EL METODO CONDICIONADO EN LAS TABLAS 2×2

UNIVERSIDAD COMPLUTENSE

por

Inmaculada Herranz Tejedor

Memoria que, para optar al Grado de Doctor por el Departamento de Estadística e Investigación Operativa de la Universidad Complutense de Madrid, presenta la licenciada Dª Inmaculada Herranz Tejedor.

Madrid, a 8 de Julio de 1992.

ANTONIO MARTIN ANDRES, Catedrático de Estadística e I.O. de la Universidad de Granada

CERTIFICA:

Que Dª Inmaculada Herranz Tejedor, licenciada en 'Matemáticas, ha realizado bajo mi dirección la memoria que lleva por Título " El método condicionado en las Tablas 2x2 ", memoria que presenta para optar al Grado de Doctor.

y para que conste, firmo le presente en Grananda a seis de julio de mil novecientos noventa y dos.

A las personas que quiero

Quiero expresar mi más sincero agradecimiento a:

- D. ANTONIO MARTIN ANDRES, catedrático de Bioestadística en la Facultad de Medicina de Granada y director de esta tesis, por su apoyo y estímulo en todo momento, así como el cariño y paciencia que ha demostrado durante la preparación de esta memoria.
- D. LUIS PRIETO VALIENTE, profesor titular de Bioestadística de la Facultad de Medicina, Universidad Complutense de Madrid, por el apoyo moral y conocimientos que me ha dedicado antes y durante la realización de este trabajo.

Igualmente mi reconocimiento a Francisco Gayá y Rafael Sendra, que con su pequeña aportación me permitieron dar un gran paso en la elaboración de esta memoria.


y no puedo olvidar a las personas, ajenas a este ámbito, que han sido capaces de soportar mis nervios y desánimos durante este periodo.

INDICE

•	O. INTRODUCCION
	I. MÉTODOS CONDICIONADOS NO ASINTÓTICOS.
	1. INTRODUCCIÓN
	2. TEST EXACTO DE FISHER
•	2.1. Generalidad
	2.2. Test de 1 cola
•	2.3. Test de 2 colas
	2.3.1. Versiones tradicionales 18
	2.3.2. Versión óptima (Aportación) 23
	2.4. Tablas y programas
	2.4.1. Tablas y programas clásicos 31
	2.4.2. Nuevas tablas y programas
	(<u>Aportación</u>)
	2.5. Test exacto de Fisher y test de las rachas
	2.5.1. Introducción
	2.5.2. Test de las rachas y distribución
	hipergeométrica 38
	2.5.3. El test de las rachas en términos de
	tránsitos (<u>Aportación</u>)
	3. TEST ALEATORIZADO: TEST DE TOCHER
	4. TESTS INCONDICIONADOS Y TEST EXACTO DE FISHER
	4.1. Introducción
	4.2. El test exacto de Fisher como test
	incondicionado
	4.2.1. Introducción 48
	4.2.2. Versión óptima (<u>Aportación</u>) 49
	4.2.3. El test exacto de Fisher frente a
	los tests incondicionados clásicos
	(<u>Aportación</u>) 57
	5. TESTS DE ALEATORIZACIÓN 67
	6. TESTS PSEUDOBAYESIANOS
	6.1. Introducción 67
	6.2. Tests condicionados
	6.2.1. Solución de Rice 68

6.2.2. Generalización de la solución de	
Rice (Aportación)	69
6.2.3. Condicionamiento intermedio	
(Aportación)	71
6.2.4. Discusión (<u>Aportación</u>)	72
7. DISCUSIÓN	
7.1. Introducción	74
7.2. ¿Test aleatorizado o no aleatorizado?	74
7.3. ¿Test de aleatorización o de no	
aleatorización?	75
7.4. ¿Test clásico o pseudobayesiano?	76
7.5. ¿Test condicionado o incondicionado?	78
7.6. Versiones especiales del test de Fisher	
7.6.1. Introducción (Aportación)	85
7.6.2. Crítica al P-mid (Aportación)	86
7.6.3. Crítica a la versión de Armitage	88
8. CONCLUSIONES (APORTACIÓN)	89
II. MÉTODOS CONDICIONADOS ASINTÓTICOS.	0.5
1. INTRODUCCION	95
2. METODOS ASINTOTICOS MAS USUALES	ο
2.1. El test chi-cuadrado clásico	9/
2.2. Métodos para los casos raros. (Aportación)	~~
2.2.1. Introducción	
2.2.2. 0000 00 11. 11.00 0000	100
2.2.3. 60.56 00 000 000 000	102
3. LA CORRECCION POR CONTINUIDAD EN EL TEST	
CHI-CUADRADO	
J.I. Generaliadaes	104
3.2. Correcciones por continuidad clásicas	
J.2.1. III. CCDCD at all a CCT	106
3.2.2. m. debut de	107
3.3. Propuesta de nuevas c.p.c. (Aportación)	100
5.5.1. In coole de and colle	109
3.3.2. En tests de dos colas	112
3.4. Análisis crítico de las soluciones clásicas	
3.4.1. Determinación de la bondad de una	310
c.p.c.(<u>Aportación</u>)	116

	3.4.2. La corrección por continuidad óptima
	en la literatura 118
	3.4.3. Conclusiones
3.5.	La c.p.c. óptimo por los criterios actuales
	(Aportación)
	3.5.1. Criterios para seleccionar la c.p.c.
	óptima
	3.5.2. Descripción de los cálculos a
	realizar y de los datos a obtener 125
	3.5.3. Selección en tests de una cola 128
	3.5.4. Selección en tests de dos colas 132
,	3.5.5. Selección entre las versiones con
	factor n o (n-1)
	3.5.6. Selección con cntidades esperadas no
	inferior a cinco 139
	3.5.7. Conclusiones
3.6.	Equivalencias entre los distintos tests
	(<u>Aportación</u>)
	CONDICIONES DE VALIDEZ DEL TEST CHI-CUADRADO
	Generalidades y condiciones clásicas 152
4.2.	Nuevas condiciones de validez (Aportación)
	4.2.1. Introdución, objetivo y criterios
	previos 154
	4.2.2. Proceso para obtener los resultados 156
	4.2.3. Las condiciones de validez en las
	c.p.c. estudiadas 158
	4.2.4. La c.p.c. óptima en función de las
	condiciones de validez 160
	4.2.5. Discusión y conclusiones 163
4.3.	Versión asintótica del test de las rachas
	4.3.1. Introducción
	4.3.2. Nuevo test asintótico (Aportación) 169
•	CONDICIONES DE VALIDEZ EN LOS CASOS RAROS
· 	ortación)
	Introducción
	Selección de las constantes y discusión 174
5.3.	La versión chi-cuadrado para los casos
	raros
6 CON	CLUSTONES

Por Tabla 2x2 se alude a una representación de datos como la de la Tabla 1, los cuales pueden surgir, principalmente, de tres tipos de experimentos (Pearson, 1947) dependiendo del número de marginales fijados. En ella

 $x_1+x_2=a_1$, $y_1+y_2=a_2$, $x_1+y_1=n_1$, $x_2+y_2=n_2$ y $a_1+a_2=n_1+n_2=n$. En lo que sigue, se aludirán por letras mayúsculas a las variables aleatorias (X_1, Y_1, A_1, \ldots) y por letras minúsculas a sus valores experimentales (x_1, y_1, a_1, \ldots) .

Ā Totales Muestra (Carácter) Α Muestra I (B) n, X_1 y_1 Muestra II (B) n_2 X_2 y₂ Totales a, n a٠

Tabla 1

Los tres experimentos aludidos son:

i) Experimento de Fisher de la señorita y las tazas de té, Fisher (1942) (los dos marginales fijados de antemano). En él se le ofrecen a dicha señorita n tazas a clasificar. En n_1 de ellas se echó la leche primero y el té después; en n_2 de ellas se procedió al revés (clasificación B Y \bar{B}). Dado que tal información le es ofrecida, ella clasificará las tazas (clasificación A y \bar{A}) de igual modo, pero procurará que sea $a_1=n_1$. Para el caso general no tiene por qué suceder tal igualdad.

La situación se ajusta al modelo en el que de una urna en la que hay n bolas (de las que n_1 bolas son de tipo B y n_2 bolas

son de tipo \bar{B}), se extraen sin remplazamiento a_1 bolas (a_2 bolas dentro de la urna). Se desea contrastar la hipótesis de que las bolas han sido extraidas al azar. Si esto es cierto, la probabilidad de obtener una tabla como la dada es:

$$P(X_{1}=x_{1} \mid n_{1}, a_{1}, n) = P(x_{1}) = \frac{\binom{n_{1}}{x_{1}}\binom{n_{2}}{x_{2}}}{\binom{n}{a_{1}}}$$
(1)

con

$$r = Max(0; a_1 - n_2) \le x_1 \le Min(a_1; n_1) = s$$
 (2)

que surge de la distribución hipergeométrica de la única variable que aparece: X₁. En esta expresión todos los valores son conocidos, lo que permite calcular la probabilidad de una configuración como la dada.

ii) Comparación de dos proporciones (un marginal fijado: los n_i). Se ajusta al modelo en el que las variables X_i , i=1,2, son variables aleatorias binomiales independientes con parámetros n_i y p_i , siendo p_i la probabilidad de que un individuo de la población i verifique una determinada característica en estudio (A). Con ello, la probabilidad de una tabla como la dada es:

$$P(X_1=X_1,X_2=X_2 \mid n_1,n_2,p_1,p_2) = \binom{n_1}{x_1} \binom{n_2}{x_2} p_1^{x_1} (1-p_1)^{y_1} p_2^{x_2} (1-p_2)^{y_2}$$
(3)

La hipótesis a contrastar es la igualdad de proporciones : $H_0 \equiv p_1 = p_2$ (=p). Bajo esta hipótesis, la probabilidad anterior se

convierte en:

$$P(X_1 = X_1, X_2 = X_2 | n_1, n_2, p) = \binom{n_1}{X_1} \binom{n_2}{X_2} p^{a_1} (1-p)^{a_2}$$
 (4)

la cual no puede calcularse directamente por depender del parámetro perturbador p (que es desconocido).

iii) Asociación de dos caracteres cualitativos dicotómicos (ningún marginal fijado de antemano). Surge en un proceso aleatorio en el que n individuos son clasificados según dos características (A y B). Como ningún marginal está dado de antemano, las variables independientes del problema son, por ejemplo, (X_1, X_2, Y_1) y la probabilidad asociada a la tabla observada proviene de una distribución multinomial:

$$P(X_1=X_1,X_2=X_2,Y_1=Y_1|n) = \frac{\overline{n!}}{X_1!X_2!Y_1!Y_2!} p_{BA}^{X_1} p_{BA}^{Y_1} p_{BA}^{X_2} p_{BA}^{Y_2}$$
 (5)

donde cada una de las p_{ij} corresponden a la probabilidad de cada una de las cuatro casillas. La hipótesis a contrastar (H_o) es la independencia de los dos caracteres A y B. Si la H_o es cierta y llamando

 $p_{\lambda}=p_{B\lambda}+p_{B\lambda}$, $p_{\bar{\lambda}}=p_{B\bar{\lambda}}+p_{B\bar{\lambda}}$, $p_{B}=p_{B\lambda}+p_{B\bar{\lambda}}$, $p_{B}=p_{B\lambda}+p_{\lambda B}$ sucederá que

 $p_{AB}=p_A\;p_B\;,\quad p_{AB}=p_A\;p_B\;,\quad p_{XB}=p_X\;p_B\;\quad y\quad p_{XB}=p_X\;p_B$ con lo cual la expresión anterior queda así:

$$P(x_1, x_2, y_1 | n) = \frac{n!}{x_1! x_2! y_1! y_2!} p_A^{a_1} (1-p_A)^{a_2} p_B^{n_1} (1-p_B)^{n_2}$$
 (6)

pues p_{λ} + p_{λ} = p_{B} + p_{B} = 1. El cálculo directo de tal probabilidad no es posible pues aparecen dos parámetros perturbadores (p_{λ} y p_{B}) de valor desconocido.

Los tres problemas anteriores, clásicos en la estadística de toda la vida, han sido aludidos numerosas veces en la literatura con diversas identificaciones. Kroll (1989) recopila las más habituales que se dan en la tabla siguiente:

		inales fijos; modelo e 1; Dos Binomiales			
Estudio:	Diferentes Nombres:				
Barnard (1947);	Ensayos	Ensayos	Doble		
Upton (1982)	Independientes (IT)	Comparatives (CT)	Dicotomía (DD)		
Pearson (1947)	Problema I	Problema II	Problema III		
Kempthorne (1979)	Origen III	Origen II	Origen I		
Kendall & Stuart (1973)	Caso I	Caso II Homogenidad	Caso III Doble dicotomia		
			ada solo, ess em		
Cemilli &	Modelo I	Modelo II	Modelo III		
Hopkins (1978,79)	Exacto de Fisher	Homogeneidad	Independencia		
Yates (1984)	Ensayos Comparativos	Dos Binomiales	Independencia		

Hay otras situaciones emparentadas con las actuales que no son el objeto de esta memoria. Así, Kudô and Tarumi (1978) presentan tres situaciones en las que surge una tabla con formato como el de la Tabla 1: las dos primeras se reducen a uno de los problemas ya planteados; la tercera da lugar a uno nuevo. Sea x_1 y x_2 dados, y sea Y_1 una variable aleatoria distribuida como binomial negativa con probabilidad p_1 e Y_2 lo mismo con probabilidad p_2 . Bajo este modelo, la probabilidad de

la tabla es

$$Pr(Y_1 = y_1, Y_2 = y_2 | n_i, x_i) = {\begin{pmatrix} x_1 + y_1 - 1 \\ y_1 \end{pmatrix}} p_1^{x_1} (1 - p_1)^{y_1} {\begin{pmatrix} y_1 + y_2 - 1 \\ y_2 \end{pmatrix}} p_2^{x_2} (1 - p_2)^{y_2}$$
(7)

y el objetivo es de nuevo contrastar la igualdad de parámetros, $H_0=p_1=p_2$, por lo que vuelve a surgir el parámetro perturbador p.

Durante mucho tiempo, ha sido costumbre analizar los tres problemas antes planteados mediante el test de χ^2 (Pearson, 1900) en el caso de grandes muestras, o mediante el test exacto de Fisher (1935) cuando las muestras eran pequeñas. Sin pérdida de generalidad, y con el fin de simplificar la exposición, por ahora aludiremos al caso ii) (comparación de dos proporciones).

Como ya hemos dicho antes, el objetivo es contrastar la $H_0 = p_1 = p_2$ (=p) de igualdad de ambas proporciones mediante test de una o dos colas. Bajo Ho, la probabilidad de la tabla observada es la (4) que depende del parámetro perturbador desconocido p. Basu (1977) expuso las distintas posibilidades para eliminar parámetros perturbadores en un contraste de hipótesis. La primera posibilidad (método condicional) se basa en la búsqueda de un estadístico cuya distribución condicional los llamados tests dependa de p, dando lugar no condicionados. La segunda (método de maximización) consiste en sustituir el parámetro p por el valor de él que hace máximo el tamaño del test, dando lugar así a los llamados tests incondicionados. La tercera posibilidad (método de estimación) consiste en sustituir p por un estimador y, a continuación, aplicar la teoría asintótica, resultando válido este método sólo para grandes muestras. Más recientemente Hinde and Aitkin (1987) propusieron un cuarto método basado en lo que denominan verosimilitud canónica, dando lugar a lo que podemos llamar tests canónicos. Por otro lado, y para el caso particular en que los n, individuos de cada muestra no han sido tomados al azar de una población i, sino que provienen de una partición al azar de un grupo inicial único de n individuos (cada uno recibiendo el tratamiento I o II según el grupo en el que caigan), se tienen los tests de aleatorización, los cuales a su vez, pueden ser condicionados o incondicionados. Otros autores (Rice, 1988; Martín and Luna, 1987) eliminan el parámetro perturbador p asignándole una distribución conocida, dando lugar así a los llamados tests pseudobayesianos. Esta memoria, por elaborarse desde el punto de vista "clásico", no se ocupa de las soluciones bayesianas del problema. A tal efecto, ver Altham (1969), Aitchison and Bacon-Shone (1981) y Nurminen and Mutanen (1987).

Como se ve, los tres modelos aludidos, extremadamente simples en apariencia y de estudio habitual para cualquier estudiante que da sus primeros pasos en estadística, se complican notablemente y dan lugar a varias metodologías de resolución. En realidad el problema cae de lleno dentro del más amplio de la eliminación de parámetros perturbadores, que es uno de los grandes problemas de la estadística actual, y ha sido tomado como terreno de batalla particular de esa lucha más general. La importancia de abordar exhaustivamente unos modelos tan sencillos como los actuales es pues doble. En primer lugar nos permitirá extraer consecuencias de utilidad general para

problemas de orden inmediatamente superior; en segundo lugar, las consecuencias pueden extrapolarse a problemas de orden más amplio. Buena prueba de la importancia de los temas abordados en esta memoria es que en los últimos años se han publicado más de 200 artículos sobre el tema, sin que se haya producido acuerdo en sus aspectos particulares ni en los generales. Aquí se pretende abordar objetivamente tales cuestiones, detectar y eliminar las arbitrariedades de ciertas soluciones de la bibliografía y establecer nuevas metodologías que permitan avanzar en el acercamiento de las posiciones de unos y otros.

Anteriormente se ha aludido a los problemas de orden inmediatamente superior a los actuales, problemas en cuya solución se podrá avanzar una vez que se aclare qué es lícito y qué no es lícito en sus homónimos de orden inferior. Tales problemas son una generalización de los modelos i), ii) e iii) citados al principio, y son:

- i') Good (1990) alude a una generalización del problema de la señorita y las tazas de té al del señor y las jarras de cerveza en el que debe distinguirse entre $r\geq 2$ variedades de cerveza. El asunto es similar al de un examen de tipo test con $r\geq 2$ respuestas alternativas en el que el alumno debe elegir forzosamente una.
- ii') Si en lugar de tomar dos binomiales se consideran r binomiales independientes, se tendrá una tabla de r filas y 2 columnas (tabla rx2). Una nueva generalización se obtiene si en lugar de considerar r binomiales se consideran r multinomiales

de s casillas cada una (tabla rxs). La H_o ahora sería la homogeneidad de las r multinomiales.

iii') Si en lugar de considerar dos caracteres dicotómicos (A y B), se consideran dos caracteres (también A y B), el primero a r niveles $(A_1, A_2, \ldots A_r)$ y el segundo a s niveles $(B_1, B_2, \ldots B_s)$, se obtendrá de nuevo una tabla rxs (tabla de contingencia). La H_0 es también de independencia de los caracteres A y B.

Esta memoria está pues dedicada al estudio de las soluciones de los problemas i), ii) e iii), y se divide en dos capítulos: el primero dedicado a las soluciones no asintóticas o exactas (soluciones que son válidas siempre, pero útiles especialmente en el caso de pequeñas muestras); el segundo dedicado a las soluciones asintóticas (útiles en el caso de grandes muestras). En particular está dedicado a todas aquellas impliquen de algún modo al soluciones que condicionado (y ello por las razones teóricas y prácticas que aunque incidentalmente, y indicarán), se comparativos, también se aludirá a otras soluciones (las sustentadas por el principio incondicionado). Un objetivo importante de esta memoria es el clasificador, y el mismo estará presente a lo largo de los dos capítulos de ella. Tal objetivo, trivial en apariencia, no lo es tanto. Una razón de ello puede entenderse de momento si se medita sobre un hecho citado más arriba: ¿cómo es posible que un problema tan elemental dé lugar a más de 200 artículos de revistas

internacionales en los últimos 40 años? La razón de tal proliferación es el confusionismo. Es harto frecuente que autores de prestigio, en revistas de prestigio, confundan métodos asintóticos con otros que no lo son, métodos condicionados con otros que no lo son, métodos aleatorizados con otros que no lo son, y así sucesivamente. Por otro lado, el problema se ha prestado (por el poco acuerdo existente) a introducir en él modificaciones (a veces filosóficas) de los propios conceptos estadísticos (P-mid de Lancaster; α flexible de Barnard; etc.), y ello ha contribuido al confusionismo. Si a todo ello se añade que muchas de las decisiones han de tomarse en base a una simulación del modelo, y que tales simulaciones se han efectuado bien de modo muy limitado, bien desde un punto de vista particular, se tendrá una idea bastante aproximada de cual es el problema. Aquí se intenta aclararlo.

CAPITULO I

METODOS CONDICIONADOS NO ASINTOTICOS

1.- INTRODUCCION.

Más arriba se han citado las distintas filosofías que pueden usarse para abordar los problemas señalados. En este capítulo se las analiza una a una, se comparan las distintas versiones de cada una de ellas (eligiendo la óptima), se las enfrenta entre sí, y se señalan sus posibles relaciones. Todo ello en el marco limitador del principio condicionado.

La gran ventaja del método condicionado es que permite resolver los tres problemas citados por un procedimiento único y computacionalmente sencillo, y puesto que el mismo está fundamentado en el concepto de estadístico auxiliar (ancillary), conviene recordar algo sobre él.

<u>Definición 1.-</u> Sea el problema general de contraste de hipótesis: $H_0 \equiv \theta_1 = \theta_1^\circ$, θ_2 (sin especificar) contra $H_1 \equiv \theta_1 \neq \theta_1^\circ$, θ_2 (sin especificar). Tanto θ_1 como θ_2 pueden ser vectores o escalares. Sea un vector de observaciones X cuya verosimilitud se puede factorizar de esta manera:

$$L(\theta_1, \theta_2; X) = \exp[t_1\theta_1 + t_2\theta_2] \ j(\theta_1, \theta_2) \ K(X)$$

donde K es sólo función de X, j es sólo función de θ_1 y θ_2 y t_1 y t_2 son funciones de X solamente. Bajo estas condiciones t_1 y t_2 son un conjunto minimal suficiente de estimadores de θ_1 y θ_2 respectivamente, y, cuando se hacen inferencias sobre θ_1 , t_2 es el llamado estadístico auxiliar.

Con esta definición se puede demostrar que la distribución de

 T_1 (la letra mayúscula designa la variable aleatoria) dado t_2 no es función de θ_2 (Lehmann, 1959 pag.52). De ahí que las inferencias sobre θ_1 puedan hacerse a partir de la distribución de T_1 condicionado por t_2 .

Aplicando esta definición a ii), la verosimilitud de una tabla como la Tabla 1 es:

$$L(p_1, p_2; x_1, x_2) = \binom{n_1}{x_1} \binom{n_2}{x_2} p_1^{x_1} q_1^{n_1 - x_1} p_2^{x_2} q_2^{n_2 - x_2}$$

$$q_i = 1 - p_1, i = 1, 2$$
(8)

que puede expresarse como

$$\frac{L(p_1, p_2; \mathbf{x}_1, \mathbf{x}_2) - \left(\frac{n_1}{\mathbf{x}_1}\right) \left(\frac{n_2}{\mathbf{x}_2}\right) q_1^{n_1} q_2^{n_2} \exp \left[\mathbf{x}_2 \left(\ln \frac{p_2}{q_2} - \ln \frac{p_1}{q_1}\right) + (\mathbf{x}_1 + \mathbf{x}_2) \ln \frac{p_1}{q_1}\right] (9)}{\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_4 + \mathbf{x}_5 + \mathbf{x}_$$

y es factorizable según el formato de la definición. Utilizando una reparametrización de p_1 y p_2 en la forma logística:

$$\frac{p_1 = \frac{e^{\beta + \frac{\lambda}{2}}}{1 + e^{\beta + \frac{\lambda}{2}}} ; \quad p_2 = \frac{e^{\beta - \frac{\lambda}{2}}}{1 + e^{\beta - \frac{\lambda}{2}}}$$
 (10)

entonces:

$$e^{\lambda} = \frac{p_1 q_2}{p_2 q_1} + \lambda = Ln \frac{p_1}{q_1} - Ln \frac{p_2}{q_2}$$
 (11)

$$\beta = \frac{1}{2} \left(Ln \frac{p_1}{q_1} + Ln \frac{p_2}{q_2} \right)$$
 (12)

En la (11), $\lambda=0$ es equivalente a $p_1=p_2$, y así λ está relacionada con la diferencia de proporciones y β con la magnitud de las

mismas. Usando la reparametrización antes citada, se tiene

$$L(\lambda, \beta; x_1, x_2) = \frac{\binom{n_1}{x_1}\binom{n_2}{x_2}e^{\frac{(x_1-x_2)\frac{\lambda}{2}+(x_1+x_2)\beta}{2}}}{\frac{(1+e^{\beta+\frac{\lambda}{2}})^{n_1}(1+e^{\beta-\frac{\lambda}{2}})^{n_2}}}$$
(13)

De tal expresión es inmediato que el conjunto de estadísticos suficientes para λ y β son x_1-x_2 y x_1+x_2 respectivamente. Cuando se hagan inferencias sobre λ (que son las que interesan) entonces $x_1+x_2=a_1$ es el estadístico auxiliar para el parámetro perturbador, sin más que aplicar lo dicho en la definición de auxiliariedad.

De la expresión (13) se obtiene, a partir de la distribución condicional de X_1-X_2 fijado a_1 , que la distribución condicional para X_1 es

$$g(x_1|a_1;\lambda) = \frac{\binom{n_1}{x_1}\binom{n_2}{a_2-x_1}e^{\lambda x_1}}{\sum_{i=0}^{a_1}\binom{n_1}{i}\binom{n_2}{a_1-i}e^{\lambda i}}$$
(14)

y para el caso en que λ = 0, que es el que nos interesa

$$g(x_1 \mid a_1; \lambda=0) = \frac{\binom{n_1}{x_1}\binom{n_2}{x_2}}{\binom{n}{a_1}}$$
(15)

De forma análoga puede probarse que para el caso iii) se tiene que $g(x_1|a_1,n_1)$ es también la expresión (15). Ver Lehmann (1959). En el casi i) no hay parámetro perturbador, pero la probabilidad básica -la (1) de entonces- es la misma de ahora. Así pues, condicionando en los estadísticos auxiliares (cuando

los hay) se obtiene la misma distribución hipergeométrica base, la cual se encuentra apoyada por las interesantes propiedades de tales estadísticos.

2.- TEST EXACTO DE FISHER.

2.1. Generalidades.

Históricamente, la reducción de los tres problemas a uno se realizó por necesidades de cómputo más que por conveniencia estadística. La probabilidad (1) como solución del caso i) era conocida de antiguo, y su utilización para resolver los otros dos casos recibió más adelante el nombre de tests exacto de Fisher.

Fisher (1935), Irwin (1935) y Yates (1934), simultáneamente, y ante la dificultad de no conocer el verdadero valor del parámetro perturbador p del caso ii) - expresión (4)-, propusieron comparar la muestra observada no con todas las muestras posibles, sino con una subpoblación de muestras relacionadas con la obtenida que evite tener que conocer p (lo que nos lleva al condicionamiento en el estadístico auxiliar). Así, bajo la H_o, si X_i son variables aleatorias binomiales independientes:

 $X_i = \beta \ (n_1, p_i) \ i=1,2$ independientes se define $A_1 = X_1 + X_2$ variable aleatoria que seguirá una distribución Binomial de parámetros n1+n2 y p. Entonces

$$P(X_1=X_1|A=X_1+X_2) = \frac{P(X_1=X_1)\cap (A=X_1+X_2)}{P(A=X_1+X_2)} = \frac{P(X_1=X_1) P(X_2=X_2)}{P(A=X_1+X_2)}$$

que, sustituyendo las funciones de probabilidad de las v.a. anteriores, queda reducida a

$$\frac{\binom{n_1}{x_1}\binom{n_2}{x_2}}{\binom{n}{a_1}} \tag{17}$$

que no es más que la probabilidad de la distribución hipergeométrica del problema i). Se observa lo injusto del nombre de test exacto de Fisher, pues fueron tres los autores que simultáneamente lo descubrieron (ver Good, 1984, para una historia del problema), y de ahí que a veces se le alude como test de Fisher-Irwin-Yates.

Para el problema iii), sucede algo parecido. Si se verifica la independencia entre A y B (H_o) en la variable multinomial original, sucederá que los marginales son también multinomiales (binomiales en este caso) independientes $B(n,p_B)$ y $B(n,p_A)$, por lo que:

$$P(n_{1}, n_{2}) = {n \choose n_{1}} p_{B}^{n_{1}} (1-p_{B})^{n_{2}}$$

$$P(a_{1}, a_{2}) = {n \choose a_{1}} p_{A}^{a_{1}} (1-p_{A})^{a_{2}}$$
(18)

y nuevamente $P(X_1=x_1 \mid A_1=a_1,N_1=n_1)$ da lugar a la expresión (17).

En adelante, y puesto que el test exacto de Fisher permite resolver cualquiera de las tres situaciones, se adoptará (sin pérdida de generalidad) el modelo de comparación de dos

proporciones.

2.2. Test de una cola.

Cuando se plantea la $H_0 \equiv p_1 = p_2$ (=p) frente a la alternativa de una cola (por ejemplo $H_1 \equiv p_1 < p_2$), el método consiste en buscar, para el a_1 obtenido experimentalmente, un valor entero C tal que

$$\alpha^{+} = \sum_{X_{1}=1}^{C} P(X_{1}) \leq \alpha \leq \sum_{X_{1}=1}^{C+1} P(X_{1})$$
 (19)

siendo α el error objetivo del test, α^* el error real y $P(X_1)$ la probabilidad hipergeométrica, dada por (1), para cada valor de la v.a. X_1 . Por tanto la Región Crítica (en adelante RC) para ese error objetivo α estará formada por los puntos

$$\{ r, r+1, \ldots, C \}.$$

Como el P-value de la tabla observada es la probabilidad de encontrar una tabla (con iguales marginales) como la obtenida o más extrema aún respecto de la H_0 , será

$$P = \sum_{X_i=r}^{X_1} P(X_i)$$
 (20)

siendo $P(X_i)$ la probabilidad dada por la Hipergeométrica y x_i el valor de X_i realmente obtenido.

Este test, conocido como test exacto de Fisher, coincide con el de Tocher-Lehmann (que se verá más adelante) pero eliminando el procedimiento del sorteo del punto frontera de la RC.

Lancaster (1952,1961) define el P-mid-value, asociado al

valor x, obtenido experimentalmente, como una media de las probabilidades

$$PA(x_1-1) = \sum_{X_1=x}^{x_1-1} P(X_i)$$
 ,, $PA(x_1) = \sum_{X_1=x}^{x_1} P(X_i)$ \Rightarrow (21)

$$P-mid(x_1) = \frac{1}{2}(PA(x_1) + PA(x_1-1)) = \sum_{X_1=x}^{x_1-1} P(X_1) + \frac{1}{2}P(X_1=x_1)$$
 (22)

Haber (1986), basándose en el criterio de Lancaster, modifica la expresión (19) en el siguiente sentido:

$$\alpha^{+} = \sum_{X_{1}=x}^{C-1} P(X_{1}) + \frac{P(C)}{2} \le \alpha < \sum_{X_{1}=x}^{C} P(X_{1}) + \frac{P(C+1)}{2}$$
 (23)

lo que da lugar al P-value citado antes. La propuesta, que supone una alteración sustancial de lo que se entiende por un test de hipótesis, se realizó con fines generales, pero fue acogida para nuestro caso ante la acusación extendida (se verá más tarde) de que el test exacto de Fisher es conservador. A tal efecto, notar que el α^+ de la (23) es siempre menor que el α^+ de la (19), y así el test actual es más liberal que el de Fisher.

2.3. Test de dos colas

2.3.1. Versiones tradicionales.

Cuando se plantea la hipótesis alternativa de dos colas $(H_1 \equiv p_1 \neq p_2)$ surgen diferentes posibilidades a la hora de plantear el test. En cualquier caso, fijado el error objetivo α , si α_1 y α_2 son dos valores tales que $\alpha_1 + \alpha_2 = \alpha$, el procedimiento en

tests bilaterales consiste en determinar dos números enteros C y C'que verifiquen:

$$\alpha_{1}^{+} = \sum_{X_{1}=x}^{C} P(X_{1}) \leq \alpha_{1} \leq \sum_{X_{1}=x}^{C+1} P(X_{1})$$

$$\alpha_{2}^{+} = \sum_{X_{1}=C'}^{S} P(X_{1}) \leq \alpha_{2} \leq \sum_{X_{1}=C'-1}^{S} P(X_{1})$$
(24)

siendo $\alpha_1^+ + \alpha_2^+ = \alpha_2^+$ el error real.

La RC estaría formada por

$$\{r, r+1, \ldots, C\} \cup \{C', C'+1, \ldots, s\}$$

lo que daría lugar a cada una de las colas. En términos del cálculo de P-value de la tabla experimental, denotaremos por

$$P_F(X_1, X_2, Y_1, Y_2) = \sum_{T(X_1) \ge T(X_1)} P(X_1)$$
 (25)

siendo T(.) una determinada regla de ordenación que hace entrar los puntos en la RC de uno en uno (o más si hay empates).

Los diferentes tests surgen, por tanto, al decidir el criterio de ordenación T(.) que permite elegir los valores α_1 y α_2 . Existen una serie de soluciones tradicionales basadas en distintos principios de ordenación de las posibles tablas, las cuales se van incluyendo una a una en la RC hasta que $\alpha^+=\alpha^+_1+\alpha^+_2$ sea lo más cercano, pero inferior, al error objetivo α . Para estas definiciones asumiremos, sin pérdida de generalidad, que $p_1>p_2$ con $p_1=x_1/n_1$, i=1,2. Las distintas ordenaciones dan lugar a los siquientes métodos o criterios:

1) Criterio de Colas Iguales o Simétricas. Armsen (1955), Hill and Pike (1965) y Cox and Hinkley (1974) propusieron tomar $\alpha_1=\alpha_2=\alpha/2$, siguiendo los modelos ya existentes en variables continuas. Este método, al que haremos referencia como método I, se basa en el criterio de ordenación

$$I = T_1(x_1) = -\sum_{X_1=x_1}^{s} P(X_1)$$
 (26)

es decir, las tablas entrarán en la RC de menor a mayor suma de sus probabilidades de cola.

Tomando como referencia este método, Armitage (1971) propone llevarlo al extremo y afirma que el P-value de un test de dos colas es el doble del de una cola. En términos de RC ello significa que es $\alpha^+=2\alpha_1^+$ ó $2\alpha_2^+$ según que la tabla quede a la izquierda o a la derecha de la media, y es claro que da lugar a un test más conservador pues, tomando como ejemplo el primer caso, en general será $\alpha_1^+\geq\alpha_2^+$ y así $2\alpha_1^+\geq\alpha_1^++\alpha_2^+$. La propuesta de Armitage afecta no sólo al problema actual, sino que es una propuesta válida para todo test de dos colas, y constituye un segundo ejemplo de cómo los estadísticos introducen sus nuevos conceptos en este campo de batalla particular.

2) Criterio de tablas más improbables. Propuesto por Irwin (1935), Freeman and Halton (1951), Armsen (1955) y Fleiss (1981), que consiste en ordenar las tablas de menor a mayor probabilidad hipergeométrica. Este es el criterio utilizado en los Paquetes Estadísticos SPSS y BMDP. Este método lo referenciaremos como método H y lo denotaremos,

en base a su ordenación, como

$$H \equiv T_2(x_1) = -P(X_1)$$
 (27)

3) Criterio de Tablas ordenadas de mayor a menor valor de la diferencia de proporciones $|p_1-p_2|$, propuesto por Armsen (1955). Será el método D y viene identificado por el criterio de la ordenación:

$$D \equiv T_3(x_1) = \hat{p}_1 - \hat{p}_2$$
 (28)

4) Criterio de Tablas ordenadas de mayor a menor valor del estadístico chi-cuadrado

$$\chi^2 = \frac{\{x_1 y_2 - x_2 y_1\}^2}{-a_1 a_2 n_1 n_2} n \tag{29}$$

criterio seguido por Krauth (1973), Radlow and Alf (1975) y Berry and Mielke (1985). Esta definición es equivalente a la anterior pues $|x_1y_2-x_2y_1|=|x_1n-n_1a_1|$ y ordenar en función de $|p_1-p_2|$ es equivalente a hacerlo en función de $|x_1-n_1a_1/n|$.

5) Criterio de tablas ordenadas de mayor a menor valor del Riesgo Relativo (p_1/p_2) , propuesto por Luna y Martín (1987.a). Será referenciado como método R, con

$$R \equiv T_4(x_1) = \frac{\hat{p}_1}{\hat{p}_2} \tag{30}$$

6) Criterio de tablas ordenadas de mayor a menor valor de

1a ODDS-RATIO (x_1y_2/x_2y_1) , sugerido por Hill and Pike (1965). Lo denotaremos como O, con

$$O = T_5(x_1) = \frac{\hat{p}_1 \hat{q}_2}{\hat{p}_2 \hat{q}_1}$$
 (31)

Con el fin de conseguir mayor número de puntos en la RC (con lo que se conseguirían tests más potentes) Luna y Martín (1987) sugieren incrementar la RC, obtenida con las versiones anteriores, con uno de los puntos frontera (C+1) ο (C'-1) (el que sea posible según el valor α) si acaso ellos están empatados por la definición elegida. Para el desempate habría de acogerse uno de los otros criterios como criterio subsidiario.

Los criterios anteriormente citados producen RC's diferentes cuando se hace un test de dos colas. En el caso de tests de una cola, todos los criterios producen la misma ordenación (Davis, 1986) y por ello entonces no se plantearon diferentes definiciones.

Todos los criterios anteriores dan lugar a un test exacto de Fisher de dos colas más o menos clásico, pero hay otras propuestas. Así, Cormack (1986), con el fin de solventar algunas irregularidades aparentes del test exacto de Fisher como test de dos colas, propone calcular su P-value como un promedio de los P-values obtenidos en ciertas tablas relacionadas con la observada (siempre basándose en la hipergeométrica). Por otro lado, y basándose en el criterio de Lancaster, Haber (1986) define el P-value de la tabla

experimental como

$$\sum_{k \in K_1} P(k) + \frac{1}{2} \sum_{k \in K_2} P(k)$$

$$K_1 = \{k \mid |k - esp| > |x_1 - esp|\}$$

$$K_2 = \{k \mid |k - esp| = |x_1 - esp|\}$$
(32)

(con $\exp=a_1n_1/n$, la media de la hipergeométrica base) lo que traducido a la búsqueda de la RC para un α dado se convierte en buscar dos valores C y C'tales que

$$\alpha_{1}^{+} = \sum_{r}^{C-1} P(x_{1}) + \frac{P(C)}{2} \le \alpha_{1} \le \sum_{r}^{C} P(x_{1}) + \frac{P(C+1)}{2}$$

$$\alpha_{2}^{+} = \sum_{c'}^{S} P(x_{1}) + \frac{P(C')}{2} \le \alpha_{2} \le \sum_{c'-1}^{S} P(x_{1}) + \frac{P(C'-1)}{2}$$
(33)

Esta última version será comentada más adelante en una sección aparte por lo que no serán incluidas en la comparación del subapartado siguiente. Por otro lado, obsérvese que el criterio de ordenación de Haber es el mismo T, propuesto antes, pero complementado con la idea del P-mid. Es claro que el P-mid de dos colas podría definirse también con cualquiera de las otras cuatro ordenaciones, pero, no siendo partidarios del P-mid (por razones que se verán), no se plantea aquí tal posibilidad.

2.3.2. Versión óptima (Aportación).

La comparación de las cinco primeras versiones antes citadas (dos de las definiciones eran equivalentes) y la selección de la óptima será el objeto de este apartado.

Cualquiera de las cinco reglas divide el espacio muestral

en dos partes la región de aceptación y su complementaria, la región crítica RC:

$$\{r, r+1, \ldots x_1'\} \cup \{x_1, x_1+1, \ldots s\}$$

en donde, asumiendo que $p_1>p_2$, x_1 estará en la cola derecha y x'_1 será

$$x'_1 \mid T_i(x'_1) > T_i(x_1) \quad y \quad T_i(x'_1+1) < T_i(x_1)$$
 (34)

Si $T_i(x_i)=T_i(x'_i)$, se producirá un empate, por lo que si a cada una de las reglas citadas se le complementa con alguna de las otras, podría suceder que los puntos x_i' y x_i desempataran y pudiera resultar incluido el punto x_i , acercándose más aún al error objetivo α . En este caso se denotaría, por ejemplo, HD a un método con H como criterio principal complementado con D como regla para los empates.

estadística criterio habitual en la El comparación de tests es a través de la potencia de los mismos, aunque con variables discretas (como pasa aquí) surge la dificultad de que el error objetivo α casi nunca es alcanzado (y así los tamaños de los tests son distintos). Tal dificultad puede obviarse en gran parte si el estudio se hace con una amplia gama de valores de lpha (lo que se ve más adelante). Por otro lado, como las RC's que proporcionan cada versión de test no están contenidas unas en otras (Upton, 1982), no hay una versión que sea uniformemente mejor que otra, y así habrá que comparar potencias punto a punto (en parejas de valores p, y p_2). Así, dados el error objetivo α , la RC(α) que ocasiona, y los valores p, y p2, la potencia para el tests exacto de Fisher es:

$$\theta(p_1, p_2 | \alpha, a_1) = \sum_{CR} \binom{n_1}{x_1} \binom{n_2}{x_2} e^{\lambda x_1} + \sum_{i=1}^{S} \binom{n_1}{i} \binom{n_2}{a_1 - i} e^{\lambda i}$$
 (35)

con λ = Ln (p₁ q₂ /p₂ q₁), q_i=1-p_i y RC es la obtenida para ese α y con la regla de ordenación elegida. Esto es consecuencia de la expresión (14).

Silva (1992) señala el problema de que al comparar las potencias de dos versiones de tests A y B, una será mayor que otra en unos valores de (p_1,p_2) pero no en otros. Con el fin de globalizar resultados, Haber (1987) compara

$$\min_{p_1} \theta(p_1, p_2, \alpha | | p_1 - p_2 | = \Delta)$$
(36)

en A y B para diversos valores de Δ , en tanto que Eberhardt and Fligner (1977) comparan el área del espacio paramétrico (p1,p2) en que $\theta_{A} > \theta_{B}$ con el area en que sucede lo contrario $(\theta_{B} > \theta_{A})$. Silva argumenta que tales comparaciones son defectuosas por cuanto todo depende de la abundancia relativa de cada (p1,p2), es decir, de la distribución "a priori" que se le asigne. Así, el criterio de Eberhardt and Fligner implica asumir que cada paramétrico es iqualmente probable, punto espacio del asignándole un peso complementario de 1 o 0 según que en él sea $\theta_{\scriptscriptstyle A}$ mayor o menor (respectivamente) que $\theta_{\scriptscriptstyle B}$. Parece más razonable asignarle a cada punto el peso que tiene: $\theta(p_1, p_2, \alpha)$. citados autores indican que, asumiendo que p, sigue una distribución uniforme a lo largo de la vida del experimentador, la potencia a largo plazo heta(lpha) viene dada por la siguiente integral doble:

$$\theta(\alpha|n, a_1, n_1) = \sum_{x_1 \in RC} {n_1 \choose x_1} {n_2 \choose x_2} \int_{0}^{1} \int_{0}^{1} \frac{\left(\frac{p_1 q_2}{p_2 q_1}\right)^{x_1} dp_1 dp_2}{\sum_{i=1}^{s} {n_1 \choose i} {n_2 \choose a_1 - i} \left(\frac{p_1 q_2}{p_2 q_1}\right)^{i}}$$
(37)

expresión que, por no tener solución explícita, habrá de determinarse por integración numérica.

Con el fin de evitar la posible influencia del error α elegido en el cálculo de la potencia, y asumiendo que cualquier valor del error de Tipo I entre α y α' es igual de importante, el mismo autor define el concepto de potencia media del test para el intervalo (α, α') :

$$\overline{\theta}(\alpha, \alpha') = \frac{1}{\alpha' - \alpha} \int_{\alpha}^{\alpha'} \theta(\alpha) d\alpha = \frac{\alpha' A(\alpha') - \alpha A(\alpha)}{\alpha' - \alpha}$$
 (38)

con

$$A(\alpha) = \frac{1}{\alpha} \int_{0}^{\alpha} \theta(\alpha) d\alpha = \overline{\theta}(0, \alpha)$$
 (39)

Para obtener $A(\alpha)$, sean

$$RC_0 = \varphi$$
, RC_1 , RC_2 , . . . , $RC_t = RC(\alpha)$

las sucesivas Rc's que se obtiene al incorporar uno a uno (a veces más, si hay empates) los puntos del espacio muestral bajo el criterio de ordenación T elegido. Cada una de ellas se ha obtenido a un error de trabajo de

$$\alpha_0 = 0 < \alpha_1 < \alpha_2 < \ldots < \alpha_t \leq \alpha$$

y da lugar a una potencia de

$$\theta(\alpha_0)=0 < \theta(\alpha_1) < \theta(\alpha_2) < \ldots < \theta(\alpha_k)=\theta(\alpha)$$

Con ello $\theta(.)$ es una función en escalera con saltos en los

valores de α_i , el área bajo ella es $\alpha A(\alpha)$ y, finalmente,

$$A(\alpha) = \frac{1}{\alpha} \left\{ \sum_{i=1}^{t} \theta(\alpha_{i-1}) (\alpha_{i} - \alpha_{i-1}) + \theta(\alpha_{t}) (\alpha - \alpha_{t}) \right\} =$$

$$= \theta(\alpha) - \frac{1}{\alpha} \sum_{i=1}^{t} \left\{ \theta(\alpha_{i}) - \theta(\alpha_{i-1}) \right\} \alpha_{i}$$
(40)

La comparación de las distintas versiones a dos colas del test exacto de Fisher se hará en base a las potencias medias descritas anteriormente en los tramos de α :

$$(0\%, 1\%)$$
 $(1\%, 5\%)$ y $(5\%, 10\%)$

el primero para los usuarios del método de Bonferroni, el segundo para las significaciones usuales y el tercero para los indicios de significación. En todos los casos, la selección se efectuará en dos fases:

- i) Seleccionando la regla de desempates óptima para cada criterio de ordenación.
- ii) Seleccionando el criterio óptimo entre los cinco del paso anterior.

La potencia a largo plazo de la expresión (37) se ha obtenido por integración numérica con el método de SIMPSON utilizando el Paquete MapleV. Puesto que esta cantidad depende, además de α , de los valores a_i y n_i , convenimos en denotar $a_i=Min(a_i,n_i)$, i=1,2, y $n_i=Min(n_i,n_2)$ para evitar la repetición de tablas; con ello, la potencia media dada por (38) dependerá de n, a_i y n_i , por lo que a estos parámetros se les dará un amplio rango de valores a fin de obtener el método óptimo en un

amplio rango de situaciones.

Los resultados de las versiones simples (sin reglas de desempates) aparecen en la Tabla 2 para los tramos de α antes citados. No aparecen las tablas correspondientes a los criterios de desempates pues se comprobó que éstos afectaban de modo despreciable a la potencia (en los "mejores" métodos la potencia apenas cambia al incluir la regla de desempate, y en los "peores" la regla de desempate hace aumentar la potencia, pero nunca llega a acercarse a los métodos más potentes).

Las conclusiones para el conjunto de todos los datos son:

1°.- Sin tener en cuenta reglas de desempates (que es lo
habitual en la literatura) los peores métodos son O y R
(por ese orden) en tanto que los H, I y D son
prácticamente equivalentes aunque con orden de preferencia
el indicado.

2º.- En los métodos que funcionan bien (I, H, D) las reglas de desempates prácticamente no afectan a la potencia (I y H no se ven alteradas por ninguna de ellas y a D le afectan todas de la misma forma).

3º.- En las selecciones de las reglas de desempates, éstas aumentan las potencias en los test R y O, pero siempre por debajo de los tres mejores. El método D, al aplicarle las reglas de desempate, aumenta la potencia llegando a igualar al método H, con lo que

 $DH \equiv DR \equiv DO \equiv H$

4°.- Por tanto, el mejor método es el H como regla sencilla, equivalente al D con cualquiera de sus reglas de desempates, seguido (aunque con diferencias prácticamente despreciables) de I y D. Los métodos R y O son peores que los anteriores y muy parecidos entre ellos.

Tabla 2

Potencias medias del test exacto de Fisher para las versiones de dos colas indicadas (primera fila), para las tablas definidas por las ternas $[n,a_1,n_1]$ (primera columna) y para α en los intervalos 0%-1% (primera tabla), 1%-5% (segunda tabla) y 5%-10% (tercera tabla).

0% - 1%

n	a,	n,	I	Н	D	R	0	
10	3	3	3.0	3.0	3.0	3.0	0.0	
10	5	5	7.3	7.3	7.3	7.3	7.3	
30	3	3	9.1	9.1	9.1	0.0	0.0	
30	3	7	2.6	2.6	2.6	0.0	0.0	
30	3	11	0.0	0.0	0.0	0.0	0.0	
30	3	14	0.0	0.0	0.0	0.0	0.0	
30	8	8	15.2	15.2	15.2	0.0	0.0	
30	8	12	17.1	17.1	17.1	8.7	8.7	
30	8	15	28.1	28.1	28.1	28.1	28.1	
30	15	15	31.1	31.1	31.1	31.1	31.1	
50	4	6	16.9	16.9	16.9	0.0	0.0	
50	4	12	13.8	13.8	13.8	0.0	0.0	
50	4	18	0.0	0.0	0.0	0.0	0.0	
50	4	24	0.0	0.0	0.0	0.0	0.0	
50	10	10	16.1	16.1	16.1	0.0	0.0	
50	10	20	30.1	30.1	30.1	26.4	26.4	
50	15	15	31.1	31.1	24.7	26.0	26.0	
50	15	22	38.6	38.6	38.6	37.5	38.5	
50	25	25	36.8	36.8	36.8	36.8	36.8	

Tabla 2 (Cont.)

1% - 5%

n	aı	n,	I	Н	D	R	0	
10	3	3	18.2	18.2	18.2	0.0	0.0	
10	5	5	35.3	35.3	35.3	35.3	35.3	
30	3	3	20.5	20.5	20.5	0.0	0.0	
30	3	7	19.1	19.1	19.1	0.0	0.0	
30	3	11	24.1	24.1	24.1	0.0	0.0	
30	3	14	5.8	5.8	5.8	0.0	0.0	
30	8	8	37.8	37.8	37.8	42.7	42.7	
30	8	12	46.7	46.7	46.7	44.4	47.5	
30	8	15	50.2	50.2	50.2	50.2	50.2	
30	15	15	44.7	44.7	44.7	44.7	44.7	i
50	4	6	24.4	24.4	24.4	0.0	0.0	
50	4	12	25.7	25.7	25.7	0.0	0.0	
50	4	18	21.2	21.2	21.2	0.0	0.0	
50	4	24	72.2	72.2	72.2	0.0	0.0	
50	10	10	22.5	23.0	22.5	16.0	16.0	
50	10	20	53.7	53.7	51.0	53.7	53.7	
50	15	15	49.1	49.1	49.8	46.7	47.7	
50	15	22	55.4	55.4	55.4	55.4	55.5	
50	25	25	47.7	47.7	47.7	47.7	47.7	

5% - 10%

n	a,	n,	I	Н	D	R	0
10	3	3	18.2	18.2	18.2	0.0	0.0
10	5	5	35.3	35.3	35.3	35.3	35.3
30	3	3	20.5	20.5	20.5	0.0	0.0
30	3	7	19.1	19.1	19.1	0.0	0.0
30	3	11	5.6	5.6	5.6	0.0	0.0
30	3	14	0.0	0.0	0.0	0.0	0.0
30	8	8	20.9	20.9	20.9	0.0	0.0
30	8	12	42.4	42.4	42.4	40.1	43.2
30	8	15	42.3	41.3	41.3	41.3	41.3
30	15	15	40.0	40.0	40.0	40.0	40.0
50	4	6	18.2	18.2	18.2	0.0	0.0
50	4	12	20.0	20.0	20.0	0.0	0.0
50	4	18	19.4	19.4	19.4	0.0	0.0
50	4	24	2.5	2.5	2.5	0.0	0.0
50	10	10	21.4	21.4	21.4	0.0	0.0
50	10	20	44.6	44.6	42.0	44.6	44.6
50	15	15	43.7	43.7	41.0	42.2	41.8
50	15	22	48.7	48.7	48.7	48.7	48.7
50	25	25	44.3	44.3	44.3	44.3	44.3

2.4 Tablas y programas.

2.4.1. Tablas y Progamas clásicos.

Dado lo laborioso, que no complicado, de los cálculos requeridos en el test exacto de Fisher, han aparecido programas que permiten calcular en poco tiempo (dependiendo del ordenador y lenguaje elegidos) el P-value de una tabla dada o la RC a un a determinado.

Cuando el test que se quiere realizar es a una cola, la elección de uno u otro programa no presenta ningún problema puesto que, como ya dijimos antes, todas las versiones coinciden. El problema puede presentarse cuando se quiere hacer un test a dos colas: $H_0 \equiv p_1 = p_2$ (=p) frente a la alternativa $H_1 \equiv p_1 \neq p_2$. Cada Paquete Estadístico (BMDP, SPSS, ...) realiza este tipo de test con la versión de dos colas que más le gusta, aunque ésta no sea la óptima, y lo mismo ocurre con los programas propuestos por diferentes autores: Berry and Mielke (1985), por ejemplo, lo hacen bajo el criterio de tablas más improbables y el de tablas más extremas en χ^2 ; Luna y Martín (1987.b) presentan un programa en base a su criterio óptimo (el DH) en el sentido de ser el que, maximizando el número de puntos de la RC, proporcionan una mayor potencia en las cercanias de la H_0 .

Por otro lado, a pesar del extendido uso de los ordenadores entre los investigadores, a veces no resulta cómodo acceder a uno de ellos (sobre todo para el que no está familiarizado con su manejo) para obtener una RC relativa a una tabla concreta de un experimento. En estos casos, puede

resultar más rápido consultar unas tablas con las que obtener la significación o no de un estudio, o una idea del P-value correspondiente, siempre y cuando el manejo de estas tablas sea sencillo y cómodo.

Dada la importancia práctica del test exacto de Fisher son muchos los autores que presentan tablas de RC para él, pero sus defectos y problemas son varios.

Para tests de una cola, muchos autores (Pearson and Hartley, 1966; Finney et al., 1963, ...) distinguen entre filas y columnas, lo que es innecesario pues, siendo un test condicionado, no se debe establecerse diferencias entre unas y otras. Al hacerlo se ocasiona una duplicación innecesaria del espacio requerido para las tablas. Otros autores (tablas científicas CIBA-Geigy, por ejemplo) distinguen entre las alternativas $H_1 \equiv p_1 < p_2$ y $H'_1 \equiv p_1 > p_2$ lo que también ocasiona una duplicación innecesaria del espacio preciso. Este problema tiene su importancia debido a que estamos hablando de las tablas como una alternativa (a veces la única) sencilla, rápida y cómoda para el test exacto de Fisher.

Para los tests de dos colas hay más problemas, aparte del primero citado antes. Unos autores (Pearson and Hartley, 1966; Finney et al., 1963 ...) utilizan el criterio de "colas simétricas" (que llevado a su extremo se traduce en obtener el P-value de dos colas duplicando el de una cola) lo que produce el test menos potente. Además este test, como veremos más adelante, aunque ha sido defendido por algunos ilustres autores, presenta serios inconvenientes. Otros (Armsen, 1955; Neave, 1982) utilizan criterios más adecuados, aunque no

presentan simultáneamente los tests de una y dos colas, lo que implica tener en archivo dos tablas diferentes. Martín and Luna (1990) solventan todos estos problemas y presentan unas tablas de P-values hasta n=25 por el criterio de ordenación DH. El problema es que dar P-values, siendo preferible, requiere un espacio excesivo. Para que las tablas sean manejables es preciso darlas de RC's, más que de P-values. Esto se hace en la subsección siguiente.

2.4.2 Nuevas tablas y programas. (Aportación).

Todos lo problemas citados en el apartado anterior son solventados en las tablas que se presentan en el Apéndice (Tabla I). En ellas se especifican las RC para tests de una y dos colas simultáneamente, para valores de α de 10%, 5% y 1% (que son los más usuales), y para tamaños de muestra n≤50 (lo que nos parece un número más que suficiente cuando se trata de tests no asintóticos: pequeñas muestras). La versión del test con la que están construidas estas RC's es el óptimo de Luna y Martín (1987.b) en el sentido de proporcionar una mayor potencia en las cercanías de la H₀, es decir, el que produce RC's con el mayor número posible de puntos. Este criterio es el siguiente:

Para un test al error objetivo α , ordenar los valores de X_1 de mayor a menor diferencia de proporciones

muestrales,

$$|\hat{p}_1 - \hat{p}_2|$$
 siendo $\hat{p}_i = \frac{X_i}{n_1}$ i=1,2 (41)

e ir añadiendo puntos a la RC hasta que la suma de probabilidades de los mismos se acerque lo más posible, sin superarlo, a α . En caso de empate (puntos con igual diferencia de porporciones muestrales), ordenarlo de menor a mayor probabilidad hipergeométrica.

Con el fin de minimizar el espacio requerido para tales tablas, éstas han sido organizadas pensando en una reordenación adecuada de la tabla original. Por ello, para utilizarlas, es preciso "obligar" a la tabla experimental a que verifique las siguientes condiciones:

- 1º.- De entre los marginales, será a₁=Min(a₁,a₂,n₁,n₂) evitando así duplicaciones innecesarias en la construcción de las tablas y logrando una longitud mínima de ellas.
- 2°.- De entre los valores x₁ y x₂, elegir como x₁ aquel al que corresponda una proporción muestral más baja, lo que, de paso, fija también n₁ y n₂. La precaución es conveniente pues evita duplicar la tabla al dar RC sólo para la alternativa H₁≡p₁<p₂.</p>
- 3º.- Con todo ello, los valores críticos aluden al mínimo valor de n, para obtener significación al nivel elegido. Nótese que el intercambio de filas por columnas no afecta

a la alternativa contrastada, pues las cantidades

$$(\hat{p}_1 - \hat{p}_2) = \frac{x_1}{n_1} - \frac{x_2}{n_2} = \frac{N(x_1 - a_1 \frac{n_1}{n})}{n_1 n_2}$$

$$(\hat{p}_1' - \hat{p}_2') = \frac{x_1}{a_1} - \frac{x_2}{a_2} = \frac{N(x_1 - a_1 \frac{n_1}{n})}{a_1 a_2}$$
(42)

tienen el mismo signo.

Tales criterios permiten ahorrar una considerable cantidad del espacio dedicado a las tablas. Por ejemplo, las tablas propuestas requieren un 56% del espacio utilizado (para los mismos fines) por las tablas Geigy.

Con frecuencia el investigador deseará el P-value exacto para una determinada tabla experimental. Las tablas de RC presentadas en el Apéndice, si bien no permite calcularlo de una manera exacta, sí permite acotar tal valor en los márgenes $P \le 1\%$, $1\% < P \le 5\%$, $5\% < P \le 10\%$ y P > 10%, lo que en ocasiones, le puede permitir eludir el cálculo exacto o, alternativamente, comprobar parcialmente el resultado obtenido.

En el Apéndice se presenta también un programa (programa PI) escrito en lenguaje C que permite calcular el P-value exacto de una tabla experimental con el mismo criterio DH anterior. El programa solicita los valores de la tabla experimental y obtiene el P-value a una y dos colas, para que el investigador elija aquel que le convenga según su interés. La ventaja con respecto al de Luna y Martín (1987.b) es su mayor rapidez de cómputo.

Las razones de haber elegido el criterio DH tanto para las tablas como para el programa son varias. En primer lugar es

equivalente al óptimo seleccionado aquí, y también al óptimo que se seleccionará más tarde (4.2.2) bajo otro punto de vista. En segundo lugar conviene adecuar el formato al resto de la literatura más relevante. En tercer lugar, el criterio D permite evaluar rápidamente quién es la otra cola, pues, si x_1 se encuentra en la cola izquierda, el valor x_1 por la cola derecha tan extremo o más que él (con el criterio D) es el primer entero mayor o igual que $(2a_1n_1/n)-x_1$. En cuarto lugar, y sobre todo, el criterio D es equivalente al criterio de ordenación por χ^2 , que será el que se utilice en el Capítulo II como método asintótico, y es importante que el método no asintótico del que proviene el asintótico se encuentre bien estudiado y detallado.

- 2.5 Test exacto de Fisher y test de las Rachas.
- 2.5.1. Introducción.

Dada una secuencia de N_1 letras A y N_2 letras B, con $N=N_1+N_2$, y llamando por R al número de secuencias de letras de

igual tipo, es conocido que:

$$(R1) P(R=2t) = \frac{2\binom{N_1-1}{t-1}\binom{N_2-1}{t-1}}{\binom{N}{N_1}} (R par)$$

$$R(R=2t+1) = \frac{\binom{N_1-1}{t}\binom{N_2-1}{t-1} + \binom{N_1-1}{t-1}\binom{N_2-1}{t}}{t} (R im)$$

(R2) $P(R=2t+1) = \frac{\binom{N_1-1}{t}\binom{N_2-1}{t-1} + \frac{\binom{N_1-1}{t-1}\binom{N_2-1}{t}}{\binom{N}{N_1}}}{\binom{N}{N_1}} \qquad (R impar)$ (43)

con (asumiendo que $N_1 \neq 0$ y $N_1 \leq N_2$)

bajo la H_o de que las letras se encuentran entremezcladas al azar. Tal distribución de rachas es debida a Wald and Wolfowitz (1940) y, aunque fue investigada originalmente como un mecanismo no paramétrico para ver si dos muestras provienen de igual población, con posterioridad ha tenido otras aplicaciones (especialmente para contrastar la aleatoriedad de una muestra). Dichos autores probaron también cual es el valor de la media y la varianza de esta distribución, a saber:

$$E(R) = \mu_R = \frac{2N_1N_2}{N} + 1$$

$$Var(R) = \sigma_R^2 = \frac{(\mu_R - 1)(\mu_R - 2)}{N - 1}$$
(45)

Dado lo laborioso de los cálculos precisos para efectuar el test, Swed and Eisenhart (1943) presentaron tablas para tests de una y dos colas, estas últimas bajo el criterio de repartir el error α por igual en cada cola ($\alpha/2$ a cada cola).

2.5.2. Test de las rachas y distribución hipergeométrica.

Guenther (1978) observó que la distribución de R tiene un gran parecido con la hipergeométrica, aprovechando tal hecho para poner P(R=r) en términos de combinaciones lineales de hipergeométricas y para demostrar el valor de E(R) y V(R) de un modo más simple. Asimismo usa tales fórmulas (que se ven de momento) para obtener el valor de $P(R \le r)$ y así determinar el P-value para el test de una y de dos colas. Sin embargo dicho autor no aprovecha al máximo su resultado al no encuadrarlo dentro del test exacto de Fisher y usar una versión del test de dos colas muy defectuosa: los valores $r_1 < \mu_R$ y $r_2 > \mu_R$ para la región crítica los obtiene a través de la aproximación normal, aunque luego determina el α exacto como $P(R \le r_1) + P(R \ge r_2)$. En el apartado siguiente se van a perfeccionar ambos asuntos, a la vez que se da una interpretación intuitiva del parámetro t de las expresiones (43) y (44).

2.5.3. El test de las rachas en términos de tránsitos. (Aportación).

Cada dos rachas consecutivas tienen un punto de tránsito (la frontera entre ambas) que es del tipo AB o BA. Si R es el número de rachas, el número de tránsitos será (R-1). Si R=2t es par, habrá 2t-1 tránsitos, de los cuales (t-1) son de un tipo y t de otro. Si R=2t+1 es impar, habrá 2t tránsitos, t de ellos de cada tipo. Con ello:

t = "número máximo de tránsitos de cada realización"
será:

$$t = \begin{cases} \frac{R}{2} & \text{si } R \text{ par} \\ \frac{R-1}{2} & \text{si } R \text{ impar} \end{cases} = \left[\frac{R}{2}\right]^{-}$$
 (46)

Convengamos en notar a R por R_1 cuando sea par, y por R_2 cuando sea impar (como se hace en la (43)). Si r es el número experimental de rachas, entonces la primera expresión de la (43) puede ponerse como:

$$P(R_1 = 2t = r) = \frac{2N_1N_2}{N(N-1)}P(T_0 = t-1) \qquad (r par)$$
 (47)

en donde t=r/2 y T_o es la probabilidad hipergeométrica para la Tabla 3. De igual modo, la segunda expresión de la (43) puede ponerse como:

$$P(R_2 = 2t+1=r) = \frac{N_1(N_1-1)}{N(N-1)} \frac{P(T_1=r) + \frac{N_2(N_2-1)}{N(N-1)}}{P(N_2=r-1)} P(T_2=r-1) \quad (r \text{ impar})$$
(48)

en donde t=(r-1)/2, T_1 y T_2 son la probabilidad hipergeométrica para las Tablas 4 y 5 respectivamente. En todos los casos la variable aleatoria T_1 alude a la esquina superior derecha de cada una de las tablas mencionadas.

Tabla 3
Tabla 2x2 para la variable T_o

		(i	+1)	
Posición		A	В	Total
(i)	A	N ₁ -t	t-1	N ₁ -1
(1)	В	t-1	N ₂ -t	N ₂ -1
Total		N ₁ -1	N ₂ -1	N-2

Tabla 4 Tabla 5 Tabla 2x2 para la variable T_1 Tabla 2x2 para la variable T_2

(i+1)				(i+1)	Tot.		
Posic	ión	A	В	Tot.	Posición	Y R	
/ = >	A	N ₁ -t-1	t	N ₁ -1	A (i)	N ₁ -t t-1	N ₁ -1
(i)	В	t-1	N ₂ -t	N ₂ -1	(1) B	t N ₂ -t-	N ₂ -1
Total		N ₁ -2	N ₂	N-2	Total	N ₁ N ₂ -2	N-2

Los resultados anteriores son los de Guenther (1978), pero dotándolas de un sentido intuitivo. Los valores de las Tablas 3, 4 y 5 aluden al número de parejas AA, AB, BA y BB en la secuencia obtenida -es decir, enfrenta el resultado de la posición i con la posición (i+1)-, y los coeficientes de las expresiones (47) y (48):

$$N_{12} = \frac{2N_1N_2}{N(N-1)} = P(AB \cup BA) \qquad y$$

$$N_{11} = \frac{N_1(N_1-1)}{N(N-1)} = P(AA) \quad , \quad N_{22} = \frac{N_2(N_2-1)}{N(N-1)} = P(BB)$$
(49)

aluden a la probabilidad de que una realización empiece con la primera letra señalada y termine con la segunda letra especificada. Con ello:

$$P(R=r) = \begin{cases} N_{12} P(T_0 = t - 1) & con \ t = \frac{r}{2} & si \ r = par \\ N_{11} P(T_1 = t) + N_{22} P(T_2 = t - 1) & con \ t = \frac{r - 1}{2} & si \ r = impar \end{cases}$$
(50)

y T, alude al número de tránsitos AB de las Tablas 3, 4 y 5.

Para tests de una cola, el repetido autor no especificó las distintas situaciones que pueden presentarse. Estas son cuatro, dependiendo de que el valor experimental r sea par o impar, y de que la cola sea derecha o izquierda (r mayor o

menor que $\mu_{\rm R}$). Las siguientes expresiones resuelven todos los casos:

I. Si $R_{exp}=r=2t>\mu_R$ (par y grande):

$$P(R \ge r) = P(R_1 \ge r) + P(R_2 \ge r+1) = N_{12} P(T_0 \ge t-1) + N_{11} P(T_1 \ge t) + N_{22} P(T_2 \ge t-1)$$
(51)

II. Si $R_{axp}=r=2t<\mu_R$ (par y pequeña):

$$P(R \le r) = P(R_1 \le r) + P(R_2 \le r - 1) = N_{12} P(T_0 \le t - 1) + N_{11} P(T_1 \le t - 1) + N_{22} P(T_2 \le t - 2)$$
(52)

III. Si $R_{exp}=r=2t+1>\mu_R$ (impar y grande):

$$P(R \ge r) = P(R_1 \ge r+1) + P(R_2 \ge r) = N_{1,2} P(T_0 \ge t) + N_{1,1} P(T_1 \ge t) + N_{2,2} P(T_2 \ge t-1)$$
(53)

IV. Si $R_{exp}=r=2t+1<\mu_R$ (impar y pequeña):

$$P(R \le r) = P(R_1 \le r - 1) + P(R_2 \le r) = N_{12} P(T_0 \le t - 1) + N_{11} P(T_1 \le t) + N_{22} P(T_2 \le t - 1)$$
(54)

siendo la ventaja de tal notación que las probabilidades de que T, sea mayor o igual (o menor o igual) que algo pueden obtenerse de cualquier paquete de programas, pues aluden a las probabilidades de cola del test exacto de Fisher (una cola). Con ello el test de las rachas puede efectuarse a través del test exacto de Fisher y no es preciso que existan tablas ni programas especiales para aquel.

En el caso de un test de dos colas, se plantea el mismo problema que con el test exacto de Fisher. Si R=r es el valor obtenido experimentalmente, y $r<\mu_R$ (por ejemplo), ¿cúal es el valor r' a considerar por la otra cola para obtener así el P-

value?. Guenther lo determina a través de la aproximación normal, pero ello no tiene ningún fundamento. Aquí caben diversas soluciones, algunas de ellas paralelas a las vistas en 2.3.2, pero la más rápida (y presuntamente más potente en base a lo dicho) sería admitir que la RC se ordena de mayor a menor distancia de R a la media $\mu_{\rm r}$ (lo equivalente al método D de entonces) y así el r' de la otra cola sería el primer entero que, siendo mayor que $\mu_{\rm R}$, verifica que:

$$|r'-\mu_R| \ge |r-\mu_R| \tag{55}$$

es decir:

$$\mathbf{r}' = [2\,\mu_R - \mathbf{r}]^+ \tag{56}$$

Una alternativa a todo lo anterior es adoptar como estadístico de contraste la variable T (en lugar de R). Con ello

$$P(T \ge t) = N_{12}P(T_0 \ge t-1) + N_{11}P(T_1 \ge t) + N_{22}P(T_2 \ge t-1)$$

Esta expresión es idéntica a la del caso "r par y grande" del test exacto descrito anteriormente; sin embargo, para el caso de "r impar y grande" aparece $P(T_o \ge t)$ en lugar de $P(T_o \ge t-1)$. Esto hace que la probabilidad que aquí se calcula sea algo mayor que la obtenida entonces. Por tanto, este test alternativo resulta ser menos potente.

Una última observación de interés es que el test de las rachas es un test condicionado. Si H_o es que los valores de esa muestra están al azar, entonces N₁ y N₂ están fijados de antemano y el test descrito hasta ahora tiene plena validez. Si la H_o es que los valores de la muestra se han obtenido al azar de una población dicotómica infinita cuya proporción de letras

A es p - P(A)=p, P(B)=1-p=q -, entonces el único valor fijado de antemano es N y así:

$$P(R=r) = \sum_{N_1=0}^{N} P(N_1) P(R=r|N_1) = \sum_{N_1=0}^{N} p^{N_1} q^{N_2} P(R=r|N_1)$$
 (57)

Tal expresión depende del parámetro perturbador p y cabría abordar el problema desde el punto de vista de los tests incondicionados. Aquí se ha adoptado la visión condicionada, y sólo nos hemos preocupado de la cantidad $P(R=r|N_1)$, la cual viene dada por la (43).

3.- TEST ALEATORIZADO: TEST DE TOCHER.

Tocher (1950), con el fin de lograr que el tamaño del test coincidiera con el error objetivo α (lo cual se consigue con variables continuas, pero raras veces ocurre en el caso de discretas, como es nuestro caso), propone un mecanismo de sorteo en los puntos de la frontera de la RC. La ventaja del método es que da lugar a un test UMPU.

Para el test de una cola, su propuesta consiste en, fijado un error objetivo α , formar la RC para cada a_1 dado,

determinando un valor C(a1) tal que

$$\alpha_0 = \sum_{r}^{C(a_1)} P(x_1) \le \alpha < \sum_{r}^{C(a_1)+1} P(x_1)$$
 (58)

con lo que la RC estará formada por los puntos

$$\bigcup_{a_1} \{r, r+1, \ldots C(a_1)\}$$
 (59)

más aquellos puntos $\{C(a_1)+1\}$ que resultaran favorecidos en un sorteo en el que la probabilidad de que entre dicho punto es $\{\alpha-\alpha_o\}/P\{C(a_1)+1\}$. Obsérvese que, obtenida la tabla experimental, el cálculo de la RC puede omitirse, bastando con limitarse al de la diagonal que ha sucedido: $RC(a_1)$.

Para el caso de **dos colas**, Lloyd (1988) desarrolla explicitamente la solución de Lehmann. Ahora, y suponiendo determinadas las soluciones C y C' de la (24) por la ordenación H, con P(C') < P(C) -sin pérdida de generalidad, pues en otro caso basta con cambiar a la variable x_2 -, el punto que entra en el sorteo es el (C'-1) y lo hace con probabilidad (α - α_1 - α_2)/P(C'-1)=u.

El mismo autor hace notar que el valor de u de aleatorización puede ser otro distinto del anterior, dando lugar así a los tests de post-aleatorización que son, en general, sesgados. El propio criterio de Armitage de doblar el P-value de una cola puede contemplarse como un test de este tipo con $u=(\alpha_1-\alpha_2)/P(C'-1)$.

