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12-HETE: Acido 12(S)-hidroxieicosatetraenoico 
12-HPETE: Acido 12(S)-hidroperoxieicosatetraenoico 
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MPTP: 1-metil-4-fenil-1,2,3,6-tetrahidropiridina 
NMDA: N-metil-D-aspartato 
NO: Oxido nítrico 
NO·: Radical óxido nítrico 
NOSe: Oxido nítrico sintasa endotelial 
NOSi: Oxido nítrico sintasa inducible 
NOSn: Oxido nítrico sintasa neuronal 
O2

·−: Radical superóxido 
OH·: Radical hidroxilo 
ONOO−: Peroxinitrito 
PARP: Poli(ADP-ribosa) polimerasa 
PKC: Proteína kinasa C 
PLA2: Fosfolipasa A2 
SN: Substantia nigra 
SNAP: S-nitroso-N-acetilpenicilamina 
SOD: Superóxido dismutasa 
TH: Tirosina hidroxilasa 
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 INTRODUCCIÓN 

 En 1980 el Dr. R.F. Furchgott del Departamento de Farmacología de la Universidad 

de Nueva York, descubrió un factor soluble liberado por el endotelio vascular, responsable 

de la relajación del musculo liso vascular en la aorta de conejo, en respuesta a acetilcolina 

(Furchgott and Zawadzki, 1980). Este factor, al que Furchgott denominó EDRF (endotelial 

derived relaxing factor), resultó ser de gran importancia en la regulación del flujo y la 

presión sanguíneos. Siete años después, los grupos dirigidos por S. Moncada y L.J. Ignarro 

identificaron el EDRF producido y liberado por arterias y venas como óxido nítrico (NO) 

(Palmer et al., 1987; Ignarro et al., 1987). En 1988 se reconoce por primera vez el papel del 

NO en el sistema nervioso, cuando se demostró que el neurotransmisor excitatorio 

glutamato, actuando sobre los receptores de N-metil-D-aspartato (NMDA), estimulaba la 

producción de NO en cultivos de células granulares de cerebelo (Garthwaite et al., 1988). 

Pese a que con anterioridad se había estudiado el papel del NO en la estimulación de la 

guanilato ciclasa (GC) (Murad et al., 1978), la identificación del NO como EDRF y su 

relevancia en el sistema nervioso, intensificó la actividad investigadora en el campo. Desde 

entonces hasta la fecha, la participación del NO en numerosos procesos fisiológicos y 

patológicos ha sido ampliamente estudiada. Reflejo de ello son las más de 50.000 entradas 

relativas al NO que se pueden encontrar en Medline y que crecen, en la actualidad, a razón 

de 6.000 nuevos trabajos al año. 

  

El estudio del NO en el sistema nigro-estriatal, y concretamente su toxicidad para 

las neuronas dopaminérgicas (DA), adquiere gran interés con los numerosos trabajos que 

indican la participación de este radical libre en la enfermedad de Parkinson (EP). Los 

estudios bioquímicos e histológicos en los cerebros post-mortem de estos pacientes, han 

revelado un incremento en la concentración de nitritos en el líquido cefaloraquídeo 

(Qureshi et al., 1995) y la presencia de radicales NO en la substantia nigra (SN) (Shergill 

et al., 1996). Las inclusiones intracelulares denominadas cuerpos de Lewy, característica 

histopatológica de la enfermedad, se tiñen positivamente con anticuerpos anti-3-

nitrotirosina (Good et al., 1998) y recientemente se ha descrito que uno de los componentes 

mayoritarios de estas inclusiones, la proteína α-sinucleina, se encuentra nitrosilada en la 

EP (Giasson et al., 2000). Finalmente, se ha demostrado un marcado incremento en el 

número de células gliales que expresan un enzima de síntesis del NO, la NO sintasa 

inducible (NOSi) en la SN de los enfermos de EP (Hunot et al., 2001). Todos estos datos 

indican una sobreproducción de NO, cuya fuente parece ser las células gliales. Por otra 

parte, la información que se obtiene en modelos animales de la enfermedad, refuerza la 
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 INTRODUCCIÓN 

participación del NO en el proceso degenerativo. En ratones tratados con 1-metil-4-fenil-

