dt} = B \exp(-\beta \Delta N^{-})$$
(52)

Las ecuaciones anteriores se pueden aplicar a procesos como la ionoadsorción, por ejemplo la transferencia de electrones a moléculas de oxígeno adsorbidas en la superficie. Existe la posibilidad de que la velocidad de ionoadsorción disminuya hasta un valor despreciable, no porque el incremento de la barrera superficial lleve a una situación de equilibrio, sino porque dicho incremento hace disminuir la velocidad de transferencia electrónica a valores despreciables. Un caso de interés, en la ecuación (47), es cuando V_s es cero y la temperatura es tan baja que el segundo término es despreciable. Cuando la adsorción procede la barrera superficial aumenta y la velocidad de adsorción disminuye exponencialmente.

Para calcular el doblamiento de las bandas que se necesita para reducir dicha velocidad a un valor despreciable se usará un ejemplo numérico. Se puede considerar un valor despreciable de especies adsorbidas una cantidad del orden de 10^{10} cm⁻², o sea, aproximadamente 10^{-5} monocapas. Se calculará el doblamiento necesario para reducir la velocidad de adsorción a 10^{-5} monocapas/hr. Se supondrá una densidad de moléculas de oxígeno débilmente quimiadsorbidas del orden de 10^{13} cm⁻². Sustituyendo estos valores en la ecuación (46) la velocidad a temperatura ambiente será de 10^{-5} monocapas/hr cuando n_s se reduce a 30 cm⁻³. En la ecuación (45) suponiendo $N_c = 2 \times 10^{19}$ cm⁻³ corresponde a un doblamiento de las bandas tal que $E_{cs} - E_F = 1.0$ eV. Si, por ejemplo el nivel de Fermi se encuentra a 0.2 eV por debajo de la banda de conducción un valor de la barrera de 0.8 eV causa el cese de la adsorción a temperatura ambiente.

III.6 CONDUCTIVIDAD EN FUNCION DE LA PRESIÓN PARCIAL

III.6.1 EFECTO DE CARGA ESPACIAL

Una de las consecuencias de la existencia de la forma fuerte de quimiadsorción es la carga de la superficie del semiconductor. En este proceso se asume generalmente que la carga superficial está uniformemente distribuida en la superficie, por tanto la densidad de carga es igual en todos los puntos de la misma. En una superficie real probablemente esto no es cierto en todos los casos debido a fenómenos como heterogeneidad de los centros de adsorción, formación de islas, etc.

Como consecuencia del proceso de carga de la superficie aparece una zona de carga espacial en la parte del semiconductor adyacente a la superficie que tiene signo opuesto a la carga superficial. Esto produce el doblamiento de las bandas cerca de la superficie del semiconductor.

Fig.III.8 Diagrama de bandas de un semiconductor con la formación de la zona de carga espacial. En (a) el potencial en el sólido se usa como referencia. En (b) el potencial del electrón en el vacío se usa como referencia.

La zona de carga espacial en un diagrama de bandas de energía para un cristal semiinfinito se muestra en la figura III.8. Los dos diagramas equivalentes que se mustran en las figuras III.8a y III.8b se diferencian solo en el nivel de energía cero adoptado [20].

Las líneas discontinuas representan las bandas antes de la transferencia de carga a la superficie (bandas planas), las líneas sólidas indican las bandas dobladas debido a la captura electrónica por el estado superficial E_i , que deja una carga espacial positiva debida a las impurezas donadoras.Los símbolos χ y ξ representan la afinidad electrónica y al distancia entre el nivel de Fermi y la banda de conducción.

Para calcular la forma que tiene el potencial en el semiconductor (doblamiento de las bandas) hay que resolver la ecuación de Poisson unidimensional:

$$\frac{d^2\psi}{dx^2} = -\frac{\rho}{\varepsilon_s} \tag{53}$$

donde ψ es el potencial electrostático, ρ es la densidad de carga y ε_s es la constante dieléctrica del material. Las aproximaciones más usadas para la resolución de la ecuación son: la aproximación de vaciamiento total: en la zona de carga espacial no existen portadores libres y, por tanto, la densidad de carga viene dada por la densidad de donadores ionizados, $\rho = qN_D^+$; aproximación de captura de portadores mayoritarios por los estados superficiales [20].

Haciendo un cambio de variable: $V(x) = \psi_b - \psi(x)$, donde ψ_b es el potencial en el bulk, la primera integración de la ecuación es:

$$\frac{dV}{dx} = \frac{qN_D(x - x_0)}{\varepsilon_s}$$
(54)

donde x_0 es la anchura de la zona de vaciamiento que viene determinada por la distancia necesaria para compensar la carga superficial y se ha hecho $N_D \cong N_D^+$. Para distancias mayores de x_0 el semiconductor no está cargado y, por tanto, se ha usado la condición de contorno

$$dV/dx = 0 \quad \text{en } x = x_0 \tag{55}$$

para materiales de tipo n, $N_D x_0$ es el número de electrones por unidad de área extraídos de la región superficial de espesor x_0 y es igual al número de electrones por unidad de área capturados en la superficie, N:

$$N_D x_q = N^{-} \tag{56}$$

La integración de la ecuación (52) da:

$$V(x) = \frac{qN_D(x - x_0)^2}{2\varepsilon\varepsilon_0}$$
(57)

donde se ha usado la definición V = 0 en $x = x_0$. (58)

De (56) y (57) se deduce la relación de Schottky para la barrera superficial:

$$V_s = \frac{qN_D x_0^2}{2\varepsilon\varepsilon_0} \tag{59}$$

La energía qV_s es la energía que deben adquirir los electrones antes de pasar a los estados superficiales. Usando (55) para eliminar x₀ se obtiene:

$$V_s = \frac{q(N^-)^2}{2\varepsilon\varepsilon_0 N_D} \tag{60}$$

Esta relación describe la diferencia de potencial entre la superficie y el volumen del semiconductor en función de la densidad de carga en la superficie.

Con un valor razonable de la barrera, por ejemplo 1 voltio, y unas densidades de donores de 10^{14} cm⁻³ (material puro) y 10^{19} cm⁻³ (material muy drogado) se obtienen valores de N de 3 x 10^{10} cm⁻² y 10^{13} cm⁻² respectivamente. Esto corresponde aproximadamente a 1.5×10^{-5} y 5×10^{-3} monocapas respectivamente. Claramente sólo una pequeña carga superficial se puede acomodar sin producir un gran potencial. Como N varía con la raíz cuadrada de la concentración de impurezas, no importa cuanto esté dopado el semiconductor el límite de la ionoadsorción fuerte es de $10^{-3} - 10^{-2}$ monocapas [27].
III.7 MODELOS

III.7.1 MODELO SIMPLIFICADO

El modelo del apartado anterior se puede extender con facilidad al caso de un material policristalino, que es la forma más usada para sensores de gases. Existe una extensa bibliografía sobre las propiedades de transporte en materiales policristalinos, fundamentalmente silicio, debido a su importancia tecnológica [28-32].

Fig. III.9 (a) Modelo de la estructura del semiconductor policristalino. (b) Distribución de carga dentro de la cristalita y en la frontera de grano. (c) Diagrama de bandas de energía.

La mayoría de los trabajos se basan en un modelo unidimensional de cristalitas de dimensión L como se muestra en la Fig. III.9. Se considera un semiconductor tipo n no degenerado (por tanto se puede aplicar la estadística de Maxwell-Bolztman) con una concentración de donores N_D en un nivel de energía E_D y una densidad de estados superficiales N_t en un nivel de energía E_t . Otra consideración es que la zona de carga espacial es pequeña en comparación con el tamaño de la cristalita y que no contiene portadores móviles (vaciamiento total).

Con estas condiciones la resolución de la ecuación de Poisson, análogamente al apartado anterior, establece un potencial dentro de la cristalita:

$$V(x) = \frac{qN_D(x - x_0)^2}{2\epsilon\epsilon_0} \qquad x_o \le |x| \le \frac{1}{2}L$$
(61)

La altura de la barrera viene dada por la ec. 59. La concentración de portadores en la zona extensa viene dada por:

$$n_b = N_c \exp\left[-(E_c - E_f)/kT\right] \tag{62}$$

La concentración de portadores en la región de vaciamiento viene dada por:

$$n(x) = N_c \exp[-(qV(x) - E_f)/kT]$$
(63)

La concentración media de portadores se obtiene integrando las expresiones anteriores en todo el grano y dividiendo por el tamaño del mismo:

$$n_a = \frac{1}{L} \left\{ \int_{-x_0}^{x_0} n_b dx + 2 * \int_{x_0}^{L/2} n(x) dx \right\}$$
(64)

que da como resultado [30]:

$$n_a = n_b \left\{ \left(1 - \frac{N^-}{\underline{LN}_D}\right) + \frac{1}{qL} \left(\frac{2\varepsilon\varepsilon_0 \pi kT}{N_D}\right)^{1/2} erf\left[\frac{qN^-}{2} \left(\frac{1}{2\varepsilon\varepsilon_0 kTN_D}\right)^{1/2}\right] \right\}$$
(65)

donde N es el número de estados superficiales ocupados.

La resistencia de un material policristalino es debida a la contribución del volumen y de la frontera de grano. Si, como es el caso habitual, la conductividad en el interior del grano es mucho mayor que en la frontera, una aproximación razonable es considerar solamente la resistencia del borde de grano.

Existen dos mecanismos importantes de transporte a través de una barrera de potencial: la emisión termoiónica y la emisión de campo (túnel mecánico-cuántico) [33]. Para barreras anchas predomina el primer mecanismo que es el que se considerará en la discusión que sigue.

Usando una aproximación balística, Bethe, Shottky y otros [33, 34] han mostrado que la densidad de corriente, J_{tk} , para una tensión aplicada, V_a , a través de una frontera de grano es:

$$J_{th} = qn_a \left(\frac{kT}{2m^*\pi}\right)^{1/2} \exp\left(-\frac{qV_s}{kT}\right)^{1/2} \left[\exp\left(\frac{qV_a}{kT}\right) - 1\right]$$
(66)

La ecuación (66) se ha obtenido despreciando las colisiones dentro de la región de vaciamiento y suponiendo que la concentración de portadores en el grano es independiente de la corriente. Cuando la tensión aplicada es suficientemente baja, $qV_a << kT$, se puede hacer un desarrollo en serie del segundo factor para obtener:

$$J_{ih} = q^2 n_a \left(\frac{1}{2\pi m^* kT}\right)^{1/2} \exp\left(-\frac{qV_s}{kT}\right) V_a \tag{67}$$

Por tanto la conductividad de una película policristalina de dimensión de grano L viene dada por:

$$\sigma = Lq^2 n_a \left(\frac{1}{2\pi m^* kT}\right)^{1/2} \frac{\exp\left(-\frac{qV_s}{kT}\right)}{(68)}$$

Comparando la ecuación (68) con la expresión clásica de la conductividad:

$$\sigma = qn\mu \tag{69}$$

se puede interpretar la ecuación (66) de dos formas díferentes [35]:

1) $n = n_a$, todos los portadores contribuyen a la conductividad y la movilidad está térmicamente activada, $\mu = \mu_0 \exp(-qV_s/kT)$.

2) Solo hay un número de portadores $n = n_a \exp(-qV_s/kT)$ con una movilidad μ_o que contribuyen a la conductividad. En este caso n está activado térmicamente.

En el caso que el tamaño de grano sea comparable a la zona de vaciamiento o cuando el semiconductor sea degenerado la solución (61) de la ecuación de Poisson no sería correcta; la condición de contorno (58), que establece que el potencial en el centro de la cristalita sea cero, ya no se puede aplicar porque la banda de conducción se habrá distanciado en todo el grano respecto a su valor inicial (antes de empezar el proceso de adsorción). Otro factor que influye en la inexactitud de los resultados anteriores es que la probabilidad de ocupación de los estados superficiales depende del potencial en la superficie, es decir:

$$N^{-} = \frac{N}{1 + \exp\left[\left(E_{t}^{f} + \overline{q}V_{s} - E_{F}\right)/kT\right]}$$
(70)

y, por tanto, la ecuación (53) sería no lineal y su solución no sería inmediata como se concluye en (61). Hay que añadir además, que una vez que comienza la adsorción, la densidad de estados superficiales depende de la presión del gas y de la posición del nivel de Fermi en la superficie a través de las ecuaciones (37) y (38). Como consecuencia, la ecuación de Poisson debe resolverse por métodos numéricos autoconsistentemente junto con la ecuación de neutralidad eléctrica [36, 37]:

$$Q_v = Q_s \tag{71}$$

donde Q_v es la carga en el volumen total de la cristalita y Q_s es la carga en la superficie de la cristalita. Por último, la hipótesis de vaciamiento total también puede dar lugar a errores apreciables [38].

III.7.2 MODELO GENERALIZADO. CÁLCULO NUMÉRICO

En este apartado se resoverá la ecuación de Poisson junto con la ecuación de neutralidad de carga por métodos numéricos sin ninguna de las aproximaciones del modelo simplificado. La única aproximación que se mantendrá es despreciar la concentración de huecos en la cristalita ya que en el caso específico del SnO_2 , debido a su gap alto, ésta es despreciable. un refinamiento ulterior del modelo será considerar la cristalita esférica de radio *R*. Los símbolos utilizados en este apartado se encuentran en el apéndice B.

Por comodidad se definirá un "potencial" reducido adimensional de la forma:

$$\xi(r) = \frac{\phi(r) - E_F}{kT} \tag{72}$$

donde $\phi(r)$ es la energía potencial electrónica. Con este cambio de variable la ecuación de Poisson en coordenadas esfericas es:

$$\frac{d^{2}\xi(r)}{dr^{2}} + \frac{2}{r}\frac{d\xi(r)}{dr} = -\frac{q^{2}}{\varepsilon\varepsilon_{0}kT} \Big[n(r) - N_{D}^{(+)}(r) \Big]$$
(73)

con

$$n(r) = 4\pi (2m^* kT/h^2)^{3/2} \int_{E_{\text{cmax}}}^{E_{\text{cmax}}} \frac{E^{1/2}}{1 + \exp[E + \xi(r)]} dE$$
(74)

y $N_D^{(+)} = V_o^+ + 2V_o^{++}$ es la carga positiva debida a las vacantes de oxígeno ionizadas. Se puede demostrar [24] que la ocupación de un centro múltiplemente cargado con energías efectivas E_{D1}^f y E_{D2}^f y densidad N_D corresponde a la distribución de dos centros independientes con densidades N_D y energías E_{D1}^f y E_{D2}^f respectivamente si se cumple:

$$E_{D2}^{f} - E_{D1}^{f} > kT \tag{75}$$

En el intervalo de temperaturas de utilización de los sensores esto se cumple ya que (ver §II.1.3) $E_{D2}^{f} - E_{D1}^{f} \cong 120 \text{ meV}.$ Por tanto la carga volumétrica debida a las vacantes de oxígeno ionizadas es:

$$N_D^{(+)}(r) = N_D \left[\frac{1}{1 + \exp\left[-\left(\varepsilon_{D1}^f - \xi(r)\right) \right]} + \frac{1}{1 + \exp\left[-\left(\varepsilon_{D_2}^f - \xi(r)\right) \right]} \right]$$
(76)

Las condiciones de contorno para el campo eléctrico son:

Ley de Gauss
$$\varepsilon \varepsilon_0 \oint \overrightarrow{E} \bullet d\overrightarrow{S} = Q$$
 (77)

que se puede rescribir usando la condición de neutralidad de carga

$$Q_{\nu} = Q_{s} \equiv \int_{V} [n(r) - N_{D}^{+}(r)] dV = 4\pi R^{2} N^{-} = 4\pi R^{2} \frac{N(P, \xi(R))}{1 + \exp\left(\varepsilon_{t}^{f} + \xi(R)\right)}$$
(78)

como

$$\frac{d\xi}{dr}(r=R) = \frac{q^2}{2\varepsilon\varepsilon_0 kT} \frac{N(P,\xi(R))}{1 + \exp(\varepsilon_t^f + \xi(R))}$$
(79)

Condición de simetría (el campo en el centro de la cristalita es nulo): $\frac{d\xi}{dr}(r=0) = 0$ (80)

La resolución de la ecuación diferencial se realiza descomponiéndola en un sistema de dos ecuaciones de primer orden y después aplicando el método de Runge-Kutta de cuarto orden [39]. Para llegar a una solución que satisfaga las condiciones de contorno se utiliza un "algoritmo de disparo" [40,41].

En primer lugar se ha resuelto la ecuación para diversos tamaños de grano para un amplio rango de densidades de estados superficiales sin tener en cuenta la dependencia de éstos con la presión parcial del gas. En la figura III.10 se muestra la concentración efectiva de portadores en función de la densidad de estados superficiales para varios tamaños de cristalita.

Fig. III.10 Concentración efectiva de portadores en función de la densidad de estados superficiales con el tamaño de grano como parámetro. Valores T = 300 K, $N_d = 10^{18}$ cm⁻³, $E_d = 50$ meV, $E_t = 0.6$ eV.

Se puede apreciar que existen grandes variaciones en la concentración efectiva de portadores en pequeños intervalos de concentración de estados superficiales. Resultados similares han sido obtenidos para el silicio policristalino [38, 42] y para el ZnO [43].

En el caso que los estados superficiales sean producidos por el gas aceptor, la ecuación de Poisson debe resolverse teniendo en cuenta la isoterma de adsorción obteniéndose curvas del tipo $n_{eff} = f(P)$ donde P es la presión parcial del gas aceptor.

La respuesta de un sensor semiconductor a un determinado gas se expresa en términos de sensibilidad que suele ser definida [44-46] como la relación entre la resistencia en presencia del gas y la resistencia en aire:

$$S = \frac{R}{R_0} = \frac{\sigma_0}{\sigma} \tag{81}$$

Medidas de resistividad y efecto Hall llevadas a cabo por diversos autores [43,47,48] en distintas atmósferas parecen demostrar la escasa influencia de la presión parcial del gas en la movilidad eléctrica de las películas delgadas policristalinas. Se puede concluir sin cometer un error apreciable que las variaciones de conductividad y, por tanto, de resistencia eléctrica, son debidas a las variaciones de la concentración efectiva de portadores. En consecuencia se puede expresar la sensibilidad como

$$S \cong \frac{n_0}{n_{eff}} \tag{82}$$

Por tanto, la resolución de la ecuación de Poisson expresará la sensibilidad en función de la presión parcial del gas.

En la fig. III.11 se expresa la sensibilidad en función de la presión parcial de oxígeno para diversas películas con diferentes tamaño de grano a 135°C.

Fig. III.11 Sensibilidad en función de la presión parcial de oxígeno con el tamaño de grano como parámetro.

Se puede notar que excepto para presiones altas existe una dependencia lineal entre el logaritmo de la presión y el logaritmo de la sensibilidad:

$$S \propto P^r$$
 (83)

donde el exponente r depende del tamaño de grano. Esta dependencia ha sido encontrada por muchos autores [49,50] aunque, según la teoría clásica el coeficiente debería ser constante dependiendo solo del exponente estequiométrico de la ley de acción de masa. Por tanto la teoría que se presenta aquí puede explicar la disparidad de exponentes encontrados experimentalmente.

III.7.2.1 ADSORCIÓN COMPETITIVA DEL O2 Y DEL NO2

Cuando el material funciona como un sensor de óxido de nitrógeno en aire hay que tener en cuenta la competición del O_2 y del NO_2 por los sitios de adsorción. En la literatura no se ha encontrado ningún tratamiento teórico sobre la influencia de la adsorción simultánea de varias especies aceptoras.

Para poder analizar el caso de varias especies presentes en el gas hay que generalizar la isoterma de Volkenstein (ec.36) a un número *i* de especies que no interaccionan entre sí y que compiten por el mismo número de centros de adsorción N_{ad} [26]:

$$\theta_i = \frac{\beta_i P_i}{1 + \sum \beta_i P_i} \tag{84}$$

donde θ_i es la fracción de centros recubiertos por la especie *i*, P_i es la presión parcial del gas i y β_i es el coeficiente de la isoterma de Volkenstein para la especie *i*.

La densidad total de carga en la superficie será igual a la suma de las densidades parciales:

$$N^{-} = \sum N_{i}^{-} = \sum N_{ad} \theta_{i}^{-}$$
(85)

donde θ_i^{-} viene dado por:

$$\theta_i^- = f_i^- \theta_i \tag{86}$$

y las funciones de ocupación f_i^z por:

$$f_{i} = \frac{1}{1 + \exp\left[\left(E_{ii}^{f} - E_{F}\right)/kT\right]}$$
(87)

siendo E_{ii}^{f} el nivel efectivo creado por la especie *i*.

En el caso concreto de solo dos especies, O_2 y NO₂, la densidad total de carga en la superfície se expresaría:

$$N^{-} = \frac{N_{ad}}{1 + \beta_{O_2} P_{O_2} + \beta_{NO_2} P_{NO_2}} \left\{ \frac{\beta_{O_2} P_{O_2}}{(1 + \exp((E_{O_2} - E_F)/kT)} + \frac{\beta_{NO_2} P_{NO_2}}{(1 + \exp((E_{NO_2} - E_F)/kT)} \right\}$$
(88)

La salida del programa (cuyo listado se encuentra en el apéndice D) proporciona, además del potencial en la cristalita (y, por tanto, la concentración efectiva de portadores), los recubrimientos de las distintas especies en sus formas fuerte y débil.

Uno de los resultados más sorprendentes de esta teoría, como se muestra en la fig. III.12, es que, a pesar de la premisa de especies que no interaccionan entre sí, existe una cierta interacción debido a la dependencia de las isotermas de adsorción con el nivel de Fermi en la superficie. De esta forma se observa que la adsorción del NO₂ provoca la desorción de una cierta cantidad de moléculas de oxígeno adsorbido y un cambio entre las distintas formas de adsorción. Los únicos parámetros que se han variado para intentar ajustar las curvas experimentales son los parámatros superficiales, es decir, el número de centros de adsorción N_{ad} y el nivel efectivo creado por la adsorción del NO₂.

En general, como se verá en el capítulo V, los ajustes mejores corresponden a números de sitios de adsorción próximos al número de vacantes de oxígeno en la superficie, y por tanto variables con el tamaño de grano: $N_{ad} \cong N_D * R/3$ (89)

Fig. III.12 Recubrimiento en función de la presión parcial del NO2 en aire expresado en ppb de las distintas formas de adsorción : d, adsorción debil; f, adsorción fuerte.

Fig. III.13 Curva de calibración teórica para distintos valores del número de centros de adsorción.

Pequeñas variaciones del número de sitios de adsorción respecto a este valor de "equilibrio" provoca grandes variaciones de la sensibilidad y de la forma de la curva de calibración (sensibilidad frente a concentración del gas problema). Como ejemplo en la fig. III.13 se muestra la curva teórica de calibración a 135 °C de una película de SnO₂ con dimensión de grano D =60 Å y nivel energético del NO₂ de 1.05 eV para tres valores diferentes del número de centros de adsorción. La variación respecto al valor de equilibrio es del uno por mil.

En general para valores del número de centros de adsorción superior al número de vacantes de oxígeno en la superficie se obtienen altas sensibilidades y curvas de calibración lineales o leyes de potencia y para un número inferior se obtienen curvas de saturación.

En la fig. III.14 se muestra el potencial dentro de la cristalita para dos tamaños de grano diferentes, 70 y 156 Å para distintas concentraciones de NO_2 en aire. Los parámetros superficiales para el cálculo del potencial se especifican en el pie de figura.

En la tabla III.1 se muestran los valores de los parámetros fijos del programa utilizados para la realización de estos cálculos y de los del capítulo V (ver apéndices B y C).

Parámetro	Valor
m*	0.275
ε,	13.5
E _{D1}	30 meV
E	150 meV
N _D	10 ¹⁹ cm ⁻³
v	10 ¹³ s ⁻¹
P _{o2}	21273 Pa
S _{o2}	10 ⁻¹⁴
S _{NO2}	5 x 10 ⁻¹³
q _{o2}	0.1 eV
q _{NO2}	0.2 eV
E _{c2}	0.6 eV

Tabla III.1 Parámetros utilizados en el cálculo numérico.

Fig. III.14 Potencial intracristalita para dos películas con tamaños de grano 70 y 156 Å a 270 °C para varias concentraciones de NO₂ (ppb)en aire. Los parámetros superficiales utilizados son: $E_{NO2} = 1.28$ eV, $N_{ad} = N_{ad0} = N_D * R/3$. En el diagrama se muestran dos cristalitas para cada sensor.

III.8 APLICACIÓN: BIESTABLE DE 4 CAPAS CONTROLADO POR LA CONCENTRACIÓN DE NO₂

Uno de los efectos más importantes producidos por la adsorción de moléculas gaseosas en la superfície de un semiconductor es la modificación de la función de trabajo del mismo. Este efecto se puede apreciar claramente en la figura III.8b.

Se puede aprovechar esta propiedad para el diseño de un dispositivo más sofisticado que la simple película resistiva como es el caso de un interruptor electrónico controlado por la presión parcial del gas aceptor. En este apartado se discutirán las bases teóricas que permitan el diseño de un dispositivo de este tipo.

III.8.1 EL DIODO MOS DE EFECTO TUNEL

III.8.1.1 CARACTERÍSTICAS TENSIÓN CORRIENTE

El interruptor electrónico se basa en un dispositivo de cuatro capas formado por un estrato metálico, una película muy delgada aislante y una unión p^+ -n.

En las características I-V del dispositivo polarizado en directa (fig. III.15) se pueden apreciar tres zonas diferentes:

(i) Una zona de alta impedancia (A-B). El dispositivo se encuentra en su estado "apagado". La impedancia es molto elevada y el "encendido" se produce cuando dV / dI = 0. En este punto se definen una tensión y una corriente de disparo V_{BF} e I_s.

(ii) Una zona intermedia de transición (B-C). En esta región el dispositivo presenta una resitencia negativa.