4. TESTS INCONDICIONADOS Y TEST EXACTO DE FISHER.

4.1. Introducción.

Los llamados tests incondicionados son aquellos que logran la eliminación de los parámetros perturbadores sustituyéndolos por el valor de ellos que hagan máximo el tamaño del test.

El test incondicionado apropiado a nuestro problema de tablas 2 x 2 solucionaría los planteamientos del tipo ii) y iii) propuestos en un principio (comparación de proporciones y asociación), pero no sería válido para el caso i) (aleatoriedad en la extracción) pues en él no hay parámetro perturbador.

Barnard (1945, 1947) hace notar que una tabla como la de la introducción, generada por el modelo ii), queda perfectamente definida cuando se conoce la pareja de valores (x_1,x_2) , con lo que al contrastar la $H_0\equiv p_1=p_2$ (=p) la RC estará formada por un conjunto de valores (x_1,x_2) para los n_1 dados. El espacio muestral es

$$EM = \{ (x_1, x_2) \mid 0 \le x_1 \le n_1, 0 \le x_2 \le n_2 \}$$

y el número de puntos que forman este espacio muestral es $(n_1+1)(n_2+1)$. En él las diagonales secundarias se corresponden con los valores constantes a_1 (x_1+x_2) del test exacto de Fisher. Obtenida una RC para un α objetivo (por algún procedimiento),

el tamaño del test correspondiente será:

$$\alpha(p) = \sum_{RC} \binom{n_1}{x_1} \binom{n_2}{x_2} p^{a_1} (1-p)^{a_2}$$
 (60)

que por depender de p (desconocido) habrá de maximizarse en él:

$$\alpha^* = \max_{0 \le p \le 1} \{\alpha(p)\}$$
 (61)

Aceptando el criterio anterior (principio del máximo), las distintas versiones del test incondicionado dependen del orden de entrada de los puntos en la RC. Sea cual sea el mismo, Barnard (1947) consideró que la RC debía verificar dos condiciones. En primer lugar, la condición de Convexidad: si $(x_1,x_2) \in RC$, con $p_1 < p_2$, también deben pertenecer a ella aquellos puntos en que p2-p1 sea aún más extrema y una de las p1 esté fijada. En segundo lugar, la condición de Simetría: en tests de dos colas, si (x_1,x_2) ϵ RC también debe pertenecer a ella el punto (n_1-x_1,n_2-x_2) pues $H_1\equiv p_1\neq p_2$ es equivalente a $H_1'\equiv 1-p_1\neq 1-p_2$ p₂. Como consecuencia, las distintas versiones del método se diferencian en el orden de entrada de los puntos en la RC, pero condiciones anteriores (que son respetan las todas prioritarias).

Así, el mismo autor propone formar la RC añadiendo en cada ocasión el punto que hace mínimo el α^* de la RC ampliada (método CSM). Boschloo (1970) y McDonald (1977) proponen la entrada de puntos de menor a mayor valor de su P-value de una cola según el test exacto de Fisher (método CSF). Suissa and Shuster (1985) proponen el orden de mayor a menor valor del

estadístico

$$z = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}}}$$
(62)

en grandes muestras (método CSZ) y Garside and Mack (1967) lo mismo respecto al estadístico chi-cuadrado clásico (método $CS\chi$). Ballatori (1982) propone la ordenación de mayor a menor $|p_1-p_2|$ (método CSD). Martín y Luna (1986,1989) proponen ordenar de menor a mayor valor de máxima verosimilitud (método CSV) y de mayor a menor valor de la confianza precisa para que se solapen los intervalos de confianza exactos de una cola de p_1 y p_2 (método CSI). Silva (1989) proponen el criterio de ordenar los puntos de menor a mayor probabilidad obtenida por la hipergeométrica (método CSH) y, finalmente, Haber (1987) propone otros tres criterios basados en los tests de máxima verosimilitud, de odds-ratio y discriminación de mínima información.

Como se ve, aquí sucede como con el test exacto de Fisher de dos colas (pero ahora incluso también en el caso de tests de una cola): hay tantas versiones de test incondicionado como reglas de ordenación. Sin embargo, para nuestros propósitos, sólo nos fijaremos en los métodos CSM y CSF. El primero por ser el más potente de todos; el segundo por requerir bastante menos tiempo de cómputo que aquel y tener una potencia importante con respecto al resto (Silva, 1992).

Con respecto al modelo iii) la literatura es bastante escasa. Ahora el máximo debe calcularse sobre p_{λ} y p_{B} (desconocidos) simultáneamente, y ello en la expresión (6)

sumada en toda la RC. La solución final (Barnard, 1947) se sabe que es bastante parecida a la del cas0 ii) y por ello sólo nos ocuparemos de éste.

La razón de incluir en esta memoria el método incondicionado, cuando se ha dicho que está dedicada al condicionado, se ve de momento.

4.2 El test exacto de Fisher como test incondicionado.

4.2.1. Introducción.

Pearson (1947) mostró que

$$P(x_1, x_2 | n_i, p) = P(a_1 | n_i, p) P(x_1 | a_i, n_i, p)$$
 (63)

siendo:

$$P(X_{1}, X_{2} | n_{1}, n_{2}, p) = \binom{n_{1}}{X_{1}} \binom{n_{2}}{X_{2}} p^{a_{1}} (1-p)^{a_{2}}$$

$$P(X_{1}=X_{1} | n_{i}, a_{i}, p) = P(X_{1}) = \frac{\binom{n_{1}}{X_{1}} \binom{n_{2}}{X_{2}}}{\binom{n_{1}}{a_{1}}}$$

$$P(a_{1} | n_{i}, p) = \binom{n_{1}}{a_{1}} p^{a_{1}} (1-p)^{a_{2}}$$
(64)

El test exacto de Fisher permite elegir, para cada a, una

 $RC(a_1)$, de modo que si se define

$$\alpha(a_1) = \sum_{RC(a_1)} P(x_1|a_1, n_1, p) \Rightarrow \alpha(a_1) \le \alpha$$
 (65)

Por tanto, definiendo RC = V RC(a₁) se obtiene

$$\alpha(p) = \sum_{RC} P(x_1, x_2 | n_i, p) = \sum_{a_1} P(a_1 | n_i, p) \alpha(a_1) \le \alpha$$
 (66)

con α - α (p) dependiendo de p. Así pues, el test exacto de Fisher es también un test incondicionado, presentando la ventaja, respecto al resto de los que surgen del principio del máximo, de que se evita el cálculo del máximo de la expresión (61) y sólo es necesario obtener la RC para cada a_1 . Una demostración similar puede hacerse en el caso iii).

4.2.2. Versión óptima. (Aportación).

En el apartado anterior se ha visto que el test exacto de Fisher es válido (además de como test condicionado) también como método incondicionado. En este caso, el espacio muestral es un conjunto de puntos (x_1,x_2) que son los valores observados de las variables X_1 , X_2 que surgen en este tipo de poblemas. De estos puntos, algunos formarán la RC cuando se fija un error objetivo α . Recuérdese que la RC cuando se hablaba de un test condicionado estaba formada por un conjunto de puntos x_1 (siendo x_1 la única variable que aparecía) cuando se condicionaba al valor x_1 obtenido experimentalmente. Por tanto, la RC del test condicionado era $\{x_1 \mid a_1\}$ y la del incondicionado

 $\{(\mathbf{x}_1,\mathbf{x}_2)\}$, siendo las diagonales secundarias del espacio muestral del test incondicionado, el espacio muestral del test condicionado. Como puede verse la RC del test condicionado, al limitarse al valor a, obtenido, es más sencilla que la del test incondicionado. Y así requerirá menos cálculos en su determinación. Además el tiempo de cómputo necesario para calcular la RC o el P-value de una tabla dada es en los tests incondicionados muchísimo mayor (por ser el espacio muestral más numeroso y por el tiempo necesario para calcular el máximo, entre otros) que en los tests condicionados.

Cuando el objetivo es estudiar un experimento concreto (una tabla dada) quizá no suponga mucho inconveniente esperar unos minutos para obtener el resultado incondicionado (el test exacto de Fisher en cualquiera de sus versiones a dos colas tarda uno o dos segundos), pero cuando el estudio está basado en la repetición de varios experimentos y se ha de obtener el resultado de varias tablas, los procedimientos incondicionados pueden resultar bastante incómodos. Esta situación puede llegar a ser incluso "fastidiosa" cuando los tamaños de muestra de las tablas, n₁ y n₂, no son demasiado pequeños.

Si bien es verdad que el tiempo de cómputo que exigen los tests incondicionados es mucho mayor que el de los condicionados, también es cierto que éstos últimos resultan ser más conservadores puesto que producen valores de P mayores. En este apartado, y con el fin de aminorar las diferencias, se verá cuál es la versión óptima del test exacto de Fisher de dos colas (en una cola ya se dijo que sólo había una posibilidad) cuando se estudia como test incondicionado. La comparación se

hará en base al estudio de potencias medias de las distintas versiones (en modo similar a lo hecho en 2.3.2).

La potencia incondicionada para una RC (a un error α) es:

$$\theta(p_1, p_2, \alpha) = \theta(p_1, p_2, \alpha | n_1, n_2)$$

$$= \sum_{CR} {n_1 \choose x_1} {n_2 \choose x_2} p_1^{x_1} (1-p_1)^{y_1} p_2^{x_2} (1-p_2)^{y_2}$$
(67)

Los criterios clásicos para la selección del óptimo ya se comentaron en el apartado 2.3.2 y en base a ellos se calcula la potencia a largo plazo y la potencia media en un intervalo de α .

Asumiendo que p_i sigue una distribución uniforme en [0,1], la potencia a largo plazo es (Luna y Martín, 1987.a):

$$\theta(\alpha) = \theta(\alpha \mid n_1, n_2) = \frac{n^0 \text{ de puntos de RC}}{n^0 \text{ puntos espacio muestral}} = \frac{n^0 \text{ puntos RC}}{(n_1+1)(n_2+1)}$$
(68)

para tests de dos colas, y para H₁≡p₁>p₂ (una cola) será (Silva, 1992):

$$\theta(\alpha) = \frac{2}{(n_1+1)(n_2+1)} \sum_{F \subset \{\alpha\}} P_F(x_1; x_2+1; y_1+1; y_2)$$
 (69)

siendo P, el P-value de Fisher para la alternativa $H_1 = p_1 < p_2$ en la tabla especificada entre paréntesis. Al igual que entonces, y con el fin de globalizar en α , la potencia media en el intervalo (α, α') viene dada por la (38) y la función $A(\alpha)$ de la que depende es la misma (37). La ventaja ahora es que existe solución explícita para $\theta(\alpha)$ -las expresiones (68) y (69)- y, por consiguiente, también la hay para $A(\alpha)$. Según el repetido

autor éstas son:

$$A(\alpha) = \frac{N\alpha - \sum_{i=1}^{t} \Delta_i \alpha_i}{\alpha (n_1 + 1) (n_2 + 1)}$$
(70)

para tests de dos colas, y :

$$A(\alpha) = \frac{2}{\alpha (n_1 + 1) (n_2 + 1)} \sum_{i=1}^{t} P(\Delta_i)$$
 (71)

para tests de una cola, con α_i los de entonces, Δ_i el incremento de puntos ocurrido cuando se pasa de la RC_{i-1} a la RC_i , $P(\Delta_i)$ la probabilidad hipergeométrica del grupo de puntos aludidos por Δ_i , y N el número total de puntos en la $RC(\alpha)$. No debe olvidarse que la $RC(\alpha)$ de ahora es la unión (en a_i) de todas las $RC(\alpha)$ de entonces.

Los criterios a comparar son los descritos en 2.3.2, es decir, colas iguales (I), tablas más improbables (H), tablas con mayor diferencia de proporciones (D), tablas con mayor RR (R) y tablas con mayor OR (O), junto con el complemento a cada uno de ellos para deshacer los posibles empates. También como entonces, en un primer paso se seleccionará la regla de desempate óptima para cada método y, a continuación, se compararán éstas entre sí.

Las comparaciones se harán en base a la potencia media antes citada, en los tramos de α :

$$(0%, 1%)$$
 $(1%, 5%)$ $(5%, 10%)$

Por tanto, el procedimiento es similar al caso condicionado, pero ahora los parámetros a fijar son sólo n y n_1 . Los valores elegidos para n son los de los intervalos:

y, para cada uno de ellos, se han contemplado todas las parejas posibles de valores (n_1,n_2) , con $n_1 < n_2$. Esto da valores de n de "alrededor de 10, de 20, de 30, de 40 y de 50", y para cada uno de ellos se calcula la media de las potencias medias, pues se ha comprobado que la variabilidad de las potencias dentro de cada gama de n no es importante. En total se han estudiado 459 pares (n_1,n_2) con 117934 tablas (x_1,x_2) como la de la introducción.

Los resultados de todas las comparaciones anteriores descritas aparecen en las Tablas 6 y 7 aquí presentadas y en las II a V que se presentan en el Apéndice, concluyéndose de ellas que:

1°.- Sin tener en cuenta regla de desempates (que es lo
habitual en la literatura), los peores criterios son los
R y O (por ese orden), en tanto que los criterios I y H
son equivalentes y el D es casi imperceptible peor que
ellos. (Tabla 6).

2º.- En todas las selecciones parciales del óptimo, el criterio H (el más habitual en la literatura) siempre está presente. Igual sucede con el criterio D. (Tablas II a V del Apéndice).

3°.- El mejor criterio es el HO, siéndole prácticamente equivalentes los H≡I y DH (en ese orden). (Tabla 7).

4º.- En los métodos que funcionan bien (I, H y D) la regla

de desempate no afecta prácticamente a la potencia. En los que funcionan mal sí, pues en ellos se dan muchos empates en los extremos de las diagonales (RR=OR= ∞).

Como puede apreciarse las conclusiones acerca de la versión óptima del test exacto de Fisher son prácticamente las mismas visto como test condicionado o como incondicionado. Los procedimientos para llegar a este resultado han sido similares, pero no hay que olvidar que los espacios muestrales (y por tanto las RC's) tratados en cada caso eran diferentes; la potencia para una determinada alternativa (p₁,p₂) se calculaba con diferentes expresiones, ...; en definitiva, las filosofías de cada método son diferentes. Las pequeñas diferencias encontradas se deben a que ahora se han estudiado más tablas y cada RC contiene más puntos, dando lugar así a que los desempates se manifiesten.

Tabla 6

Potencias medias de los cinco métodos sin regla de desempates (primera fila) para diversos n (primera columna) y los intervalos de α 0%-1% (primera tabla), 1%-5% (segunda tabla) y 5%-10% (tercera tabla).

0% - 1%

n\métodos	I	H	D	R	0	
6-14	2.3	2.3	2.3	0.5	0.5	
16-24	10.8	10.8	10.8	3.5	4.2	
27-33	18.5	18.5	18.5	7.4	9.5	
37-43	24.7	24.7	24.6	11.2	14.5	
48-52	29.5	29.5	29.4	14.7	18.9	

1% - 5%

n\métodos	I	Н	D	R	0	
6-14	9.3	9.3	9.3	2.6	2.8	
16-24	22.1	22.1	22.1	9.6	11.3	
27-33	30.7	30.7	30.7	15.8	18.9	
37-43	36.9	36.9	36.9	21.2	24.9	
48-52	41.6	41.6	41.5	25.8	29.7	

5% - 10%

n\métodos	I	Н	D	R	0	
6-14	17.3	17.3	17.3	6.4	6.7	
16-24	31.2	31.2	31.1	16.1	18.3	
27-33	39.8	39.9	39.8	23.7	26.5	
37-43	45.7	45.7	45.6	29.5	32.4	
48-52	50.0	50.0	49.9	34.3	37.1	

Tabla 7

Potencias medias de los cinco metodos con sus reglas de desempate optimas (primera fila) para diversos valores de n (primera columna) en los intervalos de α 0%-1% (primera tabla), 1%-5% (segunda tabla) y 5%-10% (tercera tabla).

0% - 1%

n\Métodos	I	НО	DH	RH	ОН	
6-14	2.3	2.3	2.3	2.1	2.3	
16-24	10.8	10.8	10.8	6.9	9.9	
27-33	18.5	18.5	18.5	10.5	15.6	
37-43	24.7	24.7	24.6	13.8	20.0	
48-52	29.5	29.5	29.5	16.8	23.8	<u>. </u>

18 - 58

n\Métodos	I	НО	DH	RH	ОН	
6-14	9.3	9.3	9.3	7.5	9.2	
16-24	22.1	22.1	22.1	14.3	19.9	
27-33	30.7	30.7	30.7	19.3	26.4	
37-43	36.9	36.9	36.9	23.9	31.4	
48-52	41.6	41.6	41.6	27.9	35.4	

5% - 10%

n\Métodos	I	НО	DH	RH	ОН	
6-14	17.3	17.3	17.3	13.3	16.9	
16-24	31.2	31.2	31.2	21.1	28.1	
27-33	39.8	39.9	39.9	27.4	35.0	
37-43	45.7	45.7	45.7	32.5	39.9	
48-52	50.0	50.0	50.0	36.7	43.7	

4.2.3. El test exacto de Fisher frente a los tests incondicionados clásicos. (Aportación).

El test exacto de Fisher ha sido acusado reiteradamente de ser un test conservador bajo la perspectiva de los tests incondicionados, pero tal acusación (obtenida generalmente a partir de valores pequeños de n y valores no muy grandes de K=n₁/n₂≥1) no ha sido suficientemente detallada ni evaluada de modo preciso en términos de potencia. Shouten et al (1980) y Silva (1992) hacen notar su fuerte dependencia del factor K (que mide el desequilibrio en los n_i), pareciendo conveniente introducirlo en las comparaciones de potencia. Esto hace necesaria una comparación entre el test exacto de Fisher y los tests incondicionados de McDonald y Barnard, el primero por ser el de uso más común y el segundo por ser el más potente entre los incondicionados. Esta comparación se hará en base a la potencia media, utilizando las fórmulas propias de los métodos incondicionados, ya que, de lo contrario, se obtendrían resultados no comparables. Y ello para los valores n indicados en el apartado anterior y para cada uno de los intervalos de K siquientes:

K=1.00 ; 1.00<K≤1.25 ; 1.25<K≤1.50 ; 1.50<K≤1.75 ; 1.75<K≤2.25 ; 2.25<K≤3.00 ; 3.00<K≤4.25 ; 4.25<K≤6.00

La potencia media - $\theta(\alpha_1,\alpha_2|n)$ - para cada valor de K y para los tests de McDonald (θ_M) y Barnard (θ_B) fueron obtenidas por Silva (1992) y la del test exacto de Fisher (θ_F) ha sido calculada aquí. Lo relevante, a efectos comparativos, son las ganancias absolutas y relativas de potencia:

$$\overline{\theta}_{M} - \overline{\theta}_{F} \quad y \quad \frac{\overline{\theta}_{M} - \overline{\theta}_{F}}{\overline{\theta}_{F}} \qquad y \qquad \overline{\theta}_{B} - \overline{\theta}_{F} \quad y \quad \frac{\overline{\theta}_{B} - \overline{\theta}_{F}}{\overline{\theta}_{F}} \qquad (72)$$

siendo ambas de interés, pues cada una da una información complementaria. Los resultados para cada uno de los tramos de α aparecen en las Tablas 8 a 10 para la comparación con el método de McDonald y en las Tablas 11 a 13 para la comparación con el método de Barnard.

Para test de una cola, las conclusiones son las siguientes:

i) Los incrementos absolutos de potencia son:

$$3\% \le \theta_n - \theta_r \le 6\%$$
 si $0\% < \alpha < 1\%$

$$4\% \le \theta_n - \theta_r \le 9\%$$
 si $1\% < \alpha < 5\%$

$$4\% \le \theta_{N} - \theta_{R} \le 14\%$$
 si $5\% < \alpha < 10\%$

excepto cuando K≤1.25, donde las ganancias son bastante más importantes.

ii) Los incrementos relativos de potencia son inferiores al 10% cuando n es grande ($n\geq 50$) y K moderados ($1.50\leq K\leq 3.00$).

iii)

$$\overline{\theta}_{M} - \overline{\theta}_{F} \to 0 \qquad y \qquad \frac{\overline{\theta}_{M} - \overline{\theta}_{F}}{\overline{\theta}_{F}} \to 0$$
 (73)

cuando n aumenta, salvo que sea $k \le 1.25$, en cuyo caso tal tendencia no se notará hasta que n sea mucho mayor que los valores contemplados en este estudio.

iv) Las conclusiones anteriores son válidas para el caso del test de McDonald et al.; en el caso del test de Barnard permanecen las mismas conclusiones, pero las diferencias con el test de Fisher son algo más marcadas.

Para tests de dos colas se ha comparado la versión del test exacto de Fisher seleccionada en apartados anteriores (método DH), aunque las conclusiones no cambian al elegir cualesquiera de las otras versiones habituales. A ella aluden los resultados de las tablas 8 a 10, de la que se obtiene las siguientes conclusiones:

i) En cuanto a incrementos absolutos

$$2\$ \le \theta_{\kappa} - \theta_{r} \le 5\$$$
 si $0\$ < \alpha < 1\$$
$$2\$ \le \theta_{\kappa} - \theta_{r} \le 7\$$$
 si $1\$ < \alpha < 5\$$
$$2\$ \le \theta_{\kappa} - \theta_{r} \le 10\$$$
 si $5\$ < \alpha < 10\$$

ii) Los incrementos relativos de potencia son siempre inferiores al 10% cuando n es grande (n≥40 ó 50) siendo con bastante frecuencia inferiores al 5%.

iii)

$$\theta_{M} - \theta_{F} \to 0 \qquad y \qquad \frac{\theta_{M} - \theta_{F}}{\theta_{F}} \to 0$$
(74)

cuando n aumenta.

- iv) Los incrementos son aún menos importantes cuando K toma valores moderados $(1 \le K \le 3)$.
- v) Las conclusiones anteriores, válidas para el test de

McDonald et al., permanecen para el test de Barnard, pero con diferencias algo más marcadas.

Por tanto, queda probado en un amplio abanico de situaciones que, si bien el test exacto de Fisher es siempre menos potente que los incondicionados citados, la diferencia es poco importante en muchos casos y ésta puede verse compensada por la ganancia en tiempo de cómputo, sencillez de cálculo, y otras ventajas que comentaremos más adelante. En particular, la diferencia de potencia es poco impotante en las siguientes situaciones:

- A) Para tests de una cola, si son n≥50 y 1.5≤K≤3.0.
- B) Para tests de dos colas, si son $n\geq 30$ y $1.0\leq K\leq 3.0$, o si son $n\geq 50$ y K cualquier otro valor,

(aunque para errores α muy bajos las exigencias son algo mayores) de modo que en tales casos, y para experimentos rutinarios, está justificado usar el test exacto de Fisher (sobre todo en la situación más habitual de test de dos colas) pues su ganancia en tiempo de cómputo compensa la pequeña pérdida de potencia que se produce. El resultado es especialmente afortunado si se piensa que las experiencias verificando B) son las más habituales y que justo con $n\geq 30$ o $n\geq 50$ es cuando los tests incondicionados habituales presentan irresolubles problemas de cómputo (al menos con lo que hasta hoy día se conoce).

Tabla 8

Potencias medias del test exacto de Fisher (primera entrada) e incrementos absolutos (segunda entrada) y relativos (tercera entrada) con respecto a ella, del test incondicionado de McDonald et al., para α en el intervalo 0\$-1\$, diversos valores de n y diversos valores de K (n_1/n_2) en tests de una cola (primera tabla) y de dos colas (segunda tabla, en la que se utiliza la versión DH del test exacto de Fisher).

		U	NA COLA	90	- 1%			 ;
n\K	=1.00	≤1.25	≤1.50	≤1.75	≤2.25	≤3.00	≤4.25	≤6.00
6-14	3.4	4.2	3.9	3.3	3.1	1.8	1.5	0.0
	3.3	4.9	4.3	4.6	4.1	2.9	3.0	3.3
	96.2	117.4	110.3	138.5	133.2	163.3	196.7	
16-24	9.2	11.3	16.3	15.6	14.2	12.4	9.6	5.9
	12.7	11.5	5.7	5.8	5.3	5.8	5.2	4.7
	137.3	101.4	34.8	37.0	37.5	46.8	54.3	80.2
27-33	6.8	15.0	26.9	26.2	24.4	21.9	18.5	13.8
]	25.6	17.3	5.0	5.1	5.3	5.4	5.5	5.4
	376.0	115.1	18.7	19.3	21.6	24.8	29.9	39.5
37-43	7.5	19.6	34.6	33.8	32.2	29.7	25.8	20.6
J	31.9	19.7	4.3	4.4	4.6	4.8	5.2	5.4
	425.6	100.7	12.4	13.0	14.4	16.2	20.1	26.3
48-52	6.5	18.9	40.4	39.5	38.1	35.4	31.5	26.1
40-32	38.2	25.7	3.8	3.9	4.1	4.4	4.8	5.2
	587.1	136.1	9.5	10.0	10.8	12.4	15.2	19.8

		DC	S COLAS	3 09	ኔ - 1%			
n\K	=1.00	≤1.25	≤1.50	≤1.75	≤2.25	≤3.00	≤4.25	≤6.00
6-14	2.1	4.1	3.4	3.3	3.1	1.8	1.5	0.0
0 14	2.5	2.3	2.5	2.2	3.2	2.7	2.9	3.3
	119.0	56.1	73.5	66.7	103.2	150.0	193.3	
16-24	13.0	16.0	15.4	14.7	13.6	12.2	9.6	5.9
	4.9	3.3	3.0	3.4	3.1	4.0	4.6	4.7
	37.7	20.6	19.5	23.1	22.8	32.8	47.9	79.7
27-33	23.6	25.8	25.4	24.9	23.4	21.1	18.2	13.8
]	4.8	2.6	2.8	2.7	2.9	3.1	3.6	4.6
	20.3	10.1	11.0	10.8	12.4	14.7	19.8	33.3
37-43	31.3	33.4	33.0	32.3	30.9	28.6	25.2	20.3
	4.1	2.2	2.2	2.3	2.4	2.5	2.8	3.6
;	13.1	6.6	6.7	7.1	7.8	8.7	11.1	17.7
48-52	37.2	39.1	38.8	37.9	36.6	34.1	30.5	25.7
-	3.6	2.0	1.9	2.0	2.0	2.2	2.5	2.8
	9.7	5.1	4.9	5.3	5.5	6.5	8.2	10.9
L	!							

Tabla 9

Potencias medias del test exacto de Fisher (primera entrada) e incrementos absolutos (segunda entrada) y relativos (tercera entrada) con respecto a ella, del test incondicionado de McDonald et al., para α en el intervalo 1\$-5\$, diversos valores de n y diversos valores de $K(n_1/n_2)$ en tests de una cola (primera tabla) y de dos colas (segunda tabla, en la que se utiliza la versión DH del test exacto de Fisher).

	UNA COLA 1			1% - !	18 - 58			
n\K	=1.00	≤1.25	≤1.50	≤1.75	≤2.25	≤3.00	≤4.25	≤6.00
6-14	11.5	13.7	13.2	12.5	11.1	8.0	8.4	6.3
	8.9	9.6	8.2	8.0	8.8	9.2	8.1	7.2
	77.5	70.4	62.2	64.3	79.7	114.5	96.4	114.6
16-24	16.9	20.7	30.0	29.5	27.5	25.4	21.6	16.4
1	21.0	18.1	7.8	7.6	7.9	8.6	8.7	8.8
	124.1	87.2	26.0	25.9	28.8	33.9	40.3	53.4
27-33	10.4	22.8	41.1	40.3	38.7	36.0	32.2	26.8
	37.3	24.7	6.1	6.4	6.5	7.1	7.8	8.3
;	358.5	108.3	14.8	15.9	16.8	19.8	24.3	30.9
37-43	10.5	27.3	48.3	47.5	46.2	43.6	39.8	34.4
	43.3	26.4	5.1	5.3	5.4	6.0	6.6	7.4
	412.7	96.6	10.6	11.3	11.7	13.8	16.7	21.5
48-52	8.5	24.9	53.6	52.7	51.5	49.0	45.4	40.1
	49.7	33.2	4.3	4.6	4.7	5.1	5.7	6.6
	584.2	133.4	8.0	8.7	9.1	10.5	12.6	16.4

		БО	S COLAS	1	\$ - 5 %			
n\K	=1.00	≤1.25	≤1.50	≤1.75	≤2.25	≤3.00	≤4.25	≤6.00
6-14	7.4	12.8	11.9	12.0	10.5	7.8	8.4	6.3
	6.5	5.2	4.2	3.8	5.2	6.9	7.0	7.1
	87.8	40.6	35.3	31.7	49.5	88.5	83.3	112.7
16-24	24.6	29.0	27.8	27.5	25.8	24.0	21.0	16.4
	6.7	3.8	4.0	4.1	4.2	4.6	5.2	6.4
	27.2	13.1	14.4	14.9	16.3	19.2	24.8	39.0
27-33	35.8	39.0	38.5	37.9	36.4	34.2	30.9	25.9
	5.8	3.0	3.2	3.1	3.4	3.3	3.7	4.4
	16.2	7.7	8.3	8.2	9.3	9.6	12.0	17.0
37-43	43.3	46.0	45.7	45.0	43.7	41.5	37.9	33.3
	5.0	2.5	2.4	2.5	2.6	2.7	3.1	3.3
	11.5	5.4	5.3	5.6	5.9	6.5	8.2	9.9
48-52	48.9	51.2	50.9	50.1	49.0	46.6	43.3	38.4
	4.0	2.1	2.1	2.1	2.2	2.4	2.5	3.0
	8.2	4.1	4.1	4.2	4.5	5.2	5.8	7.8

Tabla 10

Potencias medias del test exacto de Fisher (primera entrada) e incrementos absolutos (segunda entrada) y relativos (tercera entrada) con respecto a ella, del test incondicionado de McDonald et al., para α en el intervalo 5%-10%, diversos valores de n y diversos valores de $K(n_1/n_2)$ en tests de una cola (primera tabla) y de dos colas (segunda tabla, en la que se utiliza la version DH del test exacto de Fisher).

		UNA CO	OLA !	58 - 10 ⁹	<u> </u>			
n\K	=1.00	≤1.25	≤1.50	≤1.75	≤2.25	≤3.00	≤4.25	≤6.00
6-14	21.3	25.0	22.4	20.3	20.6	17.8	16.3	13.2
	8.9	9.2	11.5	13.6	11.3	10.5	11.0	12.3
	41.6	36.8	51.2	66.8	54.9	59.1	67.4	93.3
16-24	22.6	27.7	41.1	40.0	37.6	36.4	32.0	26.0
	26.8	22.4	7.8	8.8	10.1	9.3	10.3	11.6
	118.8	80.8	19.0	21.9	26.9	25.5	32.2	44.5
27-33	12.9	28.3	51.1	50.6	48.6	46.4	42.8	37.1
	45.3	29.6	6.5	6.6	7.7	7.7	8.4	9.8
	350.9	104.4	12.7	13.1	15.8	16.7	19.7	26.4
37-43	12.4	32.5	57.6	57.1	55.5	53.5	49.9	44.6
	50.8	30.6	5.3	5.4	6.1	6.3	7.1	8.4
	409.7	94.1	9.3	9.4	11.0	11.7	14.2	18.7
48-52	9.9	28.9	62.2	61.6	60.3	58.2	54.9	50.0
	57.0	37.9	4.5	4.6	5.0	5.4	6.1	7.2
	575.7	131.0	7.2	7.4	8.4	9.2	11.1	14.4

	DOS COLAS 5% - 10%											
=1.00	≤1.25	≤1.50	≤1.75	≤2.25	≤3.00	≤4.25	≤6.00					
13.5	23.1	20.3	17.5	19.4	17.0	16.3	13.3					
10.2	4.5	4.6	7.6	5.8	5.2	6.6	9.5					
75.6	19.5	22.7	43.4	29.9	30.6	40.5	71.4					
33.1	38.4	37.7	36.8	34.9	34.0	29.9	25.3					
8.0	4.3	4.3	4.3	4.8	4.5	5.3	5.3					
24.2	11.2	11.4	11.7	13.8	13.2	17.7	20.9					
44.2	47.9	47.8	47.2	45.4	43.4	40.4	35.5					
6.5	3.2	3.0	3.3	3.4	3.8	3.8	4.2					
14.7	6.7	6.3	7.0	7.5	8.8	9.4	11.8					
51.3	54.4	54.1	53.5	52.1	50.3	47.1	42.2					
5.2	2.5	2.5	2.8	2.8	2.8	3.1	3.7					
10.1	4.6	4.6	5.2	5.4	5.6	6.6	8.8					
56.5	59.1	58.8	58.1	56.9	54.9	51.8	47.3					
4.2	2.0	2.0	2.2	2.3	2.5	2.7	3.1					
7.4	3.4	3.4	3.8	4.0	4.6	5.2	6.6					
	13.5 10.2 75.6 33.1 8.0 24.2 44.2 6.5 14.7 51.3 5.2 10.1	13.5 23.1 10.2 4.5 75.6 19.5 33.1 38.4 8.0 4.3 24.2 11.2 44.2 47.9 6.5 3.2 14.7 6.7 51.3 54.4 5.2 2.5 10.1 4.6 56.5 59.1 4.2 2.0	13.5 23.1 20.3 10.2 4.5 4.6 75.6 19.5 22.7 33.1 38.4 37.7 8.0 4.3 4.3 24.2 11.2 11.4 44.2 47.9 47.8 6.5 3.2 3.0 14.7 6.7 6.3 51.3 54.4 54.1 5.2 2.5 10.1 4.6 4.6 56.5 59.1 58.8 4.2 2.0 2.0	13.5 23.1 20.3 17.5 10.2 4.5 4.6 7.6 75.6 19.5 22.7 43.4 33.1 38.4 37.7 36.8 8.0 4.3 4.3 4.3 24.2 11.2 11.4 11.7 44.2 47.9 47.8 47.2 6.5 3.2 3.0 3.3 14.7 6.7 6.3 7.0 51.3 54.4 54.1 53.5 5.2 2.5 2.5 2.8 10.1 4.6 4.6 5.2 56.5 59.1 58.8 58.1 4.2 2.0 2.0 2.2	13.5 23.1 20.3 17.5 19.4 10.2 4.5 4.6 7.6 5.8 75.6 19.5 22.7 43.4 29.9 33.1 38.4 37.7 36.8 34.9 8.0 4.3 4.3 4.3 4.8 24.2 11.2 11.4 11.7 13.8 44.2 47.9 47.8 47.2 45.4 6.5 3.2 3.0 3.3 3.4 14.7 6.7 6.3 7.0 7.5 51.3 54.4 54.1 53.5 52.1 5.2 2.5 2.8 2.8 10.1 4.6 4.6 5.2 5.4 56.5 59.1 58.8 58.1 56.9 4.2 2.0 2.0 2.2 2.3	13.5 23.1 20.3 17.5 19.4 17.0 10.2 4.5 4.6 7.6 5.8 5.2 75.6 19.5 22.7 43.4 29.9 30.6 33.1 38.4 37.7 36.8 34.9 34.0 8.0 4.3 4.3 4.3 4.8 4.5 24.2 11.2 11.4 11.7 13.8 13.2 44.2 47.9 47.8 47.2 45.4 43.4 6.5 3.2 3.0 3.3 3.4 3.8 14.7 6.7 6.3 7.0 7.5 8.8 51.3 54.4 54.1 53.5 52.1 50.3 5.2 2.5 2.5 2.8 2.8 2.8 10.1 4.6 4.6 5.2 5.4 5.6 56.5 59.1 58.8 58.1 56.9 54.9 4.2 2.0 2.0 2.2 2.3 2.5	13.5 23.1 20.3 17.5 19.4 17.0 16.3 10.2 4.5 4.6 7.6 5.8 5.2 6.6 75.6 19.5 22.7 43.4 29.9 30.6 40.5 33.1 38.4 37.7 36.8 34.9 34.0 29.9 8.0 4.3 4.3 4.3 4.8 4.5 5.3 24.2 11.2 11.4 11.7 13.8 13.2 17.7 44.2 47.9 47.8 47.2 45.4 43.4 40.4 6.5 3.2 3.0 3.3 3.4 3.8 3.8 14.7 6.7 6.3 7.0 7.5 8.8 9.4 51.3 54.4 54.1 53.5 52.1 50.3 47.1 5.2 2.5 2.5 2.8 2.8 2.8 3.1 10.1 4.6 4.6 5.2 5.4 5.6 6.6 56.5 59.1 58.8 58.1 56.9 54.9 51.8 <t< td=""></t<>					

Tabla 11

Potencias medias del test exacto de Fisher (primera entrada) e incrementos absolutos(segunda entrada) y relativos (tercera entrada) con respecto a ella, del test incondicionado de Barnard, para α en el intervalo 0%-1%, diversos valores de n y diversos valores de $K(n_1/n_2)$ en tests de una cola (primera tabla) y de dos colas (segunda tabla, en la que se utiliza la versión DH del test exacto de Fisher).

UNA	COLA	በዬ –	18
UNA	СОША	U 10	7.0

n\K	=1.00	≤1.25	≤1.50	≤1.75	≤2.25	≤3.00	≤4.25	≤6.00
6-14	3.4	4.2	3.9	3.3	3.1	1.8	1.5	0.0
	3.3	4.9	4.3	4.6	4.1	2.9	3.0	3.3
	96.2	117.4	110.3	138.5	133.2	163.3	196.7	
16-24	9.2	11.3	16.3	15.6	14.2	12.4	9.6	5.9
	12.9	11.7	6.0	6.1	5.6	5.9	5.3	4.8
	140.7	103.3	36.9	39.2	39.7	47.8	55.2	80.8
27-33	6.8	15.0	26.9	26.2	24.4	21.9	18.5	13.8
	25.9	17.7	5.5	5.5	5.7	5.8	5.8	5.6
	381.3	117.9	20.4	21.0	23.3	26.6	31.2	40.4
37-43	7.5	19.6	34.6	33.8	32.2	29.7	25.8	20.6
3, 43	32.4	20.3	4.8	5.0	5.1	5.3	5.5	5.7
	432.3	103.5	14.0	14.6	15.9	17.8	21.4	27.5
48-52	6.5	18.9	40.4	39.5	38.1	35.4	31.5	26.1
40-52	38.8	26.3	4.4	4.5	4.6	4.9	5.2	5.5
1	596.3	139.1	10.8	11.3	12.1	13.7	16.4	21.1

200	20T 10	0%-1%
ms	COLAS	リオーエボ

n∖K	=1.00	≤1.25	≤1.50	≤1.75	≤2.25	≤3.00	≤4.25	≤6.00
6-14	2.1	4.1	3.4	3.3	3.1	1.8	1.5	0.0
	2.5	2.6	2.7	2.3	3.3	2.7	2.9	3.3
	119.0	63.4	79.4	69.7	106.5	150.0	193.3	
16-24	13.0	16.0	15.4	14.7	13.6	12.2	9.6	5.9
	5.0	3.6	3.8	4.3	4.0	4.6	4.7	4.7
[38.5	22.5	24.7	29.3	29.4	37.7	49.0	79.7
27-33	23.6	25.8	25.4	24.9	23.4	21.1	18.2	13.8
	4.9	3.3	3.5	3.6	3.8	4.2	4.4	4.9
	20.8	12.8	13.8	14.5	16.2	19.9	24.2	35.5
37-43	31.3	33.4	33.0	32.3	30.9	28.6	25.2	20.3
	4.5	2.9	3.0	3.1	3.3	3.6	3.9	4.6
ļ	14.4	8.7	9.1	9.6	10.7	12.6	15.5	22.7
48-52	37.2	39.1	38.8	37.9	36.6	34.1	30.5	25.7
1	4.2	2.6	2.6	2.7	2.9	3.2	3.6	4.1
	11.3	6.6	6.7	7.1	7.9	9.4	11.8	16.0

Tabla 12

Potencias medias del test esacto de Fisher (primera entrada), incrementos absolutos (segunda entrada) y relativos (tercera entrada) con respecto a ella, del test incondicionado de Barnard, para α en el intervalo 1%-5%, diversos valores de n y diversos valores de K (n_1/n_2) en tests de una cola (primera tabla) y de dos colas (segunda tabla, en la que se utiliza la versión DH del test exacto de Fisher).

IINA	COLA	1% -	5%

n\K	=1.00	≤1.25	≤1.50	≤1.75	≤2.25	≤3.00	≤4.25	≤6.00
6-14	11.5	13.7	13.2	12.5	11.1	8.0	8.4	6.3
	8.9	9.6	8.6	8.2	9.1	9.3	8.2	7.2
į	77.5	70.4	64.9	65.4	81.9	116.1	97.0	114.6
16-24	16.9	20.7	30.0	29.5	27.5	25.4	21.6	16.4
	21.4	18.4	8.5	8.2	8.5	8.9	9.0	8.8
	126.5	89.1	28.3	27.8	30.8	35.1	41.8	53.7
27-33	10.4	22.8	41.1	40.3	38.7	36.0	32.2	26.8
-/ -	37.7	25.5	6.9	7.0	7.1	7.6	8.2	8.5
	362.6	111.8	16.7	17.3	18.4	21.2	25.4	31.7
37-43	10.5	27.3	48.3	47.5	46.2	43.6	39.8	34.4
0, 10	44.0	27.2	5.8	6.0	6.0	6.6	7.2	7.8
	419.0	99.5	12.0	12.6	13.1	15.2	18.0	22.6
48-52	8.5	24.9	53.6	52.7	51.5	49.0	45.4	40.1
30 02	50.4	34.0	5.0	5.2	5.3	5.8	6.3	7.0
	592.8	136.5	9.25	9.8	10.3	11.8	13.9	17.6

DOG	COLAS	1%	58

n\K	=1.00	≤1.25	≤1.50	≤1.75	≤2.25	≤3.00	≤4.25	≤6.00
6-14	7.4	12.8	11.9	12.0	10.5	7.8	8.4	6.3
0-14	6.5	5.7	5.2	3.0	6.1	7.2	7.0	7.1
	87.8	44.5	43.7	25.0	58.1	92.3	83.3	112.7
16-24	24.6	29.0	27.8	27.5	25.8	24.0	21.0	16.4
10 24	7.2	4.5	5.2	5.2	5.4	6.2	6.4	7.1
	29.3	15.5	18.7	18.9	20.9	25.8	30.5	43.3
27-33								
	35.8	39.0	38.5	37.9	36.4	34.2	30.9	25.9
	6.3	3.9	4.2	4.3	4.5	4.8	5.4	6.3
	17.6	10.0	10.9	11.3	12.3	14.0	17.5	24.3
37-43								
[43.3	46.0	45.7	45.0	43.7	41.5	37.9	33.3
	5.5	3.4	3.4	3.5	3.7	4.0	4.7	5.2
	12.7	7.4	7.4	7.8	8.5	9.6	12.4	15.6
48-52					_			
ļ.	48.9	51.2	50.9	50.1	49.0	46.6	43.3	38.4
	4.7	2.9	2.9	3.0	3.1	3.5	3.9	4.7
	9.6	5.7	5.7	6.0	6.3	7.5	9.0	12.2

Tabla 13

Potencias medias del test exacto de Fisher (primera entrada) e incrementos absolutos (segunda entrada) y relativos (tercera entrada) con respecto a ella, del test incondicionado de Barnard, para α en el intervalo 5%-10%, diverso valores de n y diversos valores de K (n_1/n_2) en tests de una cola (primera tabla) y de dos colas (segunda tabla, en la que se utiliza la versión DH del test exacto de Fisher).

		UNA	COLA	5% - 10%			·	
n\K	=1.00	≤1.25	≤1.50	≤1.75	≤2.25	≤3.00	≤4.25	≤6.00
6-14	21.3	25.0	22.4	20.3	20.6	17.8 10.7	16.3 11.0	13.2 12.5
	8.6 40.5	11.0 44.2	12.8 57.2	13.9 68.7	11.4 55.3	59.9	67.4	94.9
16-24	22.6	27.7	41.1	40.0	37.6	36.4	32.0	26.0
	27.2 120.4	23.1 83.5	9.1 22.1	9.8 24.6	10.4 27.7	9.8 26.9	10.6 33.1	11.7 45.2
27-33	12.9	28.3	51.1	50.6	48.6	46.4	42.8	37.1
	45.9 355.4	30.5 107.6	7.5 14.6	7.5 14.8	8.2 16.9	8.3 17.9	9.0 20.9	10.3 27.7
37-43	12.4 51.6	32.5 31.5	57.6 6.2	57.1 6.1	55.5 6.7	53.5 6.9	49.9 7.7	44.6 9.0
	416.3	97.0	10.7	10.8	12.1	12.9	15.4	20.1
48-52	9.9	28.9	62.2	61.6	60.3	58.2	54.9	50.0

5.3

8.5

57.7

583.2

38.8

134.1

5.2

8.41

6.0

10.4

5.7

9.5

6.7

12.3

7.9

15.7

	DOS COLAS		5% - 10%			·		
n\K	=1.00	≤1.25	≤1.50	≤1.75	≤2.25	≤3.00	≤4.25	≤6.00
6-14	13.5	23.1	20.3	17.5	19.4	17.0	16.3	13.3
	10.2	5.2	7.3	10.1	6.4	6.1	6.9	10.6
	75.6	22.5	36.0	57.7	33.0	35.9	42.3	79.7
16-24	33.1	38.4	37.7	36.8	34.9	34.0	29.9	25.3
	8.4	5.3	5.5	6.1	6.5	6.0	7.3	8.2
	25.4	13.8	14.6	16.6	18.6	17.6	24.4	32.4
27-33	44.2	47.9	47.8	47.2	45.4	43.4	40.4	35.5
	6.9	4.3	4.2	4.5	5.0	5.1	5.4	6.7
	15.6	9.0	8.8	9.5	11.0	11.8	13.4	18.9
37-43	51.3	54.4	54.1	53.5	52.1	50.3	47.1	42.2
37 13	6.0	3.5	3.5	3.7	4.1	4.1	4.6	5.8
	11.7	6.4	6.5	6.9	7.9	8.2	9.8	13.7
48-52	56.5	59.1	58.8	58.1	56.9	54.9	51.8	47.3
10 32	5.0	2.9	2.9	3.1	3.4	3.5	4.1	4.9
	8.8	4.9	4.9	5.3	6.0	6.4	7.9	10.4
<u>!</u>	<u> </u>							

5 - TESTS DE ALEATORIZACION.

Como ya de dijo en páginas atrás, cuando los n individuos de una muestra se reparten al azar entre dos submuestras en cada una de las cuales los individuos verifican o no la característica A, hay justificaciones teóricas (Lehmann, 1959) para emplear un test de aleatorización. Es el caso de los Ensayos Comparativos donde los individuos de una muestra se reparten al azar entre dos tratamientos, produciendo en ellos un efecto positivo, A, o no, \bar{A} , y se pretende ver si los tratamientos son iqual de eficaces.

de este tipo de tests, éstos pueden Dentro condicionados o incondicionados, siendo, nuevamente, el test exacto de Fisher una solución condicionada de los tests de la probabilidad dada aleatorización, ya que hipergeométrica puede entenderse como la probabilidad de que x1 individuos tengan un efecto positivo cuando se extraen al azar n, individuos de un total de n (a, de los cuales dan un efecto positivo). Los métodos incondicionados pueden verse Ballatori (1982) y Martín and Luna (1987), pero ellos no son objeto de esta memoria.

6.- TESTS PSEUDOBAYESIANOS

6.1. Introducción.

Recientemente (Rice, 1988; Martín and Luna, 1987) han hecho intervenir un nuevo motivo de conflicto proponiendo una

metodología que, por estar a mitad de camino entre la Clásica llamar método pseudobayesiano Bayesiana, podemos (expresión utilizada aquí en sentido distinto al usado por Bishop et al, 1975). Ellos proponen zafarse del parámetro perturbador p de la expresión (4) asumiendo que, ante la ausencia de otra información, cualquier valor de él iqualmente probable (hasta que los datos indiquen evidencias en contra), por lo que puede asignársele la distribución uniforme. En la práctica esto equivale a suponer que el valor de p en un experimento particular proviene de una extracción aleatoria de una distribución uniforme f(p), que es como se espera que se distribuya p a lo largo de las experiencias de la vida del experimentador en las que Ho sea realmente cierta. Sin embargo el primer autor dota al método de una forma condicionada y los segundos de una forma incondicionada. Lo que sigue está dedicado a dar versiones generalizadas de la primera solución y a investigar otras posibilidades. El método incondicionado cae fuera del ámbito de esta memoria.

6.2. Tests condicionados.

6.2.1. Solución de Rice.

Rice (1988), por las razones antes mencionadas, sostiene que f(p) debe ser la uniforme en el intervalo [0,1], pero puesto que la experiencia dió el valor observado a, tal valor proporciona una información que debe incorporarse al problema. El efecto de ambas cosas es que la probabilidad de la pareja

(X,,X,) será (para un test de dos colas):

$$P(X_1, X_2 | a_1) = {n_1 \choose X_1} {n_2 \choose X_2} {n \choose a_1} \frac{n+1}{2n+1} \div {2n \choose a_1 + A_1}$$
 (75)

y así el P-value de la tabla observada será:

$$\sum_{(X_{1}, X_{2}) \in K} P(X_{1}, X_{2} | a_{1}) \qquad con$$

$$K = \left\{ (X_{1}, X_{2}) \mid \left| \frac{X_{1}}{n_{1}} - \frac{X_{2}}{n_{2}} \right| \ge \left| \frac{X_{1}}{n_{1}} - \frac{X_{2}}{n_{2}} \right| \right\}$$
(76)

es decir, la suma de las probabilidades de todas las tablas con una diferencia de proporciones mayor o igual que la observada.

6.2.2. Generalización de la solución de Rice . (Aportación).

Los partidarios del método bayesiano conocen que la forma más apropiada para f(p) es la de una distribución beta, Be(r;s), de parámetros r y s (que no tienen nada que ver con los de la expresión (2)). tal distribución, por ser conjugada de la binomial, permite obtener fácilmente las distribuciones predictivas o las distribuciones finales. Cuando no se dispone de información alguna acerca de p, lo usual es suponer que es r=s=1 (distribución uniforme: Bayes, 1763) o que es r=s=0.5 (Jeffreys, 1946), si bien esta última parece más conveniente por cuanto es la que menos información incorpora ajena a los datos (distribución a priori mínimo informativa: Bernardo, 1979).

Es conocido que si p sigue una $f(p)\equiv Be(r;s)$ y x sigue una B(n;p), entonces la distribución final f(p|x) es Be(r+s;s+n-x).

En particular, y para nuestro caso, si se sabe que se obtuvo a_1 , que bajo H_0 sigue una binomial B(n;p), entonces $f(p|a_1)\equiv Be(r+a_1;s+a_2)$. De ahí que la distribución predictiva final, bajo H_0 y condicionando p a la información obtenida, sea:

$$P(X_{1}, X_{2} | a_{1}) = \int_{0}^{1} f(p|a_{1}) P(X_{1}|p) P(X_{2}|p) dp =$$

$$= \binom{n_{1}}{X_{1}} \binom{n_{2}}{X_{2}} \int_{0}^{1} f(p|a_{1}) p^{A_{1}} (1-p)^{A_{2}} dp$$
(77)

y, por consiguiente, sustituyendo $f(p|a_1)$ e integrando,

$$P(X_{1}, X_{2}|a_{1}) = \binom{n_{1}}{X_{1}} \binom{n_{2}}{X_{2}} \frac{\Gamma(n+r+s)}{\Gamma(a_{1}+r)\Gamma(a_{2}+s)} \cdot \frac{\overline{\Gamma(A_{1}+a_{1}+r)\Gamma(A_{2}+s)}}{\Gamma(2n+r+s)}$$
(78)

Cuando es r=s=1 se obtiene la solución de Rice; cuando es r=s=0.5 se obtiene:

$$P(X_1, X_2 | a_1) = \frac{1}{2} \binom{n_1}{X_1} \binom{n_2}{X_2} \binom{n-1}{a_1 - 0.5} \div \binom{2n-1}{a_1 + A_1 - 0.5}$$
 (79)

si se acepta que la notación combinatoria es válida también para números decimales.

Obsérvese que aquí, como con Rice, el espacio muestral tiene dos dimensiones (X_1,X_2) a pesar de haber condicionado, y ello porque el condicionamiento sólo afecta a p.

De un modo general, el P-value de la tabla observada se obtendrá así:

$$P_{SC} = \sum_{A_1} \sum_{X_2} P(X_1, X_2)$$
 (80)

con la sumatoria extendida sobre la RC que se defina. Para

definir la RC hay que indicar el orden de entrada en ella de los puntos (X_1, X_2) , y esto nos lleva a alguna de las versiones de 4.2.1. Rice adopta la versión D (de mayor a menor diferencia de proporciones), pero puede acogerse cualquier otra. Un modo explícito de obtener la RC para tal versión es el dado por Martín and Luna (1987) para el caso de tests de una cola $(H_1 \equiv p_1 < p_2)$:

$$Max \{0; A_1 - n_2\} \le X_1 \le \left[\left(\frac{A_1}{n_2} - t \right) \frac{n_1 n_2}{n} \right]^{-}$$

$$[tn_2]^+ \le A_1 \le n - [tn_1]^+$$
(81)

con $[x]^-$ y $[x]^+$ aludiendo al primer entero, menor o igual en el primer caso y mayor o igual en el segundo, que x. Para tests de dos colas, la otra cola se determina igual pero cambiando los papeles de A_1 y A_2 en la (78).

6.2.3. Condicionamiento intermedio. (Aportación).

Un condicionamiento intermedio consiste en utilizar uno de los valores muestrales $(x_1, por ejemplo)$ para obtener información sobre p, y el otro (x_2) para realizar el test. En este caso, y con similar demostración que antes, si $f(p) \equiv Be(r;s)$ será $f(p|x_1) \equiv Be(x_1+r;y_1+s)$ y

$$P(X_{2}|X_{1}) = {n_{2} \choose X_{2}} \frac{\Gamma(n_{1}+r+s)}{\Gamma(x_{1}+r)\Gamma(y_{1}+s)} \cdot \frac{\Gamma(x_{1}+X_{2}+r)\Gamma(y_{1}+Y_{2}+s)}{\Gamma(n+r+s)}$$
(82)

que es la distribución beta-binomial. Para la alternativa $H_1\equiv p_1 < p_2$, la significación se encontrará para valores altos de

x, y así, definiendo:

$$P_{SCI} = \sum_{X_2 = X_2}^{n_2} P(X_2 | X_1)$$
 (83)

y aprovechando la igualdad de las colas entre las distribuciones hipergeométrica y beta-binomial (Raiffa and Schleifer, 1961)

$$P_{SCI} = \sum_{i=Max(0; x_1+r-y_2-1)}^{x_1+r-1} {a_1+r-1 \choose i} {a_2+s \choose n_1+r+s-1-i} + {n+r+s-1 \choose n_1+r+s-1}$$
(84)

que es el P-value del test exacto de Fisher para la Tabla 14,

 Tabla 14

 A
 \bar{A} Totales

 Muestra I
 x_1+r-1 y_1+s $n_1+r+s-1$

 Muestra II
 x_2 y_2 n_2

 Totales
 a_1+r-1 a_2+s n+r+s-1

y que, abreviadamente, podemos llamarlo por $P(x_1+r-1;y_1+s;x_2;y_2)$.

6.2.4. Discusión (Aportación).

Los aspectos generales de la solución actual son discutidos más adelante. Aquí nos detenemos sólo en los aspectos más particulares.

La solución de Rice (y su extensión) se presta a una duda razonable. La frontera de la RC que proporciona el P-value notado por P_{sc} - expresión (80) - viene dada por la diferencia de proporciones experimental $t=x_2/n_2-x_1/n_1$, y el estadístico en

el que se condiciona para obtener información sobre p (a,=x,+x,) dos informaciones independiente de t. Así, independientes, y obtenidas de igual muestra, se introducen simultáneamente en el test. ¿Cómo afecta ello al error real de Tipo I del mismo?. Que T y A_1 no son independientes puede probarse con un contraejemplo, pero de un modo más general puede señalarse que, cuando n,=n2, la independencia entre T y A, se da si y sólo si X_1-X_2 y X_1+X_2 son independientes, y ello sólo ocurre (Ferguson, 1967, p.256) si y sólo si X, y X2 (que son a su vez independientes) siguen la distribución normal con una varianza común (tal como sucede, aproximadamente, en grandes muestras). De hecho, Plackett (1964) ya probó que X,-X2 y X,+X, son "casi independientes", pero no llegan a serlo del todo (en especial con pequeños tamaños de muestra).

La solución de Rice de 6.2.3 presenta el defecto de ser más conservadora que el propio test exacto de Fisher. En efecto, ya se dijo que el valor P_{scr} de la (83) es igual al del test exacto de Fisher para la tabla que se indica entre paréntesis: $P_r(x_1+r-1;y_1+s;x_2;y_2)$. Este valor es estríctamente decreciente en el primer y cuarto argumentos, y estríctamente creciente en el segundo y tercero. Con ello, para valores $0 \le r = s \le 1$ que son los más usuales, será:

 $P_r(x_1;y_1;x_2;y_2) \le P_r(x_1+r-1;y_1+r;x_2;y_2) \le P_r(x_1-1;y_1+1;x_2;y_2)$ y así el test actual es más conservador que el de Fisher.

7. DISCUSION

7.1. Introducción.

Como se ha venido exponiendo en los apartados anteriores, unos datos como los de la Tabla 1 de la introducción puede analizarse por cuatro métodos distintos: Tests aleatorizados, tests clásicos (condicionados o incondicionados), tests de aleatorización (condicionados o no) y tests psudobayesianos (condicionados o no). Esto da lugar a siete posibles modos de resolver el problema. Cada uno de ellos, excepto el primero, tiene varias versiones. Aquí se plantea un enfrentamiento entre unos tests y otros.

7.2. ¿Test aleatorizado o no aleatorizado?

El test de Tocher-Lehmann, a pesar de parecer idóneo por ser UMPU, ha sido sometido a numerosas críticas (Mantel and Greenhouse, 1968; McDonnald et al, 1977; Liddell, 1978; Suissa and Shuster, 1985; ...). Todas ellas están basados en la irracionalidad de decidir por sorteo la posible significación de una tabla: a igual error objetivo α distintos investigadores pueden tomar distintas decisiones. Esto podría poner en tela de juicio la objetividad científica, aunque realmente es raro encontrar publicaciones en que se toman las decisiones en base a este test (Plackett, 1964), el cual es llamado "repugnante" por los primeros autores citados.

Liddell (1978) prueba, en base al estudio de algunas

tablas con pequeño tamaño, que este test no sólo es arbitrario sino también absurdo, por las incongruencias que en el estudio encuentra, a pesar de ser más potente que el no aleatorizado. Suissa and Shuster (1984) señalan que el test es UMPU, pero no UMP, y prueban que es más potente sólo en las cercanías de la H_o , y que un test sesgado puede ser más potente que uno insesgado en la mayoría del espacio paramétrico de la H_i .

7.3. ¿Test de aleatorización o de no aleatorización?

comentó con anterioridad que el test Ya aleatorización es conveniente en situaciones similares a las de los Ensayos Comparativos, en los que los n individuos de la muestra se reparten al azar entre dos tratamientos. Sin embargo, Yates (1984), en un contexto más amplio, opina que el argumento es una falacia, dado que es igual tomar n individuos de una población y dividir la muestra en dos partes n₁ y n₂, también al azar, que tomar n₁ y n₂ individuos al azar de una población (lo que le lleva a asegurar que estas dos situaciones son estadísticamente equivalentes y, por tanto, deben usarse los mismos tests de significación). Upton, en su respuesta a Yates, señala que la clave está en si los n individuos ensayados se consideran como una muestra o como la población en sí, argumentado que si el experimento es "irrepetible" los n individuos constituyen la población, por lo que sería lógico condicionar en a, y, por tanto, sería apropiado utilizar el test exacto de Fisher.

En cualquier caso, los partidarios del método condicionado señalan que el método adecuado es el test exacto de Fisher (que recordemos es también de aleatorización).

7.4. ¿TEST CLASICO O PSEUDOBAYESIANO?

La única discusión que aparece en la literatura es la respuesta de Hill y Barnard al artículo de Rice (1988), pero, es de suponer, que ésta pueda hacerse extensible al método pseudobayesiano en general. Hill observa que, si bien los a la información sobre diferencia proporcionan alguna proporciones, ésta no puede ser utilizada haciendo suposiciones sin fundamento (hace especial mención al test exacto de Fisher, que no hace suposición alguna). Barnard indica que el test de Rice puede dar significativo no sólo porque $p_1 \neq p_2$, sino también porque la distribución de p elegida no sea la correcta. Rice apoya el método notando que cuando se tiene información absoluta acerca de p (p=po) la sustitución por po da lugar al test binomial incondicional; cuando no se dispone de ninguna información lo lógico es asumir cualquier valor de p como igualmente posible; y cuando de otras experiencias se posee alguna información, ésta debe ser insertada en el problema.

La metodología pseudobayesiana ocupa una posición intermedia entre la Estadística Clásica y la Bayesiana y resulta difícilmente comparable por lo siguiente: a) el método clásico (habitual en los tests bajo la teoría de Neyman-Pearson) condiciona en un valor p desconocido, mientras que el

pseudobayesiano condiciona en una supuesta distribución de p conocida; b) la significación del clásico alude a pruebas repetidas en un mismo valor de p, y la del pseudobayesiano a pruebas repetidas en valores al azar de una distribución de p; c) el control sobre el error α se realiza, en el caso del primero, sobre cada experiencia particular, y en el segundo sobre el conjunto de las experiencias a lo largo de nuestra vida extraídas de la distribución asumida de p (lo que implica que, en un valor particular de p, el tamaño del test puede superar ampliamente al error propuesto); d) el método pseudobayesiano no controla experiencias individuales, estando sometido a una posible y añadida fuente de error que es la distribución supuesta de p (la suposición de que f(p)=Be(1/2, 1/2) tiende a aminorar la incidencia de tal error).

En resumen, el enfrentamiento entre la filosofía pseudobayesiana y la clásica es difícil puesto que los puntos de partida son distintos, lo que hace que los resultados no sean lícitamente comparables. A pesar de todo ello, las dudas razonablemente expuestas por Hill y Barnard sobre el método de Rice, las indicadas en el subapartado 6.2.4, y el hecho de que el método condicionado intermedio, expuesto en 6.2.3., resulta ser menos potente que el test exacto de Fisher, hacen dudar de la metodología pseudobayesiana.

7.5 ¿Test condicionado o incondicionado?

Barnard (1945), en su presentación menos formalizada del test incondicionado, ya sostiene la primera discusión con acerca del criterio que debe Fisher (1945)elegirse. Posteriormente, Barnard (1947), Pearson (1947), Garside and Mark (1967), Berkson (1978) ... defienden el incondionado. Más tarde, la discusión vuelve a suscitarse con fuerza en los artículos de Yates (1984), Little (1989), Haviland (1990), Cormack y Mantel (1991) ... que apoyan el test exacto de Fisher. Curiosamente, Barnard, el creador del incondicionado, rápidamente se arrepiente (1949) y pasa a defender el condicionamiento (1982, 1989), pero haciendo variar el error α (utilizando errores pequeños para experimentos sensibles y más grandes para experiencias poco sensibles).

Los argumentos en los que se basan unos y otros son los propios principios que sustentan cada metodología, y ésto hace imposible la reconciliación de ambas tendencias. En lo que sigue se exponen los principales.

Los defensores del método condicionado (Fisher, 1959, a y b, Yates 1984) indican que es el único test "racional" por estar basado en el condicionamiento en un estadístico auxiliar (a1). Hace notar que toda la estadística relativa a variables aleatorias continuas está basada en el condicionamiento (regresión, comparación de dos medias, ...) y no se han expuesto razones que lo invaliden en variables aleatorias discretas. Estos autores mantienen que es perfectamente lícito

condicionar en a, puesto que los marginales de la tabla contienen poca información sobre la odds-ratio (Plackett, 1977), de hecho sólo determinan la sensibilidad del test (Yates 1984); por tanto, el condicionamiento no supone pérdida de información. Berkson (1978), por el contratio, defiende que al ser a, un valor aleatorio, al condicionar se produce una pérdida innecesaria de información, ya que los marginales sí contienen información, que es en grandes muestras despreciable pero que puede ser importante en pequeñas muestras (Hinde and Aitkin, 1987).

Un segundo argumento en contra del método condicionado alude a la capacidad del test para dar significaciones, pues es conocido el conservadurismo del test exacto de Fisher, cuyo tamaño suele estar entre 1/4 y 1/2 del error nominal a elegido (McDonald, 1977; Liddell, 1978; Upton, 1982; Haber, 1987). Yates (1984) opina que la confusión proviene del uso indebido de niveles nominales de significación (habitualmente 1%, 5%, 10%), lo cual sólo está indicada con variables continuas (donde el error real alcanza realmente al objetivo), pero no en variables discretas (donde esto pocas veces se logra), criticando esta práctica como una aplicación indiscriminada de la teoría de Neyman-Pearson. Yates basa su argumento en ejemplos que pueden plantearse con frecuencia en los que el P-value de una situación concreta es del 5,5% o del 1,1%.

Otro de los motivos de conflicto es el comportamiento inconsistente del test exacto de Fisher cuando se efectúa un test de dos colas, reflejado en los artículos de Cornfield (1966), Yates (1984), Dupont (1986) y Cormack (1986). Yates y

Dupont manifiestan que éstos son debido a que se define mal el P-value de un resultado dado en test a dos colas (recuérdese que en 2.3.2 se daban las distintas versiones propuestas para el test de dos colas; en una cola sólo hay una posibilidad). Los mismos autores que presentan tales inconsistencias, proponen nuevos tests (que a su vez están basados en el condicionamiento en a₁), que dicen resolver tales problemas. La razón de la irregularidad del comportamiento del test exacto de Fisher está en la asimetría de la distribución hipergeométrica y en lo discreto de la variable en estudio.

Una vez más la dificultad en el acuerdo se basa en los principios que sustentan ambas metodologías: el método condicionado condiciona en el valor a, obtenido, mientras que el incondicionado lo hace en el valor desconocido p; las significaciones de uno alude a pruebas repetidas para un mismo valor a, (con independencia de cuanto valga p), y la del otro, a pruebas repetidas para un mismo valor de p (con independencia de quien sea a,); ambos controlan experiencias individuales, pero a través de un corte distinto del espacio muestral-paramétrico bajo Ho. Por tanto, la discusión centrada en cuál es el planteamiento lícito puede llegar a ser interminable.

Otro punto tratado ampliamente en la discusión es el relativo a la potencia obtenida en los métodos de cada una de las dos tendencias. Las críticas de algunos autores en este sentido resultan no ser válidas por cuando sus razonamientos llevan implícitos una cierta confusión de conceptos. Ya se dijo que, bajo el principio incondicionado, la probabilidad de una tabla como la obtenida viene dada por la expresión (3); ello

implica que la potencia de un test incondicionado se calcula como

$$\Theta(p_1, p_2, \alpha) = \Theta(p_1, p_2, \alpha | n_1, n_2)
= \sum_{CR} {n_1 \choose x_1} {n_2 \choose x_2} p_1^{x_1} (1-p_1)^{y_1} p_2^{x_2} (1-p_2)^{y_2}$$
(85)

el error de tipo I se determina por la (60) y el tamaño por la (61). Bajo el principio del condicionamiento, la probabilidad de una tabla como la dada viene dada por (Fisher 1935):

$$P(x_1|a_1,\lambda) = \binom{n_1}{x_1} \binom{n_2}{x_2} e^{\lambda x_1} + \sum_{i=1}^{s} \binom{n_1}{i} \binom{n_2}{a_1-i} e^{\lambda i}$$
(86)

con $\lambda = \text{Ln} \left[p_1(1-p_2) / p_2(1-p_1) \right]$, por lo que el error de tipo I ha de obtenerse a través de la hipergeométrica como en (1) $(\lambda=0)$, pero la potencia deberán calcularse por la fórmula anterior, no con la (85). Y sucede que muchos autores confunden una con otra.

Haber (1987) y Upton (1982) concluyen que el test exacto de Fisher es conservador, pero los cálculos los hacen aceptando el principio incondicionado. De todas formas, como se vió en 4.2, el test exacto de Fisher podía también ser tratado como test incondicionado y en este caso sí resultaba ser más conservador, pero la pérdida de potencia respecto del incondicionado resultaba ser muy pequeña (ver 4.2.3.) (Esta pérdida en algunos casos podría resultar compensable por la facilidad de cálculo y menor tiempo de cómputo necesario en el caso de los tests condicionados). Por tanto, se puede concluir que es lícita la comparación de potencias de dos tests incondicionados pues la base de su filosofía es la misma, pero no tiene sentido comparar las potencias de un test

incondicionado y otro condicionado puesto que se parte, incluso, de espacios muestrales distintos.

Recordemos, asimismo, que el test exacto de Fisher era solución válida para los tres problemas planteados al principio de esta memoria (no ocurriendo así con los métodos incondicionados) y que es una solución válida, aparte de como test condicionado, como test de aleatorización y como test incondicionado, procede del UMPU y es próximo a los tests pseudobayesianos. El precio de su generalidad es su menor potencia.

Por otro lado, y a nivel práctico, cabe señalar la ventaja va señalada de los tests condicionados en cuanto al tiempo de cómputo necesario. Este es en los tests incondicionados mucho mayor que el necesario al utilizar el test exacto de Fisher, incluso con tamaños de muestra relativamente bajos. Además, actualmente, ningún paquete estadístico de uso común (BMDP, SPSS, SX, ...) tiene implementado ningún test incondicionado: la resolución de problemas de tablas 2 x 2 se hace utilizando el test exacto de Fisher de una cola o, en caso de dos colas, alguna de las versiones de este test según el paquete elegido. Más aún, si un investigador, en un momento dado, no dispone de ordenador, el test exacto de Fisher puede utilizarlo incluso a mano (por supuesto hablamos de pequeñas muestras) y con muy pocos cálculos si dispone de una calculadora que le permita obtener probabilidades de la hipergeométrica o, en su defecto, número combinatorios, cosa que nunca podría hacer con ninguno de los tests incondicionados.

Además la ventaja añadida del test exacto de Fisher frente

a cualquier versión incondicionada de su sencillez de proceso y fácil cálculo, hace que pueda ser incluido, y de hecho así ocurre, en los libros de texto básicos dedicados a la Estadística aplicada a las distintas ciencias.

Finalmente, una defensa argumental de la conveniencia del test exacto de Fisher, al menos en ciertas circunstancias, y que en nuestra opinión es de las más fuertes, es la de Greenland (1991). Su razonamiento consta de varios pasos, y es bastante ilustrativo reproducirlos resumidamente aquí:

- 1º.- Si de n individuos (que constituyen la población), n₁ reciben un tratamiento y n₂ ninguno, y, observado el efecto producido, se encuentran a₁ éxitos y a₂ fracasos, el único test lícito es el condicional pues, bajo H_o, el tratamiento es incapaz de alterar la respuesta y así los éxitos serán siempre a₁.
- 2º.- Si n, individuos reciben un tratamiento y n, ninguno y espero hasta obtener a, éxitos (o a, fracasos) -regla de parada- el único método factible es el condicionado.

Hasta ahora, dado que n_i y a_i están fijados de antemano, estamos en el caso i) de la introducción y los partidarios del incondicionado no suelen poner dificultades en aplicar aquí el test exacto de Fisher.

3º.- La novedad es considerar ahora el modelo de efectos causales de Robins (1988). En él se asume que cada individuo tiene una respuesta aleatoria 1 o 0 y que el tratamiento puede alterar su valor si es efectivo, pero no puede hacerlo bajo la H_o . Por supuesto que el tratamiento del que aquí se habla ha de ser externo al individuo (una droga, por ejemplo), no algo intrínseco a él (el sexo, por ejemplo). Con tal planteamiento sean:

 $H_o \equiv H_{pp} \equiv$ cada individuo de la **población** da igual respuesta con el tratamiento I que con el II.

 $H_o'\equiv H_{HF}\equiv$ cada individuo de la muestra da igual respuesta con el tratamiento I que con el II. Para contrastar H_{HF} , el punto 1º concluyó que se precisa aplicar el test exacto de Fisher. Está claro que

$$\overline{H}_{MF} \Rightarrow \overline{H}_{PF} \quad y \quad H_{MF} \neq H_{PF}$$
 (87)

pues la hipótesis puede ser cierta en la muestra, pero no en la población. Sin embargo, parece absurdo decidir \overline{H}_{PF} y H_{MF} (pues la inferencia se hace con la misma muestra), y como ello puede suceder de aplicar el test incondicionado a H_{PF} , la conclusión es que en tal caso también debe aplicarse el test condicionado.

4º.- Hasta ahora las hipótesis aludían a la estabilidad de la respuesta en cada individuo. Sin embargo, cuando se comparan dos proporciones, las hipótesis suelen aludir a la estabilidad promedio de las respuestas. Sea tal hipótesis clásica,

 $H_o \equiv H_{po} \equiv$ la proporción de éxitos poblacionales es la misma con los dos tratamientos.