1,2,3,6-tetrahidropiridina (MPTP), se detecta un incremento en 3-nitrotirosina (Schulz et 

al., 1995; Pennathur et al., 1999) y un aumento en la expresión de NOSi en la microglía 

(Liberatore et al., 1999; Dehmer et al., 2000). Además, tanto la delección del gen de la 

NOSi como la inhibición farmacológica de este enzima, protege a las neuronas DA de la 

toxicidad del MPTP (Liberatore et al., 1999; Dehmer et al., 2000). 

  

Un exceso de producción de NO puede producirse por un incremento en la síntesis 

del enzima NOSi, o por un aumento de calcio intracelular que activa los enzimas 

constitutivos NOS neuronal (NOSn) o NOS endotelial (NOSe). La concentración local de 

NO es una función de la relación entre su producción y su desaparición, bien por reacción 

o por difusión (Murphy, 1999). Cuando la concentración de NO se eleva, puede causar 

daño celular por diversos mecanismos (Fig. 1): (1) formando S-nitrosotioles, (2) 

reaccionando con el radical superóxido (O2
·−) para formar peroxinitrito (ONOO−), una 

molécula mucho más reactiva y citotóxica que su precursora, (3) desregulando enzimas 

con grupo hemo y (4) liberando hierro de la proteína intracelular ferritina. 

 

Una de las dianas principales donde el NO (y el ONOO−) ejercen sus efectos 

deletéreos, es la mitocondria. El NO puede inhibir reversible o irreversiblemente la 

respiración mitocondrial, inhibir la creatina kinasa e inducir la permeabilidad mitocondrial 

transitoria (PT), con la liberación de pequeñas proteínas de la matriz (Revisado en Murphy 

1999). El NO puede afectar tanto la cantidad como el reclutamiento en la membrana 

mitocondrial externa, de proteínas pro-apoptóticas (Bax, Bcl-XS, Bak) y anti-apoptóticas 

(Bcl-2, Bcl-XL) (Levine, 1997; Hsu et al., 1997). Por otro lado, la S-nitrosilación del 

enzima gliceraldehido 3-fosfato deshidrogenasa (GAPDH) produce su inactivación y ADP-

ribosilación no enzimática (Molina y Vedia et al., 1992), inhibiendo la glicolisis. Otro 

punto importante de la toxicidad del NO es la inducción de daño sobre el ADN y la 

consiguiente activación de la poli(ADP-ribosa) polimerasa (PARP) para asistir su 

reparación. Este enzima transfiere más de 100 grupos ADP-ribosa del NAD+ a proteínas 

nucleares (Szabo et al., 1996). La resíntesis de NAD+ que sigue a este ciclo, consume gran 

cantidad de ATP, a la vez que la menor disponibilidad de NAD+ compromete la síntesis de 

ATP. Por tanto, la activación de PARP produce la depleción de ATP y una muerte celular 

que se previene con inhibidores de este enzima (Eliasson et al., 1997). Todos estos 

resultados indican, en conjunto, que la causa principal de la toxicidad del NO es la 
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inducción de un déficit energético, bien sea inhibiendo la GAPDH, alterando la 

mitocondria o activando PARP. Pero además, la acumulación de hierro libre intracelular 

inducida por el NO, participa en la reacción de Fenton produciendo radicales hidroxilo 

(OH·), con gran capacidad oxidativa y citotóxica. 
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Una observación interesante en los cerebros de pacientes con EP, enfermedad de 

Alzheimer y tras una isquemia, es que las neuronas que expresan NOSn aparecen 

relativamente preservadas del daño (Bockelmann et al., 1994; Mufson and Brandabur, 