(iii) Una zona de baja impedancia (C-D). En el inicio de esta región se definen la tensión y corriente de control V_h e I_h .

III.8.1.2 DIAGRAMA DE BANDAS DE ENERGÍA

El diagrama de bandas de energía simplificado del dispositivo en equilibrio se muestra en la figura III.16a. La simplificación consiste en despreciar los efectos de los estados interfaciales, la carga del óxido y las diferencias de funciones de trabajo entre el metal y el semiconductor. Estos efectos se pueden tener en cuenta "a posteriori" con la introducción de una tensión de bandas planas.

La polarización directa induce la formación de pares electrón-hueco en la zona epitaxial n. Los electrones son arrastrados hacia la unión y los huecos se acumulan en la interfaz óxido-zona n (Fig III.16b). Esto provoca el crecimiento de una zona de vaciamiento (de portadores mayoritarios) en la zona n. La corriente en esta zona de la característica I-V es debida principalmente a fenómenos de recombinación debido a la presencia de estados superficíales en el óxido.

Fig. III.15 Características I-V del dispositivo de cuatro capas.

Si el espesor del óxido es suficientemente grande los huecos generados se acumularían en la interfaz dando lugar a un estrato de inversión. Si el espesor del oxido, por el contrario, es bastante pequeño como para permitir el paso de los huecos por efecto túnel, no se alcanzan las condiciones de inversión y el aumento de la tensión aplicada produce un ensanchamiento de la región de vaciamiento (Fig III.16c).

Fig. III.16a Diagrama de bandas de energía del dispositivo en el equilibrio térmico.

La anchura de la zona de vaciamiento viene dada por [33]:

$$X_d = (2\varepsilon_s \phi_s / qN_D)^{1/2} \tag{90}$$

donde

 ε_s = constante dieléctrica del semiconductor

 ϕ_s = potencial superficial en la interfaz SiO₂/ n-Si

N_D = concentración de donores.

Fig. III.16b Diagrama de bandas de energía del dispositivo polarizado directamente,

La corriente en esta zona de la característica es:

$$J_g = \frac{qn_i X_d}{2\tau_g} \tag{91}$$

....

siendo t_g el tiempo de vida medio de los portadores minoritarios.

Es importante notar que la probabilidad de túnel depende fuertementemente del espesor del óxido [51, 52].

Fig. III.16c Diagrama de bandas de energía del dispositivo antes del "punchthrough",

El potencial total puede escribirse como:

$$V = V_{ox} + \phi_s + V_j \tag{92}$$

donde V_{ox} es la caída tensión en el óxido y V_j es la caída de tensión en la unión p⁺-n. El primero viene dado por [33]:

$$V_{ox} = \frac{qN_D X_d}{C_{ox}} = (2q\varepsilon_s N_D \phi_s)^{1/2} d_{ox} / \varepsilon_{ox}$$
(93)

 C_{ox} , d_{ox} , y ε_{ox} son la capacidad, el espesor y la constante dieléctrica del óxido respectivamente.

Si se consideran valores típicos para d_{ox} y N_D (50 Å y 2 x 10¹⁴ cm⁻³) V_{ox} resulta muy pequeño comparándolo con ϕ_s . Por otra parte V_j es despreciable debido a las bajas corrientes involucradas ya que es la caída de tensión en una unión p-n polarizada en directa. Por tanto se puede escribir sin cometer un error apreciable:

$$V = \phi_s \tag{94}$$

Al aumentar la tensión la zona de vaciamiento se extiende hasta la unión (fig III.13c) y toma un valor[53]:

$$X_d = W_n - W_i \tag{95}$$

donde W_n y W_j son las anchuras de la zona epitaxial n y de la zona de carga espacial de la unión respectivamente. En este punto se establece la condición de "punchthrough" (perforamiento) [53]. La tensión de disparo (punto B) viene dada por:

$$V = V_{BF} \cong \phi_{PT} = q N_D (W_n - W_j)^2 / 2\varepsilon_s$$
⁽⁹⁶⁾

Los niveles de energía del semiconductor, del óxido y del metal están referidos al nivel de vacío [54] así como la función de trabajo del metal y la afinidad electrónica del semiconductor. Para un tratamiento más preciso se define la función de trabajo modificada ϕ'_m (el potencial requerido para inyectar un electrón desde el metal hasta la banda de conducción del óxido) y, análogamente, la afinidad electrónica modificada χ' .

Llamando V_{ox0} el potencial que se establece en el óxido para una tensión aplicada nula se obtiene:

$$V_{ox0} + \phi_{s0} = -\phi'_m - (\chi' + \frac{E_g}{2} - \phi_{fn}) = -\phi_{ms}$$
(97)

donde ϕ_{s0} es potencial superficial para V = 0 y ϕ_{fn} es la diferencia entre el nivel de Fermi intrínseco y el nivel de Fermi actual. Cuando se aplica una tensión distinta de cero el potencial a través del dispositivo viene dado por:

.....

$$V = V_{ox} + \phi_s + \phi_{ms} \tag{98}$$

y, por tanto, la tensión de disparo será:

$$V_{BF} = \phi_{\rm PT} + \phi_{\rm ms} \tag{99}$$

El "punchthrough" produce una disminución de la barrera de potencial en la unión que permite la inyección de un gran número de huecos a través de la misma hacia la capa epitaxial. Sin embargo, el campo eléctrico a través del óxido es tan pequeño que la mayoría de los huecos inyectados no pueden atravesar el óxido por efecto túnel y se produce una acumulación en la interfaz óxido/zona epitaxial. Esta acumulación de huecos provoca dos fenómenos que interaccionan entre sí:

i) La zona epitaxial n se desplaza hacia inversión y, por tanto, ϕ_s y la tensión a través del dispositivo disminuyen.

 ii) El campo eléctrico a través del óxido aumenta lo que permite el paso de un número mayor de portadores por efecto túnel (fíg III.16d).

El efecto regenerativo de estos dos fenómenos es una zona de resistencia negativa (trazo B-C de la fig.III.15).

A partir de este punto la corriente es limitada por las propiedades de conducción del óxido (trazo C-D). La tensión permanece esencialmente constante en un valor denominado tensión de control (fig.III.16e).

Aparte el "punchthrough" existe otro mecanismo que puede explicar el disparo del dispositivo: la multiplicación por avalancha. En este caso se produce una multiplicación por avalancha de portadores en la región de vaciamiento que lleva a un aumento de la densidad de corriente dado por:

$$J_d = \frac{Mq_i X_d}{2\tau_g} = \frac{Mn_i}{\tau_g} (\frac{q\varepsilon_s}{2N_D} \phi_s)^{1/2}$$
(100)

donde M es el factor de multiplicación dado por[33]:

$$M = \frac{1}{1 - (\phi_s / V_a)^{1/2}} \tag{101}$$

donde V_a es la tensión de avalancha dada por

$$V_a = 60(E_g/1.1)^{3/2} (N_D/10^{16})^{-3/4}$$
(102)

Fig. III.16d Diagrama de bandas de energía del dispositivo durante el "punchtrhough".

Para valores más altos de la tensión y considerando el factor de multiplicación, la corriente empieza a aumentar más rápidamente en el efecto avalancha que en el de "punchthrough"

cuando se acerca la tensión de disparo, lo cual produce un dispositivo con un estado de alta impedancia más conductivo.

Fig. III.16e Diagrama de bandas de energía del dispositivo en el estado de baja impedancia.

Cuando la caída de tensión en el dispositivo es igual a V_a el aumento rápido de la corriente inicia el disparo del dispositivo porque la corriente de electrones generada en la región de vaciamiento pasa a través de la unión p⁺-n. A causa de esta corriente la unión se polariza en directa lo que provoca una inyección de huecos hacia la zona epitaxial que invierte la interfaz óxido/n-Si. La tensión de disparo viene dada por la tensión de avalancha:

$$V_s = V_a \tag{103}$$

III.8.2 EL BIESTABLE DE CUATRO CAPAS COMO SENSOR DE NO2.

Toda la discusión del parágrafo anterior sigue siendo válida sustituyendo el metal por una película delgada de SnO_2 [55] debido a que, siendo un semiconductor degenerado posee una alta concentración de portadores incluso a temperatura ambiente.

La ecuación (94) tiene en cuenta la diferencia de funciones de trabajo entre el metal y el semiconductor. En el presente caso el segundo sumando tendría en cuenta las diferencias de funciones de trabajo entre los dos semiconductores (Si y SnO₂):

$$V_{BF} = \phi_{PT} + \phi_{ss} \tag{104}$$

donde ϕ_{ss} es la diferencia de funciones de trabajo entre los dos semiconductores.

Como se ha visto anteriormente la adsorción del NO₂ provoca variaciones en la función de trabajo del óxido de estaño, por tanto el término ϕ_{ss} variará con la presión parcial del NO₂ y, consecuentemente, también la tensión de disparo:

$$V_{BF} = V_{BF}(P_{NO2}) \tag{105}$$

Concluyendo: la discusión anterior demuestra que es posible utilizar el dispositivo modificado como un interruptor electrónico controlado por presión.

Bibliografía del capítulo III

- 1. F. F. Volkenstein, "The Electronic Theory of Catalysis on Semiconductors", Pergamon Press, Oxford (1963).
- 2. H. Geistlinger, Sensors and Actuators B, 17, 47-60 (1993).
- 3. H. Geistlinger, Sensors and Actuators B, 7, 619-625 (1992).
- 4. M. Green and K.H.Maxwell, Phys. Chem. Solids, 11, 195-204 (1959).
- 5. Lennard-Jones, Trans. Farad. Soc., 28, 333 (1932).
- 6. L.D.Landau and E.M. Lifshitz, "Quantenmechanik", Akademie-Verlag, Berlin (1978).
- 7. F. F. Volkenshtein, Zh. Fiz. Khim, 28, 422 (1954).
- 8. F. F. Volkenshtein and S.Z. Roginskii, Zh. Fiz. Khim, 29, 485 (1955).
- 9. F. Bloch, Z. Phys., 52, 555 (1928).
- E.L. Nagayev, Proc. of the Scientific Conference of Young Scientists, Moscow State University, 18 (1959).
- 11. F. F. Volkenshtein, Zh. Fiz. Khim, 26, 1462 (1952).
- 12. K. Hauffe, Adv. Catal., 7, 213 (1955).
- V.F. Kiselev and O.V. Krylov, "Electronic Phenomena in Adsorption and Catalysis", Springer, New York (1986).
- 14. H. Geistlinger, Surf. Sci., 277, 429-441 (1992).
- 15. T. L. Einstein and J.R. Schrieffer, Phys. Rev. B, 7, 3629 (1973).
- 16. F. F. Volkenshtein, Zh. Fiz. Khim, 22, 311 (1948).
- 17. P. Aigrain and C. Dugas, Z. Electrochem., 56, 363 (1952).
- 18. J. E. Germain, J. Chim. Phys., 51, 263, 691 (1954).
- 19. K. Hauffe, Angew. Chem., 67, 189 (1955).
- 20. S.R. Morrison, "The Chemical Physics of Surface", Plenum Press, New York (1977).
- 21. P.K. Clifford, Proc. 1st Int. Conf. Chemical Sensors, Fukukoa, Japan (1983).
- 22. P.K. Clifford and D.T. Tuma, Sensors and Actuators, 3, 233 (1983).
- 23. V. F. Kyselev and O. V. Krylov, "Adsorption Processes on Semiconductor and Dielectric Surfaces I", Springer Ser. Chem. Phys., Vol. 32, Springer Berlin Heidelberg (1985).

- 24. A. Many, Y. Goldstein and N.B. Grover, "Semiconductor Surfaces", North Holland, Amsterdam (1965).
- 25. F. F. Volkenshtein and S. M. Kogan, J. Chim. Phys., 55, 483 (1958).
- 26. A.W. Adamson, "Physical Cemistry of Surfaces", Interscience Publishers Inc., New York (1960).
- 27. P. Weisz, J. Chem. Phys., 21, 1531 (1953).
- 28. G. Peterman, Phys. Stat. Sol., 106, 535 (1988).
- 29. F.J. Stutzler and H.J. Queisser, J. Appl. Phys., 60 (11), 3910 (1986).
- 30. J.Y.W. Seto, J. Appl. Phys., 46 (12), 5247 (1975).
- 31. C.H. Seager and T.G. Castner, J. Appl. Phys., 49 (7), 3879 (1978).
- 32. G. Blatter and F. Greuter, Phys. Rev. B, 33 (6), 3952 (1986).
- 33. S.M. Sze, "Physics of Semiconductor Devices", Wiley,, New York (1981).
- 34. H.A. Bethe, MIT Radiation laboratory Report, 43-12, (1942) unpublished.
- 35. F.J. Gutiérrez, L. Arés, J.I. Robla, M.C. Horrillo, I. Sayago and J.A. Agapito, Sensors and Actuators B, 7, 609-613 (1992).
- 36. D. Bernarczyk and J. Bernarczyk, Thin Solid Films, 44, 137-140 (1977).
- 37. H. Geistlinger, Sensors and Actuators B, 18, 125 (1994).
- 38. K. Board and M. Darwish, J. Appl. Phys., 51 (8) (1980).
- 39. J.R. Rice, "Numerical Methods, Software and Analysis", Mc Graw Hill, New York (1983).
- 40. F. S. Actonr, "Numerical Methods that Work", Harper and Row, New York (1970).
- 41. H.B. Keller, "Numerical Methods for Two Point Boundary Value Problems", Waltham, New York (1968).
- 42. G. Baccarani and B. Riccó, J. Appl. Phys., 49 (11) (1978).
- 43. D. J. Leary, J.O. Barnes and G. Jordan, J. Electrochem. Soc., 129 (6), 1382 (1982).
- 44. J. Huusko, H. Torvela and V. Lanto, Sensors and Actuators B, 7, 700-703 (1992).
- 45. G. Williams and G. S.V. Coles, Sensors and Actuators B, 15-16, 349-353 (1993).
- 46. G.B. Barbi and J. Santos Blanco, Sensors and Actuators B, 15-16, 372-378 (1993).
- 47. J.N. Zemel, Thin Solid Films, 163, 189-202 (1988).
- 48. F.J. Gutiérrez, L. Arés, J.I. Robla, J.M. Getino, M.C. Horrillo, I. Sayago and J.A. Agapito, Sensors and Actuators B, 15-16, 98-104 (1993).
- 49. S. Strassler and A. Reis, Sensors and Actuators, 4, 465-472 (1983).

- 50. G. Heiland, Sensors and Actuators, 2, 343-36 (1982).
- 51. H. C. Card and E. H. Roderick, J. Phys D, 4, 1589 (1971).
- 52. J. Buxó, D. Esteve and G. Sarrabayrouse, Phys. Status Solidi A, 37, K-105 (1976).
- 53. S.E.D. Habib and J.G. Simmons, Solid State Electron., 22, 181 (1979).
- 54. D.A. Neamen, "Semiconductor Physics and devices", Irwin, Boston MA,(1992).
- 55. G.B. Barbi, J. Santos Blanco, M. Baroffio, J. Agapito and F.J. Gutiérrez, Sensors and Actuators B, 18-19, 93-98 (1994).

Capítulo IV

TÉCNICAS EXPERIMENTALES

En este capítulo se describe el aparato experimental para las medidas eléctricas de los sensores en distintas atmósferas gaseosas de los dos laboratorios donde se han realizado las pruebas: el Laboratorio de Sensores del Instituto para los Materiales Avanzados y el Laboratorio Europeo de Referencia para la Polución Atmosférica (ERLAP) del Instituto del Ambiente, ambos ubicados en el Centro Común de Investigación de la Comisión de la Comunidad Europea, establecimiento de Ispra (Italia).

IV.1 LABORATORIO DE SENSORES

Se han desarrollado dos líneas independientes de medida, una para las películas resistivas y otra para los dispositivos de silicio.

El aparato experimental de cada línea de medida consta de cuatro partes principales: 1.-La celda de medida; 2.-la línea de gases; 3.-la instrumentación electrónica para la realización de las medidas eléctricas y el control de la temperatura; 4.-el software de control y adquisición de datos. Un esquema simplificado se muestra en la fig. IV.1.

IV.1.1 CELDA DE MEDIDA

La celda de acero inoxidable ha sido construida a partir de piezas comerciales para alto vacío (Balzers vacuum components). Dentro de la celda se pueden posicionar dos sensores de cualquier tipo muy próximos al centro. Entre los dos sensores se posiciona un termopar de tipo K para la medidad de la temperatura de operación.

Fig. IV.1 Esquema de la línea de medida: 1.- botellas de gas; 2.-sistema de distribución del gas; 3.-humidificador;
4.- caudalímetros másicos; 5.- celda de medida; 6.- sistema de control de los caudalímetros; 7.-picoamperímetros y multímetros; 8.- regulador de temperatura; 9.- ordenador personal

El volumen interno de la celda es de 53.4 cm³. Teniendo en cuenta que el caudal de gas usado en las medidas es de 167 cm³/min se obtiene una velocidad de cambio del gas en la celda de tres veces por minuto. Esto es importante a la hora de determinar la velocidad de respuesta del sensor, ya que un volumen grande implicaría que la respuesta del sensor está falseada por el tiempo de recambio del gas.

Los sensores se fijan a los eléctrodos aislados, que les sirven de apoyo, mediante conectores con contactos de plata. En el caso de los diodos en silicio el sensor no se apoya directamente sobre los conectores sino que se encuentra suspendido por los hilos de oro de los contactos eléctricos.

El gas entra en la celda através de un tubo situado en la parte lateral inferior y sale por otro tubo situado en la parte superior.

Una resistencia de calentamiento se sitúa alrededor de la parte central de la celda. Entre las dos se posiciona un termopar tipo K o una resistencia Pt100 para el control de la temperatura. Una fotografía de la celda con un sensor posicionado se muestra en la fig. IV.2.

Fig. IV.2 La celda de medida

IV.1.2 LÍNEA DE GASES

El componente principal de la linea de gases es el caudalímetro másico. Con él se pueden regular caudales y por tanto establecer concentraciones con un error menor del 1%.

Cada línea dispone de cuatro caudalímetros másicos (Hi-Tec 100/200 y Brooks 5800E) con los que se pueden realizar mezclas gaseosas de hasta tres componentes. En general uno se utiliza para el aire seco, otro para el aire húmedo y los otros dos para las mezclas de NO_2 y CO en aire. Los caudalímetros se pueden controlar manualmente por medio de potenciómetros o bien automáticamente a través de una señal analógica producida por una tarjeta D/A de los ordenadores.

El aire seco utilizado como portador es una mezcla de N_2 y $O_2 80/20$ (aire N50 de la SIO) de alta pureza con concentraciones volumétricas de NO_x menores de 1 ppb, de CO menores de 1 ppm y de vapor de agua menores de 3 ppm.

Las mezclas de NO₂ y CO se obtienen a partir de botellas con concentraciones de 10 ppm y 100 ppm en aire respectivamente que se diluyen con el aire seco para alcanzar la concentraciones deseadas. Con el sistema de caudalímetros utilizados el rango de concentraciones obtenidas van desde 50 ppb hasta 10 ppm para el NO₂ y desde 5 hasta 100 ppm par el CO.

El aire húmedo se obtiene haciendo pasar el aire seco a traves de un humidificador mantenido a una temperatura inferior a la temperatura ambiente. La humedad relativa se define a través de la expresión [1]:

$$RH = 100 \frac{p_{H_2O}}{p_{H_2O}^0}$$
(1)

donde p_{H_2O} y $p_{H_2O}^0$ son las presiones parciales del vapor de agua actual y de saturación a una temperatura dada. La presión de saturación puede expresarse en función de la temperatura como [2]:

$$p_{H_2O}^0 = p_s \exp\left[13.3185a - 1.9760a^2 - 0.6445a^3 - 0.1299a^4\right]$$
(2)

donde p_s es la presion atmosférica estandard (1013.25 mbar) y el parámetro *a* se define en función de la temperatura ambiente T(K) y de la temperatura del vapor $T_s = 373.15$,

$$a = 1 - \frac{T_s}{T} \tag{3}$$

Por tanto, se puede introducir en el ordenador una expresión que, a partir de la temperatura ambiente y la temperatura del humidificador calcule la humedad relativa presente a la salida de este último.

Las humedades relativas utilizadas en las medidas varían entre el 30 y el 80 %.

La mayoría de los tubos de conducción han sido construidos en acero inoxidable de diámetros externo e interno 6x4 mm., aunque se han utilizado también tubos de teflón de idéntico diámetro. El caudal total durante la medida, como precisado arriba, se mantiene constante a 167 cm³/min.

IV.1.3 INSTRUMENTACIÓN ELECTRÓNICA

La instrumentación para el control de la temperatura comprende termoreguladores digitales con procesos PID (proporcional, integral y derivativo) modelos EUROTHERM 818P con interfaz analógica o digital (RS 232). La potencia para el calentamiento de la resistencia viene proporcionada a través de triacs. La temperatura máxima que alcanza el centro de la celda es de 400 °C.

Las medidas de resistencia eléctrica de los sensores resistivos se realizan con picoamperímetros que poseen una fuente de tensión incorporada (KEITHLEY 487) o externa (KEITHLEY 485), que permiten medir resistencias en el rango 10³ - 10¹⁵ ohmios.

Las medidas 1-V de los dispositivos de cuatro capas se realizan con una fuente programable de corriente (KEITHLEY 220) y un multímetro digital multicanal (KEITHLEY 199).

La temperatura de operación de los sensores se toman a través de tarjetas dedicadas de medidas de temperatura (sitema KEYTHLEY 500) o a través de un canal del multímetro digital previo paso por un circuito de compensación de unión fría.

Además existen varias tarjetas A/D en los ordenadores para el control de la temperatura de operación y de los caudales de los caudalímetros másicos.

Todos los instrumentos están dotados de tarjetas de comunicación digitales IEEE 488.

IV.1.4 SOFTWARE DE CONTROL Y ADQUISICIÓN DE DATOS

Todos los instrumentos citados en los apartados anteriores están controlados por dos ordenadores personales compatibles que poseen tarjetas de comunicación digitales (RS 232, IEEE 488) y tarjetas A/D y D/A.

Se ha desarrollado un software para el control automático del proceso de medida y adquisición de datos en el lenguaje de programación BASIC 7.1 Profesional Development System (Apéndice C).

En el caso de los sensores resistivos el programa principal contiene tres subprogramas fundamentales para la realización del tartamiento térmico, las medidas de resistencia en funcion de la temperatura y las medidas de resistencia en función de la concentración del gas, aparte de otras subrutinas secundarias de cálculo y test de los aparatos.

El programa relativo a los sensores basados en silicio contiene subprogramas de medidas I-V en función de la concentración del gas y subrutinas de cálculo y control. Una vez elegido el subprograma deseado se entra en una pantalla donde se establecen los parámetros de la medida.

En el caso de las medidas de resistencia en función de la concentración los parámetros que se pueden variar son: polarización de los sensores (generalmente fijado a 10 V), temperaturas de operación (en el rango ambiente - 350 °C), número y valor de las concentraciones del gas problema, tiempo para cada concentración (20-30 min.) e intervalo entre adquisiciones de resistencias (10-30 s.).

El subprograma equivalente de los sensores de cuatro capas comprende además de la mayor parte de los parámetros citados arriba, la pendiente de la rampa de corriente (generalmente 2.5 μ A/s) y la potencia máxima suministrada al dispositivo (para evitar la destrucción del mismo).

El proceso de medida es el siguiente: se calienta el sensor a la temperatura deseada y se deja estabilizar durante un cierto tiempo. Se introducen las concentraciones del gas problema en forma creciente hasta el máximo de concentración y después en forma decreciente hasta llegar de nuevo a una atmósfera de aire seco (con o sin gases de interferencia). Se repite el proceso para las temperaturas de operación deseadas. Los datos y parámetos del proceso se visualizan en la pantalla en tiempo real.

Los datos registrados sobre discos flexibles se procesan posteriormente mediante un folio electrónico (EXCEL).

Una vista general de las líneas de medida se muestra en la fig. IV.3

IV.2 ERLAP

Las medidas con ozono se han llevado a cabo en el ERLAP. La parte principal del laboratorio está constituida por el banco de calibración (fig IV.4).

Fig. IV.4 El-banco de calibración del ERLAP:

El banco de calibración es un diluidor dinámico que permite la generación de mezclas de gases complejas (hasta 8 componentes) mediante la dilución a partir de botellas de alta concentración.

El sistema está equipado con un generador de ozono (a partir de lámparas ultravioletas) y de un humidificador. Todas las funciones del banco están controladas por un ordenador, por lo que las medidas se realizan de forma automática.

El ERLAP tiene una experiencia extensiva en la preparación de mezclas estándard debido a su papel fundamental en la organización de campañas de intercalibración en la Unión Europea. En las medidas realizadas con el ozono, un analizador fotométrico UV se posiciona en la salida del banco para medir la concentración de ozono producida por el generador.

Fig. IV.5 Esquema del aparato portátil de medida.
Este analizador está calibrado de acuerdo con la directiva 92/72/EEC.

Para poder llevar a cabo las medidas en el ERLAP, se ha diseñado un aparato portátil [3], cuyo esquema se muestra en la figura IV.5, compuesto por tres partes principales:

-Un pequeño horno capaz de alcanzar 400 °C de temperatura en el que se introduce una celda de acero inoxidable que contiene los sensores. Se pueden posicionar hasta dos sensores en la celda.

-Un sistema electrónico de regulación de temperatura dotado de una fuente de corriente y un conversor de impedancias para la medida de resistencia de los sensores. Con este sistema se pueden medir resistencias en el rango $1 M\Omega - 1G\Omega$.

-Un data-logger programable para la adquisición de los datos de resistencia y temperatura (RAMLOG 9000).

Para las medidas en campo se deben añadir otros dos componentes al sitema: una bomba y un controlador de caudal.