 $\equiv p_1 = p_2$

en donde está claro que

$$H_{PF} \Rightarrow H_{PD} \quad y \quad \overline{H}_{PD} \neq \overline{H}_{PF}$$
 (88)

Si el método incondicionado pudiera aplicarse aquí, entonces podría suceder que concluyéramos \bar{H}_{PD} y H_{MP} , es decir \bar{H}_{PF} y H_{MP} , y ello ya se vió en 3º que era absurdo. Por consiguiente, una vez más, debe aplicarse el modelo condicionado.

Obsérvese que el razonamiento no afecta a los modelos descriptivos (no causales), que son los más habituales, en los que la hipótesis es, por ejemplo, que la proporción de individuos varones es igual en dos poblaciones.

7.6. Versiones especiales del test de Fisher.

7.6.1. Introducción. (Aportación).

En apartados anteriores se ha indicado que el test exacto de Fisher (clásico) tiene una única versión como test de una cola, pero varias como test de dos colas, aunque de estas últimas ya se seleccionó la óptima (tanto desde el punto de condicionado como desde el punto de vista incondicionado). También se indicó que dicho test ha sufrido partidarios del por los (incluso ataques diversos fundamentalmente su centrados condicionamiento) conservadurismo o en su comportamiento inconsistente como test de dos colas. Para combatir tales presuntos defectos, algunos de los críticos han propuesto versiones especiales del test, que han sido definidas anteriormente y que van a criticarse en lo que sigue.

En esencia, la razón de estas modificaciones radica en no comprender bien la estructura del problema. El test exacto de Fisher es el único test condicionado factible, y el afirmar que es conservador no tiene sentido si se acepta el principio condicionado. Un test es conservador o no si hay otro test con el que enfrentarlo, y esto no sucede aquí. Por otro lado, las inconsistencias del test (como test de dos colas) son fruto de lo discreto de la variable base (Martín and Luna, 1989), y en una variable que toma unos pocos valores no es de extrañar que el P-value dé algunos saltos inesperados de unas tablas a otras (Barnard, 1989).

7.6.2. Crítica al P-MID. (Aportación).

En los apartados 2.2 y 2.3 ya se citaron las propuestas de Lancaster (1952) y Haber (1986) relativas a efectuar el test exacto de Fisher bajo el criterio del P-mid (una cola el primero; dos colas el segundo). Para nuestros propósitos basta con recordar lo que sucede en tests de una cola ($H_0 = p_1 = p_2$ contra $H_1 = p_1 < p_2$): el P-value de una tabla observada es

$$P-mid(x_1) = \sum_{x_1=x}^{x_1-1} P(x_1) + \frac{1}{2} P(X_1=x_1)$$
 (89)

lo que se traduce en que la tabla observada entra en la RC pero con la mitad de su probabilidad. La introducción del concepto se hizo con el fin de corregir el conservadurismo del test χ^2 .

Una primera curiosidad (de tantas como suceden en las Tablas 2x2) es que los defensores del método (los anteriores

más Franck, 1986) lo apoyan porque hace menos conservador el test exacto de Fisher, y, como prueba, citan que el tamaño del test así construido es mayor que el error objetivo α . Realmente no se comprende que estadísticos de prestigio aduzcan semejantes razones. Por definición, el tamaño de un test no puede desbordar el error objetivo α , y, si se deja que ello suceda, ya no hay límite en la imaginación: ¿por qué no eliminar toda la probabilidad $P(X_1=x_1)$ en la expresión (89)?. Es cierto que en tests asintóticos se permite algún exceso de ese estilo, pero la propuesta anterior es ilítica para un test no asintótico (exacto) como el actual que, por definición, ha de respetar α .

Otro argumento curioso es el de Lancaster (1961), Barnard (1989) y Yates (1984). Todos ellos avalan el P-mid pues ies el que mejor se aproxima al χ^2 !. Barnard remata la idea indicando que el test x² sin correción por continuidad (ver próximo capítulo) es al test χ^2 con correción por continuidad, como el test exacto de Fisher en formato de P-mid es al mismo en formato clásico. Los desatinos, en nuestra opinión, son varios. En primer lugar, el test χ^2 es un test asintótico que debe ajustarse al no asintótico (al de Fisher) y no al revés; si el test de χ^2 va mal, habrá de hacerse alguna corrección apropiada (como las del capítulo próximo). En segundo lugar, la correción por continuidad es un mecanismo para aproximar una variable discreta (la hipergeométrica) a otra continua (la χ^2), con lo que el paralelismo entre tests asintóticos y no asintóticos citado anteriormente sólo sirve para descalificar de un golpe el criterio del P-mid y al estadístico χ^2 sin correción por continuidad.

En esencia, lo que sucede es que el criterio del P-mid no tiene (en nuestra opinión) ningún sentido. Un ejemplo ayudará a justificar la afirmación. Sean

$$H_0 \equiv p=0.9$$
 contra $H_1 \equiv p<0.9$

con p la probabilidad de "cara" de una moneda, y sea X="número de caras tras un lanzamiento". Bajo H_o es X \equiv B(n=1;p=0.9) y así P(X=0)=0.10 y P(X=1)=0.90. Si al lanzar la moneda sale "cruz", entonces $X_{experimental} = x=0$. ¿Cuál es el P-value de la experiencia?.

a) Bajo la perspectiva clásica:

$$P = P(X \le 0) = P(X=0) = 0.10$$

b) Bajo la perspectiva del P-mid:

$$P=1/2 P(X=0) = 0.05$$

con lo que para $\alpha=5\%$ se concluirá (lógicamente) H_o con la primera e (ilógicamente) H_i con la segunda.

7.6.3. Crítica a la versión de Armitage.

Recordemos que Armitage (1971), llevando a su extremo el criterio de colas iguales para la definición del test exacto condicionado de dos colas, propuso obtener el P-value bilateral de una tabla doblando el P-value de una cola de la tabla obtenida. Yates (1984) y Dupont (1986) aceptan este criterio, justificando este último su acuerdo en que no presenta incoherencias (Cormack, 1986) y se adecúa bastante al test de χ^2 con la correción de Yates. Martín y Luna (1989.a) y Martín et al. (1989) responden que el hecho de que un test no presente

incoherencias no garantiza que sea correcto y, por otro lado, que el test de χ^2 al ser asintótico es el que tiene que estar conforme con el no asintótico y no al revés, por lo que sus argumentos no sirven para validar dicho test. Además, el mismo Dupont admite no encontrar justificación teórica a este criterio.

Este test es rechazado por muchos autores (Hill, Jagger, Plackett, Mantel, Cormack, ...) pues puede plantear diversos problemas: que se le asigne probabilidad a una cola que no existe, que se obtenga un P-value superior a la unidad y que es un test sesgado (Lloyd, 1988), pero no es el UMPU.

8. CONCLUSIONES. (Aportación).

La eliminación de parámetros perturbadores es uno de los problemas cruciales de la estadística (Basu,1977) y ha dado lugar a diversas soluciones. El caso de tablas 2x2, simple en apariencia, es especialmente engorroso y paradigmático y se ha constituido en el campo de batalla particular de aquella lucha más general. La multiplicidad de soluciones aportadas (las vistas en este capítulo, y algunas más), el hecho de que a cada una de ellas se hayan adherido estadísticos de prestigio, y el ímpetu que ponen cada uno en la defensa de su elección, hacen sospechar que el problema es más bien filosófico y que el acuerdo es imposible, dependiendo la decisión de lo que cada uno entienda por un test de hipótesis. Conviene señalar que el problema surge por la discretitud de la/s variable/s base, pues

en el caso de variables continuas las discrepancias se atenúan o desaparecen.

En este primer capítulo de la memoria se ha hecho un repaso de las soluciones existentes y se ha mantenido una posición ecléptica ante el problema a nivel de filosofía, que no a nivel de atacar las soluciones erróneas allá donde sucedan. Por las razones expuestas a lo largo del capítulo, la gran decisión se centra en adoptar la filosofía condicionada o la incondicionada. Aquí, sin inclinarse a nivel teórico por una u otra, se ha probado que el tradicional test exacto de Fisher (filosofía condicionada) reúne una serie de características que le hacen más deseable de lo que los ataques a que se ve sometido parecerían indicar. Estas son sus principales ventajas:

- Es un test válido en un amplio abanico de situaciones (es válido como test condicionado y como test incondicionado, como test de aleatorización, procede del UMPU ...). Las demás filosofías requieren un test para cada situación.
- 2) Es un test válido para los tres tipos de muestreo descritos en la introducción. Las demás filosofías requieren un test para cada muestreo.
- 3) Es el único test lícito en el caso de los modelos causales.

- 4) Es simple de aplicar, pudiendo efectuarse incluso a mano o con calculadora de bolsillo. En los casos más extremos (n grande o muchas tablas a analizar) su tiempo de cómputo es exageradamente inferior al del método incondicionado.
- 5) Forma parte de cualquier paquete de programas estadísticos (BMDP, SPSS, ...), lo que no sucede con los demás métodos.
- 6) Su relativa simplicidad permite incluirlo en los libros de texto básicos, incluso en los sólamente aplicados.
- 7) Su potencia (que es su talón de Aquiles) no es tan baja como indica la literatura (basada en n, pequeños) sino que la pérdida de ella frente al incondicionado es despreciable (en relación a las ventajas señaladas arriba) para la mayoría de las situaciones. En todo caso, éste es el precio que se paga por su mayor generalidad y su simplicidad.
- 8) Su metodología es aplicable a otras situaciones aparentemente lejanas (como el test de las rachas).

Siendo el test exacto de Fisher de tanto interés, en este capítulo se ha efectuado la selección como test de dos colas. La conclusión ha sido que, tanto como test condicionado como incondicionado, las reglas de desempate le afectan poco y que, en la práctica, cualquiera de las versiones habituales en la

literatura es igualmente buena (en particular las H, I y D por ese orden), aunque ya se observaron las ventajas de utilizar la versión DH.

CAPITULO II

METODOS CONDICIONADOS ASINTOTICOS

1. INTRODUCCION.

Todos los tests descritos en el capítulo anterior son métodos no asintóticos y, por tanto, válidos para cualquier tamaño de muestra. Sin embargo, tienen la desventaja de requerir un considerable número de cálculos, por lo que se hacen precisos métodos asintóticos que, con grandes muestras, simplifiquen el problema. El recurso a las tablas de significación no solventa el problema pues en éstas se contempla un número limitado de valores n_i .

Como se vió en el capítulo I, hay opiniones contrapuestas acerca de cuál es el método no asintótico idóneo y, dentro de él, cual es la versión óptima; en el caso de los métodos asintóticos éstas son aún más discrepantes. En primer lugar, existen varios estadísticos que pueden resultar válidos (chicuadrado, máxima verosimilitud, ...) y en segundo lugar, y sobre todo, hay gran discusión acerca de cuál es la corrección por continuidad (c.p.c., en adelante) a realizar en los mismos (especialmente en el test de chi-cuadrado).

Antes de entrar a estudiar los métodos asintóticos, conviene que se acuerde algo acerca de la notación. En todo lo que sigue se asume que es $a_1=Min(a_1,a_2,n_1,n_2)$, $p_1=x_1/n_1>p_2=x_2/n_2$ (con lo que el mínimo de las n_1 está por ahora indeterminado) y $E_{11}=a_1n_1/n$, todo ello en relación a la tabla de la intoducción. Por otro lado, el capítulo actual va a tratar de la aproximación al test exacto de Fisher, entendiendo que los P-values reales de él van a ser estimados por los P-values

aproximados del método en estudio. Es por ello que conviene reseñar aquí (explícitamente) las expresiones de los P-values reales. Para una cola $(H_1=p_1>p_2)$ éste era:

$$P_{P1} = P_1 = \sum_{X_1 = X_1}^{B} P(X_1)$$
 (1)

con $P(X_1)$ la probabilidad hipergeométrica dada por la (1) del capítulo anterior.

Para dos colas (H₁≡p₁≠p₂) recuérdese que la forma era

$$P_{FZ} = P_1 + P_{1'} = \sum_{X_1 = X_1}^{S} P(X_1) + \sum_{X_1 = X}^{X_1'} P(X_1)$$
 (2)

con x_1 ' el primer entero tan extremo o más que el x_1 , pero en la dirección opuesta. Sin embargo, el valor x_1 ' depende del criterio de ordenación elegido. Como este capítulo (por las razones que se verán) está dedicado de modo especial al test chi-cuadrado, conviene que el criterio de ordenación del test exacto y del aproximado sea el mismmo, y así x_1 ' será la primera tabla que, por la otra cola, dé un valor de χ^2 tan extremo o más que la tabla de x_1 . Finalmente, y puesto que ordenar por χ^2 es equivalente a ordenar por diferencia de proporciones e igual que ordenar de mayor a menor distancia a la media, entonces será

$$x_1' = [2E_{11} - x_1]^{-} \tag{3}$$

con [x] el primer entero menor o igual que x.

2. METODOS ASINTOTICOS MAS USUALES.

2.1. El test de chi-cuadrado clásico.

Pearson (1900) es el primero que introdujo el método. Bajo el principio condicionado, la variable aleatoria X, sigue una distribución hipergeométrica con

$$\mu = E(X_1 | a_1, n_1) = \frac{a_1 n_1}{n} \quad y \quad \sigma^2 = Var(X_1 | a_1, n_1) = \frac{a_1 a_2 n_1 n_2}{n^2 (n-1)}$$
 (4)

y, en grandes muestras,

$$\frac{X_1 - \mu}{\sigma} \tag{5}$$

se distribuirá aproximadamente como una normal típica, es decir,

$$\chi_P^2 = \frac{\{x_1 y_2 - x_2 y_1\}^2}{\frac{a_1 a_2 n_1 n_2}{\sigma}} (n-1) = \left[\frac{X_1 - \mu}{\sigma}\right]^2$$
 (6)

que será el estadístico de contraste, sigue aproximadamente una distribución χ^2 teórica con 1 grado de libertad (g.l.). El método de las marcas eficientes (Rao, 1970) da lugar al estadístico más conocido y habitual

$$\chi^2 = \frac{\{x_1 y_2 - x_2 y_1\}^2}{a_1 a_2 n_1 n_2} n \tag{7}$$

En la literatura se presenta con cierta frecuencia el problema de comparación de dos proporciones con grandes

muestras; éste es resuelto con el estadístico

$$\frac{(\hat{p}_{1} - \hat{p}_{2})}{\sqrt{pq\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}}$$
 (8)

con q=1-p el cual se distribuye asintóticamente como una normal típica. Sustituyendo pq por su estimador insesgado de mínima varianza, se tiene

$$z_{p} = \frac{(\hat{p}_{1} - \hat{p}_{2})}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) \frac{n}{n-1}}}$$
(9)

con $p=a_1/n$ y q=1-p. Como $z_p^2=\chi_p^2$, ambos tests son el mismo. Brownlee (1967), en base a investigaciones empíricas, aconseja sustituir el factor n/(n-1) por la unidad, con lo que se obtiene el estadístico tradicional

$$z = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$
(10)

con $z^2=\chi^2$. Pearson (1947) es el primero en reconsiderar la conveniencia de utilizar χ^2_p en lugar de χ^2 .

Se observa que las expresiones de tipo z provienen de un individualizan argumento incondicionado (pues los dos estadísticos p,), pero, siendo tan habituales en la literatura y siendo equivalentes al método chi-cuadrado, se ha optado por (al menos) referenciarlos aquí. Hay otros muchos métodos de aproximación al problema (tal es el caso del estadístico L2 de Gart (1966), el T2 de Freeman-Tukey (1950), el Y2 de Wilks (1935), el test F de Sachs (1986), etc.), pero a la mayoría les anterior (proceden de argumentos sucede como al caso

condicionados) o bien está bastante establecido su peor actuación en comparación con el test de chi-cuadrado (Sachs, 1986; Cox and Groeneweld, 1986; Upton, 1982). Por otro lado, un test asintótico debe ser un procedimiento sencillo de aplicar (pues de lo contrario se aplicaría el exacto); es por todo ello, y por la extensa bibliografía existente al efecto, que este capítulo se preocupa casi exclusivamente del test chi-cuadrado, dedicándose a otros procedimientos sólo cuando él falla.

2.2. Métodos para los casos raros. (Aportación).

2.2.1. Introducción.

Los métodos asintóticos están sometidos a unas condiciones de validez para su aplicación, y esto le pasa en particular al test chi-cuadrado. Aunque tales condiciones serán estudiadas más adelante, por ahora basta recordar la clásica condición de que la mínima cantidad esperada sea mayor que 5 (aunque otros autores son menos exigentes). En cualquier caso, si el test chi-cuadrado no es aplicable es porque $E=a_1Min(n_1,n_2)/n$ es pequeña, lo cual sucederá si es a_1/n pequeño (un marginal raro). Más aún, Haber (1980) indica que el test chi-cuadrado funciona excepcionalmente bien si además es $E\geq n/10$, es decir, si es $a_1/n\geq n/(Min(n_1,n_2))\geq 0.2$, pues $Min(n_1,n_2)\leq n/2$. Esto vuelve a indicar que la peor actuación del test chi-cuadrado se produce cuando el fenómeno es raro o muy frecuente.

El planteamiento tradicional anterior crea una franja de

tablas en las que el test de Fisher es difícil de aplicar por el elevado valor de alguno de los marginales, en tanto que el test χ^2 no puede aplicarse por no verificar las condiciones de validez, y esta franja de tablas (de marginales raros) es la que se pretende abordar ahora. Por ejemplo, una tabla con n=500, $a_1=20$ y $\min(n_1,n_2)=100$ da E=4 que no verifica la regla clásica pero tiene unos marginales excesivamente grandes como para poder aplicar el test de Fisher con comodidad.

2.2.2. Caso de un marginal raro.

Es conocido que una distribución hipergeométrica $H(n;a_1;n_1)$ - que es en la que se basa el test exacto de Fisher - puede aproximarse a una distribución binomial $B(a_1; n_1/n)$ cuando a_1/n es un número pequeño (como sucede aquí). También es conocido que las probabilidades de cola de una binomial B(N;p) pueden obtenerse a través de la expresión:

$$P(B \le r) = P\{F_{2(r+1);2(N-r)} \ge \frac{N-r}{r+1} \frac{p}{1-p}\}$$
 (11)

con $F_{v,w}$ aludiendo a la distribución F de Snedecor con los g.l. v y w, distribución que aparece en cualquier libro de estadística y en cualquier paquete de programas. De ambos

hechos se deduce que:

$$P_{1} = P_{p} = P(H \ge X_{1}) = P_{B1} = P(B \ge X_{1}) = 1 - P(B \le X_{1} - 1) =$$

$$= 1 - P\{F_{2X_{1}; 2(X_{2} + 1)} \ge \frac{X_{2} + 1}{X_{1}} \frac{n_{1}}{n_{2}}\}$$
(12)

$$P_{1'} = P(H \le x_1') = P_{B1'} = P(B \le x_1') = P\{F_{2(x_1'+1);2x_2'} \ge \frac{x_2'}{x_1'+1} \frac{n_1}{n_2}\}$$
 (13)

con H,B y F aludiendo a las distribuciones hipergeométrica, binomial y de Snedecor citadas antes, respectivamente. Con ello, los P-values de Fisher de una y dos colas pueden obtenerse aproximadamente (en el caso de un marginal raro) como:

$$P_{F1} = P_{B1}$$

 $P_{F2} = P_{B1} + P_{B1'} = P_{B2}$ (14)

Como la media y varianza de la binomial citada son:

$$\mu = \frac{a_1 n_1}{n} \quad y \quad \sigma^2 = \frac{a_1 n_1 n_2}{n^2} \tag{15}$$

en el caso de grandes muestras $(X_1-\mu)/\sigma$ se distribuye asintóticamente como una distribución normal típica, y así, su cuadrado:

$$\chi_R^2 = \frac{\{x_1 y_2 - x_2 y_1\}^2}{a_1 n_1 n_2} \tag{16}$$

seguirá una distribución χ^2 con 1 g.l., lo que constituye una χ^2 - alternativa a la (7) - para el caso de un marginal raro.

2.2.3. Caso de dos marginales raros.

Cuando también el segundo marginal es raro, es decir, $\min(n_1,n_2)/n$ es pequeño, la distribución B(N;p) puede aproximarse a una distribución de Poisson, $P(\lambda)$. También es conocido que las probabilidades de cola de una distribución de Poisson $P(\lambda)$ pueden obtenerse a través de la distribución chicuadrado de la siguiente forma:

$$P(P \le r) = P\{\chi_{2(r+1)}^2 \le 2\lambda\}$$
 (17)

con χ^2 aludiendo a la distribución χ^2 con v g.l., distribución que también aparece en cualquier libro de estadística o en cualquier paquete de programas.

Por tanto, si ambos marginales son raros, la distribución $H(n;a_1;n_1)$ se aproxima a $B(a_1;n_1/n)$ y ésta a su vez a la distribución $P(a_1n_1/n=E)$. De ambos hechos se deduce que

$$P_{1} = P_{F} = P(H \ge X_{1}) = P_{P1} = P(P \ge X_{1}) = 1 - P(P \le X_{1} - 1) =$$

$$= 1 - P\{\chi_{2x_{1}}^{2} \ge 2E\}$$
(18)

$$P_{1'} = P(H \le X_1') \approx P_{P_1'} = P(P \le X_1') = P\{\chi_{2(X_1'+1)}^2 \ge 2E\}$$
 (19)

con H, P y χ^2 aludiendo a las distribuciones hipergeométrica, de Poisson y χ^2 antes citadas, respectivamente. Con ello, los P-values de Fisher de una y dos colas pueden obtenerse aproximadamente (en el caso de dos marginales raros) como:

$$P_{F1} \approx P_{P1}$$

 $P_{F2} \approx P_{P1} + P_{P1'} = P_{P2}$ (20)

En lo anterior se ha supuesto que es $n_1=Min(n_1,n_2)$; de no ser así, las expresiones son las de antes cambiando x_1 por x_2' , x_1'

por x_2 y $E=a_1n_1/n$ por $E=a_1n_2/n$.

Sin embargo, las soluciones (18) y (19) no tienen en principio mayor interés, y así son excluidas del análisis del final del capítulo. La razón de ello es que los percentiles de la distribución F de Snedecor son conocidos cualesquiera que sean sus grados de libertad y, de ser alguno muy elevado, pueden utilizarse las clásicas aproximaciones a la distribución χ^2 (que son más precisas que las expresiones (18) y (19)). Por ejemplo, es conocido que $F_{v,u} = \chi_v^2$ y así, la (12) se convierte en

$$P_{F1} \approx 1 - P\{\chi_{2x_1}^2 \ge 2(x_2 + 1) \frac{n_1}{n_2}\}$$
 (21)

y, teniendo en cuenta que $(x_2+1)^2a_1$ y n_2^2n (por haber dos marginales raros), se obtiene la (18). La aproxiamción (18) es, por tanto, peor que esta última.

Como la media y la varianza de la distribución de Poisson citada son:

$$\mu = \sigma^2 = \frac{a_1 n_1}{n} \tag{22}$$

en el caso de grandes muestras $(X_1-\mu)/\sigma$ se distribuye asintóticamente como una normal típica, y así, su cuadrado:

$$\chi_{RR}^2 = \frac{\{x_1 y_2 - x_2 y_1\}^2}{a_1 n_1 n}$$
 (23)

seguirá una distribución χ^2 con 1 g.l., lo que constituye una χ^2 - alternativa a la (7) - para el caso de 2 marginales raros.

De todo lo visto se deduce que $\chi^2_{RR} < \chi^2_R < \chi^2$, y así, cuantos más marginales raros hay, más conservador es el test chi-cuadrado que producen.

3. LA CORRECCION POR CONTINUIDAD EN EL TEST DE CHI-CUADRADO.
3.1. Generalidades.

El término "corrección por continuidad" alude a la corrección que debe hacerse en un estadístico para compensar el hecho de que una variable aleatoria discreta se está aproximando a través de una continua. En el caso del test chicuadrado en Tablas 2x2, esto lleva a modificar la expresión (6) en el siguiente sentido:

$$\frac{\{|x_1y_2-x_2y_1|-c\}^2}{a_1a_2n_1n_2} (n-1)$$
 (24)

y de igual modo con la (7)

$$\frac{\{|x_1y_2-x_2y_1|-c\}^2}{a_1a_2n_1n_2}n$$
 (25)

como se justificará más adelante. En ambas, c es la c.p.c.

Yates (1934) argumentó que, siendo la hipergeométrica una v.a. discreta con salto la unidad, podía aproximarse a una distribución normal con una correción de 0.5 (la mitad del salto). Esto le llevó a hacer c=n/2 en la (25), obteniendo así el estadístico $\chi^2_{\rm Y}$. Aunque Yates fue el primero en sugerir el nombre de "correción por continuidad" (y así n/2 es la llamada correción por continuidad de Yates) y en publicar la fórmula, Pearson (1947) indica que el procedimiento era habitual entre los estadísticos desde, al menos, 1921. Irwin (1935) avala el procedimiento y Pearson (1947) sugiere hacer lo mismo con la

(24), obteniendo así el estadístico χ²γρ.

Tradicionalmente, la conveniencia de efectuar una c.p.c., y la magnitud de la misma, se ha justificado por un argumento gráfico como el de Pearson (1947). Cox (1970) es el primero que ofrece una prueba analítica de tal argumento: si una v.a. discreta que salta de h en h se aproxima a través de una v.a. continua, la c.p.c. h/2 (la mitad del salto) hace nulo el promedio de error (en términos de funciones de distribución) de la aproximación. Schouten (1976) ofrece una prueba más simple, aunque con la misma base y similares razonamientos, y Hamdan (1974) matiza el resultado.

Hasta ahora han aparecido algunos estadísticos χ_{x^2} , con X algún subíndice apropiado (P, Y, ...), los cuales se distribuyen asintóticamente como una $\chi_{1 \text{ g.i.}^2}$. Como más adelante aparecerán otros similares, conviene dar una notación general para todos ellos. En adelante será:

$$P(\chi_X^2) = P\{\chi_{1\sigma, 1}^2 \ge \chi_X^2\}$$
 (26)

Cuando el test sea de una cola, el P-value aproximado por el estadístico χ_{x^2} será $P_x=1/2$ $P(\chi_{x^2})$, pues la χ^2 no distingue las colas al estar elevada al cuadrado, es decir, al ser el cuadrado de la normal típica original. Cuando el test sea de dos colas, los problemas serán mayores (como veremos).

3.2. Correcciones por continuidad clásicas.

3.2.1. En test de una cola.

Utilizando los resultados anteriores, Pirie and Hamdan (1972) prueban que para contrastar $H_o\equiv\theta=0$ contra $H_i\equiv\theta\neq0$ en base a un estadístico U insesgado y suficiente del parámetro θ (o de un múltiplo de él) y con valores saltando de h en h unidades, es

$$P_d\{U \le I\} \approx F\left\{\frac{I + h/2}{6}\right\} \tag{27}$$

con P_d una distribución discreta, función del parámetro θ , que se aproxima a una distribución normal (con función de distribución F), σ^2 un estimador consistente de la varianza de U y U/ σ siguiendo asintóticamente una distribución normal típica. Como en Tablas 2x2 es $U=x_1y_2-x_2y_1$, la c.p.c. depende del salto de tal variable.

Bajo el principio condicionado, como

$$\{x_1y_2 - x_2y_1\} - \{(x_1 - 1)(y_2 - 1) - (x_2 + 1)(y_1 + 1)\} = n$$
 (28)

entonces U salta de n en n, y de ahí las χ^2_{yp} y χ^2_y :

$$\chi^{2}_{Y} = \frac{\{|x_{1}y_{2} - x_{2}y_{1}| - \frac{n}{2}\}^{2}}{a_{1}a_{2}n_{1}n_{2}} n$$
 (29)

$$\chi^{2}_{YP} = \frac{\{|x_{1}y_{2} - x_{2}y_{1}| - \frac{n}{2}\}^{2}}{a_{1}a_{2}n_{1}n_{2}} (n-1)$$
(30)

Dado que algunos autores defienden la no realización de c.p.c., esto ocasiona que en la literatura se contemplen 4 estadísticos para una cola (los χ^2 , χ_P^2 , χ_Y^2 y χ_{YP}^2 anteriores) cuyos P-values son P, P_P, P_Y y P_{YP} (obtenidos como se citaron

arriba). En todo caso, y esto vale para más adelante, los estadísticos se dividen en dos familias (que dan resultados muy parecidos): los CON y SIN subíndice P. La relación entre ellos es evidente, y como

$$\chi_{XP}^2 < \chi_X^2 \tag{31}$$

las versiones con P son más conservadoras que las versiones sin P.

3.2.2. En tests de dos colas.

Algunos autores defienden que los estadísticos de una cola son válidos para dos colas sin más que duplicar el P-value. Esto lleva a que los métodos χ^2 , χ_{P^2} , χ_{Y^2} y χ_{YP^2} de antes son válidos para dos colas, y que su P-value es $P_x=P(\chi_{X^2})$. Obsérvese que el argumento es paralelo al empleado por Armitage para el test exacto de Fisher. Pero esto no es lo habitual, existiendo versiones específicas de dos colas que son las que se ven de momento.

Mantel (1974) sostiene que el estadístico χ_{Y}^2 vale para dos colas, pero empleándolo adecuadamente. El valor $P(\chi_{Y}^2)=P_Y$ (ya en términos de dos colas) es una aproximación de $2P_1$. Para aproximar $2P_1$, es preciso obtener el valor χ_{Y}^2 que es el siguiente más grande que el χ_{Y}^2 pero por la otra cola, es decir, el valor χ_{Y}^2 de la tabla $(\chi_1',\chi_2',\gamma_1',\gamma_2')$ (definida como en la

introducción de este capítulo). Con ello:

$$P_{\rm M} = \frac{P_{\rm Y} + P_{\rm Y'}}{2} \tag{32}$$

aunque con fines simbólicos conviene llamar por χ_{M}^2 al valor que verifica $P_{\text{M}} = P(\chi_{\text{M}}^2)$

Kendall and Stuart (1967) indican que si la variable aleatoria discreta X toma valores sucesivos x_1, x_2, x_3 y se aproxima por otra v.a. continua Y, entonces

$$P(X \le X_2) \sim P\left(Y \le \frac{X_2 + X_3}{2}\right) \tag{33}$$

lo que viene a ser una versión del resultado ya citado de Cox (1970). Conover (1974) acoge la idea (ya propuesta por Cochran, 1942) y propone el estadístico

$$\chi_{c}^{2} = \frac{\chi^{2} + \chi^{/2}}{2} \tag{34}$$

con χ'^2 "el valor chi-cuadrado más próximo y menor que χ^{2n} , (estando este valor sometido al condicionamiento en los a_i y n_i por cualquiera de las colas), es decir:

$$\chi^{12} < \chi^2 \quad y \quad | \forall \chi_i^2 < \chi^2, \quad |\chi_i^2 - \chi^2| > |\chi^{12} - \chi^2|$$
 (35)

Haber (1980) asume que la variable base es el estadístico χ , no el χ^2 , y en base a la idea de Conover propone el estadístico corregido

$$\chi_H^2 = \left(\frac{\chi + \chi'}{2}\right)^2 \tag{36}$$

con χ'^2 definida como antes.

En todos los casos, aún cuando los autores no lo explicitan, cabe la posibilidad de adoptar las expresiones base

(6) ó (7), lo que hace duplicar los métodos descritos (añadiendoles, como identificación, un subíndice P al final, aludiendo a la propuesta de Pearson). Los estadísticos de este tipo, en versión P, serán considerados en lo que sigue aunque no hay referencias bibliográficas al respecto. Estos serán:

$$\chi_{MP}^2 = P_{MP} = \frac{P_{YP} + P_{Y'P}}{2}$$
 (37)

$$\chi_{CP}^2 = \frac{\chi_P^2 + \chi_P'^2}{2} \tag{38}$$

$$\chi_{HP}^2 = \left(\frac{\chi_P + \chi_P'}{2}\right)^2 \tag{39}$$

Así pues, para dos colas existen 10 métodos: los 4 de una cola (duplicando el P) más los 6 últimamente descritos. Esto da un total de 14 métodos (para una y dos colas), y, si bien no todos ellos han sido propuestos explícitamente en la literatura, se comprende que la misma sea abundante en discusiones acerca de qué método es mejor (como se verá).

3.3. Propuesta de nuevas c.p.c. (Aportación).

3.3.1. En tests de una cola.

Con la notación y convenios indicados al inicio de este capítulo, convengamos en llamar por ${\chi_1}^2$ al valor experimental

del estadístico χ², es decir:

$$\chi_1^2 = \frac{\{x_1 y_2 - x_2 y_1\}^2}{a_1 a_2 n_1 n_2 + n} = \frac{A^2}{B}$$
 (40)

con A>0. El valor de χ^2 inmediatamente menor por el mismo lado es

$$\chi_2^2 = \frac{(A-n)^2}{B}$$
 (41)

el cual se obtiene a partir de una tabla como la Tabla 1 pero cambiando en ella x_1 por x_1-1 , x_2 por x_2+1 , ...

Una c.p.c. consiste en tomar como valor observado el promedio entre el valor realmente obtenido y su inmediato siguiente o, alternativamente, en sumar o restar la mitad del salto entre ambas. En el caso del test de chi-cuadrado, la c.p.c. será una u otra dependiendo de quien se considere que es la variable base del problema.

Para Yates (1934) la variable base es X_1 (saltando de 1 en 1), y así obtuvo el χ_{ν}^2 citado antes. Para Pirie and Hamdan (1972) la variable base es A (saltando de n en n) y así:

$$\chi^{2}_{PH} = \frac{(A - \frac{n}{2})^{2}}{B}$$
 (42)

Para Haber (1980) la variable base es χ , y así:

$$\chi_H^2 = \left(\frac{\chi_1 + \chi_2}{2}\right)^2 \tag{43}$$

Es inmediato ver que:

$$\chi_Y^2 = \chi_{PH}^2 = \chi_H^2 \tag{44}$$

y así al método de Yates le llamaremos en adelante por método

H (aludiendo al criterio de Haber de promediar las χ 's).

Por otro lado, Conover (1974), aunque en otro contexto, considera como variable base a la χ^2 , y así:

$$\chi_C^2 = \frac{\chi_1^2 + \chi_2^2}{2} \tag{45}$$

será llamado en adelante por método C (aludiendo al criterio de Conover de promediar las χ^2 's).

Finalmente, Mantel (1974), también en otro contexto, propuso promediar los P-values (en lugar de las variables originales), lo que llevado a nuestro caso da:

$$P_{M} = \frac{P(\chi_{1}^{2}) + P(\chi_{2}^{2})}{2} \quad " \quad \chi_{M}^{2}$$
 (46)

lo que será llamado en adelante por método M (aludiendo al criterio de Mantel de promediar las P's). Esta expresión no debe confundirse con la (31) pues aquella aludía a dos colas y ésta a una cola.

Con ello, hay tres c.p.c. posibles para tests de una cola: $\chi_{\rm H}^2$ obtenida "promediando las χ " (solución clásica de Yates), la $\chi_{\rm c}^2$ obtenida "promediando las χ^2 " (nueva solución que se propone) y la $\chi_{\rm H}^2$ obtenida "promediando los P's" (también nueva solución propuesta). Los promedios anteriores fueron sugeridos, por los autores citados, para el caso de dos colas; aquí se han adoptado también como tests de una cola. Los métodos anteriores se multiplican por dos si se contempla la posibilidad de usar la (25) en lugar de la (24), es decir, poniéndoles subíndices P, lo que da 6 casos (2 conocidos y 4 nuevos). El total de casos es pues 10 si se añaden los dos métodos que no efectúan c.p.c.

Los métodos H y el M son más conservadores que el C puesto que:

a) $\chi^2_{\pi} < \chi^2_c$ por el decrecimiento de la χ^2 en las zonas de posible significación. Entonces, $P_{\pi} > P_c$.

b)

$$\chi_C^2 = \frac{\chi_1^2 + \chi_2^2}{2} = \chi_Y^2 + \frac{n^3}{4a_1a_2n_1n_2} > \chi_Y^2 = \chi_H^2 \implies P_C < P_H \quad (47)$$

lo que vale también para las versiones con P.

3.3.2. En tests de dos colas.

La versión del test exacto de Fisher de dos colas $(H_1 \equiv p_1 \neq p_2)$ dada en (2) define el P-value como suma de los P-value de cada cola. El método asintótico debe funcionar de forma similar. Allí la otra cola comenzaba con el valor x'_1 que era tan extremo o más (en el otro sentido) que el valor x_1 realmente obtenido. Puesto que el criterio del test es el de chi-cuadrado, parece lógico determinar x'_1 por tal criterio de ordenación y así x'_1 aludirá a la primera tabla (con A<0) cuyo valor de χ^2 es igual o mayor que el valor experimental χ^2_1 (digamos $\chi_1, 2$), es decir

$$x_1' = \left[\frac{2a_1n_1}{n} - x_1\right]^2 \tag{48}$$

con $[x]^-$ aludiendo al primer entero menor o igual que x (Luna y Martín, 1987).

La tabla definida por x,' da lugar a un valor

$$\chi_{1'}^2 = \frac{A^{12}}{B} \tag{49}$$

y su valor de χ^2 inmediatamente inferior en el mismo sentido será:

$$\chi_{2'}^2 = \frac{(A'+n)^2}{B} \tag{50}$$

(el que se utiliza para corregir el punto x,'). Con ello:

$$\chi_{2'}^2 < \chi_{1'}^2$$
 y $\chi_2^2 < \chi_1^2 \le \chi_{1'}^2$ (51)

siendo χ^2_1 y χ^2_2 la pareja para determinar el P-value de la primera cola (siendo ésta la que contiene el valor experimental) y χ^2_1 , y χ^2_2 , la pareja para determinar el P-value de la otra cola (la opuesta). Los dos primeros ocasionan los P-values de una de las colas (la original), dando $P_{\rm H}$, $P_{\rm C}$ y $P_{\rm M}$ según la definición de promedio que se adopte (ver subapartado anterior). Los dos segundos ocasionan los P-values de la otra cola (la opuesta). dando $P_{\rm H}$, $P_{\rm C}$, y $P_{\rm M}$, según la definición. Finalmente, el P-value de dos colas será la suma de los dos P-values obtenidos, y así:

$$P_{H2} = P_H + P_{H'} = \{ P(\chi_H^2) + P(\chi_{H'}^2) \} + 2$$
 (52)

$$P_{C2} = P_C + P_{C'} = \left\{ P\left(\chi_C^2\right) + P\left(\chi_{C'}^2\right) + 2 = \left\{ P\left(\chi_H^2 + \frac{n^2}{4B}\right) + P\left(\chi_{H'}^2 + \frac{n^2}{4B}\right) \right\} + 2$$
 (53)

$$P_{M2} = P_M + P_{M'} = \{ P(\chi_M^2) + P(\chi_{M'}^2) \} + 2$$
 (54)

aludiéndo el primer subíndice al procedimiento de promedio empleado y el segundo a que en el proceso se han distinguido

las dos colas. A efectos de notación llamaremos por H2, C2 y M2 a los métodos cuyos P-values son los señalados, y por $\chi_{\rm H2}{}^2$, $\chi_{\rm C2}{}^2$ y $\chi_{\rm H2}{}^2$ a los valores que proporcionan tales P-values (en consonancia con el acuerdo señalado en (26)). La idea de contemplar dos colas es debida a Mantel (1974) y el método H2 es el propuesto por él ($\chi_{\rm H2}{}^2$ = $\chi_{\rm H}{}^2$ del subapartado 3.2.2.); los métodos C2 y M2 son nuevos.

Alternativamente, pueden no distinguirse las colas y entender que el valor χ_1^2 debe promediarse con su inmediato más pequeño $(\chi_2^2 \circ \chi_2^2)$ esté o no en su misma cola. Si tal valor es χ_{22}^2 , el tipo de promedio que puede hacerse entre él y χ_1^2 es alguno de los tres ya descritos, y así los P-values de dos colas y los estadísticos que los sustentan son:

$$\chi_{H1}^2 = \left(\frac{\chi_1 + \chi_{22'}}{2}\right)^2 \quad \leftrightarrow \quad P_{H1} \tag{55}$$

$$\chi_{c1}^2 = \frac{\chi_1^2 + \chi_{22'}^2}{2} + P_{C1}$$
 (56)

$$P_{M1} = \frac{P(\chi_1^2) + P(\chi_{22'}^2)}{2} + \chi_{M1}^2$$
 (57)

aludiendo el primer subíndice al procedimiento de promedio empleado y el segundo a que en el proceso no se han distinguido las dos colas. A efecto de notación llamaremos por H1, C1 y M1 a tales métodos. La idea de no distinguir las colas se debe a Conover (1974) y los métodos H1 y C1 son los propuestos, respectivamente, por Haber (1980) y el mismo Conover (1974). El método M1 es nuevo.

La relación entre los estadísticos de cada familia es la

misma que en un cola (puesto que de ellos provienen), resultando ser M2 y H2 más conservadores que C2 y H1 y M1 más conservadores que C1.

Conviene observar que si el valor x_1' obtenido por la expresión (48) da lugar a una tabla ilícita $(x_1' < r)$, entonces no hay cola por la izquierda y el P-value de dos colas es el mismo que el de una cola.

Con ello hay 6 c.p.c. posibles para tests de dos colas, 3 de ellas ya conocidas y las otras 3 nuevas. El criterio por el que se las ha obtenido es doble: distinguiendo o no las colas (dos posibilidades) y promediando las χ 's, las χ^2 's o las P's (tres posibilidades), lo que da los 6 casos citados. En realidad los métodos se multiplican por dos si se contempla la posibilidad de usar la (24) en lugar de la (25), es decir poniéndoles el subíndice P, lo que da 12 casos en total: 6 de ellos nuevos y los otros 6 de la literatura. A estos hay que añadir la posibilidad de doblar el P en las versiones de una cola (10 casos), lo que da un total de 22 métodos posibles, 12 de ellos nuevos.

Uno de los posibles méritos de este trabajo, aparte de las propuestas de nuevas c.p.c., es el clasificador. Aquí se han agrupado los métodos por familias, obteniéndolos de un modo lógico y señalando las relaciones entre unos y otros.

3.4. Análisis crítico de las soluciones clásicas.

3.4.1. Determinación de la Bondad de una c.p.c. (Aportación).

Acaba de verse que para test de una cola hay 10 versiones (4 de ellas clásicas) y 22 para tests de dos colas (10 de ellas clásicas). Se comprende de momento la conveniencia de elaborar un buen plan de trabajo si se desea obtener alguna conclusión. Aquí se emprende la primera fase, la cual consiste en determinar qué conclusiones pueden aprovecharse de la literatura (para los 4+10=14 métodos clásicos) a fin de usarla posteriormente en nuestro análisis. Con tal fin, y dada la multiplicidad de artículos de la misma, conviene señalar qué propiedades debe verificar una buena aproximación, pues, fijado eso, entonces podemos criticar o aceptar los resultados bibliográficos.

El modo de evaluar la bondad de una determinada c.p.c. consiste en tres pasos:

1°.- Si χ^2_x es el estadístico chi-cuadrado seleccionado, su P-value aproximado para un test de una cola es

$$P_{X} = \frac{1}{2} P\{\chi^{2} (1 \ g.1.) \geq \chi_{X}^{2}\}$$
 (58)

En tanto que para dos colas:

$$P_{X} = P\{\chi^{2}(1 \ g. 1.) \geq \chi_{X}^{2}\}$$
 (59)

2º.- El P-value exacto vendrá dado por P, en su versión única de una cola y para dos colas aquella que hace entrar a las tablas en la RC de "mayor a menor valor del estadístico χ²" pues, por ser éste el estadístico que se usa para aproximar, parece el más lógico. (Ver apartado 1).

 3° . Finalmente, habrá de compararse P_x con P_r para así evaluar la bondad de la c.p.c.

Cualquier otro criterio carece de sentido o es incompleto.

Un aspecto dudoso consiste en decidir qué máxima diferencia (P_x-P_p) se permite. Algunos autores pretenden que sea $P_p \le P_x$ para que así el test no rebase el error nominal. Pero esto, que es apropiado para un test exacto, se convierte en excesivo para uno aproximado, pues, de aceptarlo, nos veríamos obligados a aceptar tests excesivamente conservadores en muchos casos. Cochran (1954) sugiere permitir diferencias de 0.01 y 0.005 para valores reales de 0.05 y 0.01 respectivamente (lo que supone imprecisiones del 20% y 50%), lo que generalizado indica que ha de ser

$$|P_X - P_F| \leq \delta P_F \tag{60}$$

con δ del orden de 0.2 a 0.5 en función de cuanto valga $P_{\rm F}$.

Aquí las comparaciones de potencia no tienen sentido pues cada test aproximado da lugar a un error α^* distinto, unas veces mayor y otras menor que el error α nominal.

Una consideración final es que no resulta lícito contemplar definiciones de c.p.c. que no provengan del método condicionado, pues son cosas no comparables.

3.4.2. La c.p.c. óptima en la literatura.

Pearson (1947) compara la función de distribución de la distribución hipergeométrica a que da lugar el test exacto de Fisher con las probabilidades obtenidas a través de la aproximación χ^2_{mp} , concluyendo que la misma se comporta bastante bien. El resultado no es concluyente por cuanto no distingue entre tests de una o dos colas, no hace entrar en la discusión otras c.p.c. y el estudio está limitado a pocas tablas.

Fisher (1959) defiende el estadístico χ^2_R por provenir de la hipergeométrica (recuerdese que este autor propuso el test que lleva su nombre el cual está basado en el condicionameinto).

Placket (1964) de un modo teórico y Grizzle (1967) de un modo práctico, acusan al test $\chi_{\rm H}^2$ de conservador y algo más tarde Mantel and Greenhouse (1986) defienden el estadístico $\chi_{\rm H}^2$ por ser más conforme con el test exacto de Fisher que el estadístico χ^2 . La conclusión es también provisional pues el método utilizado consiste en comparar P, con $P_{\rm H}$ y P (de χ^2), tanto para tests de una cola como de dos colas, solamente para tablas con $n_1=n_2=20$. Queda, por tanto, sin determinar si sucede igual en otro tipo de tablas, muy especialemnte en cuanto al test de dos colas, ya que la distribución hipergeométrica es simétrica en el caso $n_1=n_2$ y no surge el problema de optar por una definición u otra del test de dos colas.

Conover (1974), para tests de dos colas, compara P_r (no especificando qué definición toma) con P, P_{ci} y P_{ii} como test de dos colas. Realiza el estudio sobre unas pocas tablas con

 $n_1=19$, 20 y 21 con lo que concluye:

- a) Si $n_1=n_2$ o $a_1=a_2$, entonces χ_{c1}^2 y χ_{H}^2 se aproximan bastante bien al test de Fisher, pero χ^2 va peor.
- b) Si $n_1 \neq n_2$ y $a_1 \neq a_2$, entonces χ_{c1}^2 es el que más se aproxima a Fisher y χ el que menos.

Mantel (1974) critica el resultado anterior pues Conover aplica mál el criterio de $\chi_{\rm H}^2$. En un test de dos colas, el P-value correspondiente al test de $\chi_{\rm H}^2$ de una cola es el propuesto por él, $P_{\rm H2}$, que se ajusta bastante bien al método de Fisher (de dos colas). Mantel lo comprueba en base al estudio de unos pocos valores de n_i y a_i . Doane and Reese (1977) compara el $P_{\rm F}$ con P y $P_{\rm H}$, pero como test de una cola, y confirman que $\chi_{\rm H}^2$ va mejor que χ^2 como aproximación al test exacto de Fisher.

Los estudios anteriores están hechos sobre un número reducido de tablas en algunos casos, sobre tablas muy concretas $(n_1=n_2)$ en otros y comparando sólamente una o dos de las aproximaciones citadas, lo que no permite generalizar algunas de las conclusiones antes expuestas. Las conclusiones basadas en datos experimentales serán aceptadas siempre y cuando las tablas en estudio sean un representación lo más numerosa posible de las posibilidades que puedan aparecer.

Así, Haber (1980) hace el mejor estudio conocido del tema. Para tests de dos colas (que son los conflictivos) compara los métodos $\chi_{\rm H1}{}^2$, $\chi_{\rm C1}{}^2$, $\chi_{\rm H2}{}^2$, $\chi_{\rm H2}{}^2$ y χ^2 con el test exacto de Fisher a través del enfrentamiento de los P_x respectivos obtenidos por

la (59) (es decir, como test de dos colas) y con el P, obtenida con el criterio de ordenación de la χ^2 . Estudia 150 000 tablas en base a dos criterios globales:

1.- Tabulando

$$\mu\left(\frac{P_X}{P_F}\right)$$
 y Rango $\left(\frac{P_X}{P_F}\right)$ (61)

para cada uno de los cinco métodos aproximados y para determinados conjuntos de valores de n y E.

2.- Graficando los valores medios de

$$D = \{ \frac{Max(P_{P}, P_{X})}{Min(P_{P}, P_{X})} \} - 1$$
 (62)

en función de E y para intervalos dados de n. En base a esto concluye:

- a) El test de χ^2 es muy liberal, a veces $P < P_r/20$.
- b) El test $\chi_{\scriptscriptstyle H}{}^2$ es conservador, a veces $P_{\scriptscriptstyle H}{>}4P_{\scriptscriptstyle F}$.
- c) Los tests $\chi_{\rm H1}^2$, $\chi_{\rm c1}^2$ y $\chi_{\rm H2}^2$ se comportan bien y prácticamente son iguales.

Berres (1983) compara los tests asintóticos χ^2 y χ_{H^2} como tests de dos colas (según la definición (59)) con cuatro definiciones distintas basadas en el test exacto de Fisher: criterio de Armitage (el P-value de dos colas se obtiene doblando el de una cola), criterio de colas iguales, pero con formato de P-value (el P-value de la segunda cola será suma de probabilidades hipergeométricas desde el mayor valor posible de κ_1 hasta que esta cola tenga probabilidad menor o igual que la primera), criterio de ordenación de las tablas de menor a mayor probabilidad hipergeométrica y criterio de ordenación de mayor

a menor valor de χ^2 . Para las definiciones primera y cuarta y con muestras de n=60 representa gráficamente las diferencias (P_r-P) y (P_r-P_s) frente al valor E concluyendo que χ^2 es liberal; estudiando algunas tablas con n=40, 60 y 100 especifica que las desigualdades $P \le P_r \le P_s$ son válidas excepto para unos pocos casos; observa que

$$\lim_{E \to \infty} (P_P - P) \neq 0 \qquad \lim_{E \to \infty} (P_P - P_Y) \neq 0 \tag{63}$$

incluso para E>10 y que la magnitud de tales diferencias no depende de n, sino de E. Aunque en este estudio se comparan los tests aproximados con cuatro definiciones diferentes del test exacto de dos colas, los tests de χ^2 y $\chi_{\rm H}^2$ no son los correctos para tests de dos colas (Berres cita la definición correcta de $\chi_{\rm H2}^2$ y sin embargo no la utiliza) por lo que las conclusiones obtenidas sólo sirven para invalidar los procedimientos de χ^2 y $\chi_{\rm H}^2$ como tests de dos colas (lo que ya se sabía).

Siguiendo con la comparación de estos estadísticos, Little (1989) comprueba que χ^2 y $\chi_{\rm H}^2$ son apreciablemente distintos cuando se estudian como tests de una cola, incluso con grandes valores de n_1 .

Otro aspecto de la cuestión es acerca de la definición del P-value de un test de dos colas. Como ya se comentó en el capítulo anterior, no había acuerdo, ni siquiera, en las versiones no asintóticas. Algo similar ocurre con los métodos asintóticos; hasta ahora se ha venido admitiendo la definición de (63) con las posibles modificaciones de Conover, Mantel y Haber, pero el acuerdo no es unánime.

Ya se ha citado el criterio de Armitage de doblar el Pvalue de una cola para obtener el tests exacto de dos colas (Pp). Yates (1984) defiende este criterio lo que le lleva a apoyar el asintótico Xm2. Dupont (1989) se muestra como defensor de este método ilustrando como P_{FA} y P_{H} solventan los problema de incoherencia que tiene el test exacto de Fisher en dos colas para ciertas tablas. Martín y Luna (1989.a) critican la conclusión de Dupont por cuanto el hecho de admitir $\chi_{\scriptscriptstyle H}{}^{\scriptscriptstyle 2}$ es convertir arbitrariamente en simétrica la distribución hipergeométrica base y señalan que la concordancia de ambos criterios no implican la bondad de los mismos. Haber (1982) propone modificar los estadísticos $\chi_{\rm H2}{}^2$, $\chi_{\rm H1}{}^2$ y $\chi_{\rm c1}{}^2$ en el sentido de hacerlos igual a χ_{π}^2 cuando x_1 supere $[2a_1n_1/n]$ (pues entonces no habría cola por el otro lado), pero no ofrece ningún estudio que avale esta modificación.

Aquí se omite el artículo de Upton (1982) (y otros más) pues su análisis lo hace bajo el principio incondicionado, y él no es el fin de esta memoria.

3.4.3. Conclusiones.

El anterior análisis permite afirmar algunas cosas con respecto a los 14 métodos clásicos, 4 de una cola y 10 de dos colas:

1º) El método asintótico condicionado más apropiado para analizar una tabla 2x2 es el test chi-cuadrado.

- 2º) Los métodos sin c.p.c. no actúan bien, tanto a una como a dos colas; esto último si se acepta la versión (como se hace en esta memoria y quedó explicitado en el capítulo I) de que el test de Fisher de dos colas no se efectúa duplicando el P-value de una cola.
- 3°) Los métodos CON y SIN subíndice P no están evaluados comparativamente, por lo que no puede afirmarse nada de ellos.
- Para tests de dos colas los métodos H2, H1 y C1 actúan bien, pero no hay un criterio establacido acerca de cuando es preferible uno u otro.
- 5º) En la actuación de los tests es importante el valor de E (la mínima cantidad esperada).

Con todo ello queda claro que los únicos métodos bibliográficos aceptables son el H (el de Yates) para una cola y los H2, H1 y C1 (Mantel, Haber y Conover) para dos colas, bien en sus versiones con subíndice P o sin él.

3.5. La c.p.c. óptima por los criterios actuales.(Aportación).
3.5.1. Criterios para seleccionar la c.p.c. óptima.

Dado que el test de chi-cuadrado contituye una aproximación en grandes muestras del test exacto de Fisher, ya

se ha dicho que el modo de evaluar el mismo consistirá en comparar los P-value del primero con los del segundo y ello bajo las definiciones de uno y otro dadas anteriormente.

En principio, lo idóneo sería que $P_x \sim P_r$, pero ¿cuánta diferencia (P_x-P_r) se permite?. Algunos autores pretenden que sea siempre $P_x \leq P_r$, para que así el test aproximado no rebase el error nominal, pero esto, que es apropiado para un test exacto, se convierte en excesivo para uno aproximado pues produciría un test muy conservador en la mayoría de las ocasiones. Cochran (1954) sugiere permitir diferencias $|P_x-P_r|$ de 0.01 y 0.005 para valores reales de P_r de 0.05 y 0.01 respectivamente, es decir, imprecisiones del 20% y 50% en cada caso. Aceptando este criterio (tan discutible como cualquier otro), y asignando imprecisiones intermedias para los valores de P_r comprendidos entre aquellos dos, se obtiene la regla:

$$\delta = \begin{cases} 0.5 & si & 1^{\circ}/_{00} \le P_F \le 1^{\circ}/_{0} \\ 0.575 - 7.5P_F & si & 1^{\circ}/_{0} \le P_F \le 5^{\circ}/_{0} \\ 0.2 & si & 5^{\circ}/_{0} \le P_F \le 10^{\circ}/_{0} \end{cases}$$
(64)

en donde se ha mantenido la imprecisión del 20% para $P_r > 5\%$ (pues parece excesivo disminuirla más) y la del 50% para $P_r < 1\%$ (pues parece excesivo aumentarla más). Asimismo, no se ha dado regla para el caso de $P_r < 1\%$ (por ser la sifnificación excesivamente alta) ni para el caso $P_r > 10\%$ (por ser la significación excesivamente baja).

Aceptando esto, la c.p.c. óptima será aquella que ocasiones un menor número de fallos en la expresión (64).

3.5.2. Descripción de los cálculos a realizar y de los datos a obtener.

Para evaluar comparativamente las distintas c.p.c. propuestas anteriormente se procederá como sigue:

- 1º) Considerar todas las tablas posibles, como la de la introducción, con n=20(1)100, 150, 200, 250, 300, lo que entendemos que es un amplio abanico de valores posibles.
- Considerar el valor P_r (de una o dos colas según proceda) para cada tabla, excluyendola de lo que sigue si es $P_r < 1^{\circ}/_{\infty}$ ó $P_r > 10\%$, pues entendemos que éstas son significaciones en las que usualmente no estaremos interesados, y que errar en ellas un poco arriba o abajo no importa. Esto da un total de 400 555 (una cola) y de 365 019 (dos colas) tablas a considerar.
- Para cada tabla de las que permanecen, determinar su P-value P_x por cada uno de los métodos χ_x^2 que haya que comparar (3 para una cola y 6 para dos colas, del apartado 3.3) y anotar si en cada uno se verifica o no la (64). De no verificarse, ello puede deberse a que el método χ_x^2 es demasiado conservador para esa tabla o es demasiado liberal y sucederá, respectivamente

$$(P_X - P_F) > \delta P_F \qquad o \qquad (P_X - P_F) < -\delta P_F \qquad (65)$$

para hacer fácilmente evaluables los datos así obtenidos, conviene agrupar los resultados en los siguientes intervalos para n:

20-40; 41-60; 61-80; 81-100; 150; 200; 250; 300

y, para cada uno de ellos, en los siguientes intervalos de

P.:

$$1^{\circ}/_{00} \le P_F \le 1^{\circ}/_0$$
 ,, $1^{\circ}/_0 \le P_F \le 5^{\circ}/_0$,, $5^{\circ}/_0 \le P_F \le 10^{\circ}/_0$

(es decir, valores bajos, moderados y altos de P_r ; o significaciones altas, moderadas y bajas, respectivamente) y en los siguientes intervalos para E (mínima cantidad esperada)= $Min(a_1,a_2)$ $Min(n_1,n_2)/n$:

todo ello por si los resultados cambiaran (como así sucederá) según la gama considerada para n, P_F o E. También se considerará el intervalo global $1^\circ/_{\infty} \le P_F \le 10\%$.

5º) Para cada conjunción de intervalos (por ejemplo, 41≤n≤60 y 1%<P,<5%) y para cada método comparado, llamar por N al número de tablas T₁ consideradas inicialmente (las incluidas según el paso 2º)</p>

$$N = \# \left\{ \begin{array}{ccc} 1^{\circ} /_{00} \leq P_{F}(T_{i}) \leq 1^{\circ} /_{0} \\ T_{i} & 1^{\circ} /_{0} \leq P_{F}(T_{i}) \leq 5^{\circ} /_{0} \\ 5^{\circ} /_{0} \leq P_{F}(T_{i}) \leq 10^{\circ} /_{0} \end{array} \right\}$$
(67)

y por N°, N° y N° al número de fallos totales,

conservadores o liberales:

$$N^{+} = \# \{ T_{i} \mid P_{X}(T_{i}) - P_{F}(T_{i}) > \delta P_{F}(T_{i}) \} = N^{+}(n, n^{0} \ colas, P_{F})$$

$$N^{-} = \# \{ T_{i} \mid P_{X}(T_{i}) - P_{F}(T_{i}) < -\delta P_{F}(T_{i}) \} = N^{-}(n, n^{0} \ colas, P_{F})$$

$$N^{0} = N^{+} + N^{-}$$

$$(68)$$

Con ello, las frecuencias relativas en cada caso serán

$$H^{+} = \frac{N^{+}}{N}$$
 ,, $H^{-} = \frac{N^{-}}{N}$,, $H^{0} = \frac{N^{0}}{N}$ (69)

Con estos datos, la mejor c.p.c. será aquella que produzca una menor frecuencia de fallos H° en todas o casi todas las situaciones. De haber dos métodos prácticamente empatados, se preferirá aquel que falla por su conservadurismo (H+>H-) sobre el que lo hace por su liberalidad (H->H+), eligiendo así el método que ocasiona menos significaciones falsas.

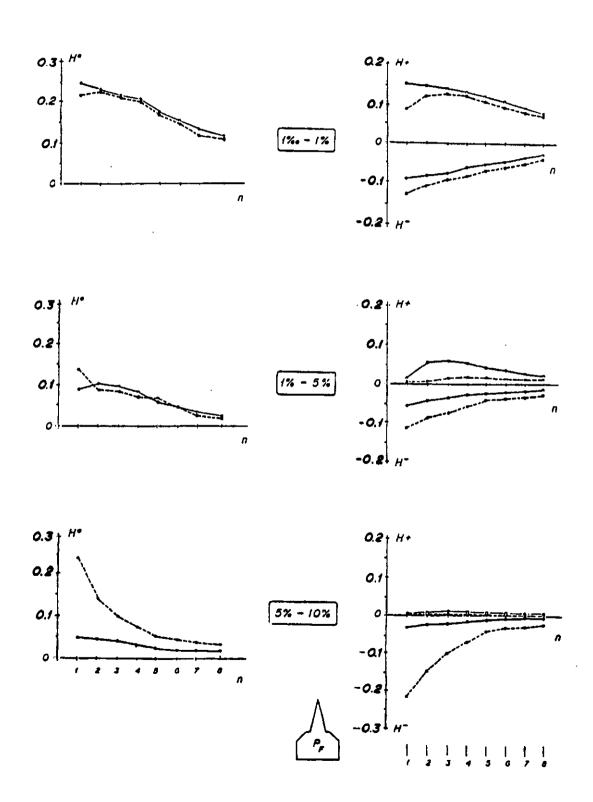
Sin embargo, y antes de seguir, conviene adoptar una estrategia de comparación de métodos que sea adecuada, pues la existencia de 32 métodos complica terriblemente las cosas. Los puntos claves son los siguientes:

- a) Como es obvio, debe separarse el problema de una cola del de dos colas.
- b) En cualquiera de los casos, las versiones sin c.p.c. pueden eliminarse, pues el estudio bibliográfico anterior lo permite.
- c) Conviene separar el análisis de las familias H, C y M en una cola, y los métodos H2, H1, C2, C1, M2 y M1 en dos colas, para posteriormente estudiar qué sucede si se añade P. Realmente,

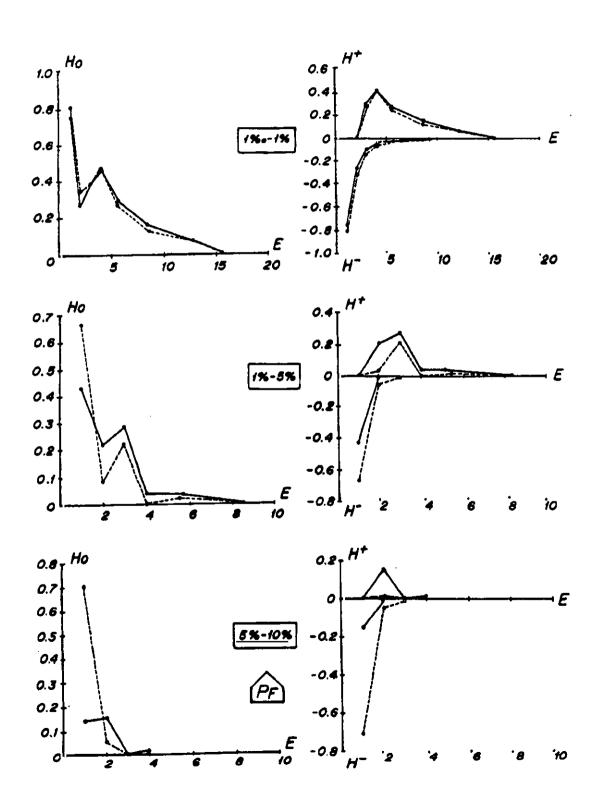
estudiar qué sucede con 3 o 6 métodos es bastante más factible que hacer lo propio con 11 o 22.

3.5.3. Selección en tests de una cola.

Realizando los cálculos descritos en el apartado anterior, se obtienen las Tablas VI a IX (presentadas en el Apéndice) en las que aparecen los valores de H⁺, H⁻ y H^o para los tres métodos a comparar: H, C y M del apartado 3.3. Resultan más cómodas e ilustrativas para el lector las gráficas que representan las distintas proporciones de las tablas; en ellas se representan solamente los valores correspondientes a los métodos H y C pues, como puede apreciarse en las tablas, el método propuesto M es considerablemente peor que los anteriores. Por tanto, el interés radica fundamentalmente en la comparación de los métodos H y C (de Yates y nuevo, respectivamente).


El problema es que si en el eje vertical de las gráficas se representan los valores de H°, H⁺ y H⁻, en el eje horizontal pueden ponerse los valores de E o los de n (asumiendo que para cada una de las gamas de P_F se hará una gráfica distinta). Veamos las distintas posibilidades.

En la Figura 1 (en la que están representados los resultados de la Tabla VI) se ha optado por globalizar en E (variable oculta) representando en el eje horizontal el valor de n. En la Figura 2 (que representa los resultados de Tabla


VII) la variable oculta es n, y en el eje horizontal se ha representado el valor de E. De ambas se observa que el valor Hotiende a cero conforme aumentan n o E, haciéndolo más rapidamente cuanto más grande es P,. En cuanto al tipo de fallos (H⁺ y H⁻) se observan que tienden a equilibrarse con el aumento de n, pero con el aumento de E mantienen su conservadurismo más tiempo que su liberalidad. Finalmente, la posición relativa de los métodos estudiados depende de P, cuando se oculta E y de E cuando se oculta n.

Con el fin de insertar en el problema las tres informaciones (las de P, n y E), sin ocultar ninguna variable, se ha repetido la Figura 2 para cada gama de valores de n

Valores de H° (primera columna) y de H° y H⁻ (segunda columna) para los estadísticos de una cola $\chi_{\rm R}^2$ (---) y $\chi_{\rm c}^2$ (- - -), en función del valor de n (1=20-40; 2=41-60; 3=61-80; 4=81-100; 5=150; 6=200; 7=250; 8=300) y para cada gama de valores del P-value P, del test exacto de Fisher (cada una de las filas).

Valores de H° (primera columna) y de H' y H¯ (segunda columna) para los estadísticos de una cola $\chi_{\rm H}^2$ (---) y $\chi_{\rm c}^2$ (- - -), en función del valor de E (1=0-1.5; 2=1.5-2.5; 3=2.5-3.5; 4=3.5-4.5; 5.5=4.5-6.5; 8.5=6.5-10.5; 13=10.5-15.5; 16=15.5- ∞) y para cada gama de valores del P-value P, del test exacto de Fisher (cada una de las filas) (20≤n≤300).

(datos de Tabla VIII), obteniéndose resultados muy similares a los representados en la Figura 2 (por lo que no se proporcionan aquí, pero que pueden comprobarse en la Tabla VIII). La conclusión es por tanto que el método H es preferible cuando E<2, en tanto que C lo es para E≥2 (aunque ambos métodos se igualan para valores altos de E). Cuando H es seleccionado y falla, lo hace casi exclusivamente por su liberalidad; cuando C es seleccionado y falla, lo hace fundamentalmente por su conservadurismo (tanto más cuanto más grandes son E y n).

En el apartado 3.5.1. presentamos la regla de decisión permitida para la diferencia (P_x-P_r) de distintos valores de δ en función de P_r . Puesto que otro investigador puede encontrar más convenientes otros valores δ , se presenta en el Apéndice un programa (programa PII) escrito en lenguaje C que permite seleccionar el test de una cola óptimo para los valores δ que se crean oportunos. De cualquier modo hemos comprobado que las conclusiones generales aquí expuestas no se alteran con variaciones razonables de δ .

3.5.4. Selección en tests de dos colas.

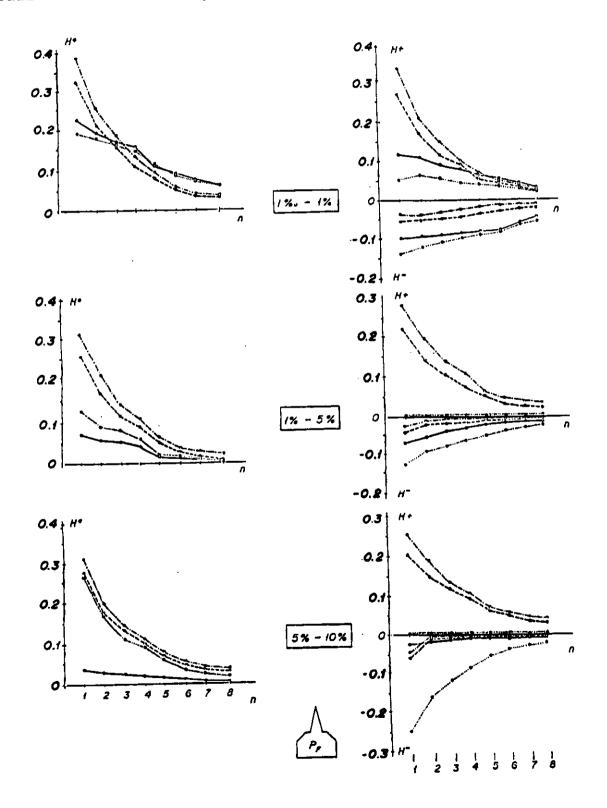
En este apartado se procede de igual forma que en una cola, pero los métodos implicados son ahora H2, C2, M2 y H1, C1, M1 descritos en 3.3.2. En el Apéndice se presentan tablas con los valores H° , H^{+} y H^{-} , proporciones de "fallos" de cada uno de los métodos χ^{2} respecto del exacto, por motivos

conservadores y liberales (Tablas VI a IX). Aquí presentamos las gráficas que representan estas proporciones para los métodos H2, C2, H1 y C1 pues el resto (M2 y M1), como puede apreciarse en las tablas, se aproximan bastante peor que estos al test exacto de Fisher (lo cual es lógico por el comportamiento del método M de una cola, del cual provienen); de todos modos, con grandes muestras su comportamiento se acerca bastante al de los otros.

Las Figuras 3 y 4 son las equivalentes en dos colas a las Figuras 1 y 2 para una cola y representan los resultados obtenidos en las Tablas VI y VII. Ahora también H° tiene hacia cero con el aumento de n o E, haciéndolo más rápidamente conforme P, aumenta. En cuanto al tipo de fallos (H' y H'), los tests mantienen su conservadurismo más tiempo que su liberalidad conforme aumenta E (salvo C2 que, para P, >1% hace lo contrario), en tanto que, con el aumento de n, actúan así los tests que no distinguen las colas (H1 y C1) y al contrario los que sí las distinguen (H2 y C2). Se observa el comportamiento similar de los dos tests de cada familia (H1 y C1 por un lado; H2 y C2 por otro).

Como en una cola, la Figura 4 (datos de Tabla VIII) se ha repetido para cada gama de valores de n. Los resultados para $P_r>1$ % son similares a los de la Figura 4 y por ello son omitidos (pero pueden comprobarse en la Tabla IX); los resultados para $1^\circ/_\infty \le P_r \le 1^\circ/_\circ$ se dan en la Figura 5 para las

gamas simplificadas de:


20-60; 61-100; 150 y 200; 250 y 300

que son suficientemente indicativas. Las conclusiones varían en función del valor considerado P_r , aunque todos los métodos tienden a iqualarse con el aumento de E:

- Para P_r≤1%, el método seleccionado depende de n y E. Con (1)tamaños de muestra grandes (n>100), los métodos óptimos son C1 y H1 (prácticamente iguales). Con tamaños de muestra pequeños (n≤100), el método óptimo es el H2 en las tablas en que E es bajo (E≤2) y C2 en las que E es alto (E>2). El comportamiento del test resultante de esta regla es que, cuando el método seleccionado falla, lo hace de para E≤2, modo liberal de exclusivamente modo exclusivamente conservador para E>3.5 y transita de uno a otro para E entre 2 y 3.5.
- (2) Para P_r > 1%, el método seleccionado depende sólo de E. Para las tablas con E bajo (E≤2) el método óptimo es H2; para las que E es alto (E>2) el método óptimo es el C2. Cualquiera de los métodos, cuando es seleccionado y falla, lo hace casi exclusivamente de modo liberal.

De igual forma que en los tests de una cola, se presenta un programa (programa PII del apéndice) para seleccionar el test óptimo de dos colas para los valores δ que deseen utilizarse, dando así la oportunidad de estudiarse distintos criterios de la diferencia permitida (P_x-P_y) entre el test exacto y el aproximado. También ahora, las variaciones razonables en δ no afectan a las conclusiones.

Valores de H° (primera columna) y de H° y H° (segunda columna) para los estadísticos de dos colas $\chi_{\rm E1}^2$ (-.-), $\chi_{\rm E2}^2$ (---) $\chi_{\rm C1}^2$ (---) y $\chi_{\rm C2}^2$ (...), en función del valor de n (1=20-40; 2=41-60; 3=61-80; 4=81-100; 5=150; 6=200; 7=250; 8=300) y para las gamas indicadas de valores del P-value P, del test exacto de Pisher (cada una de las filas).