1994). Una posible explicación a este hecho, es que las neuronas que expresan NOSn 

tienen defensas antioxidantes más efectivas que otras neuronas (Bolaños et al., 1997). Pero 

además, en modelos in vivo de EP se ha demostrado que el NO y el nitrosoglutation 

(GSNO), producto de la reacción entre el NO y el glutation (GSH), protegen a las neuronas 

DA del daño oxidativo causado por radicales OH·. (Rauhala et al., 1996; Mohanakumar et 

al., 1998; Rauhala et al., 1998). Los mecanismos por los que el NO y el GSNO pueden 

actuar como neuroprotectores (Fig. 1) incluyen: (1) inhibición de la producción de OH· 

estimulada por hierro en la rección de Fenton, (2) finalización de la reacción en cadena de 

peroxidación lipídica, (3) aumento de la potencia antioxidante del GSH (el GSNO es 100 
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veces más potente que el GSH atrapando OH· y peróxidos lipídicos), y (4) inhibición por 

S-nitrosilación de cisteinil proteasas como la caspasa-3 y la proteasa HIV-1 (Revisado en 

Chiueh and Rauhala, 1999). Incluso se ha descrito que el efecto neuroprotector del BDNF 

(Brain-Derived Neurotrophic Factor) es mediado por NO, a través de la producción de 

GMPc (Thippeswamy and Morris, 1997; Estévez et al., 1998). Todos estos resultados 

experimentales ponen de manifiesto el problema, intensamente discutido, del NO como 

molécula “buena” neuroprotectóra y neurotrófica, o como molécula “mala”, inductora de 

muerte neuronal. Como se verá más adelante, la conclusión más importante de este debate 

ha sido que el entorno celular en cada momento, pude condicionar la acción final de este 

radical libre. 

 

En lo que se refiere a la EP, la coexistencia en el sistema nigro-estriatal de otras 

alteraciones relacionadas con el estrés oxidativo, podría condicionar el efecto final del NO 

en esta enfermedad. Por ejemplo, se ha descrito una severa disminución en los niveles de 

GSH en la SN de pacientes con EP (Perry et al., 1982; Riederer et al., 1989; Sian et al., 

1994), así como una acumulación de hierro intracelular (Riederer et al., 1989; Dexter et al., 

1989; Sofic et al., 1991). La depleción de GSH es la primera alteración bioquímica 

encontrada, hasta la fecha, en cerebros con EP. Aparece antes de la degeneración neuronal 

en la enfermedad de los cuerpos de Lewy, considerada como una manifestación 

presintomática de la EP (Riederer et al., 1989), por lo que se puede descartar que sea una 

consecuencia del proceso degenerativo. Esto sugiere una posible relación entre ambos 

hechos, aunque debe ser establecido si la depleción de GSH contribuye a la degeneración. 

 

 El tripéptido GSH, γ-L-glutamil-L-cisteinilglicina, es el compuesto tiólico presente 

en mayor concentración en las células de cualquier órgano (1-10 mM). Tiene importantes 

funciones como antioxidante, en la detoxificación de xenobióticos, es cofactor en diversas 

reacciones y constituye el almacen y transporte de cisteina (Revisado en Dringen, 2000). 

La homeostasis del GSH (Fig. 2) es muy importante para la defensa celular frente al estrés 

oxidativo. Puede reaccionar directamente con radicales de forma no enzimática y también 

es un donador de electrones en la reducción de peróxidos catalizada por la GSH 

peroxidasa. A pesar de su importancia, la depleción de GSH en proporciones similares e 

incluso superiores a las que ocurren en la EP (50-70% de disminución), no induce 

degeneración del sistema DA en animales de experimentación (Wullner et al., 1996; Toffa 

et al., 1997). Es más, las neuronas DA en cultivo son más resistentes a la depleción de 
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GSH que otras poblaciones celulares del mesencéfalo (Nakamura et al., 1997; Nakamura et 

al., 2000; Nakamura et al., 2001). No obstante, la disminución de GSH puede aumentar la 

sensibilidad de las neuronas DA frente a algunas toxinas como el MPTP y la 6-hidroxi 

dopamina (Pileblad et al., 1989; Wullner et al., 1996; Nakamura et al., 1997) y así, 

promover el proceso degenerativo.  
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Figura 2: Metabolismo del glutation. En rojo se indican las reacciones correspondientes a la

función antioxidante del glutation y en azul el ciclo γ-glutamilo, en el que se produce su

síntesis. El enzima limitante en la síntesis de glutation es la γ-Glu-Cys sintetasa y es la diana

farmacológica del L-butionina-(S,R)-sulfoximina (BSO). 