Bibliografía del capítulo IV

- 1. J.H. Seinfeld, Atmospheric Chemistry and Physics of Air Pollution, John Wiley & Sons ed., New York (1986).
- 2. J.M. Richards, British J. Appl. Phys., D4, L15 (1971).
- 3. J. Santos, A. Noriega, M.C. Horrillo and G. Barbi, Report EUR 16053, Joint Research Centre of the European Commission (1994).

<u>Capítulo V</u>

RESULTADOS

V.1 TÉCNICAS SUPERFICIALES

V.1.1 DIFRACTOMETRÍA DE RAYOS-X A ÁNGULO RASANTE

Los espectros obtenidos mediante esta técnica, tanto en las películas delgadas como en los diodos túnel, muestran una sola fase de SnO_2 : la casiterita. En la tabla V.1 se muestran la posición angular de los cuatro picos encontrados en la mayoría de los sensores, la distancia entre los planos de Bragg y los índices de Miller correspondientes a la orientación cristalina.

Tabla V.1 Posición angular del pico de difracción, distancia entre planos de Bragg e índices de Miller para lo picos de SnO₂ hallados en los sensores analizados.

2 0	d(Å)	hki	
26.5	3.35	110	
33.8	2.64	101	
51.8	1.76	211	
54.6	1.68	220	

Los espectros obtenidos son los característicos de una estructura policristalina con dimensiones de grano extremadamente pequeñas. El análisis de las intensidades relativas de los picos no muestra una orientación preferencial de las cristalitas en ninguno de los sensores analizados. La dimensión media de las cristalitas se obtiene, para cada sensor, ajustando cada pico como se explicó en §II.3.1, aplicando la fórmula de Scherrer y haciendo la media. Las dimensiones obtenidas varían entre 15 y 155 Å con un error máximo del 20%. Una tabla con las dimensiones de grano de los sensores estudiados se encuentra en el apartado V.2.3. En las figuras V.1 a V.8 se muestran los espectros de difracción de los sensores sin ningún tipo de dopante. En cada

difractograma se señalan los picos correspondientes al SnO_2 . Los picos restantes corresponden al substrato y a los contactos de oro.

Fig. V.1 Espectro de difracción del sensor S9 con un ángulo de incidencia de 1°.

Fig. V.2 Espectro de difracción del sensor S12 con un ángulo de incidencia de 1°.

Fig. V.3 Espectro de difracción del sensor S13 a un ángulo incidente de 1°.

Fig. V.4 Espectro de difracción del sensor S17 a un ángulo incidente de 1°.

Fig. V.5 Espectro de difracción del sensor S30 a un ángulo incidente de 1°.

Fig. V.6 Espectro de difracción del sensor S33 a un ángulo incidente de 1°.

Fig. V.7 Espectro de difracción del sensor S34 a un ángulo incidente de 1°.

Fig. V.8 Espectro de difracción del sensor S15 a un ángulo incidente de 1°.

Se puede observar que la intensidad de los picos dismínuye al disminuir el espesor, por lo que el cálculo de la dimensión de los granos es más difícil y presenta un error mayor en los sensores de espesor pequeño. Se debe notar que para sensores muy gruesos, como por ejemplo el S15, (espesor = 7800 Å), aparecen picos adicionales de la casiterita.

En las figuras V.9 y V.10 se muestran los espectros de tres sensores sobre los que se han depositado películas delgadas de aluminio. Debido a que el espesor de estas películas no supera los 400 Å esta técnica no es capaz de identificar los picos metálicos. Además, como se verá en el apartado correspondiente, después del tratamiento térmico el análisis XPS muestra que el aluminio está casi completamente oxidado.

Fig. V.9 Espectro de difracción del sensor S14 con una película de aluminio de 280 Å a un ángulo de incidencia de 1°.

Fig. V.10 Espectro de difracción del sensor S16 con una película de aluminio de 270 Å a un ángulo de incidencia de 1°.

En las películas implantadas con platino se observa una disminución del tamaño medio de grano debido al daño producido por los iones en la estructura del SnO_2 . La disminución del tamaño medio de grano alcanza en algunos casos hasta el 25%. La disminución más grande se produce a las energías de implantación más altas y, en general, a las dosis más elevadas.

En estas películas igual que en las dopadas por pulverización catódica, la difactrometría de rayos X no detecta el metal implantado, ya que las dosis atómicas no superan el 0.7%.

En las figuras V.11 a V.14 se muestran los espectros de difracción de varias películas implantadas con energía y dosis diferentes.

Debe notarse, asimismo, que la implantación provoca la desaparición de algún pico, por tanto se produce un cambio en la estructura cristalina hacia estructuras más amorfas. Los dos últimos espectros (figs. V.15 y V.16) corresponden a los diodos DA y DB sobre silicio.

Fig. V.11 Espectro de difracción del sensor S7b implantado con platino a una energía de 170KeV y una dosis de $3x10^{15}$ at/cm². El ángulo de incidencia es de 0.5°

Fig. V.12 Espectro de difracción del sensor S17c implantado con platino a una energía de 150KeV y una dosis de 1.15×10^{15} at/cm². El ángulo de incidencia es de 0.4° .

Fig. V.13 Espectro de difracción del sensor S17d implantado con platino a una energía de 100KeV y una dosis de 1.15×10^{15} at/cm². El ángulo de incidencia es de 0.4° .

Fig. V.14 Espectro de difracción del sensor S5b implantado con platino a una energía de 170KeV y una dosis de 1.3×10^{15} at/cm². El ángulo de incidencia es de 0.4° .

Fig. V.15 Espectro de difracción de un sensor de la serie DA a 1º de incidencia

Fig. V.16 Espectro de difracción de un sensor de la serie DB a 1° de incidencia

V.2.2. ESPECTROMETRÍAS FOTOELECTRÓNICA DE RAYOS-X Y AUGER

Tanto los espectros Auger (AES) como los XPS realizados sobre la totalidad de los sensores muestran la presencia de los siguientes elementos: Sn, O, Al, Au, C. El carbono, proveniente de la fijación en la superficie de la contaminación ambiental, desaparece casi totalmente cuando se repite el espectro después de remover parte de la película mediante bombardeo iónico. La presencia del oro es debida a los contactos eléctricos y el aluminio forma parte de la alúmina del sustrato y en su caso al Al dopante de las películas delgadas.

El estado de oxidación del estaño y, por tanto, el compuesto que forma en las películas puede ser determinado por la posición del doblete 3d del estaño en el espectro XPS. En la totalidad de las muestras analizadas la posición de estos picos corresponde a un estado de oxidación IV ($E_{3d5/2} = 486.4 \text{ eV}$, $E_{3d3/2} = 494.9 \text{ eV}$) por lo que se puede concluir que las películas están formadas por SnO₂. Solamente en alguna serie preparada a partir de un blanco de estaño y, antes de realizar el tratamiento térmico, se detecta la presencia de estaño metálico.

En la figura V.17 se muestra el espectro XPS de un sensor dopado con aluminio superficial en el que se han identificado los picos correspondientes al Sn, O, Al y C.

Fig. V.17 Espectro XPS del sensor S8 después de la eliminación de un espesor de 50 Å de material

La figura V.18 es una ampliación de la fig. V.17 en la región correspondiente al doblete 3d del estaño.

Fig. V.18 Doblete 3d del estaño correspondiente a la figura V.17

A partir de las áreas de los picos 3d del estaño y del pico 1s del oxígeno se puede calcular la relación O/Sn y, por tanto, la estequiometría del material. Desgraciadamente los valores obtenidos vienen falseados por dos fenómenos siempre presentes en este tipo de material:

1)En la superficie existe siempre oxígeno absorbido lo que produce un aumento del oxígeno relativo al estaño en comparación al volumen del material. Consecuentemente, los valores obtenidos son mayores que 2.

2)Dentro del volumen, y debido a un fenómeno de "sputtering" preferencial del oxígeno al analizar las capas sucesivas, existe un emprobecimiento de este último elemento que conduce a calcular factores de estequiometría por debajo del valor real.

De todas formas, de los análisis realizados se puede concluir que el óxido es subestequiométrico aunque no se puede dar un valor quantitativo preciso del mismo.

Debido a efectos de carga, en algunos casos existe un desplazamiento en la posición de los picos. No obstante, la presencia de carbono superficial, cuyo pico se encuentra en una posición bien determinada permite la localización exacta de los demás.

La mayoría de los espectros XPS se han realizado con un espectrofotómetro cuyo analizador se encuentra a un ángulo fijo de 45°. El camino libre medio de los fotoelectrones emitidos en el SnO₂ es de 30 Å por lo que con este equipo se puede analizar en cada espectro una profundidad de hasta 20 Å aproximadamente. Sin embargo, también se han realizado medidas con un espectrómetro de ángulo variable que puede aumentar o disminuir el espesor analizado. Se han utilizado dos ángulos límite 90° y 6° sobre muestras en las que no se han efectuado bombardeos iónicos. En el primer caso la contribución al espectro viene de una zona de aproximadamente 30 Å de espesor con una resolución lateral de 100 µm. En el segundo caso la contribución viene solamente del primer estrato atómico del semiconductor.

La figura V.19 muestra el espectro de un sensor sin dopar a un ángulo de 90° mientras que la figura V.20 muestra el espectro del mismo sensor a 6°.

Fig. V.19 Espectro XPS de una película de SnO₂ a 90°.

Fig. V.20 Espectro XPS de una película de SnO₂ a 6°.

En la segunda figura se aprecian picos que no se ven en la primera, como por ejemplo los picos 3d de la plata, problamente provenientes de deposiciones anteriores de plata en la cámara de pulverización catódica. También se aprecian claramente los picos del oro de los contactos eléctricos.

Uno de los resultados más interensantes de esta técnica es la diferente forma del pico 1s del oxígeno (usado para el cálculo de la estequiometría) al variar el ángulo del detector.

Fig. V.21 Pico 1s del oxígeno a un ángulo de 90°

Fig. V.22 Pico 1s del oxígeno a un ángulo de 6°

En las figuras V.21 y V.22 se muestran estos dos picos, siempre del mismo sensor, a 90° y a 6° En ninguno de los dos casos el pico del oxígeno es una gausiana perfecta, como seria de esperar en el caso de una sola especie de oxígeno enlazado con el estaño, lo que indica la presencia de otras especies con distintos estados de oxidación. Esto es mucho más evidente en el caso de la fig.V.22 donde el pico del oxígeno se puede descomponer en tres picos elementales, uno asociado al oxígeno ligado al estaño y los otros dos presumiblemente asociados a moléculas de oxigeno quimioadsorbidas y grupos hidroxilos. En la fig. V.21 el pico es muy próximo a una gausiana aunque es claramente asimétrico, lo cual indica también la presencia de especies distintas a la del oxígeno ligado al estaño.

Los factores estequiométricos calculados a partir de las áreas de estos picos arrojan valores de 3.12 y a 2.02 en el caso del ángulo de 6° y 90° respectivamente. La subestequiometría es evidente en el análisis de un mayor espesor de material (ángulo 90°) si se tiene en cuenta lo señalado en la pg. 148 apartado 1, ya que el valor calculado es prácticamente 2.

Debido a la mayor sensibilidad para los elementos ligeros la espectroscopía Auger es de gran utilidad para la determinación de los dopantes superficiales, especialmente del aluminio.

En la figura V.23 se muestra el espectro AES superficial de un sensor dopado con una película delgada de aluminio. De la posición de los picos se deduce que todo el aluminio se encuentra bajo forma de alúmina.

Fig. V.23 Espectro AES del sensor S14 dopado con una película de aluminio

Fig. V.24 Perfil Auger del sensor S14 con película de Aluminio realizado con una velocidad de "sputtering" de 557 Å/min.

La oxidación del Al a Al_2O_3 se ha encontrado en la totalidad de las muestras dopadas superficialmente con aluminio.

Mediante los perfiles Auger se obtienen las concentraciones de los distintos elementos en profundidad. Este metodo ha servido para determinar los espesores aproximados tanto de las películas de dopantes como de las de SnO_2 . Con esta información se han podido determinar con mayor exactitud los espesores mediante la elipsometría.

En la figura V.24 se muestra el perfil Auger de un sensor con una pelicula de aluminio superficial. A partir de la velocidad de "sputtering" se pueden calcular los diferentes espesores que resultan ser de 280 Å para el Al_2O_3 superficial y de 2840 Å para el SnO_2 .

En la figura V.25 se muestra el perfil Auger de un diodo tunel (sensor DA) con 1670 Å de espesor de SnO_2 . Debido a la alta velocidad de "sputtering" la capa delgada de óxido de silicio no está bien definida.

Fig. V.25 Perfil Auger del sensor DA realizado con una velocidad de "sputtering" de 350 Å/min.

V.1.3 ELIPSOMETRÍA

Las medidas de espesor mediante esta técnica son extremadamente precisas aunque, como se ha visto (§II.3.3), son periódicas cuyo período viene dado por la expresión:

$$D = \frac{1}{2}\lambda (N_1^2 - N_0^2 sen^2 \phi)^{-\frac{1}{2}}$$
(1)

donde D es el período, λ es la longitud de onda del láser, N_1 es el índice de refracción del SnO₂, N_0 es el índice de refracción del aire y ϕ es el ángulo de incidencia del haz. Sustituyendo los valores:

$$\lambda = 6328 \text{ Å}$$
$$N_{I} = 2.05$$
$$N_{o} = 1$$
$$\varphi = 70^{\circ}$$

se obtiene un valor para D de 1715 Å. La evaluación del espesor correcto se realiza mediante el valor obtenido con el perfil Auger, que proporciona una primera aproximación. La complementareidad de estas dos técnicas para la medida de espesores es excelente.

Aunque teóricamente se puede obtener una precisión de 0.5 Å el hecho de que el índice de refracción del SnO_2 varíe ligeramente con la estequiometría "limita" la precisión de esta técnica a 5 - 10 Å.

La medida de espesores se realiza en diferentes puntos de la muestra obteniéndose un valor medio para cada sensor. La inhomogeneidad en el espesor raramente ha superado el 2%.

Los sensores dopados con una película metálica superficial (Tabla II.3, pg. 45) no se pueden medir con esta técnica. El valor del espesor se ha determinado para estas muestras con el perfil Auger y, por tanto, tiene un error mayor que el resto.

Las medidas de espesor del óxido de silicio en los diodos túnel se realiza conjuntamente a la del óxido de estaño mediante un programa de reflexión multiestrato.

Los resultados conjuntos de las medidas elipsométricas y del tamaño medio de grano se dan en la tabla V.2.

SERIE	ESPESOR(Å)	TAMAÑO DE GRANO(Å)	SERIE	ESPESOR(Å)	TAMAÑO DE GRANO(Å)
S1	800	90	S13	1.330	45
S2	900	65	S14	2.560	40
S3	1.620	140	S15	7.800	77
S4	1.550	155	S16	890	40
S5	1.700	40	S17	890	61
S6	1.800	68	S17c	820	53
S6a	1.780	53	S17d	820	60
S6b	1.720	58	S17e	830	56
S7	1.500	65	S19	17.000	94
S7a	1.480	55	S30	3.175	60
S7b	1.410	42	S31	3.000	51
S8	1.000		S32	3.000	60
S9	1.730	82	S33	3.000	62
S9a	1.710	70	S34	3.000	54
S10	4.500	74	S35	2.000	62
S12	1.615	29	S36	3.000	
			S37	5.000	

Tabla V.II Espesores y tamaños medios de granos calculados mediante la elipsometría y el GAXRD para películas delgadas sobre Al₂O₃

Tabla V.III Espesores y tamaños medios de granos calculados mediante la elipsometría y el GAXRD para diodos túnel.

SERIE	ESPESOR SiO ₂ (Å)	ESPESOR SnO ₂ (Å)	TAMAÑO GRANO (Å)
DA	40	1.670	67
DB	50	1.560	67
DC		600	50
DD		700	50

V.1.4 ESPECTROMETRÍA RUTHERFORD DE RETRODISPERSIÓN(RBS)

Debido a la baja eficiencia del platino en las espectroscopías Auger y XPS se ha tenido que recurrir a una técnica alternativa para la verificación de los datos de dosis implantadas y profundidad de implantación obtenidos mediantes las simulaciones TRIM y PROFILE.

La poca disponibilidad del instrumento, que se econtraba fuera del centro de investigación donde se ha realizado esta tesis, ha permitido la realización de espectros en un número muy limitado de muestras.

En las figuras V.26 y V.27 se muestran los espectros RBS de dos sensores con diferentes dopantes. El primero corresponde a un sensor de 1410 Å de espesor de SnO_2 con una película superficial de aluminio de 280 Å que ha sido implantado con una dosis de 3×10^{15} at/cm² a 170 KeV. Del espectro RBS se deducen los siguientes datos: espesor de SnO_2 1400 Å, espesor de aluminio 170 Å, dosis de platino 3.2 $\times10^{15}$ at/cm².

El segundo espectro corresponde a un sensor con 910 Å de espesor de SnO_2 con aluminio superficial en forma de círculos implantado con platino a la misma dosis y energía del anterior. Los datos obtenidos del espectro son: espesor de SnO_2 800 Å, dosis implantada 3.9×10^{15} at/cm², el aluminio superficial no se ve.

Fig. V.26 Espectro RBS del sensor S7b implantado con platino (energía de implantación 170 KeV, dosis 3x10¹⁵ at/cm²) dopado con una película de aluminio superficial.

Fig. V.27 Espectro RBS del sensor S8g implantado con platino (energía de implantación 170 KeV, dosis 3x10¹⁵ at/cm²) dopado con una película de aluminio superficial.

Los valores obtenidos con el RBS corresponden bastante bien a los valores teóricos obtenidos con el TRIM y el PROFILE y a los valores de espesor obtenidos mediante la elipsometría y perfil AES. Las diferencias encontradas sobre todo en lo que se refiere a los espesores del aluminio son debidas a que las medidas AES fueron realizadas antes de la implantación iónica y como se vio en el apartado II.2.2 un estrato superficial de la muestra se pierde por el efecto de "sputtering" de los iones implantados.

V.2 MEDIDAS ELÉCTRICAS

V.2.1 PELÍCULAS DELGADAS

La medida de la resistencia eléctrica de los sensores justo después de su preparación arroja valores en el rango de 1 - 100 Kohm. Sin embargo algunos de los sensores dopados con una película metálica superficial poseen valores de resistencia de pocos centenares de ohmios debido al cortocircuito que se produce con los contactos eléctricos.

La resistencia después del tratamiento térmico en aire aumenta hasta situarse en el rango de 1-100 Mohm para la mayoría de los sensores. Solamente una pequeña parte de los sensores antes citados mantiene una resistencia baja debido a una pobre difusión del metal en el volumen del semiconductor. Para éstos es necesario aumentar la temperatura del tratamiento térmico hasta 500 °C. El aumento de la resistencia es atribuible a la adsorción del oxígeno ya que las medidas realizadas en nitrógeno muestran resistencias mucho menores que las realizadas en aire.

Las medidas de resistencia en función de la temperatura muestran dos tipos generales de comportamiento: en la mayoría de las series preparadas a altas temperaturas la resistencia disminuye al aumentar la temperatura hasta alcanzar un mínimo y después aumenta ligeramente. En el resto de las series la resistencia disminuye al aumentar la temperatura en todo el rango operativo. Alguno de los sensores dopados muestran un comportamiento más irregular.

El primer grupo posee además la característica de presentar una histéresis acusada en el ciclo calentamiento-enfriamiento. Un ejemplo de esta histéresis se muestra en la figura V.27.

En las primeras series de sensores (S1-S4) se han efectuado medidas de resistencia para distintas concentraciones de NO_2 en nitrógeno con el fin de determinar la influencia del oxígeno del aire en la sensibilidad [1]. Se han hallado sensibilidades muy elevadas (a veces mayor de 10.000) en el rango 2-20 ppm. Las respuestas muestran saturación para concentraciones mayores de 10 ppm. Las temperaturas de máxima sensibilidad se encuentran en el rango 210 -280°C.

Fig. V.27 Medidas de resistencia vs. temperatura para el sensor S5

V.2.1.1 SENSIBILIDAD EN AIRE PARA LOS SENSORES NO DOPADOS

La totalidad de las series estudiadas muestran una gran sensibilidad en todo el rango de concentraciones y temperaturas. Las curvas de adsorción y desorción son muy simétricas en el rango de altas concentraciones (1-8 ppm) como se deduce de la figura V.28. En el rango de bajas concentraciones, que es el más interesante desde el punto de vista de la polución atmosférica, la reversibilidad no es completa.

Fig. V.28 Curva de respuesta del sensor S5 a 250 °C

Esta aparente irreversibilidad a bajas concentraciones puede ser atribuida a un fenómeno de adsorción en los tubos y las paredes de la celda de medida, debido a que el caudal total es bastante bajo.

En general, se han medido dos o tres sensores de cada serie para comprobar la reproducibilidad de las películas preparadas al mismo tiempo. Las diferencias de respuesta entre sensores de la misma son menores del 10%.

Los tiempos de respuesta son bastante uniformes, del orden de pocos minutos, disminuyendo con la temperatura para la totalidad de las series medidas. En general los tiempos de adsorción son mayores que los de desorción por lo que, a la hora de calcular la sensibilidad en el equilibrio, se ha preferido tomar éstos últimos, cuando no se ha podido extrapolar la curva de adsorción.

Por debajo de 100 °C los tiempos de respuesta son tan largos que es muy difícil calcular la sensibilidad en equilibrio, por lo que no se incluyen estas medidas en la discusión general, excepción hecha de la serie S12, con tiempos de respuesta razonables a esta temperatura.

En general la sensibilidad disminuye con la temperatura pero es posible encontrar máximos a temperaturas intermedias. Una excepción es la serie S4 en la que la sensibilidad aumenta al aumentar la temperatura sin que se haya podido alcanzar un máximo.

En la tabla V.4 se muestra las sensibilidad máxima a 200 ppb de NO_2 (segundo umbral de alarma) y las temperaturas de máxima sensibilidad para las series estudiadas.

SERIE	S _{max} (200 ppb)	T(°C)
S4	- 44	250
S5	14	200
S6	9.7	200
S9	15	228
S12	67.5	90
S13	73.5	135
S15	44.1	135
S17	85.5	135
S30	311	135
S33	40	181
S34	28	181
S35	20	181

Tabla V.4 Sensibilidad máxima a 200 ppb de NO2 en aire y Temperatura de máxima sensibilidad

En las figuras V.29 a V.43 se muestran las curvas de respuesta de tres sensores con distinta temperatura de máxima sensibilidad.

Fig. V.29 Curva de respuesta del sensor S9 a 135 °C

Fig. V.30 Curva de respuesta del sensor S9 a 182 °C

Fig. V.31 Curva de respuesta del sensor S9 a 228 °C

Fig. V.32 Curva de respuesta del sensor S9 a 275 °C

Fig. V.33 Curva de respuesta del sensor S9 a 322 °C

Fig. V.34 Curva de respuesta del sensor S30 a 135 °C

Fig. V.35 Curva de respuesta del sensor S30 a 180 °C

Fig. V.36 Curva de respuesta del sensor S30 a 228 °C

Fig. V.37 Curva de respuesta del sensor S30 a 274 °C

Fig. V.38 Curva de respuesta del sensor S30 a 322 °C

Fig. V.39 Curva de respuesta del sensor S33 a 135 °C

Fig. V.40 Curva de respuesta del sensor S33 a 181 °C

Fig. V.41 Curva de respuesta del sensor S33 a 228 °C

Fig. V.42 Curva de respuesta del sensor S33 a 274 °C

Fig. V.43 Curva de respuesta del sensor S33 a 320 °C

A partir de las curvas de respuesta se calculan los valores de equilibrio para la representación de las curvas de calibración.

En general se obtienen dos tipos de curvas de calibración: curvas lineales y curvas de saturación.

El primer tipo se da sobre todo en los sensores cuyo tamaño de grano es mayor de 50 Å, mientras que el segundo es típico de sensores con granos menores de 50 Å. De todas formas, los dos tipos de respuesta se pueden dar en el mismo sensor a temperaturas diferentes.

Un ejemplo de este comportamiento híbrido es el del sensor S5 con un tamaño de grano de 40 Å. A la temperatura de máxima sensibilidad la respuesta es lineal, mientras que a las demás temperaturas la tendencia es a una sensibilidad saturada (fig. V.44).

En todas las curvas de calibración que se presentan se muestran, junto a las sensibilidades experimentales (en negro), las sensibilidades teóricas (en blanco) dadas por el modelo. Al final del epígrafe se hace una recopilación de los parámetros de ajuste al modelo teórico (§III.7) en la tabla V.5.

Fig. V.44 Curva de calibración del sensor S5.

Las otras dos series que muestran comportamientos de saturación son las series S12 y S13(dimensión de grano 29 y 45 Å respectivamente) que se muestran en las figs. V.45 y V.46.

Fig. V.45 Curva de calibración del sensor S12.

Fig. V.46 Curva de calibración del sensor \$13.

En las series cuyo comportamiento es lineal se puede observar un comportamiento de saturación a alguna temperatura determinada.

Esto es bastante evidente en el sensor S4 a 191 °C y en el sensor S17 a 98 °C. El primer caso se muestra en la figura V.47 y el segundo en la figura V.48.

Fig. V.47 Curva de calibración del sensor S4.

En el resto de las series, representadas en las figuras V.49 a V.55, algunos sensores muestran una tendencia a la saturación a temperaturas elevadas (con excepción del S33 que satura a bajas temperaturas) pero los datos no permiten un análisis tan claro como en los casos ya vistos.

Debe resaltarse que la teoría se ajusta a los experimentos sin dificultad en los dos tipos de comportamiento.

Fig. V.48 Curva de calibración del sensor S17.

Fig. V.49 Curva de calibración del sensor S6.

Fig. V.50 Curva de calibración del sensor S9.

Fig. V.51 Curva de calibración del sensor S15.

Fig. V.52 Curva de calibración del sensor S30.

Fig. V.53 Curva de calibración del sensor S33.

Fig. V.54 Curva de calibración del sensor S34.

Fig. V.55 Curva de calibración del sensor S35.