Valores de H° (primera columna) y de H° y H⁻ (segunda columna) para los estadísticos de dos colas $\chi_{a_1}^2$ (-.-), $\chi_{a_2}^2$ (---) $\chi_{c_1}^2$ (---) y $\chi_{c_2}^2$ (...), en función del valor de E (1=0-1.5; 2=1.5-2.5; 3=2.5-3.5; 4=3.5-4.5; 5.5=4.5-6.5; 8.5=6.5-10.5; 13=10.5-15.5; 16=15.5- ∞) y para cada gama de valores del P-value P, del test exacto de Fisher (cada una de las filas) (20≤n≤300).

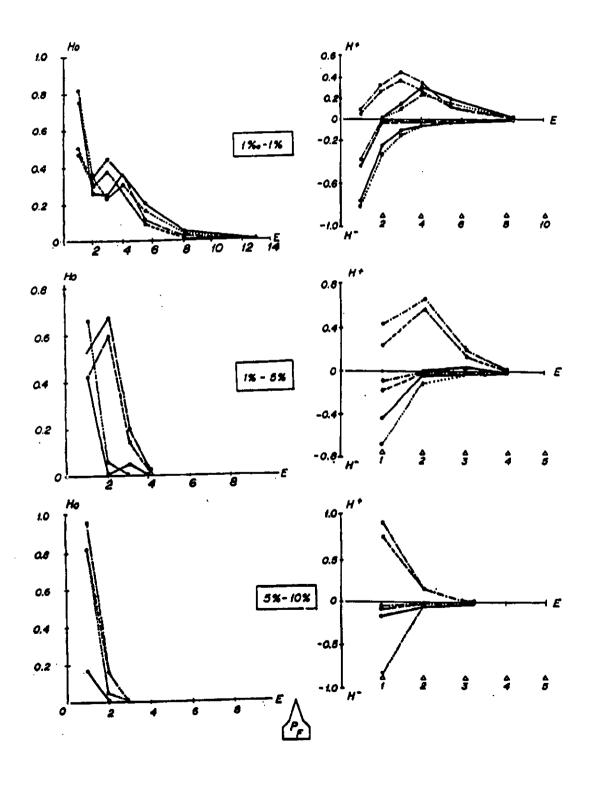
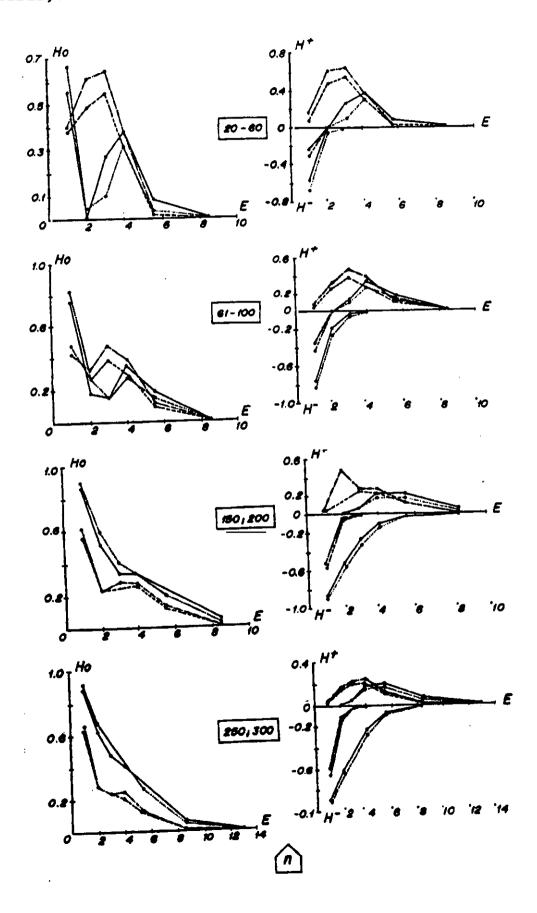



Figura 5

Subdivisión de la primera fila de la Figura 4 (1°/ $_{\infty}$ \le P, \le 1%) para cada una de las gamas de valores indicados para n (cada una de las filas).

3.5.5 Selección entre las versiones con factor n o (n-1).

En el subapartado anterior se ha seleccionado la c.p.c. óptima, en función de n, E y P, para las versiones SIN subíndice P, es decir las basadas en la expresión (7). Esa primera selección se realizó así pues tales versiones son las más habituales de la literatura. Aquí se va estudiar qué sucede con las versiones CON subíndice P, es decir las basadas en la expresión (6), estudio que se efectuará comparativamente con las anteriores.

previo a ello, hay algunos asuntos generales que se pueden
destacar:

- 1°) Puesto que $\chi_{\text{P}}^{2} < \chi^{2}$, los nuevos métodos serán más conservadores que los antiguos.
- 2º) Como (n-1)~n para n relativamente grande, los nuevos métodos diferirán de modo apreciable de los antiguos sólo para n pequeño.

Unos ejemplos ayudarán a fijar ideas. Si para n=40, 60 y 100 los P-values de un método X son $P_x=10\%$, 5% y 1%, entonces los P-values para el método XP serán

lo que dan errores relativos inferiores a un 10% incluso con un n tan pequeño como 40.

Para evitar duplicar los métodos comparados en los apartados anteriores, limitémonos a comprobar el efecto del cambio citado en los dos estadísticos más tradicionales: $\chi_{\rm H}^2$ (una cola) y $\chi_{\rm H2}^2$ (dos colas). El análisis de los apartados

anteriores (ocultando la variable E) se ha repetido para los métodos $\chi_{\rm H^2}$ y $\chi_{\rm HP^2}$ (una cola) y $\chi_{\rm H2^2}$ y $\chi_{\rm H2P^2}$ (dos colas) y del mismo ofrecemos en el Apéndice la tabla con los correspondientes valores de H°, H $^+$ y H $^-$ (proporciones de fallos) (Tabla X) .

De ella se concluye que:

- 2º.- Para n<150, el método H (una cola) y el método H2 (dos colas) son claramente preferibles.

3.5.6. Selección con cantidades esperadas no inferiores a cinco.

Un aspecto del problema de la aplicación del método chicuadrado es el de las "condiciones de validez" del mismo (asunto con el que está ligado el valor de E, mínima cantidad esperada de la tabla). Al efecto hay muchos consejos (usualmente que sea E≥5), pero los mismos no están basados en un estudio amplio y serio del problema (de nuevo, el de Haber, 1980, es el más completo). En nuestra opinión, la metodología más apropiada para abordar el problema consiste en seleccionar la c.p.c. óptima (como se hizo anteriomente) y, decidida ésta, determinar las condiciones de validez de la misma que eviten abordar aquellas tablas en las que el método falla. Puesto que el asunto no es trivial, se dedica en esta memoria todo un apartado para su estudio (será el apartado 4 de este capítulo). En contra de lo que es comúnmente admitido, la validez del

método chi-cuadrado no depende sólo de n, E y P_r , sino también de lo frecuentes que sean los marginales. El método se basa en la aproximación a la normal de la distribución hipergeométrica, pero tal aproximación puede hacerse a través de la distribución binomial (si un marginal es raro) o de la distribución de Poisson (si los dos marginales son raros), lo que da lugar a expresiones chi-cuadrado distintas de la (7) (ver 2.2).

A pesar de todo lo anterior, la condición E≥5 está tan extendida en la literatura que conviene dar reglas de actuación especiales para tal caso. El estudio realizado en los apartados anteriores se ha repetido para aquellas tablas en que es E≥5, por un lado, y para aquellas otras en que es E<5. Las tablas correspondientes para los valores de H°, H⁺ y H⁻ se dan en Apéndice (Tablas XI y XII). En lo que sigue se dan las principales conclusiones.

- 1º) Con E≥5 y para test de una cola, la frecuancia Hº de fallos de los métodos H y C, con respecto a n, crece primero y luego decrece hasta estabilizarse en alrededor del 4º. Casi todos los fallos (que son conservadores) suceden para valores bajos de P_r.
- 2°) Con E≥5 y para tests de dos colas, la frecuencia H° de fallos, con respecto a n, crece primero y luego decrece hasta estabilizarse en alrededor de un 0.3% (para los métodos H1 y C1) o de un 1% (para H2 y C2). Todos los fallos (casi siempre conservadores) se producen para

valores bajos de Pr.

Cuando E<5, y sea el test de una o dos colas, el valor de H° crece con n (lo que es conforme con Haber, 1980) y llega a ser superior a un 40%, lo que invalida los métodos para tal situación. Conviene aclarar de momento que ello no quiere decir que los métodos no vayan bien con E=4 (por ejemplo), pues su ausencia de H° puede haberse diluido en la gran presencia de ella para E=1 (por ejemplo).

Los comentarios anteriores permanecen (en lo que le son de aplicación) en la comparación de las versiones n y (n-1) (Tablas XIII y XIV del Apéndice), pero ahora las preferencias por la versión con factor n son aún más claras (sobre todo en una cola).

3.5.7. Conclusiones.

Estando establecido que el método asintótico idóneo para el análisis de una Tabla 2x2 es el de chi-cuadrado, la discusión se centra ahora en cual es la c.p.c. óptima. A tal efecto el mejor estudio realizado hasta la fecha es el de Haber (1980), pero el mismo no contempla los tests de una cola, está limitado a valores n≤99, no se basa en una regla que indique cuando una aproximación es aceptable, no estudia la actuación liberal o conservadora de cada test, y, finalmente, da unas

reglas de selección excesivamente generales basadas casi exclusivamente en el valor de E. Estos y otros aspectos son los que se han intentado subsanar en este apartado 3.5, al tiempo que se proponen nuevos métodos (C y M a una cola y C2, M1 y M2 a dos colas) clasificándolos con los ya existentes y distinguiendo las versiones CON y SIN subíndice P.

El apartado actual está basado en dos ideas base. De un lado que para efectuar una c.p.c. es preciso calcular el valor experimental del estadístico χ^2 y su inmediato inferior, promediando a continuación:

- a) los valores χ^2 así obtenidos (Conover,1974);
- b) los valores γ así obtenidos (Haber, 1980);
- c) los P-value de ellos (Mantel, 1974).

De otro lado, y para tests de dos colas, hay dos modos de efectuar los promedios anteriores:

- Considerando que hay dos colas distintas y sumando los
 P-value de ellas (Mantel,1974);
- 2) No distinguiendo las colas -pues el estadístico χ^2 no tiene signo- y calculando el P-value de dos colas como si fuera una sóla por los métodos a), b) o c) (Haber,1980; Conover, 1974).

Una vez obtenidas las distintas c.p.c., la evaluación de la óptima se efectúa a través del criterio base siguiente: dado un método asintótico se pretende que sea válido la mayoria de las veces en que el tamaño de la muestra sea suficientemente grande; la c.p.c. óptima es aquella que hace

$$1 - \delta \le \frac{P_X}{P_F} \le 1 + \delta \tag{71}$$

-con 6 dado por (64)- el mayor número posible de veces (lo que guarda alguna relación con el criterio empleado por Haber).

Un aspecto del problema que ha sido poco tratado históricamente es si la expresión base para el estadístico chicuadrado ha de ser la (6) o la (7). En el apartado 3.5.5 se ha probado que, para los clásicos estadísticos de H de Yates (una cola) y H2 de Mantel (dos colas), el óptimo lo produce la expresión (7), aunque para n≥150 es indiferente emplear una u otra. En adelante se supone que algo similar sucede para las demás c.p.c., y así la expresión (7) será la base de todas ellas. Esto hace que las ideas básicas anteriores den lugar a tres definiciones de tests de una cola (la H, o clásica de Yates, la C y la M, que son nuevas) y seis definiciones de tests de dos colas (las clásicas H2, H1 y C1 de Mantel, Haber y Conover respectivamente y las nuevas definiciones C2, M2 y M1).

Ya se comentó que los métodos basados en la propuesta de Mantel (M de una cola y M1 y M2 de dos colas) se comportaban peor que el resto; por ello, no aparecerán los comentarios relativos a ellos en estas conclusiones.

De un modo general se ha comprobado que, en todos los casos, la frecuencia de fallos H° tiende hacia cero conforme n o E aumenta, siendo tal tendencia más rápida conforme P,

aumenta. Sin embargo, de las Tablas VII a IX (que aparecen en el Apéndice) en las que se enfrentan las frecuencias de fallos y los valores de n para valores constantes de E, se deduce que la frecuencia de fallos (para E constante) permanece estable con el aumento de n en los tests de dos colas, pero suele crecer en los tests de una cola.

En cuanto al tipo de fallos, suelen ser más conservadores que liberales cuando E es grande, pero con el aumento de n el comportamiento es más dispar: en una cola, el porcentaje de fallos conservadores y liberales se equilibra; en dos colas, los métodos H1 y C1 son más conservadores que liberales y los H2 y C2 lo contrario. Se observa también que los métodos de dos colas tienen menos fallos que los de una cola.

El objetivo fundamental de este apartado 3.5 es la selección del método óptimo a aplicar indiscriminadamente en una tabla 2x2 (sin someterla a condiciones de validez), entendiendo por tal a aquel que porporciona un menor número de fallos y, en caso de empate, al que falla más por su conservadurismo que por su liberalidad. La Tabla 15 resume las reglas de selección y el modo de actuación del test seleccionado (aunque un estudio de los datos originales muestra que la selección del método H2 en el caso P,≤1%, E≤2 y n≤100 no es fiable por cuanto todos los métodos resultan seleccionados en alguna combinación de valores compatibles con los anteriores). Se observa que los métodos nuevos (C y C2) son preferibles en un gran número de situaciones, y que, en el caso de tests de dos colas, suelen ser preferibles los tests que distinguen las colas (H2 y C2), resultando elegidos los que no

las dintinguen (H1 y C1) sólo con P_r bajos y n altos (posiblemente porque en tal caso la asimetría de la distribución hipergeométrica se hace notar especialmente).

Tabla 15

Metodo a utilizar al analizar una tabla 2x2 y actuación del test seleccionado cuando falla.

UNA	COLA
E ≤ 2	E > 2
H	c
Muy Liberal	Muy Conservador

	DOS COLAS									
	1:	% ≤ P _r ≤ 1	1% < P,	≤ 10%						
	E ≤ 2	2 <e≤3.5< td=""><td>E >3.5</td><td>E ≤ 2</td><td>E > 2</td></e≤3.5<>	E >3.5	E ≤ 2	E > 2					
n ≤100	H2	C2	C2		22					
n >100	C1≅H1	C1≡H1	C1≡H1	H2	C2					
	Muy liberal	Equili- brado	Muy Conse <u>r</u> vador	Muy Liberal						

otro aspecto de la cuestión es la evolución y gama de valores del porcentaje de fallos de cada método seleccionado. Para tests de una cola, la Figura 2 indica que el porcentaje de fallos es excesivo con valores de E bajos (tanto más cuanto más pequeño es P,), pareciendo adecuado exigir que E sea suficientemente grande antes de aplicar el test seleccionado; por ejemplo, valores mínimos de E del orden de 15, 4 o 3 en los P, bajos, moderados o altos, respectivamente, podrían ser razonables. Esto lleva a que el método H (el clásico de Yates) nunca será seleccionado (ver Tabla 15), y así el nuevo método

C es el único competitivo en tests de una cola. Para tests de dos colas, las Figuras 4 y 5 indican lo mismo, pareciendo adecuado exigir ahora valores mínimos de E del orden de 6, 2 o 2 para cada gama de P_r .

De modo global se observa que, en los tests de dos colas, las versiones que distinguen las dos colas (H2 y C2) son siempre más liberales que la que no las dintinguen (H1 y C1); igual sucede, como ya se dedujo teóricamente, con las versiones de "promediar el χ^2 " (C1 y C2), que son más liberales que sus homónimas de "promediar el χ " (H1 y H2, respectivamente). Asimismo se observa que los métodos que distinguen las colas (H2 y C2) y los que no las distinguen (H1 y C1) forman dos grupos de comportamiento similar, tanto en relación a la frecuencia de fallos (H°) como a su tipo (H° y H⁻).

Dado que con frecuencia se emplea el criterio de que el test de chi-cuadrado es válido si sucede que $E\geq 5$, no se ha querido finalizar este apartado sobre la c.p.c. óptima sin dar una conclusión tranquilizadora al efecto. Aquí se ha comprobado que en tal situación todos los métodos clásicos (Yates, Haber, Mantel y Conover) y algunos de los métodos nuevos (aludidos por C y C2) prácticamente no fallan nunca para los $P_r \geq 1$ %, y muy poco para los $P_r < 1$ %. Como además en este último caso los fallos son casi siempre conservadores, la conclusión es que cualquiera de los métodos es bueno cuando $E\geq 5$ (incluso para un n tan bajo como $20 \leq n \leq 60$), aunque ya se vió que la regla $E\geq 5$ es excesivamente simplificadora. Aquí, como antes, los métodos de dos colas fallan menos que los de una cola.

Naturalmente, todas las conclusiones están limitadas al

rango de valores de n (de 20 a 300) que se ha comprobado, si bien las tendencias observadas hacen pensar que aquellas serán válidas en general.

Finalmente, recordar que ciertos autores están de acuerdo con la idea de Armitage (1971) de que el P-value de dos colas es el doble del P-value de una cola (ver 7.6.3 del Capítulo I). Como en tal caso el criterio de "doblar el P" es común al test exacto de Fisher y al test aproximado chi-cuadrado, se deduce que las conclusiones obtenidas en una cola permanecen para tal versión de test de dos colas (aunque hay un ligero cambio en las gamas de P, estudiadas).

3.6. Equivalencias entre los distintos tests. (Aportación).

En la literatura pueden encontrarse gran cantidad de tests para solucionar diferentes problemas. Aunque cada uno de ellos está indicado para resolver una situación concreta, se ha demostrado que existen ciertas equivalencias de algunos de estos tests cuando se aplican en un mismo contexto. Siendo el test de chi-cuadrado uno de los más conocidos y que pueden utilizarse en un número considerable de situaciones distintas, queremos hacer aquí una breve recopilación de las equivalencias que presenta dicho test (además de algunas otras relacionadas con él).

Así, distinguiendo el tipo de variables que se estudian y si las muestras son independientes o no, tenemos las siguientes relaciones:

a) Variables cuantitativas y muestras independientes:

En cada una de dos muestras independientes (I y II) se mide una cierta cantidad Y. Sea la v.a.

X=0 si $y_i \in Muestra I$

X=1 si y, ϵ Muestra II

Entonces,

- 1) El test de t de Student con varianzas iguales (para las y's) es equivalente al test de independencia paramétrica de Pearson.
- 2) El test de Wilcoxon sin c.p.c. (para las y's) para muestras independientes es equivalente al de Spearman sin empates (de x contra y).

b) Variable dicotómica y muestras independientes:

Sean las dos muestras independientes (I y II) citadas antes, y supongamos que la respuesta Y de cada indiviuo es ahora una cualidad dicotómica (A o \overline{A}). La representación y notación de los datos es entonces como en la Tabla 1 de la Introducción. Si convenimos en que un individuo que es \overline{A} vale Y=0 y que uno que es \overline{A} vale Y=1, entonces:

- 1) El test de t² o z de comparación de proporciones independientes es equivalente al de χ^2 con y sin c.p.c. (la de Yates en su caso).
- 2) χ_{P}^{2} es equivalente al de t² de Student con varianzas iguales (con y sin c.p.c., la de Yates en su

caso) ya que

$$t_{\text{exp.}} = \frac{|\hat{p}_1 - \hat{p}_2|}{\sqrt{\frac{a_1 a_2}{n(n-1)} (\frac{1}{n_1} + \frac{1}{n_2})}} = \sqrt{\chi_{n-1}^2}$$

$$pues \quad s^2 = \frac{1}{n-1} \{a_2 - \frac{a_2^2}{n}\} = \frac{na_2 - a_2^2}{n(n-1)} = \frac{a_2(n-a_2)}{n(n-1)} = \frac{a_1 a_2}{n(n-1)}$$
(72)

e igual si se coloca la c.p.c. de Yates.

Aquí demostramos que la siguiente equivalencia también se da:

3) χ_{yp}^2 es equivalente al test de Wilcoxon (con empates) para muestras independientes, salvo la c.p.c., que hay que modificarla.

Sean las n observaciones con valores Y={0,1} ordenadas, junto con su orden correspondiente (O_i)

$$Y_i: 0 \dots 0 1 \dots 1$$

$$0_{i}: 1 \dots a_{i} (a_{i}+1) \dots n$$

Los rangos promedio en los empates serán:

$$Rango(Y=0) = \frac{\sum_{1}^{a_{1}} O_{i}}{a_{1}} = \frac{a_{1}+1}{2}$$

$$Rango(Y=1) = \frac{\sum_{a_{1}+1}^{n} O_{i}}{n-a_{1}} = \frac{a_{1}+n+1}{2}$$
(73)

Suponiendo $n_1 < n_2$, y bajo la H_o de igualdad de las dos poblaciones estudiadas, la v.a. R_1 (suma de rangos de la muestra menor) se distribuye en grandes muestras

aproximadamente como una normal $N(E(R_1), (V(R_1))^{1/2})$ con:

$$R_{1} = \frac{a_{1}+1}{2}x_{1} + \frac{a_{1}+n+1}{2}y_{1} = \frac{n_{1}(a_{1}+1) + ny_{1}}{2}$$

$$E(R_{1}) = \frac{n+1}{2}n_{1}$$

$$V(R_{1}) = \frac{n(n^{2}-1) - T_{1} - T_{2}}{12n} \frac{n_{1}n_{2}}{n-1} = \frac{\overline{n} - \overline{a}_{1} - \overline{a}_{2}}{12n} \frac{n_{1}n_{2}}{n-1}$$

$$(74)$$

donde $T_1=(a_1-1)a_1(a_1+1)=\bar{a}_1$ y $T_2=(a_2-1)a_2(a_2+1)=\bar{a}_2$ y $\bar{n}=(n-1)n(n+1)$ y así:

$$t_{\text{exp}}^{2} = \frac{(|R_{1} - E(R_{1})| - 0.5)^{2}}{V(R_{1})} = \frac{(|X_{1} Y_{2} - X_{2} Y_{1}| - 1)^{2}}{a_{1} a_{2} n_{1} n_{2}} (n-1)$$
 (75)

donde lo único que la diferencia de la χ_{YP}^2 es en la c.p.c.

La c.p.c. clásica de 0.5 se ha puesto pues se entiende que en los casos usuales (ausencia de empates en valores de Y) R, es v.a. discreta que salta de 1 en 1; entonces la corrección debe ser la mitad del salto (0.5). Para nuestro caso, sólo hay rangos (a,+1)/2, y si, (a,+n+1)/2 y conservando los totales a, y n, un valor Y=1 de la muestra II se permuta por un valor Y=0 de la muestra I, el salto es

$$\Delta R_1 = \{(a_1+n+1)/2\} - \{(a_1+1)/2\} = n/2$$

y así la correción en la expresión (75) debe ser n/4 (la mitad del salto). Con ello, realizando las correspondientes operaciones queda

$$\chi_{YP}^2 = \frac{\{|x_1y_2 - x_2y_1| - \frac{n}{2}\}^2}{a_1a_2n_1n_2} (n-1)$$
 (76)

que es lo clásico. Por tanto, queda justificada la conveniencia de la c.p.c. en el test de Wilcoxon, pero

ésta no debe ser siempre de 0.5, sino que dependerá del tipo de empates.

c) Variables dicotómicas y muestras apareadas:

Si las dos muestras del inicio son apareadas, el tamaño n es común a ambas. Ahora cada individuo es A o \overline{A} en la muestra I, y lo mismo en la muestra II. Un modo de clasificar los resultados es como en la Tabla 1 de la Introducción, con $B\equiv A$, $\overline{B}\equiv \overline{A}$ y x_1 aludiendo al número de individuos (de entre los n) que son A en la muestra I y A en la muestra II, etc. Anotemos dos v.a. del tipo:

$$X = \begin{cases} 0 & si \ es \ \overline{A} \ en \ la \ muestra \ I \\ 1 & si \ es \ \overline{A} \ en \ la \ muestra \ I \end{cases}$$

$$Y = \begin{cases} 0 & si \ es \ \overline{A} \ en \ la \ muestra \ II \\ 1 & si \ es \ \overline{A} \ en \ la \ muestra \ II \end{cases}$$
(77)

Entonces es conocido que, para esos datos:

- 1º) $\chi^2=nr^2$ con r el coeficiente de correlación de Pearson entre X e Y.
- 2°) $\chi_{p}^{2}=(n-1)r_{s}^{2}$ con r_{s} el coeficiente de correlación no paramétrico de Spearman (Basler,1988).
- 3º) r2=r,2, lo que se deduce de lo anterior.

- 4. LAS CONDICIONES DE VALIDEZ DEL TEST CHI-CUADRADO.
- 4.1. Generalidades y condiciones clásicas.

Cuando se utiliza la aproximación chi-cuadrado hay, en realidad, tres posibles fuentes de error:

- Una variable discreta se está aproximando a una variable continua.
- 2) La aproximación es válida para el caso de grandes muestras.
- 3) Se está utilizando una distribución simétrica (la normal cuyo cuadrado es la chi-cuadrado) para aproximar a otra que no lo es (la hipergeométrica).

El efecto de la primera fuente de error se corrige con la c.p.c., y sobre ella ya se ha hablado. El efecto de la tercera fuente de error se corrige con las precauciones de Mantel, Conover y Haber, y sobre ellas también se habló. El efecto de la segunda fuente de error se atenúa con las precauciones del apartado actual.

La determinación de las condiciones de validez del test chi-cuadrado (con o sin c.p.c.) no ha sido objeto de estudios sistemáticos, aunque sí se dispone de algunas conclusiones parciales (a veces demasiado subjetivas). Sea E la mínima cantidad esperada de la Tabla 1 de la Introducción y supongamos que $E=a_1n_1/n$. Para que la v.a. X_1 con media $\mu(X_1)=E$ pueda aproximarse a una variable normal es preciso que E sea lo suficientemente grande como para que la cola izquierda de la distribución normal pueda aparecer (es decir, que la simetría sea parcialmente factible). Es por ello que la condición de

validez más habitual sea exigir que E supere un mínimo valor dado.

Las condiciones más clásicas son las de Fisher (1941): el test chi-cuadrado no debe utilizarse si son n<40 y E<5. Brownlee (1967) liberaliza la segunda condición exigiendo sólo que sea E>3.5. Para Cochran (1954) basta con que sea E mayor que 2 ó 5. Pearson (1947) indica que χ_{rp}^2 va bien salvo cuando las a_1 o las n_1 son pequeñas y a_1 (o n_1) es muy distinta de a_2 (o n_2), pero no tomó en cuenta la corrección de Mantel (por eso el test falla notablemente cuando falla la simetría de la hipergeométrica). Haber (1980) especifica que el test chicuadrado funciona notablemente bien cuando es E \geq Max(5;n/10), afirmación que está restringida al caso de un test de dos colas y a las versiones χ_{m2}^2 , χ_{c1}^2 y χ_{m1}^2 . El mismo autor afirma que cuando es E<5, el test empeora con el aumento de n (como pudimos ver en el apartado anterior).

Como afirmación general, señalar la de Cressie and Read (1989) que, aludiendo a los tests de bondad de ajuste, mantienen la validez del test chi-cuadrado si es $E \ge 0.25$, $n \ge 10$ y $n^2/K \ge 10$, con K el número de casillas. A nuestros efectos, esto equivale a requerir que sean $E \ge 0.25$ y $n \ge 10$, lo que parecen condiciones demasiado débiles.

- 4.2. Nuevas condiciones de validez. (Aportación).
- 4.2.1. Introducción, objetivo y criterios previos.

Como se ve, no existe un estudio amplio y sistemático acerca de la condiciones de validez del test chi-cuadrado. Todos los autores (con resultados parciales) concuerdan en que la clave es que E sea grande, pero no hay acuerdo sobre qué se entiende por tal. Por otro lado, tampoco está claro cual debe elegirse de entre los dos métodos de una cola y los cuatro de dos colas (en el apartado anterior ya se descartó un método de una cola y dos de dos colas por su comportamiento alejado del de Fisher), y es de suponer que las condiciones de validez variarán con el método seleccionado. Nuestro objetivo en este apartado es:

- a) Probar que la condición de validez depende no sólo de E, sino también de n, P, y de que el test sea de una o dos colas;
- b) Obtener la condición de validez de cada método, identificando el comportamiento del test cuando ella se verifica;
- c) Seleccionar el método óptimo (el que, a igualdad de exigencias, requiere una condición de validez menos estricta).

Todo ello bajo la idea de que la comparación entre métodos debe hacerse para aquellas tablas en que son válidos, no

indiscriminadamente (como hasta ahora se ha realizado en la literatura y en apartados anteriores), lo que permitirá decidir qué método es el óptimo y cuándo puede aplicarse. A estos efectos, los trabajos de Haber (1980) y el apartado 3.5 del capítulo II de esta memoria presentan una selección del método chi-cuadrado óptimo para aplicarlo indiscriminadamente (sin someterlo a condiciones de validez).

Para conseguir los objetivos anteriores, es preciso fijar antes algunos criterios. En primer lugar, en lo que sigue se mantiene la idea expuesta anteriormente de que la clave es evaluar la diferencia $|P_x-P_r|$ y permitirle un cierto margen (los valores δP_r de la expresión (64)). En segundo lugar, es de esperar que, aún cuando un método X verifique las condiciones de validez que se establezcan, éste falle para algunas tablas. En adelante se asume que un 5°/ $_{\infty}$ (o menos) de fallos es algo aceptable, y así valores de ${\rm H}^{\circ} \le 5^{\circ}/_{\infty}$ harán aceptable una condición de validez. En tercer lugar aquí nos limitaremos a los métodos competitivos ya seleccionados en apartados anteriores.

Estas condiciones aunque arbitrarias son, en nuestra opinión, bastante razonables. Quizá haya sido este aspecto el que ha detenido la obtención de resultados claros a pesar de la mucha literatura sobre el tema (más de 100 artículos en los últimos 20 años).

4.2.2 Proceso para obtener los resultados.

Dado un método X, el proceso seguido para determinar sus condiciones de validez ha sido el siguiente:

(1) Considerar todas las tablas posibles, como la Tabla 1 de la Introdución, con

n=20(1)100, 150, 200, 250, 300, 400, 500 lo que es un amplio rango de valores posibles de n.

- (2) Para cada tabla, determinar su P-value P, de Fisher (ordenación por chi-cuadrado) y considerar sólo a aquellas en que 1°/∞≤P,≤10%, entendiendo que significaciones más altas o más bajas no son de interés. Esto da un total de 911 002 tablas.
- (3) Para cada tabla de las seleccionadas, determinar su P-value P_x y anotar si en ella el método X falla o no, es decir, si verifica o no la (64). Por X aludimos tanto a un método de una cola como a uno de dos colas.
- (4) Agrupar las tablas en función de los siguientes intervalos o valores de n:

20-40; 41-60; 61-80; 81-100; 150; 200; 250; 300; 400; 500 (para facilitar la evaluación de los resultados) y en función de los siguientes intervalos de P.:

1°/₀₀≤P_r<1% ,, 1%≤P_r≤10%

(386 809 tablas en el primer caso; 524 193 en el segundo). Con ello se podrán obtener reglas de validez en función del tamaño de muestra n y del error objetivo α del test (la primera gama para los investigadores que desean utilizar la regla de Bonferroni; la segunda para las significaciones usuales).

(5) Considerar las tablas (T_i) que caen dentro de cada una de las 20 combinaciones del paso anterior (n=20-40 y 1%≤P_r≤10%, por ejemplo). Cada una de estas tablas tiene una mínima cantidad esperada E. Se desea encontrar un valor E_i tal que

$$\frac{N^{0}}{NV} \leq 0.005 \qquad siendo$$

$$N^{0} = \# \{T_{i} \mid |P_{X} - P_{F}| > \delta P_{F}\}$$

$$NV = \# \{T_{i} \mid E(T_{i}) \geq E_{1}\} = NV(n, P_{F}, n^{0} colas)$$

$$E(T_{i}) = minima \ cantidad \ esperada \ de \ la \ tabla \ T_{i}$$

Esto garantiza que, para tal combinación de valores de n y P_r , más del 99.5% de las tablas que verifican la condición de validez ($E \ge E_1$) verifican también la (64) (no fallan). Los 20 valores de E_1 así obtenidos especificarán, por tanto, las condiciones de validez del método. A efectos prácticos entendemos que las cantidades E_1 basta determinarlas con una precisión de décimas.

- (6) Seleccionadas las condiciones de validez del método X, ya sólo resta identificar la actuación del mismo. Con tal fin, conviene determinar los siguientes porcentajes:
 - i) Para cada combinacion de n y P_r , calcular el porcentaje de tablas que verifican la condición de validez $(E \ge E_1)$, $NV(n, P_r, n^2 \text{ colas})$.

- ii) Porcentaje de tablas que fallan entre las anteriores, $H^o=N^o/NV=H^o(n, P_F, n^o colas)$.
- iii) Porcentajes de fallos por razones conservadoras
 v liberales:

$$H^{+} = \frac{N^{+}}{NV} , H^{-} = \frac{N^{-}}{NV} , H^{0} = \frac{N^{0}}{NV} con$$

$$N^{+} = \# \{ T_{i} \mid P_{X}(T_{i}) - P_{F}(T_{i}) > \delta P_{F}(T_{i}) \} = N^{+} (n, P_{F}, n^{0} colas)$$

$$N^{-} = \# \{ T_{i} \mid P_{X}(T_{i}) - P_{F}(T_{i}) < -\delta P_{F}(T_{i}) \} = N^{-} (n, P_{F}, n^{0} colas)$$

$$(79)$$

con H°=H++H-.

4.2.3. Las condiciones de validez en las c.p.c. estudiadas.

En un primer intento en la búsqueda de las condiciones de validez se estudiaron estas, para los métodos citados, en función de los valores de E y de la cantidad K=a,/n. Para ello, se buscaba para cada n, cada gama de P, y para una y dos colas, un par de valores E, y K, tal que la proporción de fallos entre las tablas que verificaran E>E, y K>K, fuera menor que una cierta cantidad. Por los resultados obtenidos, pudo comprobarse que el valor E, era independiente de los distintos K estudiados; entonces, las condiciones de validez no dependían de K, sino sólamente de E. Esta es la razón por la cual se obtienen los resultados que aquí se presentan (condición de validez en función de la cantidad E).

La Tabla 16 presenta los valores de E_i obtenidos para cada método y para cada una de las 20 combinaciones de n y $P_{\rm p}$

citadas anteriormente, todo ello bajo el precio descrito en el subapartado anterior.

Para tests de una cola se observa que el valor E_1 es sistemáticamente más bajo en el método C que en el H (la correción clásica de Yates), con pequeñas diferencias en los n moderados. Además, para la gama de P-value del test exacto de Fisher $P_r \ge 1$ %, los valores E_1 son considerablemente menores que los obtenidos con $P_r < 1$ %, lo cual resulta lógico pues con altas significaciones x_1 se encuentra más alejado de E_1 lo que se traduce en una condición de E_1 más exigente. También debe hacerse notar el crecimiento continuo del valor E_1 con el aumento de n (en las dos gamas de P_r).

Para tests de dos colas el comportamiento de E, depende de la gama de P, Así, para P,<1% las cantidades E, son sistemática y notablemente más pequeñas (y parecidas entre sí) en los métodos C1 y H1, que son los métodos que no distinguen las dos colas, que en los métodos C2 y H2, que contemplan las dos colas. Sin embargo, para $P_r \ge 1\%$ ocurre lo contrario, resultando los métodos C2 y H2 con menores valores de E_1 . En las dos gamas de P_r , los valores E_1 obtenidos con H1 y C1, por un lado y H2 y C2, por otro, son "parecidos" en comparación con la gran discrepancia existente entre las parejas citadas. Además, la tendencia de E_1 con n no es de crecimiento como ocurría en una cola, sino que presenta (en general) un aumento con n hasta n=250, a partir del cual empieza a descender (esto ocurre para todos los métodos y las dos gamas de P_r).

Tabla 16

Minima cantidad esperada (E_1) para cada uno de los métodos citados (primera columna) y para cada combinación de valores de tamaños de muestra n (primera fila) y del P-value P, del test exacto de Fisher (primera y segunda tabla). Cada valor de E_1 garantiza que no más del 5°/ $_{\infty}$ de tablas fallan con cada test.

1°/__ ≤P, <1°/_

n	20-40	41-60	61-80	81-100	150	200	250	300	400	500
H C	5.9 4.4	6.4	8.0 8.0	9.6 9.5			15.8 14.8	16.6 16.2	19.0 18.2	20.7
H2 C2 H1 C1	6.1 4.6 5.1 4.6	6.4 6.2 5.5 5.2	6.8 6.7 5.6 5.6	7.3 7.2 6.0 5.9	7.9 7.3 6.3 6.2	8.0 7.3 6.2 6.1	8.2 7.4 6.0 5.8	7.7 7.3 5.7 5.5	7.6 7.2 5.2 5.0	7.4 7.2 4.6 4.3

1°/°5P, \le 10°/°

n	20-40	41-60	61-80	81-100	150	200	250	300	400	500
H	3.2	3.4	3.5	3.6	5.1	5.2	5.2	5.2	5.3	5.3
C	1.9	3.3	3.5	3.5	3.7	3.8	3.9	3.9	4.1	4.1
H2	0.7	0.9	1.2	1.3	1.6	1.5	1.6	1.5	1.4	1.2
C2	1.9	1.8	1.8	1.8	1.9	2.0	2.0	2.0	1.9	1.8
H1	4.6	3.5	3.6	3.6	3.5	3.4	3.4	3.2	2.9	2.6
C1	4.6	3.5	3.5	3.5	3.4	3.3	3.0	2.9	2.7	2.4

Test de una cola H≡Método de Yates (1934). C≡Método propuesto. Test de dos colas H2≡Método de Mantel (1974). C2≡Método propuesto H1≡Método de Haber (1980). C1≡Método de Conover (1974).

4.2.4. La c.p.c. óptima en función de las condiciones de validez.

A partir de las observaciones del apartado anterior, puede concluirse que en una cola el método óptimo es el C, pues en él se exigen valores más pequeños de E_1 . Para tests de dos colas puede observarse que si $1^{\circ}/_{\circ\circ} \le P_r < 1^{\circ}$ el método óptimo es C1, pues

presenta valores de E_1 menores que H1 (y menores que H2 y C2), mientras que para la gama $1\% \le P_F \le 10\%$ el óptimo resulta ser H2 con menores valores que C2 (y que H1 y C1).

El orden de los métodos, de mejor a peor puede resumirse así:

$$UNA \ COLA: \left\{ \begin{array}{cccc} 1^{0}/_{00} \leq P_{F} < 1^{0}/_{0} & \rightarrow & C & H \\ & 1^{0}/_{0} \leq P_{F} \leq 1^{0}/_{0} & \rightarrow & C & H \end{array} \right. \tag{80}$$

$$DOS \ COLAS: \left\{ \begin{array}{ccccc} 1^{0}/_{00} \leq P_{F} < 1^{0}/_{0} & \rightarrow & C1 & H1 & C2 & H2 \\ & 1^{0}/_{0} \leq P_{F} \leq 1^{0}/_{0} & \rightarrow & H2 & C2 & C1 & H1 \end{array} \right.$$

En la Tabla 17 se presenta el comportamiento de los métodos chi-cuadrado que resultaron óptimos, en cuanto que exigen menores valores de E₁. Para una y dos colas, para cada combinación de tamaño n de muestra y para cada gama de P_r, aparecen las siguientes cantidades:

- a) E, obtenido según los criterios anteriores.
- b) Porcentaje de tablas (T_i) que verifican las condiciones de validez

$$V = \begin{cases} NV/N_1 & \text{si } 1^0/_{00} \le P_F < 1^0/_0 \\ NV/N_2 & \text{si } 1^0/_0 \le P_F \le 10^0/_0 \end{cases} COD$$

$$N_1 = \# \{ T_i \mid 1^0/_{00} \le P_F < 1^0/_0 \} \quad y \quad N_2 = \# \{ T_i \mid 1^0/_0 \le P_F \le 10^0/_0 \}$$

y NV el definido en la (78).

c) Porcentajes de fallos, ya sea por razones liberales o conservadoras: H°, H⁺ y H⁻ (definidos en la (79).

Como puede observarse la regla clásica del valor $E_1=5$ es bastante general y poco "ajustada", ya que para el método óptimo de una cola (C) E_1 varía entre 4.4 y 20.3 con $P_r<1\%$, y entre 1.9 y 4.1 con $P_r\geq1\%$, mientras que para los test de dos

colas E, varía entre 4.3 y 6.2 para el método C1 y $P_r < 1\%$ y entre 0.7 y 1.6 para H2 y $P_r \ge 1\%$.

Tabla 17

Comportamiento de los métodos de chi-cuadrado seleccionados (primera tabla para una cola; segunda tabla para dos colas) para cada rango de tamaño n de muestra (primera columna) y del p-value P, del test exacto de Fisher (segunda y tercera con logo logo no logo ne logo no logo no logo ne logo n

UNA COLA

					Métod	о С				
n	E1	1°/ V	≤P,<1° H°	н⁺ Н⁺	H-	E1	1°/₀≤ V	P _r ≤10 H°	°/. Н†	н-
20-40	4.4	33.9	2.9	2.9	0.0	1.9	74.4	0.4	0.0	0.4
41-60	6.3	35.1	2.5	2.5	0.0	3.3	64.4	5.0	5.0	0.0
61-80	8.0	37.1	3.1	3.1	0.0	3.5	72.0	2.2	2.2	0.0
81-100	9.5	39.6	4.6	4.6	0.0	3.5	78.4	3.9	3.9	0.0
150	11.5	53.1	3.9	3.9	0.0	3.7	86.7	3.9	3.9	0.0
200	13.3	58.6	4.5	4.5	0.0	3.8	90.0	4.6	4.6	0.0
250	14.8	62.6	4.9	4.9	0.0	3.9	91.9	4.6	4.6	0.0
300	16.2	65.6	4.9	4.9	0.0	3.9	93.5	5.0	5.0	0.0
400	18.2	70.8	5.0	5.0	0.0	4.1	95.1	4.9	4.9	0.0
500	20.3	70.3	5.0	5.0	0.0	4.1	95.1	4.9	4.9	0.0

DOS COLAS

	Método (1974)	de Co	nove	c C1		Método	de Ma	ntel	Н2 (1974)
n	E1	1°/	≤P,<1 H°	°/。 H⁺	н-	E,	1°/。≤ V	P,≤10 H°	°/. H⁺	H
20-40	4.6	30.8	3.4	3.4	0.0	0.7	90.7	5.0	0.0	5.0
41-60	5.2	48.1	5.0	5.0	0.0	0.9	93.2	4.5	2.4	2.1
61-80	5.6	58.4	3.2	3.2	0.0	1.2	93.4	4.8	4.0	0.8
81-100	5.9	65.3	3.7	3.7	0.0	1.3	94.7	3.7	3.7	0.0
150	6.2	78.5	4.3	4.3	0.0	1.6	95.9	4.4	3.2	1.2
200	6.1	84.9	4.5	4.5	0.0	1.5	97.2	5.0	2.9	2.1
250	5.8	89.1	4.9	4.9	0.0	1.6	97.7	4.6	2.9	1.7
300	5.5	91.9	5.0	5.0	0.0	1.5	98.3	4.9	2.3	2.7
400	5.0	95.1	4.8	4.8	0.0	1.4	98.9	4.9	1.7	3.3
500	4.3	96.0	4.9	4.9	0.0	1.2	99.0	4.9	1.3	3.6

E,≡Mínima cantidad esperada.

V=% de tablas que verifican la condición de validez $(E \ge E^1)$. H°=% de tablas que fallan entre las que verifican $E \ge E^1$.

 $H^+=\%$ de tablas que fallan por razones conservativas entre las que verifican $E \ge E_1$.

H=% de tablas que fallan por razones liberales entre las que verifican $E \ge E_1$.

4.2.5. Discusión y conclusiones.

Los resultados obtenidos prueban que no hay unanimidad a la hora de decidir si la c.p.c. se debe efectuar "promediando las χ^2 " o "promediando las χ ", aunque hay ventaja para el primer procedimiento. Tampoco hay unanimidad acerca de si en un test de dos colas debe contemplarse la existencia de 1 o de 2 colas. Cuando los P, son moderados los métodos óptimos son los H2 y C2 (que contemplan dos colas), lo que es conforme con la lógica). Cuando los P, son bajos los métodos óptimos son los C1 y H1 (que contemplan una cola), lo que puede deberse a que, al encontrarse en tales casos x_i muy alejado de su media E, la simetría asumida falla marcadamente y el método que contempla 1 cola compensa mejor este fallo que el que contempla 2 colas.

De la Tabla 16 se observa que no es correcta la creencia habitual de que los métodos descritos son prácticamente iguales, sino que sus condiciones de validez varían apreciablemente de unos a otros. Es importante pues seleccionar el más adecuado en cada caso y esto se hizo en base a la Tabla 17.

para tests de una cola, el método C es claramente preferible al clásico método H de Yates. Para tests de dos colas son claramente preferibles los métodos más clásicos: C1 de Conover para las significaciones altas y el método H2 de Mantel para las significaciones ordinarias. Pasemos a comentar la actuación de tales métodos en base a los datos de la Tabla 17.

De un modo general, el porcentaje de tablas que verifican la condición de validez aumenta con n, P, y con el número de colas. Para el caso más habitual de test de dos colas y significaciones moderadas, la gran mayoría de las tablas con n>100 verifican las condiciones de validez.

Por el modo de obtener los resultados, cuando un método verifica las condiciones de validez, falla en no más del 5°/... de las ocasiones, y cuando lo hace, prácticamente siempre es por razones conservadoras (con excepción del método H2 que actúa más equilibradamente). Esto nos ilustra sobre varios asuntos:

- 1°.- Al no dar significaciones falsas, los métodos C y Cl son fiables (bajo las condiciones expuestas) cuando se concluye H_1 .
- 2º.- Los seis métodos estudiados están basados en la expresión (7), pudiéndose obtener otros seis métodos similares a partir de la expresión (6). Como es:

$$\chi^2 > \chi_P^2 \quad \Rightarrow \quad P(\chi^2) < P(\chi_P^2) \tag{82}$$

y así, los métodos seleccionados (C y C1) basados en χ_P^2 son aún más conservadores que los basados en χ^2 . La versión a utilizar es pues la (7). Esto mismo es válido, pero por un argumento empírico, para el método H2.

En cuanto a la condición de validez propiamente dicha caben realizar los siguientes comentarios:

(a). De modo general, la condición es más exigente en las significaciones altas (pues x_1 se encuentra más alejado de

- E) que en las moderadas, y en los tests de una cola que en los de dos (pues en estos casos una cola compensa los excesos de la otra).
- (b). En los tests de una cola el valor E, aumenta con n, en tanto que en los de dos colas primero crece y luego decrece con n. Cabe la duda de si en los tests de una cola existe un valor n más allá de n=500 (el último ensayado) en el que E, comienza a decrecer, o si, por el contrario, el crecimiento de E, es permanente.
- (c). Se observa, por tanto, que la costumbre generalizada de dar un único criterio de test y una única condición de validez no es apropiada, por cuanto uno y otra varían sustancialmente con n, P, y el número de colas. En particular, la clásica regla de E≥5 es, en los tests de una cola, bastante liberal en las significaiones altas y conservadora en las moderadas, en tanto que en los de dos colas es algo liberal en el primer caso y bastante conservadora en el segundo.
- (d). En contra de lo que a veces se afirma, el test chicuadrado puede aplicarse sin problemas incluso con muestra tan pequeñas como de 20≤n≤40, y ello con unas condiciones de validez bastante concordantes con el resto de los n (incluso apreciablemente más liberales en un caso).

Siendo el test de chi-cuadrado de uso tan habitual, es descorazonador que la condición de validez no sea un número "mágico", sino que dependa de n, P, y del número de colas del test, lo que obliga a tener a mano una tabla como la Tabla 16. Sólo con la intención de simplificar algo las cosas al estadístico práctico, la Tabla 18 presenta unas reglas abreviadas que, en general, resultan conservadoras.

Tabla 18

Criterios simplificados (en general, conservadores) para verificar la validez de los tests chi-cuadrado óptimos. Valores mínimos para la mínima cantidad esperada (entre paréntesis el método a amplear) en tablas con 20≤n≤500.

Test	1°% _∞ ≤P _F <1%	1%≤P _r ≤10%
1 cola	16 (C)	4 (C)
2 colas	6 (C1)	1.5 (H2)

Más aconsejable es buscar una regla de ajuste a los valores obtenidos para E₁. La Tabla 19 presenta las ecuaciones de regresión para el ajuste de los datos obtenidos de E₁ en cada valor de n. Se ha procurado buscar regresiones sencillas y de la misma forma en todos los casos, aún a costa de alguna pérdida circunstancial de precisión. Naturalmente que las extrapolaciones a valores de n fuera del rango estudiado (de 20 a 500) no están garantizadas (ni quizá las interpolaciones), pero es sintomático el buen ajuste que se aprecia. Conviene observar lo siguiente:

i) Por alguna razón (que nos es desconocida) algo más allá del valor n=100 se produce un punto de corte en las fórmulas de predicción de E, en los tests de dos colas (y ello por dos veces). El mismo punto de corte (aunque con otro fin) fue observado en el estudio de la c.p.c. óptima (apartado 3.5, capítulo II).

Tabla 19

Condiciones de validez genéricas para el test chi-cuadrado indicado en el centro de la tabla.

Test	1°/₀₀≤P,<1°/₀	1°/°≤P°,≤10°/°
1 COLA	20 \le n \le 40: E \ge 4.4 41 \le n \le 60: E \ge 6.3 n \ge 61: E \ge {15+0.801n} ^{1/2} r=0.999 C	20≤n≤40: E ≥ 1.9 n≥40: E ≥ $\{11+0.013n\}^{1/2}$ C r=0.989
2 COLAS	r=0.995 C1 n≤116: E \geq {15+0.225n} ^{1/2} n>116: E \geq {48-0.059n} ^{1/2}	H2 r=0.975 $n \le 133$: E $\ge \{-0.2+0.021n\}^{1/2}$ $n > 133$: E $\ge \{3.0-0.003n\}^{1/2}$

P_r≡P-value el test exacto de Fisher ,, C≡Método propuesto n≡Tamaño de muestra ,, H2≡Método de Mantel (1974) E≡Mínima cantidad esperada ,, C1≡Método de Conover (1974) r²≡Razón de Correlación

ii) Si las extrapolaciones son válidas, la condición de validez desaparece (E≥0) en los tests de dos colas cuando es n≥814 (P_r<1%) o cuando es n≥1 000 (P_r≥1%), mientras que la misma se hace cada vez más estricta en los tests de una cola. Desde el valor n=804 se produce la circunstancia curiosa de que las condiciones de validez son más estrictas en los P_r altos que en los bajos (tests de dos colas).

- iii) Es sintomático que la forma de las funciones que predicen E_1 sea la misma con independencia de P_r y del número de colas.
- iv) Los valores máximos para E, en el test de dos colas son
 6.4 y 1.6, según la gama de P, considerada. Para una cola
 no está garantizado que existan tales topes.
- v) Las reglas para los tests de dos colas son más complicadas que las de una cola. Esto, junto al resto de los comentarios anteriores, abunda en el hecho bien conocido (Cormack, 1986) de que el test de dos colas tiene un comportamiento bastante distinto al del test de una cola.

Finalmente, indicar que algunos autores (Yates, 1984) están de acuerdo con la idea de Armitage (1971) de que el P-value de un test de dos colas es el doble del P-value para el test de una cola. Como en tal caso, el criterio de "doblar el P" es común al test exacto Fisher y al test aproximado de chicuadrado, se deduce que las conclusiones obtenidas para una cola permanecen para tal versión de dos colas (aunque con una ligera elevación en los valores de E₁).

4.3. Versión asintótica del test de las Rachas.

4.3.1. Introdución.

En 2.5.1 del Capítulo I, se vió la distribución no asintótica del test de las rachas. Los mismos autores que la propusieron demostraron que, para grandes muestras, $(R-\mu_R)/\sigma_R$ se distribuye aproximadamente como una normal típica (cuando H_o es cierta), si bien Wallis (1952) hizo notar que, puesto que R es discreta y saltando de uno en uno, convendría hacer una c.p.c., con lo cual el estadístico de contraste sería $\{(R\pm 0.5)-\mu_R\}/\sigma_R$, con ± 0.5 en función de la cola estudiada. Con el fin de adecuar el formato al de este capítulo, pongamos tal estadístico en términos de chi-cuadrado:

$$\chi_C^2 = \frac{(|N(R-1)-N_1N_2|-\frac{N}{2})^2}{2N_1N_2\{2N_1N_2-N\}} (N-1)$$
 (83)

con el subíndice C aludiendo a que es el estadístico clásico. Las condiciones de validez de este test no están exhaustivamente estudiadas, pero hay bastante acuerdo en que funcionan bien si es $Max(N_i)>20$.

4.3.2 Nuevo test asintótico. (Aportación).

La versión tradicional anterior adolece de dos defectos:

- 1) Como test de dos colas se le aplica bajo el criterio de doblar el P-value de una cola (criterio de Armitage), y eso ya se sabe que es lo peor que puede hacerse;
- 2) La variable base del problema (R) tenía una estructura

de hipergeométrica y dependía de las tres variables hipergeométricas $T_{\rm o}$, $T_{\rm i}$ y $T_{\rm i}$ citadas en 2.5.3 del Cap. I. Cada una de ellas puede aproximarse a una chi-cuadrado distinta, pero el método clásico engloba estas tres distribuciones chi-cuadrado en una sóla, lo que evidentemente ocasionará una pérdida innecesaria (aunque cómoda) de información.

Veamos como solventar los dos problemas.

Dado que en el problema hay que determinar los valores $P(T_i \ge t_i)$ o $P(T_i \le t_i)$, que T_i es una variable hipergeométrica, y que la cola de una hipergeométrica se puede obtener aproximadamente por chi-cuadrado (como se indica en este Capítulo), definamos los estadísticos chi-cuadrado a que da lugar cada T_i (con los mismos subíndices que las T_i):

$$\chi_0^2 = \frac{\{ \mid (N-2) t_0 - (N_1 - 1) (N_2 - 1) \mid -\frac{N-2}{2} \}^2}{(N_1 - 1)^2 (N_2 - 1)^2} (N-2)$$
 (84)

$$\chi_{1}^{2} = \frac{\{ | (N-2) t_{1} - (N_{1}-1) N_{2}| - \frac{N-2}{2} \}^{2}}{(N_{1}-1) (N_{2}-1) (N_{1}-2) N_{2}} (N-2)$$
 (85)

$$\chi_{2}^{2} = \frac{\{ | (N-2) t_{2} - (N_{1}-1) (N_{2}-2) | -\frac{N-2}{2} \}^{2}}{(N_{1}-1) (N_{2}-1) N_{1} (N_{2}-2)} (N-2)$$
 (86)

todos ellos obtenidos de los marginales de las Tablas 3, 4 y 5 del capítulo anterior. Aquí se ha adoptado el formato de la c.p.c. de Yates, pero podría ser cualquiera de los de este capítulo.

Por consiguiente, el modo más adecuado de efectuar el test de las rachas asintótico consiste en utilizar las expresiones (51) a (54) -según el caso- de 2.5.3 del Cap. I, pero determinando las probabilidades de cola a través de las χ_1^2 anteriores (siempre con las precauciones de condiciones de validez del capítulo actual y con la selección de la c.p.c. óptima vista más arriba).

Como ejemplo, sea $N_1=17$, $N_2=19$ (por tanto, N=36) y R=12. Como R=12< $\mu_R=18.94$ estamos en el caso de R "par y pequeño", con ello, y como aquí es t=6, el P-value exacto de una cola será:

$$P_{E} = P(R \le 12) =$$

$$= \frac{(2) (17) (19) P\{T_{0} \le 5\} + (17) (16) P\{T_{1} \le 5\} + (19) (18) P\{T_{2} \le 4\}}{(36) (35)} \approx 1.4\%$$
(87)

El P-value obtenido por el método clásico -expresión χ_c^2 - es $P_c \approx 2.2\%$, un 57% superior al real.

El P-value obtenido por el método actual se determina calculando las tres χ^2 implicadas en la expresión anterior:

$$\chi_0^2 = 4.182$$
 ,, $\chi_1^2 = 5.670$,, $\chi_2^2 = 5.785$

los P-values correspondientes (de una cola):

$$P_0=2.04\%$$
 ,, $P_1=0.86\%$,, $P_2=0.81\%$

y el valor aproximado $P_{\lambda}=1.5\%$ a través de tal expresión. Se observa la concordancia de resultados, y ello a pesar de haber usado la c.p.c. de Yates (que era la peor).

Con respecto a las condiciones de validez (c.d.v.) de la versión actual, éstas serán el máximo de las c.d.v. de los tres test chi-cuadrado implicados. Como los marginales de las tres tablas (las 3, 4 y 5 del Cap. I) son conocidas, la más pequeña

cantidad esperada (que es lo peor) de ellas es

$$E = \frac{(N_1 - 1)(N_2 - 2)}{N - 2} \tag{88}$$

Pero si N₁≤N₂, entonces:

$$E > \frac{(N_1 - 1) \cdot (N_1 - 2)}{N - 2} \tag{89}$$

y si esto se hace mayor que E, (la esperada límite de nuestra Tabla 17), se tendrá garantizada la validez del test actual. Resolviendo tal desigualdad, esto nos lleva a que la condición de validez para el test de las rachas actual es:

$$N_1 > 2 (E_1 + 1)$$
 (90)

con E_1 las de la Tabla 16. Por ejemplo, si es E_1 =1.5 (test de dos colas, P_r usual, N-2=200) basta con que sea $N_1>5$, y así la aproximación es bastante rápida. Con la regla tradicional de la literatura (E_1 =5) se obtiene $N_1>12$, que tampoco está mal.

5. LAS CONDICIONES <u>DE VALIDEZ EN LOS CASOS RAROS. (APORTACIÓN)</u>.5.1. Introducción.

Se dijo en 2.2 (Cap. II) que cuando la aproximación de χ^2 no es válida, pero hay un marginal raro (a₁/n pequeño), las expresiones (21) y (25) pueden dar un P-value aproximado P_B bastante acorde con el real P_r . La cuestión es pues, qué se entiende por a₁/n pequeño. Para determinar esto, es preciso fijar antes algunos criterios previos, criterios que van a ser paralelos a los de los apartados anteriores a fin de poder encajar unos resultados en otros. Así:

 a) Admitiremos como aproximación aceptable la misma que en el resto del apartado, es decir,

$$\delta = \begin{cases} 0.5 & \text{if } 1^{0}/_{00} \le P_{F} \le 1^{0}/_{0} \\ 0.575 - 7.5P_{F} & \text{if } 1^{0}/_{0} \le P_{F} \le 1^{0}/_{0} \\ 0.2 & \text{if } 5^{0}/_{0} \le P_{F} \le 10^{0}/_{0} \end{cases}$$
(91)

será entendido como que P_B se aproxima a P_r . El caso contrario será considerado un "fallo" del método. Así, consideramos que la aproximación es aceptable si el porcentaje de fallos es lo más cercano, pero menor, a 0.5%.

b) Puesto que el método actual se usará cuando no sea válido el método de χ^2 , el porcentaje de fallos se contabilizará en aquellas tablas en que suceda tal cosa.

Por todo ello, el proceso de obtención de resultados es el siguiente:

(1) Se consideran las tablas posibles como la Tabla 1 de la Introducción con

n=20(1)100, 150, 200, 250, 300, 400 y 500 agrupadas en los intervalos y valores de n:

20-40; 41-60; 61-80; 81-100; 150; 200; 250; 300; 400; 500 seleccionando en cada grupo sólo aquellas tablas que no verifiquen las condiciones de validez del test chicuadrado (E<E₁, de Tabla 17).

(2) Para cada tabla se determina su P_r , considerando en lo que sigue sólo aquellas en que sea $1^{\circ}\%_{\infty} \le P_r \le 10\%$ y agrupadas en los intervalos de P_r :

$$1^{\circ}/_{\circ\circ} \leq P_{r} < 1^{\circ}$$
 , $1^{\circ} \leq P_{r} \leq 10^{\circ}$

- (3) Anotar en cada tabla si el método falla o no, es decir si P_B verifica o no la (91), para cada una de las combinaciones de n, y P_r y nº de colas.
- (4) Siendo $K=a_1/n$ en cada tabla, determinar un número K_1 tal que (para la combinación estudiada de n, P_F y n° de colas).

$$H = \frac{NF}{NV_{B}} \le 0.5\% \quad siendo$$

$$NF = \# \{ T_{i} \mid | P_{B}(T_{i}) - P_{F}(T_{i}) \mid > \delta P_{F}(T_{i}), T_{i} \in NV_{B} \}$$

$$NV_{B} = \# \{ T_{i} \mid K(T_{i}) \le K_{1}, E(T_{i}) \le E_{1} \}$$
(92)

Esto garantiza que, para la combinación estudiada de n, P_r y n^o de colas, más del 99.5% de las tablas que verifican $E < E_1$ y $K \le K_1$ no fallan y así, una tabla con $a_1/n \le K_1$ se entiende que tiene un marginal raro (a efectos de calcular su P_r a través de P_B).

5.2. Selección de las constantes y discusión.

Bajo estos criterios, los resultados obtenidos se presentan en la Tabla 20, en la cual aparecen los valores de K₁ (en tantos por ciento) obtenidos en cada una de las situaciones antes descritas. Los valores H aluden al tanto por mil de

fallos reales para el valor K_i indicado (siempre es $H \le 5^{\circ}/_{\circ\circ}$, por definición).

Tabla 20

Comportamiento de la aproximación binomial al test exacto de Fisher (primera tabla para una cola; segunda tabla para dos) para cada gama de valores del tamaño n de muestra (primera columna) y del P-value P, del test exacto de Fisher (segundo y tercer encolumnado). En el cuadro se alude sólo a aquellas tablas en que no es válida la aproximación chi-cuadrado (tablas con $E < E_1$, con E_1 los dados en la Tabla 17).

IINA	COT.A
UNA	COLM

ONI COLLI								
	1°/ ₀₀ ≤P,<1°/ ₀			1°/₀≤P₅≤10°/。				
n	K,	V _B	H	K,	V _B	H		
20-40				0.107	40.5	2.5		
41-60	0.043	1.0	0.0	0.107	38.2	4.9		
61-80	0.050	2.6	3.1	0.111	56.2	4.4		
81-100	0.042	2.2	0.0	0.111	70.5	5.0		
150	0.033	3.4	0.0	0.113	90.7	3.9		
200	0.055	12.5	5.0	0.110	95.4	2.8		
250	0.056	15.7	3.1	0.104	97.0	3.3		
300	0.057	18.4	2.2	0.090	95.7	4.7		
400	0.043	14.1	0.0	0.062	85.6	3.4		
500	0.034	11.2	0.0	0.050	81.4	3.7		

DOS COLAS

	1°/	′ _∞ ≤P,<1'	°/。	1°/ _° ≤P _r ≤10°/ _°					
n	K,	V _B	Н	K ₁	V _B	H			
20-40				0.108	85.9	3.9			
41-60	0.043	1.0	0.0	0.103	92.0	4.0			
61-80	0.050	4.1	3.1	0.110	95.6	3.8			
81-100	0.042	4.1	0.0	0.114	99.4	4.9			
150	0.033	7.8	0.0	1.000	100.0	0.0			
200	0.050	29.0	1.6	1.000	100.0	0.0			
250	0.056	50.5	3.5	1.000	100.0	0.0			
300	0.057	62.4	2.9	1.000	100.0	0.0			
400	0.043	59.4	0.0	1.000	100.0	0.0			
500	0.034	61.5	0.0	1.000	100.0	0.0			
II l	L			4					

K₁≡Valor máximo de K=a,/n para que el test sea válido (a, es el marginal más pequeño).

 $v_n = ^{\circ}/_{\circ}$ de tablas que verifican la condición de validez $(K \le K_1)$.

 $H \equiv 0/\infty$ de tablas que fallan de entre las que verifican $K \le K_1$.

Los valores V_B aluden a la proporción de tablas, de entre las que no le son aplicables el test χ^2 (E<E,), que verifican la actual condición de validez (K≤K,), es decir, la proporción de tablas en que podemos ahorrarnos realizar el test exacto de Fisher gracias a la aproximación binomial actual.

Estos resultados prueban que cuando una tabla 2x2 no puede analizarse por χ^2 , en un gran porcentaje de ocasiones aún pueden evitarse los cálculos del test exacto de Fisher mediante el uso de la aproximación binomial, la cual es válida cuando uno de los marginale es raro. El valor de tal porcentaje (V_B) llega a ser del 100% en el caso más habitual de todos (test de dos colas, $1\% \le P_F \le 10\%$, n>100) y así, en esa situación, nunca sería preciso efectuar el test exacto de Fisher.

Lo que debe entenderse por un marginal raro (el máximo valor K_1 de $K=a_1/n$) no es algo fijo, sino que varía con las condiciones previas. De un modo general, la condición es más exigente en las significaciones altas que en las moderadas y en los tests de una cola que en los de dos colas. Esta última afirmación no se nota en el caso de las significaciones altas porque la mayoría de las tablas implicadas sólo tienen una cola de error $(P_1,=0)$, pero sí se advierte al observar que V_B es más grande en dos colas que en una.

De otro lado, la evolución de K₁ en función de n es irregular, no siendo posible dar una regla fija. Excluyendo el caso de significaciones moderadas y tests de dos colas, parece que, desde un determinado n, el valor de K₁ decrece con el aumento de n, y las ecuaciones que mejor se ajustan a esos datos se dan en la Tabla 21. Naturalmente que las

extrapolaciones a valores de n fuera del rango estudiado no están garantizadas (ni, quizás, las interpolaciones), pero es sintomático el buen ajuste que se aprecia y el que la forma de la ecuación sea siempre la misma.

Los altos valores de V_B y los bajos valores de K_1 son explicables en base a que existe una relación entre $K=a_1/n$, E (mínima cantidad esperada) y n (tamaño de la muestra). Como el test actual se aplica cuando no es válido el test chi-cuadrado $(E < E_1)$, y como es (por construcción) $a_1 \le n_1$, entonces

$$\frac{a_1^2}{n} \le E = \frac{a_1 n_1}{n} < E_1 \quad \Rightarrow \quad K < \sqrt{\frac{E_1}{n}} \tag{93}$$

y así, valores pequeños de E_1 y grandes de n (como pasa en los tests de dos colas) ocasionan que casi todas las tablas que fallan tienen un valor K pequeño, el test binomial actúa bien para ellas y, consiguientemente, V_B es grande. Además en la Tabla 19 se vió que

$$E_1 = (a+bn)^{\frac{1}{2}} \quad con \quad a,b \ ctes \implies K \rightarrow 0 \quad si \quad n \rightarrow \infty$$
 (94)

y así, K_1 debe tender a 0 conforme n aumenta, pero el valor V_B debe tender al 100%.

Tabla 21

Condiciones genéricas de validez, en los grandes valores de n, para la aproximación binomial al test exacto de Fisher.

Test	1°/ _∞ ≤P,<1°/。	1°/°5P°7°,
	n≥300:	n≥150:
1 COLA	K≤{11+.74n²/10 ⁻⁴ } ⁻¹	$K \le {7 + .53n^2 / 10^{-4}}^{-1}$
	r=0.996	0.976=r
	r=0.996	1.000=r
2 COLAS	n≥300:	n≥150:
	K≤{11+.74n²/10 ⁻⁴ } ⁻¹	K≤1

P,≡P-value para el test exacto de Fisher.

n ≡Tamaño de muestra.

K ≡Frecuencia del marginal más infrecuente.

r²=Razón de correlación.

5.3. La versión chi-cuadrado para los casos raros.

En 2.2 de esta Capítulo se habló del caso general de los "casos raros", señalándose que sólo la situación de un marginal raro tenía interés, y ello tanto desde el punto de vista de lo cálculos como desde la perspectiva teórica. Es por ello que anteriormente se ha analizado la aproximación H~B, pero no la aproximación H~B~P.

por otro lado, en dicha sección también se hablo de que para grandes muestras los casos raros podían analizarse, al menos teóricamente, a partir de unas modificaciones adecuadas en el estadístico χ^2 , lo que daba los estadísticos χ_R^2 y χ_{RR}^2 -

ver expresiones (16) y (23) - pero de ellos aún no hemos dicho nada más. Este es el momento de abordarlos.

Antes que nada advertir que de tales estadísticos cabe la posibilidad de dar versiones CON y SIN subíndice P, así como que de ellos cabe obtener versiones con c.p.c. bajo los mismos criterios de 3.3 de este capítulo, lo que da lugar a triplicar el número total de métodos de chi-cuadrado (por ejemplo, existirían los métodos χ_{RH}^2 , χ_{RRH}^2 , χ_{RCI}^2 , χ_{RCIP}^2 , etc., con la misma notación que antes).

Sin embargo,

$$\chi_{RR}^2 < \chi_R^2 < \chi^2 \quad \Rightarrow \quad P(\chi_{RR}^2) > P(\chi_r^2) > P(\chi^2)$$
 (95)

y así los métodos procedentes de los raros son aún más conservadores que los procedentes de χ^2 . Como los métodos óptimos C y C1 eran sólo conservadores, la conclusión es que los métodos de chi-cuadrado "raros" no son de utilidad pues darán lugar, bajo iguales condiciones, a valores más altos de H° (el % de fallos). Lo mismo sucede con el método H° , pero ahora por un argumento empírico.

La conclusión es que la chi-cuadrado clásica (χ^2) tiene "memoria" en el sentido de que aún cuando la hipergeométrica se aproxime a la binomial (o esta a la Poisson), y a través de ellas a la normal, la distribución normal de llegada "recuerda" cuales eran sus parámetros (media y varianza) de partida (los de la hipergeométrica). De ahí que la expresión base conveniente sea la χ^2 .

6. CONCLUSIONES.

A lo largo de este capítulo se ha abordado el problema de cuál es el método asintótico más conveniente para analizar una tabla 2x2 desde el punto de vista condicionado. La selección, con tal fin, del clásico test de chi-cuadrado se ha hecho por razones bibliográficas, pues está bastante demostrado que es el mecanismo más cómodo y más adecuado a ese objetivo.

Sin embargo, también bibliográficamente, está bastante clara la necesidad de dotar al test chi-cuadrado de una c.p.c., y a tal efecto la literatura presenta un número limitado de métodos, no clasificados de un modo lógico ni estudiados exhaustivamente. Aquí se han solventado todos esos problemas, al tiempo que se duplica con creces el número total de métodos disponibles y se estudia detalladamnte su comportamiento, señalando qué método es óptimo en función de n (tamaño de muestra), el error objetivo, el nº de colas del test y el valor de E (la mínima cantidad esperada). Esto se dió en la Tabla 15.

Por otro lado un aspecto casi nulamente tratado en la literatura es el de las condiciones de validez del test chicuadrado. Aquí se ha probado que la condición clave es la magnitud de E (lo que ya se conocía), pero que su valor mínimo para que el test chi-cuadrado sea válido no es una constante, sino que depende de n, del error objetivo, del nº de colas y del método empleado. En base a ello se ha propuesto el concepto de que el test de chi-cuadrado idóneo es aquel que sea menos exigente con E (el que más veces sea válido), y la selección se dió en las Tablas 17 y 18.

A nivel práctico, por tanto, las dos Tablas 15 y 17 (o 18) pueden y deben usarse simultáneamente. Dada una tabla experimental cualquiera, el investigador comenzará calculando $E=Min(a_1,a_2)xMin(n_1,n_2)/n$, y, según que el test sea de una o dos colas, según el valor de n y según el valor del error objetivo, decidirá en base a la Tabla 17 (o 18) si el test chi-cuadrado es o no válido. A continuación, la Tabla 15 le indicará el método emplear y lo que puede esperar de él en cuanto al tipo de fallos; en todo caso, los valores de la Tabla 18 son valores mínimos en cuanto a la actuación del test.

Una aportación práctica de interés es lo que hemos dado en llamar los métodos raros. Aquí se ha probado que cuando el test chi-cuadrado no es válido ello es por causa de que cuenta con un marginal "raro" o poco frecuente, y que, cuando esto es así, resulta posible obviar la determinación del P-value exacto mediante el recurso de la aproximación binomial a la hipergeométrica. Las condiciones de validez de tal aproximación (lo que se entiende por un marginal raro) se dieron en las Tablas 20 y 21.

No viene mal dar un cuadro genérico de actuación que nos indique dónde acudir a la hora de analizar una Tabla 2x2. Esto se hace en la Tabla 22. Se observa que, aún estando de acuerdo en obtener un valor aproximado de P_r , hay una ocasión en que ello no es posible (cuando sean $E < E_1$ y $K = Min(a_1, n_1)/n > K_1$), por lo que en tal situación no hay más remedio que aplicar el test exacto de Fisher.

Tabla 22
Método a seguir para analizar una tabla 2x2.

Condiciones	Test a aplicar
E≥E,	Test chi-cuadrado:Los valores de E, se dan en las Tablas 17 y 19, el test aconsejado en la Tabla 15, y la forma del mismo se encuentra en 3.3.2 del Cap. II
E <e₁ K≤K₁</e₁ 	Aproximación binomial:Los valores de K, se dan en las Tablas 17 y 18, y la forma del test aconsejado es la indicada en 2.2.2 del Cap. II.
E <e, K>K,</e, 	Test exacto de Fisher:La forma del test aconsejado es la indicada en 2.2 o en 2.3.2 del Cap. I. Si esfactible usar la Tabla I.