GSH, glutation reducido; GSSG, glutation oxidado; GPx, GSH peroxidasa; GRx, GSSG

reductasa; GAPDH, gliceraldehido 3-fosfato deshidrogenasa; Aa, aminoácido. 

 

 

Aunque no sabemos si las numerosas alteraciones bioquímicas e histológicas 

escritas en estudios postmortem de pacientes con enfermedades neurológicas, son causa, 

arte o consecuencia del proceso degenerativo, la coexistencia espacio-temporal de 

lgunas de ellas podría ser relevante en el proceso de pérdida neuronal. 
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OBJETIVOS 

 



OBJETIVOS 

 

 

Objetivo 1: Estudiar el efecto del óxido nítrico en la diferenciación, funcionalidad y 

supervivencia de las neuronas dopaminérgicas, teniendo en cuenta las 

posibles interacciones neurona-glía en el resultado final. 

 

Objetivo 2: Investigar la influencia de la concentración intracelular y extracelular de 

glutation, en el efecto final del óxido nítrico sobre las neuronas 

dopaminérgicas. 

 

Objetivo 3: Buscar estrategias neuroprotectoras frente a la toxicidad producida por un 

incremento agudo y elevado, en la concentración de NO, así como estudiar 

los mecanismos asociados a dicha protección. 

 

Objetivo 4: Estudiar la resistencia de las neuronas dopaminérgicas a la disminución de la 

concentración intracelular de glutation y el efecto del óxido nítrico en dichas 

condiciones. 

 

Objetivo 5: Investigar las rutas de señalización intracelular que median los efectos del 

óxido nítrico y del glutation, en cultivos primarios de mesencéfalo.  
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Neurotrophic and neurotoxic effects of nitric oxide on fetal 
midbrain cultures  
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Neurotrophic and neurotoxic effects of nitric oxide on

fetal midbrain cultures

S. Canals, M. J. Casarejos, E. RodrõÂguez-MartõÂn, S. de Bernardo and M. A. Mena

Departamento de InvestigacioÂn, Servicio de NeurobiologõÂa, Hospital `RamoÂn y Cajal', Madrid, Spain