SERIE	E (eV)	∆N(%0)	E (eV)	∆N(%₀)	N _{ad0} (cm ⁻³)						
	19	90°C	20	0°C	23	30°C	2	50°C	3	10°C	
S4	1.16	-0.3			1.2	0.3	1.28	0			5.17E12
S5			1.12	0.2			1.12	0.5	1.12	0.01	1.33E12
S6			1.09	0.25			1.09	0.4	1.09	-1	2.27E12
SERIE										,	
	1	35°C	17	′5°C	22	20°C	2	70°C	3	20°C	
S9	0.95	5	0.95	5	0.95	20	1.15	4.5	1.15	10	2.73E12
S12	1.1	0.02	1.1	0.01	1.1	1.2	1.1	2	1.1	2	9.67E11
S13	1.14	0.03	1.14	0.001	1.14	0.01	1.14	0.01	1.14	-8	1.5E 12
S15	1.12	0	1	8	1	9	1	8			2.57E12
S17	1.12	0.08	1.12	0.2	1.12	1	1.12	3	1.12	3	2.03E12
S30	1.09	1.75	1.09	4	1.09	7	1.09	3	1.09	40	2.00E12
S33	1.06	0.08	1.13	0.4	1.06	10	1.06	35	1.06	40	2.07E12
S34	1.05	0	1.14	0.07	1.1	1	1.1	1	1.1	1	1.8E12
S35	1.05	0	1.12	0.1	1.05	6	1.05	10	1.05	8	2.07E12

Tabla V.5 Parámetros de ajuste del modelo generalizado:

E es el nivel efectivo de energía creado por la adsorción del NO₂; ΔN es la variación del número de sitios de adsorción (N_{ad}) respecto al número de vacantes de oxígeno en la superficie (N_{ad0}) en tantos por mil:

$$\Delta N = \frac{N_{ad} - N_{ad0}}{N_{ad0}} \times 1000$$

V.2.1.2 SENSORES DOPADOS

Ninguno de los tres tipos de dopado empleados (películas de Al y Pt superficial y Pt implantado) han producidos resultados satisfactorios, en cuanto que no se ha constatado una mejoría de los parámetros de sensibilidad y tiempo de respuesta de los sensores. Por tanto la descripción de los resultados en este apartado se hará de una forma sumaria.

V.2.1.2.1 Dopante: aluminio en película superficial

Como se vio en el apartado relativo a la espectroscopía XPS, el aluminio depositado en película superficial está casi totalmente oxidado a alúmina.

Dos series de sensores dopados mediante esta técnica tienen sensibilidades comparables a la media de sensibilidad para los sensores no dopados (series S10 y S14) y tiempos de respuesta rápidos. El resto de las series posee sensibilidades pobres en comparación a las del material puro y tiempos de respuesta muy largos.

En la tabla V.6 se muestran las sensibilidades a la temperatura de mayor sensibilidad para las series estudiadas.

SERIE	S _{max} (200 PPB)	T(°C)	
S7	4.2	235	
S8	8	185	
S10	32	145	
S14	45	145	
S16	6.3	100	

Tabla V.6 Sensibilidad máxima a 200 ppb de NO₂ en aire y Temperatura de máxima sensibilidad para las series con aluminio superficial.

Las curvas de calibración para todas las series muestran tendencias a la saturación, aunque en algunos casos se pueden dar comportamientos lineales para temperaturas elevadas, .

En la figura V.56 se muestra un ejemplo de este comportamiento híbrido, donde a las temperaturas más bajas la sensibilidad se satura y las más altas muestra un comportamiento lineal.

Fig. V.56 Curva de calibración del sensor S10 a diferentes temperaturas

V.2.1.2.2 Dopante: platino en película superficial

En este caso el platino superficial permanece en forma metálica.

El dopado de estas series se ha realizado sobre sensores previamente medidos sin impurezas, por lo que la comparación es más directa.

Los parámetros sensores, comparados con los de las películas puras, muestran una menor sensibilidad al NO₂.

En la tabla V.7 se muetran las sensibilidades de las tres serie medidas antes y después de la deposición del platino.

 Tabla V.7 Comparación de sensibilidades máximas a 200 ppb de NO₂y temperaturas de máxima

 sensibilidad para los sensores puros y dopados con platino superficial.

SERIE	Tmax(°C)	S(200ppb)	SERIE	Tmax(°C)	S(200ppb)
S12	90	65	S12A	90	21
S13	148	200 1	S13A	200	35 1
S19	135	25	S19A	135	1.3

(1) sensibilidad a 1 ppm

Se puede apreciar un caso, el de la serie S13, en que el dopante aumenta la temperatura de máxima sensibilidad.

Los tiempos de respuestan no sufren grandes variaciones respecto a los sensores puros excepto en la serie S19A que se vuelven muy largos.

Al igual que los sensores con aluminio superficial las curvas de calibración responden al tipo de saturación, sin encontrarse esta vez comportamientos lineales.

V.2.1.2.3 Dopante: platino implantado

Las sensibilidades de los sensores implantados son las más bajas de todas. Los sensores implantados de la series S17 (S17e y S17f) muestran sensibilidades aceptables, pero corresponden a la tercera parte de la sensibilidad del sensor puro.

Los tiempos de respuesta aumentan respecto a los sensores puros. Solamente los sensores S5b y S17f poseen velocidades de respuesta comparables a los sensores sin dopar.

En la tabla V.8 se comparan las sensibilidades de los sensores implantados con las de los sensores sin dopar a las temperaturas de máxima sensibilidad.

SERIE	T(°C)	S _{max} (200ppb)	SERIE	T(°C)	S _{max} (200ppb)
S5	200	14	S5a	225	2
			S5b	220	10
S6	200	9.7	S6a		~1
			S6b	280	1.2
S7	234	4.2	S7a	290	1.6
S8	185	8	S8a	245	1.1
S9	228	15	S9a	250	1.25
S17	135	85.5	S17e	185	20
			S17f	185	25

Tabla V.7 Comparación de sensibilidades máximas a 200 ppb de NO₂ y temperaturas de máxima sensibilidad para los sensores puros e implantados con platino.

Las curvas de calibración corresponden al tipo de saturación aunque se observa alguna respuesta lineal.

V.2.1.3 INTERFERENCIAS

En los ambientes urbanos existen otros contaminantes, aparte el NO_2 , que pueden influir en la respuesta del sensor. Es necesario conocer el efecto de cada gas para realizar una correcta calibración del dispositivo. Para ello se han medido los sensores en atmósferas de diferentes gases, creándose en algunos casos atmósferas complejas.

En concreto se han realizado medidas sobre un contaminante primario (CO), uno secundario (O_3) y sobre el vapor de agua. Este último siempre como gas de interferencia.

V.2.1.3.1 Monóxido de carbono

El monóxido de carbono actúa como un gas reductor, combinándose con el oxígeno quimiadsorbido y desorbiéndose como CO_2 [2]. El efecto es el contrario del NO_2 ya que ahora la presencia del CO hace disminuir la resistencia del sensor pues los electrones asociados al oxígeno quimiadsorbido vuelven a la banda de conducción.

En este caso la sensibilidad se define al contrario que la del NO₂: $S_{co} = R_{ain}/R$.

En comparación con las sensibilidades al NO_2 las sensibilidades al CO son mucho menores (sensibilidad máxima ~20 para 10 ppm de CO), pero sin embargo los tiempos de respuesta son mucho mejores que los del NO_2 (del orden de 4 minutos). A temperaturas bajas la respuesta es lenta y aumenta rápidamente al aumentar la temperatura.

Las curvas de respuesta muestran una simetría muy buena, lo cual es lógico si el problema de la asimetría de las curvas de NO_2 se debía a la adsorción en los tubos y en la celda, ya que las concentraciones medidas en este caso son dos órdenes de magnitud mayores.

La mayoría de los sensores no responden por debajo de los 250 °C, excepto las últimas series y los sensores con Pt superficial.

En la figura V.57 se muestra la curva de respuesta del sensor S33 a 320 °C. En al tabla V.8 se muestran las sensibilidades y temperaturas de máxima sensibilidad de las series sin dopar medidas con 10 ppm de CO.

Fig. V.57 Curva de respuesta del sensor S33 a 320 °C

SERIE	S _{max} (10ppm)	T(°C)
S5	1.21	350
S9	1.95	350
S12	1.56	320
S13	1.82	320
S17	1.78	320
S30	18	320
S33	5	320
S34	4	320
S35	3.3	320

Tabla V.8 Sensibilidad máxima a 10 ppm de CO y temperaturas de máxima sensibilidad para los sensores puros.

En general las curvas de respuesta muestran tendencia a la saturación como se puede comprobar en la fig. V.58

Fig. V.58 Curva de calibración del sensor S34.

El dopado de aluminio no mejora en absoluto la sensibilidad al CO y, en algunos casos la anula completamente (serie S10).

Los sensores dopados con Pt superficial muestran un incremento de sensibilidad respecto a los sensores puros. El resultado más notable para estos sensores es que detectan incluso a bajas temperaturas.

En la figura V.59 se muestran las curvas de calibracion de los sensores S13 (puro) y S13A (dopado con película de Pt). Todas las curvas, excepto la de máxima sensibilidad, tienden a saturación. Los tiempos de respuesta son muy rápidos para este tipo de sensores, del orden de 1 o 2 minutos.

Fig. V.59 Curvas de calibración de los sensores S13 (puro) y S13A (dopado con película de platino)

Los sensores dopados mediante implantación iónica de platino tienen valores menores de sensibilidad respecto a los sensores puros. Una serie (S17e) con una energía de implantación baja ha conseguido un aumento de sensibilidad para bajas concentraciones.

En la tabla V.9 se muestran algunos resultados para los sensores implantados sensibles al CO.

Tabla V.9 Sensibilidad	máxima a 10 ppm	de CO y Temperatura	de máxima sensibilidad	para los sensores
		1		

SERIE	S _{max} (10ppm)	T(°C)					
S5a	1.23	300					
S6a	1.6	350					
S6b	1.1	350					
S7a	1.27	350					
S9a	1.16	320					
S17d	1.54	320					
S17e	1.85	320					

En la fig. V.60 se muestran las curvas de calibración para un sensor puro y dopado con diferentes dosis de Pt a diferentes energías.

Fig. V.60 Curvas de calibración para los sensores puro y dopados con una dosis de 1.15×10^{15} at/cm² a diferentes energías: S17 (puro), S17c (Ei = 150 KeV), S17d (Ei = 100 KeV), S17e (Ei = 50 KeV).

Cuando se mide la sensibilidad al NO_2 en presencia de CO se observa una disminución importante de ésta. Para las temperaturas de máxima sensibilidad del NO_2 la disminución puede llegar al 60%, mientras que para temperaturas elevadas el efecto del CO es tan fuerte que muchas veces no se aprecia el efecto del NO_2 . El efecto es más acusado en los sensores con película de platino superficial.

En la fig. V.61 se muestran las curvas de calibración del sensor S34 para el NO_2 con y sin 10 ppm de CO. Se puede apreciar que, para temperaturas superiores a 250 °C, el CO enmascara al NO_2 .

Fig. V.61 Curvas de calibración para el sensor S34 con y sin 10 ppm de CO.

V.2.1.3.2 Ozono

Los sensores han mostrado una gran sensibilidad al ozono (con picos de hasta 100 para 100 ppb de O $_3$ [3]) pero una velocidad de respuesta y una estabilidad baja. Se han podido detectar concentraciones tan bajas como 5 ppb. No se disponen de muchos datos experimentales: solamente se han medido dos series (S16 y S19) a tres temperaturas diferentes, aunque en el momento de escribir esta memoria se están realizando nuevas pruebas.

Para ambas series la sensibilidad y los tiempos de respuesta disminuyen al aumentar la temperatura, aunque la señal no es estable para los diferentes ciclos de medida. Sin embargo, a 200 °C la reproducibilidad es aceptable (~ 20%).

El ozono sería un gas que podría dar problemas para la detección del NO_2 debido a los grandes cambios (aumento) de resistencia que producen pequeñas concentraciones de áquel a las temperaturas de máxima detección del NO_2 . Por fortuna, se ha encontrado que un filtro de lana

de plata calentado a 250 °C descompone completamente el ozono en oxígeno, con lo que se eliminaria completamente el problema de la interferencia.

En la fig. V.62 se muestra la curva de respuesta del sensor S16 a 200 °C para dos ciclos de ozono consecutivos.

Fig. V.62 Curva de respuesta del sensor S16 para dos ciclos consecutivos de ozono a 200 °C.

V.2.1.3.3 Vapor de agua

El efecto del vapor de agua es análogo al del CO: su presencia hace disminuir la resistencia del sensor. La disminución de resistencia es mayor al aumentar la temperatura.

En la figura V.63 se muestra una curva de calibración para el sensor S37 a 300 °C para tres valores de humedad relativa.

Fig. V.63 Curva de respuesta del sensor S37 a 300 °C para diferentes humedades relativas.

El efecto de la humedad sobre la respuesta al NO_2 es dramático: a partir de un 50% de humedad relativa la respuesta es prácticamente nula incluso a bajas temperaturas como se observa en la figura V.64.

Fig. V.64 Efecto de la humedad sobre la respuesta a tres concentraciones de NO_2 a 135 °C para el sensor S36.

V.2.2 DISPOSITIVO DE CUATRO CAPAS

Ninguno de los diodos ha sido sometido a tratamiento térmico para evitar el crecimiento de la capa de óxido de silicio. Este hecho tiene un efecto importante en la estabilidad y reproducibilidad de los sensores.

De las cuatro series preparadas se han medido 10 sensores, obsevándose a veces grandes variaciones dentro de la misma serie, atribuibles a inhomogeneidades en la capa del óxido de silicio. La conducción en el óxido es función exponencial del espesor de esta capa por tanto ligeras variaciones de espesor dentro de la misma serie puede provocar un comportamiento diferente.

Con respecto a las características I-V de los diodos, éstos se pueden clasificar en tres tipos:

(a) Diodos MOS. El espesor del óxido de silicio es demasiado grande para permitir el transporte de portadores por efecto túnel. No se produce ninguna modificación de la característica I-V con la concentración de NO_2 .

(b) Diodos túnel. El espesor del óxido de silicio es adecuado (30-60 Å) para el paso de portadores por efecto túnel. La tensión de disparo depende de la concentración de NO_2 , aumentando, en general, con ésta.

(c) Diodos p-n. El óxido de silicio es muy delgado o la densidad de estados interfaciales es muy elevada por lo que el paso de portadores a través del aislante no está limitado por el efecto túnel, por tanto éstos no se acumulan en la zona epitaxial. Las características I-V son las propias de una unión p-n. Exíste una variación de la curva I-V con la concentración, por lo que es posible utilizar estas uniones como sensores.

En la figura V.65 se muestran las curvas I-V para los tres tipos de operación. En la tabla V.10 se muestra la clasificación de los sensores respecto a los tres tipos de operación.

Fig. V.65 Cracterísticas I-V de los tres modos de operación del dispositivo de cuatro capas.

SERIE	SENSOR	CARACTERÍSTICA
DA	D1	TÚNEL
DA	D2	TÚNEL
DB	D3	MOS
DB	D4	TÚNEL
DC	D5	TÚNEL
DC	D6	P-N
DC	D7	MOS
DC	D8	P-N/TÚNEL
DD	D9	MOS
DD	D10	P-N/TÚNEL

Tabla V.10 Características I-V de los sensores estudiados.

La falta de repetitibilidad en las características es más evidente en la serie DC, donde se dan los tres típos de comportamiento, e incluso, el sensor D8 muestra un comportamiento combinado de diodo túnel y unión p-n dependiendo de la concentración de NO_2 .

Todos los dispositivos que se comportan como diodos de efecto túnel responden a la variación de concentración de NO_2 , con tensiones de disparo entre 1.5 y 2.5 V, excepto el sensor D4 que tiene tensiones de disparo en el rango 6-10 V y muestra una gran irreversibilidad. Se podría considerar este sensor como un caso límite entre los diodos túnel y los MOS.

Un ejemplo del comportamiento tipo diodo p-n sensible a la concentración de NO_2 es el de la figura V.66.

Fig. V.66 Carcterística I-V del sensor D6 a 44 °C para distintas concentraciones de NO₂: (a) aire, (b) 50, (c), 100, (d) 150, (e) 200 ppb.

En las figuras V.67 y V.68 se muestran las características I-V para dos dispositivos con diferentes espesores de SnO_2 (600 y 1670 Å respectivamente). En las figuras V.69 y V.70 se muestran las curvas de calibración (tensión de disparo en función de la concentración de NO_2) para los mismos sensores.

Fig. V.67 Características corriente tensión del sensor D5 a 25 °C para distintas concentraciones de NO2.

Fig. V.68 Características corriente tensión del sensor D1 a 25 °C para distintas concentraciones de NO2.

Fig. V.69 Curva de calibración del sensor D5 a 25 °C .

Fig. V.70 Curva de calibración del sensor D1 a 25 °C .

Como se puede observar de las figuras precedentes, se encuentran los dos tipos de tendencia (lineal, saturación) que se observaban en los sensores resistivos.

Los sensores con un espesor alto de SnO_2 son más sensibles pero saturan a bajas concentraciones, mientras que los sensores con un espesor bajo son menos sensibles y muestran una respuesta bastante lineal.

Los dispositivos han sido medidos a bajas temperaturas ya que los intentos de medir por encima de 100 °C han llevado a la pasivación del sensor (cambio de comportamiento de diodo tunel a diodo MOS), debido probablemente al crecimiento de la capa de óxido de silicio.

El hecho de medir a baja temperatura donde la cinética de adsorción y desorción del NO_2 sobre el SnO_2 es muy lenta comporta fenómenos de histéresis en las respuestas de los dispositivos. La introducción de aluminio superficial no parece tener ningún efecto en la sensibilidad aunque se produce una ligera mejoría en los tiempos de respuesta (histéresis menor).

Los valores obtenidos de la tensión de disparo en aire están comprendidos entre 1.75 y 2.15 V. La previsión teórica, calculada a partir de la expresión (ver §III.8):

$$V_{BF} = \frac{qN_D}{2\varepsilon_s} (W - W_{j0})^2$$
(III.96)

da como resultado un valor de 1.97 V, que es un valor comprendido entre los experimentales eitados arriba.

El otro posible mecanismo de disparo citado en la teoría, la multiplicación por avalancha, arroja un valor cercano a los 100 V. por tanto, se puede concluir que el mecanismo presente en los dispositivos de efecto túnel es el de "punchthrough".

Bibliografía del capítulo V

- 1. G. B. Barbi and J. Santos, Sensors and Actuators B, 15-16, 372 -377 (1993).
- 2. G. Barbi, J.P. Santos, P. Serrini, P. Gibson, M.C. Horrillo and L. Manes, Sensors and Actuators B, (1995) in press.
- 3. J. Santos, A. Noriega, M.C. Horrillo and G. Barbi, Report EUR 16053, Joint Research Centre of the European Commission (1994).

Capítulo VI

ANÁLISIS DE LOS RESULTADOS Y CONCLUSIONES

1.- En el capítulo III se ha hecho un estudio teórico de los mecanismos de detección de diferentes gases por láminas delgadas policristalinas de SnO_2 , y se ha formulado un modelo al que se han referido los resultados experimentales obtenidos, capítulo V. En este modelo se ha puesto de manifiesto la necesidad de conocer con precisión los diferentes parámetros característicos de la estructura de la película, por ello se ha dedicado una atención especial a medir éstos por medio de diferentes técnicas de análisis estructural:

De las técnicas de análisis del material la difractometría de rayos X a ángulo rasante es de fundamental importancia debido a que proporciona información cuantitativa sobre el tamaño medio del grano del semiconductor.

La concordancia entre las distintas técnicas de análisis es excelente. Los espectros AES y XPS son casi equivalentes, aunque la interpretación e utilización sean un poco distintas. La principal contribución del XPS es la determinación del estado de oxidación del estaño y, por tanto, la información sobre las fases presentes en el material. Los resultados coinciden con los proporcionados por la difracción de rayos X: solamente se encuentra estaño con estado de oxidación IV, por tanto, la única fase presente es el SnO₂. Debe resaltarse la novedad del análisis XPS a ángulo variable cuya potencialidad es muy grande para la determinación de impurezas superficiales y del tipo de enlace con el semiconductor. En efecto disminuyendo el ángulo de análisis se analiza una parte del volumen cada vez más pequeña y una parte de la superficie cada vez mayor. A un cierto ángulo límite se llegaría a analizar solamente el estrato superficial de especies adsorbidas sin la contribución del semicondutor.

Ya se señaló la complementareidad de las técnicas elipsométricas y de perfil Auger para la determinación de espesores. Los espectros RBS confirman los espesores hallados mediante aquellas. Las diferencias de espesor de las películas de dopantes halladas en AES y RBS se pueden explicar por el efecto de "sputtering" de la implantación iónica en la superficie del semiconductor (ver §II.2.2).

2.- El análisis teórico muestra que al disminuir el tamaño del grano del SnO_2 aumenta la sensibilidad al NO_2 de la película, manteniendo los demás parámetros constantes. Esta disminución es más acusada cuando se pasa de tamaños de grano superiores a 100 Å a tamaños menores de este valor.

La pulverización catódica ha demostrado ser una técnica utilísima para la preparación de películas delgadas policristalinas de grano fino. Generalmente, aumentando la temperatura y el tiempo de deposición se consiguen granos más grandes, aunque también influyen en ello otros factores como la potencia RF, la rugosidad del sustrato, la velocidad de deposición, etc. Se ha intentado optimizar estos parámetros para alcanzar buenas sensibilidades al NO₂. En este sentido, una vez comprobado que la temperatura de deposición óptima es la temperatura ambiente, se ha variado la presión parcial del oxígeno en el plasma en las últimas series de sensores, habiéndose encontrado un valor óptimo para ésta del 8%. El gran número de parámetros de deposición ofrece muchísimas posibilidades en la preparación de las películas. No se ha hecho un estudio exhaustivo de la influencia de los parámetros de deposición en la sensibilidad ya que el objetivo de la tesis se centra en el estudio de los mecanismos de detección del NO₂.

3.- Es importante señalar que el tamaño de grano viene afectado por dos procesos a los que viene sometido el sensor, uno común a todos y otro específico de unos pocos: el tratamiento térmico y la implantación iónica.

El tratamiento térmico provoca un aumento en el tamaño medio de grano, aunque en ningún caso dicho aumento supera el 20%.

La implantación iónica tiene un efecto contrario, es decir, la disminución del tamaño del grano que puede llegar hasta un 25%. Esta disminución es mayor cuanto mayores son la energia y dosis de implantación. Como se vio en §II.2.2 la implantación iónica provoca también un aumento del número de vacantes de oxigeno. El aumento del número de portadores asociado podría explicar la disminución de la sensibilidad observada en los sensores implantados, ya que

según el modelo, el aumento del número de portadores provoca la disminución de la sensibilidad al NO₂.

4.- El error máximo entre los ajustes teóricos de las curvas experimentales es de un 20 %, aunque en la mayoría de las series no supera el 10 %.

5.- En general se observa un aumento del parámetro teórico de número de sitios de adsorción con la temperatura, aunque dicho aumento no supera el 4 % del número de vacantes teórico de oxígeno en la superficie. En algunos casos el aumento de los centros de adsorción con la temperatura es despreciable (ej. serie S34) y existe un caso de disminución de éstos con la temperatura (S13). Se ve confirmada en los ajustes (ej. fíg. V.52) de las curvas experimentales la previsión teórica de que un mayor número de centros de adsorción (respecto del número de vacantes de oxígeno en la superficie) conlleva un comportamiento lineal de la curva de calibración. El comportamiento con tendencia a saturación se observa en curvas de calibración cuyo ajuste al modelo requiere un número de sitios de adsorción menor que el número de vacantes en la superficie.

La variación del número de centros de adsorción con la temperatura puede ser debido a tres mecanismos :

- Creación de vacantes superficiales con la temperatura [1,2].
- Migración de vacantes a la superficie [3].

- Adsorción y desorción de especies extrañas previamente adsorbidas [4].

El segundo mecanismo es poco probable debido a las bajas temperaturas de funcionamiento de los sensores. El tercer mecanismo explicaría los comportamientos diferentes dentro de una misma serie y la variación de la respuesta en el tiempo. En efecto, existe la posibilidad de que ciertas sustancias se adsorban irreversiblemente (al menos para estas temperaturas bajas), haciendo cambiar el numero de sitios de adsorción disponibles para el NO_2 .

6.- En algunas series el parámetro energético de interacción del NO_2 (nivel efectivo) cambia con la temperatura, variando entre 0.95 y 1.28 eV. Generalmente los cambios suceden a la temperatura de máxima sensibilidad. La teoría con parámetros superficiales independientes de la temperatura no prevé máximos de sensibilidad. El hecho de que estos máximos se observen experimentalmente es atribuible a la existencia de diferentes especies de oxígeno adsorbidas [5,6] (O_2^-, O^-, O^{2-}) y al cambio del equilibrio entre ellas con la temperatura. Cada especie introduciría un nivel energético distinto en el gap del semiconductor. La teoría expuesta sólo contempla la adsorción no disociativa del oxígeno y, por tanto, la existencia de la especie O_2^- .

El cambio del parámetro energético superficial con la temperatura podría ser debido a una corrección teórica debida al cambio de los niveles energéticos de las distintas especies de oxígeno adsorbidas y su ocupación. El máximo de sensibilidad con la temperatura es atribuible a un mínimo en el recubrimiento del oxígeno debido al cambio de una especie a otra [7,8]. En algunos casos el otro parámetro de ajuste, ΔN_{ad} , puede actuar en el mismo sentido de corrector teórico. Otras posibles explicaciones de estos fenómenos se estudiarán más adelante en la crítica de la teoría.