E≡Mínima cantidad esperada.

K≡Frecuencia del marginal menos frecuente. n≡Tamaño de muestra.

El porcentaje de veces, V_r en que ello es preciso (para cada valor de n) aparece en la Tabla 23. Si V_c es la frecuencia de veces que se verifica la condición $E \ge E_1$ (con E_1 dados en la Tabla 17) y si V_B son los valores indicados en la Tabla 20 (en tantos por uno), entonces $(1-V_c)(1-V_B)$ es la frecuencia V_r de veces en que habrá de aplicarse el test exacto de Fisher, lo que da los valores de la Tabla 23. Se observa que dicho test no será preciso realizarlo casi nunca en los casos más frecuentes de $n \ge 100$ y significaciones usuales.

Tabla 23

Porcentaje de veces (V,) en que es preciso aplicar el test exacto de Fisher, en función del tamaño (n) de muestra, del P-value exacto (P,) y del número de colas (1 o 2) del test.

TEST	Una cola	Una cola	Dos colas	Dos colas
P-value	1°/∞≤P,<1°/。	1°/ _° ≤P _r ≤10°/ _°	1°/ _∞ ≤P,<1°/ _°	1°/ _° ≤P _y ≤10°/ _°
20-40	66.1	15.2	69.2	1.3
41-60	64.3	22.0	51.4	0.5
61-80	61.3	12.3	39.9	0.3
81-100	59.0	6.4	33.3	0.03
150	45.3	1.2	19.3	0
200	36.2	0.5	10.7	0
250	31.5	0.2	5.4	0
300	28.1	0.3	3.0	0
400	25.1	0.7	2.0	0
500	26.4	0.9	1.5	0

Finalmente en el capítulo se han abordado dos temas tangenciales. Por un lado se ha mejorado el tratamiento asintótico del test de las rachas (apartado 4.3). Por otro, se ha listado determinadas equivalencias existentes entre diversos tests estadísticos (Student, Wilcoxon, Spearman,) y los tests χ^2 de este capítulo, al tiempo que se demuestran otras nuevas.

BIBLIOGRAFIA

- AITCHISON, J. AND BACON-SHONE, J. (1981). 'Bayesian risk ratio analysis'. The American Stat. 35(4), 254-257.
 - ALTHAM, P.M.E. (1969). 'Exact Bayesian Analysis of a 2 x 2 Contingency Table, and Fisher's "Exact" Significance Test'. J.R.S.S. B 31, 261-269.
 - ARMITAGE, P. (1971). Statistical Methods in Medical Research.
 Oxford: Blackwell Scientific Publications.
 - ARMSEN, P. (1955). 'Tables for significance tests of 2 x 2 contingency tables'. Biometrika 42, 494-511.
 - BALLATORI, E. (1982). 'Sui test statistici per il confronto tra due frequenze in tabelle 2 x 2'. Metron XL 3-4, 157-171.
 - BARNARD, G.A. (1945). 'A new test for 2 x 2 tables'. Nature, 156, 1777 and 783-784.
 - BARNARD, G.A. (1947). 'Significance tests for 2x2 tables'.

 Biometrika 34, 123-138.
 - BARNARD, G.A. (1949). 'Statistical Inference'. J.R.S.S. B 11, 115-139.
 - BARNARD, G.A. (1982). 'Conditionality versus similarity in the analysis of 2 x 2 tables'. Statistics and probability: Essays in Honor of C.R. Rao. North Holland Publishing Company. 59-65.
 - BARNARD, G.A. (1989). 'On alleged gains in power from lower P-values'. Stat. in Medicine 8(12), 1469-1477.
 - BASLER, H. (1988). 'Equivalence between tie-corrected Spearman test and chi-square test in a fourfold contingency table'.

 Metrika 35, 203-209.
 - BASU, D. (1977). 'On the elimination of nuisance parameters'.

 JASA 75, 355-66.
 - BAYES, T.R. (1763). 'Essay towards solving a problem in the doctrine of changes'. Reprinted in *Biometrika* 45 (1958), 243-315.
 - BERKSON, J. (1978). 'Do the marginal totals of the 2x2 table contain relevant information respecting the table proportions?' Journal of Stat. Planning and Inference 2, 43-44.
 - BERNARDO, J.M. (1979). 'Reference Posterior Distributions for Bayesian Inference (with Discussion)'. J.R.S.S. B 41(2), 113-147.
 - BERRES, M. (1983). 'Approximating exact probabilities by χ^2 and Continuity Correction χ^2 in 2x2 Tables'. Biom. J.(6), 527-535.

- BERRY, K.J. AND MIELKE, P.W. (1985). 'Subroutine for computing exact chi-square and Fisher's exact probability tests'. Educational and Psychological Measurement 45, 153-159.
- BISHOP, Y.M.M., FIENBERG, S.E. AND HOLLAND, P.W. (1975).

 Discrete Multivariate Analysis: Theory and Practice.

 Cambridge: the MIT Press.
- BOSCHLOO, R.D. (1970). 'Raised conditional level of significance for the 2 x 2 Table when testing the equality of two probabilities'. Statistica Neerlandica 24(1), 1-35.
- BROWNLEE, K. A. (1967). Statistical theory and methodology in science and engineering. New York: Wiley.
- COCHRAN, W.G. (1942). 'The 2x2 correction for continuity'. Iowa State College Journal of Science, 16, 421-436.
- COCHRAN, W.G. (1954). 'Some methods for strengthening the common χ^2 tests'. Biometrics 10, 417-451.
- CONOVER, W.J. (1974). 'Some reasons for not using the Yates' continuity corrections on 2x2 contingency tables'. Journal of the American Stat. Assoc. 69, 374-376.
- CORMACK, R.S. (1986). 'The meaning of probability in relation to Fisher's exact test'. Metron 44, 5-30.
- CORMACK, R.S. AND MANTEL, N. (1991). 'Fisher's exact test: the marginal totals as seen from two different angles'. The Statistician 40, 27-34.
- CORNFIELD, J. (1966). 'Sequential trials, sequential analysis and the likelihood principle'. The American Statistician 20, 18-23.
- COX, C. P. AND GROENEVELD, R. A. (1986). 'Analytic results on the difference between the G² and χ^2 test statistics in one degree of freedom cases'. The Statistician 35, 417-420.
- COX, D.R. (1970). 'The continuity correction'. Biometrika 57, 217-219.
- COX, D.R. AND HINKLEY, D.V. (1974). Theoretical Statistics. London: Chapman and Hall.
- CRESSIE, N. AND READ, T.R.C. (1989). 'Pearson's χ^2 and log likelihood ratio statistics G^2 : A comparative review'. International Stat. Review 57(1), 19-43.
- DAVIS, L.J. (1986). 'Exact tests for 2 x 2 contingency tables'. The American Stat. 40(2), 139-141.
- DOANE, D.P.and REESE, R.M. (1977). 'An assessment of the accuracy of the χ^2 approximation to hypergeometric probabilities in 2x2 contingency tables using rules of thumb'. Amer. Stat. Assoc. 1977. Proc. of Stat. comp. Section 185-189.

- DUPONT, W.D. (1986) 'Sensitivity of Fisher's exact test to minor perturbations in 2 x 2 contingency tables'. Statistics in Medicine 5, 629-635.
- EBERHARDT, R.A. AND FLIGNER, M.A. (1977). 'A comparison of two tests for equality of two proportions'. The Amer. Stat. 31, 151-155.
- FINNEY, D.I., LATSDA, R., BENNET, B.B.Z., HSU, P. (1963). Tables for testing significance in a 2 x 2 contingency table. Cambridge: Cambridge University Press.
- FISHER, R.A. (1935). 'The logic of inductive inference'.

 J.R.S.S. A 98,39-54.
- FISHER, R.A. (1941). Statistical methods for research workers. Edinburgh: Oliver and Boyd.
- FISHER, R.A. (1942). The Design of Experiment. Chap. 2. 3rd ed. Edinburgh: Oliver and Boyd.
- FISHER, R.A. (1945). Nature 388.
- FISHER, R.A. (1959). 'Statistical methods and scientific induction'. J.R.S.S. B 17(1), 69-78.
- FISHER, R.A. (1959). Statistical methods and scientific inference. 2nd ed. Edinbugh: Oliver and Boyd.
- FLEISS, J.L. (1981). Statistical Methods for Rates and Proportions. 2nd ed. New York: John Wiley & Sons.
- FRANCK, W.E. (1986). P-values for discrete test statistics'. Biom. J. 4, 403-406.
- FREEMAN, G.H. AND HALTON, J. N. (1951). 'Note on an exact treatment of contingency, goodness of fit and other problems of significance'. Biometrika 38, 141-149.
- FREEMAN, M.F. AND TUKEY, J. W.(1950). 'Transformations related to the angular and the square root'. Ann. Math. Stat. 27, 607-611.
- GARSIDE, G.R. AND MACK, C. (1967). 'Correct confidence limits for the 2 x 2 homogeneity contingency table with small frequencies'. The New Journal of Statistics and Operational Research 3(2), 1-25.
- GART, J.J. (1966). 'Alternative analyses of contingency tables'. J.R.S.S. B 28, 164-179.
- GOOD, I.J. (1984). 'The early history of the Fisher-Yates-Irwin formula and Fisher's "exact test"'. C.204 in J. Stat. Comp. and Simu. 19, 315-319. And: 'A further note on the early history of the Fisher-Yates-Irwin formula'. C207 in J. Stat. Comp. and Simu. 20, 155-159.
- GOOD, I.J. (1990). 'On the exact distribution of Pearson's χ^2 for

- the lady tasting beer'. C.368 in J. Stat. Comp. and Simu. 36, 177-179.
- GREENLAND, S. (1991). 'On the logical justification of conditional tests for two-by-two contingency tables'. The American Statistician 45(3), 248-251.
- GRIZZLE, J. E. (1967). 'Continuity correction in the χ^2 test for 2x2 tables'. The American Stat. 21(4), 28-32.
- GUENTHER, W.C. (1978). 'Some remarks on the runs test and the use of the hypergeometric distribution'. The American Statistician 32(2), 71-73.
- HABER, M. (1980). 'A comparison of some continuity corrections for the chi-squared test on 2x2 tables'. JASA 75, 510-515.
- HABER, M. (1982). 'The continuity correction and statistical testing'. Intern. Stat. Rev. 50, 135-144.
- HABER, M. (1986). 'A modified exact test for 2 x 2 Contingency Tables'. Biometrical Journal 28(4), 455-463.
- HABER, M. (1987). 'A comparison of some conditional and unconditional exact tests for 2 x 2 contingency tables'. Commun. in Stati. -Simul. 16(4), 999-1013.
- HABER, M. (1989). 'Do the marginal totals of a 2x2 contingency table contain information regarding the table proportions?'. Commun. Statist.-Theory Meth. 18(1), 147-156.
- HAMDAN, M.A. (1974). 'On the continuity correction'.

 Technometrics 16(4), 631-632.
- HAVILAND, M.B. (1990). 'Yate's correction for continuity and the analysis of 2x2 contingency tables'. Stat. in Medicine 9(4), 363-383.
- HILL, I.D. AND PIKE, M.C. (1965). 'Algorithm 4: TWOBYTWO'.

 Computer Bull. 9, 56-63. (Reprinted in Computer J. (1979),
 22, 87-88; Addenda in Computer J. (1966), 9,212; and
 (1967), 9, 416).
- HINDE, J. AND AITKIN, M. (1987). 'Canonical likelihoods: A new likelihood treatment of nuisance parameters'. Biometrika 74(1), 45-58.
- IRWIN, J.D. (1935). 'Test of significance for differences between percentages based on small numbers'. Metron 12(2), 84-94.
- JEFFREYS, H. (1946). 'An invariant form for the prior proability estimation problems'. Proceedings R. Soc. London, A 186, 453-461.
- KENDALL, M. G. AND STUART, A. (1967). The Advanced Theory of Statistics, Vol. 2, 2nd. ed. New York: Hafner Pub. Co.

- KRAUTH, J. (1973). 'Nichtparametrische Ansätze sur Auswertung von Verlaufskurven'. Biom. Zeitschrift 15, 557-566.
- KROLL, N.E.A. (1989). 'Testing Independence in 2 x 2 Contingency Tables'. Journal of Educational Statistics 14(1), 47-79.
- KUDO, A. AND TARUMI, T. (1978). '2x2 tables emerging out of different chance mechanisms'. Comm. in Stat. Theo. and Met. 7(10), 977-986.
- LANCASTER, H.O. (1952). 'Statistical control of counting experiment'. Biometrika 39, 419-422.
- LANCASTER, H.O. (1961). 'Significance tests in discrete distributions'. JASA 56, 223-234.
- LEHMAN, E.L. (1959). Testing for Statistical Hypotheses. New York: John Wiley & Sons.
- LIDDELL, D. (1978). 'Practical test of 2x2 tables'. The Statistician 27(4), 295-304.
- LITTLE, R.J.A. (1989). 'Testing the equality of two independent binomial proportions'. The American Statistician 43(4), 283-288.
- LLOYD, C.J. (1988). 'Doubling the one-sided p-value in testing independence in 2 x 2 tables against a two-sided alternative'. Stat. in Medicine 7, 1297-1306.
- LUNA DEL CASTILLO, J.D. Y MARTIN ANDRES, A. (1987.a). 'Tablas 2x2 y test exacto de Fisher'. Trabajos de Estadística 2(1), 15-43.
- LUNA DEL CASTILLO, J.D. Y MARTIN ANDRES, A. (1987.b). 'Algoritmo para la versión más potente del test exacto de Fisher'. Cuadernos de Bioestadística y sus aplicaciones informáticas 5(1), 25-34.
- MANTEL, N. and GREENHOUSE, S.W. (1968). 'What is the continuity correction?'. The American Statistician 22(5), 27-30.
- MANTEL, N. (1974). 'Comment and a Suggestion'. JASA 69, 378-380.
- MARTIN ANDRES, A. AND LUNA DEL CASTILLO, J.D. (1987). 'A new randomization test for 2 x 2 tables'. Metron 45 (3-4), 81-97.
- MARTIN ANDRES, A. AND LUNA DEL CASTILLO, J.D. (1989.a). 'On the sensitivity of Fisher's exact test to minor perturbations in 2x2 contingency tables'. Letters to the Editors. Statistics in Medicine 8(2), 243-245.
- MARTIN ANDRES, A. AND LUNA DEL CASTILLO, J.D. (1990). 'P-value for the optimal version of Fisher's exact test in the comparison of two independent proportions'. Biometrical Journal 32(2), 213-227. Corrections in Biom. J. 32(8), 1018 (1990).

- MARTIN ANDRES, A., HERRANZ TEJEDOR, I. AND LUNA DEL CASTILLO, J.D. (1989.b). 'The behaviour of the P-value in the comparison of two independent proportions'. Metron 47(1-4), 201-219.
- MARTIN ANDRES, A. Y LUNA DEL CASTILLO, J.D. (1986). 'Homogeneidad de dos proporciones: un test basado en intervalos de confianza'. XVI Reunión Nacional de la SEIO. Málaga (Spain).
- McDONALD, L.L., DAVIS, B.M. AND MILLIKEN, G.A. (1977). 'A non-randomized unconditional test for comparing two proportions in a 2 x 2 contingency table'. *Technometrics* 19, 145-150.
- NEAVE, H.R. (1982). 'A new look at an old test'. Bulletin of Applied Statistics 9(2), 165-178.
- NURMINEN, M. AND MUTANEN, P. (1987). 'Exact Bayesian Analysis of two Proportions'. Scandinavian Journal of Statistics 14(1), 67-77.
- PEARSON, E.S. (1947). 'The choice of statistical tests illustrated on ther interpretation of data classed in a 2x2 table'. Biometrika 34, 139-167.
- PEARSON, E.S. AND HARTLEY, H.O. (1966). Biometrika Tables for Statisticians, Vol 1 (3rd ed.). Cambridge University Press.
- PEARSON, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can reasonably be supposed to have arisen from random sampling'. Philos. Mag. Series 5, 50, 157-172.
- PIRIE, W.R. and HAMDAN, M.A. (1972). 'Some revised continuity corrections for discrete distributions'. Biometrics 28, 693-701.
- PLACKETT, R.L. (1964). 'The continuity correction in 2 x 2 tables'. Biometrika 51(3 and 4), 327-337.
- PLACKETT, R.L. (1977). 'The marginal totals of a 2x2 table'.

 Biometrika 64(1), 37-42.
- RADLOW, B. AND ALF, E.F. Jr. (1975). 'An Alternate multinomial Assessment of the Accuracy of the χ^2 test of goodness of fit'. JASA 70 (352), 811-813.
- RAIFFA, H. AND SCHLAIFER, R. (1961). 'Applied statistical decesion theory'. Boston: Graduate School of Business Administration, Harvard University.
- RAO, C.R. (1970). Advanced Statistical Methods in Biometrics Research. Hafner: Darien.
- RICE, W.R. (1988). 'A New Probability Model for Determining Exact p-Values for 2 x 2 Contingency Tables when Comparing Binomial Proportions'. Biometrics 44, 1-22.

- ROBINS, J.M. (1988). 'Confidence intervals for causal parameters'. Statistics in Medicine 7, 773-785.
- SACHS, L. (1986). 'Alternatives to the chi-square test of homogeneity in 2x2 tables and to Fisher's exact test'. Biom. Jour. 28(8), 975-979.
- SATHE, Y.S. (1982). 'Another test for equality of two proportions'. Comm. in Stat. Simul. and Comp. 11(3), 373-375.
- SCHAWE, D. (1977). 'Error probabilities for 2x2 contingency table'. American Statistician 31(3), 134.
- SCHOUTEN, H.J. (1976). 'On the continuity correction'. Statistica Neerlandika 30, 93-95.
- SCHOUTEN, H.J.A., MOLENAAR, I.W., VAN STRIK, R., BOOMSA, A. (1980). 'Comparing two independent binomial proportions by a modified chi-squared test'. Biometrical Journal 22(3), 241-248.
- SILVA MATO, A. (1989). 'Test de homogeneidad de dos proporciones independientes: una aportación al estudio comparativo de métodos incondicionados bajo el criterio del máximo'. Trabajo de investigación. Programa de Doctorado del Departamento de Estadística I.O. Universidad Complutense. Madrid.
- SILVA MATO, A. (1992). Comunicación personal.
- SWED, F.S. AND EISENHART, C. (1943). 'Tables for testing randomness of grouping in a sequence of alternatives'.

 Annals of Mat. Stat. 14, 66-87.
- SUISSA, S. AND SHUSTER, J.J. (1984). 'Are uniformly most powerful unbiased tests really best?'. The American Statistician 38, 204-206.
- SUISSA, S. AND SHUSTER, J.J. (1985). 'Exact unconditional samples sizes for the 2 x 2 binomial trial'. Journal of the Royal Statistical Society A 148(4), 317-327.
- TOCHER, K.D. (1950). 'Extension of the Neyman-Pearson theory of tests of discontinuous variables'. Biometrika 37, 130-144.
- UPTON, G.J.G. (1982). 'A comparison of alternative tests for the 2 x 2 comparative trial'. Journal of the Royal Statistical Society A 145(1), 86-105.
- WALD, A. AND WOLFOWITZ, J. (1940). 'On a test whether two samples are from the same population'. Annals of Mat. Stat. 11, 147-162.
- WALLIS, A. (1952). 'Rough-and-Ready Statistical Tests'.

 Industrial Quality Control 8, 35-40.
- WILKS, S.S. (1935). 'The likelihood test of independence in contingency tables'. Ann. Math. Stat. 6, 190-196.

- YATES, F. (1934). 'Contingency tables involving small numbers and the χ^2 test'. J.R.S.S. Suppl. 1, 217-235.
- YATES, F. (1984). 'Test of significance for 2 x 2 contingency tables'. Journal of the Royal Statistical Society A 147(3), 426-463

Apéndice

INDICE

Tabla	I	1
Tabla	II	9
Tabla	III	10
Tabla	IV	11
Tabla	v	12
Tabla	vi	13
Tabla	vii	16
Tabla	viii	20
Tabla	IX	32
Tabla	x	50
Tabla	xi	52
Tabla	XII	55
Tabla	xIII	58
Tabla	xiv	60
PI.		62
PTT .		64

Tabla I

Regiones críticas del test exacto de Fisher para una y dos colas, para los N (tamaños de muestra) especificados (N≤50) y las significaciones 1%, 5% y 10%.

PAG. I

N = 5 ONE TAIL THO TAILS	N = 14 CONT. ONE TAIL TWO TAILS	N = 18 CONT. ONE TAIL THO TAILS	N = 21 CONT. ONE TAIL THO TAILS	N = 23 CONT. ONE TAIL TWO TAILS
al x1 10% 5% 1% 10% 5% 1%	al xl 10% 5% 1% 10% 5% 1%	al xl 10% 5% 1% 10% 5% 1%	al x1 10% 5% 1% 10% 5% 1%	al xl 10% 5% 1% 10% 5% 1%
2 0 3	4 0 6 7 9 5 8 9	5 2 13 13	5 1 12 13 16 13 13 16	8 3 15 15
	1 9 10 9 10	60669679	2 16 16	90999999
N = 6	50568568	1 9 10 12 10 10 12 2 12	6 0 6 8 10 7 8 11 1 10 12 14 11 12 14	1 9 9 11 9 9 11 2 11 12 14 11 12 14
2 0 4	60 66 6 6 6	70778778	2 14 15 15 15	3 13 14 14
3 0 3 3 3	1 7 8 8 8 7 0 7 7 7 7 7	1 8 9 10 8 9 11 2 10 11 11 11	7 0 7 7 9 7 7 9 1 9 10 12 10 11 13	10 1 10 10 10 10 10 10 10 2 10 11 13
N = 7	1 7 7 7 7	80 888 888	2 12 13 13 14	3 12 13 12 13
. 0 5 5 5	N = 15	1 8 8 9 8 8 10 2 9 10 10	8 0 8 8 8 8 8 8 8 1 8 9 11 8 10 11	11 1 11 11 11 11 11 11 11 12
3 0 4 4 4		9 1 9 9 9 9 9 9	2 11 12 11 12	3 11 12 11 12
N = 8	1 0 14 14 2 0 10 12 13 10 12 13	2 9 9 9	9099999	N = 24
	3 0 8 9 11 8 9 11	N = 19	1 9 9 10 9 9 10 2 10 11 12 10 11 12	1 0 2 23 2 23
2 0 6 6 6 6 3 0 4 5 5 5	1 12 12 4 0 6 8 10 7 8 10	1 0 18 18	3 12 12	2 0 17 19 22 17 19 22
4 0 4 4 4 4	1 10 11 10 11 5 0 5 6 8 6 6 8	2 0 13 15 17 13 15 17 3 0 10 12 15 10 12 15	10 1 10 10 10 10 10 10 10 2 10 10 11 10 10 11	3 0 13 15 18 13 15 18 1 19 21 19 21
N = 9	1 9 9 9 10	1 15 15	3 11 11	4 0 10 12 16 11 13 16
2067 67	6 0 6 6 7 6 6 7 1 7 8 8 8	4 0 8 10 12 9 10 12	N = 22	1 16 18 20 16 18 20 5 0 9 10 14 10 11 14
3 0 5 5 5 5	7077777	5 0 7 8 11 8 8 11	** ** *** ** ** *** **	1 14 15 18 15 15 18
4 0 4 4 5 4 4 5	1 7 7 8 7 7	1 11 12 14 12 12 14 2 14 14	1 0 20 21 20 21 2 0 15 17 20 15 17 20	2 18 19 18 19 6 0 7 9 12 8 10 13
N = 10	N = 15	6 0 6 7 9 7 7 10	3 0 12 14 17 12 14 17	1 12 13 16 13 15 16
1 0 9 9	1 0 15 15	1 9 10 12 10 11 12 2 12 13 13 13	1 18 19 18 19 4 0 9 11 14 10 12 14	2 16 17 17 17 7 0 7 8 10 7 9 11
2 0 7 8 7 8	2 0 11 12 14 11 12 14	7 0 7 7 8 7 7 9	1 15 16 18 15 16 18 5 0 8 9 12 9 10 12	1 10 12 14 11 13 14 2 14 15 17 14 16 17
3 0 5 6 7 6 6 7 4 0 4 5 6 4 5 6	3 0 8 10 12 9 10 12 1 13 13	1 8 9 11 9 10 11 2 11 12 11 12	5 0 8 9 12 9 10 12 1 13 14 16 14 14 16	3 17
5 0 5 5 5 5 5 5	4 0 7 8 10 7 9 10	8 0 8 8 8 8 8 8	2 17 17 6 0 7 8 11 8 9 12	8 0 8 8 9 8 8 9
N = 11	1 11 12 11 12 5 0 6 7 9 6 7 9	1 8 8 10 8 9 10 2 10 11 10 11	6 0 7 8 11 8 9 12 1 11 12 15 12 13 15	2 12 14 16 13 14 16
1 0 10 10	1 9 10 10 10 6 0 6 6 8 6 6 8	9 1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 14 16 15 16 7 0 7 7 10 7 8 10	3 15 16 15 9 0 9 9 9 9 9
1 0 10 10 2 0 8 9 8 9	1 8 9 10 9 9 10	Σ 3 10 3 10	1 10 11 13 10 12 13	1 9 9 12 9 10 12
3 0 6 7 8 6 7 8 4 0 5 5 7 5 6 7	2 10 7 0 7 7 7 7 7 7 7	N = 20	2 13 14 13 15 8 0 8 8 8 8 9	2 11 12 14 12 13 15 3 14 15 — 14 15 —
1 7 7	1 7 8 9 7 8 9	1 0 18 19 18 19	1 8 10 12 9 10 12	10 0 10 10 10 10 10 10
5 0 5 5 6 5 5 6	2 9 8 1 8 8 8 8 8	2 0 14 16 18 14 16 18 3 0 11 12 15 11 12 15	2 11 12 14 12 13 14 3 14 14	1 10 10 11 10 10 11 2 10 11 13 11 11 14
	2 8	1 16 17 16 17	90999999	3 13 14 13 14
N = 12	N = 17	4 0 9 10 13 9 11 13	1 9 9 11 9 9 11 2 10 11 13	11 1 11 11 11 11 11 11 11 13 13
1 0 11 11	** ** *** *** ** ***	5 0 7 9 11 8 9 11	3 13 13	3 12 12 12 13
2 0 8 9 8 9 3 0 6 7 9 7 7 9	1 0 16 16 2 0 12 13 15	1 11 13 15 13 13 15 2 15 15	10 1 10 10 10 10 10 10 10 2 10 10 12 10 10 12	12 2 12 12 12 12 12 12 12 12 12 12
4 0 5 6 8 5 7 8	3 0 9 11 13 9 11 13	6 0 6 7 10 7 8 11 1 10 11 13 11 11 13	3 11 12 - 12	N = 25
1 8 8 5 0 5 5 6 5 5 7	4 0 7 9 11 8 9 11	2 13 14 14 14	3 11 11 11	
1 7 7 7 6 0 6 6 6 6 6 6	1 11 13 11 13 5 0 6 7 9 7 7 9	7 0 7 7 9 7 7 9 1 12	N = 23	1 0 Z3 24 Z3 24 2 0 17 19 Z2 17 19 Z2
1 6 6 6	1 10 11 12 11 11 12	2 12 13 12 13		3 0 13 16 19 13 16 19
N + 13	6 0 6 6 8 6 6 8 1 8 9 11 9 9 11	8 0 8 8 8 8 8 8 8 1 8 9 10 8 9 11	1 0 21 22 21 22 2 0 16 18 21 16 18 21	1 20 22 20 22
	2 11	2 10 11 11 12	3 0 12 14 18 12 14 18	1 17 19 21 17 19 21
1 0 12 12 2 0 9 10 9 10	70777777	9 1 9 9 9 9 9 9 9 2 9 10 9 11	1 19 20 — 19 20 — 4 0 10 12 15 11 12 15	5 0 9 11 14 10 11 14 1 14 16 19 16 16 19
3 0 7 8 10 7 8 10	2 10 10	3 11	1 16 17 19 16 17 19	2 19 20 19 20
4 0 5 6 8 6 7 8	8 1 8 8 9 8 8 9	10 1 10 10 10 10 10 10 10 2 10 10 10 10	5 0 8 10 13 10 10 13 1 13 15 17 14 15 17	6 0 8 9 12 9 11 13 1 12 14 17 13 15 17
5 0 5 5 7 5 6 7		3 10	2 17 18 17 18	2 16 18 17 18
1 7 8 8 8	N - 18	N - 21	6 0 7 8 11 8 9 12 1 11 13 15 12 14 15	7 0 7 8 11 8 9 11 1 11 12 15 11 13 15
1 6 7 7 7	1 0 17 17	** ** *** ** ** ***	2 15 16 16 16	2 15 16 18 15 17 18
H = 14	2 0 12 14 16 12 14 16 3 0 10 11 14 10 11 14	1 0 19 20 19 20 2 0 14 15 19 14 16 19	7 0 7 7 10 7 9 10 1 10 11 14 10 12 14	3 18 18 8 0 8 8 10 8 8 10
	1 15 15	3 0 11 13 16 11 13 16	2 13 15 14 15	1 10 11 13 10 11 14
1 0 13 13 2 0 10 11 10 11	4 0 8 9 12 8 10 12 1 12 13	1 17 18 17 18 4 0 9 11 14 10 11 14	3 16	3 16 17 - 16
3 0 7 9 11 8 9 11	5 0 6 8 10 8 8 10	1 14 16 14 16	1 9 10 12 9 11 12	9 0 9 9 9 9 9 9 1 9 10 13
1 11 11	1 10 11 13 11 11 13	5 0 7 9 12 9 9 12	2 12 13 15 12 13 15	1 3 fa tv 3 fa th

		CRITICAL RESID	ALC: FUR F	134574 2 04	2 1 1231		· •		
N = 25 CONT.		N = 27 CONT. ONE TAIL THO TAILS	^	N = 28 NE TAIL TY			N = 30 CONT. ONE TAIL TWO TAILS	(N = 31 CONT. ONE TAIL TWO TAILS
ONE TAIL TWO TAILS at x1 10% 5% 1% 10% 5% 1%		1 104 54 14 104 54 14	al xl l	0 5 1 1 10)* 5* 1*	al xl	10% 5% 1% 10% 5% 1%	al xl	10% 5% 1% 10% 5% 1%
9 2 12 13 15 12 13 15	7 (* *** ** ** *** *** ** ** 0	12 3	13 14 16		6 1	15 17 20 16 18 20	9 3	18 20 22 19 20 22
3 14 16 15 16		1 12 13 16 12 14 16	4	15 16 1 13 13 13	16	2			21 22 10 10 10 10 11
10 0 10 10 10 10 10 10 10 10 10 10 10 12		2 16 17 20 16 18 20 3 19 20 20 20	3	13 13 15	13 13 15	7 0	8 10 13 9 11 14	1	10 11 14 11 12 14
2 11 12 14 11 12 14 3 13 14 14 14	8	0 8 8 11 8 9 11 1 10 12 15 11 12 15		14 15 1 14 14 14 1		1 2	18 19 22 18 20 22	3	13 15 17 14 16 18 17 18 20 18 19 21
11 1 11 11 11 11 11 11		2 14 15 18 15 16 18	4	14 14	14	8 0		4 11 n	20 21 21 21 11 11 11 11 11 11
2 11 11 13 11 11 13 3 12 13 13 13	9	3 17 19 18 19 0 9 9 10 9 9 10		N = 29		1	12 13 16 12 14 17	1	11 11 13 11 11 13
4 14		1 9 11 13 10 11 14 2 13 14 16 14 14 17		27 28		2		3	12 14 16 13 15 16 15 17 19 16 17 19
12 2 12 12 12 12 12 12 12 3 12 12 12 12		3 16 17 16 17	20	20 23 26	20 23 26	9 0	9 9 11 9 9 12		18 19 19 20 12 12 12 12 12 12
4 13		4 18 0 10 10 10 10 10 10 10	1		23 25	1	14 16 18 16 16 19	2	12 12 15 12 13 15
N = 26		1 10 10 12 10 10 13 2 11 13 15 13 13 15			14 15 19 20 22 25	3			14 15 18 15 16 18 17 18 17 19
1 0 24 25 24 25		3 14 15 15 16	2	25	25 12 13 17	10 0	10 10 10 10 10 11	5 13 1	19 13 13 13 13 13 13
2 0 18 20 23 18 20 23 3 0 14 16 20 14 16 20		4 17 0 11 11 11 11 11 11 11	1	17 19 22	18 19 22	2	2 13 14 17 14 16 17	2	13 13 14 13 13 14
1 21 23 21 23		1 11 11 11 11 11 12 2 11 12 14 12 12 14	2 6 0	22 23 9 11 15	22 23 10 13 15		3 16 17 20 17 18 20 4 19 20 20 20	3	13 14 16 14 15 17 15 17 16 17
4 0 11 13 17 13 14 17 1 18 19 22 18 19 22		3 13 14 16 14 15 16	1	14 16 20	15 17 20) 11 11 11 11 11 11 1 11 11 13 11 11 13	14 2	18 18 14 14 14 14 14 14
2 22 22 5 0 9 11 15 11 12 15	12	4 16 16 1 12 12 12 12 12 12	3	23	20 21 23 23		2 12 13 16 13 14 16	3	14 14 15 14 14 16
1 15 17 20 16 17 20		2 12 12 13 12 12 13 3 12 13 15 13 14 15	7 0 1		9 11 13 13 15 18		3 15 16 18 16 17 18 4 17 19 18 19	4 5	14 15 17 15 16 17 17
2 20 21 20 21 6 0 8 10 13 9 11 14		4 14 15 15	2	17 19 21	17 19 21	12	1 12 12 12 12 12 12		15 15 15 15 15 15 15 15 16 15 15
1 13 15 17 14 16 17 2 17 19 18 19		2 13 13 13 13 13 13 3 13 13 14 13 13 14	8 0	21 22 8 8 12	21 22 8 10 12		2 12 12 14 12 13 15 3 13 15 17 14 16 17		16 16
7 0 7 8 11 8 10 12		4 13 14 14	1	11 13 16 15 17 19	12 13 16		4 16 17 17 18 5 18		N = 32
1 11 13 16 12 14 16 2 15 17 19 15 17 19		N = 28	3	19 20	19 20	13	1 13 13 13 13 13 13		
3 19 19 8 0 8 8 10 8 9 10		0 26 27 26 27	90	9 9 10 10 12 14	9 9 12 11 12 15		2 13 13 13 13 13 14 3 13 14 16 13 14 16	1 0	22 25 29 22 25 29
1 10 11 14 10 12 14	2	0 19 22 25 19 22 25	2	14 15 18	15 16 18		4 15 16 16 17 5 17) 17 20 25 17 20 25 . 26 28 26 28
2 14 15 17 14 15 17 3 17 18 17 18	3	0 15 18 22 15 18 22 1 23 24 23 24	3 4	20	20	14	2 14 14 14 14 14 14	4 0) 14 17 21 17 17 21
9099999		0 12 14 19 14 15 19 1 19 21 24 19 21 24	10 0	10 10 10 10 11 13			3		22 24 27 22 24 27 2 28 28
2 12 13 16 13 14 16	_	2 24 24	2	12 14 16	14 15 16		5 16 3 15 15 15 15 15 15 15) 12 14 18 13 15 18 1 18 21 24 20 21 24
3 15 16 16 16 10 0 10 10 10 10 10 10		0 10 12 16 12 13 16 1 16 18 21 17 18 21	4	15 17 19 18 19	19		4 15 15 15 15	2	2 24 26 24 26
1 10 10 12 10 10 12		2 21 23 21 23 0 9 10 14 10 12 15		11 11 11 11 11 12			5 15	1) 10 12 16 11 14 17 1 16 18 22 17 19 22
2 11 12 14 12 13 15 3 14 15 15 15		1 14 16 19 15 17 19	2	11 13 15	12 14 15		N = 31		2 21 23 26 22 23 26 3 26 26
4 16 11 1 11 11 11 11 11		2 18 20 22 19 20 22 3 22 22	4	14 15 18 17 18	18 18	1	0 28 30 28 30	7 (9 11 14 10 12 15
2 11 11 13 11 12 14	7	0 7 9 12 8 10 13	12 1	12 12 12 12 12 14	12 12 12		0 21 24 28 21 24 28 0 17 19 24 17 19 24	- 7	1 14 16 20 15 17 20 2 19 21 24 19 21 24
3 13 14 14 14 4 15		2 16 18 20 17 19 20	3	13 14 16	14 15 16		1 25 27 25 27	:	3 23 24 23 24
12 2 12 12 12 12 12 13 14 3 14 12 13		3 20 21 21 21 0 8 8 11 8 9 11		15 17 13 13 13		4	0 13 16 21 16 16 21 1 21 23 26 21 23 26	,	1 13 14 18 14 15 19
4 14		1 11 12 15 11 13 16	3	13 13 15	13 14 15	5	2 27 27 0 11 14 18 13 14 18		2 17 18 21 18 19 21 3 21 22 21 23
13 2 13 13 13 13 13 13 13 13 13 13 13 13 13	•	2 15 16 19 15 16 19 3 18 19 18 20	14 2	14 14 14	14 14 14	,	1 18 20 23 19 20 23	i .	4 24
4 13		0 9 9 10 9 9 10 1 10 11 15		14 14 14 14 14	14 14 14 14 14 15	6	2 23 25 23 25 0 10 12 16 11 13 16	j '	1 11 13 16 13 13 17
N = 27		2 13 15 17 15 15 18	5	15			1 15 18 21 16 19 21 2 20 22 25 21 22 25		2 15 17 20 17 17 20 3 19 20 23 20 20 23
1 0 25 26 25 26 -		3 16 18 17 18 4 19 19		N = 3		_	3 25 25		4 22 23 22
2 0 19 21 24 19 21 2	10	0 10 10 10 10 10 10 10 10 10 10 10 10 10		27 29	27 29	7	0 8 10 14 9 12 14 1 14 16 19 14 16 19		0 10 10 11 10 10 12 1 10 12 15 12 12 15
3 0 14 17 21 14 17 2 1 22 23 22 23 -	•	2 12 13 16 13 14 16	2 0	21 23 27	21 23 27		2 18 20 23 18 20 23	3	2 14 15 18 15 17 18 3 17 19 21 18 19 21
4 0 12 14 18 13 14 1 1 18 20 23 18 20 2	3 3	3 15 16 18 16 16 4 18 18		16 19 23 24 26	10 19 23 24 26	8	0 8 9 12 8 10 13	3	4 20 22 21 22
2 23 23	- ` 11	0 11 11 11 11 11 11 11 11 11 11 11 11 11	4 0	13 15 20	15 16 20		1 12 14 17 13 14 16 2 16 18 21 17 18 2		0 11 11 11 11 11 11 11 1 11 11 13 11 11 14
5 0 10 12 15 11 12 1 1 16 17 20 17 17 2	כ	2 11 12 14 12 13 19	5 2	26	26		3 20 21 20 22 -	-	2 13 14 17 14 15 17 3 16 17 20 17 18 20
2 20 22 20 22 - 6 0 8 10 14 9 12 1		3 14 15 17 15 16 17 4 16 17 17	. 1	11 13 17 17 19 23	19 19 23	9	0 9 9 11 9 9 1	3	4 19 20 19 21
1 13 15 18 14 16 1	3 12	1 12 12 12 12 12 13	? 2	23 24	23 24 10 13 16		1 11 12 16 13 13 1 2 15 16 19 16 17 1	b 9 12	5 21 0 12 12 12 12 12 12
2 18 19 19 19 -	-	2 12 12 13 12 12 1	, , ,	, , , , , , ,	10 10 10				

CRITICAL REGIONS FOR FISHER'S EARCH TEST PAGE 3							
N = 32 CONT. ONE TAIL TWO TAILS	N = 33 CONT. ONE TAIL TWO TAILS	N = 34 CONT. ONE TAIL TWO TAILS	N = 35 CONT. ONE TAIL TWO TAILS	N = 36 CONT. ONE TAIL TWO TAILS			
al xl 10% 5% 1% 10% 5% 1%	al xl 10% 5% 1% 10% 5% 1%	al xl 10% 5% 1% 10% 5% 1%	al xl 10% 5% 1% 10% 5% 1%	al xl 10% 5% 1% 10% 5% 1%			
12 1 12 12 12 12 12 13	13 5 19 20 20	15 2 15 15 15 15 15 15 15	14 6 21	14 3 14 16 18 15 16 19			
2 12 13 15 12 14 16 3 14 16 18 15 17 18	14 1 14 14 14 14 14 14 14 15 14 14 15 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	3 15 15 16 15 15 16 4 15 16 18 15 16 19	15 2 15 15 15 15 15 15 15 15 3 15 15 16 15 15 17	4 17 18 21 17 19 21 5 19 21 20 21			
4 17 18 18 19	3 14 14 16 14 15 17	5 17 18 18 19	4 15 17 19 16 17 19	6 22 22			
5 20 13 1 13 13 13 13 13	4 15 17 19 16 17 19 5 18 19 18 19	6 19 16 3 16 16 16 16 16 16	5 18 19 18 19 6 20 20	15 2 15 15 15 15 15 15 15 15 3 15 15 17 15 15 17			
2 13 13 14 13 13 15	15 2 15 15 15 15 15 15	4 16 16 17 16 16 18	16 3 16 16 16 16 16 16	4 16 17 19 16 17 20			
3 13 15 17 14 15 18 4 16 17 19 17 18	3 15 15 15 15 15 16 4 15 16 18 15 16 18	5 16 17 17 18 6 18	4 16 16 18 16 16 18 5 17 18 17 18	5 18 20 19 20 6 21 — 21			
5 18 19	5 17 18 17 18	17 4 17 17 17 17 17 17	6 19 19	16 2 16 16 16 16 16 16			
14 2 14 14 14 14 14 14 14 14 3 14 14 16 14 14 17	16 3 16 16 16 16 16 16 16 4 16 16 17 16 16 17	5 17 17 17 17 6 17	17 3 17 17 17 17 17 17 17 17 4 17 17 17 17 17 17 17 17	4 16 16 18 16 16 19			
4 15 16 18 15 17	5 16 17 16 17	N = 35	5 17 17 17 17 6 18 18	5 17 18 18 19 6 19 20			
5 17 18 18 15 3 15 15 15 15 15 15	N = 34			17 3 17 17 17 17 17 17			
4 15 15 17 15 15	** ** *** ** ** *** **	1 0 32 34 32 34 2 0 24 27 32 24 27 32	N = 36	4 17 17 17 17 17 17 17 5 17 17 19 17 18			
5 16 17 17 16 3 16 16 16 16 16 16	1 0 31 33 31 33 2 0 23 26 31 23 26 31	3 0 19 22 27 19 22 27	1 0 33 35 33 35	6 18 19 19			
. 4 16 16 16 16 16	3 0 18 21 26 18 21 26 1 28 30 28 30	1 28 30 28 30 4 0 15 18 23 18 18 23	2 0 25 28 32 25 28 32 3 0 19 23 28 19 23 28	18 4 18 18 18 18 18 18 18 5 18 18 18 18 18 18 18 18 18 18 18			
5 16 16 16	4 0 15 18 23 18 18 23	1 24 26 30 24 26 30	1 29 31 29 31	6 18 18 18			
N = 33	1 23 25 29 23 25 29 2 29 29	2 30 30 5 0 13 15 20 14 16 20	4 0 16 19 24 19 19 24 1 24 27 31 24 27 31	N = 37			
1 0 30 32 30 32	5 0 12 15 20 14 16 20	1 20 23 27 22 23 27	2 31 31	1 0 34 36 34 36			
2 0 23 26 30 23 26 30 3 0 18 21 26 18 21 26	1 20 22 26 21 22 26 2 26 27 26 27	2 26 28 26 28 6 0 11 13 18 12 15 18	5 0 13 16 21 15 17 21 1 21 23 27 22 23 27	2 0 25 29 33 25 29 33			
1 27 29 27 29	6 0 11 13 17 12 15 18	1 18 20 24 18 21 24 2 23 25 28 24 25 28	2 27 29 27 29 6 0 11 14 18 12 15 19	3 0 20 23 29 20 23 29 1 30 32 30 32			
4 0 14 17 22 17 17 22 1 22 25 28 22 25 28	1 17 19 23 18 20 23 2 22 24 27 23 24 27	3 28 29 28 29	1 18 20 25 19 22 25	4 0 16 19 25 19 19 25			
2 28 28 5 0 12 14 19 14 15 19	3 27 27 7 0 9 11 15 10 13 16	7 0 9 12 16 10 13 16 1 15 18 21 16 18 21	2 24 26 29 25 26 29 3 29 30 29 30	1 25 28 31 25 28 31 2 32 33 32 33			
1 19 21 25 20 21 25	1 15 17 21 16 18 21	2 21 23 26 21 23 26	7 0 10 12 16 11 13 17	5 0 13 16 22 15 17 22			
2 25 27 25 27 6 0 10 12 17 11 14 17	2 20 22 25 20 22 25 3 24 26 25 26	3 25 27 26 27 8 0 8 10 14 9 11 16	1 16 18 22 17 19 22 2 21 23 27 22 24 27	1 21 24 28 23 24 28 2 28 30 28 30			
1 17 19 22 17 20 22	8 0 8 10 14 9 11 15	1 14 16 19 16 16 20	3 26 27 26 27	6 0 11 14 19 13 16 19 1 19 21 25 19 22 25			
2 22 24 27 23 24 27 3 26 26	1 13 15 19 15 16 20 2 18 20 23 20 20 23	2 18 20 24 20 21 24 3 23 24 27 23 25 27	8 0 9 11 15 10 12 16 1 14 16 20 16 17 21	2 24 27 30 25 27 30			
7 0 9 11 15 10 12 15	3 22 24 26 22 24 26	4 26 27 9 0 9 9 13 9 10 14	2 19 21 24 21 21 24 3 23 25 28 24 25 28	3 30 31 30 31 7 0 10 12 17 11 14 17			
1 15 17 20 15 17 20 2 19 21 24 20 22 24	4 26 26 9 0 9 9 12 9 10 14	1 12 14 18 14 15 18	4 27 27	1 16 19 23 17 19 23			
3 24 25 24 25 8 0 8 10 13 9 11 15	1 12 14 17 14 15 18 2 16 18 21 18 19 21	2 17 18 22 18 19 22 3 21 22 25 22 23 25	9 0 9 9 13 9 10 14 1 13 15 18 14 16 19	2 22 24 27 22 24 27 3 26 28 27 28			
1 13 15 18 14 15 19	3 20 22 24 21 22 24	4 24 26 25 26	2 17 19 22 19 20 23	8 0 9 11 15 10 12 17			
2 17 19 22 19 19 22 3 21 23 25 22 23 25	4 23 25 24 25 10 0 10 10 11 10 10 12	10 0 10 10 12 10 10 13 1 11 13 16 13 14 16	3 21 23 26 23 23 26 4 25 26 25 27	1 15 17 21 17 17 21 2 19 22 25 21 22 25			
4 25 25	1 11 13 16 12 14 16	2 15 17 20 16 18 20	10 0 10 10 12 10 10 13	3 24 26 29 24 26 29			
9 0 9 9 12 9 10 13 1 12 13 17 13 14 17	2 15 16 19 16 18 19 3 18 20 23 19 21 23	3 19 20 23 20 22 23 4 22 24 23 24	1 12 13 17 13 15 17 2 16 17 21 17 19 21	4 28 29 28 29 9 0 9 10 14 9 11 15			
2 16 17 20 17 18 21	4 21 23 23 23	5 25	3 19 21 24 20 22 24 4 23 24 24 25	1 13 15 19 15 17 19 2 18 20 23 19 21 23			
3 19 21 24 21 21 24 4 23 24 23 24	11 0 11 11 11 11 11 11 1 11 11 14 11 13 15	1 11 12 15 12 13 15	5 26 26	3 22 24 27 23 24 27			
10 0 10 10 11 10 10 12	2 13 15 18 14 16 18 3 17 18 21 18 19 21	2 14 15 18 15 16 19 3 17 19 22 18 20 22	11 0 11 11 11 11 11 12 1 11 12 15 12 14 16	4 25 27 26 27 10 0 10 10 12 10 10 13			
2 14 16 19 15 17 19	4 20 21 21 22	4 20 22 24 21 23 24	2 14 16 19 15 17 20	1 12 14 17 13 15 18			
3 18 19 22 19 20 22 4 21 22 22 22	5 23 12 0 12 12 12 12 12 12	5 23 24 12 0 12 12 12 12 12 12 12	3 18 19 22 19 20 22 4 21 23 25 22 23 25	2 16 18 21 17 19 21 3 20 22 25 21 23 25			
11 0 11 11 11 11 11 11	1 12 12 13 12 12 14	1 12 12 14 12 12 14	5 24 25 25 12 0 12 12 12 12 12 12	4 23 25 25 25 5 27 27			
1 11 11 14 11 12 14 2 13 15 17 14 15 18	2 12 14 17 13 15 18 3 15 17 19 16 18 20	2 13 14 17 14 15 18 3 16 17 20 17 18 21	1 12 12 14 12 12 15	11 0 11 11 11 11 11 12			
3 16 18 20 17 19 20	4 18 20 22 19 20 22 5 21 22 22	4 19 20 23 19 21 23 5 22 23 22	2 13 15 18 14 15 19 3 16 18 21 17 19 22	1 11 13 16 12 14 17 2 15 16 20 16 17 20			
4 19 21 20 22 5 22	13 0 13 13 13 13 13 13	13 0 13 13 13 13 13 13	4 19 21 24 20 22 24	3 18 20 23 19 21 23			
12 0 12 12 12 12 12 12 12 1 12 12 13 12 12 13	1 13 13 13 13 13 13 13 2 13 13 15 13 14 16	1 13 13 13 13 13 13 13 2 13 13 16 13 14 17	5 22 24 23 13 0 13 13 13 13 13 13	4 22 23 26 22 24 26 5 25 26 26			
2 12 13 16 13 14 17	3 14 16 18 15 16 19	3 15 16 19 15 17 19	1 13 13 13 13 13 14	12 0 12 12 12 12 12 12			
3 15 16 19 16 17 19 4 18 19 21 18 20	4 17 18 21 18 19 21 5 20 21 20 21	4 18 19 21 18 19 22 5 20 22 21 22	2 13 14 16 13 14 17 3 15 17 19 16 17 20	1 12 12 15 12 13 16 2 14 15 18 14 16 19			
5 20 21	14 1 14 14 14 14 14 14 14	14 1 14 14 14 14 14 14 14	4 18 19 22 19 20 23	3 17 18 21 17 19 22 4 20 22 24 21 22 24			
13 1 13 13 13 13 13 13 13 2 13 13 15 13 15 16	2 14 14 14 14 14 15 3 14 15 17 14 15 18	3 14 15 18 14 15 18	6 23	5 23 24 24 25			
3 14 15 18 14 16 18	4 16 17 19 16 18 20		14 1 14 14 14 14 14 14	13 0 13 13 13 13 13 13 1 13 13 14 13 13 15			
4 16 18 20 17 18 20	5 18 20 19 20	2 12 50 12 51	2 44 14 10 14 14 10	1 10 10 1, 10 10 13			

	CRITICAL REGIO	no run	(LIDUEY 2 SWELL (CD)	rzą.	•		
N = 37 CONT.	N = 38 CONT.		N = 39 CONT.		N = 40 CONT. ONE TAIL TWO TAILS		N = 40 CONT. ONE TAIL TWO TAILS
ONE TAIL TWO TAILS ONE al x1 10% 5% 1% 10% 5% 1% al x1 10%	TAIL TWO TAILS 54 14 104 54 14	al xl	ONE TAIL TWO TAILS 1 104 54 14 109 54 14	al xl	10% 5% 1% 10% 5% 1%		10% 5% 1% 10% 5% 1%
	** ** ** ***	** **	3 23 25 28 24 25 28	** ** 5 1	23 26 30 25 26 30		3 21 22 22 23
	2 12 12 12 12 12 2 12 15 12 13 16		1 27 29 28 29	2	30 32 35 30 32 35	7	23
4 19 20 23 19 20 23 2 14	16 19 15 16 20	10 (6 0		18 3	
	7 19 22 18 20 23 1 22 25 21 23 25		1 13 15 18 14 16 19 2 17 19 22 18 20 23	1 2			18 18 21 18 19 21
14 1 14 14 14 14 14 14 15 24	25 24 26		3 21 23 26 22 24 26	3		•	5 19 21 21 22 7 22
2 14 14 16 14 14 16 13 0 13 3 15 16 19 15 16 19 1 13	3 13 13 13 13 13 3 13 14 13 13 15		4 25 26 29 26 27 29 5 28 29	7 0		19 4	
4 17 19 21 18 19 22 2 13	3 14 17 14 15 18	11 (0 11 11 12 11 11 13	2	24 26 30 24 26 30		5 19 19 20 19 19 21 5 19 20 19 21
	5 18 21 17 18 21 9 21 23 20 21 24		1 11 13 17 13 15 18 2 16 17 21 16 18 22	3 4			21
15 1 15 15 15 15 15 15 5 2	2 23 22 24		3 19 21 24 20 22 25	8 0	10 12 16 11 13 18	20 5	
2 15 15 15 15 15 15 6 25 3 15 15 18 15 15 18 14 1 14	5 25 4 14 14 14 14 14		4 23 24 27 24 25 27 5 26 28 27 28	1 2			7 20
4 16 18 20 17 18 20 2 14	4 14 16 14 14 17	12 (0 12 12 12 12 12 12	3	26 28 31 27 28 31	• • • • •	N = 41
	5 16 19 16 17 20 8 19 22 19 20 22		1 12 12 16 12 13 17 2 14 16 19 15 17 20	9 0			*** ** ** *** **
16 2 16 16 16 16 16 16 5 21	1 22 24 21 22	:	3 18 20 23 18 20 23	1) 37 39 37 39) 28 32 37 28 32 37
. 3 16 16 16 16 16 17 6 23 4 16 17 19 16 17 19 15 1 19	3 24 5 15 15 15 15 15		4 21 23 26 22 23 26 5 24 26 25 27	2 3) 28 32 37 28 32 37 1 39 39
5 18 19 21 18 19 21 2 19	5 15 15 15 15 16	(6 27	4	28 29 28 29	3 (0 22 26 32 22 26 32
	5 15 18 15 16 18 7 18 21 18 19 21		0 13 13 13 13 13 13 1 13 13 14 13 13 15	5 10 0			1 33 36 33 36 0 18 21 27 21 21 27
4 17 17 18 17 17 18 5 19	9 21 23 20 21 23		2 13 15 18 14 15 18	1	13 15 19 14 16 19		28 31 35 28 31 35
5 17 18 20 17 18 20 6 23 6 19 20 20 16 2 10	2 23 22 23 6 16 16 16 16 16		3 17 18 21 17 19 22 4 20 21 24 20 22 25	2		5	2 35 37 35 37 0 15 18 24 17 20 24
18 4 18 18 18 18 18 18 3 10	6 16 17 16 16 17	!	5 23 24 23 25 	4	25 27 30 27 28 30		1 24 27 31 25 27 31
	6 17 20 16 18 20 B 19 22 19 20 22	14	6 25 26 1 14 14 14 14 14 14	11 0		6	2 31 33 36 31 33 36 0 13 16 21 14 18 21
6 2	1 22 21 22		2 14 14 17 14 14 17	1	12 14 17 13 15 19		1 21 23 28 21 24 28
	7 17 17 17 17 17 7 17 18 17 17 19		3 15 17 20 16 17 20 4 18 20 23 19 20 23	2 3			2 27 30 33 28 30 33 3 33 35 33 35
1 0 35 37 35 37 5 1	7 18 21 18 19 21		5 21 23 25 22 23	4	23 25 28 24 26 28	7	
	9 21 21 21 8 18 18 18 18 18	15	6 24 25 24 1 15 15 15 15 15 15	12 0			1 18 21 25 19 21 25 2 24 26 30 25 27 30
1 31 33 31 33 5 18	8 18 20 18 18 20		2 15 15 16 15 15 16	1	12 13 16 12 14 17		3 29 31 34 30 31 34 4 34 34
	8 20 20 20		3 15 16 19 15 16 19 4 17 19 21 18 19 21	. 2	15 16 20 16 17 21 18 20 23 19 21 24	8	
2 33 34 33 34 19 4 19	9 19 19 19 19 19		5 20 21 24 21 22 24	4	22 23 26 22 24 27		1 16 19 23 18 19 24 2 22 24 28 24 24 28
	9 19 19 19 19 19 9 19 19		6 22 24 23 24 2 16 16 16 16 16 16	6	25 26 25 27 28		3 27 29 32 27 29 32
2 29 31 29 31 7 1	9		3 16 16 18 16 16 18		13 13 13 13 13 13 13 13 13 15 13 13 16		4 31 33 31 33 0 9 11 15 10 12 16
6 0 12 14 19 13 16 20 1 19 22 26 20 23 26	N = 39		4 16 18 20 17 18 20 5 19 20 22 20 21 23	2	14 15 18 14 16 19		1 15 17 21 16 19 21
2 25 27 31 26 27 31 ** ** **	* ** ** *** **		6 21 22 22 23		17 19 22 18 19 22 20 22 25 21 22 25		2 20 22 26 21 23 26 3 24 26 30 26 27 30
	6 38 36 38 7 30 35 27 30 35		2 17 17 17 17 17 17 3 17 17 17 17 17 17	5	; 20 22 25 21 22 25 ; 23 25 27 24 25		4 28 30 29 30
1 17 19 23 18 20 23 3 0 2	1 24 30 21 24 30		4 17 17 19 17 17 19 5 18 19 21 19 20 22		i 26 27 i 14 14 14 14 14 14 14	_	5 32 32 0 10 10 14 10 11 15
	2 34 32 34 7 20 26 20 20 26		6 20 21 21 22	1	. 14 14 14 14 14 15		1 13 15 19 15 17 20
8 0 9 11 16 10 12 17 1 2	6 29 33 26 29 33 4 35 34 35		7 22 3 18 18 18 18 18 18 18		? 14 14 17 14 15 18 3 16 17 20 17 18 21		2 18 20 24 19 21 24 3 22 24 27 23 25 27
2 20 22 26 22 22 26 5 0 1	4 17 23 16 19 23		4 18 18 18 18 18 18	. 4	19 20 23 20 21 23		4 26 28 31 27 28 31
3 25 26 30 25 27 30 1 2	3 25 30 24 25 30 9 31 29 31		5 18 18 20 18 19 21 6 19 20 20 21		5 22 23 26 23 24 26 5 24 26 25 26		5 30 31 30 31 0 11 11 13 11 11 14
9.0 91014 91115 6 0 1	2 15 20 13 17 20	•	7 21	15 1	15 15 15 15 15 15		1 12 14 18 14 15 19
	0 22 27 20 23 27 6 28 32 27 28 32		4 19 19 19 19 19 19 5 19 19 19 19 19 20		? 15 15 16 15 15 16 3 15 16 19 16 17 19		2 16 18 22 17 19 23 3 20 22 26 21 23 26
3 22 24 27 24 25 27 3 3	11 33 31 33		6 19 19 19 20	4	18 19 22 19 20 22		4 24 26 29 25 27 29
	1 13 18 12 14 18 7 20 24 18 20 24		7 20		5 20 22 24 22 23 25 5 23 24 24 25		5 27 29 28 30 0 12 12 12 12 12 12
1 12 14 18 14 16 18 2 2	23 25 29 24 26 29		N = 40	16 1	16 16 16 16 16 16		1 12 13 16 12 14 18
	28 30 28 30 32 32		0 36 38 36 38	-	2 16 16 16 16 16 16 3 16 16 18 16 16 18		2 15 17 20 16 18 21 3 19 21 24 19 21 24
4 24 26 28 25 26 28 8 0	9 12 16 10 13 18	2	0 27 31 36 27 31 36	. 4	17 18 21 18 19 21		4 22 24 27 23 24 27
	15 18 22 18 18 22 21 23 26 22 23 26	3	1 38 38 0 21 25 31 21 25 31		5 19 21 23 21 22 23 5 22 23 23 24		5 26 27 26 28 6 29
1 11 13 16 13 14 17 3 2	25 27 30 26 27 30		1 32 35 32 35	. 7	7 24	13	0 13 13 13 13 13 13
	29 31 30 31 9 10 14 9 11 16	4	0 17 21 27 21 21 27 1 27 30 34 27 30 34		2	1	1 13 13 15 13 13 16 2 14 16 19 15 16 19
4 22 24 27 23 25 27 1 1	14 16 20 16 18 20	_	2 34 36 34 36	. 4	4 17 17 20 17 18 20)	3 17 19 22 18 20 23
5 25 27 26 27 2 1	19 21 24 20 22 24	5	0 14 18 23 16 19 23	, ;	5 18 19 22 19 21 22		4 21 22 25 22 23 26

		CATTION ALGIC	<i>x</i> C 10	K 113IEK 3 EWC1		78. 5		
N = 41 CONT. ONE TAIL TWO TAILS		N = 42 CONT. ONE TAIL TWO TAILS		N = 42 CON ONE TAIL TWO T/	AILS	N = 43 CONT. ONE TAIL TWO TAILS		N = 44 CONT. ONE TAIL TWO TAILS
al xl 10% 5% 1% 10% 5% 1%	al xl	10% 5% 1% 10% 5% 1%		1 10% 5% 1% 10% 5	14 al	x1 104 54 14 104 54 14	al xi	10% 5% 1% 10% 5% 1%
13 5 24 25 28 24 26	9 1	15 17 22 17 19 22		5 21 21 21 21 2		7 29		16 18 23 18 20 23 2 21 23 28 23 25 28
6 27 28 27 14 0 14 14 14 14 14 14		20 22 26 22 24 26 25 27 30 26 27 30		6 21 21 21 21 21 27 7 21 21 21		2 15 15 18 15 15 18		26 28 32 27 29 32
1 14 14 14 14 14 15	4	29 31 30 31	• • • • •	N = 43		3 16 18 21 18 19 21 4 19 21 24 21 22 24		30 32 31 32 3 35 35
2 14 15 18 14 15 18 3 16 18 21 17 19 21	10 0	10 10 14 10 11 15		* *** ** ** ***		5 22 24 26 23 25 27	10 0) 10 11 15 10 11 16
4 19 21 24 21 22 24 5 22 24 27 23 24 27		14 16 20 15 17 20 18 20 24 19 22 25		0 39 41 39 4 0 30 33 39 30 3		6 25 26 26 27 7 28 28	1 2	14 16 21 16 18 22 2 19 21 26 20 23 26
6 25 27 26 27	3	23 25 28 24 26 28		1 41 41	16		3	3 24 26 30 25 27 30
15 1 15 15 15 15 15 15 2 15 15 17 15 15 17		27 29 32 28 29 32 30 32 31 32		1 35 37 40 35 3		2 16 16 17 16 16 17 3 16 17 20 17 18 21	5	32 34 33 34
3 15 17 20 16 18 20		11 11 13 11 11 14 12 14 18 14 16 20		0 19 22 29 22 2 1 29 32 37 29 3		4 18 20 22 19 21 23 5 21 22 25 22 23 26	11 () 11 11 14 11 11 14 1 13 15 19 14 16 20
5 21 22 25 22 23 25	2	17 19 23 18 20 23		2 37 39 37 3	9	6 23 25 25 26	2	2 18 20 24 19 20 25
6 24 25 25 26 7 26		21 23 26 22 23 27 25 26 30 25 27 30	5	0 16 19 25 18 2 1 25 28 33 26 2		7 26 27 27 2 17 17 17 17 17 17		3 22 24 28 23 25 28 4 26 28 31 26 29 31
16 1 16 16 16 16 16 16	5	28 30 29 30 12 12 12 12 12 13		2 32 35 38 32 3 3 38 38		3 17 17 18 17 17 19 4 17 18 21 18 19 22		5 30 31 31 32
2 16 16 16 16 16 16 3 16 16 19 16 17 19	1	12 13 17 13 14 18	6	0 13 16 22 15 1	B 22	5 20 21 24 21 22 25	12 (12 12 13 12 12 13
4 17 19 21 18 20 22 5 20 21 24 21 22 24		15 17 21 16 18 22 19 21 25 20 22 25		1 22 25 30 22 2 2 28 31 35 29 3		6 22 24 26 23 25 7 25 26 26		1 12 14 18 13 15 19 2 16 18 22 17 19 23
6 22 24 24 25	4	23 25 28 23 25 28 26 28 27 29	7	3 34 36 34 3 0 12 14 20 13 1		2 18 18 18 18 18 18 3 18 18 18 18 18 18		3 20 22 26 21 23 26 4 24 26 29 25 26 30
7 25 17 2 17 17 17 17 17 17	6	29 30	,	1 19 22 27 21 2	2 27	4 18 18 20 18 18 21		5 27 29 32 28 30 32
3 17 17 18 17 17 18 4 17 17 20 17 19 21		13 13 13 13 13 13 13 13 16 13 13 17		2 25 28 32 26 2 3 31 33 36 31 3		5 19 20 23 20 21 23 6 21 22 25 22 23	13 (5 31 32 32 0 13 13 13 13 13 13
5 19 20 23 20 21 23	2	14 16 20 15 17 20	0	4 36 36 -		7 23 25 24 3 19 19 19 19 19 19		1 13 13 17 13 14 17 2 15 17 21 16 17 21
6 21 22 22 23 7 23	4	18 20 23 19 20 23 21 23 26 22 23 26	8	1 17 20 24 19 2	1 25	4 19 19 19 19 19 20		3 19 21 24 20 21 24
18 3 18 18 18 18 18 18 18 4 18 18 19 18 18 20		24 26 29 25 26 29 27 29 28		2 23 25 29 25 2 3 28 30 34 29 3		5 19 19 21 19 20 22 6 20 21 24 21 22 24		4 22 24 27 23 25 28 5 26 27 30 26 28 31
5 18 19 21 19 20 22	14 0	14 14 14 14 14 14	_	4 32 34 33 3	4	7 22 24 23 24		5 29 30 29 31
6 20 21 21 22 7 22 23 23	1 2	14 14 15 14 14 15 14 15 18 14 15 19	9	1 15 18 22 17 2	0 22 20	8 24 4 20 20 20 20 20 20 20		1 14 14 15 14 14 16
19 4 19 19 19 19 19 19 19 5 19 19 20 19 19 21		17 18 22 18 19 22 20 22 25 22 22 25	•	2 21 23 27 22 2 3 25 27 31 27 2		5 20 20 20 20 20 21 6 20 20 23 20 21 23		2 14 16 19 15 16 20 3 18 19 23 19 21 23
6 19 20 22 20 21	5	23 24 27 24 25 28		4 30 32 31 3	2	7 21 22 22 23		4 21 23 26 23 24 26
7 21 22 22 20 4 20 20 20 20 20 20	6 15 1	26 27 26 28 15 15 15 15 15 15	10		1 16 21	8 23 5 21 21 21 21 21 21		5 24 26 29 26 26 29 6 27 29 28 29
5 20 20 20 20 20 20 6 20 20 21 20 20		15 15 17 15 15 17 16 17 20 17 18 21		1 14 16 20 16 1 2 19 21 25 20 2	8 21 2 2 5	6 21 21 22 21 21 22 7 21 21 21 22	15	7 30 30 0 16 16 16 16 16 16
7 20 21 21	4	19 20 23 20 22 23		3 23 25 29 24 2	6 29	8 22		1 15 15 15 15 15 15
N = 42	6	21 23 26 23 24 26 24 26 25 26		4 27 29 32 28 3 5 31 33 32 3	3	N = 44		2 15 15 18 15 15 18 3 16 18 21 18 20 22
1 0 38 40 38 40	7 16 1	27 16 16 16 16 16 16	11	0 11 11 13 11 1 1 13 15 19 14 1		0 40 42 40 42		4 20 21 24 21 23 25 5 23 24 27 24 25 27
2 0 29 33 38 29 33 38	2	16 16 16 16 16 16		2 17 19 23 18 2	0 24 2	0 30 34 40 30 34 40		6 25 27 27 28
1 40 40 3 0 22 26 33 22 26 33	3 4	16 16 19 16 18 20 17 19 22 19 20 23		3 21 23 27 22 2 4 25 27 30 26 2	8 30 3	1 42 42 0 24 28 34 24 28 34	16	1 16 16 16 16 16 16
1 34 36 34 36 4 0 18 22 28 22 22 28	5	20 22 24 22 23 25 23 24 24 25		5 29 31 30 3 6 32		1 36 38 41 36 38 41 0 19 23 30 23 23 30		2 16 16 17 16 16 17 3 16 17 20 17 18 21
1 28 31 36 28 31 36	7	25	12	0 12 12 12 12 1	2 13	1 30 33 37 30 33 37		4 18 20 23 20 21 24
2 36 38 36 38 5 0 15 18 25 17 20 25		! 17 17 17 17 17 17 17 17 17 18 17 17 19		1 12 14 17 13 1 2 16 18 21 17 1		2 38 40 38 40 0 16 19 26 18 21 26		5 21 23 26 23 24 26 6 24 26 28 25 27 28
1 24 27 32 26 27 32 2 32 34 37 32 34 37	4	17 18 21 18 19 22 5 19 21 23 20 22 24		3 20 22 25 20 2 4 23 25 28 24 2		1 25 29 34 27 29 34 2 33 36 39 33 36 39		7 27 28 28 2 17 17 17 17 17 17
3 37 37	6	22 23 23 24		5 27 29 31 27 2	9 31	3 39 39		3 17 17 19 17 17 20
6 0 13 16 22 14 18 22 1 21 24 29 22 25 29	18 3	24 25 25 1 18 18 18 18 18 18	13	6 30 31 - 0 13 13 13 13 1		0 14 17 23 15 19 23 1 22 25 30 23 26 30		4 17 19 22 19 20 23 5 20 22 24 21 23 25
2 28 30 34 29 30 34	4	18 18 20 18 18 20		1 13 13 16 13 1 2 15 17 20 15 1		2 29 32 36 30 32 36 3 35 37 35 37		6 23 24 27 24 25 27 7 25 27 26
3 34 35 34 35 7 0 11 14 19 13 15 20	5	20 22 24 22 23		3 18 20 24 19 2	21 24 7	0 12 15 20 13 16 21	18	2 18 18 18 18 18 18
1 19 21 26 20 22 26 2 25 27 31 25 28 31		23 24 24 3 19 19 19 19 19 19		4 22 24 27 23 2 5 25 27 30 26 2	24 27 27 3 0	1 20 22 27 21 23 27 2 26 28 33 27 29 33		3 18 18 18 18 18 19 14 18 18 19 21
3 30 32 35 30 32 35	4	1 19 19 19 19 19 19	14	6 28 30 29 3 0 14 14 14 14 1	30	3 32 34 37 32 34 37 4 37 37		5 19 20 23 20 21 24 6 21 23 26 23 24 26
4 35 35 8 0 10 12 17 11 14 19	6	5 19 21 23 20 22	14	1 14 14 15 14 1	4 16 8	0 11 13 18 12 14 20		7 24 25 25 26
1 17 19 24 19 20 24 2 22 25 29 24 25 29	7 20 4	22 23 23 20 20 20 20 20 20 20		2 14 15 19 14 1 3 17 19 22 18 2	20 22	1 17 20 25 20 21 25 2 23 26 30 25 26 30		8 26 3 19 19 19 19 19 19
3 27 29 33 28 29 33	5	5 20 20 20 20 20 20 20 5 20 20 22 20 20		4 20 22 25 22 2 5 23 25 28 25 2	23 25	3 28 31 34 29 31 34 4 33 35 33 35		4 19 19 20 19 19 20 5 19 19 22 19 20 23
4 32 33 32 33 9 0 9 11 16 10 12 17		21 22 22		6 26 28 27		0 9 12 16 10 13 18		6 20 22 24 21 23 25