Debe tenerse en consideración que los valores de muchos de los parámetros de la teoría (masa efectiva, parámetros cinéticos de adsorción, etc.) han sido tomados de la bibliografía y podrían tener errores apreciables al aplicarlos al caso concreto de estos sensores. Algunos de los parámetros experimentales también pueden tener un error considerable (tamaño de grano, ver §II.3.1, sensibilidad en equilibrio para sensores lentos, ver §V.2.1.1). Esto permitiría explicar los errores entre el modelo y los experimentos.

7.- Entre los sensores estudiados los más útiles desde el punto de vista práctico son los que presentan una curva de calibración lineal, aunque también pueden emplearse, desde el punto de vista práctico, los sensores cuyas curvas de calibración son de saturación, debido a que su comportamiento es bastante lineal para bajas concentraciones de NO_2 que, por otra parte, son las más interesantes en el campo de la polución urbana.

8.- El hecho de que tanto el aluminio como el platino superficial hagan disminuir la sensibilidad al NO_2 puede explicarse si se supone que la introducción de estos metales tiene como único efecto el recubrimiento de centros de adsorción. En efecto, la forma de la mayoría de las curvas de calibración, que corresponden al tipo de saturación, confirmarían esta hipótesis, ya que, como se vio en §III.7.2.1, un número de centros de adsorción menor del número de vacantes superficiales producen curvas de calibración de este tipo. 9.- De las tres especies distintas al NO₂ probadas, dos de ellas (CO y H_2O) se comportan como reductoras, es decir, su efecto es la disminución de la resistencia de las películas. Su mecanismo de interacción es diferente. La disminución de la resistencia con la adsorción de CO es atribuible a la reacción de las moléculas de CO con el oxígeno adsorbido para dar CO₂ y provocar el paso del electrón en el nivel local a la banda de conducción [9,10]. De la interacción directa del CO con el NO₂ adsorbido no se poseen datos suficientes, aunque una cierta interacción debe existir para explicar el comportamiento de las curvas de calibración (ver p.ej. fig. V.61) a bajas temperaturas. En efecto, en presencia de solo oxígeno el CO no afecta la resistencia de las películas a temperaturas inferiores a 200 °C. Sin embargo, en presencia de NO₂, la resistencia viene afectada por el CO incluso a temperaturas inferiores a ésta.

Las moléculas de agua se adsorben directamente en la superficie, formando una superficie hidroxilada y cediendo un electrón a la banda de conducción [11,12].

El ozono se comporta como un oxidante, por tanto el mecanismo probable es el de su adsorción con la creación de un nivel profundo en el gap (mayor que el del NO_2). Esta hipótesis viene confirmada por la cinética de adsorción del ozono, mucho más lenta que la del NO_2 , ya que la velocidad de interacción de los estados superficiales con las bandas es menor cuanto más profundo es el nivel del estado superficial (§III.5).

La construcción de un sensor selectivo para el NO_2 comporta la eliminación de las interferencias debidas a otros gases presentes en la atmósfera. El efecto del CO sobre la sensibilidad al NO_2 puede atenuarse bajando la temperatura de operación, aunque es difícil eliminarla completamente. De todas formas debe tenerse en cuenta que la interferencia se ha realizado con la concentración de CO máxima que puede encontrarse en un ambiente urbano (primer umbral).

El ozono tiene máximos de sensibilidad en el mismo rango de temperaturas del NO₂, pero se puede eliminar fácilmente con un filtro de plata calentado a 250 °C [13], que descompone el O₃ en oxígeno molecular.

El vapor de agua es, sin duda, el gas de interferencia más difícil de eliminar.. Las pruebas realizadas con diferentes tipos de filtros dan como resultado la eliminación del H_2O , pero también del NO_2 presente en el gas. Potencialmente existen otros métodos (trampas criogénicas, catalizadores de paladio...) que podrían revelarse útiles en la eliminación selectiva del agua.

10.- El acuerdo entre la teoría y los experimentos en el dispositivo túnel es excelente. Este dispositivo es una alternativa original al sensor resistivo y, por sus características, es de fácil utilización en circuitos de alarma. El mayor inconveniente que posee es la limitación de la temperatura de operación que provoca cinéticas de adsorción lentas y, por tanto, fenómenos de histéresis. Otra limitación es el uso del óxido nativo como aislante túnel. En efecto, la inhomogeneidad de este estrato provoca problemas de reproducibilidad. La operación a temperaturas más elevadas está limitada, como se ha visto, por el crecimiento del SiO₂ que provoca la pasivación del sensor (paso de comportamiento de diodo túnel a diodo MOS).

Actualmente se están realizando pruebas en las que el estrato de SiO_2 se sustituye por otro aislante en condiciones de deposición reproducibles, cuyo espesor no crezca con la temperatura.

Consideraciones teóricas

En el modelo presentado en el capítulo III se han asumido una serie de hipótesis explícitas o implícitas y se han hecho simplificaciones que merecen una breve consideración.

<u>a- Superficie ideal</u>. Se ha supuesto que la superficie del semiconductor es ideal, es decir, no existe un número apreciable de estados biográficos que pueda afectar los procesos de transferencia de carga entre las bandas y los estados creados por la adsorción de moléculas desde la fase gaseosa. En general, la superficie de cualquier semiconductor presenta un número más o menos elevados de estos estados debido sobre todo a defectos [14] (defectos de Tamm y Shockley por ejemplo). Se podría añadir sin dificultad al modelo un número determinado de estos centros con diferentes energías para lo cual habría que hacer medidas en vacío (efecto campo, C-V ...) para determinar la densidad y energía de dichos centros, o hacer suposiciones teóricas y ajustar paramétricamente estos valores.

<u>b- Movilidad constante.</u> Los datos experimentales hallados en la literatura muestran que el cambio de la movilidad eléctrica con la adsorción es muy pequeña, por lo que los cambios de conductividad se han atribuido exclusivamente a cambios en el número de portadores. Un

refinamiento de la teoría supondría la introducción de éste parámetro par lo cual serían necesarias medidas de efecto Hall y conductividad eléctrica en distintas atmósferas.

<u>c- Resistencia para polarización nula</u>. El modelo presentado es para una polarización aplicada cero por lo que no se hace una discusión del mecanismo de transporte de los portadores de carga. Un modelo que considerara la tensión aplicada tendría que tener en cuenta la variación de ocupación de los niveles en el gap en función de ella [15].

<u>*d*-Dimensiones de grano uniformes</u>. En cada película se ha supuesto que el valor del tamaño de grano obtenido mediante GAXRD es constante en toda ella. Se podría introducir una distribución del tamaño de grano del tipo [16]:

$$R = \frac{R_0}{\sqrt{2\pi\sigma}} \exp\left(-\frac{r - R_0}{2\sigma^2}\right) \tag{1}$$

<u>e.- Presencia de una sola especie de oxígeno superficial.</u> Como se ha comentado anteriormente el modelo solo considera la adsorción no disociativa del oxígeno y por tanto la presencia de la especie O_2^- . Si suponemos que existe una adsorción disociativa la isoterma tomaría la forma [17]:

$$\theta = \frac{(\beta_d P)^{1/2}}{1 + (\beta_d P)^{1/2}}$$
(2)

con

$$\beta_d = \beta \left(\frac{z}{z-1}\right)^2 \tag{3}$$

siendo z el número de sitios vecinos a uno dado y los demás parámetros tienen el mismo significado que en §III.4. Esta isoterma determinaría la presencia de la especie O^{-} en la superficie. Esta consideración podría explicar alguna de las desviaciones de los sensores respecto del modelo teórico, pero tampoco se puede obtener a partir de ello una relación concluyente.

<u>*f*-Concentración de vacantes de oxígeno constante.</u> En el cálculo numérico se ha tomado una concentración de vacantes de oxígeno igual para todos los sensores. Esta aproximación, que en principio puede parecer demasiado fuerte, tiene su justificación en las simulaciones teóricas realizadas en un amplio rango de concentraciones de vacantes. En efecto, la variación de sensibilidad al NO₂ es de sólo un 3 % cuando se pasa de una concentración de vacantes de 10^{18} cm⁻³ a una de 5 x 10^{19} cm⁻³. Las medidas de efecto Hall realizadas sobre sensores fabricados bajo las mismas condiciones de deposición [9] arrojan valores de concentraciones de portadores libres correspondientes a una densidad de donores entre 5 x 10^{18} y 2 x 10^{19} cm⁻³. Como, en general, algunos parámetros teóricos y experimentales poseen un error superior al 5 %, la simplificación realizada es justificable.

<u>g- Estados superficiales discretos.</u> La distribución de los estados superficiales puede asumir otras formas aparte de la forma discreta. El programa se puede corregir fácilmente para incluir otras distribuciones como [16]:

-distribución uniforme
$$N_{ss}(E) = N_{ss}$$
 $E_v < E < E_c$
-distribución gausíana $N_{ss}(E) - N_{ss} \exp{-\frac{(E_{ss} - E)^2}{(kT)^2}}$
-distribución exponencial $N_{ss}(E) = N_{ss} \exp{-\frac{(E_c - E_{ss})}{kT}}$

Al aplicar estas diferentes distribuciones de estados superficiales no se ha obtenido una variación de los resultados especialmente concluyente, por lo que hemos considerado más razonable considerar una distribución de estados discretos.

<u>h- Interacción entre especies adsorbidas nula</u>. Las isotermas presentadas solamente son válidas cuando se supone que no existe interacción entre las moléculas adsorbidas. Se ha visto que aparece una cierta interacción (§III.7.2), pero es debida al cambio de la posición del nivel de Fermi que altera el equilibrio superficial de aquellas. En el caso de que la densidad de estados superficiales fuera muy alta, mucho mayor de lo que hemos encontrado en nuestras películas, no se podría descartar una interacción directa entre las moléculas adsorbidas y, en ese caso, sería necesario modificar el modelo.

<u>*i*-Límite de aplicación de las ecuaciones macroscópicas</u>. Si el tamaño de grano fuera mucho más pequeño, la teoría de bandas podría perder su validez ya que la periodicidad de la red se vería interrumpida por el gran número de fronteras de grano. Esto daría lugar a la aparición de estados localizados [18] (estados en los que la función de onda asociada decrece rápidamente con la distancia). Los mecanismos de conducción podrían ser los típicos de sistemas muy desordenados, como por ejemplo el "hopping" [19].

<u>*j*- Espesor.</u> En el modelo presentado el espesor de la película no interviene como parámetro ya que se considera que el gas tiene acceso instantáneamente a todas las cristalitas de la película. En efecto, los resultados experimentales no muestran que el espesor tenga una importancia decisiva en la sensibilidad al NO_2 . Debido a que, en general, los espesores de las películas fabricadas son muy pequeños, los tiempos de difusión deberían ser cortos. Tampoco se ha encontrado una dependencia explícita entre el espesor y el tiempo de respuesta.

Conclusiones

• El objetivo del presente trabajo de investigación era el estudio de sensores de estado sólido, basados en el SnO_2 , capaces de detectar las concentraciones típicas de NO_2 presentes en las atmósferas urbanas mediante cambios de las propiedades eléctricas y la modelización de la detección.

• Este objetivo se ha cumplido plenamente ya que se han depositado estructuras con altas sensibilidades al NO₂, incluso por debajo del primer umbral de alarma, con buena reproducibilidad gracias a la técnica de pulverización catódica.

• Se ha desarrollado un nuevo modelo teórico que contempla la adsorción competitiva de varias especies aceptoras capaz de explicar los cambios en las propiedades eléctricas del semiconductor producidas por la interacción del sólido con el gas al que se le expone.

• Se ha demostrado que el cambio de conductividad de las películas está completamente dominado por las propiedades superficiales del semiconductor (número de sitios de adsorción, niveles superficiales...), consecuencia lógica de la gran relación superficie /volumen del material.

 Las técnicas utilizadas para el análisis físico-químico del material sensor han demostrado tener una gran complementareidad y abarcar un gran número de propiedades fundamentales a la hora de modelizar el comportamiento del mismo.

• Se ha desarrollado un dispositivo nuevo sobre silicio que, por su características de biestable controlado por la concentración del NO_2 , es de fácil utilización en circuitos de alarma.

• Las medidas realizadas en diferentes atmósferas han mostrado resultados prometedores en cuanto a la selectividad al NO_2 de los sensores utilizados. Únicamente la interferencia del vapor de agua podría presentar alguna dificultad a la utilización práctica de estos dispositivos.

Bibliografía del capítulo VI

- 1. F. C. Stedile et Al., Thin Solid Films, 169, 285 (1989).
- 2. G. N. Advani, P. Kluge-Weiss, P. Longini and A.G. Jordan, Int. J. Electron., 48, 403 (1948).
- 3. R. Dieckmann, MRS Bulletin, 27 (1991).
- 4. J.A. Agapito and J. Santos, accepted for publication in Sensors and Actuators B.
- 5. S. Chang, "Proceedings of the International Meeting on Chemical Sensors "Fukukoa (Japan), 78 (1983).
- 6. W. Gopel, Surface Sci, 62, 165 (1977).
- 7. G.B. Barbi and J. Santos, Sensors and Actuarors B, 15-16, 372-378 (1993).
- 8. G. Sberveglieri, S. Gropelli and G. Coccoli, Sensors and Actuators, 15, 235--242 (1988).
- 9. M.C. Horrillo, Tesis de doctorado, Universidad Complutense de Madrid (1992).
- 10. G.B. Barbi, J.P. Santos, P. Serrini, P. Gibson, M.C. Horrillo, L.Manes, Sensors and Actuator B, in press (1995).
- 11. P.G. Harrison and A. Guest, J. Chem Soc. Faraday Trans. I, 83, 3383-3397 (1987).
- 12. E. W. Thornton and P.G. Harrison, J. Chem Soc. Faraday Trans. I, 71, 461 (1975).
- J. Santos, A. Noriega, M.C. Horrillo and G. Barbi, *Report EUR 16053*, European Commission (1994).
- A. Many, Y. Goldstein and N. B. Grover, "Semiconductor Surfaces". North Holland Publishing Company, Amsterdam (1965).
- 15. G. Blatter and F. Greuter, *Physical Review B*, 33(6), 3952 (1986).
- 16. D. J. Leary, J.O. Barnes and A. G. Jordan, J. Electrochem. Soc., 129(6), 1382 (1982).
- 17. A. W. Adamson, "Physical Chemistry of Surfaces", Interscience Publishers Inc., New York (1960).
- O. Madelung, "Introduction to Solid State Theory", Springer-Verlag, Berlin Heidelberg (1981).
- 19. N.F. Mott and E. A. Davis, "Electronic Processes in Non-Crystaline Materials", Oxford University Press, Oxford (1979).

•

<u>APENDICE A</u>

EL ESTADO DÉBILMENTE QUIMIADSORBIDO

Se quiere demostrar la existencia de un estado débilmente quimiadsorbido y relacionarlo cualitativamente con las propiedades del semiconductor. Para ello se considerará la superficie [100] de una red cúbica semi-infinita y se calculará el estado base de energía del enlace con el átomo (Fig. A1) con un método variacional usando la aproximación de "tight binding". Este tratamiento de quimiadsorción monoelectrónica fue desarrollado inicialmente por Einstein y Schrieffer para metales de transición usando la técnica de la función de Green [A1].

El hamiltoniano para este problema es:

$$H = -\frac{h^2}{2m}\Delta_r + V_{red}(\mathbf{r}) + W(\mathbf{r} - d) + U(\mathbf{d})$$
(1)

donde **d** es la distancia entre el átomo y la superficie, V_{red} (**r**) es el potencial periódico de los iones de la red, $W(\mathbf{r}-\mathbf{d})$ es el potencial de Coulomb del ión adsorbido y $U(\mathbf{d})$ es el potencial electrostático del ión adsorbido y de los iones de la red.

Fig.A1 Distintos tipos de enlace entre un átomo y una superficie cúbica ionica simple : (1) enlace catiónico, (2) enlace aniónico, (3) enlace de puente, (4) enlace centrado
Para calcular $U(\mathbf{d})$ se debe realizar una sumatoria de Madelung [A2] sobre la red semi-infinita asumiendo que los electrones de valencia se encuentran en los aniones. Esta sumatoria se puede aproximar usando una interacción culombiana apantallada entre el átomo adsorbido y el centro de adsorción. Nuestro interés se centra en superficies semiconductoras heteropolares como la del SnO₂ por tanto debemos considerar los enlaces partícula-anión y particula-catión (Fig. A1, 1 y 2) [A3].

Como funcion de prueba de la solución a la ecuación de Schrödinger $H\psi = E\psi$ se elige la función:

$$|\psi\rangle = x|a\rangle + \sum c_i(\gamma_2)|i\rangle^c \tag{2}$$

donde $|a\rangle$ son las funciones de onda del electrón del átomo adsorbido, $|i\rangle^c$ son las funciones de Wannier de la banda de conducción respecto del vector de la red \mathbf{R}_i (i se extiende sobre la red semiinfinita) y x y γ_2 son los parámetros variacionales.

Para calcular el valor de la energía $E(x, \gamma_2, \mathbf{d})$ se seguirán una serie de etapas:

i) Normalizacion de la función de prueba

La función de onda atómica tiene la forma:

$$|a\rangle = \left(\frac{\gamma_1}{\pi}\right)^{\frac{1}{2}} \exp(-\gamma_1 |\mathbf{r} - \mathbf{d}|)$$
(3)

Para los coeficientes de las funciones de Wannier se toma la expresión:

$$c_i(\gamma_2) = N \exp(-\gamma 2R_i) \tag{4}$$

La constante de renormalización N se calcula reemplazando la suma en i por una integral (aproximación continua), obteniéndose:

$$N^{2} = 2(1 - x^{2})\Omega \frac{\gamma^{3/2}}{\pi}$$
(5)

donde Ω es el volumen de la celda primitiva.

ii) Energía cinética del electrón

Se debe calcular la expresión:

$$\langle \psi | H_0 | \psi \rangle = x^2 \langle a | -h^2 \Delta_r / 2m_0 | a \rangle + \sum c_i(\gamma_2) c_j(\gamma_2) t_{ij} + 2x \sum c_i(\gamma_2) \times \langle a | H_0 | a \rangle + x^2 \langle a | V_{red} | a \rangle$$
(6)

donde se ha supuesto que x y $c_i(\gamma_2)$ son funciones reales y se ha omitido el superíndice "c" de la banda de conducción. Suponiendo que la superposición entre la función de onda del electrón del átomo adsorbido y el potencial de la red es pequeño se puede despreciar el último término de (6). El primer término es fácil de calcular. Para el segundo se puede usar las aproximaciones continua y de masa efectiva obteniéndose:

$$\sum c_i(\gamma_2)c_j(\gamma_2)t_{ij} = \frac{1}{\Omega} \int d^3R_i c_i \times \left(\varepsilon(k=0) - \frac{h^2 \Delta_{R_i}}{2m^*}\right)c_i \tag{7}$$

El tercer término puede ser reducido a:

$$2x \sum c_i(\gamma_2) \times \langle a | H_0 | a \rangle = 2x c_0 \langle a | H_0 | 0 \rangle$$
(8)

En concordancia con la condición de renormalización (5):

$$c_{0} = \frac{N^{2}}{\Omega} \int d^{3}R_{i} \exp(-\gamma_{2}R_{i}) = (1 - x^{2}) \{ 1 - \exp(-\gamma_{2}\rho_{1}) \times [2\gamma_{2}\rho_{1} + 2(\gamma_{2}\rho_{1})^{2} + 1] \}$$
$$= (1 - x^{2})f(\gamma_{2})$$
(9)

con $\Omega = \frac{4}{3}\pi(\rho_1)^3$.

La amplitud de transferencia se puede calcular como sigue:

$$\langle a|H_0|0\rangle = \sum \langle a|i\rangle \langle i|H_0|0\rangle \approx \langle a|0\rangle t_{00} \tag{10}$$

donde

$$t_{00} = \frac{\Omega}{(2\pi)^3} \int_{ZB} d^3 k \varepsilon(\mathbf{k}) \tag{11}$$

La integral en (11) se extiende a la primera zona de Brillouin.

Asumiendo para la funcion de Wannier fuertemente localizada en R = 0:

$$|0\rangle = \left(\frac{1}{a^3\pi}\right)^{1/2} \exp(-r/a)$$
(12)

donde a es la constante reticular, se obtiene una expresion aproximada de la amplitud que es función de d. Integrando en todo el espacio en coordenadas elípticas:

$$\langle a|0\rangle(d) = \left(\frac{\gamma_1}{a}\right)^{3/2} d^3 \frac{\exp(-c)}{c} \times \left[\frac{\operatorname{senh}(k_c)}{k_c} \left(\frac{1}{c} + \frac{1}{c^2} - \frac{1}{k_c^2}\right) + \frac{\cosh(k_c)}{k_c^2}\right]$$
(13)

donde

$$c = \frac{d}{2}\left(\frac{1}{a} + \gamma_1\right)$$
, $k_c = \frac{d}{2}\left(-\frac{1}{a} + \gamma_1\right)$

iii) Interacción culombiana

$$\langle \psi | W | \psi \rangle = x^2 \langle a | W | a \rangle + \sum c_i(\gamma_2) c_j(\gamma_2) \langle i | W | j \rangle + 2x \sum c_i(\gamma_2) \langle a | W | i \rangle$$
(14)

Para los dos últimos términos se usa un potencial de Coulomb apantallado:

$$W(\mathbf{r} - \mathbf{d}) = -\frac{e^2}{4\pi\varepsilon_0\varepsilon_r|\mathbf{r} - \mathbf{d}|}$$
(15)

El primer término es fácil de calcular mientras que para el segundo utilizamos la aproximación continua. Una integral analítica completa no se ha conseguido ya que hay que integrar solamente sobre la red semiinfinita.

La última integral culombiana:

$$Cou(\gamma_2, c) = 4\gamma_2 \int_0^\infty dx x \left\{ 1 + \frac{x}{\gamma_2 d} - \left[1 + \left(\frac{x}{\gamma_2 d}\right)^2 \right]^{1/2} \right\} \times \exp(-2x)$$
(16)

se integra numéricamente.

Para calcular el tercer término se usa la aproximación de "tight binding". El término c_o viene dado por la expresión (9) y se aproxima la funcion de Wannier con la fórmula (12). Con esto se obtiene una expresión analítica para el elemento de la matriz

$$\langle a|W|0\rangle = -\frac{d^3}{\varepsilon_r} \left(\frac{\gamma_1}{a}\right)^{3/2} \frac{\exp(-c)}{k_c c^2} \times \{(c+1)\operatorname{senh}(k_c) + ck_c^3 [k_c \cosh(k_c) - \operatorname{senh}(k_c)]\}$$
(17)

donde c y k_c están definidos en la ecuación (13).

Por tanto se obtiene para la energía

$$E(x,\gamma_2,d) = \langle \psi | H | \psi \rangle = \frac{1}{\varepsilon_r d} + x^2 E_a(\infty) + (1-x^2) \left(-\chi + \frac{\gamma_2^2}{2m^*} - \frac{Cou(\gamma_2,d)}{\varepsilon_r} \right) - 2x(1-x^2) \sqrt{f(\gamma_2)}$$

$$\times [\langle a | W_0 | 0 \rangle^c + \langle a | H_0 | 0 \rangle^c]$$
(18)

donde χ es la afinidad electrónica del semiconductor, m^* es la masa efectiva en la banda de conducción y $E_a(\infty)$ la energia de ionización del átomo adsorbido aislado.

Se debe notar que las amplitudes de transferencia no dependen de los parámetros variacionales sino de la distancia entre el átomo y la superficie d y se hacen cero para $\mathbf{d} \to \infty$. En este caso limite se obtiene x = 1 y $E = E_a(\infty)$.

La variacion del funcional de energía (18) lleva a:

$$\xi \equiv f \frac{\sqrt{1-x^2}}{x} = p + \sqrt{p^2 + f}$$
 (19a)

$$\xi = \frac{(\delta f / \delta \gamma_2) T}{(\gamma_2 / u) - (\delta Cou / \delta \gamma_2) / \varepsilon_r}$$
(19b)

donde

$$p(\gamma_2) = C_1/2T, \quad u = m^*/m_0,$$
 (20)

$$C_1 = E_a(\infty) + \chi - \frac{\gamma_2^2}{2m^*} + \frac{Cou(\gamma_2, d)}{\varepsilon_r}$$
(21)

$$T = \langle a | W | 0 \rangle^{c} + \langle a | H_{0} | 0 \rangle^{c}$$
(22)

Sustituyendo la expresión (19a) en la (19b) se puede resolver la ecuación no lineal en γ_2 y la identidad (19a) determinaría el valor de x. Dependiendo de la distancia d se obtienen pares (x, γ_2) que satisfacen las ecuaciones variacionales.

El enlace del átomo con la superficie sólo ocurrirá si

$$\Delta E = E(x, \gamma_2, d) - E_a(\infty) < 0 \tag{23}$$

Físicamente cabría esperar que para $\beta = \chi/|E_a(\infty)| \approx 1$ la deslocalización del electrón haría disminuir su energía cinética y podría surgir un enlace estable. Este efecto de deslocalización es la la causa del enlace en el H₂⁺.

A continuacion se discutirán las soluciones numéricas de las ecuaciones variacionales para los casos de enlace catiónico (fig. A1(1)) y enlace aniónico (fig. A1,(2)). Se usarán valores típicos del SnO_2 :

c = 4 eV $t_{00}^{c} = -3 \text{ eV}$ a = 5 Å $m^{*} = 0.275 \text{ m}_{0}$ $\varepsilon_{r} = 13.5$

i) Enlace átomo-catión. Solamente en el rango $1.2 < \beta < 1.5$ hay soluciones que satisfagan la condicion de enlace (23), se obtiene un mínimo absoluto de energia para $\mathbf{d} \rightarrow \infty$.

$$\Delta E(d \rightarrow \infty) = -0.061 \text{ eV}$$

$$x^2(d \to \infty) = 0 \quad (\beta = 1.2) \tag{24}$$

El significado físico de (24) es que el átomo pierde el electrón en favor del semiconductor (x^2 es la probabilidad de encontrar el electrón en el ión adsorbido) ya que la afinidad electrónica de éste es mayor que el potencial de ionización. Después el ión abandona la superficie para minimizar el término de repulsión electrostática $U(\mathbf{d})$. La razón por la que el efecto de deslocalización que hace disminuir la energía cinetica del electrón no produce un enlace estable para el caso limite $\chi = |E_a(\infty)|$ es el incremento de la energia cinética debido a la masa efectiva menor de la banda de conducción. No hay adsorción.

ii)enlace átomo-anión. A una distancia aproximada de *a* (constante de red) la energia tiene un mínimo absoluto:

$$\Delta E(d) = -0.065 \text{ eV}$$
 (25)

$$x^{2}(d) = 0.32 \quad (\beta = 1.2)$$
 (26)

Por tanto en el caso de enlace con un anión existe un *estado estable superficial monoelectrónico* donde el electrón sigue localizado en el átomo adsorbido y parcialmente en el semiconductor. Este es el caso de la adsorción débil.

REFERENCIAS

- A1. T. L. Einstein, J. R. Schrieffer, Physical Review B, 7(8), 3629-3648 (1973).
- A2. O. Madelung, "Introduction to Solid State Theory", Springer-Verlag, Berlin (1981).
- A3. H. Geistlinger, Surface Science, 277, 429-441 (1992).

,

<u>APÉNDICE B</u>

LISTA DE SÍMBOLOS

k	constante de Bolztmann	$1.38 \times 10^{-23} \text{ J/K}$
ε ₀	permitividad del vacío	8.85 x 10 ⁻¹² F/m
3	permitividad del SnO ₂	13.5 ε0
q	carga del electrón	1.6 x 10 ⁻¹⁹ C
h	constante de Planck	6.63 x 10 ⁻³⁴ J S
<i>m</i> *	masa efectiva en la banda de conducción 0.275 m_0	
Т	temperatura absoluta (K)	
Р	presión parcial del gas (Pa)	
Ν	densidad de estados superficiales (cm ⁻²)	
N	densidad de estados superficiales ocupados (cm ⁻²)	
N^{0}	densidad de estados superficiales vacíos (cm ⁻²)	
N _{ad}	densidad superficial de centros de adsorción (cm ⁻²)	
N_D	densidad de donores (cm ⁻³)	
$N_{D}^{(+)}$	densidad de donores ionizados (cm ⁻³)	
ф	energía potencial electrónica (eV)	
E_F	nivel de Fermi (eV)	
E_{ti}^{f}	energía efectiva del nivel superficial i (eV)	
E^{f}_{Di}	energía efectiva del nivel donor i (eV)	
E_{cmin}	mínimo de la banda de conducción (eV)	
E _{cmax}	máximo de la banda de condu	acción (eV)
ϵ_{Di}^{f}	energía reducida del nivel do	phonor <i>i</i> : $\varepsilon_{Di}^{f} = \frac{E_{Di}^{f} - E_{c}}{-kT}$

ξ potencial reducido : $\xi = \frac{\phi - E_F}{kT}$

.

Q_{ν}	carga volumétrica (C)	
Q_s	carga superficial (C)	
θ	recubrimiento total	
θ^{0}	recubrimiento de la especie débilmente adsorbida	
θ^{-}	recubrimiento de la especie fuertemente adsorbida	
ſ ^ø	función de ocupación de la especie débilmente adsorbida	
f	función de ocupación de la especie fuertemente adsorbida	
b	coeficiente de la isoterma de Langmuir (Pa ⁻¹)	
β	coeficiente de la isoterma de Volkeshtein (Pa ⁻¹)	
ν , ν^{0}	frecuencias fonónicas	

<u>APÉNDICF</u>

Listado del programa de control y adquisición de datos con sus principales subrutinas reale en BASIC 7.1 PROFESIONAL DEVELOPMENT SYSTEM.

COGNOH: ELECTRICAL MEASUREMENT PROGRAM FOR CO, NO₂ AND H2O
 DECLARE SUB cambiohum (hum AS ANY)
 DECLARE SUB displayhum (hum AS ANY)
 DECLARE FUNCTION ph2o! (Tc AS INTEGER)
 DECLARE FUNCTION rh! (TR1 AS INTEGER, TR2 AS INTEGER)

DECLARE SUB cambioparrestemp (tar AS ANY) DECLARE FUNCTION Filter\$ (Txt\$, FilterString\$) DECLARE FUNCTION generatebcc! (bc\$) **DECLARE FUNCTION Getresistance& (CHANNEL!) DECLARE FUNCTION Gettemperature! ()** DECLARE SUB Initk199 () DECLARE FUNCTION modify\$ (RRWW\$, PAR\$, VALU\$) DECLARE SUB Monodisplay () DECLARE SUB printmessage (display\$) DECLARE FUNCTION Read818! () DECLARE FUNCTION receivemessage\$ () DECLARE FUNCTION Rotated! (Lower!, Upper!, Current!, Inc!) DECLARE SUB SetupDesktop () DECLARE SUB SetupMenu () DECLARE SUB initk487b (POLARIZATION!) DECLARE SUB savswitch (SREPT\$, S AS ANY, CON(), MAXCON) **DECLARE SUB PROVASWITCH ()** DECLARE SUB pol487 (POLARIZATION!) DECLARE SUB mandd (NVOLT) DECLARE SUB Vpol (voltios!) DECLARE SUB initk487 (POLARIZATION!) DECLARE SUB concsteps () DECLARE SUB Cambiopartmc (tran AS ANY) DECLARE SUB Displayfilds (tran AS ANY) DECLARE SUB RAII () DECLARE SUB w818 (parameter\$, value\$) DECLARE FUNCTION r818! (parameter\$) DECLARE SUB RvsT () DECLARE SUB savtran (REPT\$, tran AS ANY, MAXCON, CON(), CONH(), MAXH%)

COMMON SHARED BRD0%, K199%, T818%, K487%, K485%, ibsta%, k2001%, K224%, K487B% '/* GPIB descriptors */ DIM SHARED stx\$, etx\$, eot\$, enq\$, ack\$, nak\$, address\$ '/* COMMS parameters

'\$INCLUDE: 'gen.bi' '\$INCLUDE: 'mouse.bi' '\$INCLUDE: 'menu.bi' '\$INCLUDE: 'window.bi' '\$INCLUDE: 'cognoh.bi' ı /* serial comm parameters */ address\$ = "0000" stx = CHR\$(&H2) etx\$ = CHR\$(&H3) eot = CHR\$(&H4) enq = CHR\$(&H5) ack\$ = CHR\$(&H6)nak\$ = CHR\$(&H15) DIM GloTitle(MAXMENU) AS MenuTitleType DIM Glottem(MAXMENU, MAXITEM) AS MenuItemType DIM GloWindow(MAXWINDOW) AS windowType AS buttonType DIM GloButton(MAXBUTTON) AS EditFieldType DIM GloEdit(MAXEDITFIELD) DIM GloWindowStack(MAXWINDOW) AS INTEGER DIM GloBuffer\$(MAXWINDOW + 1, 2) AS INTEGER DIM SHARED DisplayType DIM grd AS grafdim **DIM tran AS TRANSCOND** '/*----- initial values ------ */ grd.minx = 0; grd.maxx = 10grd.maxy1 = 5: grd.maxy2 = 5grd.maxy3 = 5: grd.maxy4 = 10grd.miny = 0tran.TYPEM = 1 tran.TINI = 150 tran.TFIN = 350 tran.DELTATEMPERATURA = 50 tran.DELTAT = 10 tran.POLAR = 10 tran.NOME1 = "S1" tran.NOME2 = "S2" tran.CONCBOMBOLA = 9.8 tran.COBOTTLE = 100 tran.CONCINIZIALE = 0! tran,CONCFINALE = .8 $tran_DELTACONC = 5$ tran.NUMERODIDATI = 120 tran.STABILITARES = 10 tran.TEMPOTRACONC = 120 tran, DELAYTURA = 240 tran.FLUSSO = 0 CONST c.minx = 0

CONST c.miny = 0 CONST rtemp = 17 CONST ctemp = 47 CONST $\pi 1 = 7$ CONST cr1 = 46CONST rr2 = rr1 CONST cr2 = 63 CONST rfinish = 17 CONST cfinish = 67 CONST msg = 10 CONST cmsg = 10 CONST mc = 3 CONST mr = 5CONST dc = 17CONST dmc = 10 DIM hum AS HUMPAR hum.BNO2 = 9800 hum.BCO = 100hum.CNO2 = 500 hum.CCO = 0hum.TAMB = 25hum.TERM = 20 hum.rh = 50hum.NUMRH = 3 ' Initialize Menu MenuInit WindowInit MouseShow Monodisplay ' Show Opening alert window A\$ = "MEASUREMENT AND CONTROL PROGRAM|" A\$ = A\$ + "for!"A\$ = A\$ + "J.SANTOS |" ' A\$ = A\$ + "Copyright (c) 1994 J. SANTOS |" B\$ = B\$ + " WELLCOME TO THE RELATIVE HUMIDITY PROGRAM!" B\$ = B\$ + " CHECK THAT THE FOLLOWING INSTRUMENTS ARE ON !!" B\$ = B\$ + " * Eurotherm 818P!"

B\$ = B\$ + " * IEEE 488 to RS232 CONVERTER!" B\$ = B\$ + " * Keithley 199|" B\$ = B\$ + " * Mass flow controller 5878|" B\$ = B\$ + " * Keithley 487|" B\$ = B\$ + " * Keithley 487b]" B\$ = B\$ + "warning k487's ohms function enabled (see initk487)]" X = Alert(1, B\$, 6, 10, 19, 70, "", "", "") 'Main Loop : Stay in loop until DemoFinished set to TRUE Demofinished = FALSE WHILE NOT Demofinished kbd\$ = MenuInkey\$ WHILE MenuCheck(2) GOSUB MenuTrap WEND WEND ' End Program MouseHide COLOR 15.0 CLS END ' If a menu event occured, call the proper demo, or if Exit, set demoFinished MenuTrap: MenuInit WindowInit MouseShow Monodisplay menu = MenuCheck(0) item = MenuCheck(1) SELECT CASE menu CASE 1 SELECT CASE item CASE 1: TrattamentoTermico CASE 2: RvsT CASE 3: concsteps CASE 4: PROVASWITCH END SELECT CASE 2 SELECT CASE item CASE 1: Save CASE 2: Load CASE 3: PRINT "Deletefile" CASE 4: Demofinished = TRUE END SELECT CASE 3 SELECT CASE item

CASE 1: Semplice CASE 2: Multiple END SELECT CASE 4 SELECT CASE item CASE 1: **CALL** Flussimetri CASE 2: letest CASE 3: Vpol (10) CASE 4: CALL Schermo END SELECT CASE 5 SELECT CASE item CASE 1: RK199 CASE 2: REurotherm CASE 3: RAII END SELECT CASE ELSE END SELECT Monodisplay RETURN END SUB SUB cambiohum (hum AS HUMPAR) LOCATE 20, COL1 PRINT "ENTER TO BEGIN THE MEASUREMENTS LOCATE ROW, COL1, 1, 1, 7 ' Display fields Fields = 6 TST = 0' Update field values and position based on keystrokes DO ' Put cursor on field LOCATE ROW + Fld, COL2 + 2 ' Get a key and strip null off if it's an extended code DO K\$ = INKEY\$ LOOP WHILE K\$ = "" $Ky = ASC(RIGHT_{K_{1}})$ SELECT CASE Ky CASE ESCAPE ' End program CLS : END CASE UPARROW, DOWNARROW

```
' Adjust field location
 IF Ky = DOWNARROW THEN Inc = 1 ELSE Inc = -1
 Fld = Rotated(0, Fields, Fld, Inc)
CASE RIGHTARROW, LEFTARROW
 ' Adjust field
 IF Ky = RIGHTARROW THEN Inc = 1 ELSE Inc = -1
 SELECT CASE Fld
   CASE 0
     'NO2 bottle concentration
     hum,BNO2 = Rotated(100, 10000, INT(hum,BNO2), 100 * Inc)
     PRINT USING "######"; hum.BNO2
     FLUXFACTOR = 1 - (hum.CNO2 / hum.BNO2) - (hum.CCO / hum.BCO)
     T1% = hum TERM
     TA% = hum TAMB
     PV1 = ph2o(T1\%)
     PV2 = ph2o(TA\%)
     hum.rh = CINT((PV1 / PV2) * 100 * FLUXFACTOR)
     LOCATE ROW + 15, COL2: PRINT USING "[ ## ]"; hum.rh
   CASE 1
     ' CO bottle concentration
     hum, BCO = Rotated(1, 100, INT(hum, BCO), Inc)
     PRINT USING "###"; hum.BCO
     FLUXFACTOR = 1 - (hum.CNO2 / hum.BNO2) - (hum.CCO / hum.BCO)
     T1% = hum.TERM
     TA% = hum.TAMB
     PV1 = ph2o(T1\%)
     PV2 = ph2o(TA\%)
     hum.rh = CINT((PV1 / PV2) * 100 * FLUXFACTOR)
     LOCATE ROW + 15, COL2: PRINT USING "( ## ]"; hum.rh
   CASE 2
     'Maximum NO2 concentration
     hum.CNO2 = Rotated(0, 1000, INT(hum.CNO2), 10 * Inc)
     PRINT USING "####"; hum.CNO2
     FLUXFACTOR = 1 - (hum.CNO2 / hum.BNO2) - (hum.CCO / hum.BCO)
     T1% = hum.TERM
     TA% = hum TAMB
     PV1 = ph2o(T1\%)
     PV2 = ph2o(TA\%)
     hum.rh = CINT((PV1 / PV2) * 100 * FLUXFACTOR)
     LOCATE ROW + 15, COL2: PRINT USING "[ ## ]"; hum.th
   CASE 3
     ' Maximum CO concentration
     hum.CCO = Rotated(0, 100, INT(hum.CCO), Inc)
     PRINT USING *###"; hum.CCO
     FLUXFACTOR = 1 - (hum.CNO2 / hum.BNO2) - (hum.CCO / hum.BCO)
     T1% = hum TERM
     TA% = hum.TAMB
     PV1 = ph2o(T1\%)
     PV2 = ph2o(TA\%)
     hum.rh = CINT((PV1 / PV2) * 100 * FLUXFACTOR)
     LOCATE ROW + 15, COL2: PRINT USING "[ ## ]"; hum.rh
   CASE 4
     'Water Tempertaure
```

_ . . . _

```
hum.TERM = Rotated(0, 30, INT(hum.TERM), Inc)

PRINT USING "##"; hum.TERM

FLUXFACTOR = 1 - (hum.CNO2 / hum.BNO2) - (hum.CCO / hum.BCO)

T1% = hum.TERM

TA% = hum.TAMB

PV1 = ph2o(T1%)

PV2 = ph2o(TA%)

hum.rh = CINT((PV1 / PV2) * 100 * FLUXFACTOR)

LOCATE ROW + 15, COL2: PRINT USING "[ ## ]"; hum.rh
```

CASE 5

```
' Room Temperature
hum.TAMB = Rotated(0, 30, INT(hum.TAMB), Inc)
PRINT USING "##"; hum.TAMB
T1% = hum.TERM
TA% = hum.TAMB
PV1 = ph2o(T1%)
PV2 = ph2o(TA%)
hum.rh = CINT((PV1 / PV2) * 100 * FLUXFACTOR)
LOCATE ROW + 15, COL2: PRINT USING "[##]"; hum.rh
```

CASE 6

```
'Number of H2O concentrations
hum.NUMRH = Rotated(0, 30, INT(hum.NUMRH), Inc)
PRINT USING "#"; hum.NUMRH
```

CASE ELSE

```
END SELECT
CASE ELSE
END SELECT
' Begin the measurements if ENTER
LOOP UNTIL Ky = ENTER
```

END SUB

```
SUB cambioparrestemp (tar AS TARAMETRI)

CONST COL1 = 8, COL2 = 54, ROW = 4

COLOR 15, 0

LOCATE 1, 1: PRINT SPACE$(COL1 - 1)

LOCATE 1, 41: PRINT SPACE$(39)

LOCATE 1, COL1

PRINT "ENTER PER COMINCIARE LA MISURA

TAMB = 20 '/* room temperature

LOCATE ROW, COL1, 1, 1, 12

' Display fields

LOCATE ROW, COL1: PRINT "gas flux (I/h)"

LOCATE ROW, COL2: PRINT USING "[##]"; tar.FLUS;
```

LOCATE ROW + 1, COL1: PRINT "RAMP 1 (C/min)"; LOCATE ROW + 1, COL2: PRINT USING "[##]"; tar.TINI;

LOCATE ROW + 2, COL1: PRINT "Level 1 (C)";

```
LOCATE ROW + 2, COL2: PRINT USING "[ ### ]"; tar.TFIN;
LOCATE ROW + 3, COL1: PRINT "Time 1 (min)";
LOCATE ROW + 3, COL2: PRINT USING "[ ### ]"; tar.TOLR;
LOCATE ROW + 8, COL1: PRINT "Increment between points(min)"
LOCATE ROW + 8, COL2: PRINT USING "[ ## ]"; tar.INCRT;
LOCATE ROW + 4, COL1: PRINT "Number of sensors (max 3)";
LOCATE ROW + 4, COL2: PRINT USING "[ # ]"; tar.NUMSENS;
LOCATE ROW + 5, COL1: PRINT "1st sensor's name (k487b)";
LOCATE ROW + 5, COL2: PRINT USING "[ & ]"; tar.NOME1;
LOCATE ROW + 6, COL1: PRINT *2nd sensor's name (k487)*:
LOCATE ROW + 6, COL2: PRINT USING "[ & ]"; tar.NOME2;
LOCATE ROW + 7, COL1: PRINT "3rd sensor's name )";
LOCATE ROW + 7, COL2: PRINT USING "[ & ]"; tar.NOME3;
LOCATE ROW + 15, COL1: PRINT "Number of points"
tar.TOLT = CINT((((tar.TFIN - TAMB) / tar.TINI) + tar.TOLR) / tar.INCRT)
LOCATE ROW + 15, COL2; PRINT USING "[ ##### ]"; tar.TOLT;
Fields = 8
TST = 0
' Update field values and position based on keystrokes
DO
 ' Put cursor on field
 LOCATE ROW + Fld, COL2 + 2
 ' Get a key and strip null off if it's an extended code
 DO
   K$ = INKEY$
 LOOP WHILE K$ = ""
 Ky = ASC(RIGHT_{(K_{1})})
 SELECT CASE Ky
   CASE ESCAPE
     ' End program
     CLS : END
   CASE UPARROW, DOWNARROW
     'Adjust field location
     IF Ky = DOWNARROW THEN Inc = 1 ELSE Inc = -1
     Fld = Rotated(0, Fields, Fld, Inc)
   CASE RIGHTARROW, LEFTARROW
     ' Adjust field
     IF Ky = RIGHTARROW THEN Inc = 1 ELSE Inc = -1
     SELECT CASE Fld
       CASE 0
        tar.FLUS = Rotated(1, 50, INT(tar.FLUS), Inc)
        PRINT USING "##"; tar.FLUS
       CASE 1
         tar.TINI = Rotated(1, 25, INT(tar.TINI), Inc)
        PRINT USING "##"; tar.TINI
```

tar.TOLT = CINT((2 * ((tar.TFIN - TAMB) / tar.TINI) + tar.TOLR) / tar.INCRT) LOCATE ROW + 15, COL2: PRINT USING "[####]"; tar.TOLT;

CASE 2

tar.TFIN = Rotated(0, 500, INT(tar.TFIN), 25 * Inc) PRINT USING "###"; tar.TFIN tar.TOLT = CINT((2 * ((tar.TFIN - TAMB) / tar.TINI) + tar.TOLR) / tar.INCRT) LOCATE ROW + 15. COL2; PRINT USING "[####]"; tar.TOLT;

CASE 3

tar.TOLR = Rotated(10, 990, INT(tar.TOLR), 10 * Inc) PRINT USING "###"; tar.TOLR tar.TOLT = CINT((2 * ((tar.TFIN - TAMB) / tar.TINI) + tar.TOLR) / tar.INCRT) LOCATE ROW + 15, COL2: PRINT USING "[####]"; tar.TOLT;

CASE 4

tar.NUMSENS ≈ Rotated(1, 3, INT(tar.NUMSENS), Inc) PRINT USING "#"; tar.NUMSENS

CASE 5

ascod = Rotated(1, 90, INT(ascod), Inc) tar.NOME1 = "S" + LTRIM\$(STR\$(ascod)) PRINT USING "&"; tar.NOME1

CASE 6

ascod ≈ Rotated(1, 90, INT(ascod), Inc) tar.NOME2 = "S" + LTRIM\$(STR\$(ascod)) PRINT USING "&"; tar.NOME2

CASE 7

ascod ≈ Rotated(65, 90, INT(ascod), Inc) tar.NOME3 = CHR\$(ascod) + "9c" PRINT USING "&"; tar.NOME3

CASE 8

tar.INCRT = Rotated(1, 90, INT(tar.INCRT), inc) PRINT USING "##"; tar.INCRT tar.TOLT = CINT((2 * ((tar.TFIN - TAMB) / tar.TINI) + tar.TOLR) / tar.INCRT) LOCATE ROW + 15, COL2: PRINT USING "[####]"; tar.TOLT; CASE ELSE

END SELECT CASE ELSE END SELECT ' Begin the measurements if ENTER LOOP UNTIL Ky = ENTER

```
END SUB
```

SUB Cambiopartmc (tran AS TRANSCOND) LOCATE 20, COL1

```
PRINT "ENTER PER COMINCIARE LA MISURA
 LOCATE ROW, COL1, 1, 1, 7
 ' Display fields
 Fields = 14
 TST = 0
 ' Update field values and position based on keystrokes
 DO
  ' Put cursor on field
  LOCATE ROW + Fld. COL2 + 2
  ' Get a key and strip null off if it's an extended code
  DO
    K$ = INKEY$
  LOOP WHILE K$ = "
  Ky = ASC(RIGHT_{(K_1)})
  SELECT CASE Ky
    CASE ESCAPE
      ' End program
      CLS : END
    CASE UPARROW, DOWNARROW
      ' Adjust field location
      IF Ky = DOWNARROW THEN Inc = 1 ELSE Inc = -1
      Fld = Rotated(0, Fields, Fld, Inc)
    CASE RIGHTARROW, LEFTARROW
      ' Adjust field
      IF Ky = RIGHTARROW THEN Inc = 1 ELSE Inc = -1
      SELECT CASE FId
       CASE 0
         ' Tipo di misura
         tran.TYPEM = Rotated(1, 2, INT(tran.TYPEM), Inc)
         PRINT USING "#"; tran.TYPEM
       CASE 1
         'Temperatura iniziale
         tran.TINI = Rotated(20, 500, INT(tran.TINI), 5 * Inc)
         PRINT USING "###"; tran.TINI
       CASE 2
         ' Temperatura finale
         tran.TFIN = Rotated(25, 500, INT(tran.TFIN), 5 * Inc)
         PRINT USING "###"; tran.TFIN
       CASE 3
         'incremento della temperatura
         tran.DELTATEMPERATURA = Rotated(-100, 100, INT(tran.DELTATEMPERATURA), 5 * Inc)
         PRINT USING "+###"; tran.DELTATEMPERATURA
       CASE 4
         ' incremento di tempo tra punti
         tran.DELTAT = Rotated(1, 300, INT(tran.DELTAT), Inc)
         PRINT USING "####"; tran.DELTAT
       CASE 5
```

```
226
```

```
polarizazione dei sensori
   tran.POLAR = Rotated(1, 10, INT(tran.POLAR), Inc)
   PRINT USING "##"; tran.POLAR
 CASE 6
  'nome sensore 1
   ascod = Rotated(1, 90, INT(ascod), Inc)
   tran.NOME1 = "S" + LTRIM$(STR$(ascod))
   PRINT USING "&"; tran.NOME1
 CASE 7
  ' nome sensore #2
   ascod = Rotated(1, 90, INT(ascod), Inc)
   tran.NOME2 = "S" + LTRIM$(STR$(ascod))
   PRINT USING "&"; tran.NOME2
 CASE 8
  ' concentrazione della bombola
   tran.CONCBOMBOLA = Rotated(1, 99, tran.CONCBOMBOLA, .1 * Inc)
   PRINT USING "##.#"; tran.CONCBOMBOLA
 CASE 9
  'FLUSSO
  tran.FLUSSO = Rotated(0, 1, INT(tran.FLUSSO), Inc)
  IF tran.FLUSSO = 0 THEN SFLU = 6 ELSE SFLU = 1.8
  PRINT USING "#,#"; SFLU
 CASE 10
  ' numero di dati per misura
  tran.NUMERODIDATI = Rotated(0, 900, INT(tran.NUMERODIDATI), 5 * Inc)
   PRINT USING "###"; tran.NUMERODIDATI
 CASE 11
  'incremento della concentrazione
  tran.DELTACONC = Rotated(0, 50, tran.DELTACONC, 1 * Inc)
   PRINT USING "##": tran.DELTACONC
 CASE 12
  'tempo di attesa in temperatura
  tran.DELAYTURA = Rotated(0, 999, INT(tran.DELAYTURA), 5 * Inc)
   PRINT USING "###"; tran.DELAYTURA
 CASE 13
  'tempo di attesa
  tran.TEMPOTRACONC = Rotated(0, 240, INT(tran.TEMPOTRACONC), 5 * Inc)
   GA$ = "Air
   PRINT USING "####"; tran, TEMPOTRACONC
 CASE 14
   ' concentrazione della bombola di CO
   tran.COBOTTLE = Rotated(0, 1000, INT(tran.COBOTTLE), 10 * Inc)
   PRINT USING "####"; tran.COBOTTLE
 CASE ELSE
END SELECT
```

CASE ELSE

```
END SELECT

'Begin the measurements if ENTER

LOOP UNTIL Ky = ENTER

END SUB
```