CRITICAL REGIO	INS FOR FISHER'S EXACT TEST	PAG. 6	
N = 44 CONT. N = 45 CONT.	N = 46 CONT.	N = 46 CONT. ONE TAIL TWO TAILS	N = 47 CONT. ONE TAIL TWO TAILS
ONE TAIL TWO TAILS ONE TAIL TWO TAILS al xl 10% 5% 1% 10% 5% 1% al xl 10% 5% 1% 10% 5% 1%	ONE TAIL TWO TAILS at x1 10% 5% 1% 10% 5% 1% 10% 5% 1%	al xl 10% 5% 1% 10% 5% 1% al	x1 104 54 14 104 54 14
	4 0 20 24 31 24 24 31		3 2 25 28 32 27 28 32
8 25 3 19 21 25 20 22 25	1 31 34 39 31 34 39	3 16 18 21 18 19 22	3 30 33 37 32 33 37
20 4 20 20 20 20 20 20 4 23 25 28 24 25 28 5 20 20 21 20 20 21 5 26 28 31 27 28 32	2 40 42 40 42 5 0 17 20 27 19 23 27	4 19 21 24 21 22 25 5 22 24 27 24 25 28 9	4 36 38 36 38 9 0 10 13 18 11 14 19
6 20 21 23 20 21 24 6 29 31 30 32	1 27 30 35 28 30 35	6 25 27 30 26 28 30	1 17 19 24 19 21 25
7 22 23 23 24 14 0 14 14 14 14 14 14 8 24 1 14 14 14 16 14 17	2 35 37 41 35 37 41 3 41 41	7 28 29 29 30 17 1 17 17 17 17 17 17	2 23 25 30 24 27 30 3 28 30 34 29 31 34 .
21 5 21 21 21 21 21 21 2 2 14 16 20 15 17 20	6 0 14 18 24 16 20 24	2 17 17 17 17 17 18 3 17 17 20 17 18 21	4 32 35 38 34 35 38 5 37 37
6 21 21 22 21 21 23 3 18 20 23 20 21 24 7 21 22 21 23 4 21 23 26 23 25 27	1 23 26 32 24 27 32 2 30 33 37 31 33 37	4 18 20 23 19 21 24 10	0 0 10 11 16 10 12 17
8 23 5 25 26 29 26 27 29	3 37 39 37 39 7 0 13 15 21 14 17 22	5 21 23 26 22 24 26 6 24 25 28 25 26 29	1 15 18 22 17 19 24 2 21 23 27 22 24 28
6 22 22 22 22 22 22 23 31	1 20 23 29 22 24 29	7 26 28 28 29	3 25 28 32 26 29 32
7 22 22 22 22 15 0 15 15 15 15 15 15 15 8 22 1 15 15 15 15 15 15 15 15	2 27 30 34 28 30 34 3 33 35 39 33 35 39	8 29 18 2 18 18 18 18 18 18	4 30 32 36 31 33 36 5 34 36 35 36
2 15 15 18 15 16 19	4 38 38	3 18 18 19 18 18 20 11 4 18 19 22 18 20 22	1 0 11 11 15 11 11 15 1 14 16 21 15 18 22
N = 45 3 17 19 22 18 20 23 4 20 22 25 21 23 26	1 18 21 26 21 22 26	5 20 21 24 21 22 25	2 19 21 25 20 22 26
1 0 41 43 41 43 5 23 25 28 25 26 28 2 0 31 35 41 31 35 41 6 26 28 30 28 28	2 24 27 31 26 28 31 3 30 32 36 31 32 36	6 23 24 27 24 25 27 7 25 27 26 27	3 23 26 30 24 26 30 4 28 30 33 28 30 33
1 43 43 7 29 30 30	4 35 37 35 37	8 28	5 32 33 33 34 6 35 36
3 0 24 28 35 24 28 35 16 1 16 16 16 16 16 16 16 16 16 16 16 1	9 0 10 12 17 11 13 18 1 16 19 24 18 21 24	19 2 19 19 19 19 19 19 19 3 19 19 19 19 19 19 19 19 19 19 19 19	2 0 12 12 14 12 12 14
4 0 20 23 30 23 23 30 3 16 17 21 17 19 22	2 22 25 29 24 26 29 3 27 29 33 29 30 33	4 19 19 21 19 19 21 5 19 20 23 20 21 24	1 13 15 19 14 16 20 2 17 20 24 18 20 24
2 39 41 39 41 5 22 23 26 23 24 27	4 32 34 37 33 34 37	6 21 23 26 22 24 26	3 22 24 28 23 24 28
5 0 16 20 26 18 22 26 6 25 26 29 26 27 29 1 26 29 34 28 29 34 7 27 29 29	5 36 36 10 0 10 11 16 10 12 17	7 24 25 25 26 8 26 27	4 26 28 31 26 28 32 5 29 31 35 30 32 35
2 34 36 40 34 36 40 17 1 17 17 17 17 17 17	1 15 17 22 17 19 23	20 3 20 20 20 20 20 20	6 33 35 34 3 0 13 13 13 13 13 13
3 40 40 2 17 17 17 17 17 17 6 0 14 17 23 16 19 23 3 17 17 19 17 18 20	2 20 22 27 21 24 27 3 25 27 31 26 28 31	5 20 20 22 20 20 22	1 13 14 18 13 15 19
1 23 26 31 23 27 31 4 18 19 22 19 20 23	4 29 31 35 30 32 35 5 33 35 34 35	6 20 22 24 21 22 25 7 23 24 24 25	2 16 18 22 17 19 22 3 20 22 26 22 23 26
2 30 32 37 31 32 37 5 21 22 25 22 23 26 3 36 38 36 38 6 23 25 28 24 26 28	11 0 11 11 14 11 11 15	8 25 26 26	4 24 26 29 26 27 29
7 0 12 15 21 13 17 22 7 26 27 27 28	1 14 16 20 15 17 21 2 18 21 25 19 21 26	21 4 21 21 21 21 21 21 21 21 2	5 27 29 33 28 30 33 6 31 33 31 33
2 26 29 33 27 29 33 18 2 18 18 18 18 18 18 18	3 23 25 29 24 26 30	6 21 21 23 21 21 24	7 34
3 32 34 38 33 34 38 3 18 18 18 18 18 19 4 37 37 4 18 18 21 18 19 22	4 27 29 33 28 30 33 5 31 33 32 34	7 22 23 25 22 24 14 8 24 25 25	4 0 14 14 14 14 14 14 14 14 17 14 14 17 14 14 17
8 0 11 13 19 12 15 20 5 19 21 24 20 22 24	6 35 12 0 12 12 13 12 12 14	22 5 22 22 22 22 22 22 22 6 22 22 22 22 22 22 22	2 15 17 21 16 18 21 3 19 21 24 21 22 25
1 18 20 25 20 22 26 6 22 23 26 23 24 27 2 24 26 31 26 27 31 7 25 26 26 27	1 13 15 19 14 16 20	7 22 22 24 22 22	4 22 24 28 24 26 28
3 29 31 35 30 31 35 8 27 4 34 36 34 36 19 3 19 19 19 19 19 19	2 17 19 23 18 20 24 3 21 23 27 22 24 27	8 23 24 24 23 6 23 23 23 23 23 23	5 26 28 31 27 29 31 6 29 31 30 31
9 0 10 12 17 11 13 18 4 19 19 20 19 19 21	4 25 27 31 26 27 31	7 23 23 23 23 23	7 32 33 .5 0 15 15 15 15 15 15
1 16 19 23 18 20 23 5 19 20 23 19 21 23 2 22 24 28 23 26 28 6 21 22 25 22 23 25	5 29 31 34 29 31 34 6 32 34 33	,	1 15 15 16 15 15 16
3 27 29 33 28 29 33 7 23 25 24 25 4 31 33 36 32 33 36 8 26	13 0 13 13 13 13 13 13 1 13 14 17 13 15 18	N = 47	2 15 16 19 15 17 21 3 18 19 23 19 21 24
5 35 36 20 3 20 20 20 20 20 20	2 16 18 22 17 18 22	1 0 43 45 43 45	4 21 23 26 22 24 27
10 0 10 11 15 10 12 16 4 20 20 20 20 20 20 1 15 17 21 16 18 22 5 20 20 21 20 20 22	3 20 22 25 21 23 26 4 23 25 29 25 26 29	2 0 32 37 42 32 37 42 1 45 45	5 24 26 29 26 27 29 6 27 29 32 29 30 32
2 20 22 26 21 23 27 6 20 21 24 21 22 24	5 27 29 32 28 29 32 6 30 32 31 32	3 0 25 30 37 25 30 37 1 38 41 44 38 41 44 1	7 30 32 31 32 16 0 16 16 16 16 16 16
3 24 26 30 25 28 30 7 22 24 23 24 4 29 31 34 30 31 34 8 24 25	7 33	4 0 20 24 32 24 24 32	1 16 16 16 16 16 16
5 33 34 34 34 21 4 21 21 21 21 21 21 21 11 0 11 11 14 11 11 15 5 21 21 21 21 21 21	14 0 14 14 14 14 14 14 14 14 14 17 17 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	1 32 35 40 32 35 40 2 40 43 40 43	2 16 16 18 16 16 20 3 17 18 22 18 20 23
1 13 15 20 15 17 21 6 21 21 23 21 21 23	2 15 17 20 15 17 21	5 0 17 21 28 19 23 28	4 20 21 25 21 23 25
2 18 20 24 19 21 25 7 21 22 22 23 3 22 24 28 23 25 29 8 23 24	3 18 20 24 20 22 24 4 22 24 27 24 25 27	2 35 38 42 35 38 42	5 23 24 28 24 25 28 6 26 27 30 27 28 31
4 26 28 32 27 29 32 22 5 22 22 22 22 22 22	5 25 27 30 27 28 30 6 28 30 29 30	3 42 42 6 0 15 18 24 16 20 24	7 29 30 30 31 8 31
5 30 32 31 33 6 22 22 22 22 22 22 6 34 7 22 22 22 22	7 31 32	1 24 27 32 24 28 32 1	17 1 17 17 17 17 17 17
12 0 12 12 13 12 12 14 8 22 23 1 12 14 18 14 15 19	15 0 15 15 15 15 15 15 15 1 15 15 15 15 15 16		2 17 17 17 17 17 18 3 17 17 20 17 18 21
2 17 19 23 17 19 23 N = 46	2 15 16 19 15 16 20	7 0 13 16 22 14 17 23	4 19 20 23 20 21 24
3 21 23 26 22 23 27 ** ** ** ** ** ** ** ** ** ** ** ** **	3 17 19 22 19 20 24 4 20 22 26 22 24 26	2 28 30 35 29 31 35	6 24 26 29 25 27 30
5 28 30 33 29 31 33 2 0 32 36 41 32 36 41	5 24 25 28 25 27 29	3 34 35 40 34 36 40	7 27 29 28 30 8 30
13 0 13 13 13 13 13 13 3 0 25 29 36 25 29 36	7 30 31 30 31	8 0 11 14 19 12 15 21 1	18 2 18 18 18 18 18 18
1 13 13 17 13 14 18 1 37 40 43 37 40 43	16 1 16 16 16 16 16 16	1 19 21 27 21 23 27	3 18 18 19 18 18 20

CRITICAL REGIO	MR FOR FISHER, 2 EXACT TEST	PAG. /	•
N = 47 CONT. N = 48 CONT.	N = 48 CONT.	N = 49 CONT.	N + 49 CONT.
ONE TAIL TWO TAILS ONE TAIL TWO TAILS	ONE TAIL TWO TAILS	ONE TAIL TWO TAILS	ONE TAIL THO TAILS a1 x1 10% 5% 1% 10% 5% 1%
al x1 10% 5% 1% 10% 5% 1% al x1 10% 5% 1% 10% 5% 1%	al xi 10% 5% 1% 10% 5% 1%	al xl 10% 5% 1% 10% 5% 1%	88 85 885 88 88 885 54 54 81 XI 102 36 14 104 36 14
18 4 18 19 22 19 20 23 10 5 35 37 36 37	20 5 20 20 23 20 21 23	11 5 33 35 38 34 36 38	20 9 29
5 20 22 25 21 23 25 11 0 11 11 15 11 11 16	6 21 23 26 22 23 26	6 37 38	21 3 21 21 21 21 21 21
6 23 25 27 24 25 28 1 14 17 21 16 18 22	7 24 25 28 25 26 28	12 0 12 12 14 12 12 15	4 21 21 21 21 21 21 21 5 21 21 23 21 21 23
7 26 27 27 28 2 19 22 26 20 22 27 8 28 29 3 24 26 30 25 27 31	8 26 28 27 28 9 28	1 13 16 20 15 17 21 2 18 20 25 19 21 25	5 21 21 23 21 21 23 6 21 22 25 22 23 25
8 28 29 3 24 26 30 25 27 31 19 2 19 19 19 19 19 19 4 28 30 34 29 31 34	21 4 21 21 21 21 21 21	3 23 25 29 24 26 29	7 23 25 27 24 25 28
3 19 19 19 19 19 19 5 32 34 37 33 35 37	5 21 21 22 21 21 22	4 27 29 33 28 29 33	8 26 27 26 27
4 19 19 21 19 19 22 6 36 37	6 21 22 24 21 22 25	5 31 33 36 31 33 36 6 34 36 35 37	9 28 28 22 4 22 22 22 22 22
5 19 21 24 20 22 24 12 0 12 12 14 12 12 15 6 22 23 26 23 24 26 1 13 15 20 14 16 20	7 23 24 27 23 25 27 8 25 26 26 27	6 34 36 35 37 13 0 13 13 13 13 14	5 22 22 22 22 22 22
7 24 26 25 26 2 18 20 24 19 21 25	9 27	1 13 15 19 14 16 19	6 22 22 24 22 22 24
8 27 28 28 3 22 24 28 23 25 29	22 4 22 22 22 22 22 22	2 17 19 23 18 20 24	7 22 24 26 23 24 27
20 3 20 20 20 20 20 20 20 4 26 28 32 27 29 33	5 22 22 22 22 22 22 6 22 22 23 22 22 24	3 21 23 27 23 25 27 4 25 27 31 27 28 31	8 24 26 25 26 9 27 27
4 20 20 20 20 20 20 5 30 32 35 31 33 35 5 20 20 23 20 20 23 6 34 35 35 36	6 22 22 23 22 22 24 7 22 23 26 22 23 26	5 29 31 34 30 31 34	23 5 23 23 23 23 23 23
6 21 22 25 22 23 25 13 0 13 13 13 13 14	8 24 25 25 26	6 32 34 33 34	6 23 23 23 23 23 23
7 23 25 27 24 25 1 13 14 18 13 15 19	9 26	7 36 36	7 23 23 25 23 23 26
8 26 27 26 2 17 19 23 17 19 23 21 4 21 21 21 21 21 21 3 21 23 26 23 24 27	23 5 23 23 23 23 23 23 23 23 23 23 23 23 23	14 0 14 14 14 14 14 14 14 14 14 14 17 14 14 18	8 23 25 24 25 9 26 26
21 4 21 21 21 21 21 21 3 21 23 26 23 24 27 5 21 21 22 21 21 22 4 24 26 30 26 27 30	7 23 23 24 23 23 25	2 16 18 22 17 19 23	24 6 24 24 24 24 24 24
6 21 21 24 21 22 24 5 28 30 33 29 30 34	8 23 24 23 25	3 20 22 25 21 23 26	7 24 24 24 24 24 25
7 22 24 26 23 24 26 6 32 33 32 34	9 25	4 23 25 29 25 27 29	8 24 24 24 24 9 24 25
8 24 26 25 26 7 35 22 5 22 22 22 22 22 14 0 14 14 14 14 14 14 14	24 6 24 24 24 24 24 24 7 24 24 24 24 24 24	5 27 29 32 29 30 32 6 30 32 35 32 33	9 24 25
6 22 22 23 22 22 23 1 14 14 17 14 14 18	8 24 24 24 24	7 33 35 34	N = 50
7 22 23 25 22 23 25 2 15 17 21 16 18 22		15 0 15 15 15 15 15 15	** ** *** ** ** *** **
8 23 25 24 25 3 19 21 25 21 23 26 9 25 4 23 25 28 25 26 29	N = 49	1 15 15 16 15 15 17 2 15 17 20 16 18 22	1 0 45 48 45 48 2 0 34 39 45 34 39 45
9 25 4 23 25 28 25 26 29 23 6 23 23 23 23 23 23 5 26 28 31 28 29 32		3 18 20 24 20 22 25	1 48 48
7 23 23 24 23 23 24 6 30 31 34 31 32	1 0 45 47 45 47	4 22 24 27 23 25 28	3 0 27 31 39 27 31 39
8 23 24 23 24 7 33 34 33	2 0 34 38 44 34 38 44	5 25 27 30 27 28 31	1 40 43 47 40 43 47 4 0 22 26 34 26 26 34
9 24 15 0 15 15 15 15 15 15 15 1 15 15 15 15 15 16	1 47 47 3 0 26 31 38 26 31 38	6 28 30 33 30 32 34 7 32 33 33 34	4 0 22 26 34 26 26 34 1 34 37 43 34 37 43
N = 48 2 15 16 20 15 17 21	1 40 42 46 40 42 46	16 0 16 16 16 16 16 16	2 43 45 43 45
** ** *** ** ** ** ** ** 3 18 20 23 20 21 25	4 0 21 26 33 25 26 33	1 16 16 16 16 16 16	5 0 18 22 29 20 26 29
1 0 44 46 44 46 4 21 23 27 23 25 28 2 0 33 37 43 33 37 43 5 25 27 30 26 28 30	1 33 37 42 33 37 42 2 42 44 42 44	2 16 16 19 16 17 20 3 17 19 23 19 20 23	1 29 33 38 31 33 38 2 38 40 44 38 40 44
2 0 33 37 43 33 37 43 5 25 27 30 26 28 30 1 46 46 6 28 30 33 29 31 33	5 0 18 22 29 20 25 29	4 21 22 26 22 23 27	3 45 45
3 0 26 30 37 26 30 37 7 31 33 32 33	1 28 32 38 30 32 38	5 24 26 29 25 27 30	6 0 16 19 26 17 21 26
1 39 42 45 39 42 45 16 0 16 16 16 16 16 16	2 37 40 43 37 40 43	6 27 29 32 28 30 32 7 30 31 31 33	1 25 29 34 26 30 34 2 33 36 41 34 36 41
4 0 21 25 32 25 25 32 1 16 16 16 16 16 16 16 16 16 16 16 16 1	3 44 44 6 0 15 19 25 17 21 25	8 33	3 40 42 40 42
2 41 43 41 43 3 17 19 22 18 20 23	1 25 28 34 25 29 34	17 1 17 17 17 17 17 17	7 0 14 17 23 15 18 25
5 0 17 21 28 20 24 28 4 20 22 25 21 23 26	2 32 35 40 33 35 40	2 17 17 18 17 17 19	1 22 25 31 25 26 31
1 28 31 37 29 31 37 5 23 25 28 25 26 29 2 36 39 43 36 39 43 6 26 28 31 28 29 31	3 39 41 39 41 7 0 13 16 23 15 18 24	3 17 18 21 18 19 22 4 19 21 25 21 22 25	2 29 32 37 31 33 37 3 36 38 42 36 38 42
2 36 39 43 36 39 43 6 26 28 31 28 29 31 3 43 43 7 29 31 31 32	1 22 25 31 24 25 31	5 22 24 27 24 25 28	4 41 43 41 43
6 0 15 18 25 17 20 25 8 32	2 29 32 37 30 32 37	6 25 27 30 26 28 31	8 0 12 15 21 13 16 22
1 24 27 33 25 29 33 17 1 17 17 17 17 17 17	3 35 38 41 35 38 41	7 28 30 29 31 8 31 32	1 20 23 28 22 25 29 2 26 29 34 29 30 34
2 32 35 39 32 35 39 2 17 17 18 17 17 19 3 38 40 38 40 3 17 18 21 17 19 22	4 41 41 8 0 12 15 20 13 16 22	8 31 32 18 1 18 18 18 18 18 18	3 32 35 39 34 35 39
7 0 13 16 22 14 18 23 4 19 21 24 20 22 25	1 19 22 28 22 24 28	2 18 18 18 18 18 18	4 38 40 38 40
1 21 24 30 23 25 30 5 22 24 27 23 25 27	2 26 29 34 28 29 34	3 18 18 20 18 18 21	9 0 11 13 19 12 14 20
2 28 31 36 29 31 36 6 25 27 30 26 27 30 3 34 37 40 35 37 40 7 28 29 29 30	3 32 34 38 33 34 38 4 37 39 37 39	4 18 20 23 20 21 24 5 21 23 26 22 24 26	1 18 21 26 20 23 26 2 24 27 32 26 28 32
4 40 40 8 30	9 0 11 13 18 11 14 20	6 24 26 29 25 26 29	3 30 32 36 31 33 36
8 0 12 14 20 13 15 21 18 2 18 18 18 18 18 18	1 18 20 25 20 22 26	7 27 28 31 28 29	4 35 37 41 36 37 41
1 19 22 27 21 23 28 3 18 18 20 18 18 20	2 24 26 31 25 28 31	8 29 31 30 19 2 19 19 19 19 19 19	5 39 41 39 41 10 0 10 12 17 11 13 18
2 25 28 33 28 29 33 4 18 20 23 19 20 23 3 31 34 38 32 34 38 5 21 22 25 22 23 26	3 29 31 36 30 32 36 4 34 36 40 35 36 40	19 2 19 19 19 19 19 19 3 19 19 19 19 19 20	1 16 19 24 18 20 26
4 36 38 36 38 6 24 25 28 25 26 29	5 38 40 39 40	4 19 19 22 19 20 22	2 22 24 29 23 26 30
9 0 10 13 18 11 14 19 7 26 28 27 29	10 0 10 12 17 10 13 18	5 20 22 25 21 22 25	3 27 30 34 28 31 34
1 17 20 25 19 22 25 8 29 30 30 2 23 26 30 25 27 30 19 2 19 19 19 19 19 19	1 16 18 23 18 20 25 2 21 24 29 23 25 29	6 23 24 27 24 25 28 7 25 27 30 26 28 30	4 32 34 38 33 35 38 5 36 38 38 38
3 28 31 35 30 32 35 3 19 19 19 19 19 19	3 26 29 33 27 30 33	8 28 30 29 30	6 40 40
4 33 35 39 34 35 39 4 19 19 22 19 19 22	4 31 33 37 32 34 37	9 30	11 0 11 11 16 11 12 16
5 38 39 38 39 5 20 21 24 21 22 25 10 0 10 12 16 10 12 17 6 22 24 27 23 25 27	5 36 38 37 38 11 0 11 11 15 11 12 16	20 3 20 20 20 20 20 20 20 4 20 20 21 20 20 21	1 15 17 22 16 19 23 2 20 23 27 21 23 28
10 0 10 12 16 10 12 17	1 15 17 22 16 18 23	5 20 21 24 20 21 24	3 25 27 32 26 28 32
2 21 23 28 22 25 29 8 27 29 28	2 20 22 27 21 23 27	6 22 23 26 23 24 26	4 29 32 36 30 32 36
3 26 28 32 27 29 32 20 3 20 20 20 20 20 20 20 3	3 24 27 31 25 27 32	7 24 26 29 25 26 29	5 34 36 39 35 37 39 6 38 39 39 39
4 31 33 36 32 34 36 4 20 20 21 20 20 21	4 29 31 35 29 32 35	8 27 28 27 29	גר גר בר מיביח

```
N = 50 CONT.
TAIL TWO TAILS
5% 1% 10% 5% 1%
                                                                                                                                              N = 50 CONT.
                                                                                                                              TAIL TWO TAILS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ONE
                                                                             ONE
                                                                                                                                                                                                                                                                                                                                                                               al xl 10%
                                                                                104 54 14
                                 x1
                                                                           10%
                                      0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           21 21 21
21 21 21
21 21 24
22 23 26
24 26 28
27 28 --
29 --
22 22 23
22 22 25
23 25 27
26 27 --
28 23 23
23 23 23
23 23 24 26
24 26 --
27 --
24 24 24 24
24 24 26
24 25 --
25 25 25
25 25 25
25 25 --
25 --
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   21 21 23 26 28 -- - 22 22 24 27 26 -- 23 23 26 25 26 -- 27 24 24 25 25 25 25 25 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -- 25 -
                                                                                                                                                                                                                         12 12
15 17
20 22 24 26
28 30
32 34 35
36 38 31
31 31 16
18 20
24 26
27 29
31 32
33 35 ---
14 14 15
17 20
22 24 26
27 29 31
32 33
35 15 15
16 19
20 22 24 26
27 29 31
32 33 36 ---
15 15 15
16 19
20 27 29 31
31 34 34 ---
                                                                                                                                                                                                                                                                                                                                                                                                                                                                         21
                                                                                                                                                                                                                                                                                                                                                                                                                             345678945678956789678
12
                                                                                                                                                                                                                                                                                                         4560123
                                                                                                                                                                                                                                                                                                                                                                                       22
13
                                                      456701234
                                                                                                                                                                                                                                                                                                                                                                                       23
                                                                                                                                                                                                                                                                                                                                                                                       24
                                                        5
                                                                                                                                                                                                                                                                                                                                                                                                                                        9
6
7
8
9
                                                                                                                                                                                                                                                                                                                                                                                       25
                                                      701234
  15
                                                      5
                                                        8
                                                                                                                                                                                                                                 16
                                                           1234
                                                           567
                                                                                                                                                                                                                              8
1
2
3
       17
                                                           5
                                                           8
1
2
          18
                                                              3
                                                              6
                                                              8
2
3
4
                                                                67
                                                                8
9
3
4
                                                                                                                                                                                                                                        20
20
21
23
26
28
30
               20
                                                                5
6
7
```

Tabla II

Potencias medias de las distintas reglas de desempates del métodos H (primera fila) para diversos n (primera columna) en los intervalos de α 0%-1% (primera tabla), 1%-5% (segunda tabla) y 5%-10% (tercera tabla).

0% - 1%

n\métodos	Н	HD	HR	НО	
6-14	2.3	2.3	2.3	2.3	
16-24	10.8	10.8	10.8	10.8	
27-33	18.5	18.5	18.5	18.5	
37-43	24.7	24.7	24.7	24.7	
48-52	29.5	29.5	29.5	29.5	

18 - 58

n\métodos	Н	HD	HR	но	
6-14	9.3	9.3	9.3	9.3	
16-24	22.1	22.1	22.1	22.1	
27-33	30.8	30.8	30.8	30.8	
37-43	36.9	36.9	36.9	36.9	
48-52	41.6	41.6	41.6	41.6	

5% - 10%

n\métodos	Н	HD	HR	но	
6-14	17.3	17.3	17.3	17.3	
16-24	31.2	31.2	31.2	31.2	
27-33	39.9	39.9	39.9	39.9	
37-43	45.7	45.7	45.7	45.7	
48-52	50.0	50.0	50.0	50.0	

Tabla III

Potencias medias de las distintas reglas de desempate del método D (primera fila) para diversos tamaños de muestra n (primera columna) en los intervalos de α 0%-1% (primera tabla), 1%-5% (segunda tabla) y 5%-10% (tercera tabla).

0% - 1%

n\métodos	D	DH	DR	DO	
6-14	2.3	2.3	2.3	2.3	
16-24	10.8	10.8	10.8	10.8	
27-33	18.5	18.5	18.5	18.5	
37-43	24.6	24.6	24.6	24.6	
48-52	29.4	29.5	29.4	29.5	

18 - 58

n\métodos	D	DH	DR	DO	
6-14	9.3	9.3	9.3	9.3	
16-24	22.1	22.1	22.1	22.1	
27-33	30.7	30.7	30.7	30.7	
37-43	36.9	36.9	36.9	36.9	
48-52	41.5	41.6	41.5	41.6	

5% - 10%

n\métodos	D	DH	DR	DO	
6-14	17.3	17.3	17.3	17.3	
16-24	31.1	31.2	31.1	31.2	
27-33	39.8	39.9	39.8	39.9	
37-43	45.6	45.7	45.6	45.7	
48-52	49.9	50.0	49.9	50.0	

Tabla IV

Potencias medias de las distintas reglas de desempate del método R (primera fila) para diversos tamaños de muestra n (primera columna) en los intervalos de α 0%-1% (primera tabla), 1%-5% (segunda tabla) y 5%-10% (tercera tabla).

0% - 1%

n\métodos	R	RH	RD	RO	
6-14	0.5	2.1	2.1	0.5	
16-24	3.5	6.9	6.9	3.5	
27-33	7.4	10.5	10.5	7.4	
37-43	11.2	13.8	13.8	11.2	
48-52	14.7	16.8	16.8	14.7	

18 - 58

n\métodos	R	RH	RD	RO	
6-14	2.6	7.5	7.5	2.6	
16-24	9.6	14.3	14.3	9.6	
27-33	15.8	19.3	19.3	15.9	
37-43	21.2	23.9	23.9	21.2	
48-52	25.8	27.9	27.9	25.8	

5% - 10%

n\métodos	R	RH	RD	RO	
6-14	6.4	13.3	13.3	6.4	
16-24	16.1	21.1	21.1	16.1	
27-33	23.7	27.4	27.4	23.7	
37-43	29.5	32.5	32.5	29.6	
48-52	34.3	36.7	36.7	34.3	

Tabla V

Potencias medias de las distintas reglas de desempate del método O (primera fila) para diversos tamaños de muestra n (primera columna) en los intervalos de α 0%-1% (primera tabla), 1%-5% (segunda tabla) y 5%-10% (tercera tabla).

0% - 1%

n\métodos	0	ОН	OD	OR	 .
6-14	0.5	2.3	2.3	0.5	
16-24	4.2	9.9	9.9	4.2	
27-33	9.5	15.6	15.6	9.5	
37-43	14.5	20.0	20.0	14.5	
48-52	18.9	23.8	23.8	18.9	

18 - 58

n\métodos	0	он_	OD	OR	· -
6-14	2.8	9.2	9.2	2.8	
16-24	11.3	19.9	19.9	11.3	
27-33	18.9	26.4	26.4	18.9	
37-43	24.9	31.4	31.4	24.9	
48-52	29.7	35.4	35.4	29.7	

5% - 10%

n\métodos	0	ОН	OD	OR	
6-14 16-24	6.7 18.3	16.9 28.1	16.9 28.1	6.7 18.3	
27-33 37-43	26.5 32.4	35.0 39.9	35.0 39.9	26.5 32.4	
48-52	37.1	43.7	43.7	37.1	·

Tabla VI

Valores de N, H, H y H (los tres últimos en $^{\circ}/_{\infty}$) para los tamaños y métodos (primera fila) y los valores de P, (primera columna) que se indican. En la cabecera se especifica si el test es de 1 ó 2 colas.(Para todos los valores de E).

:::::::::::::::::::::::::::::::::::::::			22222222	IAT 3MO	_	*********	*********	=======================================	VΕ
20- 40		Н			C			Ħ	
N	H+	H-	Но	H+	H-	Но	H+	H-	Но
00101 2029	142	94	236	86	125	211	819	0	819
.0105 2296	12	68	80	0	122	122	696	0	696
.0510 1405	1	33	35	0	226	226	775	0	775 759
.00110 5729	55	69	124	20	149	179 	7 59		, c
41- 60		Н			C			Ħ	
N	H+	H-	Ho	H+	H-	Ho	H+	H- -	Н
00101 7971	138	88	226	114	107	221	511	2	51.
.0105 8385	50	49	99	7	87	94	361	0	36.
.0510 4869	8	24	32	0	142	142	419	0	411
00110 21225	73 	50 	131	46	107	153	431		43;
61- 80	,	H			C			Ħ	
N	H+	H-	Ha	H+	H-	Ho	H+	H-	H
00101 19772	134	80	214	115	95	210	361	4	36
.0105 19774	51	41	92	17	70	87	253	0	25
.0510 11286	12	19	31	0	100	100	281	0	28
00110 50B32	74	51 	126	52 	86	138	301	l	
81-100		H			Ċ			Ħ	
N	H+	H-	На	H+	H-	Но	H+	H-	H
00101 38446	129	74	202	114	96	200	296	6	30
.0105 37686	44	35	79	21	57	78	197	0	19
.0510 21132	13	15	28	0	78	78	211	0	21
00110 97264	71	46	117	53	73	126	239	2	24
150-150		H			Ε			Ħ	
N	H+	H-	Ho	H+	H-	Но	H+	H-	Н
00101 7218	112	61	173	103	69	172	209	10	21
.0105 6839	36	25	61	24	26	63	120	0	12
.0510 3766	11	10	21	0	47	47	118	0	11
00110 17823	62	36	98	51	53	104	156		16
200-200		н			ε			Ħ	
H	H+	H-	Ho	H+	H-	Ho	H+	H-	ŀ
00101 15259	102	53	155	95	59	153	173	11	16
.0105 14238	22	20	53	22	21	53	92	0	9
.0510 7784	10	8	19	1	34	35	82	0	
00110 37281	57	31	88	47	43	. 90	124	5	12
250-250		н			C			M	
N	₩+	H-	Ho	H+	H÷	Но	H+	H-	ا
00101 27121	94	47	142	87	52	139	151	12	10
.0105 25087	29	17	46	19	25	45	76	0	•
.0510 13628	9	6	16	2	27	29	65	0	
00110 65836	52	27	79	44	37	80	104		11
300-300		Н			C			M	
N	H+	H-	Ho	H+	H-	Ho	H+	H-	
.00101 43262	86	43	129	81	47	127	134	12	. 1
.0105 39763	26	14	40	18	22	24	64	0	
.0510 21540	8	6	13	2	22	23	52	0	
00110 104565	47	24	71	40	32	72	90	5	

			TWO	TAILS					
************		========	*******	=========	:::::::::::		=========	*******	
20- 40		H2≣Mante			€2			Ħ2	
N	H+			H+					фH
	124	_					851		851
.0105 2080	-	75				135		0	888
.0510 1204		39				264		0	994
.00110 5185	46	76	122	21	165	186	899	0	899
		HlEHabe	r		C1≡Conov		Mi		
	H+	H-	Ho	H+			H+	Н-	Ha
	341	43	384	266	57	322	724	0	724
	291	20	311	214	43	257	575	3	579
	269	47	316	206	60	266	522	23	545
	304	35				283	618	7	624
41-60		H2≡Mante			 C2			M2	
41 00 N	H+			H+		Ho	H+		На
		71 94	-		113	·-	667		669
.0105 7584		54	•	0			535	0	533
.0510 4215				-	163		771	ō	77;
	41				117		638	1	638
	Its	H1=Habe			:1≡Canaver		H a	M1	He
	H+			H+ 166		_	H+ 550		
									559
		11	203	142			387		383
	193 198	15 22	198 220	148		170 187	353 446	5 1	351 441
61- 80		H2≡Mante			C2			M2	
N	H+			H+		· · · -	H+		Ho
.00101 18481		85		63		164	491	4	491
.0105 17808	6		52	0		78	367		36
.0510 9874	0	22	22	0	•••	114	525	0	52
.00110 46163	36	56	92	25	95	120	451	2	45
	H1≅Haber			(: C1≅Conover			H1	
	H+	H-	Но	H+	H-	Ha	H+	H-	H
	142	34	176	108	42	150	426	0	42
	139	9	148	101	20	121	280	0	28
	130	9	147	115	13	129	249	2	25
	140	19	159	107	27	134	332	1	33:
81-100		H2≡Mante			£2		-+	M2	
N N	Н+	H-	Ho	H+	H-	Ho	H+	H-	Н
.00101 36167	73	78	151	56	91	147	364	6	37
.0105 33924	5	38	44	0	63	63	262	ō	26
.0510 18196	Ō	17	17	Ö	90	90	379	Ö	37
.00110 88287	32	50	82	23	80	103	328	3	23
					C1≅Conovi			M1	
	H+	H1≅Haber H-	Ho	H+	H-	er Ha	H+	H- ut	Н
·	99	30	129	78	37	115	220	1	33
	107	30 7	114	76	16	42	220	0	22
	107	1	117	/0	TO	13	TTA	v	22
				07	9	101	107	1	10
	112 104	5 16	117 121	93 01	9 23	103 104	192 259	1	19 26

150-150		H2≅Mante	1		C2			Ħ2	
N	H+	H-	Ho	H+	H-	Ha	H+	H-	но
.00101 6811	45	64	109	36	74	110	196	10	207
.0105 6207	5	28	32	0	43	43	133	0	133
.0510 3226	0	12	12	0	55	55	205	0	205
.00110 16244	20	40	60	15	58	73	174		178
		H1≣Haber		(C1≡Conove	r		M1	
	H+	H-	Но	H+	H-	Ho	H+	H-	Ho
	48	23	72	41	27	68	175	1	176
	58	5	63	41	10	51	133	0	133
	67	2	69	57	5	62	114	0	114
	56	12	8	44	16	60	147		147
200-200		H2≘Mante	1		C2			M2	
N	H+	H-	Ho	H+	H-	Но	H+	H-	Ho
.00101 14362	34	56	90	27	62	89	134	12	14
.0105 12961	4	22	26	0	34	34	93	0	9
.0510 6684	0,	9	9	0	39	39	143	0	14
00110 34007	16	34	50 	11	47	58	120		12
		HI≅Haber			C1≡Conov		#1		
	H+	H-	Ho	H+	H-	Ho	H+	H-	Н
	22	19	52	27	22	50	107	2	10
	40	4	44	29	7	36	97 05	0	9
	50	2	51	42	3	46	85 99	0	9
	39	10	49	31	13	44	77 	1	
250-250		H2≡Mante		u.	C2	На	H+	M2 H-	H
N 26504	H+ 27	H- 50	Ho 77	H+ 21	H- 55	76	102	13	11
00101 25584 .0105 22712	4	18	22	0	28	78 28	67	0	6
	1	7	9	0	31	31	109	Ŏ	10
.0510 11928 00110 60224	13	30	43	9	40	49	90	5	9
		 H1≣Haber			 Cl≘Conove	 or		#1	
	H+	H-	Ho	H+	H-	Ho	H+	H-	H
	24	17	41	20	20	40	73	2	7
	31	3	34	22	6	28	75	0	7
	39	1	40	33	2	36	63	0	6
	29	8	38	24	11	35 	72	1	
300-300		H2≡Mante	1		٤2			M2	
N	H+	H-	Ho	H+	H-	Ho	H+	H-	H
00101 40891	21	45	66	16	50	66	79	13	9
.0105 36101	2	16	18	0	24	24	53	0	
.0510 18634	1	6	8	0	25	25	96	0	
00110 95626	10	26 	37	7 	35	42	71		;
		H1=Haber			C1=Conovi			#1	
	H+	H-	Но	H+	H÷	Но	H+	H-	1
	18	15	22	15	17	32	54	2	:
	24	2	27	17	5	22	61	0	
	32	1	33	27	2	29	52	0	;
	23	7	31	18	9	28	56		

Tablas VII, VIII y IX

Valores de N, H⁺, H⁻ y H⁰ (los tres últimos en °/∞) para los valores de E indicados (primera fila) y en los tamaños y métodos (segunda fila) y valores de P, (primera columna) que se indican. En la cabecera se especifica si el test es de 1 ó 2 colas. Los valores EX aluden a los siguientes intervalos para E:

```
E1 = 0 a 1.5 ,, E4 = 3.5 a 4.5 ,, E7 = 10.5 a 15.5 
E2 = 1.5 a 2.5 ,, E5 = 4.5 a 6.5 ,, E8 = 15.5 a \infty
```

E3 = 2.5 a 3.5 ,, E6 = 6.5 a 10.5

Los valores NX aluden a los siguientes intervalos para n:

N1 = 20 a 60 ,, N3 = 150 y 200

N2 = 61 a 100 ,, N4 = 250 y 300

	•
1	cola

E1-1									
20-300		H			C			¥	
N	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101 8564	0	756	756	Û	821	821	168	121	287
.0105 9534	0	429	429	0	667	667	459	0	459
.0510 6912	0	145	145	Û	700	700	805	0	805
.00110 25330	û	466	466	0	730	730	451	4.2	493
E2-1									
20-366		H			C			Ŗ	
N	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101 5757	Ü	263	263	0	337	337	237	37	274
.0105 9203	214	Ç	219	39	42	81	513	0	513
.0510 5028	156	1	157	14	42	55	833	Û	633
.00110 19989	138	78	216	21	127	148	454	11	474
E3-1	,								
20-300		H			C			Ħ	
N	H+	H -	Но	H+	H -	Но	H+	∦-	Но
.00101 8134	305	9.8	393	272	115	388	474	13	487
.0105 8842	284	Û	284	225	0	225	496	Ð	496
.0510 5418	0	9	0	0	Ū	0	550	Đ	550
.00110 22394	223	3.2	255	188	4.2	230	501	5	586
Ei-i		• •	•••	, , ,					
20-300		H			C			×	
N	H+	H -	Но	# +	H-	Но	H+	H-	Но
.00101 5381	417	4.2	458	417	5.2	453	554	2	557
.0105 8924	43	0	43	3	0	3	485	0	485
.0510 4808	15	Q	15	0	Ú	(·	207	(·	203
.00110 23111	189	17	206	170	21	192	455	ì	45€
E5-1									
20-380		H			E			X	
N	H+	H-	Но	H+	H-	Ho	H+	H-	Но
.00101 17053	282	16	300	248	23	270	526	0	526
.0105 18003	3.8	0	38	24	0	24	302	0	302
.0510 6687	0	Ç	Û	e	0	C	128	ί	128
.00110 41743	130	7	137	111	Ş	120	357	ij	357
E6-1									
20-300		H			€			Ä	
N	H+	H-	Ho	H+	H-	Ho	H+	H-	Но
.00101 28272	158	1	159	132	2	134	407	0	407
.0105 26159	5	0	5	3	0	3	38	0	3.8
.0510 14134	0	0	0	0	0	0	1	0	į
.00110 68575	67	1	67	55	1	56	182	8	182
£7-1									
20-300		K			C			Ħ	
N	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101 24504	70	Û	70	61	0	61	188	0	:88
.0105 22255	0	0	0	0	0	Û	0	Ĝ	0
.0510 11987	0	0	0	0	0	0	0	0	e
.00110 58746	29	0	29	28	0	26	79	0	7.9
E8-1									
20-300		R			€			ř	
N	H+	H -	Но	H+	H-	Но	H+	H-	Но
			ı	1	0	3	22	Û	22
.00101 59092	4	0	4	3	Ü			V	
.00101 59092 .0105 53138	4 0	υ 0	0	0	0	0	0	0	0
.0105 53138	0	0	0	0	0	0	0	0	0

*********	========	*********	=======	*******			*********		=======	
[1-2										
20-300			H2			C2			M2	
	N	H+	H-	Но	H+	H-	Ho	H+	H-	Но
.00101	8884	0	756	75€	0	821	821	186	121	287
.0105	9534	0	429	429	Û	667	667	459	0	459
.0510	5920	0	169	169	0	817	817	772	Û	112
.00110	24338	Ū	485	485	0	760	760	429	44	473
			8 i			C1			Wit	
		H+	H-	Но	H+	H-	Но	H+	H٠	Но
		89	381	469	47	457	504	674	19	593
		446	78	524	250	171	421	\$95	O	995
		920	41	96 i	748	79	827	1000	0	1000
		431	180	510	297	253	550	879	7	856
2-2										
28-308			H2			E2			#2	
	N	H+	Н-	Ho	H+	H-	Но	H+	H -	Но
.00101	5751	0	264	264	Û	337	337	23€	3.7	273
.0105	6775	1	7	8	ß	57	57	338	0	338
.0510	4472	1	1	2	0	47	47	857	0	857
.00110	16998	i	32	93	ũ	149	149	440	12	\$53
			Hi			C1			Ħi	
		H+	H-	Но	H+	H-	Но	K+	H-	Но
		330	26	356	268	34	302	841	ŷ	841
		583	0	683	600	0	600	883	Û	883
		145	19	164	145	20	165	503	17	520
		422	14	436	368	17	385	768	Ĺ,	173
E3-2										
20-300			H2			C2			#2	
	N	H+	H-	Но	H÷	H-	Но	H+	H-	Ho
.00101	8521	140	110	250	90	144	234	344	16	360
.0105	8430	5.5	0	5.5	0	0	0	753	θ	753
.0510	4401	8	0	8	9	Û	C	1000	0	1000
.00110	19352	13	37	110	3 0	49	79	671	5	677
			H1			C1			M1	
		H+	H-	Но	H+	H-	Но	H+	H-	Но
		448	2	450	375	4	379	836	0	836
		200	1	200	144	1	145	533	1	534
		Ū	2	2	0	2	2	268	2	270
e		238	1	240	189	2	191	575	į	576
E4-2 20-300)		H2			C2			Ħ2	
	N	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101	8271	314	4.6	362	258	59	315	581	3	583
.0105	7908	14	0	14	2	0	2	789	0	789
.0510	4217	Ô	0	0	Ō	0	0	926	0	928
	20396	133	19	152	104	24	129	733	1	734
		,,,	H 1	+		C1	= *		WE	
		H+	H-	Ho	H+	H-	Но	H+	H-	Но
		358	0	358	282	0	282	726	0	726
		7	0	1	1	0	1	218	0	218
		3	1	1	0	1	1	193	1	194

E5-2									
20-300		H2			62			N2	
H	H+	H-	Ho	H+	H-	Ho	H+	H-	Ho
.00101 18585	188	18	204	142	23	166	710	(i	710
.0105 14634	0	0	0	Û	0	0	48;	0	48 i
.0510 7680	0	Û	0	0	C	0	480	0	480
.00110 38899	79	8	87	61	10	71	578	Û	578
		Ht			C1			Wi	
	H+	H-	Ho	H+	H-	Ho	H +	H-	Нo
	113	0	113	95	0	95	394	0	394
	Q	0	Ū	0	Ô	0	54	0	54
	0	Ō	Ö	0	0	Ö	51	8	6.2
	4.6	0	4.8	40	Č	40	208	0	200
E6-2	40	Ū	40	• ∪	U	+0	200	v	200
20-300		H2			£Z			N2	
У	H+	H-	Но	H+	H-	Но	H+	H-	Но
						24		0	492
.00101 27162	33	1	35	22	2		492		
.0105 23618	0	0	0	0	0	0	20	0	20
.0510 12262	0	0	0	0	0	0	52	8	52
.00110 63042	14	1	15	9	1	10	229	0	229
		#1			C1			#1	
	H+	H -	Ho	K+	H -	Но	H+	H-	Нo
	5	0	5	ž	0	ĵ	111	ij	111
	Ū	0	Đ	Û	Û	Û	4	8	4
	0	ũ	O	0	C	0	8	G	8
	2	0	2	2	0	2	5 1	0	51
E1-2									
20-386		H2			C2			W2	
N	# +	H-	Но	H+	H-	Но	H+	H-	Но
.00101 23189	0	Ç	G	G	0	0	126	0	126
.01~.05 20258	0	ŷ	0	٥	0	0	0	0	ð
.0510 10237	0	Û	0	Ō	0	Û	0	Û	0
.00110 53684	Û	0	0	0	0	ð	55	Û	55
1001 110 03004	v	Вt	•	•	۲í	•	••	N1	
	H+	H-	Ко	H+	H-	Но	H+	H-	Но
					" 0	0	14	., 0	14
	0	0	0					0	
	0	Û	0	0	0	Û	0		Û
	0	0	0	0	0	0	0	0	0
	0	0 .	C	0	0	0	£	0	8
5									
E8-2		04			C2			27	
20-300	11.5	H2	II.	11.		11.	11 1	#Z	ll a
N	H+	. H -	Но	H+	H-	Но	H+	H-	Но
004 04 55346		۸	n	٨	n	٨	0	Û	n
.00101 55318	0	0	0	0	0	0			6
.0105 48220	0	Û	0	0	0	0	0	0	0
.0510 24772	0	0	0	0	0	0	C	0	0
.00110 128310	9	0	0	0	0	0	0	0	0
		HI			C1			MI	
	#+	H-	Но	H+	H-	Но	H+	H-	Ho .
	0	0	0	0	0	0	0	Ō	0
	0	0	0	Û	0	0	0	0	Û
	0	0	0	0	0	0	0	Ð	0
	0	0	0	0	Û	C	0	Q	Û

				1 cola						
*******	*********					*******			=======	
X 1										
E1-1										
20- 50			H			C			Ħ	
	N	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101	1591	0	554	554	0	665	665	346	8	354
0105	1881	0	301	301	0	535	535	683	0	683
.0510	1514	0	110	110	0	665	865	951	0	951
.00110	4985	0	324	324	0	616	616	857	3	659
E2-1										
20- 68			H			C			Ņ	
	Н	H+	H-	Но	H+	H-	Ho	H+	H-	Но
.00101	989	0	11	11	0	46	4.5	510	0	510
.0105	1857	128	8	128	0	0	0	583	9	683
.0510	892	45	Q	45	0	0	0	733	0	733
.00110	3738	73	3	76	0	12	12	849	0	549
E3-1										
20- 60			В			C			Ñ	
	N	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101	1566	436	0	436	325	0	325	716	(716
.0105	1429	150	0	150	43	Ö	43	586	ò	586
.0510	887	0	0	C	Û	0	C	698	0	69E
.00110	3882	231	0	231	147	0	147	664	0	664
Q-1										
20- 60			Ħ			E			¥	
	N	H+	Н-	Но	H+	H-	Но	H±	H-	Но
.00101	1370	309	0	309	309	0	309	709	0	709
.0105	1341	8	Ô	0	0	0	0	549	Û	548
.0510	743	0	0	0	Ū	0	0	402	Ō	402
.00110	3454	123	0	123	123	0	123	581	Ö	581
5- 1										
20- 50			H			£			Ħ	
	N	H÷	H-	Но	H+	H-	Но	H+	H-	Но
.00101	2118	127	0	127	72	" 0	72	712		
.0105	1990	0	0	0	0	0	0	7 1 2 2 5 4	0 n	712 254
.0510	1068	0	6	0	Ū	0	0	109	0	254 109
.00110	5176	52	0	52	30	0	30	411	0	411
e_1										
6-1 20- 60			H			C			¥	
	N	H+	H-	Но	K+	H-	Но	H+	H	Но
.00101	2029	5	0	5	0	0	0	499	. 0	499
.0105	1877	0	0	0	0	0	0	0	0	0
.0510	1004	Ü	0	0	Ū	8	0	4	0	ė,
.00110	4910	2	Ō	2	0	0	0	207	0	207
7-1										
20- 60			Ħ			c			H	
	H	H+	H-	Но	. Н+	н-	Но	H+	H	Ho
.00101	336	0	0	O	0	0	0	208	0	208
.0105	308	0	0	0	0	0	0	0	0	0
.0510	166	0	0	0	0	0	0	.0	0	Ū
.00110	808		0							

N2

E1-1								_	
61-100		H			. €	11 -	11.6	Ņ.	U.
N	H÷	H-	Но	K+	K-	Ho	H+ 152	H- 60	Ho 212
.00101 4942	0	759	759 207	0	829 652	829 852	452	6	452
.0105 5345	0	397	397	0 0	690	690	819	0	819
.0510 3925	0	135	135	0	724	724	449	21	470
.00110 14212	0	451	451	U	124	1 24	443	21	470
E2-1									
61-100		H			C				
N	H+	H-	Но	H+	H-	Но	H+	H-	Ho
.00101 3191	0	18G	180	0	212	212	216	Û	216
.0105 5184	246	0	246	15	10	25	510	0	510 624
.0510 2776	144	0	144	0	20	20	624	(()	454
.00110 11151	150	51	202	7	87	94	454	Ų	206
E3-1									
61-100		H			C			¥	
N	H+	H-	Ho	H+	H-	Ho	H+	H-	Но
,00101 4639	320	18	338	3 0 2	42	344	484	0	18 L
.0105 4920	272	Û	212	210	0	210	436	0	485
.0510 3043	Û	(i	0	6	Û	9	567	Ð	567 505
.00110 12602	224	7	230	193	18	209	505	0	303
E4-1									
61-100		H			£			¥	
H	H+	Η·	Но	H+	H-	Но	H+	H-	Ко
.00101 5222	444	0	444	444	0	444	559	Û	559
.0105 5101	0	Û	0	0	0	0	496	0	496
.0510 2750	0	0	0	0	C	0	188	Û	188
.00110 13073	177	0	177	177	0	177	457	Û	457
E5-1									
61-100		H			C			Ř	
H	H+	H-	Но	H+	H -	Но	H+	H-	Но
.00101 9578	273	0	273	229	0	229	533	0	533
.0105 8843	8	0	8	0	0	0	275	0	275
.0510 4811	0	0	0	0	0	0	93	0	93
.00110 23232	116	0	116	95	0	95	344	0	344
E6-1									
61-100		Ħ			C		4.		
N	K+	H-	Но	K+	H-	Но	H+	H-	Но
.00101 15181	78	C	76	50	C	50	380	Û	380
.0105 14078	0	0	0	0	0	0	2	0	2
.0510 7612	0	0	0	0	0	0	0	0	0
.00110 36871	3 2	0	32	21	0	21	157	0	157
E7-1									
61-100		H			C			Ħ	
N	H+	H-	Нo	H+	H-	Но	H+	H-	Но
.00101 11139	0	0	0	0	0	0	93	0	93
.0105 10104	0	δ	0	0	0	0	0	0	0
.0510 5410	0	0	0	0	C	0	0	0	0
.00110 26653	0	0	0	0	0	0	39	0	3 9
	•••••		· · · · · · · · · · · ·						

E1-1			61			•			b r	
150-280	N	H+	H H-	Но	H+	€ H-	Но	H+	N H-	Но
.00101	804	ar C	866	866	, m	898	898	67	254	341
.0105	814	Ô	561	561	Ö	784	784	318	0	318
.0510	530	0	189	189	0	753	753	679	Û	678
.00110	2148	Û	583	583	Ö	819	819	321	95	416
E2-1										
150-200			H			c			Ŋ	
	N	K+	H-	Но	H+	H-	Но	H+	H-	Ho
.00101	549	0	517	517	0	594	594	122	84	186
.0105	770	226	4	230	126	94	219	403	0	403
.0510	462	229	8	229	24	87	110	802	Û	602
.00110	1781	157	161	318	51	245	307	368	20	387
E3-1										
150-200	sı		. H	9.5		. С			#	u.
.00101	N 669	H+ 199	H- 229	Ho 428	H+ 194	H- 283	Ho 477	H+ 305	H-	Ho 308
.0105	845	368	223	368	338	203 G	338	469	3 0	506 469
.0510	526		0	0	3.10	0	220	454	0	454
,00110	2040	218	ĩ 5	293	204	93	297	411	ì	412
E4-1										
150-200			H			E		•	ĸ	
	N	H+	H-	Но	H+	H-	Но	# +	H -	Ho
.00101	959	424	33	510	424	120	544	480	Ç.	480
.0105	851	102	0	102	Ū	0	0	454	0	454
.0510	447	21	0	27	Ç	Û	0	105	0	105
.00110	2257	224	36	261	180	51	231	396	Đ	396
E5-1 150-208			K			c			Ä	
130 200	N	H+	H-	Но	H+	H-	Но	H+	H-	Нo
.00101	1780	358	15	373	346	24	369	456	G	456
.0105	1745	78	0	78	50	8	50	360	0	360
.0510	927	Ç	0	0	O	0	0	182	C	182
.00110	4452	174	8	180	158	9	167	362	0	362
E6-1										
156-280			H			C			K	
	N	H+	H	Но	H+	H-	Но	H+	H-	Но
.00101	3564	253	0	253	222	8	222	423	Ū	423
.0105 .0510	3273 1 7 97	0	0 0	C f	0 0	0	0	48	0	4.8 1
.00110	8634	106	0	106	92	0	92	193	0	193
E7-1										
150-200			H			C			X	
	N	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101	3999	74	0	74	62	0	62	223	0	223
.0105	3615	0	0	0	0	0	0	0	0	Ū
.0510	1952	0	0	0	0	0	0	0	Û	0
,001-,10 E#-1	9566	31	0	31	26	0	26	93	0	93
150-200			8			£			ħ	
	N	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101	10153	0	0	0	8	0	0	14	0	14
.0105	9164	0	0	0	0	0	0	0	0	0
.0510 .00110	4909 24226	0 0	0 B	0	0 0	0 0	0	0 6	C 0	0 8
.00110	44440	U	V	U	U	V	U	D	U	Ç

E1-1 250-300			H			C			ķ	
230 300	N	H+	H-	Но	H+	H-	Но	H+	# H-	Но
.00101	1547		893	893		917	917	69	365	433
.0105	1494	9	629	629	0	825	825	281	0	281
.0510	943	0	214	214	0	764	764	585	ů.	585
	3984	0	633	633	0	846	846	271	142	412
E2-1										
258-300			H			C			ř	
	N	H+	H-	Но	H+	H-	Но	H+	H-	Ho
.00101	1028	0	629	629	0	681	681	101	171	272
.0105	1392	207	33	240	133	186	319	358	0	358
.0510	898	264	4	268	56	126	192	581	0	581
.00110	3318	158	210	368	74	323	397	339	53	392
E3-1										
250-300			H			Ç			K	
	N	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101	1260	14.1	383	525	138	439	517	223	8 1	3 0 4
	1648	391	0	391	368	0	368	465	0	465
.0516	962	0	()	J	9	0	0	415	Û	L 15
.00110	3870	213	125	337	202	143	345	374	26	400
E4-1										
250-300	1+	0.1	. "Н	11.5		į.	11.	11.1		0 -
.00101	N 1830	#+ 417	H- 170	Ho 588	H+ 4.17	H-	Ho	H+	H-	Ho
	1831	180	0	180	17	204 0	622 17	462 416	13 0	475 416
.0510	866	68	0	68	0	6	0	150	u (i	150
	4327	258	72	330	183	86	269	382	5	365
E5-1										
250-300	N	H+	¥ H-	ti a	U .	.	u.	tta	¥	ll.
.00101	N 3577	n v 3 f. 1	n- 77	Ho 439	H+ 353	H- 96	Ho 449	H+ 432	H- ()	Ho 432
	3425	118	0	118	58	0	88	452 368	0	368
	1881	0	0	0	Û	0	Ü	203	8	203
	8883	191	31	. 222	176	39	215	359	0	359
£6-1										
250-300			K			C			ĸ	
200 000	N	K+	H-	Но	H+	H-	Но	H+	Н-	Но
.00101	7496	317	5	321	291	7	298	429	0	429
	5941	16	0	16	10	0	10	116	0	116
	3721	0	Û	0	0	0	0	4	Û	4
.00110 1	8160	137	2	139	124	3	127	222	0	222
E7-1										
258-300			H			C			ĸ	
	N	H+	H-	Но	H+	H-	Ho	H+	H-	Ho
	9030	157	0	157	139	0	139	296	0	290
	823C	0	0	Û	0	0	0	0	0	0
	4459	0	0	0	0	0	Ű	0	0	Û
.00110 2 E8-1	1719	65	Ű	65	58	0	58	121	0	121
250-300			H			E			H	
	N	H+	H-	Но	H+	H-	Ho	Н+	H-	Но
	4613	6	6	6	5	0	5	26	0	26
.0105 4	0089	0	0	Û	0	0	0	0	0	0

============	:::::::::	2 :=========	colas		::::::::::::	:::::::::	========			
Ni										
E1-2										
20- 60			H2			C2			M2	
	N	H+	H-	Ho	H+	H-	Но	H÷	H-	Но
.00101	1591	Û	554	554	9	665	885	346	8	354
.0105	1881	0	301	301	0	535	535	683	G	683
.0510	1195	0	139	139	0	843	843	938	0	938
.00110	4667	Õ	346	346	0	658	658	833	3	636
1001 110	4001	•	H1	• • •	•	£1	•••		Kt	
		Н+	H-	Но	H+	H-	Но	H+	H-	Но
		171	228	399	80	298	378	953		953
		582	63	645	351	149	500	1000	Û	1000
		902	54	956	712	91	803	999	Õ	999
		524	117	641	351	185	536	984	Õ	984
		324	111	041	301	163	330	304	U	364
E2-2										
20- 50			K2			€2			M2	
70 00	N	H+	H-	Ho	H+	H-	Но	H+	H-	Но
.00101	983	0	11	11		46	46	507	"	507
.0105	1438	ů	0)	Ů	0	0	590	0	590
.0510	933	6	Û	, ()	Û	G	0	986	6	980
.00110	3354	0	3	3	0	13	13	67L	Đ	674
.00110	3334	U	H1	J	U	C1	13	0,4	¥1	074
		H÷	и. Н-	Но	H+	H-	Но	H+	H-	Но
					4 8 2		482	1000	0	1000
		613	0	6 † 3		0	402 541			782
		303	0	606	544	0		782	0	
		20	43	63	20	4.7	58	444	3.6	480
		445	12	457	380	13	393	752	16	762
F3 A										
E3-2			114			C2			M Ž	
20- 60	IJ	il i	#2 H-	Но	H+	H-	Но	H+	H-	Но
004 64	₩ ₩	H+					102	646		646
.00101	1250	266	0	266	102	0			0	
.0105	1360	19	0	f 9	0	0	0	936	0	936
.0510	696	0	0	0	0	8	0	1000	C	1000
.00110	3308	108	0	108	38	0	38	840	0	840
			H1		14.	C1			M1	
		H+	H-	Но	H+	H-	Но	H+	H-	Ко
		54.5	Ç	646	549	0	549	852	0	852
		67	4	71	60	4	64	435	4	440
		0	13	13	0	13	13	254	13	267
		272	5	276	232	5	237	555	5	559
E4-2						••				
20- 60			H2	14 -	41.	CZ		.	N2	11 -
	N	H+	H-	Но	H+	H-	Но	H+	H	Но
.00101	1329	378	0	378	316	0	316	868	0	866
.0105	1258	0	0	0	0	0	0	936	0	936
.0518	651	0	0	0	Ç	0	0	1000	0	1000
.00110	3238	155	Q.	155	130	0	130	920	0	920
			H1			C1			Rí	
		H+	H-	Но	#+	H~	Но	H+	H-	Ho
		376	0	376	319	8	319	878	0	676
		Û	1	1	e	i	1	225	1	228
		0	8	8	0	8	8	207	8	215
		154	2	156	131	2	133	407	2	409

E5-2										
20- 50			H2			£5			ΚŽ	
	N	K+	H-	Ho	H+	H-	Но	H+	H-	Но
.00101	1981	87	0	87	35	0	35	966	0	986
.0105	1753	0	0	0	0	0	C	667	Û	667
.0510	909	0	0	0	0	Ũ	0	913	C	913
.00110	4643	37	0	37	15	0	15	843	0	843
			Hi			Ci			Mit	
		H+	H-	Но	H+	H-	Ho	H+	H-	Но
		3.0	0	30	18	0	18	344	0	344
		0	û	0	C	0	0	120	Û	120
		Đ	1	1	0	1	1	182	1	163
		13	0	13	8	0	8	224	Û	224
E6-2										
20- 60			H2			CZ			KZ	
	N	H+	H-	Ho	H+	H-	Но	H+	H-	Ho
.00101	1916	0	0	0	0	 G	8	798	'' (i	798
.0105	1718	0	0	Ô	ů 0	Ô	Û	68	Õ	86
.0510	90 i	ū	Ç.	0	Û	Ç.	0	25 ē	Ç.	256
.00110	4535	Ó	0	0	0	0	Ü	422	9	422
,001 110	4030	v	H1	U	v	£1	V	424	R1	472
		8+	H-	Но	H+	H-	Но	H+	# ·	Но
		0 .		0	0	0	0	194		
		0	C	0	0		0		0	194
		Û	Ů	0		0		22	0	22
		Û	Û	Ü	0 ()	0	0	51	0	5 1
		U	U	U	U	0	Û	101	C	101
E7-2										
20- 60			H2			C2			N2	
	N	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101	335	0	£	0	0	O	Ç	475	0	475
.0105	256	Û	0	0	ΰ	0	0	8	Ö	8
.0510	134	C	e	Ō	C	0	Ō	22	ē.	22
.00110	725	Û	0	Õ	0	Õ	Ü	226	0	226
		•	B1 .	•	·	C I	•	220	N1	220
		H+	H-	Но	H+	H-	Но	H+	#. H-	Но
		0	, 0	8	0	., 0	0	134	0	134
		6	G	0	0	0	0	134	0	
		0	0	0	0	Û	0	7		0
		0	0 O	0	0	0	0	63	0	7
		V	U	V 	U	Ų	υ	0 3	0	63

44	
	7

E1-2									
61-100		HŽ			C2			M2	
N	H +	H-	Но	H+	H-	Но	H+	H-	Но
.00101 4942	Q	759	759	0	829	829	152	60	212
.0105 5345	0	397	397	0	852	652	452	0	452
.0510 3365	Û	158	158	0	805	805	788	0	788
.00110 13652	0	469	469	0	754	754	426	22	844
		H1			C1			Mi	
	H+	H-	Но	. ₩+	H-	Но	H+	H-	Ho
	83	346	429	45	428	473	742	5	748
	448	75	523	252	167	419	1900	0	1000
	922	4 †	983	755	18	832	1000	0	1000
	433	165	598	301	240	541	907	2	909
E2-2									
61-100		H2			62			M2	
N N	K +	H-	Но	H+	H-	Но	H+	H-	Но
.00101 3191	. 0	180	180	0	212	272	216	Ç	216
.0105 3715	0	0	0	0	14	14	316	G	316
.0510 2419	0	0	0	0	23	23	884	Û	684
.00110 9325	0	62	62	Đ	105	105	429	Õ	429
1001-110 3323	V	H1	0.2	Ü	£1	100	4.5	K i	423
	H +	H-	Но	H+	H-	Но	H+	H-	Ho
	322	0	322	264	" 0	264	966	., 0	966
	322 738	0	738	204 640	0	540	898	C	896
	120	16	136	120	16	136	495	15	511
	436	1 U	440	377	4	381	816	; J	820
	430	4	440	311	4	201	DIU	4	1110
E3-2									
61-100		H2			62			M2	
N	H+	H-	Ho	H+	H-	Но	H+	H-	Но
.00101 3565	132	23	155	98	55	153	329	0	329
.0105 4871	56	0	56	0	0	0	787	0	787
.0510 2552	0	0	0	0	0	0	1000	0	1000
.00110 10988	68	Ê	75	32	18	50	883	Û	688
		Hi			C1			N f	
	H+	H-	Но	H+	H-	Но	H+	H-	Но
	475	0	475	387	0	387	960	0	960
	197	0	197	138	0	138	509	Û	509
	0	0	0	0	0	Ð	229	0	229
	242	0	242	187	0	187	590	Û	590
E4-2									
61-180		H2			C2			M2	
N	H+	H-	Но	#+	H-	Но	H+	H-	Ко
.00101 4848	346	0	345	278	0	279	619	0	619
.0105 4262	3	٥	3	0	0	0	794	0	794
.0510 2290	0	0	Q	0	0	0	973	0	973
.00110 11400	148	Û	148	f 18	0	119	756	Û	758
		H1			£1			Ħi	
	H+	H-	Но	H+	H-	Но	H÷	H-	Но
	395	0	395	301	0	301	784	0	784
	0	0	0	0	0	Û	187	0	187
	Ō	0	0	Ō	0	9	228	Đ	228
	168	0	168	128	0	128	449	0	449
		•	. · ·		-				

E5-2										
61-100			H2			C2			M2	
	H	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101	9248	194	0	194	148	0	148	767	0	767
.0105	8208	0	0	0	Ō	0	0	530	0	530
.0510	4324	0	0	0	0	0	0	494	0	494
.00110	21780	83	0	83	63	0	63	623	0	623
			# 1			£1			W 1	
		H+	H-	Но	H+	H-	Но	H+	H-	Ho
		122	0	122	99	0	99	409	0	409
		0	0	0	8	0	0	54	Q.	54
		9	Ð	0	0	0	0	56	Ů	58
		52	0	52	42	0	42	205	0	205
E6-2										
61-189			H2			£2			MZ	
	¥	H+	H-	Ho	H+	H-	Но	H+	H-	Но
.00101	14428	17	0	17	9	0	9	551	Û	551
.0185	12592	0	0	0	0	0	O	21	0	21
.0510	8625	0	0	0	0	0	0	56	0	56
.00110	33645	7	0	7	7	0	4	255	G	255
			Ht			C 1			Kf	
		H+	H-	Но	H+	H-	Но	H+	H-	Но
		1	9	1	0	0	0	128	Đ	128
		0	Û	0	0	0	0	4	D	4
		0	6	0	Ō	8	Ō	5	Û	ô
		0	C	0	0	0	0	58	0	58
£7-2		-	•		-	-	·		-	• •
61-100			H2			C2			K2	
	N	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101	10411	0	0	0	0	0	0	151	0	151
.0105	9243	Ö	0	Ō	0	0	0	0	Õ	0
.0510	4541	0	0	0	0	0	0	0	0	0
.00110	24195	0	0	0	0	0	Ö	85	n	65
****		·	Hi	•	·	Ĉ1	•	••	N1	•
		H+	H-	Ho	H+	Н-	Но	H+	H-	Но
		0	0	0	0	"	0	18	0	18
		Û	0	0	0	0	6	0	0	Û
		0	0	0	0	0	0	0	0	0
		Û	0	0	0	0	G	8	0	8
		Ų	v	v	U	V	U	ō	Ų	0

E1-2										
150-200			H2			C2			M2	
	N	H+	H-	Но	H+	H-	Но	#+	H-	Но
.00101	804	C	868	865	. 0	898	898	87	254	341
.0105	814	0	561	581	0	784	784	318	0	318
.0510	485	0	206	206	0	823	823	649	0	649
.00110	2103	0	596	596	0	836	836	306	97	403
			H1			C1			Ki	
		H+	H-	Но	H+	H-	Но	H+	H-	Но
		50	510	560	32	578	611	404	37	442
		350	93	443	181	192	312	995	0	995
		926	33	959	763	14	837	1000	0	1000
		368	239	607	258	312	571	770	14	785
£2-2										
150-200			H2	.,		. C2	11		. R 2	
	N	H+	H-	Но	H+ .	H-	Но	H+	H-	Но
.00101	519	0	517	517	0	594	594	122	64	186
.0105	565	4	5	9	0	127	127	186	0	186
.0510	365	3	0	3	0	104	104	747	0	167
.00110	1497	2	192	194	0	293	293	306	23	329
			H1			£1	44.		#t	
		H+	H-	Но	H+	H-	Ho	H+	H-	Ho
		189	47	237	158	73	231	587	Û	587
		666	0	885	593	0	593	9 i S	0	949
		258	8	264	256	8	264 376	548 713	8 2	556 715
F3 4		386	15	405	347	25	310	113	2	715
E3-2 150-208			H2			€2			W2	
120-708	N	H+	H-	Но	H+	H-	Ho	H+	H-	Но
.00101	n 56€	7.6	269	345	76	333	408	181	ii	185
.0105	194	74	0	74	0	0	0	623	0	823
.0510	382	0	e e	Û	0	0	0	1089	Ĉ	1000
.00110	1744	58	88	146	25	108	133	562	1	563
. 901 - 110	1744	30	H1	140	2.5	C1	122	702	#1	555
		H÷	H-	Ко	H+	H-	Но	H+	H-	Но
		290	0	290	254	0	254	713	0	713
		258	Ô	258	186	Ō	186	613	0	613
		0	0	0	0	0	0	346	0	346
		212	0	212	167	8	167	587	0	587
E4-2										
150-200			H2			CZ			K2	
	N	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101	757	231	108	339	184	152	336	365	0	385
.0105	801	27	6	27	2	0	2	753	0	753
.0510	419	0	Đ	0	0	0	Û	874	8	874
.00110	1977	100	41	141	71	58	129	630	0	630
			H1			£1			N f	
		H+	H-	Но	H +	H-	Но	H+	H-	Но
		279	0	279	226	G	228	694	0	694
		19	0	19	1	0	f	237	0	237
		0	0	0	0	C	0	169	8	169
		114	0	114	87	0	87	398	0	398

E5-2 150-200 N			K2			62			#2	
120-740	u	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101	1781	217	15	232	183	24	207	573		573
.0105	1584	0	0	0	0	0	0	344	Ō	344
.0510	812	0	0	0	0	Û	0	3 1 5	G	315
.00110	4177	92	6	99	78	10	88	436	0	436
.001 .30	4177	J.L	H1 .	••	• •	C1			N 1	
		K +	H-	Но	H+	H-	Но	8+	K-	Ho
		137	0	137	124	0	124	459	0	459
		Û	0	0	0	0	0	3.5	G	3.5
		0	Ŏ	0	0	Ô	0	42	0	4.2
		58	0	58	53	D	53	217	0	217
E6-2		•	•	**	•	-				
150-200			H2			C2			#12	
130 200	N	H+	H-	Ho	H+	H-	Но	H+	H-	Но
.00101	3435	54	0	54	3.6	0	36	398	0	396
.0105	2982	0	0	0	0	0	0	1	Û	7
.05-,10	1550	Û	Ç	Ō	0	0	G	8	0	8
.00110	7957	23	0	23	15	0	15	175	Û	175
.001 110	1001		H1			61			N f	
		H+	R•	Но	H+	8-	Ко	H+	K-	Нo
		10	0	10	6	0	6	85	0	85
		0	0	Ç	0	0	0	ž	Û	7
		0	0	0	0	0	0	1	0	1
		4	G	4	3	0	3	38	0	3.8
£7-2										
150-208			H2			62			MŽ	
	N	K+	H -	Но	H+	H-	Но	H+	H-	Но
.00101	3758	1	e	ſ	O	0	8	99	Ç	99
.0105	3291	Û	0	9	0	Ū	0	0	0	0
.0510	1678	Ò	8	0	O	0	0	0	C	0
.00110	8121	0	0	0	0	0	0	43	0	43
			HS			Ct			#1	
		H+	H-	Но	H+	K-	Ho	# +	H-	Ho
		0	0	Û	0	0	9	10	0	10
		0	0	0	Û	0	0	0	0	0
		0	0	0	0	0	0	0	0	Û
		0	0	Û	0	0	0	4	0	4
E8-2										
150-200	!		H2			CZ			M2	
	H	H+	H-	Ho	H+	H-	Но	H+	H-	Но
.00101	9521	0	0	0	0	0	0	6	0	Û
.0105	8337	0	0	0	Û	0	0	0	0	0
.0510	4201	8	G	0	0	0	0	Û	Û	0
.00110	22059	0	0	0	0	0	0	0	0	Û
			81			C1			Ni	
		H+	H-	Но	H+	H-	Но	H+	H-	Но
		0	0	0	8	0	0	0	0	0
		0	0	0	0	0	0	C	0	0
		0	0	0	0	0	0	0	0	0
		0	0	0	0	8	Û	Ō	0	0