SUB concsteps

'/*------ RESISTANCE MEASUREMENTS AT SEVERAL GAS CONCENTRATIONS ------*/

SHARED tran AS TRANSCOND SHARED grd AS grafdim SHARED hum AS HUMPAR

displayhum hum '/* rh parameters cambiohum hum Displayfilds tran Cambiopartmc tran '/* measurements parameters

SCREEN 12 WIDTH 80, 60

'/*------ dimensions ------*/ nrh% = hum.NUMRH nsteps = tran, DELTACONC + 1 NDEGREES% = ABS(tran.DELTATEMPERATURA) NTEMPTPOINTS = CINT(ABS((tran.TFIN - tran.TINI) / tran.DELTATEMPERATURA)) + 1 DIM R(1 TO 2, tran.NUMERODIDATI) /* resistance array */ '/* time аггау DIM T(tran.NUMERODIDATI) */ DIM gR(1 TO 2, tran.NUMERODIDATI) '/* graphic array */ '/* setpoint array */ DIM SP(NDEGREES%) '/* read timers array */ DIM TIMRD%(8) DIM TEMPERATURE(1) /* measured temperature */ '/* setpoint in volts */ DIM SPOINT(1) DIM TINTERNA(NTEMPTPOINTS) '/* internal T array */ DIM c(nsteps + 1) /* concentration vector */ DIM h(nrh% + 2)'/* relative humidity vector*/ '/*----- definitions of variables ----- */ TEMPORES = tran.NUMERODIDATI * tran.DELTAT '/* secs per misura SECONDS = tran.DELTAT CHANGE = FALSE CHANGER = FALSE

'/*----- concentration vector----- */

DO

CLS LOCATE 2, 6 FOR N = 1 TO nsteps - 1 LOCATE 5 + 2 * N, 5: PRINT "c("; N; ")="; ; INPUT c(N) NEXT N FOR N = 1 TO nrh% LOCATE 15 + 2 * N, 5: PRINT "H("; N; ")="; : INPUT h(N) NEXT N h(0) = 0 h(nrth(+1)) = 0LOCATE 40, 5: INPUT "ARE THE CONCENTRATIONS CORRECT"; AC\$ LOOP WHILE AC\$ = "N" '/* files setup */ root1\$ = "B:\" + RTRIM\$(tran.NOME1) + LTRIM\$(MID\$(DATE\$, 1, 5)) '/* root directories */ root2\$ = "B:\" + RTRIM\$(tran.NOME2) + LTRIM\$(MID\$(DATE\$, 1, 5)) CHDIR "B:\" MKDIR root1\$ '/* make directories */ MKDIR root2\$ REPORT\$ = root1\$ + "\MINFO.RPT" savtran REPORT\$, tran, nsteps, c(), h(), nrh% //* save measurement parameters boxes 1/* system initiation */ Initk199 DELAY .2 initk487 (10) DELAY .2 initk487b (10) CONCB = tran.CONCBOMBOLA RNGE = tran.FLUSSO DDA 0, 0, 0 TACTUAL = tran.TINI TIME\$ = "00" '/****_----- temperature cycle------****/

```
FOR Tc ≈ 1 TO NTEMPTPOINTS
 TSENS = Gettemperature
 grd.minx = 0: grd.maxx = 10
 grd.maxy1 = 5; grd.maxy2 = 5
 grd.miny = 0
 GRAF1
 GRAF2
 T(0) = 0
 RBASE1 = 0
 RBASE2 = 0
 FOR I = 1 TO 10
                       V* baseline */
  ti = TIMER
  LOCATE 30, 20: PRINT *ACQUIRING BASELINE
  RBASE1 = RBASE1 + getR(1)
  RBASE2 = RBASE2 + getR(2)
  LOCATE rfinish, cfinish + 3: PRINT USING "#####"; 1
  DO WHILE (TIMER - ti) < SECONDS: LOOP
 NEXT (
 RBASE1 = RBASE1 / 10
 RBASE2 = RBASE2 / 10
 gR(1, 0) \approx 1
 gR(2, 0) = 1
 subdir1$ = "\T" + LTRIM$(STR$(TACTUAL))
 subdir2$ = "\T" + LTRIM$(STR$(TACTUAL))
 subdir3$ = "\tint"
 patnam1$ = root1$ + subdir1$ + ".DTH"
 patnam2$ = root2$ + subdir2$ + *.DTH*
 patnam3$ = root1$ + subdir3$ + ".rpt"
 OPEN patnam1$ FOR APPEND AS #3
 OPEN patnam2$ FOR APPEND AS #4
 OPEN REPORT$ FOR APPEND AS #5
                                                 '/* save baseline */
  PRINT #3, USING "##.##^^^*; RBASE1
  PRINT #4, USING "##.##^^^^*; RBASE2
  PRINT #5, TACTUAL, TSENS
 CLOSE #3
 CLOSE #4
 CLOSE #5
 LOCATE 11, 46: PRINT USING "##.##^^^*; RBASE1
 LOCATE 11, 63: PRINT USING "##.###^^^*; RBASE2
 LOCATE 30, 20: PRINT "
                            MEASURING , PRESS F TO EXIT
```

'/***----- concentration cycle -----***/

```
STGAS$ = "ADSORBING"
FOR R = 1 TO nsteps - 1
 c = c(R)
 '/** -----relative humidity cycle-----**/
 FOR Hc\% = 0 TO nrh\% + 1
   GRAF1
               '/* graphics initialization */
   GRAF2
   LOCATE 57, 5: PRINT STGAS$
   ti = TIMER
   TEMPERATURE(0) = Gettemperature
   LOCATE rtemp, ctemp: PRINT USING "####"; TEMPERATURE(0)
        '/* set concentration */
   crh = h(Hc\%)
   IF Hc% <> nrh% + 1 THEN
     IF tran.TYPEM = 2 THEN
                               '/* CO
       DDA 0, c, cm
     ELSE
                      '/* NO2
       DDA c, 0, crh
     END IF
   ELSE
                               '/* return to baseline
     DDA 0, 0, 0
   END IF
   DO WHILE (TIMER - ti) < SECONDS: LOOP /* measure clock */
   17*----- resistace measurements cycle ------ */
   FOR J% = 1 TO INT(tran.NUMERODIDATI)
     ti = TIMER
     T(J\%) = J\%
     R1 = getR(1)
     R2 = getR(2)
     LOCATE rr1, cr1: PRINT USING "##.##^^^^"; R1
     LOCATE rr2, cr2: PRINT USING "##.##^^^*; R2
     gR(1, J%) = R1 / RBASE1
     gR(2, J\%) = R2 / RBASE2
     FOR I = 1 TO 2
      IF gR(I, J%) > 25000 THEN gR(I, J%) = .1 * gR(I, J%)
     NEXTI
     '|*
            grafico1 */
     IF gR(1, J%) > grd.maxy1 THEN
       grd.maxy1 = 2 * grd.maxy1
       CHANGER = TRUE
     END IF
```

```
231
```

```
IF T(J%) >= grd.maxx THEN
   grd.maxx = 2 * grd.maxx
  CHANGE = TRUE
  END IF
  IF (CHANGE OR CHANGER) THEN
   GRAF1
   CHANGER = FALSE
  END IF
  VIEW (160, 300)-(360, 450)
  WINDOW (grd.minx, grd.miny)-(grd.maxx, grd.maxy1)
  FOR G = 1 TO J%
   LINE (T(G), gR(1, G))-(T(G - 1), gR(1, G - 1)), 0
  NEXT G
   1 /* grafico2 */
  JF qR(2, J\%) > qrd.maxy2 THEN
   grd.maxy2 = 2 * grd.maxy2
   CHANGER ≈ TRUE
  END IF
  IF (CHANGE OR CHANGER) THEN
    GRAF2
    CHANGE = FALSE
    CHANGER = FALSE
  END IF
  VIEW (380, 300)-(580, 450)
  WINDOW (grd.minx, grd.miny)-(grd.maxx, grd.maxy2)
  FOR G = 1 TO J%
   LINE (T(G), gR(2, G))-(T(G - 1), gR(2, G - 1)), 0
  NEXT G
    '/*
                   */
          _*_
 TRESREMAIN = TEMPORES - (J% * tran.DELTAT)
 LOCATE rfinish, cfinish + 3: PRINT USING "######"; TRESREMAIN
  DO WHILE (TIMER - ti) < SECONDS
  IF INKEY$ = "F" THEN
    SCREEN 0
    EXIT SUB
   END IF
  LOOP
 NEXT J%
                          */
'/*
      save data
OPEN patnam1$ FOR APPEND AS #3
OPEN patnam2$ FOR APPEND AS #4
FOR K% = 1 TO tran.NUMERODIDATI
  PRINT #3, USING "#######"; gR(1, K%)
  PRINT #4, USING "####.##"; gR(2, K%)
NEXT K%
```

CLOSE #3 CLOSE #4

NEXT Hc% '/* end of RH cycle */

NEXT R '/* end of concentration cycle */

'/* measurements for one T completed */ DDA 0, 0, 0

TINTERNA(Tc) = TEMPERATURE(0)

'/* next measuring temperature*/

TACTUAL = TACTUAL + tran.DELTATEMPERATURA IF Tc = NTEMPTPOINTS THEN EXIT FOR '/* avoid to further increase T Write818 TACTUAL

'/* delay between temperatures */

```
TIME$ = "00" '/* seconds = 0 */
ti = TIMER
LOCATE 30, 20: PRINT "WAITING FOR NEW TEMPERATURE
```

GRAF1 GRAF2

```
DO WHILE (TIMER - ti) < tran.DELAYTURA * 60
TRESREMAIN = tran.DELAYTURA * 60 - (TIMER - ti)
LOCATE rfinish, cfinish + 3: PRINT USING "#####"; TRESREMAIN
TEMPERATURE(0) = Gettemperature
LOCATE rtemp, ctemp: PRINT USING "####"; TEMPERATURE(0)
R1 = getR(1)
R2 = getR(2)
LOCATE rr1, cr1: PRINT USING "##.##*^^^*; R1
LOCATE rr2, cr2: PRINT USING "##.##*^^*; R2
```

```
'/* save internal T if stop the program */
```

```
IF INKEY$ = "F" THEN
OPEN REPORT$ FOR APPEND AS #5
FOR N = 1 TO Tc
PRINT #5, "PROGRAM STOPPED"
PRINT #5, TINTERNA(N)
NEXT N
CLOSE #5
EXIT SUB
END IF
SLEEP (3)
```

```
LOOP
```

NEXT Tc '/* end of temperature cycle */

LOCATE 30, 17: PRINT * MEASUREMENTS FINISHED PRESS ANY KEY* SLEEP SCREEN 0 END SUB

SUB DDA (NOCONC, COCONC, HUMID) DIM N(4) SHARED tran AS TRANSCOND SHARED hum AS HUMPAR NOBOMBOLA = tran.CONCBOMBOLA COBOMBOLA = tran.COBOTTLE MAXRH = hum.rhFL! = 10 F2 = (FL! * NOCONC) / NOBOMBOLA F0 = (FL! * COCONC) / COBOMBOLA F3 = (FL! * HUMID) / MAXRH F1 = FL! - F2 - F0 - F3 N(0) = CINT(F0 * 4095 / 6)'/* flussimeter 1 N(1) = CINT(F1 * 4095 / 18)'/* FS range of 2 '/* FS range of 3 N(2) = CINT(F2 * 4095 / 1.8)N(3) = CINT(F3 * 4095 / 18)'/* FS range of 4

```
LOCATE 33, 7: PRINT USING "## ##"; NOCONC
LOCATE mr + 26, mc + 3: PRINT USING "###"; COCONC
LOCATE 28, 43: PRINT USING "##"; HUMID
FOR I = 0 TO 3
XH% = INT(N(I) / 256)
XL% = N(I) - 256 * XH%
OUT 768 + 2 * I, XL%
OUT 768 + 1 + 2 * I, XH%
NEXT I
```

```
END SUB
```

SUB Displayfilds (tran AS TRANSCOND) ' Display fields CLS SCREEN 0

LOCATE ROW, COL1: PRINT "TYPE OF MEASUREMENT: 1.NO2 2.CO" LOCATE ROW, COL2: PRINT USING "[#]"; tran.TYPEM;

LOCATE ROW + 1, COL1: PRINT "Initial Temperature (°C)" LOCATE ROW + 1, COL2: PRINT USING "[###]"; tran.TINI; LOCATE ROW + 2, COL1: PRINT "Final Temperature (C)"; LOCATE ROW + 2. COL2: PRINT USING "[###]"; tran.TFIN; LOCATE ROW + 3, COL1: PRINT "Temperature increment(C)"; LOCATE ROW + 3. COL2: PRINT USING "I +### I"; tran.DELTATEMPERATURA; LOCATE ROW + 4, COL1; PRINT "Time between points increment (sec)"; LOCATE ROW + 4, COL2: PRINT USING "[###]"; tran.DELTAT; LOCATE ROW + 5, COL1: PRINT "Applied voltage (Volts)"; LOCATE ROW + 5, COL2: PRINT USING "[##]"; tran.POLAR; LOCATE ROW + 6, COL1: PRINT "1st sensor's name (k487b)"; LOCATE ROW + 6, COL2: PRINT USING "[&]"; tran.NOME1; LOCATE ROW + 7, COL1: PRINT "2nd sensor's name (k487)"; LOCATE ROW + 7, COL2: PRINT USING "[&]"; tran.NOME2; LOCATE ROW + 8, COL1: PRINT "NO2 bottle concentration (ppm)"; LOCATE ROW + 8, COL2: PRINT USING "[##.#]"; tran.CONCBOMBOLA; LOCATE ROW + 9, COL1: PRINT "Maximum NO2 fluss (l/h)= 1.8 "; LOCATE ROW + 9, COL2: PRINT USING "[#,#]"; tran.FLUSSO; LOCATE ROW + 10, COL1: PRINT "Number of data for concentration"; LOCATE ROW + 10, COL2: PRINT USING "[###]"; tran.NUMERODIDATI; LOCATE ROW + 11, COL1: PRINT "Number of concentrations"; LOCATE ROW + 11, COL2: PRINT USING "[##]"; tran.DELTACONC; LOCATE ROW + 12, COL1: PRINT "Delay time in each temperature (min)"; LOCATE ROW + 12, COL2: PRINT USING "[###]"; tran.DELAYTURA; LOCATE ROW + 13, COL1: PRINT "Time between NO2 and CO(min)" LOCATE ROW + 13, COL2: PRINT USING "[###]"; tran.TEMPOTRACONC; LOCATE ROW + 14, COL1: PRINT "CO bottle concentration (ppm)"; LOCATE ROW + 14, COL2: PRINT USING "[####]"; tran.COBOTTLE

END SUB

SUB displayhum (hum AS HUMPAR) CLS SCREEN 0

LOCATE ROW, COL1: PRINT "NO2 BOTTLE CONCENTRATION (ppb)" LOCATE ROW, COL2: PRINT USING "[######]"; hum.BNO2; LOCATE ROW + 1, COL1: PRINT "CO BOTTLE CONCENTRATION (ppm)" LOCATE ROW + 1, COL2: PRINT USING "[### I": hum.BCO; LOCATE ROW + 2, COL1; PRINT "MAXIMUM NO2 CONCENTRATION (ppb)" LOCATE ROW + 2, COL2: PRINT USING "[####]"; hum.CNO2; LOCATE ROW + 3, COL1: PRINT "MAXIMUM CO CONCENTRATION (ppm)" LOCATE ROW + 3, COL2: PRINT USING "[###]"; hum.CCO; LOCATE ROW + 4, COL1: PRINT "THERMOSTATE TEMPERATURE (°C)" LOCATE ROW + 4, COL2: PRINT USING "[##]"; hum.TERM; LOCATE ROW + 5, COL1; PRINT "ROOM Temperature (°C)" LOCATE ROW + 5, COL2: PRINT USING "[##]"; hum.TAMB; LOCATE ROW + 6. COL1: PRINT "NUMBER OF H20 CONCENTRATIONS" LOCATE ROW + 6, COL2: PRINT USING "[#]"; hum.NUMRH; LOCATE ROW + 8, COL1: PRINT "----LOCATE ROW + 9, COL1: PRINT * !!!! WARNING !!!!* LOCATE ROW + 10, COL1: PRINT "THE MAXIMUM RH DEPENDS ALSO ON THE * LOCATE ROW + 11, COL1: PRINT "MAXIMUM NO2 AND CO CONCENTRATIONS" LOCATE ROW + 12, COL1: PRINT "------"

```
LOCATE ROW + 15, COL1: PRINT "MAXIMUM RELATIVE HUMIDITY"
LOCATE ROW + 15, COL2: PRINT USING "[##]"; hum.th;
LOCATE ROW + 15, COL2 + 8: PRINT "%"
```

END SUB

```
Takes unwanted characters out of a string by
```

```
comparing them with a filter string containing
```

```
only acceptable numeric characters
```

FUNCTION Filter\$ (Txt\$, FilterString\$) STATIC

```
TEMP$ = ""

TxtLength = LEN(Txt$)

FOR I = 1 TO TxtLength 'Isolate each character in

c$ = MID$(Txt$, I, 1) 'the string.

'If the character is in the filter string, save it:

IF INSTR(FilterString$, c$) <> 0 THEN

TEMP$ = TEMP$ + c$

END IF

NEXT I

Filter$ = TEMP$

END FUNCTION
```

```
FUNCTION generatebcc (bc$)

bcc = 0

FOR X = 2 TO LEN(bc$) 'from after stx up to an including etx

bcc = bcc XOR ASC(MID$(bc$, X, 1))

NEXT X

generatebcc = bcc

END FUNCTION
```

```
FUNCTION Gettemperature

'Input CVP 400 = tc K range 0-500 C

'output = 0-10 V

VTER$ = SPACE$(20)

CMD1$ = "F0R3N4X"

CMD1$ = CMD1$ + CHR$(13) + CHR$(10)

CALL IBWRT(K199%, CMD1$)

IF ibsta% < 0 THEN GPIBERR

CALL ibrd(K199%, VTER$)

IF ibsta% < 0 THEN GPIBERR

VOLT = VAL(MID$(VTER$, 5, 12))

Gettemperature = 500 * VOLT / 10
```

END FUNCTION

SUB Initk199 CALL ibfind(NA\$, BRD0%) CALL ibfind(NB\$, K199%) IF ibsta% < 0 THEN GPIBERR WT1\$ = "F0R3P1T1X" CALL IBWRT(K199%, WT1\$) IF ibsta% < 0 THEN GPIBERR CALL ibfind(NC\$, T818%)

END SUB

```
SUB initk487 (POLARIZATION)

CMMD$ = "V* + LTRIM$(STR$(POLARIZATION)) + "X"

CALL ibfind(ND$, K487%)

IF ibsta% < 0 THEN GPIBERR

WT1$ = "L0X"

WT2$ = "C001T0F1X" '/* OHMS ENabled!!!

CALL IBWRT(K487%, WT1$)

CALL IBWRT(K487%, CMMD$)

CALL IBWRT(K487%, WT2$)

END SUB

SUB initk487b (POLARIZATION)
```

```
CMMO$ = "V" + LTRIM$(STR$(POLARIZATION)) + "X"
CALL ibfind(NH$, K487B%)
IF ibsta% < 0 THEN GPIBERR
WT1$ = "L0X"
```

```
WT2$ = "C0O1T0F1X"
                          '/* OHMS ENabled!!!
CALL IBWRT(K487B%, WT1$)
 CALL IBWRT(K487B%, CMMD$)
 CALL IBWRT(K487B%, WT2$)
END SUB
FUNCTION modify$ (RRWW$, PAR$, VALU$)
  IF RRWW$ = "R" THEN
  packet$ = eot$ + address$ + PAR$ + enq$
  ELSE
                                          'construct send packet
   packet$ = stx$ + PAR$ + VALU$ + etx$
   bcc$ = packet$
   ccc = generatebcc(bcc$)
   packet$ = eot$ + address$ + packet$ + CHR$(ccc) 'packet complete
  END IF
  modify$ = packet$
END FUNCTION
SUB Monodisplay
   DisplayType = FALSE
   MouseHide
   SetupMenu
   MenuSetState 2, 1, 1
   MenuSetState 2, 2, 2
   SetupDesktop
   MenuShow
   MouseShow
END SUB
FUNCTION ph2o (Tc AS INTEGER)
                      ' atmopheric standard pressure
Ps = 1013.25
                      ' steam temperaturea
Ts = 373.15
TK = Tc + 273.15
a = 1 - (Ts / TK)
ARGUMEXP = a * (13.3185 - a * (1.976 - a * (.6445 - a * (.1299))))
ph2o = Ps * EXP(ARGUMEXP)
END FUNCTION
SUB pol487 (POLARIZATION)
 CMMD$ = "V" + LTRIM$(STR$(POLARIZATION)) + "X"
 CALL IBWRT(K487%, CMMD$)
END SUB
FUNCTION r818 (parameter$)
   RW$ = "R"
```

```
message$ = modify$(RW$, parameter$, value$)
  CALL IBWRT(T818%, message$)
  mes$ = receivemessage$
  printmessage mes$
  CleanNum$ = Filter$(mes$, "0123456789.-")
  r818 = VAL(CleanNum$)
END FUNCTION
SUB RAII
 CALL ibfind(NA$, BRD0%)
 INITK224
 Initk199
 V\% = 0
 RK199
 CALL ibloc(K224%)
 CALL ibonI(K199%, V%)
 CALL ibonl(K224%, V%)
 CALL ibonl(BRD0%, V%)
END SUB
FUNCTION Read818
   value$ = ""
   parameter$ = "PV"
   RW$ = "R"
   message$ = modify$(RW$, parameter$, value$)
   CALL IBWRT(T818%, message$)
   mes$ = receivemessage$
   printmessage mes$
   CleanNum$ = Filter$(mes$, "0123456789.-")
   Read818 = VAL(CleanNum$)
END FUNCTION
 FUNCTION receivemessage$
 PRECM$ = SPACE$(20)
 CALL ibrd(T818%, PRECM$)
 RECM$ = RTRIM$(PRECM$)
  checkbcc = FALSE
  rxend = FALSE
  timeout = FALSE
  TIM = 0
  rx$ = ""
   in$ = ""
   WHILE (rxend = FALSE) AND (timeout = FALSE) 'terminate on rxend or timeout
    FOR I = 1 TO LEN(RECM$)
                                'read next caracter from commm buffer
    in\$ = MID\$(RECM\$, I, 1)
                          'append to received data string
    rx$ = rx$ + in$
```

TIM = 0'reset timeout when we receive something IF (in\$ = etx\$) THEN checkbcc = TRUE 'bcc should be next so check it IF (in\$ = etx\$) OR (in\$ = ack\$) OR (in\$ = nak\$) OR (in\$ = eot\$) THEN rxend = TRUE TIM = TIM + 1IF (TIM > 100) THEN timeout = TRUE 'timeout after count reaches this NEXT 1 WEND 'timeout or receive complete IF checkbcc = FALSE THEN 1040 bcc = MID\$(rx\$, 1, (LEN(rx\$) - 1)) strip off bcc character first bcc = generatebcc(bcc\$) IF CHR\$(bcc) <> in\$ THEN rx\$ = "bcc error" GOTO 1050 1040 IF LEN(rx\$) = 0 THEN rx\$ = "none received" 'display received data string 1050 receivemessage\$ = rx\$ END FUNCTION SUB REurotherm SCREEN 12 WIDTH (80), (60) param\$ = "OS>" valor\$ = "0000" w818 param\$, valor\$ param\$ = "SL" valor\$ = "22" w818 param\$, valor\$ SLEEP SCREEN 0 END SUB FUNCTION Rotated (Lower, Upper, Current, Inc) Current = Current + Inc IF Current > Upper THEN Current = Lower IF Current < Lower THEN Current = Upper Rotated = Current END FUNCTION SUB RvsT SHARED tar AS TARAMETRI SHARED grd AS grafdim SHARED tran AS TRANSCOND '/* multimeter initialization */ Initk199 initk487b (tran.POLAR) initk487 (tran.POLAR)

*/

1/*

cambioparrestemp tar F1\$ = "B:\" + tar.NOME1 F2\$ = "B:\" + tar.NOME2 F4\$ = "B:\" + "RvT" + LTRIM\$(MID\$(DATE\$, 1, 5)) sb1\$ = "\" + LTRIM\$(MID\$(DATE\$, 1, 5)) sb2\$ = "\" + LTRIM\$(MID\$(DATE\$, 1, 5)) sb4\$ = "\" + "temp" CHDIR "B:\" MKDIR F1\$ MKDIR F2\$ MKDIR F4\$ fil1\$ = F1\$ + sb1\$ + ".dat" fil2\$ = F2\$ + sb2\$ + ".dat" fil4\$ = F4\$ + sb4\$ + ".dat" OPEN fil1\$ FOR OUTPUT AS #1 OPEN fil2\$ FOR OUTPUT AS #2 **OPEN fil4\$ FOR OUTPUT AS #4** numerodipunti = tar.TOLT ' punti rampa + punti in temperatura DIM gR(1 TO tar.NUMSENS, numerodipunti) DIM T(numerodipunti) DIM RBASE(1 TO 2) DELTATIME = tar.INCRT * 60 ' secondi tra punti CHANGE = FALSE CHANGER = FALSE boxes , /* parametri della rampa */ param = "r1" '/* rampa1 */ valor\$ = STR\$(tar.TINI) w818 param\$, valor\$ param\$ = "11" '/* iivello1 */ valor\$ = STR\$(tar.TFIN) w818 param\$, valor\$ param\$ = "t1" '/* tempo1 */ valor\$ = STR\$(tar.TOLR) w818 param\$, valor\$ param\$ = "OS>" valor\$ = "0001" w818 param\$, valor\$ param\$ = "OS>" valor\$ = "0002" w818 param\$, valor\$ param\$ = "TM" FOR I = 1 TO tar.NUMSENS

```
gR(I, 0) = getR(I)
 prinResistance gR(), 0
 NEXT I
 RBASE(1) = qR(1, 0)
 RBASE(2) = gR(2, 0)
 LOCATE 11, 46: PRINT USING "##.##^^^^"; RBASE(1)
 LOCATE 11, 63: PRINT USING "##.##^^^*; RBASE(2)
  PRINT #1, RBASE(1)
 PRINT #2, RBASE(2)
  gR(1, 0) = 1
 gR(2, 0) = 1
 TIME$ = "00"
  T(0) = 0
FOR J% = 1 TO numerodipunti
 T0 = TIMER
 FOR I = 1 TO tar, NUMSENS
   gR(I, J\%) = getR(I)
   gR(I, J\%) = gR(I, J\%) / RBASE(I)
   prinResistance gR(), J%
 NEXT I
 T(J%) = Gettemperature
 PRINT #1, gR(1, J%)
 PRINT #2, gR(2, J%)
 PRINT #4, T(J%)
   LOCATE 17, 47: PRINT USING "###.#"; T(J%)
       · /*
                         */
              grafico1
       IF gR(1, J%) > grd.maxy1 THEN
         grd.maxy1 = 2 * grd.maxy1
         CHANGER = TRUE
       END IF
       IF T(J%) >= grd.maxx THEN
         grd.maxx = 2 * grd.maxx
         CHANGE = TRUE
       END IF
       IF (CHANGE OR CHANGER) THEN
         GRAF1
         CHANGER = FALSE
       END IF
       VIEW (160, 300)-(360, 450)
       WINDOW (grd.minx, grd.miny)-(grd.maxx, grd.maxy1)
       FOR G = 1 TO J%
        LINE (T(G), gR(1, G))-(T(G - 1), gR(1, G - 1)), 5
       NEXT G
       ' /* grafico2 */
       IF gR(2, J%) > grd.maxy2 THEN
         grd.maxy2 = 2 * grd.maxy2
```