Κ¥

E1-2										
250-300			H2			C2			M2	
	N	H+	H-	Но	H+	H-	Но	H+	H~	Но
.00101	1547	0	893	893	0	917	917	69	365	433
.0105	1494	0	629	629	0	825	825	281	0	281
.0510	875	Û	231	231	0	823	823	553	0	553
.00110	3916	0	644	644	0	861	861	258	144	402
			Ki			C1			H1	
		H+	H.	Но	H+	H-	Но	H+	H-	Но
		42	580	622	21	650	617	309	15	384
		319	100	418	155	202	357	971	0	971
		929	31	960	763	72	835	1000	0	1000
		345	274	620	240	350	590	716	30	346
£2-2										
250-300			H2			C2			M2	
	N	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101	1028	£	629	629	G	681	681	101	171	272
.0105	1057	2	ŧ i	45	0	245	245	154	Û	154
.0510	131	1	5	12	0	153	153	670	0	670
.00110	2822	2	247	249	0	380	380	270	62	332
			81			£1			N.I	
		H÷	H-	Но	H+	H-	Но	H÷	H-	Но
		158	119	276	132	151	283	433	0	433
		801	Ū	661	537	0	537	938	0	938
		330	3	332	330	3	332	518	3	581
		369	į į	412	336	56	391	660	i	661
E3-2			114			63			Ħ2	
250-300		11.5	H2	114	H+	CZ H-	Но	H+	#	Но
	N 1150	H+	H- 424	Ho 485	59	486	545	140	90	229
.00:01	1138	6 i			j9 †	0	1	532	û	532
.0105	1405	74 45	0	74 45	ę.	0	0	1000	0	1000
.0510	771	63	0 146	209	21	167	188	506	31	537
.00110	3314	03	H1	203	21	CI	100	700	K1	55,
		Н+	H-	Но	#+	H-	Но	H+	H-	Но
		226	12	238	204	25	228	492	" 0	492
		303	0	303	204	0	223	667	G	567
		202	0	0	0	0	0	370	Č	370
		206	4	210	164	8	173	538	0	538
E4-2		200	•	210	104	U	11.5	534	•	
250-300			H2			€2			MZ	
230 300	N	H+	K-	Ho	H+	H-	Но	H+	H-	Но
.00101	1337	184	233	417	154	280	434	279	17	296
.0105	1587	47	0	47	9	C	9	679	0	679
.0510	857	Ĝ	Ō	0	0	0	Ō	779	0	179
.00110	3781	85	83	167	58	99	157	560	6	566
1001 110	2.0.	•	H1	,		ÇÍ			N1	-
		H+	H-	Но	H+	H-	Но	H+	H-	Ho
		251	0	251	209	0	209	586	0	586
		25	0	25	4	0	4	285	C	285
		0	0	0	0	0	0	99	0	99
		99	0	99	76	6	76	349	Q	319
		••			•					

£5-2										
258-380			H2			C2			#Z	
	N	H+	H-	Ho	H+	H-	Но	K +	H-	Но
.00101	3575	203	17	280	168	98	264	488	0	488
.0105	3089	0	0	0	0	0	0	318	0	316
.0510	1635	0	0	0	C	0	Ō	288	ŗ	286
.00110	8299	87	33	12 1	12	41	114	385	Ó	385
• • • • • • • • • • • • • • • • • • • •	****		Hi	1	• •	C1	117	763 N1	٧	J U J
		H+	K-	Но	Н+	K-	Но	M 1 H+	H-	Но
		123	n- 0	no 123	110		но 110			
						0		349	0	349
		0	0	0	0	0	0	24	0	24
		0	0	0	0	0	0	31	0	31
·		53	0	53	4.8	Q	48	165	0	185
E6-2										
250-300			H2			CZ			M2	
	N	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101	7383	65	5	70	4.6	7	53	341	0	341
.0185	6328	0	Ũ	0	0	0	0	5	0	5
.0510	3166	0	0	0	0	0	0	6	6	6
	18895	28	2	30	20	3	23	152	9	152
****	14444	• -	Hi	<i>4</i> v	• •	C1	٠.	144	e Ki	132
		H+	л: Н-	Но	H+	H-	Но	H+	Rí H-	Ha.
		n r 13		13						Ho
			0		ĝ	0	9	58	0	58
		0	()	0	0	0	0	1	0	1
		0	0	9	0	0	0	2	0	2
		£	0	3	4	0	4	30	G	30
£7-2										
256-300			H2			52			W2	
	N	H+	H-	Но	H+	H-	Но	H+	H-	Ho
.00101	8685	1	G	1	G	O	0	96	O	98
.0105	7468	0	0	ð	0	C	0	0	0	0
.0510	3884	0	0	Đ	0	0	0	0	O	Û
	20037	0	0	0	Đ	0	0	41	0	41
• • •	****		H3	-		C1 °	•	• •	¥1	71
		H+	H-	Но	H+	H-	Но	H+	# I	Ho
		0	0	ло 0	n 7 0					
		υ 0		U C		0	0	7	0	7
			0		Û	0	0	0	0	0
		0	0	0	0	0	0	0	0	0
		0	0	0	0	8	0	\$	0	3
_										
E8-2			_							
250-300			H2			£2			Ħ2	
	N	K+	H-	Но	H+	H-	Но	H+	H-	Но
	41782	0	0	0	0	0	0	0	0	0
	36387	0	6	0	0	0	0	0	0	0
	18617	0	Û	0	Û	0	0	Ō	0	0
	96786	0	Ō	Ö	0	0	0	Ô	Ö	0
•	•••••		RI	*	-	C1 °	-	•	N1	•
		H+	н- 	Но	H+	H-	Но	H+	H-	Но
		0	0	0	n 1	n- 0	0	n T	n- 0	ло 9
				=	=		-	0	Q Q	υ 0
		n	n.	44		41	••			
		0	0	0	0	0	9	-		
		0 0 0	0 0 0	0	U 0 0	0	0 0	0	0	0

e<=1.5

					uaa	cola				
	******	=======================================			::::::::::					
20-40			Yates			Conover			Mantel	
	N	H+	H-	Но	K+	H-	Ho	H+	H-	Но
.00101	466	0	410	410	0	545	545	588	0	586
.0105	586	0	267	267	0	418	478	871	0	871
.05-,10	486	0	97	97	0	654	654	1800	0	1000
.00110	1540	0	256	256	0	554	554	825	,	825
41- 60			Yates			Conover			Nantel	
	N	H+	H-	Ho	H+	H-	Но	H+	H-	Но
.00101	1125	0	614	614	Û	715	715	24€	12	258
.0105	1293	0	317	317	0	561	561	597	0	597
.0510	1028	0	116	116	0	670	670	928	0	926
.00110	3448	O	354	354	0	644	644	581	4	585
61- BO			Yates			Conover	11 -		Mantel	41
	ļļ	H+	H-	Но	H+	H-	Нõ	H+	H-	Ho
.00101	1983	0	123	723	0	804	804	173	37	210
.0105	2176	0	375	375	0	631	631	485	Ú	488
.0510	1642	0	131	131	0	879	679	6 3.6	Û	836
.00110	5803	0	425	425	0	704	704	478	13	491
81-100			Yates		11	Conover			#antel	0.4
	H	Hi	H-	Но	H+	H-	Но	H+	H-	Ho SAS
.00101	2959	0	783	783	0	847	847	138	75	213
.0105	3169	0	412	412	Û	666	666	429	0	429
.0510	2281	0	139	139	0	898	698	806	(·	808
.00110	8409	Ç.	468	463	Û	138	738	429	26 4	455
150-150	N		Yates		\$1.s	Conover	0.		Mantel	ti =
	N	H+	H-	Ho	H+	H-	Ho	K+	H-	Ho
.00101	319	0	856	858	0	893	B93	94	204	298
.0105	324	0	531	531	0	759	759	333	0	333
.0510	217	0	175	175	0	747	747	737	() 3.0	737
.00110	880	0	562	562	0	806	806	347	76	422
200-200			Yates			Conover	10-	0.1	Mante)	
	N	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101	485	0	872	672	0	901	901	82	287	369
.0105	490	0	582	582	0	800	800	308	0	306
.0510	313	0	198	198	0	757	757	639	() 100	639
.00110	1288	0	598	598	0	828	828	304	108	411
250-250	u	п.	Yates	II.a	II a	Conover	II.a	61 a	Mantel H-	Ho
	ii Car	H+	H-	Но	H+	H-	Ho	H+		
.00101	674	0	887	887	0	912	912	73	340	412
.0105	659	0	612	• 612	0	816	816	287	0	287
.0510	419	0	208	208	8 0	759	759	604	0	£04 411
.00110	1752	0	621	621	υ	840	840	280	131 Hantal	411
300-300	11	11.1	Yates	ll a	ti +	Conover	Uа	H+	Mantel U_	U۰
064 67	₩	K+	H-	Ho	H÷	H-	Ho		301 H-	FF C
.00101	873	0	898	898	0	921	921	65 277	384 n	449
.0105	835	0	642	642	0	831 767	831	277 571	0 0	211 511
.0510	524	0	219	219	0		767			
.00110	2232	G.	643	643	0	851	851	263	150	413

dos colas

20- 40		!	(ant∈l-H2		Cono	verdv-02		₩ā	nteiNv-A	iž
	N	Н÷	H-	Ко	H٠	H٠	Но	H÷	H-	Нo
00101	465	0	410	410	0	545	545	586	ΰ	586
.0105	588	0	267	267	0	478	478	87;	0	871
.0510	367	0	128	128	0	866	866	1000	0	1000
.00110	1421	0	278	278	0	600	600	811	C	811
			HaberCì		C	onoverCl-	01		MantelNN	i - ji 1
		К÷	H-	Нo	H+	H-	Ho	H+	H -	Ho
		266	176		122	232	354	939	£	98
		868	5.8		417	139	556	1000	(100
		883	63		5 76	95	171	997	C	99
		592	98	690	387	158	545	998	(99
41- 80		Нi	antel-H2		Conov	enNv+02		Nan	telHv-K2	}
	Ħ	H+	H-	Нc	Н÷	H-	Но	Н÷	H-	Нo
00101	1125	0	614	614	Û	715	715	245	12	258
.0105	1293	(i	317	317	Ũ	561	561	597	6	587
.0510	828	Ô	144	144	0	832	832	911	ı	911
001-,10	3246	0	376	376	0	684	584	555	Ł	558
		Habe	er01-81		Conove	rol-ci		Mante	INR-K1	
		∺ +	<u>Б</u> -	Кō	Я÷	۴٠	Нo	#+	Ĥ-	Жs
		132	250	381	62	3.25	388	933	0	939
		542	66	608	321	153	471	1000	6	1000
		911	5.0	960	728	89	8:8	1000	ŷ	1000
		494	125	819	335	197	532	979	C	\$75
51- 80		i	(antel-H2		Cono	verNv-C2		Ää	atelHv-M	12
	H	H+	H-	Но	H+	H -	Ho	H+	H-	Нo
00101	1983	Û	723	723	Ũ	804	408	173	37	210
.0105	2176	0	375	375	C	631	831	486	Ü	486
.0510	1385	9	155	155	Ũ	806	806	806	0	806
00110	5545	0	445	445	O	737	737	454	13	467
		Hab	erCl-Hi			n01-01			1 M- ANT	
		Н÷	H-	Ко	H+	H-	Нo	Н·	H-	К¢
		ô t	313	496	48	393	441	819	1	823
		472	72	544	271	160	431	1000	0	1000
		918	46	965	750	82	832	1000	0	1000
		118	152	600	311	224	535	935	1	937
81-100			iantel-H2			verNv-C2			ntel∺v-i	
	Ņ	H+	Н-	Ко	H+	H-	Но	H +	H-	Ho
			783	783	Û	847	847	138	75	213
00101	2959	0			6	666	866	429	0	i, 25
.00101	2959 3189	0	412	412						
00101 .0105	2959 3169 . 1979	0 0	160	160	0	805	805	778	0	776
00101 .0105	2959 3189	0 0 0	160 486	160 466	0	805 766	805 766	77 6 408	0 27	116 435
00101 .0105 .0510	2959 3169 . 1979	0 0 0	160 486 HaberCl-H	160 466 11	0 0 Con	805 766 overC1-C1	805 766	776 408 Ma	0 27 intelNN-N	776 435
00101 .0105 .0510	2959 3189 . 1979 8107	0 0 H+	160 486 HaberCl-H K-	160 466 11	0 0 Con H+	805 766 loverC1-C1 H-	805 766 Ho	776 408 Ha	0 27 intelNN-M H-	776 435 (1 Ho
00101 .0105 .0510	2959 3189 . 1979 8107	0 0 0 H+ 76	160 486 HaberCl-H H- 368	150 456 11 Ho 444	H+ Con H-	805 766 overC1-C1 H- 451	805 766 Ho 494	776 408 Ma H+ 690	0 27 intelNN-N H- 6	776 435 (1 Ho 637
.00101 .0105 .0510	2959 3189 . 1979 8107	0 0 H+	160 486 HaberCl-H K-	160 466 11	0 0 Con H+	805 766 loverC1-C1 H-	805 766 Ho	776 408 Ha	0 27 intelNN-M H-	776 435 (1 Ho

150-150		Н	antel-H2		Conc	verNv-C2		Ha	ntelNv-M3	?
	R	H+	H-	Но	H±	H-	Но	К÷	H -	Ho
.00101	319	0	858	856	0	893	893	94	204	298
.0105	324	Q	531	531	8	759	759	333	ũ	333
.0510	197	0	193	193	0	822	822	711	0	711
.00110	840	0	575	575	0	825	825	331	11	408
		На	berCl-Hi		Conc	verCl-Ct		Han	telnn-mi	
		H+	H-	Но	H+	H-	Ho	H+	H-	Нo
		5.0	483	533	31	549	580	461	25	486
		364	8.6	451	191	182	373	1000	0	1000
		924	36	959	186	7.6	843	1000	0	1000
		376	225	801	265	296	562	795	1	805
200-200		þ	lantel-H2		Cond	verNv-C2		Na	ntelhv-Ni	2
• • • • • • • • • • • • • • • • • • • •	N	K+	H-	Ho	H+	H-	Но	H+	H-	Ко
.00101	485	0	872	872	0	901	901	82	287	369
.0105	490	0	582	5 E 2	()	800	800	308	Û	308
.0510	288	0	215	215	0	823	823	608	Û	508
.00110	1263	Û	610	610	0	844	8 F F	290	110	400
		Ha	ber01-R1		Conc	overC1-Ci		Man	telnn-ni	
		K+	H-	Но	Н÷	H -	Но	H+	H-	Но
		49	528	517	33	598	631 .	367	45	412
		341	9.8	439	173	198	371	992	Û	992
		927	3 1	958	760	73	833	1000	0	1000
		363	248	610	253	323	576	754	17	771
250-250		.	lantel-H2		Cone	overNv-62		Ма	ntelNv-M	2
	H	+ H	H-	Но	Ħ+	Н-	Но	H+	H -	Но
.00101	674	0	887	887	0	912	912	73	340	412
.0105	859	0	612	612	0	816	816	287	Û	287
.0510	387	0	225	225	0	822	822	571	0	571
.00110	1720	0	633	633	0	855	855	267	133	400
		ŀ	laber01-H		Cor	noverCl-C	1	N a	ntelNN-M	1
		H+	H-	Но	Нt	Н-	Но	H+	H-	Но
		45	562	607	28	838	666	322	64	386
		328	100	426	152	199	361	983	Û	983
		930	28	959	161	12	940	1000	0	1000
		352	285	617	246	342	588	728	25	753
300-300		i	iantel-H2		Con	overNv-C2		Йá	ntelNv-K	2
	N	H+	H-	Но	H+	H-	Но	H÷	H-	Ho
.00101	873	0	898	898	0	921	921	6.5	384	449
.0105	B35	0	642	642	0	831	831	277	Û	211
.0510	£88	0	236	236	0	824	824	539	0	539
.00110	2196	0	653	653	Đ	865	865	251	153	403
		1	laberCl-H	1	Co	noverCl-C	1	Ma	intelN∦-K	f
		H+	H-	Но	# +	H-	Ко	H+	H-	Но
		& B	595	835	26	660	686	299	84	383
		3 1 3	99	412	149	205	353	962	0	962
		928	33	961	760	72	832	1000	0	1000
		341	281	622	238	356	592	707	33	740

1.5<=<=2.5

una cola Yates 20- 40 Conover Wantel Tates
H+ H- Ho
0 0 0
11 0 11
8 0 8
7 0 7 H+ H- Ho
0 0 0
0 0 0
0 0 0 H+ H- 804 C 825 O 915 C 841 O N Нο N .001-.01 281 804 825 .01-.05 560 .05-.10 259 0 915 841 .001-.10 1100 Conover Mantel Yates Conover Mantel No H+ H- Ho H+ H- Ho 41-60

* * *									
708	0	16	16	Û	64	64	393	0	393
1297	178	0	176	9	0	0	621	0	621
633	60	0	60	0	Ð	0	859	0	659
2638	101	į.	105	Ō	17	17	569	0	569
		Yates			Conover			Mantel	
N	H+	H-	Ho	K+	H-	Ho	H+	H-	Ho
1252	Û	106	105	0	195	195	251	Û	251
2135	245	0	245	. 2	5	7	538	Ü	536
1104	119	0	119	Û	7	7	830	O	630
4431	146	30	175	1	58	59	479	Q.	479
		Yates			Conover			Mantel	
N	H+	H-	Ho	H+	H-	Ho	K+		Ηō
1939	0	227	227	Û	321	321	193	0	193
3049	247	0	247	Ž4	14	37	492	Û	492
1672	161	Q	161	0	25	29	620	0	620
6660	153	66	220	11	107	118	437	0	437
		Yates						Mantel	
N	H+	H-	Но	H+		Но			Ηō
220	0	468	468	0					155
314	232								424
181	210								513
715	155	144	299	55		271	3 & 2		389
		Yates							
N	H+		Но	H+					Нo
329	0	550		Q.					207
458	221	7						-	388
281	242							-	594
1066	159	173	331	65		330	358		386
		Yates							
N	Н÷								Но
454									247
614									370
389									586
1457	159		360	12		378	345		389
									Но
				-					293
									348
509	267	8	275 375	73 75	132 336	204 411	578 334	0 80	578 394
1861	157	217							
	633 2638 N 1252 2135 1104 4431 N 1939 3049 1672 6660 N 220 314 181 715 N 329 456 281 1066 N 454 614 389 1457 N 478	633 60 2638 101 H H+ 1252 0 2135 245 1104 119 4431 146 H H+ 1839 0 3049 247 1672 161 6660 153 H H+ 220 0 314 232 181 210 715 155 H H+ 329 0 456 221 281 242 1066 159 N H+ 454 0 614 213 389 260 1457 159 N H+ 574 0 778 202	633 60 0 2638 101 4	633 60 0 60 2638 101 4 105 Yates N	633 60 0 60 0 0 20 0 260 0 260 101 4 105 0 0 72 72 8 129 201 360 72 72 8 129 201 360 72 72 8 125 1457 159 201 360 72 72 8 125 1457 159 201 360 72 72 72 8 125 1457 159 201 360 72 72 72 8 125 1457 159 201 360 72 72 72 8 125 1457 159 201 360 72 72 72 8 125 1457 159 201 360 72 72 72 8 125 1457 159 201 360 72 72 72 8 125 144 209 40 242 131	633: 60 0 60 0 0 0 0 17 2638 101 4 105 0 17	633 60 0 60 0 0 0 0 0 0 2638 101 4 105 0 17 17 17	633 60 0 60 0 0 0 0 659 2638 101 4 105 0 17 17 569	Series

dos	colas
***************************************	***************************************

20- 40		,	lante}-H2		Conc	overNv-C2		Na Na	ntelNv-N	2
20 40	N	H+	H-	Но	Н+	H-	Но	H+	H-	Нo
.00101	275	0	0	0	0	0	0	800	0	800
.0105	414	0	0	0	0	O	C	763	0	763
.0510	293	0	Õ	Ō	Ō	Ö	0	1000	0	1000
.00110	982	0	0	G	0	0	0	844	0	844
1001 110		H.a	iberCl-Hi	-	Cond	overC1-C1		Nan	telNN-Ni	
		H+	H-	Но	H+	H-	Но	H+	Н-	Но
		887	0	387	738	0	738	1000	0	1000
		510	0	510	481	0	481	734	0	734
		0	12	12	0	82	82	399	51	451
		463	21	485	409	24	434	709	15	724
41- 60		j	(antel-H2		Conc	overNv-C2		Nă	nteläv-A	2
41 60	N	H+	Н-	Но	H+	H-	Ко	H+	H-	No
.00101	708	0	16	16	0	64	64	393	C	393
0105	1024	0	G	0	Ō	Ð	Ç	521	Ū	521
0510	640	0	0	0	0	0	0	970	0	970
,00110	2372	G	5	5	0	19	19	604	0	604
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Ha	aberۓ-H1		Cone	overCl-Ci		Man	telmm-#1	
		H+	Н.	Но	H+	H-	Ho	H+	₩-	Но
		507	ΰ	507	383	C	383	1000	0	1000
		848	Ų	646	568	8	569	802	0	802
		30	3.0	59	30	3 1	6 †	464	3.0	494
		438	8	448	368	8	376	770	8	778
61- 80			(antel-H2		Con	overNv-C2		Ма	intelWv-M	Ž.
	H	Н÷	H-	Нo	H+	B -	Кo	H +	H-	Нo
.00101	1252	Ō	106	106	0	195	195	251	0	251
.0105	1537	Û	0	Û	Đ	7	7	355	0	355
.0510	1004	0	ð	0	0	8	8	912	0	512
.00110	3793	0	35	35	0	69	69	468	Û	488
		I	HaberCl-H	l†	Co	nover61-6	1	Na	intelNK-M	1
		H+	H-	Но	Hч	H -	Но	H÷	H-	Нo
		364	ß	364	296	0	298	998	0	998
		733	0	733	638	0	838	876	0	876
		91	20	111	91	20	111	480	19	499
		441	5	447	380	5	385	811	5	816
81-100		;	Mantel-H2	}		overNv-02		Жá	intelNv-M	12
	N	H+	H-	Но	H+	H -	Но	H+	Н-	Нo
.00101	1939	0	227	227	0	321	321	193	0	193
	2178	0	0	0	0		19	288	C	288
	1415	0	0	0	0	34	34	854	0	864
.00110	5532	0	80	B₽	0	129	129	402	0	402
		H	aber01-Hi		Con	overC1-C1			itelnn-mi	
		Ħ+	H-	Ho	H+		Но	, ∦+		Но
		296	0	296		0	243		0	946
		742	0	742		C	642	910	0	910
		141	13	153	141	13	154		13	519
		432	3	435	374	3	376	819	3 -	823

150-150		Йa	nt∈1-H2		Conor	verNV-02		Wan	telAv-H2	
130 130	N	Н+	H-	Но	H+	н-	Нο	H+	Н-	Нo
.00101	220	0	468	468	0	555	555	132	23	155
.0105	227	L	0	į.	Û	84	84	203	0	203
.0510	151	0	0	Ô	Û	93	93	781	0	781
.00110	598	2	172	174	0	259	259	323	8	331
100, 110	***	-	berCl-Hi		Con	overC1-C1			telww-mi	
		K+	K -	Ho	Н÷	H-	Ho	H+	H-	Но
		205	27	232	173	41	214	664	0	564
		692	0	692	612	0	612	943	0	943
		225	7	232	225	1	232	536	1	543
		395	12	406	353	17	370	737	2	739
200-200		ŀ	(antel-H2		Con	overNv-C2		Ná	intelKv-M2	
200 100	N	H+	H-	Ко	H+	H-	Нo	H+	H-	Но
.00101	329	0	 550	550	0	620	620	116	91	207
.0105	338	3	9	12	0	157	157	175	0	175
.05-,10	232	4	Ô	4	Ō	112	112	724	0	724
.00110	899	2	205	207	C C	315	315	295	33	326
. 401 110	000		iberCl-H1	• • •	•	overCl-Cl	• • •		ntelNH-Mi	
		H+	Н-	Но	Н÷	H-	Ho	H+	ķ -	Нo
		179	61	240	149	94	243	535	0	535
		648	0	648	58û	G	580	953	ū	95 3
		276	ÿ	384	276	9	284	556	9	565
		380	24	405	344	37	380	697	2	700
					*			u.	antelNv-H2	,
250-250	11		lantel-H2	li e		overHv-C2	W.e.			
	Ņ	H+	H -	Но	H+	H-	Ho 820	H +	H-	He
.00101	454	H+ 0	H- 612	612	9 H+	H- 670	570	H+ 104	H- 143	He 247
.00101	454 462	H+ 0 2	H- 612 32	612 35	0 0	H- 670 208	570 208	H+ 104 162	H- 143 0	Ho 247 162
.00101 .0105 .0516	454 462 322	H+ 0 2 6	H- 612 32 0	612 35 6	H+ 0 0 0	H- 670 208 143	570 206 143	H+ 104 162 683	H- 143 0 0	Ho 247 162 683
.00101	454 462	H+ 0 2 6 2	H- 612 32 0 237	612 35	0 0 0 0	H- 670 208 143 360	570 208	H+ 104 162 683 276	H- 143 0 0 53	Ho 247 162
.00101 .0105 .0516	454 462 322	H+ 0 2 6 2	H- 612 32 0 237 aberCl-H1	612 35 6 235	H+ 0 0 0 0 Con	H- 670 208 143 360 overC1-C1	670 206 143 360	H+ 104 162 683 276 Ma	H- 143 0 0 53 ntelkk-Mi	Ho 247 162 683 329
.00101 .0105 .0516	454 462 322	H+ 0 2 6 2 H+	H- 612 32 0 237 aberCl-H1 H-	612 35 6 235 Ho	H+ 0 0 0 0 Con	H- 670 208 143 360 overC1-C1 H-	670 206 143 360 Ho	H+ 104 162 683 276 Ha:	H- 143 0 0 53 53 nt=1MF-H1	Ho 247 162 683 329 Ho
.00101 .0105 .0516	454 462 322	H+ 0 2 6 2 H+ 163	H- 612 32 0 237 aberCl-H1 H- 101	612 35 6 235 Ho 264	H+ 0 0 0 0 Con H+ 134	H- 670 208 143 360 overC1-C1 H- 134	670 206 143 360 Ho 269	H+ 104 162 683 276 H+ 456	H- 143 0 0 53 53 ntelMk-M1 H- 0	Ho 247 162 633 329 Ho 456
.00101 .0105 .0516	454 462 322	H+ 0 2 6 2 H+ 163 613	H- 612 32 0 237 aberCl-H1 H- 101 C	612 35 6 235 Ho 264 613	H+ 0 0 0 0 Con H+ 134 550	H- 670 208 143 360 overCl-C1 H- 134	570 206 143 360 Ho 269 550	H+ 104 162 683 276 H+ 456 946	H- 143 0 0 53 53 nt=1MF-H1	Ho 247 162 633 329 Ho 456 946
.00101 .0105 .0516	454 462 322	H+ 0 2 6 2 H+ 163	H- 612 32 0 237 aberCl-H1 H- 101	612 35 6 235 Ho 264	H+ 0 0 0 0 Con H+ 134	H- 670 208 143 360 overC1-C1 H- 134	670 206 143 360 Ho 269	H+ 104 162 683 276 H+ 456	H- 143 0 0 53 53 ntelMh-M1 H- 0	Ho 247 162 633 329 Ho 456
.00101 .0105 .0516 .00110	454 462 322	H+ 0 2 6 2 H4 163 613 317	H- 612 32 0 237 aberC1-H1 H- 101 0 3	612 35 6 235 Ho 264 613 320 409	H+ 0 0 0 Con H+ 134 550 317	H- 670 208 143 360 overC1-C1 H- 134 0 3	670 206 143 360 Ho 269 550 320 387	H+ 162 683 276 H+ 456 946 571 669	H- 143 0 0 53 ntelNN-H1 H- 0 0	Ho 247 162 683 329 Ho 456 946 575 670
.00101 .0105 .0516	454 462 322 1236	H+ 0 2 6 2 H+ 163 613 317 371	H- 612 32 0 237 aberC1-H1 H- 101 C 3 36	612 35 6 235 Ho 264 613 320 409	H+ 0 0 0 Con H+ 134 550 317 337	H- 670 208 143 360 overC1-C1 H- 134 0 3 50	570 206 143 360 Ho 269 550 320 387	H+ 104 162 683 276 H+ 456 946 571 669	H- 143 0 53 ntelwk-H1 H- 0 0 3 1	Ho 247 162 633 329 Ho 456 946 575 670
.00101 .0105 .0516 .00110	454 462 322 1236	H+ 0 2 6 2 H4 163 613 317 371	H- 612 32 0 237 aberCl-H1 H- 101 C 3 36 Mantel-H2 H-	612 35 6 235 Ho 264 613 320 409	H+ 0 0 0 Con H+ 134 550 317 337	H- 670 208 143 360 overCl-C1 H- 134 0 3 50 overNv-C2 H-	570 206 143 360 Ho 269 550 320 387	H+ 104 162 683 276 M4+ 456 946 571 669	H- 0 0 53 ntelMk-M1 H- 0 0 3 1 antelMv-M2	Ho 247 162 633 329 Ho 456 946 575 670
.00101 .0105 .0516 .00110	454 462 322 1236 H 574	H+ 0 2 6 2 H4 163 613 317 371	H- 612 32 0 237 aberC1-H1 H- 101 0 3 36 Mantel-H2 H- 643	612 35 6 235 Ho 264 613 320 409	H+ 0 0 0 Con H+ 134 550 317 337 Con H+	H- 670 268 143 360 overC1-C1 H- 134 0 3 50 overNy-C2 H- 690	570 206 143 360 Ho 269 550 320 387 Ho 690	H: 104 162 683 276 H: 456 946 571 669	H- 143 0 0 53 ntelNk-H1 H- 0 0 3 1 antelNy-M2 H- 193	Ho 247 162 633 329 Ho 456 946 575 670
.00101 .0105 .0516 .00110	454 462 322 1236 N 574 595	H+ 0 2 6 2 H+ 163 613 317 371 H+ 0	H- 612 32 0 237 aberC1-H1 H- 101 0 3 36 Mantel-H2 H- 643 52	612 35 6 235 Ho 264 613 320 409 Ho 643 54	H+ 0 0 0 0 Con H+ 134 550 317 337 Con H+ 0	H- 670 268 143 360 overC1-C1 H- 134 0 3 50 overNv-C2 H- 690 274	570 206 143 360 Ho 269 550 320 387 Ho 690 274	H: 104 162 683 276 Ma: H: 456 946 571 669 M: H: 99	H- 143 0 0 53 ntelNN-M1 H- 0 3 1 antelNV-M2 193 0	Ho 247 162 633 329 Ho 456 946 575 670 Y
.00101 .0105 .0516 .00110	454 482 322 1236 H 574 595 415	H+ 0 2 6 2 H4 163 613 317 371 H+ 0 2 7	H- 612 32 0 237 aberC1-H1 H- 101 0 3 36 Mantel-H2 H- 643 52 1	612 35 6 235 Ho 264 613 320 409 Ho 643 54	H+ 0 0 0 0 0 0 0 134 550 317 337 Con H+ 0	H- 670 208 143 360 overC1-C1 H- 134 0 3 50 overNv-C2 H- 690 274 161	570 206 143 360 Ho 269 550 320 387 Ho 690 274 161	H: 162 683 276 H: 456 946 571 669 H: 99	H- 143 0 0 53 ntelNN-M1 H- 0 G 3 1 antelNV-M2 H- 193 0	Ho 247 162 633 329 Ho 456 946 575 670 Y
.00101 .0105 .0516 .00110	454 462 322 1236 N 574 595	H+ 0 2 6 2 H+ 163 613 317 371 H+ 0 2 7	H- 612 32 0 237 aberC1-H1 H- 101 C 3 36 Mantel-H2 H- 643 52 1 255	612 35 6 235 Ho 264 613 320 409 Ho 643 54 17 258	H+ 0 0 0 0 0 0 0 134 550 317 337 Con H+ 0 0	H- 670 208 143 360 overC1-C1 H- 134 0 3 50 overNv-C2 H- 690 274 161 395	570 206 143 360 Ho 269 550 320 387 Ho 690 274 161 395	H: 104 162 683 276 H: 456 946 571 669 H: 99 148 660 265	H- 143 0 0 53 ntelNN-M1 H- 0 3 1 antelNv-M2 193 0 70	Ho 247 162 683 329 Ho 456 946 575 670 Y
.00101 .0105 .0516 .00110	454 482 322 1236 H 574 595 415	H+ 0 2 6 2 H4 163 613 317 371 H+ 0 2 7	H- 612 32 0 237 aberC1-H1 H- 101 0 3 36 Mantel-H2 H- 643 52 1 255 HaberC1-H	612 35 6 235 Ho 264 613 320 409 Ho 643 54 17 258	H+ 0 0 0 0 Con H+ 134 550 31? 337 Con H+ 0 0	H- 670 208 143 360 overC1-C1 H- 134 0 3 50 overNv-C2 H- 690 274 161 395	570 206 143 360 Ho 269 550 320 387 Ho 690 274 161 395	H: 104 162 683 276 H4 456 946 571 669 H+ 99 148 660 265	H- 143 0 3 53 atelww-M1 H- 0 G H- 193 0 70 antelww-M	Ho 247 162 683 329 Ho 456 946 575 670 293 148 660 335
.00101 .0105 .0516 .00110	454 482 322 1236 H 574 595 415	H+ 0 2 6 2 H+ 163 613 317 371 H+ 0 2 7	H- 612 32 0 237 aberC1-H1 H- 101 0 3 36 Mantel-H2 H- 643 52 1 255 HaberC1-H	612 35 6 235 Ho 264 613 320 409 Ho 643 54 17 258	H+ 0 0 0 0 Con H+ 134 550 317 337 Con H+ 0 0 Co	H- 670 206 143 360 overCl-C1 H- 134 0 3 50 overNv-C2 H- 690 274 161 395 noverCl-C	570 206 143 360 Ho 269 550 320 387 Ho 690 274 161 395	H: 104 162 683 276 H4: 456 946 571 669 H+ 99 148 660 265	H- 143 0 0 53 ntelNN-M1 H- 0 3 1 antelNv-M2 193 0 70	Ho 247 162 683 329 Ho 456 946 575 670 293 146 660 335
.00101 .0105 .0516 .00110	454 482 322 1236 H 574 595 415	H+ 0 2 6 2 H4 163 613 317 371 H+ 0 2 7 3 H+	H- 612 32 0 237 aberCl-H1 H- 101 0 3 36 Mantel-H2 H- 643 52 1 255 HaberCl-H H- 132	612 35 6 235 Ho 264 613 320 409 Ho 643 54 17 258 1	H+ 0 0 0 0 Con H+ 134 550 317 337 Con H+ 0 0 Co	H- 670 208 143 360 overC1-C1 H- 134 0 3 50 overNv-C2 H- 690 274 161 395	570 206 143 360 Ho 269 550 320 387 Ho 690 274 161 395 1	H: 104 162 683 276 H4: 456 946 571 669 H+ 99 148 660 265 H+ 415	H- 143 0 0 53 ntelNk-M1 H- 0 G 3 1 H- 193 0 0 70 antelNN-M	Ho 247 162 683 329 Ho 456 946 575 670 293 148 660 335
.00101 .0105 .0516 .00110	454 482 322 1236 H 574 595 415	H+ 0 2 6 2 H4 163 613 317 371 H+ 0 2 7 3 H+ 153 592	H- 612 32 0 237 aberCl-H1 H- 101 0 3 36 Hantel-H2 H- 643 52 1 255 HaberCl-H H- 132	612 35 6 235 Ho 264 613 320 409 Ho 643 54 17 258 1 Ho 286 592	H+ 0 0 0 0 Con H+ 134 550 31? 337 Con H+ 0 0 Co Hi 131 528	H- 670 268 143 360 overC1-C1 H- 134 0 3 50 overNv-C2 H- 690 274 161 395 noverC1-C	570 206 143 360 Ho 269 550 320 387 Ho 690 274 161 395 1	H: 104 162 683 276 H4 456 946 571 669 H4 99 148 660 265 H+ 415	H- 143 0 0 53 ntelNN-M1 H- 0 4 193 0 70 antelNN-M H- 8	Ho 247 162 633 329 Ho 456 946 575 670 Ho 293 148 660 335 1
.00101 .0105 .0516 .00110	454 482 322 1236 H 574 595 415	H+ 0 2 6 2 H4 163 613 317 371 H+ 0 2 7 3 H+	H- 612 32 0 237 aberCl-H1 H- 101 0 3 36 Mantel-H2 H- 643 52 1 255 HaberCl-H H- 132	612 35 6 235 Ho 264 613 320 409 Ho 643 54 17 258 1	H+ 0 0 0 0 Con H+ 134 550 317 337 Con H+ 0 0 Co	H- 670 208 143 360 overC1-C1 H- 134 0 3 50 overNv-C2 H- 690 274 161 395 inoverC1-C H- 164 0	570 206 143 360 Ho 269 550 320 387 Ho 690 274 161 395 1	H: 104 162 683 276 H4: 456 946 571 669 H+ 99 148 660 265 H+ 415	H- 143 0 0 53 ntelNN-M1 H- 0 193 0 70 antelNN-M H- 0 0	Ho 247 162 633 329 Ho 456 946 575 670 293 146 660 335

2.5<e<=3.5

			ŧ	ına cola						
::::::::::	:::::				************	=======				
20-40			Yates			Onover		41.	Mantei	11.
	H	H+	H-	Но	H+	H-	Ho	H+	H-	Но
.00101	460	485	0	485	261	0	261	917	0	917
.0105	313	56	0	56	0	0	Û	718	0	718
.0510	239	0	0	0	0	0	0	824	0	824
.00110	1072	228	0	228	112	. 0	112	827	0	827
41- 60			Yates			Conover		21.	Mantel	11-
	N	H+	H-	Но	H+	H	Но	H+	H-	Ко
.00101	1106	416	0	416	352	0	352	633	0	633
.0105	1056	184	0	184	58	0	58	539	0	539
.0510	648	0	0	0	0	0	0	648	0	648
.00110	2810	233		233	160	. 0	160	801	0	601
61-80			Yates			Conover	11.	11.	Mantel	II.
	H	H+	H-	Но	H+	H-	Но	Ħ÷	H- -	Ho
.00101	1922	345	4	349	317	16	334	514	0	514
.0105	1942	248	0	248	171	0	171	499	0	499
.0510	1186	Û	Û	Û	0	0	0	593	0	593
.06110	5050	227	1	228	187	6	193	521	9	527
81-100			Yates			Conover			Kantel	
	Ŋ	H+	H -	Но	H+	H -	Но	Ħ+	H-	Ho
.00101	2717	302	28	330	291	δ1	352	463	0	4.63
.0105	2578	287	0	287	236	0	236	476	0	476
.0510	1857	0	Đ	0	O	Û	C	550	0	550
.00110	7552	222	10	232	198	22	220	u 9 O	0	490
150-150			Yates			Conover			Mantel	
	H	H+	H -	Но	H+	K -	Но	H+	H-	Ho
.00101	258	224	160	384	220	216	437	345	0	343
.0105	325	300	0	360	326	0	326	417	0	477
.0510	210	0	0	0	0	Û	0	471	0	471
.00110	803	220	54	274	205	12	278	431	0	431
200-200			Yates			Conover			Mantel	
	H	H+	H -	Но	H+	H-	Но	H+	H-	Нo
.00101	401	182	274	458	177	327	504	279	5	284
.0105	520	373	0	373	346	0	346	463	Û	463
.0510	316	Q	0	0	0	0	0	443	0	443
	1237	216	88	305	203	106	309	399	2	400
250-250			Yates			Conover			Mantel	
	N	K +	H-	Но	H+	H-	Ho	H+	H-	Но
.00101	548	151	350	502	148	407	555	237	51	294
.0105	717	388	0	388	364	0	364	464	0	464
.0510	423	0	0	0	0	0	0	428	0	428
.00110	1688	214	114	328	203	132	335	382	18	100
300-300			Yates			Conover			Mantel	
	N	H₹	H-	Но	H+	H-	Но	H+	H-	Ho
.00101	712	133	409	542	131	463	594	212	10	312
.0105	931	394	0	394	372	0	372	465	0	465
.0510	539	0	0	0	0	0	0	404	0	404
.00110	2182	212	133	345	201	151	352	368	33	400

dos colas

20- 40			Mantel-H2)	Con	overNv-C2	}	K	antelNv-i	12
•	N	H+	H-	Но	Ħ+	H-	Но	H+	H-	Ho
.00101	373	359	0	359	102	0	102	903	0	903
.0105	380	0	0	O	6	0	0	997	0	997
.0510	161	0	0	Ð	0	0	0	1000	C	1000
.00110	914	147	٥	147	42	0	42	960	Û	980
		Hā	berCl-H1		Cond	verC1-C1			telnn-mi	
		H+	H-	Ηø	H+	Н-	Но	H+	H-	НO
		574	0	574	528	0	528	788	0	788
		3	15	18	3	16	18	387	16	403
		0	43	43	0	43	43	323	43	366
		235	14	249	217	14	231	539	14	554
41- 60)		Mantel-H	12	€0	noverity-(2		kenteläv:	-H2
	K	H+	H-	Нo	Hŧ	H-	Но	H٠	H-	Se
.00101	877	226	G	226	101	. 0	101	537	ŷ	537
.0105	980	27	C	27	0	C	Û	912	(i	912
.0510	535	Û	G	0	0	0	0	1000	Û	1000
.00110	2392	94	0	94	37	0	37	794	0	794
			HaberCl-⊦			nover£1-(antel##-	
		H +	H-	Но	H+	H-	Но	Hł	H -	Ho
		676	0	676	558	0	553	879	0	879
		92	Û	92	82	0	82	454	0	454
		0	4	4	0	4	4	234	4	237
		286	1	286	238	I	239	561	1	5.6 f
61- 80			Wantel-Hi			overNv-C			antell(v-)	
	K	H+	Н-	Но	H÷	H-	Кo	H⁴	н.	Ho
.00101	1453	150	5	155	100	21	122	357	0	357
.0105	1909	54	0	54	0	0	0	831	0	831
.0510	1095	0	0	0	0	0	0	1000	0	1000
.00110	4457	72	2	74	33		40	718		718
			aber01-Hi			over61-6			ntelNN-M	
		H+	H-	Но	H+ 	H-	Ho	H+	H-	He nen
		538	0	538	425	0	425 124	950 479	0	950 479
		171	0	171	124	· ·				
		0 249	0	0 249	0 192	0 0	0 192	221 569	0	221 569
		243	v	243	132	U	132	503	Ü	303
81-100			Kantel-K			ioverNv-C			antelNv-	
	H	H÷	H-	Но	H+	H-	Ho	H+	H-	Ho
	2112	119	3.6	155	96	79	175	310	0	310
	2962	58	0	58	0	0	0	759	0	759
.0510		0	0	0	0	0	0	1000	0 0	1000 667
.00110	8531	65 H 3	12 berûl-Hi	78	31	25 overC1-C1	56	667 Man	telNN-N1	
	:	, na ∦+	K-	Но	H+	#-	Но	Kł.	H-	Но
		432	n - 0	432	361	1,	361	966	'' 8	966
		214	0	214	148	0	148	527	0	527
		0	0	0	0	0	0	235	0	235

150-150		Mantel-H2		Con	overNv-C2		Ka	ntelNv-H	2
130 130 N	H+	H-	Но	H+	Н-	Но	H+	H-	Ho
.00101 221	81	195	278	81	262	344	204	0	204
.0105 318	63	0	63	O O	0	0	664	0	664
.0510 150	Ő	Ō	0	0	0	0	1000	0	1000
.00110 589	55	δ2	118	26	84	110	589	0	589
,001-,10 505		aberCi-Ri	110		overCl-Cl			it∈lNN-Hi	
	.; Н+	H-	Но	H+	H-	Ко	H+	H-	Нo
	321	0	321	276	0	276	814	. 0	814
	255	0	255	170	0	170	597	0	597
	0	Ö	0	0	Ō	0	313	0	313
	221	Ū	221	167	0	167	605	0	605
	221	·			-				
200-200		Mantel-H2		Con	overNv-02		N.	antelikv-N	2
N	H+	H-	Нo	Н+	H-	Но	H÷	H-	Нo
.00101 347	12	317	389	72	378	450	157	6	173
.0105 476	82	0	82	0	0	0	597	Đ	537
.0510 232	0	Û	Û	0	0	0	1000	0	1009
.00110 1055	61	104	165	24	124	148	544	2	548
	На	ber01-Hi		Cono	verCl-C1		Man	teinn-mi	
	H+	H-	Ho	H+	H-	Но	H+	К-	Ho
	27 t	0	271	239	Ð	239	648	0	648
	261	Q.	261	197	0	197	524	0	824
	0	0	0	0	0	0	366	0	366
	207	0	207	188	0	168	575	0	575
250-250		Nantel-H2			overNv-02			antelNv-M	
250-250 N	H+	Nantel-82 H-	Но	H+	H-	Ho	H+	K٠	Но
			Ho 455	H+ 6:	H- 455	Ho 516	H+ 147	K∙ 63	Ho 210
N	H +	H- 392 0	Ho 455 74	H+	H- 455 0	Ho 516 2	H+ 147 546	63 0	Ho 210 546
.00101 490	H+ 53 74 45	H- 392 0 0	Ho 455 74 45	H+ 6 t 2 0	H- 455 0	Ho 516 2 0	H+ 147 546 1000	63 0 0	He 210 546 1000
.00101 490 .0105 621	H+ 53 74 45 64	H- 392 0 0 133	Ho 455 74 45 197	H+ 6: 2 0 2:	H- 455 0 0 155	Ho 516 2 0 176	H+ 147 546 1000 515	63 0 0 21	Ho 210 546 1000 536
.00101 490 .0105 621 .0510 332	H+ 53 74 45 64	H- 392 0 0 133 labercl-Hi	Ho 455 74 45 197	H+ 6: 2 0 21 Con	H- 455 0 155 overCl-C1	Ho 516 2 0 176	H+ 147 546 1000 515 Ha	H- 63 0 0 21 atelNN-M:	HG 210 546 1000 538
.00101 490 .0105 621 .0510 332	H+ 53 74 45 64 H+	H- 392 0 0 133	Ho 455 74 45 197 Ho	H+ 6 t 2 0 2 1 €on	H- 455 0 0 155 overCl-C1 H-	Ho 516 2 0 176 Ho	H+ 147 546 1000 515 H+	K- 63 0 0 21 ntelNN-M: H-	Ho 210 546 1000 536 Ho
.00101 490 .0105 621 .0510 332	H+ 53 74 45 64 H+ 239	H- 392 0 0 133 labercl-Hi	Ho 455 74 45 197 Ho 245	H+ 6 t 2 0 21 €on H+ 216	H- 455 0 0 155 overCl-C1 H- 18	Ho 516 2 0 176 Ho 235	H+ 147 546 1000 515 H+ 533	K- 63 0 0 21 atelNW-M: K- 0	Ho 210 546 1000 536 Ho 533
.00101 490 .0105 621 .0510 332	H+ 53 74 45 64 H+	H- 392 0 0 133 HaberCl-Hi	Ho 455 74 45 197 Ho 245 296	H+ 61 2 0 21 Con H+ 216 221	H- 455 0 0 155 overCl-C1 H- 18	Ho 516 2 0 176 Ho 235 221	H+ 147 546 1000 515 H= 1000 515	H- 63 0 0 21 atelnn-M: H- 0 0	Ho 210 546 1000 536 Ho 533 657
.00101 490 .0105 621 .0510 332	H+ 53 74 45 64 H+ 239 296	H- 392 0 0 133 HaberC1-Hi H- 6 0	Ho 455 74 45 197 Ho 245 296	H+ 61 2 0 21 €on H+ 216 221	H- 455 0 0 155 overCl-C1 H- 18 0	Ho 516 2 0 176 Ho 235 221	H+ 147 546 1000 515 H+ 533 657	H- 63 0 0 21 ntelnn-m: H- 0 0	Ho 210 546 1000 536 Ho 533 657 358
.00101 490 .0105 621 .0510 332	H+ 53 74 45 64 H+ 239 256	H- 392 0 0 133 1aberC1-Hi ∺- 6 0	Ho 455 74 45 197 Ho 245 296	H+ 61 2 0 21 Con H+ 216 221	H- 455 0 0 155 overCl-C1 H- 18	Ho 516 2 0 176 Ho 235 221	H+ 147 546 1000 515 Ma H+ 533 657 358	H- 63 0 0 21 atelnn-M: H- 0 0	Ho 210 546 1000 536 Ho 533 657 358
N .00101 496 .0105 621 .0510 332 .00110 1443	H+ 53 74 45 64 H+ 239 296	H- 392 0 0 133 1aberC1-H1 H- 6 0	Ho 455 74 45 197 Ho 245 296 0	H+ 61 2 0 21 €on H+ 216 221 0	H- 455 0 155 over€1-C1 H- 18 0 0	Ho 516 2 0 178 Ho 235 221 0	H+ 147 546 1000 515 M= H+ 533 657 358 546	H- 63 0 0 21 ntelNN-M: H- 0 0	Ho 210 546 1000 536 Ho 533 657 358 546
.00101 490 .0105 621 .0510 332 .00110 1443	H+	H- 392 0 0 133 1aberC1-H1 H- 6 0 2 Wante1-H2	Ho 455 74 45 197 Ho 245 296 0 211	H+ 61 2 0 21 Con H+ 216 221 0 168	H- 455 0 0 155 overCl-C1 H- 18 0 0	Ho 516 2 0 176 Ho 235 221 0 175	H+ 147 546 1000 515 H+ 533 657 358 546	H- 63 0 21 ntelNM-H: H- 0 0 0	Ho 210 546 1000 536 Ho 533 657 358 546
.00101 496 .0105 621 .0510 332 .00110 1443	H+	H- 392 0 0 133 laberC1-Hi H- 6 0 2 Wante}-H2	Ho 455 74 45 197 Ho 245 296 0 211	H+ 61 20 21 Con H+ 216 221 0 168	H- 455 0 155 overCl-C1 H- 18 0 0 E	Ho 516 2 0 176 Ho 235 221 0 175	H+ 147 546 1000 515 H+ 533 657 358 546	H- 63 0 21 atelNN-M: 0 0 0 antelNv-I	Ho 210 546 1000 536 Ho 533 657 358 546
300-300 30001 300-300 148	H+ 53 74 45 64 H+ 239 256 0 209	H- 392 0 0 133 HaberC1-Hi H- 6 0 0 2 Wantel-H2 H- 449	Ho 455 74 45 197 He 245 296 0 211	H+ 61 2 0 21 Con H+ 216 221 0 168 Cor H+	H- 455 0 155 overCl-C1 H- 18 0 0 6	Ho 516 2 0 176 Ho 235 221 0 175	H+ 147 546 1000 515 H+ 533 657 358 546	H- 63 0 21 atelNM-M: H- 0 0 0 0 antelNv-M: H- 110	Ho 210 546 1000 536 Ho 533 657 358 546
300-300 300-300 1.0501 300-300 1.00101 30101 30101 30105	H+ 53 74 45 64 H+ 239 296 0 209	H- 392 0 0 133 laber C1 - H1 H- 6 0 2 Wantel - H2 H- 449 0	Ho 455 74 45 197 Ho 245 296 0 211	H+ 61 2 0 21 €con H+ 216 221 0 168 Con H+ 57	H- 455 0 155 overCl-C1 H- 18 0 0 6 overHv-C: 509	Ho 516 2 0 178 Ho 235 221 0 175 Ho 566	H+ 147 546 1000 515 H+ 533 657 358 546 H+	H- 63 0 21 ntelNN-M: H- 0 0 antelNy-1 H- 110	Ho 210 546 1000 536 Ho 533 657 358 546 Ho 244
300-300 300-300 10105 300-300 10101 30101 30101 30101 30101 30101 30101 30101 30101 30101 30101 30101	H+ 63 74 45 64 H+ 239 296 0 209 H+ 59 74 46	H- 392 0 0 133 laber C1 - H1 6 0 0 2 Wantel - H2 449 0	Ho 455 74 45 197 Ho 245 296 0 211 Ho 508 74	H+ 61 2 0 21 €con H+ 216 221 0 168 Cor H+ 57 1	H- 455 0 155 overCl-C1 H- 18 0 0 6 overHv-C: 509 0	Ho 516 2 0 178 Ho 235 221 0 175 Ho 566 1	H+ 147 546 1000 515 M= H+ 533 657 358 546 H+ 134 520 1000	H- 63 0 21 ntelNN-M: H- 0 0 0 antelNy-l 110 0	Ho 210 546 1000 536 Ho 533 657 358 546 Ho 244 520 1000
300-300 300-300 1.00101 300-300 1.00101 30101 30101 30105	H+ 63 74 45 64 H+ 239 296 0 209 H+ 59 74 46 62	H- 392 0 0 133 laberC1-H1 H- 6 0 2 Wante]-H2 449 0	Ho 455 74 45 197 Ho 245 296 0 211 Ho 508 74 46 218	H+ 61 2 0 21 €con H+ 216 221 0 168 Cor H+ 57 1 0 20	H- 455 0 155 overCl-C1 H- 18 0 0 0 6 overHv-C: 509 0	Ho 516 2 0 178 Ho 235 221 0 175 Ho 566 1	H+ 147 546 1000 515 M= H+ 533 657 358 546 M+ 134 520 1000 499	H- 63 0 21 ntelNN-M: H- 0 0 antelNv-l 110 0 38	Ho 210 546 1000 536 Ho 533 657 358 546 Ho 244 520 1000 537
300-300 300-300 10105 300-300 10101 30101 30101 30101 30101 30101 30101 30101 30101 30101 30101 30101	H+ 63 74 45 64 H+ 239 256 0 209 H+ 59 74 46 62	H- 392 0 0 133 1aberC1-H1 H- 6 0 2 Mantel-H2 449 0 156 1aberC1-H1	Ho 455 74 45 197 Ho 245 296 0 211 Ho 508 74 46 218	H+ 61 2 0 21 Con H+ 216 221 0 168 Cor H+ 57 1 0 20 Cor	H- 455 0 155 over£1-c1 H- 18 0 0 E overHv-C3 H- 509 0 176 over£1-c	Ho 516 2 0 175 Ho 235 221 0 175 Ho 566 1 97	H+ 147 546 1000 515 M= H+ 533 657 358 546 M+ 134 520 1000 499 Ma	H- 63 0 21 ntelNN-M: 0 0 0 antelNv-H 110 0 38 ntelNN-M	Ho 210 546 1000 53E Ho 533 657 358 546 HO 244 520 1000 537
300-300 300-300 10105 300-300 10101 30101 30101 30101 30101 30101 30101 30101 30101 30101 30101 30101	H+ 53 74 45 64 H+ 239 256 0 209 H+ 59 74 46 62 H+	H- 392 0 0 133 HaberC1-Hi H- 6 0 2 Wante]-H2 H- 449 0 156 HaberC1-H1	Ho 455 74 45 197 He 245 296 0 211 Ho 508 74 46 218	H+ 61 20 21 Con H+ 57 1 0 20 Con H+	H- 455 0 155 overC1-C1 H- 18 0 0 6 overHv-C2 H- 509 0 176 ioverC1-C	Ho 516 2 9 176 Ho 235 221 0 175 Ho 566 1 97	H+ 147 546 1000 515 H+ 533 657 358 546 H+ 134 520 1000 499 Ma	H- 63 0 21 ntelNN-M: H- 0 0 0 antelNv-F 110 0 38 ntelNN-M: H-	Ho 210 546 1000 536 Ho 533 657 358 546 Ho 244 520 1000 537 Ho Ho
300-300 300-300 10105 300-300 10101 30101 30101 30101 30101 30101 30101 30101 30101 30101 30101 30101	H+ 53 74 45 64 8 H+ 239 296 0 209 H+ 59 74 46 62 H+ 216	H- 392 0 0 133 HaberCl-Hi 6 0 2 Mantel-H2 449 0 156 HaberCl-H1	Ho 455 74 45 197 Ho 245 296 0 211 Ho 508 74 46 218	H+ 61 20 21 Con H+ 57 1 0 20 Cor H+ 194	H- 455 0 155 overCl-C: H- 18 0 0 6 overHv-C: H- 509 0 176 everCl-C: H- 29	Ho 516 2 0 176 Ho 235 221 0 175 Ho 566 1 97 1 Ho 224	H+ 147 546 1000 515 H+ 533 657 358 546 M H+ 134 520 1000 499 Ma H+	H- 63 0 21 ntelNN-M: H- 0 0 0 antelNv-1 110 0 38 ntelNN-M: H- 0	Ho 210 546 1000 538 Ho 533 657 358 546 HO 244 520 1000 537
300-300 300-300 10105 300-300 10101 30101 30101 30101 30101 30101 30101 30101 30101 30101 30101 30101	H+ 53 74 45 64 H+ 239 296 00 209 H+ 59 74 46 62 H+ 216 309	H- 392 0 0 133 laberC1-H1 H- 6 0 2 Wante1-H2 449 0 156 HaberC1-H1 H- 17	Ho 455 74 45 197 Ho 245 296 0 211 Ho 508 74 46 218 Ho 233 309	H+ 61 2 0 21 Con H+ 57 1 0 20 Cof H+ 194 224	H- 455 0 155 overCl-C: H- 18 0 0 6 overHv-C: 509 0 176 overCl-C H- 29	Ho 516 2 0 178 Ho 235 221 0 175 Ho 566 1 97 Ho 224 224	H+ 147 546 1000 515 H+ 533 657 358 546 H+ 134 520 1000 499 Ma H+ 461 675	H- 63 0 21 ntelNN-M: H- 0 0 antelNV-F 110 0 38 ntelNN-M H- 0	Ho 210 546 1000 536 Ho 533 657 358 546 Ho 244 520 1000 537 1
300-300 300-300 10105 300-300 10101 30101 30101 30101 30101 30101 30101 30101 30101 30101 30101 30101	H+ 53 74 45 64 8 H+ 239 296 0 209 H+ 59 74 46 62 H+ 216	H- 392 0 0 133 HaberCl-Hi 6 0 2 Mantel-H2 449 0 156 HaberCl-H1	Ho 455 74 45 197 Ho 245 296 0 211 Ho 508 74 46 218	H+ 61 20 21 Con H+ 57 1 0 20 Cor H+ 194	H- 455 0 155 overCl-C: H- 18 0 0 6 overHv-C: H- 509 0 176 everCl-C: H- 29	Ho 516 2 0 176 Ho 235 221 0 175 Ho 566 1 97 1 Ho 224	H+ 147 546 1000 515 H+ 533 657 358 546 M H+ 134 520 1000 499 Ma H+	H- 63 0 21 ntelNN-M: H- 0 0 0 antelNv-1 110 0 38 ntelNN-M: H- 0	Ho 210 546 1000 538 Ho 533 657 358 546 HO 244 520 1000 537

3.5<e<=4.5

.01-.05

.05-.10

.001-.10

918

485

2427

187

7.2

260

una cola Conover Mantel 20- 40 Yates H-H -Нο H-H٠ Нο H+ H+ Ho 923 923 0 313 173 Ð 173 173 0 173 .001-.01 0 693 0 Û O 693 0 .01-.05 313 0 0 0 6.12 612 .05-.18 170 Ô Û 0 0 0 0 756 58 68 0 68 786 0 68 0 .001-.10 796 Conover Hantel 41-60 Yates H-H+ H-Нο H+ Ho N H+ H-Ηo 0 616 350 0 646 1057 350 0 350 350 .001-.01 0 505 0 505 0 O .01-.05 1028 0 0 ٥ 340 G 340 G 0 ß Û 0 0 .05-.10 573 139 0 139 526 0 526 139 0 139 .001-.10 2658 Mantel Conover £1- 86 Yates H٠ H-Ho H+ He Ħ H-Нο H٠ 567 Ç 431 567 Û .001-.01 2038 431 Û 431 431 493 0 498 0 0 0 ß 0 0 .01-.05 1998 0 0 Û 238 ſı 238 0 0 .05-.10 1100 Û 470 8 470 171 Û 171 0 .001-.10 5134 171 171 Mantel Conover 81-100 Yates H-К÷ H-Но H+ Но H+ H-Ho R 554 152 554 451 Û 451 451 - 1 n .001-.01 3184 Û 0 0 0 495 495 .01-.05 3105 Û 0 155 ' 155 G 0 0 0 Ū Û 0 .05-.10 1650 181 Û 448 0 443 181 Û 181 .001-.10 7939 181 Mantel 150-150 Yates Conover H-H -H+ H-Нο H+ Ho Η÷ Hο N 87 513 489 0 689 428 53 473 426 .001-.01 380 0 463 45 Û 0 0 463 45 n .01-.05 337 97 97 Û 0 Ü (i 11 Û .05-.10 135 - 11 402 0 402 37 219 .801-.10 201 22 223 182 892 Conover Hantel 200-200 Vates Κο Нŧ Н-Ηo H+ H -Нο Η÷ Н-N 565 Û 473 142 473 .001-.01 423 107 530 423 579 Û Û 447 0 447 140 Û .01-.05 θ 140 514 110 110 0 0 Λ .05-.10 272 3.7 0 37 Ç 179 60 391 0 391 1365 24.0 4.5 285 240 .001-.10 Mantel Yates Conover 250-250 H+ H-H-H+ Н-Нο Нο Нο N H+ 470 182 603 467 4 806 421 150 571 421 .001-.01 7 0 422 ß 170 7 0 422 .01-.05 713 170 0 Û 142 ß 142 63 0 63 0 .05-.10 381 318 181 11 258 385 2 386 255 64 .001-.10 1900 Mantel Yates Conover 300-300 H٠ H-H+ H-Ηû H-Но Но H+ N 637 459 20 479 415 222 662 .001-.01 1024 415 187

24

0

184

0

0

34

24

0

278

187

72

339

0

Û

79

0

Я

411

157

380

411

157

dos colas

20- 40			Nantel-H	2	Cor	ioverHv-C	2	MantelNy-M2		
	Ħ	H÷	H-	Но	H+	H-	Но	Нŧ	H-	Нo
.00101	309	291	0	291	236	0	236	1000	0	1000
.0105	265	0	0	Û	0	0	Ô	1000	Û	1000
.0510	153	0	0	O	0	0	Ō	1000	0	1000
.00110	121	124	0	124	100	0	100	1000	0	1000
			aber01-H		Con	overCl-C			ntelNN-∺	
		H÷	H -	Но	H+	H-	Но	∦+	H-	Но
		197	0	197	155	0	155	547	0	547
		0	4	4	0	4	4	275	4	279
		0	33	33	0	33	33	235	33	268
		84	8	92	6.6	8	74	382	8	391
				_			_			
41- 60			Kantel-H:			overNv-C			lantelNv-l	
	N	H+	H	Но	H+	K-	Нo	H+	H -	Нο
.00101	1020	404	8	404	340	0	340	825	0	825
.0105	993	C	Û	0	0	Û	Û	918	0	916
.0510	498	0	0	0	0	Û	Û	1000	Û	1000
.00110	2511	164	0	164	138	Đ.	138	897	Û	897
			aberCl-H			overC1-C			ntelMW-M	
		H+	H-	ho	X 1	H-	Но	H÷	К-	Sō
		430	0	±30	369	0	369	716	Ð	716
		Q ·	0	6	0	0	Û	211	0	211
		Ú	0	0	Ü	0	0	199	0	199
		175	Û	175	150	Û	150	414	Û	414
81-80			Maatel-Hi			overNv-C	2	H	antelNv-A	42
	N	H+	H-	Ho	H+	H-	Но	Нŧ	H -	Ηō
.00101	1939	366	0	366	297	0	297	875	0	675
.0105	1698	0	0	0	0	0	O	822	0	822
.0510	901		0	0	0	0	0	994	0	994
.00110	4536	156	0	156	127	0	127	793	0	793
			aber01-Hi			overC1-C			nteinn-m	
		H÷	H-	Ho	H÷	H-	Но	H+	Н-	Ко
		425	0	425	320	0	320	710	0	770
		0	0	0	0	0	0	186	0	186
		0	0	0	(37	0	0	235	0	235
		182	Û	182	137	0	137	445	0	445
81-100			Mantel-H2			overNv-C2		H	antelNv-k	12
	H	H+	H-	Но	H+	H-	Но	H+	K-	Нo
.00101	2909	333	0	333	266	1	266	583	0	583
.0105	2564	4	0	4	0	G	0	115	0	775
	1389	0	0	0	0	0	0	960	0	960
.00110	6862	143	0	143	113	0	113	731	. 0	731
			berCl-Hi			verC1-C1			telnn-ni	-
		#+ 2.25	∦- ^	Но	H+	H-	Ho	H+	H	Ho
		375	0	375	289	0	289	793	0	793
		0	0	0	0	0	0	187	0	187
		0	0	0	0	0	0	222	0	222
		159	0	159	123	Đ	123	451	0	451

150-150	Mantel-H2			Cor	noverKv-82	2	NantelNv-M2			
	N	Вŧ	H-	Но	H+	Н-	- Но	H+	Н-	Ho
.00101	3 1 3	246	64	310	192	105	297	409	0	409
.0105	316	25	0	25	3	0	3	785	0	785
.0510	154	0	0	C	0	C	ð	870	0	870
.00110	783	109	26	134	78	42	120	651	0	651
		H	laber01-H1			overCl-Ci			ntelNN-∺1	
		H÷	H-	Но	H+	H-	Нo	H+	H-	Нe
		291	0	291	230	0	230	735	0	735
		16	0	16	0	0	0	212	C	212
		0	0	0	0	0	0	169	Û	189
		123	0	123	92	0	92	413	0	413
200-200			Mantel-H2		£or	ioverNv-C2	}	N	antelNv-H	2
	N	H+	H-	Но	H+	Н-	Но	¥;	H-	Но
.00101	444	221	140	360	178	185	363	333	0	333
.0105	485	29	0	29	2	0	2	732	0	732
.0510	265	Û	0	0	0	0	0	875	0	875
.00110	1194	94	52	146	67	6.9	136	516	O	616
			aber01-Hi		Con	overC1-C1	1		ntelNN-Wi	
		Н÷	К-	Но	Ħ÷	H-	Нo	H+	H -	Ho
		270	0	270	223	0	223	664	Û	664
		2 1	0	21	2	0	2	254	0	254
		0	0	0	0	0	0	170	0	170
		109	6	109	84	0	84	388	0	388
250-250			Mantel-H2		Con	overNv-C2	!	Ä.	antelHv-W	2
	H	H+	H-	Ho	Ħŧ	H-	Ho	H+	H-	Но
.00101	595	190	203	393	160	267	407	292	5	297
.0105	690	4 8	Û	48	9	0	g	694	0	894
.0510	377	0	0	0	0	0	Û	798	G	798
.00110	1882	88	73	161	61	88	149	574	2	576
			aberCl-H1			overC1-Ci		Mai	ntelNH-Mi	
		H+	H-	Но	H+	H-	Ho	H+	H-	Ко
		255	0	255	213	0	213	620	0	620
		25	Û	25	3	0	3	267	Ç	267
		0	0	0	0	0	C	103	0	103
		102	0	102	78	0	78	356	0	356
300-300			Mantel-H2		Con	overNv-C2		Ħá	antelNv-M	2
	N	Н÷	H-	Но	H+	H-	Но	H÷	H-	Но
.00101	742	179	257	437	150	306	456	268	27	295
.0105	897	46	0	46	9	0	9	667	0	667
.0510	400	0	0	0	0	0	0	765	0	765
.00110	2119	82	90	172	56	107	163	549	9	559
			aberCl-H1			over01-01			itelNN-Wi	
		H+	H-	Но	H+	₩-	Но	H+	H-	Ко
		247	0	247	206	0	205	559	0	559
		26	0	26	4	0	4	299	0	299
		0	0	0	0	0	0	96	0	96
		97	C	97	74	8	74	344	0	344

4.5<e<=6.5

	•			na cola					
20- 10	:::::::::::::::::::::::::::::::::::::::	Vater			conover			Manteî	:::::::::::::::::::::::::::::::::::::::
20- 40 N	K+	Yates H-	Но	H+	H-	Но	H+	H-	Но
	84 29		29	0	., 0	0	909	0	909
.0105 34			0	Õ	Ŏ	Ö	405	0	405
.0510 1			Ō	Ō	ũ	Û	323	0	323
.00110 9		•	12	0	Ŏ	0	598	0	598
41- 60	12	Yates	14	•	Conover	•	***	Mantel	•••
¥1 00	H+	H-	Но	H +	H-	Но	H+	H-	Ко
.00101 17			149	88	. 0	88	668	0	333
.0105 164			0	0	Õ	0	222	0	222
	76 0		Ō	0	0	0	62	0	62
.00110 42		·=	61	36	Ô	3 6	371	0	371
61- 60		Yates	• •		Conover			Mantel	
N	H+	H-	Но	H+	H-	Но	H+	H-	Нο
.00101 36			239	166	Û	186	565	0	565
.0105 331			0	Ú	C	0	251	Û	251
.0510 18			0	0	0	0	71	0	71
.00110 881		G	98	76	0	76	342	Û	342
81-100		Yates	• • •		Conover			Mantel	
N	H+	К-	Но	H٠	Н-	Но	H+	H-	Ho
.00101 59			294	256	0	258	514	0	514
.0105 54			13	0	0	0	290	0	290
.0510 29			0	C	0	8	107	8	167
.00110 144:			127	106	0	108	345	Û	345
150-150		Yates			Conover			Mantel	
N	H+	Н-	Но	H+	H-	Но	H+	H-	Но
	85 355	Đ	355	348	4	345	467	0	467
	80 63	0	63	31	0	31	353	0	353
	52 0		0	0	0	9	168	0	168
.00110 17		0	167	148	2	150	361	0	361
200-200		Yates			Conover			Mante l	
N	H+	H-	Ho	H+	H-	Но	H+	H-	Но
.00101 10	95 360	25	364	349	36	384	449	9	449
.0105 10	65 87	0	87	63	9	63	365	0	365
.0510 5	75 0	· · · · · ·	0	0	0	0	191	Û	191
.00110 27	35 178	1	188	164	14	178	362	0	362
250-250		Yates			Conover			Mantel	
N	H+	H-	Но	H+	H-	Ho	H+	H-	Но
.00101 15	43 362	61	423	353	76	429	436	0	436
.0105 14	99 107	0	107	80	0	80	365	0	365
.0510 B	05 0	0	0	0	0	Đ	204	0	204
.00110 38	47 187	24	212	173	31	203	360	0	360
300-309		Yates			Conover			Mantel	
N	K+	H-	Но	H+	H-	Но	H+	H-	Но
.00101 20	34 361	90	451	353	111	464	428	0	428
.0105 19	26 127	0	127	94	0	94	371	0	371
.0510 10		0	0	0	0	0	203	0	203
.00110 50	36 194	36	231	179	45	223	358	0	358

dos colas

20- 40		Har	itel-H2		Conove	erNv-C2		Man ¹	MantelNv-H2			
	N	X +	H-	Кo	H+	H-	Но	H+	H-	Но		
.00101	354	34	0	34	0	0	0	1000	8	1000		
.0105	334	0	0	0	0	0	0	961	0	961		
.0510	177	Ô	0	0	Ô	0	0	989	Û	989		
.00110	865	14	0	14	0	0	Û	983	0	983		
		Haber	C1-H1		Conover	-01-01		Mante'	NN-N1			
		H+	H-	Нo	H+	H-	Но	H+	H-	Нo		
		14	0	14	0	0	0	381	0	381		
		Û	0	0	0	0	0	192	0	192		
•		0	6	6	0	6	6	232	6	237		
		Б	1	7	0	1	1	277	1	279		
41- 60			Wantel-K	2	103	noverNv-C	2	į	iantelHv-	¥2		
	N	Нt	н-	Но	К÷	н-	Ho	H+	H-	Нc		
.00101	1627	99	0	99	43	Û	43	959	0	959		
.0105	1419	0	0	()	0	0	Û	598	0	598		
.0510	732	0	O	0	0	Û	0	895	0	835		
.00110	3778	43	Û	43	19	0	19	811	0	811		
		ŀ	aber01-H	1	Cor	noverCl-C	1	Ma	antel#∦-#	1		
		H+	H-	Но	H+	Н-	Но	В÷	H-	Ho		
		34	0	34	22	0	22	338	0	336		
		0	0	e	0	0	0	103	0	103		
		0	0	0	0	0	0	145	0	145		
		15	Ú	15	1	0	f	211	O	211		
81- 80			Nantel-H	2	Cor	noverNv-C	2	ì	(antelNy-	H 2		
	H	H+	H-	Ho	H+	H-	Но	Ħ÷	H-	Нo		
.00101	3493	176	0	176	127	0	127	822	0	822		
.0105	3134	0	0	0	0	0	0	563	G	563		
.0510	1630	0	0	0	0	Ð	Ð	584	0	584		
.001-,10	8257	74	0	74	54	0	54	677	0	677		
		ŀ	aber01-H	1	100	noverCl-C	1	H	antelHN-H	1		
		H÷	H-	Но	H+	H-	Но	H÷	H-	Но		
		108	0	108	84	Û	84	380	0	380		
		0	0	0	0	0	0	63	0	63		
		0	0	0	0	0	0	67	0	67		
		46	0	4.5	36	0	36	198	0	198		
81-100			Mantel-H			noverNv-C			iantelNv-			
	N	H+	H-	Ко	H+	H٠	Нo	H+	H -	Нο		
.00101	5755	205	0	205	160	0	160	733	0	733		
.0105	5074	0	0	0	G	0	0	509	0	589		
.0510		0	0	0	C	. 0	0	439	0	439		
.00118	13523	87	0	87 .	68	0	68	591	0	591		
			berCl-H1			overC1-C1			ntelNN-Ni			
	•	H+	H-	Но	H+	H-	Ho	H+	H-	Нo		
		130	0	130	108	0	108	427	0	427		
		0	0	0	0	0	0	49	0	48		
		0 55	0 0	0 55	0 48	0	0 46	49 210	0	49		
						Ō			0	210		