CHANGER = TRUE END IF IF (CHANGE OR CHANGER) THEN GRAF2 CHANGE = FALSE CHANGER = FALSE END IF VIEW (380, 300)-(580, 450) WINDOW (grd.minx, grd.miny)-(grd.maxx, grd.maxy2) FOR G = 1 TO J% LINE (T(G), gR(2, G))-(T(G - 1), gR(2, G - 1)), 5 NEXT G _*_ 14 */ TREMAIN = CINT((numerodipunti - J%) / tar.INCRT) LOCATE 17, 67: PRINT USING "#####"; TREMAIN DO WHILE (TIMER - TO < DELTATIME) '/* clock */ IF INKEY\$ = "F" THEN STOP LOOP NEXT J% CLOSE #1 CLOSE #2 CLOSE #4 param\$ = "SL" valor\$ = "350" w818 param\$, valor\$ LOCATE 5, 58, 0 PRINT "le misure sono finite premere qualunque tasto" SLEEP SCREEN 0 END SUB SUB SetupDesktop STATIC columna = 25 WIDTH, columna IF DisplayType THEN COLOR 15, 1 'Color ELSE COLOR 15, 0 'Monochrome END IF CLS MouseShow END SUB SUB SetupMenu MenuSet 1, 0, 1, "MISURA", 1 MenuSet 1, 1, 1, "TrattamentoTermico", 1
MenuSet 1, 2, 1, "ResistenzaVsTemp", 1 MenuSet 1, 3, 1, "TransienteCond", 11 MenuSet 1, 4, 1, "Switch", 1 MenuSet 2, 0, 1, "FILES", 1 MenuSet 2, 1, 1, "SAVE", 1 MenuSet 2, 2, 1, "LOAD", 1 MenuSet 2, 3, 1, "DELETE", 1 MenuSet 3, 0, 1, "GRAFICA", 1 MenuSet 3, 1, 1, "semplice", 1 MenuSet 3, 2, 1, "multiple", 1 MenuSet 2, 4, 1, "EXIT", 1 MenuSet 4, 0, 1, "APPARATUSTEST", 1 MenuSet 4, 1, 1, "Flussimetri", 1 MenuSet 4, 2, 1, "IEEE488", 1 MenuSet 4, 3, 1, "Polarizazione", 1 MenuSet 4, 4, 1, "Schermo", 1 MenuSet 5, 0, 1, "RESET", 1 MenuSet 5, 1, 1, "K199", 1 MenuSet 5, 2, 1, "Eurotherm", 1 MenuSet 5, 3, 1, "All", 1 MenuPreProcess END SUB SUB Vpol (voltios) DIM N(5) d = 4 N(d) = voltios * 4095 / 10 XH% = INT(N(d) / 256) XL% = N(d) - 256 * XH% OUT 768 + 2 * d, XL% OUT 768 + 1 + 2 * d, XH% END SUB SUB w818 (parameter\$, value\$) RW\$ = "W" ' value\$ = STR\$(value) message\$ = modify\$(RW\$, parameter\$, value\$) CALL IBWRT(T818%, message\$) mes\$ = receivemessage\$ printmessage mes\$

```
END SUB
```

<u>APÉNDICE D</u>

Listado del programa de cálculo numérico realizado en C.

SENS.C Program for the calculation of the intracrystallite potential as a function of NO, partial pressure in air through the numerical resolution of the Poisson equation in spherical coordinates. #include <stdio.h> #include <math.h> #include <conio.h> /* ----- functions prototypes -----*/ double tet1 (double VS, float X); double tet2 (double VS, float X); double nst (double FL, float P); double f (double X); double zbrent (double X1, double X2, float toi); float Y (float E, double M); double FDI (double R); double errory (double RS, double S1, double S2, float pres); void odeint (int npts, double x0, double xf, double g1[], double g2[]); void rung4 (int J, double tj, double P,double z1[], double z2[]); double FZ1 (double G, double Y1, double Y2); double FZ2 (double G, double Y1, double Y2); /* ------ global variables -----*/ double T, NC, Et1, Et2, NSS, Ed1, Ed2; float pr: /* physical constants */ #define FALSE 0: #define TRUE !FALSE: #define DLV 8.85E-14 /* Vacuum dielectric constant (F/cm) */ #define Q 1.6E-19 /* electron charge (C) */ #define K 1.38E-23 /* Boltzmann constant (J/K) */ double A≈ 1E-08; /* angstrom in cm */ #define H 6.63E-34 /* Planck constant (J*s) */

#define M0 9.1E-31	/* electron mass	(Kg) */
#define PI 3,1415926		
#define NA 6.03E+23	/* Avogadro's number (1/mol) */	
#define DLR 13.5	/* SnO, Relative dielectric constant */	
#define mr .275	/* SnO, effective mass */	
double Rg = K * NA;	/* Gas constant (J/K*r	nol)

/* problem constants */

#define ND 1E+19	/* donor concentration (cm-3) */	
#define ETEV1 - 6	/* trap level (Et1) 02 */	
#define EDEV103	/* donor level (Ed1), ED=30meV */	
#define EDEV215	/* donor level (Ed2), ED=150meV */	
#define MU 1E-13	/* phonon frequency */	
#define PO 21273	/* PO2 at 1 atm (Pa) */	
#define S01 1E-14	/* O2 sticking coeficient */	
#define Q01.1	/* adsorption heat in eV */	
#define S02 5E-13	/* NO2 sticking coeficient */	
#define Q02 .2	/* number of equivalent minima in CB */	
double M1= 0.032;	/* O2 molecular weight (Kg/mol) */	
double M2= 0.046;	/* NO2 molecular weight (Kg/mol) */	

/*

*/

main(){

double Tcent, R, FT, ETEV2, ET1F, ET2F; int n, i; double EFINI, VINI, DELTAV, r0; int ERRFLAG; double F1[100], F2[100], Rpos[201], Yval[100], np[100], NDPLUS[100], FQV[100]; double Ir; int vmin=0, vmax=40, iteration=1; float ERRMAX=.0001; double yR, ferr, SAV, FDV, DFDV, DV; double DERIVR, QSURFACE; double NEFF, QVOLUME, rc, TETA; double f01, fm1, f02, fm2; double ALFA1, ALFA2, BETA1, BETA2, B1, B2, TETA01, TETA02, TETAM1, TETAM2; double NSEG; charic, resp; char *filr; FILE *filed; /* input data */ cirscr(); printf("\n TEMPERATURE (°C) "); scanf("%g", Tcent); printf("\n GRAIN RADIUS "); scanf("%g", R); printf("\n TRAP INCREMENT FACTOR "); scanf("%g", FT); printf("\n NO2 EFFECTIVE LEVEL(eV) "); scanf(" %g", ETEV2);

----- main ----

printf("\n concentration of the gas (ppm) "); scanf("%g", pr); /* T in Kelvin */ T = Tcent + 273; pr = .1 * pr; /* ppm to Pa */ /* dimensionless energy levels */ Ed1 = EDEV1 * Q / (K * T);Ed2 = EDEV2 * Q / (K * T);/* surface effective levels */ ET1F = ETEV1 + log(2) * ((K * T)) / Q;ET2F = ETEV2 + log(2) * ((K * T)) / Q;Et1 = ET1F * Q / (K * T);Et2 = ET2F * Q / (K * T);NC= .000002 * Mc *pow(((2 * PI * K * T * M0 * mr)/(H * H)),1.5); /* DOS */ printf(" NC= %g\n",NC); /* EFINI = zbrent(-10, 10, .0001); /*initial Fermi level */ ERRFLAG = FALSE; clrscr(); 1* printf("EC(0)-EF/kT= %d", EF!NI); *1 $printf("et1 = %g\n", Et1);$ $printf("et2 = %q\n", Et2);$ printf("\n initial condition for potential "); scanf("%g", VINI); /* trial initial solution */ DELTAV = .0005 * VINI;n=100; /* Å to cm */ R = R * A;NSS = 2*(1+FT)* ND * R/3; /* surface sites for chemisorption (cm-2) */ r0 = 0;/* initial position point */ Ir=(R - r0) /n; F1[0]=VINI; F2[0]=0; /* cycle for the adjustement of the initial potential (Newton Method) */ do{ printf("iteration= %d\n", iteration); F1[0]=VINI; odeint(n, r0, R, F1, F2); $\gamma R = F1[n];$ ferr = errorv(R, F1[n], F2[n], pr); /* calculates error */ printf("qV(0)-Ef = %g(n",F1[0]);printf("qV(R)-Ef = %g(n",F1[n]);printf("error(Gauss Law) = %g\n", ferr); for(i=0;i<=n;i++) Yval[i] = F1[i]; SAV = VINI; VINI = VINI + DELTAV; /* increment parameter */ F1[0] = VINI; F2[0] = 0;

odeint(n, r0, R, F1, F2); FDV = errorv(R, F1[n], F2[n], pr);DFDV = (FDV - ferr) / DELTAV; /* evaluate numerical derivative */ DV = -ferr / DFDV: /* calculate correction */ printf("correction= %g\n", DV); VINI = SAV: VINI = VINI + DV: /* add correction */ if((VINI - vmin) * (vmax - VINI) < 0){ ERRFLAG = TRUE: printf("solution out of limits\n"); return; } iteration = iteration + 1; } while(abs(DV) < .000001 * (VINI)); /* 0.0001% of initial value */ DERIVR = (Q * Q / (DLV * DLR * K * T)) * nst(Yval[n], pr); QSURFACE = 4 * PI * R * R * nst(Yval[n], pr); /* surface charge */ /* calculation of the volume charge and the effective carrier */ density (integration by the trapezoid method) for(i=0; i<=n;i++){ np[i] = 2 * NC * FDI(Yval[i]) / sqrt(PI); NDPLUS[i] = ND * (1 / (1 + 2 * exp(-(Ed1 + Yval[i]))) + 1 / (1 + 2 * exp(-(Ed2 + Yval[i])))); FQV[i] = -(np[i] - NDPLUS[i]);} NEFF = .5 * lr * np[n] * 4 * PI * R * R; QVOLUME = .5 * Ir * FQV[n] * 4 * PI * R * R; for(i=0;i<(n-1);i++){ rc = i * Ir; QVOLUME = QVOLUME + FQV[i] * 4 * PI * rc * rc * Ir; NEFF = NEFF + np[i] * 4 * PI * rc * rc * Ir; } NEFF = 3 * (NEFF) / (4 * PI * R * R * R); printf("QV= %g\t QS= %g\t mini= %g\n", QVOLUME, QSURFACE, 2 * NC * FDI(EFINI) / sqrt(PI)); printf("PRESSURE = %g Pa\n Grain size = %g\n", pr, R / A); TETA = tet1(Yval[n], pr) + tet2(Yval[n], pr); printf("COVERAGE = %g\n", TETA); printf("neff= %4.2g\n", NEFF); if (ERRFLAG == -1) printf("ERR\n\n"); /* ocupation functions*/ f01 = 1 / (1 + exp(-(Yval[n] + Et1)));fm1 = 1 - (int)f01; f02 = 1 / (1 + exp(-(Yval(n] + Et2)));fm2 = 1 - f02;/* coverages */ ALFA2 = S02 * NA / sqrt(2 * PI * M2 * Rg * T); B2 = (ALFA2 * exp(Q * Q02 / (K * T))) * MU ;

```
BETA2 = B2 / (f02 * (1 + (fm2 / f02) * exp(Et2)));
ALFA1 = S01 * NA / sqrt(2 * Pl * M1 * Rg * T);
B1 = (ALFA1 * exp(Q * Q01 / (K * T))) * MU;
BETA1 = B1 / (f01 * (1 + (fm1 / f01) * exp(Et1)));
printf("B1= %g\t BETA1 = %g\n", B1, BETA1);
printf("B2= %g\t BETA2 = %g\n", B2, BETA2);
 TETA01 = tet1(Yval[n], pr) * f01;
 TETAM1 = tet1(Yval[n], pr) * fm1;
 printf("_1°= %g\n", TETA01);
                                            /* oxygen coverage */
 printf("_1-= %g\n", TETAM1);
 TETA02 = tet2(Yval[n], pr) * f02;
 TETAM2 = tet2(Yval[n], pr) * fm2;
 printf(" 2°= %q\n", TETA02);
                                         /* nitrogen dioxide coverage */
 printf("_2-= %g\n", TETAM2);
 printf("_-= %g\n", TETAM1 + TETAM2);
 NSEG = nst(Yval[n], pr);
 printf("NSEG#= %d\n",(int) NSEG);
 printf("NSS# =%d\n", (int)NSS);
        /* data saving */
scanf("do you want to save the data %c",R);
if (resp == 'Y' || resp=='y'){
scanf("filename %s", filr);
if ((filed = fopen (filr, "wt")) == NULL ){
 print("File open error ");
 fclose(filed);
 retum;
for(i=0;i<=(2*n);i++){
 Rpos[i] = (r0 + lr * i) / A;
                                  /* position in Å */
  if (i<=n)
   fprintf(filed, "%g\t %g\n", Rpos[i], Yval[i]);
  else
   fprintf(filed, "%g\t %g\n", Rpos[i], Yval[2 * n - i]);
}
 fprintf (filed, "neff= %g\n", NEFF);
 fprintf (filed, "BETA1 =%g\n", BETA1);
 fprintf (filed, "BETA2= %g\n", BETA2);
 fprintf (filed, "TETA = %g\n", TETA);
 fprintf (filed, "TETA01 = %g\n", TETA01);
 fprintf (filed, "TETAM1 = %g\n", TETAM1);
 fprintf (filed, "TETA02 = %gin", TETA02);
 fprintf (filed, "TETAM2 = %g\n", TETAM2);
 fprintf (filed, "NSEG = %d\n", NSEG);
 fprintf (filed, "Qs = %g\n ", QSURFACE);
 fprintf (filed, "Qv = %g\n ", QVOLUME);
 fprintf (filed, "T = %g °C\n", Tcent);
 fprintf (filed, "ND = %qn", ND);
 fprintf (filed, "NSS = %d\n ", NSS);
 fprintf (filed, "ETEV1 = %g\n", ETEV1);
 fprintf (filed, "ETEV2 = %g\n", ETEV2);
 fprintf (filed, "EDEV1 = %g\n", EDEV1);
 fprintf (filed, "EDEV2 = %g\n", EDEV2);
```

```
fprintf (filed, "FT = %g\n", FT);
  fclose(filed);
}
} /* main */
/*
                                       --- function ------
                               errorv
*/
double errorv (double RS, double S1, double S2, float pres){
/* estimates the error in the boundary (Gauss Law) */
double FST, SND, TRD;
FST = S2 / RS;
                            /* electric field at the boundary */
SND = Q * Q / (DLV * DLR * K * T);
TRD = nst(S1, pres);
                            /* charge in the surface */
return (FST - SND * TRD);
}/* errorv */
[*
                                      ---- function -----
                                  f
*1
double f (double X){
/* function for the caculation of the Fermi level from the
 charge neutrality ecuation : n = Nd+ */
double SECOND, THIRD;
SECOND = 2 * NC * FDI(X) / sqrt(PI);
THIRD = ND * (1 / (1 + 2 * exp(-(Ed1 + X))) + 1 / (1 + 2 * exp(-(Ed2 + X))));
return (SECOND - THIRD);
}/* f */
/*
                                 ----- function ------
                                 FDI
*/
double FDI (double r){
/* Fermi Dirac integral*/
double EMIN = 0;
                          /* Ecmin/kT */
                           /* Ecmax/kT (4.4 eV) */
double EMAX = 176;
```

```
double NS = 200, D, s;
int j;
D = (EMAX - EMIN) / NS;
s = .5 * (Y(EMIN, r) + Y(EMAX, r));
if (r > 4)
 return( .5 * sqrt(PI) * exp(-r)); /* Bolztmann aproximation */
if (r < -4)
 return (2 * pow((-r) , 1.5) / 3); /* Sommerfeld aproximation */
for(j=1;j<=(NS - 1);j++)
                              /* trapezoid method */
 s = s + Y(EMIN + j * D, r);
return (s*D);
\/* FDI */
/*
                                          --- function ----
                                      FZ1
*/
double FZ1 (double G, double Y1, double Y2){
/* 1st differential equation */
return ((G == 0) ? 0 : ( Y2 / G));
}/* FZ1 */
/*
                                        ----- function ------
                                        FZ2
*1
double FZ2 (double G, double Y1, double Y2){
/* 2nd differential equation */
double C, FIRST, SECOND, THIRD;
C = Q * Q / (DLV * DLR * K * T);
if (G == 0) return (0);
FIRST = -Y2/G;
SECOND = 2 * NC * FDI(Y1) / sqrt(PI);
THIRD = ND * ((1 / (1 + 2 * exp(-(Ed1 + Y1)))) + (1 / (1 + 2 * exp(-(Ed2 + Y1)))));
retum( FIRST - (C * G * (SECOND - THIRD)));
}/* FZ2 */
ľ
                                         ----- function -----
                                         nst
*/
double nst (double FL, float P){
1*
density of strong chemisorbed species
with the competition of O, and NO,
```

FL= potential, P= NO, partial pressure */ double f01, fm1, f02, fm2; f01 = 1 / (1 + exp(-(FL + Et1)));fm1 = 1 - f01: f02 = 1 / (1 + exp(-(FL + Et2)));fm2 = 1 - f02;return (NSS*(tet1(FL, P)*fm1+tet2(FL, P) * fm2)); /* density of charged states */ }/* nst */ /* --- function -odeint void odeint (int npts, double x0, double xf, double g1[], double g2[]){ /* performs the integration of the differential equation from x0 to xf in a number of points npts and saves the value of the function and the derivative in the arrays g1 and g2 */ double L, xi; int i: double p5, k1, l1, k2, l2, k3, l3, k4, l4; L = (xf - x0) / npts;for(i=0;i<=(npts - 1);i++){ xi = x0 + i * L: rung4(i, xi, L, g1, g2); } }/* odeint */ /* - function rung4 void rung4 (int J, double tj, double P, double z1[], double z2[]){ /* performs the Runge-Kutta Algorithm of 4th order */

double p5, k1, l1, k2, l2, k3, l3, k4, l4;

 $p5 = .5 * P; \\ k1 = P * FZ1(tj, z1[J], z2[J]); \\ l1 = P * FZ2(tj, z1[J], z2[J]); \\ k2 = P * FZ1(tj + p5, z1[J] + .5 * k1, z2[J] + .5 * l1); \\ l2 = P * FZ2(tj + p5, z1[J] + .5 * k1, z2[J] + .5 * l1); \\ k3 = P * FZ2(tj + p5, z1[J] + .5 * k2, z2[J] + .5 * l2); \\ l3 = P * FZ2(tj + p5, z1[J] + .5 * k2, z2[J] + .5 * l2); \\ k4 = P * FZ2(tj + P, z1[J] + k3, z2[J] + l3); \\ l4 = P * FZ2(tj + P, z1[J] + k3, z2[J] + l3); \\ l4 = P * FZ2(tj + P, z1[J] + k3, z2[J] + l3); \\ z1[J+1] = z1[J] + (k1 + 2 * k2 + 2 * k3 + k4) / 6; \\ z2[J+1] = z2[J] + (l1 + 2 * l2 + 2 * l3 + l4) / 6; \\ \end{cases}$

}/* rung4 */ 1*

tet1

----- function ----

*/

double tet1 (double VS, float X){ /* Modified Volkenstein isotherm: O, factor */ double ALFA2, B2, f02, fm2, BETA2, ALFA1, B1, f01, fm1, BETA1; ALFA2 = S02 * NA / sart(2 * PI * M2 * Rg * T); B2 = (ALFA2 * exp(Q * Q02 / (K * T))) * MU; f02 = 1 / (1 + exp(-(VS + Et2)));fm2 = 1 - f02; BETA2 = B2 / (f02 * (1 + (fm2 / f02) * exp(Et2)));/* coverage of oxygen */ ALFA1 = S01 * NA / sart(2 * PI * M1 * Rg * T); B1 = (ALFA1 * exp(Q * Q01 / (K * T))) * MU; f01 = 1 / (1 + exp(-(VS + Et1)));fm1= 1 - f01; BETA1 = B1 / (f01 * (1 + (fm1 / f01) * exp(Et1)));return (BETA1 * PO / (1 + BETA1 * PO + BETA2 * X)); }/* tet1 */ /* ----- function ----tet2 */ double tet2 (double VS, float X){ /* Modified Volkenstein isotherm: NO2 factor */ double ALFA2, B2, f02, fm2, BETA2, ALFA1, B1, f01, fm1, BETA1; ALFA1 = S01 * NA / sart(2 * PI * M1 * Ra * T); B1 = (ALFA1 * exp(Q * Q01 / (K * T))) * MU; f01 = 1 / (1 + exp(-(VS + Et1)));fm1 = 1 - f01; BETA1 = B1 / (f01 * (1 + (fm1 / f01) * exp(Et1)));/* coverage of NO2 */ ALFA2 = S02 * NA / sqrt(2 * PI * M2 * Rg * T); B2 = (ALFA2 * exp(Q * Q02 / (K * T))) * MU; f02 = 1 / (1 + exp(-(VS + Et2)));fm2= 1 - f02; BETA2 = B2 / (f02 * (1 + (fm2 / f02) * exp(Et2))); return (BETA2 * X / (1 + BETA1 * PO + BETA2 * X)); }/* tet2 */ /* -- function -

Y

```
*/
float Y (float E, double M){
/*integrand of the Fermi-Dirac integral*/
return( sqrt(E) / (1 + \exp(E + M)));
}/* Y */
/*
                                      ----- function --
         zbrent
*/
double zbrent (double X1, double X2, float tol){
/*
 Brent's method for finding a root of a function f(x) confined
 between the points X1 and X2, used for the determination
 of the Fermi level
*1
int ITMAX = 100;
                         /* maximum number of iterations */
int i:
double EPS = 3E-08;
                           /* floating point number precision */
double AZ, B, FA, FB, FC, C, D, E, tol1, XM, s, P, QZ, R, MIN, MIN1, MIN2;
AZ = X1;
8 = X2;
FA = f(AZ);
FB = f(B);
if (FB * FA > 0){
 printf( "ERROR in zbrent : THE ROOT MUST BE CONFINED");
  retum;
 FC = FB;
for(i=1;i<=ITMAX;i++){
 if( FB * FC > 0){
   C = AZ;
   FC = FA;
   D = B - AZ;
   E = D;
  }
  if( abs(FC) < abs(FB) ){
   AZ = B;
   B = C;
   C = AZ;
   FA = FB;
   FB = FC;
   FC = FA;
  }
  tol1 = 2 * EPS * abs(B) + .5 * tol;
  XM = .5 * (C - B);
                                                             254
```

```
if ((abs(XM) <= tol1) || (FB == 0))
 retum B;
if ((abs(E) >= tol1) && (abs(FA) > abs(FB)))(
                      /* attemp inverse cuadratic interpolation */
  s = FB / FA;
  if (AZ == C){
   P = 2 * XM * s;
   QZ = 1 - s;
  }
  else{
        QZ = FA / FC;
        R = FB/FC;
        P = s * (2 * XM * QZ * (QZ - R) - (B - AZ) * (R - 1));
        QZ = (QZ - 1) * (R - 1) * (s - 1);
  }
 if(P > 0) QZ = -QZ;
 P = abs(P);
 MIN1 = 3 * XM * QZ - abs(tol1 * QZ);
 MIN2 \approx abs(E * QZ);
 if (MIN1 < MIN2)
  MIN = MIN1;
  else
   MIN = MIN2;
  if (2*P<MIN){
   E = D;
                       /* accept interpolation */
    D = P / QZ;
  }
  else{
                         /* interpolation failed, use bisection */
    D = XM;
    E = D;
 }
 }
                       /* bounds decreasing too slowly, use bisection */
 else{
  D = XM;
  E = D;
 }
 AZ = B;
 FA = FB;
 if( abs(D) > tol1)
  B = B + D;
 else{
  if (XM >= 0)
    B = B + abs(tol1);
  else
    B = B - abs(tol1);
 }
 FB = f(B);
}/* for */
printf( * MAXIMUM NUMBER OF ITERATIONS EXCEEDED* );
retum (B);
}/* zbrent */
```