150-150			Mantel-H2		Con	ioverNv-C2	}	N	antelKv-k	12
	N	H+	H-	Ho	H+.	Н-	Но	#+	H-	Нe
.00101	683	214	0	214	184	4	189	621	0	621
.0105	610	0	0	0	0	0	0	339	0	339
.0510	309	0	0	0	0	0	0	359	Û	359
.00110	1602	9 1	0	91	79	2	8 !	463	0	463
		H	aberCl-Hi		Сол	overûl-û	i		ntelnu-ni	
		H+	H-	Ho	H+	H-	Но	H+	H-	Ηo
		139	0	139	129	0	129	511	0	511
		Ð	0	0	0	0	0	44	0	ĻĻ
		0	0	0	Đ	0	0	49	0	18
		59	0	59	55	0	55	244	0	244
200-200			Mantel-H2		Con	overNv-C2	?	N.	antelHv-M	12
	N	H+	H-	Но	H+	H-	Но	Вŧ	H-	Ho
.00101	1098	219	25	243	182	36	218	543	ð	543
.0105	974	0	Û	0	G	0	0	347	0	347
.0510	503	0	C	0	0	0	0	288	Ū	288
.00110	2575	93	10	104	78	15	93	£19	Ð	£ 19
- "	-		aber01-Hi		Con	overC1-C1	ŀ		ntelNa-El	
		Н÷	⊬ .	Но	Ħŧ	H-	Но	H+	H-	НO
		136	Đ	135	121	0	121	427	Û	427
		Ç	0	Û	0	0	Q	30	C	30
		0	0	0	0	0	0	3.8	Û	3.6
		58	0	58	52	0	52	201	0	201
250-250			Mantel-H2		Con	overNv-02	ì	Ä	antel#v-M	12
	Ħ	H+	Н-	Но	H+	H-	Ho	H+	X-	Ho
.00101	1563	205	6.0	266	173	7.5	248	504	0	504
.0105	1333	0	Û	0	Û	Û	0	314	Û	314
.0510	710	0	0	0	Û	0	0	301	0	301
.00110	3606	89	26	115	15	33	108	394	0	394
		H	aberC1-Hi			overC1-C1			ntelNN-Mi	
		<u>H</u> +	H-	Но	H+	H-	Но	H+	H-	Ho
		128	0	128	115	8	115.	369	0	369
		0	0	0	0	0	0	23	0	23
		0	0	0	0	0	0	30	0	3.0
		55	0	5.5	50	0	50	174	0	174
300-300			Wantel-H2		Con	overNv-C2	?	Na	antel Niv-k	12
	N	K +	H-	Но	H+	H-	Но	H+	H-	Нo
.00101	2012	200	91	291	165	112	216	476	0	476
.0105	1758	0	C	0	0	0	0	318	0	318
.0510	925	0	Đ	0	0	0	0	275	0	275
	4693	86	39	125	71	48	118	377	0	377
		Ha	berCl-Hi		Cond	verCl-C1		Man	tel##-#1	
		H+	H -	Ho	H+	H-	Но	H÷	H-	Ηo
		119	0	119	107	0	107	333	0	333
		0	0	G	8	G	0	24	0	24
		0	0	0	0	0	0	31	0	31
		51	0	51	46	G.	46	158	0	158

6.5<e<=10.5

		ı	una cola					
26- 40	::::::::::::::::::::::::::::::::::::::	::::::::::::::::::::::::::::::::::::::	:::::::::::::::::::::::::::::::::::::::	Conover		:::::::::::	Wantel	
70 40 N	H+	H- Ko	H+	H-	Но	H+	H-	Ho
.00101 124	0	0 0	0	0	î.o	815	., 0	815
.0105 118	Û	0 0	Û	Õ	Û	0	D	0
.0510 59	Û	0 0	0	0	0	51	0	51
.00110 299	0	0 0	Ö	Ð	Ď	348	0	348
41- 60	Yi	ates	=	Conover	·	• • •	Mantel	
N		Н- Но	H+	Н-	Но	H+	H-	Ho
.00101 1905	5	0 5	0	0	G	478	0	478
.0105 1761	٥	0 0	9	0	0	0	0	0
.0510 945	C	0 0	G	0	Û	í	0	1
.00110 4611	2	0 2	0	0	0	198	0	198
61- 60	Ya	ates		Conover			Hantel	
R	Ħ+	H- Ho	H+	H-	Нō	H+	H-	Но
.00101 5419	45	0 45	23	0	23	370	G	370
.0105 4965	0	0 0	0	0	0	Û	0	Û
.0510 2698	0	0 0	8	0	Û	0	O	0
.00110 13062	13	0 19	9	0	9	153	0	153
81-100		ates		Conover			Mantel	
N		H- Ho	Нŧ	K -	Но	##	H -	Нo
.00101 9762	96	0 98	65	0	65	385	0	385
.0105 9113	0	0 0	0	0	0	2	0	2
.0510 4914	0	0 0	0	9	0	O	Ũ	0
.00110 23789	3 9	0 39	27	0	21	159	0	159
150-150		ates		Conover			Mantel	
N		H- Ho	H+	H-	Но	H+	H -	Но
.00101 1346	218	0 218	185	0	185	419	Û	419
.0105 1235	Û	0 0	Û	0	Û	25	0	25
.0510 683	C	0 0	0	6	9	O	0	0
.00110 3264	90	0 90	76	0	16	182	0	182
208-200		stes		Conover			Mantel	
. N		н- но	H+	H-	Ко	H+	H-	Но
.00101 2218	275	0 275	245	8	245	425	Û	4 2 5
.0105 2038	6	0 6	0	0	0	62	0	5 2
.0510 1114	9	0 0	0	0	0	1	0	1
.00110 5370	116	0 116	101	0	101	199	0	199
250-250		stes		Conover	0		Mantel	11 -
N 2205		H- Ho	H+	H-	Ho	H+	H-	Но
.00101 3205	308	2 309	279	2	281	430	0	430
.0105 2967	11	0 11 0 0	6 0	0	6	101	0	101
.0510 1600	0			0	0	2	0	2
.00110 7772	131		117	1	118	216	0	216
308-300 N		stes H- Ho	H+	Conover H-	Но	U ı	Mantel u	ti a
.00101 4293	324	H- Ho 7 331	300	n- 10	311	H+ 429	H- 0	Ho 429
.0105 3974	19	0 19	13	0	13	127	0	127
.0510 2121	0	0 0	0	0	13	5	0 0	121 5
.00110 10388	141	3 144	129	į,	133	227	0	227
1901 110 10100	3 4 1	J 144	163	•	133	Lil	Ų	771

dos	colas

20- 40			Wantel-H2	ı	Con	overNv-C2		H	antelkv-M	12
	N	H+	H+	Но	H+	H-	Но	H+	H-	Но
.00101	124	0	0	0	0	0	0	1000	Û	1000
.0105	99	0	O	0	0	0	0	556	ũ	556
.0510	53	0	0	0	0	0	Ð	906	0	905
.06110	276	0	0	0	0	0	0	822	C	822
	•,•	·	HaberCl-Hi	-	Con	overCl-C1			ntelNN-Ni	ĺ
		Hi	Н-	Но	Н÷	H-	Но	H+	H-	Ho
		. 0	ð	0	0	0	0	347	0	347
		0	0	0	C	0	0	212	Û	212
		0	0	Ō	0	0	0	302	0	302
		0	0	0	0	0	0	290	G	290
41- 80			Wantel-H2			overHv-C2			antelNv-¥	
	il.	H+	H-	Но	Ħ÷	H-	Но	∦ +	k-	Нc
.00101	1792	0	0	0	0	Û	Q	784	0	754
.0105	1619	0	0	0	Ü	0	0	60	0	60
.0510	846	0	0	0	0	0	0	216	0	215
.00110	4259	0	0	Ð	0	0	Ð	386	. 0	396
			HaberC1-H1			overCl-C1			ntelMK-#1	
		H+	H-	Но	8+	H -	Но	H+	H-	Нo
		9	i)	ŋ	Û	0	Û	184	Ũ	187
		û	8	0	C	0	0	11	Ç	1;
		0	0	0	0	0	0	3.5	Û	35
		0	0	Û	0	C	0	88	0	8.8
61- 80			Wantel-H2	}	Con	overNv-C2			antelNv-k	
	Ħ	H÷	H-	Но	H+	H·	Ho	H+	H-	Нe
.00101	5050	3	0	3	0	Ū	6	606	0	506
.0105	FT 8 0	0	0	Û	0	0	Ø	L f	Û	41
.0510	2258	0	Đ	0	Ð	0	Đ	93	0	93
.00110	11788	1	O	1	8	0	0	293	Đ	293
			HaberCl-Hi			overCl-Ct			ntelNW-W	
		K+	H-	Но	B+	H -	Но	H+	H-	Ho
		0	G	0	0	0	0	139	0	139
		O	0	0	0	0	0	8	Û	\$
		D	0	0	0	0	Û	11	0	11
		0	0	0	Û	0	0	65	0	65
81-100			Wantel-H	?	€on	overHv-C2		Ķ	antelNv-k	1 2
	N	H+	H-	Но	H÷	H-	Но	H+	H-	Но
.00101	9378	24	0	24	14	0	14	522	0	522
.0105	8112	Û	Û	0	0	0	Ò	9	0	Ģ
.0510	4367	0	8	0	0	0	0	3 &	0	3.6
.00110	21857	10	0	10	6	0	6	235	0	235
			Haber01-H	1	Con	overCl-C1		Ма	ntelNN-K	i
		H+	H-	Но	H+	H-	Но	H+	H-	Ho
		2	0	2	1	0	1	122	0	122
		Đ	0	0	0	Ç	G	2	Û	2
		0	0	0	Û	0	0	4	0	ŧ.
		1	0	1	0	Û	0	54	Q	54

N	150-150	,	Mantel-H2			overNv-C2		MantelNy-N2			
101-03 1111		N							H+	H-	Ho
	.00101	1294	49	Û	49	32	0	32	422	0	422
0310 00 0 0 0 0 0 0 15 0 15 0 15 0 16 0 0 0 0 16 0 18 0 18 0 18 0 0 0 0 0 0 0 0 0		1111		Û	0	0	6	0	6	0	δ
187 198		601	0	0	0	0	ប	0	15	0	15
HaberCl-HI		3006	21	0	21	14	0	14	187	0	187
S			K.	aberCl-H1		Cond	overC1-Ci		Hāi	itelNN-Mi	
The convertion of the conver			H+	H-	Но	H+	H-	Ho '	H÷	H-	Ho
200-200			9	0	9	5	0	5	95	0	95
209-200			C	0	0	0	0	0	3	0	3
Name			0	0	0	0	0	0	3	0	3
N			4	0	4	2	0	2	43	0	43
Note	208-200		i	dantal-H2		Cond	overNv-C2		N.a	antelNv-W	2
NOT01 2 41 57 0 57 37 0 37 380 0 380	200 200	N									
101-05 1671	.00101										
105 10											
Note				_			•			-	
HaberCl-HI			-			16	Ð		168	Ó	188
H+ H- HO	1001 110	4001					· ·			telnn-ni	
10					Но			Но			Ho
									0		
N								3	35	G	
N	250_250			¥satal-W?		Can	averily-69		M.	antal Ny - H	?
0.0101 3131	230-230	14									
.0105 2727	001-01										
.05 .10 1335											
100110 7193 29 1 30 20 1 21 158 0 158 MaberCl-H1 ConoverCl-C1 MantelNH-H1 H+ H- H0 H0				•			-				
HaberCl-H1					-		1	•		•	
H+ H- HO	.00110	1133					overol-01				
12											
10											
10											
300-300											
N H+ H- H0 H+ H- H0 H+ H- H0 H+ H- H0 .00101 4252 63 7 70 45 10 56 331 0 331 .0105 3599 0 0 0 0 0 0 0 5 0 5 .0510 1851 0 0 0 0 0 0 0 6 0 6 .00110 9702 28 3 31 20 5 24 148 0 148 Habercl-H1 ConoverCl-Cl MantelNN-M1 H+ H- H0 H+ H- H0 H+ H- H0 H+ H- H0 13 0 13 1 0 1 67 0 67 0 0 0 0 0 0 0 0 0 0 2 0 2				-		4	0	4	31	0	3 f
N H+ H- H0 H+ H- H0 H+ H- H0 H+ H- H0 .00101 4252 63 7 70 45 10 56 331 0 331 .0105 3599 0 0 0 0 0 0 0 5 0 5 .0510 1851 0 0 0 0 0 0 0 6 0 6 .00110 9702 28 3 31 20 5 24 148 0 148 Habercl-H1 ConoverCl-Cl MantelNN-M1 H+ H- H0 H+ H- H0 H+ H- H0 H+ H- H0 13 0 13 1 0 1 67 0 67 0 0 0 0 0 0 0 0 0 0 2 0 2	200-200			Wantal-W?		Con	nvarNv-i')		N.	antalNv-W)
.00101 4252 63 7 70 45 10 56 331 0 331 .0 331 .0 .0105 3599 0 0 0 0 0 0 0 0 5 0 5 .05 .0510 185; 0 0 0 0 0 0 0 0 6 0 6 .00110 9702 28 3 31 20 5 24 148 0 148 HaberCl-H1 ConoverCl-Cl MantelNN-M1 H+ H- Ho H+ H- Ho H+ H- Ho 13 0 13 1 0 1 67 0 67 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1	300-300	bi									
.0105 3599	NA1- 01										
.0510 1851											
.00110 9702 28 3 31 20 5 24 148 0 148 HaberCl-H1 ConoverCl-Cl MantelNN-N1 H+ H- H0 H+ H- H0 H+ H- H0 13 0 13 1 0 1 67 0 67 0 0 0 0 0 0 0 1 0 1 0 0 0 2 0 2				•		-	•			ñ	
HaberCl-H1 ConoverCl-C1 MantelNN-N1 H+ H- Ho H+ H- Ho H+ H- Ho 13 1 0 1 67 0 67 0 67 0 67 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 2 0 0 </td <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>•</td> <td>-</td> <td>•</td> <td>n</td> <td></td>				•			•	-	•	n	
H+ H- H0 H+ H- H0 H+ H- H0 13 0 13 1 0 1 67 0 67 0 0 0 6 0 0 1 0 1 0 0 0 0 0 0 2 0 2	, 0 10 1 - , 10	3102		•			•			•	
13 0 13 1 0 1 67 0 67 0 0 0 0 0 0 1 0 1 0 0 0 0 0 2 0 2											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								1			
0 0 0 0 0 2 0 2							-	0			
				-	•	-	-	-			
				-	-	F	•	L		-	
			v	•	•	7	•			•	- •

Tabla X

Valores de N, H⁺, H⁻ y H^o (los tres últimos en °/ $_{\infty}$) para los tamaños y métodos con versión (n) o (n-1) (primera fila) y los valores de P, (primera columna) que se indican. En la cabecera se especifica si el test es de 1 ó 2 colas.

	 27 GT	. cest e	s de		coias.		
			ON	E TAIL			-
	= 3 = 2 = 2 :	=======================================	=======	=======================================	######################################	=======	=====
20- 4	='		H=Yates(N)			H=Yates()	(-1)
	N	H+	H-	Ho	H÷	H-	H
.00101	2028	142	94	236	225	76	20
.0105	2296	12	68	80	82	51	13
.0510	1405	1	33	35	19	23	4
.00110	5729	55 	69	124	117	53	17
41- 60			HEYates	(N)	1	H=Yates(N	l-1)
	N	H+	H-	Ho	H+	H-	Н
10100.	7971	138	88	226	184	76	26
.0105	9385	50	49	99	75	42	11
.0510	4869	8	24	25	20	17	3
.00110	21225	73	58	131	103	49	15
61- 80	İ		HEYates	(N)	ŀ	i≘Yates(N	-1)
	N	H+	H-	Но	H+	H-	. H
.00101	19772	134	80	214	166	72	23
.0105	19774	51	41	92	60	37	9
.0510	11286	17	19	31	18	15	3
.00110	50832	74	51	126	92	46	13
81-100			H=Yates(H=Yates(N-1)			
	N	H+	H-	Но	H+	H-	·,
.00101	38446	129	74	202	151	67	21
.0105	37686	44	35	79	52	32	8
.0510	21132	13	15	28	17	12	2
.00110	97264	71	46	117	84	42	12
150-150	********		H=Yates(N)		======= ≣Yates(N	 -1)
	N	H+	H+	Ho	H+	H-	H
00101	7218	112	61	173	125	57	18
.0105	6839	36	25	61	42	23	6
.0510	3766	11	10	21	12	9	2
00110	17823	62	36	98	69	34	10
200-200		·	H≅Yates(N)	 H	≡Yates(N	 -11
	N	H+	H-	Но	H+	H-	- , H
00101	15259	102	53	155	110	50	160
.0105	14238	33	20	53	36	19	5:
.0510	7784	10	8	18	11	7	19
00110	37281	57	31	88	61	20	9
250-250			HāYates(X)	 H	=	-11
	N	H+	H-	Но	H+	Н-	He
	27121	94	47	142	99	45	143
	25087	29	17	46	30	16	46
	13958	9	6	16	10	6	16
00110	65836	52	27	79	55	26	80
300-300			H≅Yates(i	 H	=Yates(N·	-1)	
	N	#+	H-	Ha	H+	H-	Ho
00101	43262	86	43	129	90	41	132
.0105	39763	26	14	40	27	14	40
.0510	71540	٥	4	17	•		1.4

13

71

9

5

14

.05-.10 21540

001-.10 104565

TUR	TATE	c
TWO	TAI	. >

		TWO	TAILS				
	==========	=======================================	********	==========	=======	=====	
20- 40		H2≡Manto	el(N)	Н	2≅Mantel(N-1)	
N N	H+	H-	Но	H+	H-	Ho	
.00101 1901	124	100	225	273	81	354	
.0105 2080	0	75	75	63	56	119	
.0510 1204	0	39	39	31	27	58	
.00110 5185	46	76	122	132	59	191	
41- 60		H2=Mant	ei(N)	Н	2≅Mantel(N-1)	
N	H+	H-	Ho	H+	H-	Но	
.00101 7484	103	94	197	172	81	253	
.0105 7584	3	54	57	27	46	73	
.0510 4215	0	28	28	15	20	35	
.00110 19283	41	64	105	81	54	135	
61- 80		H2≅Mant	 H	2≡Mantel	N-1)		
N	H+	H-	Ho	H+	H-	Но	
.00101 18481	84	85	169	125	77	202	
.0105 17808	6	46	52	19	41	60	
.0510 9874	0	22	22	11	17	28	
.00110 46163	36	56	92	59	50	110	
81-100		H2=Mant	H	H2≅Mantel(N-1)			
N	H+	H-	Но	H+	H-	Но	
.00101 36167	73	78	151	100	72	172	
.0105 33924	5	38	44	13	36	48	
.0510 18196	0	17	17	5	_	19	
.00110 88287	32	50	82	47	46	93 	
150-150		H2≡Mant		12≡Mantel	(N-1)		
N	H+	H-	Ha	H+	H-	Ha	
.00101 6811	45	64	109	57		117	
.0105 6207	5	28	32	9		34	
.0510 3226	0	12	12	0		11	
.00110 16244	20	40	60	27		64 	
200-200		H2≡Mant	el(N)		81 3 56 1 27 59 1 H2≡Mantel(N-1 H- 81 2 46 20 54 1 H2≡Mantel(N-1 H- 77 2 41 17 50 1 H2≡Mantel(N-1 H- 60 25 11 37 H2≡Mantel(N-1 H- 54 21 9 32 H2≡Mantel(N-1 H- 48 19 7 28 H2≡Mantel(N-1 H- 48 19 7 28		
N	H+	H-	Ho	H+		Ho	
.00101 14362	34	56	90	39		93	
.0105 12961	4	22	26	7		26	
.0510 6684	0	9	9 50	0 19		52	
.00110 34007	16	34	50 	11	J£ 	J.	
250-250		H2≅Man1			25 11 37 H2=Mantel(N-1 H- 54 21 9 32 H2=Mantel(N-1 H- 48 18		
N area	H+	H-	Ho	30 H+		Ho 70	
.00101 25584	27	50	77 22	30 5		2:	
.0105 22712	4	18 7	22 9	2		4.	
.0510 11928 .00110 60224	1 13	30	43	15		4:	
						(Ne11	
300-300	U±	H2≅Kan† H-	tel(N) Ho	H+			
M 	H+ 21		66 66	23		H:	
.00101 40891				4		i	
						•	
						3	
.0105 36101 .0510 18634 .00110 95626	3 1 10	16 6 26	18 8 37	2 12	6		

Tabla XI

Valores de N, H⁺, H⁻ y H⁰ (los tres últimos en $^{\circ}/_{\infty}$) para los tamaños y métodos (primera fila) y los valores de P, (primera columna) que se indican. En la cabecera se especifica si el test es de 1 ó 2 colas. (Para valores de E \geq 5).

de 1 o	2 col	as. (Par	a va		de E≥5)				-	
=======================================	:::::::===			::::::::::::::::::::::::::::::::::::::	TAIL	********	::::::::		E≯	5
=========	========	**********					********			
70- 40)		H			C			Ħ	
	N	H+	H-	Но	H+	H-	На	ri+	H-	Но
.00101	508	22	0	22	0	3	0	986	0	886
.0105	462	0	0	0	0	0	0	203	3	202
.0510	251	ð	0	0	0	0	0	259	0	259
.00110	1221	9	0	9	0	0 	0	229	0 	536
41- 60)		н			C			Ħ	
	N	- H+	H-	но	H+	H-	Ho	H+	Н-	Нo
.00101	3975	68	0	68	28	0	28	538	0	538
.3105	3711	ð	0	0	0	0	0	98	0	78
.0510	1987	0	0	0	0	0	0	28	0	28
.00110	9673	28 .	0	28	16	0	16	265		265
61- 80)		Н			C			Ħ	
	N	H+	H-	На	H+	H-	Hó	H+	H-	Ha
.00101	12577	88	0	88	62	0	92	344	0	344
.0105	11525	0	0	0	0	0	0	73	0	73
.0510	6252	0	0	0	0	0	0	21	0	21
.00110	30354	36	0	26	26	0	26	175	0	175
81-100)		Н			С			Ħ	
	N	H+	H-	Ho	H+	H-	Ho	H+	H-	Но
.00101	27647	97	0	97	78	0	78	274	0	274
.0105	25385	2	0	2	0	0	Q	63	0	63
.0510	13672	0	0	0	0	0	0	23	0	23
.00110		41	0	41	32	0	32	142	0	142
150-150)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Н			C			ĸ	
	N	H+	H-	Ho	H+	H-	Но	H+	H-	Ho
.00101	6031	98	0	98	87	0	87	194	0	194
.0105	5539	8	0,	8	4	0	4	49	0	49
.0510	2983	0	0	0	0	0	0	20	0	20
		43	0	43	37	0	28	103	0	103
200-200	 D		Н			С			Ħ	
200 21	N	H+	H-	Но	H+	H-	Ho	H+	H-	Ho
.00101	13465	92	2	94	84	2	87	162	0	162
.0105		9	0	9	6	0	6	42	0	42
.0510		0	0	0	0	0	0	17	0	17
.00110		42	1	43	37	1	28	87	0	87
250-250	 O		н			C			Ħ	
	. N	H+	H-	Ho	H+	H-	Но	H+	H-	Ho
.00101		86	4	90	79	5	84	141	0	141
.0105		9	٥	9	6	0	6	28	0	28
.0510		0	0	0	0	0	0	14	0	14
.00110		39	2	41	35	2	37	76	0	76
300-30	 0		н			C			M	
244 34	N	H+	H-	Но	H+	H-	Hig	H+	H-	Ho
.00101		80	5	86	74	7	81	126	0	126
.0105		9	Ō	9	6	0	6	34	0	34
	10401	, 0	0	ń	ō	٥	0	12	0	12

.05-.10 19483

.001-.10 95863

:::::::::::::::::::::::::::::::::::::::		********		WO TAILS		********	=======================================		
				#U :HIF2					
20- 40 .		:2≘Mantel			C2			H2	
N .	H+ ''	H-	Но	H+	H-	Но	H+	H-	ri o
.00101 478	25		25			0	1000		1000
.0105 433	0	ō	0	ō	0	0	868	ō	848
.0510 230	0	Ō	ō	ō	0	Ō	970	ō	970
.00110 1141	11	0	11	0	Ô	0	944	Ğ	944
	Н	il≡Haber			Cl≡Conov	er		Hi	
	H+	H-	Ho	H+	H-	Ho	H+	H-	Но
	10	0	10	0	0	0	372	0	372
	0	0	0	0	0	0	196	0	196
	0	4	4	0	4	4	248	4	252
	4	1	5	0	1	1	280	1	281
41- 60					C2	******		M2	
N	H+	H-	Но	H+	H-	Но	H+	H-	Ho
.00101 3754	43	0	43	19	0	19	832	0	832
.0105 3294	0	0	0	0	0	0	287	0	287
.0510 1714	0	0	0	0	0	0	491	0	491
.00110 8762	19	0	18	8	0	8	561	0	561
	 H	il≘Haber			C1=Conov	 er		M1	
	H+	H-	Но	H+	H-	Ho	H+	H-	Но
	15	0	15	10	0	10	245	0	245
	0	0	0	0	0	0	49	0	49
	0	0	0	0	0	0	80	0	80
	6	0	6	4	0	4	139	0	139
61- 80	н	 2≅Mantel			CZ			H2	
N	Н+	H-	Но	н+	H-	Но	H+	H-	Ho
.00101 11854	. 53	0	53	38	0	28	557	0	557
.0105 10488	0	0	0	0	0	0	186	0	186
.0510 5488	0	0	0	0	0	0	212	0	212
.00110 27830	23	0	23	16	0	16	349	0	349
	 H	 1≡Haber			C1≣Conov			 Ħ1	
	H+	H-	Ho	H+	H-	Но	H+	H-	Ho
	32	Ô	32	25	0	25	179	0	179
	0	ō	0	0	0	0	22	0	22
	Ö	0	0	0	0	0	24	0	24
	14	0	14	11	0	11	90	0	90
81-100	н	 2≅Mantel			C2		**-*-*	M2	
N	H+	H-	Ho	H+	H-	Ho	H+	H-	Но
.00101 26248	54	0	54	40	0	40	382	0	382
.0105 23051	0	0	0	0	0	0	115	0	115
.0510 11956	0	0	0	0	0	0	112	0	112
.00110 61255	23	0	23	17	0	17	229	0	229
***************************************]≣Haber			Ci≘Conov	·er	**********	M1	
	H+	H-	Но	H+	H-	Ho	H+	H-	Ho
	29	0	29	24	0	24	141	0	141
	0	0	0	0	0	0	12	0	12
	0	0	0	0	0	0	13	0	13
	12	0	12	10	0	10	67	0	67

150-150		H2	Z≡Mantel			C2			Ħ2	
	N	H+	H-	Ho	H+	H-	Но	H+	H+	На
.00101	5738	36	0	36	29	1	30	193	0	173
.0105	5022	0	0	0	0	0	0	43	0	43
.0510	2574	0	0	0	0	0	0	47	0	47
.00110		16	0	16	13	0	13	108	0	108
		 	 Hl≅Haber			C1=Conove	 r		#1	
		H+	H-	Ho	Н+	H-	Но	H+	H-	Ro
		19	0	19	17	0	17	85	0	85
		0	0	0	0	Ö	0	6	0	6
		Ō	0	Ō	Ŏ	Ó	0	7	0	7
		8	0	8	7	ō	7	40	0	40
200-200			H2≡Mantel			C2			H2	
200 200	N	Н+	H-	Ho	H+	H-	Но	H+	H-	Но
.00101		29	2	31	22		25	129		129
.0105		0	0	0	0	0	0	32	0	32
	5667	0	0	0	0	٥	0	26	Ö	28
.00110		12	i	13	9	1	11	73	Ô	73
.00110					, 					
			Hl=Haber	11		1≣Conover		u.	M1 H-	H
		H+	H-	Ho	H+	H-	Но	H+		5
		13	0	13	12	0	12	52	0	
		. 0	0	0	0	0	0	3	0	
		0	0	0	0	0	0	3	0	
		6	0	6	5	0	5	24	0	2
250-250			K2≡Mantel			C2			M2	
	N	H+	. H-	Ha	H+	H-	Ha	H+	H-	H
.00101	23371	23	4	27	18	5	23	97	0	9
.0105	20280	0	0	0	0	0	0	21	0	2
.0510	10510	0	0	0	0	0	0	21	0	2
.00110	54161	10	2	12	8	2	10	54	0	5
			 H1≣Haber			Cl≡Conove	er		M1	
		H+	H-	Но	H+	H-	Но	H+	H-	H
		10	0	10	9	0	9	35	0	2
		0	0	0	0	0	0	2	0	
		0	0	0	0	0	0	2	0	
		4	0	4	4	0	4	16	0	1
300-300			H2=Mantel			C2			H2	
	N	H+	H-	Но	H+	H-	Но	H+	H-	H
.00101	38054	18	6	23	14	7	21	75	0	7
.0105	32990	0	0	0	0	0	0	17	0	1
.0510		0	0	0	0	0	0	16	0	1
.00110		8	2	10	6	3	9	42	0	4
			H1=Haber			C1=Conov	er		MI	
		H+	H-	Но	H+	H-	Но	H+	H-	ł
		8		8	7	0	7	26	0	:
		0	Ŏ	Ō	0	Ö	0	1	0	
		0	0	Ŏ	Ŏ	ŏ	Ö	2	0	
		•	٧		•	•	-			:
		3	0	3	3	٥	3	12	0	

•

Tabla XII

Valores de N, H⁺, H⁻ y H⁰ (los tres últimos en $^{\circ}/_{\infty}$) para los tamaños y métodos (primera fila) y los valores de P, (primera columna) que se indican. En la cabecera se especifica si el test es de 1 ó 2 colas. (Para valores de E<5).

				ONE TAI	L			F	~ 5
***********			========	=========	=======	=======================================	122222222		- 5
20- 40		Н			С				
N	H+	H-	Но	H+	H-	Но	н•	M	Ша
.00101 152	0 182	126	308	114	167	282	796	H- 0	Ho 796
.0105 183		86	100	0	153	153	776 796	0	796
.0510 115		41	42	0	276	276	987	0	987
.00110 450	8 68	88	156	29	189	228	819	0	819
41- 60		Н			C			M	
N	H+	H-	Но	H+	H-	Ho	H+	H-	Ho
.00101 399		176	2 82	190	212	402	485	3	488
.0105 4674	• •	88	178	13	155	168	570	0	570
.0510 288		41	54	0	239	239	689	0	689
.00110 11557	112	107	218	71	196	267	570	1	572
61- 80		H			С			Ħ	
N .	H+	H-	Ho	H+	H-	Ho	H+	H-	Но
.00101 7195		219	433	207	260	467	389	10	399
.0105 8249		99	221	41	168	209	505	0	505
.0510 5034		43	69	0	223	223	603	0	603
.00110 20478	131	127	258	89	214	202	488	4	492
81-100		H			C			M	
N	H+	H-	Ho	H+	H-	Но	H+	H-	Но
.00101 10799		263	472	206	305	511	353	21	373
.0105 12301		106	237	63	175	238	473	0	473
.0510 7460		42	79	0	220	220	556	0	556
.00110 30560	135	146	281	98	232	330	451	7	458
150-150		Н			ξ			H	
N	H+	H-	Но	H+	H-	Но	H+	H-	Но
.00101 1187	197	370	557	186	420	404	284	59	343
.0105 1300	158	132	290	111	204	315	425	0	425
.0510 783	51	49	100	1	225	226	494	0	494
00110 3270	143	198	341	112	287	399	390	71	412
200-200	***	Н			C			H	
N .00101 1794	H+	H-	Ho	H+	H-	Но	H+	H-	Ho
	177	433	610	176	476	652	259	95	354
	185	145	331	121	225	345	404	0	404
.0510 1182 00110 4956	66 154	52 227	118 381	8 114	223 31 5	231 429	454 363	0 35	454 398
250-250	*************	Н			C				
N	H+	H-	Ho	H+	H-	Но	11.	M si_	11.
00101 2482	170	479	649	169	519	689	H+	H-	Ho
.0105 2703	196	155	351	129	235	364	243	132	375
.0510 1612	78	54	132	14			388	0	388
00110 6797	158	249	408	116	336 336	239 453	444 348	0 48	444 397
300-300					C				
N	H+	H-	Ha	H+	H-	Ho	H +	N Un	11.
00101 3193	163	514	677	163	552			H-	Ho
.0105 3462	201	164	365	136		715	231	169	400
.0510 2057	82	58	141	136	248	383	379	0	379
101 10 2017 101 10 0761	65	10	141	10	228	246	431	0	431

	========	========					=========		
				TWO TAI			-		
***************************************			::::::::::		C2	========		M2	
2C- 40 N	H÷	H2≘Mantel H-	Ho	H+	L2 H-	Но	H+	H÷	Ho
.00101 1423	157	134	292	78	178	257	900		800
.0105 1647	13,	95	95	0	171	171	894	0	894
.0510 974	Ŏ	48	48	Ŏ	326	326	1000	0	1000
.00110 4044	55	98	153	27	211	238	886	0	986
		Hi≡Haber		11.	C1≡Conove		H+	M1 H-	Но
	H+	H-	Ho	H+ 768	H- 76	Ho 431	843	0	843
	452 367	58 25	509 392	355 270	54	324	675	4	679
	333	23 57	372 390	255	73	320	586	28	614
	3 8 9	44	433	296	66	363	713	8	721
41- 60	•	H2≅Mantel			C2			M2	
N	H+	H-	Ho	H+	H-	Ho	H+	H- -	Ho
.00101 3730		188	352	117	228	345	501	2	504 725
.0105 4290	6	96	102	0	169 275	169 275	725 963	0	963
.0510 2501	60 0	48 117	48 177	0 4 1	273	273 257	702	1	703
.00110 10521		117						• • • • • • • • • • • • • • • • • • • •	
		Hl≡Haber			C1≡Conove	er		M1	
	H+	H-	Но	H+	H-	Ho	H+	H-	Ho
	413	75	488	323	98	421	875	0	875
	338	20	358	251	46	297	645	0	645
		25	334	249	.28	287	539	9	548
	358	41	398	276	63	324	702	2	704
61- 80		 H2≡Mantel			C2			M2	
81 00 N	н+	H-	Но	H+		Ho	H+	H-	Но
.00101 6627	140	238	377	109	282	391	375	11	386
.0105 7320	14	112	126	0	189	189	626	0	626
.0510 4386	0	49	49	0	256	256	917	0	917
.00110 18333	56	142	198	28	239	278	605	4	609
		H1≅Haber			€1≅Conove	 •r		M1	
	H+	H- ut=uaner	Но	H+	H-	Ho	Н+	H -	Ho
	339	94	433	257	118	375	867	1	869
	339	21	360	247	48	294	649	0	649
	311	19	330	258	30	288	529	4	534
	332	47	379	253	69	322	699	1	701
					C2			M2	
81-100 N	H+	H2≅Mantel H-	Но	H+	H-	Ho	H+	H-	Но
.00101 9919	123	286	409	98	332	431	316	22	238
.0105 10873	17	120	137	0	198	198	572	0	572
.0510 6240	Ô	51	51	Ō	263	263	889	0	889
.00110 27032	52	165	217	36	262	298	551	8	560
								·	
		H1=Haber		11.1	C1≅Cono H-	ver Ho	H+	M1 H-	Но
	H+	H-	Ho 392	H+ 222		357	929	2	831
	282	110 22	355	238		289	661	0	661
	333 325	15	340	272		299	536	3	539
	323	53	365	240		316	694	i	695
	313		-						

.

150-150			H2≡Mantel			C2			M2	
	N	H+	H-	Ho	H+	H-	Ho	H+	H-	Ha
.00101	1073	89	409	498	73	464	537	216	65	281
.0105	1185	24	145	170	1	224	224	517	0	517
.0510	652	0	58	58	0	270	270	831	0	831
.00110	2910	43	223	266	27	323	350	477	24	501
			Hl≣Haber	C1-H1		Cl=Conove	r		M1	
		H+	H-	Ho	H+	H-	Но	H+	H-	Ho
		208	149	357	169	171	340	655	7	663
		305	24	328	215	50	265	671	0	671
		331	12	344	284	25	308	538	2	540
		275	67	342	213	89	302	635	3	928
200-200			H2≡Mantel			C2	**		H2	
	N	H+	H-	Но	H+	H-	Но	H+	H-	На
.00101	1605	77	483	560	65	532	597	177	107	283
.0105	1789	20	161	191	1	249	249	475	0	475
.0510	1017	1	61	62	0	259		794	0	794
.00110	4411	40	255	296	24	354	378	440	39	479
			Xl≡Haber			Ci≡Conove	r		M1	
		H+	H-	Но	H+	H-	Ho	H+	H-	Но
		185	172	357	154	200	354	545	14	558
		291	27	317	210	54	264	484	0	686
		325	11	229	278	23	301	538	2	540
		260	76	336	205	100	305	601	5	606
250-250			H2≡Mantel			C2			M2	
	N	H+	H-	Ho	H+	H-	Ho	H+	H-	Но
.00101	2213	65	537	602	56	582	639	155	148	202
	2432	23	172	205	2	261	264	445	0	445
	1418	12	61	73	0	257	257	757	0	757
.00110	9092	40	279	319	22	377	399 	412	54	466
			H1=Haber			C1≅Conove			M1	
		H+	H-	Но	H+	H-	Но	H+	H-	Ho
•		169	193	362	141	226	367	476	19	496
		287	27	315	206	54	259	690	0	690
		326	8	334	281	20	302	514	1	513
		253	83	326	200	109	309	571		578
300-300			HZ≡Mantel			C2			H2	
	N	H+	H-	Ho	H+	H-	Ko	H+	H-	Ho
.00101	2837	60	576	637	52	619	671	141	189	220
.0105	3111	32	182	214	3	275	278	426	0	426
.0510	1822	13	65	78	0	257	257	737	0	737
.00110	7770	28	299	337	20	397	417	395	69	464
		- :	H1≡Haber			C1=Conove			M1	
		H+	H-	Но	H+	H-	Но	H+	H-	Ho
	•	157	214	371	133	243	376	428	26	45
		282	27	309	199	55	254	692	0	69
	•							_		
	•	326 247	9 91	335 338	281 194	20 115	301 309	517 555	1 10	518 564

,

Tabla XIII

Valores de N, H⁺, H⁻ y H^o (los tres últimos en °/ $_{\infty}$) para los tamaños y métodos con versión (n) o (n-1) (primera fila) y los valores de P, (primera columna) que se indican. En la cabecera se especifica si el test es de 1 ó 2 colas. (Para valores de $E \ge 5$).

========	********		ONE	TAIL	************	2222222	=====		
		:::::::::::::::::::::::::::::::::::::::							
20- 40			H=Yates(I		H+	Yates(N- H-	Ho Ho		
461 61	N EAD	H+	H- ^	Ho 22	173	0	173		
.00101	508	22 0	0	0	0	0	1,3		
.0105 .0510	462	0	0	0	0	ŏ	Ö		
.00110	251 1221	9	0	9	12	Ö	72		
41- 60			H≅Yates(I	-		Yates(N-			
	N	H+	H-	Ho	H+	H-	Ho		
.00101	3975	68	0	48	134	0	134		
.0105	3711	0	0	0	0	0	0		
.0510	1987	0	0	0	0	0	0		
.00110	9673 	28	0	28 	55		55		
61- 80	N	H +	H≡Yates(i H-	N) Ho	H+	Yates(N- H-	·1j Ha		
.00101	12577	88	0	88	126	0	126		
		0	0	0	2	٥	2		
.0105	11525	0	0	0	0	0	0		
.0510	6252 30354	36	0	39	53	0	53		
81-100			H=Yates(•		H=Yates(N-1)			
	N	H+	H-	Ho	H+	H-	Ho		
.00101	27647	97	0	97	122	0	122		
.0105	25385	3	0	3	6	0	6		
.0510	13672	0	0	0	0	0			
.00110	66704	41		41	53	0	53		
150-150		44.	H=Yates(₹Yates(N H-			
	N (A71	H+ 98	H- 0	H0 98	H+ 111	0	Ho 111		
.00101	6031		0	8	111	0	9		
.0105	5539	0	0	0	0	0	0		
.0510	2983 14553	43	0	43	49	ů	19		
	14333								
200-200			HEYAtes(=		=Yates(N	•		
	*	H+	H-	Ho	H+	H-	Ho		
.00101	13465	92	2	94	100	1	101		
.0105	12258	9	0	9	10	0	10		
.0510	6602	0	0	0	0	0	0		
.00110	32325	42	1	43	45 	1	46		
250-250			H=Yates(≅Yates(Ì			
	*	H+	H-	Ho	H+	H-	Ho		
.00101	24639	86	4	90	92	_	95		
.0105	22384	9	0	9	9	0	9		
.0510	12016	0	0 2	0	0 42	0 1	0 43		
.00110	59039		د 	41	74				
300-300			HEYates			l≅Yates(1 H−	I-1) Ho		
AA. 44	40070	H+	H-	Ho	H+ 84	n- 5	89		
.00101	40079	80	\$	86 9	9	0	9		
.0105	36301	9	0	0	0	0	0		
.0510	19483	0 17	2	2 9	39	2	41		
.00110	95863	37	4	37	JT		71		

TWO TAILS

		*******		=======================================				
20- 40			intel(N)		H2≅Mante	21{N-1}		
N	•	H-	Но	H+	H-	Ho		
.00101 47		0	25	278	0	278		
.0105 43		0	0	0	0	0		
.0510 23	0 0	0	0	0	0	0		
.00110 114	1 11	0	11	117	0	117		
41- 60		HZ≘Ma	intel(N)		HZ≅Mante	1(N-1)		
N	H+	H -	Но	H+	H-	Но		
.00101 375	4 43	0	43	125	0	125		
.0105 329	4 0	0	0	0	0	0		
.0510 171	4 0	0	0	0	0	0		
.00110 876		0	18	53	0	53		
61- 80		 #7=#a	intel(N)		H2≡Mante	11N-11		
OI UU	H+	H-	Ho	H+	H-	Ho		
.00101 1185	7	0	53	97	0	97		
-		-						
.0105 1048		0	0	0	0	0		
.0510 548		0	0	0	0	0		
.00110 2783	0 23		23	41	 	41		
B1-100		H2≡Ma		H2≡Mantel(N-1)				
N	H+	H-	Ho	H+	H-	Но		
.00101 2624	B 54	0	54	81	0	81		
.0105 2305	1 0	0	0	0	0	0		
.0510 1195	6 0	0	0	0	0	0		
.00110 6125	5 23	0	23	35	0	35		
150-150		H2≡Ma	ntel(N)		H2≡Mante	1(N-1)		
N	H+	H-	Но	H+	H-	Ho		
.00101 573	9 36	0	36	48	0	48		
.0105 502		0	0	0	0	0		
.0510 257		0	0	0	Ô	0		
.00110 1333		0	16	21	Ō	21		
					•			
200-200	u.		ntel(N)		H2≡Mante			
N		H-	Ho	H+	H-	Ho		
.00101 1275		2	21	34	1	35		
.0105 1117		0	0	0	0	0		
.0510 566		0	0	0	0	0		
.00110 2959	6 12	1	13	15	1	15		
250-250		H2≡Ma	ntel(N)		H2≅Mante	1(N-1)		
N	H+	H-	Ho	H+	H-	Ho		
.00101 2337	1 23	4	27	26	2	30		
	0 0	0	0	0	0	0		
.0105 2028		0	0	0	0	0		
	0				1	13		
.0105 2028		2	12	11				
.0105 2028 .0510 1051 .00110 5416		2						
.0105 2028 .0510 10510 .00110 5416	1 10	2 H2≅Ma	ntel(N)		H2≡Mante	el(N-1)		
.0105 2028 .0510 10510 .00110 5416 .003-300	1 10 	2 H2≡Ma H-	ntel(N) Ho	H+	H2≡Mante H-	 el (N-1) Ho		
.0105 2028 .0510 10510 .00110 5416 .000-300 N .00101 3805	1 10 	2 H2≅Ma H- 6	ntel(N) Ho 23	H+ 20	H2≡Mante H- 5	21 (N-1) Ho 25		
.0105 2028 .0510 1051 .00110 5416 .00101 3805 .0105 3299	H+ 18 0 0	2 H2≅Ma H- 6 0	ntel(N) Ho 23 0	H+ 20 0	H2≅Mante H- 5 0	Pl(N-1) Ho 25 0		
.0105 2028 .0510 10510 .00110 5416 .000-300 N .00101 3805	H+ 1 18 0 0 0 2 0	2 H2≅Ma H- 6	ntel(N) Ho 23	H+ 20	H2≡Mante H- 5	21 (N-1) Ho 25		

Tabla XIV

Valores de N, H⁺, H⁻ y H^o (los tres últimos en °/ $_{\infty}$) para los tamaños y métodos con versión (n) o (n-1) (primera fila) y los valores de P, (primera columna) que se indican. En la cabecera se especifica si el test es de 1 ó 2 colas. (Para valores de

			ONE	TAIL					
1233333	=========	=========	*******	-::::::::::::	222222233	::::::::			
20- 40			H≡Yates	(N)	н	≅Yates(N-	1)		
•••	¥	H+	H-	Но	H+	H-	Ho		
.00101	1520	182	126	308	243	101	344		
.0105	1834	15	96	100	104	64	167		
.0510	1154	2	41	42	23	29	51		
.00110	450B	86	88	156	130	67	197		
41- 60			HEYates	:(N)	 H	i=Yates{N·	-11		
41- 90	N	H+	H-	На	H+	H-	Ho		
.00101	3996	208	176	282	234	152	384		
.0105	4674	90	88	178	135	75	210		
	2882	13	41	54	33	29	62		
.00110		112	107	218	144	90	234		
.00110 				210					
61- 80			HEYate:	· - •	H≡Yates(N-1)				
	N	H+	H-	Ho	H+	H-	Ho		
.00101	7195	214	219	433	234	198	432		
.0105	8249	122	99	221	141	68	520		
.0510	5034	26	43	69	41	22	75		
.00110	20478	131	127	258	149	113	263		
81-100			HEYates(N) HEY			H≅Yates(N	EYates(N-1)		
	H	H+	H-	Ho	H+	H-	Ha		
.00101	10799	209	263	472	226	240	466		
.0105	12301	131	106	237	147	98	245		
.0510	7460	36	42	79	48	34	82		
.00110	30560	135	146	291	151	122	283		
150-150)		H≣Yate	s(N)		HEYates(N	-1)		
	Ħ	H+	H-	На	H+	H-	Ho		
.00101	1187	187	370	557	197	347	544		
.0105	1300	158	132	290	182	121	302		
.0510	783	51	49	100	60	43	103		
.00110	3270	143	198	341	158	184	343		
200-200	·)		HEYate	s(X)		HEYates(I-1)		
•	N	#+	H-	Ho	H+	H-	H		
.00101	1794	177	433	610	185	420	60		
.0105	1996	185	145	331	197	140	22.		
.0510	1182	66	52	118	74	48	12		
.00110	4954	154	227	381	163	219	28.		
250-256)		Hayatı	rs(N)		H=Yates(N-1)		
302 40	N	H+	H-	Ho	H+	H-	Н		
.00101	2482	170	479	649	176	463	63		
.0105	2703	196	155	351	203	150	35		
.0510		78	54	132	85	49	13		
.00110		158	249	408	165	240	40		
300-30	 O		H≅Yatı	es(N)		H=Yates(H-1)		
244 34	N	H+	H-	Ha	H+	H-	Н		
.00101		163	514		168	202	67		
.0105		201	164		206	158	36		
	4484	-41					14		

.05-.10 2057

TWO TAILS

=========				.4173		:=========	=======		
20- 40			H2EMai	ntel(N)		H2≡Mantel	(N-1)		
	N	H+	н-	Но	H+	Н-	Но		
.00101	1423	157	134	292	271	108	379		
.0105	1647	0	95	95	80	71	151		
.0510	974	Ç	48	48	28	34	72		
.00110	4044	55	78	153	137	75	212		
41 40						1155M L.1			
41- 60		11.		ntel(N)		H2=Mantel(N-1)			
201 21	N	H+	H-	Ho	H+	H-	Ho		
.00101	3730	164	188	352	219	163	383		
	4290	6	96	102	48	81	130		
	2501	0	48	48	25	34	59		
.00110	10521	60	117	177	104	99	203		
61- 80			H2≅Mar	ntel(N)		H2≡Mantel	(N-1)		
	N	H+	H-	Ho	H+	H-	Ho		
.00101	6627	140	238	377	175	215	389		
.0105	7320	14	112	126	45	10 0	145		
	4386	0	49	49	25	38	63		
	18333	56	142	198	87	127	214		
Bi-100			 H7=Mar	 ntel(N)		H2≅Mantel	(N_1)		
B1 100	N	H+	#14=1181 H-	Ho	H+	H-	Ho Ho		
001 01				-					
	9919	123	286	409	151	262	412		
•	10873	17	120	137	40	111	151		
	6240	0	51	51	13	41	54		
.00110	27032 	52	165	217	74	150	224		
150-150			H2≡Mar	ntel(N)		H2≡Mantel	(N-1)		
	N	H+	H-	Ho	Н+	H-	Ho		
.00101	1073	89	409	498	102	384	486		
.0105	1185	24	145	170	45	132	177		
.0510	652	0	58	58	0	52	52		
.00110	2910	43	223	266	56	207	263		
200-200			H2≅Mar	itel(N)		H2≡Mantel	(N-1)		
	N	H+	H-	Ho	H+	H −	Но		
.00101	1605	77	483	560	83	469	553		
					0.3				
.0105	1789	30	161	191			205		
	17 89 1017	30 1	161 61	191 62	50	155	205 58		
	1789 1017 4411	30 1 40	161 61 255	191 62 296			205 58 298		
.0510 .00110	1017	1	61 255	62 296	50 2	155 56 246	58 298		
.0510	1017 4411	1 40	61 255 	62 296 ntel(N)	50 2 51	155 56 246 H2≅Mantel	58 298 (M-1)		
.0510 .00110 	1017 4411 N	1 40 H+	61 255 H2≅Mar H-	62 296 ntel(N) Ho	50 2 51 	155 56 246 H2=Mantel H-	58 298 (N-1) Ho		
.0510 .00110 	1017 4411 N 2213	1 40 H+ 65	61 255 H2EMar H- 537	62 296 ntel(N) Ho 602	50 2 51 H+ 72	155 56 246 H2≡Mantel H- 519	58 298 (N-1) Ho 591		
.0510 .00110 	1017 4411 N 2213 2432	H+ 65 33	61 255 H2=Mar H- 537 172	62 296 ntel(N) Ho 602 205	50 2 51 H+ 72 45	155 56 246 H2≡Mantel H- 519 167	58 298 (N-1) Ho 591 212		
.0510 .00110 	1017 4411 N 2213 2432 1418	1 40 H+ 65 33	61 255 HZ=Mar H- 537 172 61	62 296 ntel(N) Ho 602 205 73	50 2 51 H+ 72 45 16	155 56 246 H2=Mantel H- 519 167 56	58 298 (N-1) Ho 591 212 71		
.0510 .00110 	1017 4411 N 2213 2432	H+ 65 33	61 255 H2=Mar H- 537 172	62 296 ntel(N) Ho 602 205	50 2 51 H+ 72 45	155 56 246 H2≡Mantel H- 519 167	58 298 (N-1) Ho 591 212		
.0510 .00110 	1017 4411 N 2213 2432 1418	1 40 H+ 65 33	61 255 H2≅Mar H- 537 172 61 279	62 296 ntel(N) Ho 602 205 73	50 2 51 H+ 72 45 16	155 56 246 H2=Mantel H- 519 167 56	58 298 (N-1) Ho 591 212 71 317		
.0510 .00110 	1017 4411 N 2213 2432 1418	1 40 H+ 65 33	61 255 H2≅Mar H- 537 172 61 279	62 296 ntel(N) Ho 602 205 73 319	50 2 51 H+ 72 45 16	155 56 246 H2≡Mantel H- 519 167 56 269	58 298 (N-1) Ho 591 212 71 317		
.0510 .00110 	N 2213 2432 1418 6063	1 40 H+ 65 33 12 40	61 255 H2≡Mar H- 537 172 61 279	62 296 ntel(N) Ho 602 205 73 319	50 2 51 H+ 72 45 16 48	155 56 246 H2≡Mantel H- 519 167 56 269 H2≅Mantel	58 298 (N-1) Ho 591 212 71 317 (N-1)		
.0510 .00110 250-250 .00101 .0105 .0510 .00110	1017 4411 N 2213 2432 1418 6063 N 2837	1 40 H+ 65 33 12 40 H+ 60	61 255 H2≡Mar H- 537 172 61 279 H2≡Mar H- 576	62 296 ntel(N) Ho 602 205 73 319 ntel(N) Ho 637	50 2 51 H+ 72 45 16 48 H+ 66	155 56 246 H2=Mantel H- 519 167 56 269 H2=Mantel H- 565	58 298 (N-1) Ho 591 212 71 317 (N-1) Ho 630		
.0510 .00110 250-250 .00101 .0105 .0510 .00110 	1017 4411 N 2213 2432 1418 6063 N 2837 3111	H+ 65 33 12 40 H+ 60 32	61 255 H2≡Mar H- 537 172 61 279 H2≡Mar H- 576 182	62 296 ntel(N) Ho 602 205 73 319 ntel(N) Ho 637 214	50 2 51 H+ 72 45 16 48 H+ 66 43	155 56 246 H2≡Mantel H- 519 167 56 269 H2≅Mantel H- 565 176	58 298 (N-1) Ho 591 212 71 317 (N-1) Ho 630 219		
.0510 .00110 250-250 .00101 .0105 .0510 .00110 	1017 4411 N 2213 2432 1418 6063 N 2837	1 40 H+ 65 33 12 40 H+ 60	61 255 H2≡Mar H- 537 172 61 279 H2≡Mar H- 576	62 296 ntel(N) Ho 602 205 73 319 ntel(N) Ho 637	50 2 51 H+ 72 45 16 48 H+ 66	155 56 246 H2=Mantel H- 519 167 56 269 H2=Mantel H- 565	58 298 (N-1) Ho 591 212 71 317 (N-1) Ho 630		

```
*/
                                /*
                                          PROGRAMA: PI
     Programa para sacar un listado con los ptos que forman la RC y sus pvalue's para
/*
     la tabla especificada o el error objetivo dado, por el método óptimo de dos colas: DH
/*
#include <stdio.h>
finclude <math.h>
#include <string.h>
int n,al,nl,xl;
double ALFA;
 double Hip (int x111)
 {
       finnumn1,finnumn2,finnumn,indenn1,indenn2,indenn,i;
   double numn1, numn2, numn, denn1, denn2, denn, combn1, combn2, combn, prob;
   finnumnl=(((n1-x111) > x111) ? (n1-x111+1) : (x111+1));
   finnumn2=(((n-n1-a1+x111) > (a1-x111)) ? (n-n1-a1+x111+1) : (a1-x111+1));
   indenn1=(((n1-x111) > x111) ? x111 : (n1-x111));
   indenn2=(((n-n1-a1+x111) > (a1-x111)) ? (a1-x111) : (n-n1-a1+x111));
   finnumn=(((n-a1) > a1) ? (n-a1+1) : (a1+1));
   indenn=(((n-al) > al) ? al : (n-al));
   numn1=numn2=numn=1;
   denn1=denn2=denn=1;
   for (i=nl;i>=finnumnl;i--)
     numn1 *= i;
   for (i=indenn1;i>=2;i--)
     denn1 *= i;
   combn1=(double)numn1/denn1;
   for (i=n-nl;i>=finnumn2;i--)
     numn2 *= i;
   for (i=indenn2;i>=2;i--)
     denn2 *= i;
   combn2=(double)numn2/denn2;
   for (i=n;i>=finnumn;i--)
     numn *= i;
   for (i=indenn;i>=2;i--)
     denn *= i;
   combn=(double)numn/denn;
   prob=(double)combn1*combn2/combn;
   return(prob);
void main()
    int x11,x12,b;
   double pvalue, alfa;
   FILE *pepad;
    pepad=fopen("PEPAD","wt");
        DATOS DE LA TABLA
```

n=30;a1=3;n1=14;x1=2;

*/

```
ERROR OBJETIVO PARA LA RC */
     alfa=.05;
     xll=(((al+nl-n) > 0) ? al+nl-n : 0); /* xll=max(0,al+nl-n) */
     x12=((a1 < n1) ? a1 : n1);
                                            /* x12=min(a1,n1)
     fprintf ( pepad, "\n L%2d:=[%3d,%3d,%3d,%3d,%3d,[",n,al,nl,x11,x12 );
     pvalue=0.0;
     b=a1*n1;
     while (((x11<=x1) && (x12>=x1)) && (pvalue<alfa))
       if (( (abs (x11*n-b)) > (abs(x12*n-b))) && ((pvalue+Hip(x11))<=.10) )
           pvalue += Hip(x11);
           fprintf ( pepad, "[%3d,Ploat(%7.7f,-7)],",x11,pvalue);
           x11 +=1;
      else if ( (abs (x11*n-b)) == (abs(x12*n-b)))
            if ((pvalue+Hip(x11)+Hip(x12))<=.10)</pre>
             pvalue += (Hip(x11)+Hip(x12));
             fprintf ( pepad, "[%3d,Float(%7.7f,-7)],[%3d,Float(%7.7f,-7)],",x11,pvalue,x12,pvalue);
             x11 +=1;x12-=1;
            else pvalue=.5;
           else if ( (pvalue+Hip(x12))<=.10 )</pre>
                  pvalue += Hip(x12);
                  fprintf ( pepad, "[%3d,Float(%7.7f,-7)],",x12,pvalue);
         else pvalue=.50;
     } /* fin while */
     fprintf (pepad," ]; ");
} /* fin main */
```

```
/* Programa: PII
```

```
PROGRAMA QUE COMPARA LOS DISTINTOS METODOS APROXIMADOS PARA UNA COLA
/*
        CONSIDERA TRES INTERVALOS PARA LA P EXACTA Y DISTINTOS DELTAS.
/*
#include <stdio.h>
finclude <math.h>
#include <string.h>
   int n, al, nl, xl;
   double Fisher(int x11)
   { int i1,i2,i3,i4,N,D,D1,D2,IT1,IT2,x2,r1,r2,n2,N1;
      double pi,ptot;
      x2=a1-x11:
      rl=n1-x11;
      r2=n-n1-a1+x11;
      N1=n1;
      n2=n-N1:
      if (x11*r2>x2*r1) {i1=x11;x11=x2;x2=i1;i1=r1;r1=r2;r2=i1;N1=n2;n2=n1;}
      if (abs(x11-x2)>abs(r1-r2)) {D1=x11;D2=x2;IT1=r1;IT2=r2;}
                                  {D1=r1;D2=r2;IT1=x11;IT2=x2;}
      else
      if (D1<D2) {i1=D1;D1=D2;D2=i1;i1=IT1;IT1=IT2;IT2=i1;}
      for (pi=1,N=D1+D2+1,D=D1+1,i3=1;i3<=IT1;i3++)
      pi*=(double)D++/N++;
      for (i4=1,D=D2+1;i4<=IT2;)
      pi*=(double)D++/i4++*i3++/N++;
      ptot=pi;
      for (i1=x11, i2=n2-x2, i3=x2+1, i4=N1-x11+1;
           ( i1>=0 ) && ( i2>=0 );
           i1--, i2--, i3++, i4++)
      ptot += pi *= (double)i1*i2/i3/i4;
      return( ptot );
   }
   double PExacto(int cola)
    { double x11;
      double pseg,pfis,x111;
      if (cola==0) return (Fisher(x1));
      { x11= (double)(2.0*a1*n1/n)-x1;
          if (x11<0.0) pseg=0;
          else { xlll=floor(xll);
                 pseg=Fisher(x111);
          pfis=Fisher (x1)+pseg;
          return (pfis);
```

```
double PChi2(double Chi)
{ double 2,q;
    if (Chi<200) Z=.7071067812*sqrt(Chi);
    else Z=10;
    q=(1+2*(.0705230784
               +Z*(.0422820123
               +Z*(.0092705272
               +Z*(.0001520143
               +Z*(.0002765672
               +2*.0000430638)))));
    q=1/q/q/q/q;
    q=q*q*q*q;
    return(q);
}
double PChi(int metodo, int cola)
   int x11;
    double \lambda, B, \lambda\lambda, p;
    A=(double)xl*(n-nl-al+xl)-(al-xl)*(nl-xl);
    x11=floor((double)(2.0*al*n1/n)-x1);
    AA=(double)x11*(n-n1-a1+x11)-(a1-x11)*(n1-x11);
    B=(double)al*(n-al)*nl*(n-nl)/n;
    switch (cola)
         case 0:
             switch (metodo)
             { case 0: p=(PChi2((double)(\lambda-n/2.0)*(\lambda-n/2.0)/B)/2.0); break;
                 case 1: p=(PChi2((double)(\lambda*\lambda+(\lambda-n)*(\lambda-n))/2.0/B)/2.0); break;
                 case 2: p=((PChi2(\lambda*\lambda/B) + PChi2((\lambda-n)*(\lambda-n)/B))/4.0);
             break:
         case 1:
             switch (metodo)
              ( case 0: if (x11<0) p=PChi2((\lambda-n/2.0)*(\lambda-n/2.0)/B)/2.0;
                             else p=((PChi2((\lambda-n/2.0)\pm(\lambda-n/2.0)/B)+
                                         PChi2((AA+n/2.0)*(AA+n/2.0)/B))/2.0); break;
                   case 4: if (x11)=0 p=PChi2((\lambda * \lambda/B + (
                                                 ((((\lambda\lambda+n)*(\lambda\lambda+n))<((\lambda-n)*(\lambda-n))) \mid | (((\lambda\lambda+n)*(\lambda\lambda+n))>(\lambda*\lambda)))
                                                 ((\lambda-n)*(\lambda-n)/B)
                                                 ((\lambda\lambda+n)*(\lambda\lambda+n)/B)
                                                 ) )/2.0);
                                               p=PChi2((A*A/B +(A-n)*(A-n)/B)/2.0);break;
                                else
                  case 3: if (x11>=0) p=PChi2((A/sqrt(B)+(
                                                ((((\lambda\lambda+n)*(\lambda\lambda+n))<((\lambda-n)*(\lambda-n))) \mid | (((\lambda\lambda+n)*(\lambda\lambda+n))>(\lambda*\lambda)))
                                                (((\lambda-n)>=0)?((\lambda-n)/\operatorname{sqrt}(B)):(-(\lambda-n)/\operatorname{sqrt}(B)))
                                                (((\lambda \lambda + n) > = 0)?((\lambda \lambda + n) / sqrt(B)):(-(\lambda \lambda + n) / sqrt(B)))
                                                ))*(\(\lambda\/\)sqrt(\(\beta\))+(
                                                ((((\lambda\lambda+n)*(\lambda\lambda+n))<((\lambda-n)*(\lambda-n))) \mid | (((\lambda\lambda+n)*(\lambda\lambda+n))>(\lambda*\lambda)))
```

```
(((\lambda-n))>=0)?((\lambda-n)/\operatorname{sqrt}(B)):(-(\lambda-n)/\operatorname{sqrt}(B)))
                                                (((\lambda\lambda+n)>=0)?((\lambda\lambda+n)/\operatorname{sqrt}(B)):(-(\lambda\lambda+n)/\operatorname{sqrt}(B)))
                                                1)/4.0);
                               else if ((\lambda-n)>=0) p=PChi2((\lambda+(\lambda-n))*(\lambda+(\lambda-n))/B/4.0);
                                      else p=PChi2((\lambda-(\lambda-n))*(\lambda-(\lambda-n))/B/4.0);break;
                   case 2: if (x11>=0) p=((PChi2(\lambda+\lambda/B)+PChi2((\lambda-n)+(\lambda-n)/B)+
                                                  PChi2(\lambda\lambda+\lambda\lambda/B)+PChi2((\lambda\lambda+n)*(\lambda\lambda+n)/B))/4.0);
                            /* else if (x11=-1) p=((PChi2(\lambda * \lambda/B)+PChi2((\lambda-n)*(\lambda-n)/B)+
                                                           PChi2((\lambda\lambda+n)*(\lambda\lambda+n)/B))/4.0); */
                                     else p=((PChi2(A*A/B)+PChi2((A-n)*(A-n)/B))/4.0);break;
                   case 1: if (x11>=0) p=(PChi2((double)(\lambda * \lambda + (\lambda - n)*(\lambda - n))/2.0/B)+
                                                 PChi2((double)(\lambda\lambda*\lambda\lambda+(\lambda\lambda+n)*(\lambda\lambda+n))/2.0/B))/2.0;
                                 else if (x11==-1) p=(PChi2((double)(\lambda+\lambda+(\lambda-n)+(\lambda-n))/2.0/B)+
                                                 PChi2((double)(\lambda\lambda+n)*(\lambda\lambda+n)/2.0/B))/2.0; */
                                              p=(PChi2((double)(\lambda+\lambda+(\lambda-n)+(\lambda-n))/2.0/B))/2.0;break;
                   case 5: if (x11>=0) p=(PChi2(A*A/B)+PChi2(
                                                  ((((\lambda\lambda+n)*(\lambda\lambda+n))<((\lambda-n)*(\lambda-n))) \mid | (((\lambda\lambda+n)*(\lambda\lambda+n))>(\lambda*\lambda)))
                                                  ((\lambda-n)*(\lambda-n)/B)
                                                  ((\lambda\lambda+n)*(\lambda\lambda+n)/B)
                                                  ) )/2.0;
                                else p=(PChi2(\lambda+\lambda/B)+PChi2((\lambda-n)+(\lambda-n)/B))/2.0; break;
                }
       return(p);
    }
void main()
             periodo,np,nf,intervalo,colas,metodo,uent[6],tinc,salida;
   int
    long N[4],NT1[6][4][3],NT2[6][4][3],NT3[6][4][3],NFuera[4];
    double DT[6][4][3],CT[6][4][3];
    double pexacto,ptabla[6],coctabla,delta,e1,e2,esp;
    char
             cper[4][10];
     FILE *tablas; */
    FILE *propor2;
    propor2=fopen("PROPOR2","wt");
/* tablas=fopen("TABLAS","wt");*/
    strcpy(cper[0],".001-.01");
    strcpy(cper[1]," .01-.05");
    strcpy(cper[2]," .05-.10");
    strcpy(cper[3],".001-.10");
    for (colas=0;colas<2;colas++)
/±
        fprintf (tablas, (x1, x2, y1, y2));
         if (colas==0) fprintf(tablas, P Yates
                                                                  P Conover P Mantel");
        else fprintf(tablas, "Mantel-H2 ConoverCl-Cl HaberCl-H1 MantelNu-H2 ConoverNu-C2 MantelNN-N1 ");*/
        for (periodo=1;periodo<9;periodo++)</pre>
         { for (intervalo=0;intervalo<4;intervalo++)
```

```
{ M[intervalo]=0;
   NFuera[intervalo]=0;
   for (metodo=0;metodo<((colas==0)?3:6);metodo++)</pre>
      for (salida=0;salida<3;salida++)
        { NT1[metodo][intervalo][salida]=0;
          NT2[metodo][intervalo][salida]=0;
          NT3[metodo][intervalo][salida]=0;
          DT[metodo][intervalo][salida]=0;
          CT[metodo][intervalo][salida]=0;
switch (periodo)
{ case 1:np=20;nf=40;break;
   case 2:np=41;nf=60;break;
   case 3:np=61;nf=80;break;
   case 4:np=81;nf=100;break;
   case 5:np=150;nf=150;break;
   case 6:np=200;nf=200;break;
   case 7:np=250;nf=250;break;
   case 8:np=300;nf=300;
for (n=np; n<=nf; n++)
   for (al=1; 2*al<=n; al++)
      for (nl=al; nl+al<=n; nl++)
         for (x1 = ceil((double)al*n1/n) ; x1 <= al ; x1++)
         { el=al*nl/n;
          e2=(n-n1)*a1/n;
          if (e1<=e2) esp=e1;
          else esp=e2;
          { pexacto=PExacto(colas);
            fprintf (tablas, "\n(%3d, %3d, %3d, %3d) PP(%1d)=%6.4f", x1, a1-x1, n1-x1, n-n1-a1+x1, colas+1, pexacto);
            for (metodo=0;metodo<((colas==0)?3:6);metodo++)
               fprintf(tablas, " %6.4f ",PChi(metodo,colas));*/
            if ((pexacto>=0.001) && (pexacto<=0.1))
               delta=0;
               if (pexacto <=.01)
                  { intervalo=0;
                    delta=.5;
                  else if (pexacto <.05)
                           { intervalo=1;
                           delta=.575-7.5*pexacto;
                           else { intervalo=2;
                                  delta=.2;
               N[intervalo]++;
               tinc=0:
                for (metodo=0;metodo<((colas==0)?3:6);metodo++)</pre>
                { if ((coctabla=(ptabla[metodo]=PChi(metodo,colas))/pexacto)>1.0) uent[metodo]=0;
                   else uent[metodo]=2;
                   if (coctabla<1.0) uent[metodo]=1;
                   if (uent[metodo]<2)
                   { NT3[metodo][intervalo][uent[metodo]]++;
                      DT[metodo][intervalo][uent[metodo]] += (coctabla - 1.0);
                   }
                   if ((coctabla=(ptabla[metodo]=PChi(metodo,colas))/pexacto)>(delta+1.0))
                   { uent[metodo]=0;
```

/*

```
tinc++:
                 else uent[metodo]=2;
                 if (coctabla<(1.0-delta))
                   uent[metodo]=1;
                    tinc++;
                 }
                 if (uent[metodo]<2) MT2[metodo][intervalo][uent[metodo]]++;
              }
              switch (tinc)
              { case 6: NFuera[intervalo]++; break;
                 case 0: break;
                 default:
                 if ((tinc==3) && (colas==0)) NFuera[intervalo]++;
                       for (metodo=0;metodo<((colas==0)?3:6);metodo++)</pre>
                           if (uent[metodo]<2) NT1[metodo][intervalo][uent[metodo]]++;
            }
          }
N[3]=N[0]+N[1]+N[2];
NFuera[3]=NFuera[0]+NFuera[1]+NFuera[2];
for (metodo=0;metodo<((colas==0)?3:6);metodo++)</pre>
  for (salida=0;salida<3;salida++)
     { NT1[metodo][3][salida]=NT1[metodo][0][salida]+NT1[metodo][1][salida]+NT1[metodo][2][salida];
       NT2[metodo][3][salida]=NT2[metodo][0][salida]+NT2[metodo][1][salida]+NT2[metodo][2][salida];
       NT3[metodo][3][salida]=NT3[metodo][0][salida]+NT3[metodo][1][salida]+NT3[metodo][2][salida];
       DT[metodo][3][salida]=DT[metodo][0][salida]+DT[metodo][1][salida]+DT[metodo][2][salida];
for (metodo=0;metodo<((colas==0)?3:6);metodo++)
  for (intervalo=0;intervalo<4;intervalo++)</pre>
     { NT1[metodo][intervalo][2]=NT1[metodo][intervalo][0]+NT1[metodo][intervalo][1];
       NT2[metodo][intervalo][2]=NT2[metodo][intervalo][0]+NT2[metodo][intervalo][1];
       NT3[metodo][intervalo][2]=NT3[metodo][intervalo][0]+NT3[metodo][intervalo][1];
if (colas==0)
                                                                                                            Mantel");
                                                                            Conover
                                              Yates
    fprintf(propor2,
                                                                                                             H+
                                                                                        H-
                                                                                                 H٥
                                                                  Ho
                                                                               ₩+
                                                         H-
                                   N
                                                Η+
   fprintf(propor2, "\n
 else
                                                                                                        MantelNv-N2
                                                                       ConoverNv-C2
                                           Mantel-H2
    fprintf(propor2,"
                                                                                                              H+
                                                                                                                       H-
                                                                                                 Ho
                                                                               Ħ+
                                                                                        H-
                                                                  Ho
                                                ∄+
                                                         H-
                                   N
    fprintf(propor2, "\n
 for (intervalo=0;intervalo<4;intervalo++)
     fprintf(propor2,"\nts t6ld",cper[intervalo],N(intervalo]);
    for (metodo=0;metodo<((colas==0)?3:6);metodo++)
       fprintf(propor2,"
                            ");
       for (salida=0;salida<3;salida++)
         fprintf(propor2, * $8.0f*, (double) NT2[metodo][intervalo][salida]/N[intervalo]*1000);
 }
```

}