Abstract

There is evidence suggesting that nitric oxide (NO) may play

an important role in dopamine (DA) cell death. Thus, the aim

of this study was to investigate the effects of NO on apoptosis

and functionality of DA neurones and glial cells. The experi-

ments were carried out in neuronal-enriched midbrain cultures

treated with the NO donor diethylamine±nitric oxide com-

plexed sodium (DEA±NO). DEA±NO, at doses of 25 and

50 mM, exerted neurotrophic effects on dopamine cells,

increasing the number of tyrosine hydroxylase positive

(TH1) cells, TH1 neurite processes, DA levels and [3H]DA

uptake. A dose of 25 mM DEA±NO protected DA cells from

apoptosis. In addition, it induced de novo TH synthesis and

increased intracellular reduced glutathione (GSH) levels,

indicating a possible neuroprotective role for GSH. However,

in doses ranging from 200 to 400 mM, DEA±NO decreased

TH1 cells, DA levels, [3H]DA uptake and the number of

mature oligodendrocytes (O11 cells). No changes in either the

amount or morphology of astrocytes and glial progenitors

were detected. A dose- and time-dependent increase in

apoptotic cells in the DEA±NO-treated culture was also

observed, with a concomitant increase in the proapoptotic

Bax protein levels and a reduction in the ratio between Bcl-xL

and Bcl-xS proteins. In addition, DEA±NO induced a dose-

and time-dependent increase in necrotic cells. 1H-[1,2,4]oxa-

diazolo[4,3a]quinoxaline-1-one (ODQ, 0.5 mM), a selective

guanylate cyclase inhibitor, did not revert the NO-induced

effect on [3H]DA uptake. Glia-conditioned medium, obtained

from fetal midbrain astrocyte cultures, totally protected

neuronal-enriched midbrain cultures from NO-induced apop-

tosis and rescued [3H]DA uptake and TH1 cell number. In

conclusion, our results show that low NO concentrations have

neurotrophic effects on DA cells via a cGMP-independent

mechanism that may implicate up-regulation of GSH. On the

other hand, higher levels of NO induce cell death in both

dopamine neurones and mature oligodendrocytes that is

totally reverted by soluble factors released from glia.

Keywords: apoptosis, Bcl-2 proteins, dopamine neurones,

glia, glutathione, nitric oxide.

J. Neurochem. (2001) 76, 56±68.

There is great controversy, to date, regarding the role of

nitric oxide (NO) on dopamine cell death. Several studies

suggest that NO is a toxic factor mediating dopamine cell

death (Dawson et al. 1992; Smith et al. 1994; Przedborski

et al. 1996; LaVoie and Hastings 1999; Liberatore et al.

1999) whereas others have demonstrated that it protects

against oxidative stress (Lipton et al. 1993; Wink et al.

1996; Rauhala et al. 1998). NO, synthesized by neuronal

NO synthase (nNOS), is thought to modulate MPTP-induced

neurotoxicity (Schulz et al. 1995; Przedborski et al. 1996;

Liberatore et al. 1999). Conversely, NOS-containing

neurones are relatively spared in parkinsonian brains

(Bockelmann et al. 1994; Mufson and Brandabur 1994).

Astrocytes, on the other hand, can synthesize NO either

constitutively or by induction of the enzyme NOS. The

function of astrocyte-derived NO is not yet clear. However,

it is well established that astrocytes comprise an effective

antioxidant system (Sagara et al. 1993; Makar et al. 1994;

Mena et al. 1997, 1998a, 1999) and are highly resistant to

elevated concentrations of the deleterious NO-derived

oxidant, peroxynitrite (BolanÄos et al. 1995). However,

these cells are not immune to MPTP toxicity (Di Monte

et al. 1992; Tsai and Lee 1994).
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A redox-based mechanism for the neuroprotective and

neurodestructive effects of NO and related nitroso com-

pounds has been postulated (Lipton et al. 1993). Glutathione

is an endogenous thiol that reacts with NO to form

S-nitrosoglutathione (GSNO) and which protects dopamine

neurones from oxidative stress (Rauhala et al. 1998; Chiueh

and Rauhala 1999).

In view of the above, the present study was undertaken to

examine whether NO can modulate dopamine function and

to determine the role of glial cells on NO-induced DA cell

death and survival.

Materials and methods

Materials

Culture media

Dulbecco's modi®ed Eagle's medium (DMEM) with high glucose

(4.5 g/L), Ham's F12 nutrient mixture, Eagle's minimal essential

medium (EMEM) with Earl's salts and Leibovitz's L-15 medium,

all of which were supplemented with l-glutamine, fetal calf serum

(FCS), sodium pyruvate and l-glutamine were purchased from

Gibco BRL (Paisley, Scotland, UK). Glucose 45%, insulin,

putrescine, progesterone and sodium selenite were from Sigma

(Madrid, Spain) and human transferrin, 30% iron-saturated, from

Boehringer-Mannheim (Barcelona, Spain).

Antibodies

Mouse monoclonal anti-b-actin antibody and antirabbit IgG

conjugated with tetramethylrhodamine (TRITC) were purchased

from Sigma (Madrid, Spain); mouse monoclonal antityrosine

hydroxylase (TH) antibody and antimouse Ig ¯uorescein were

from Boehringer-Manheim (Barcelona, Spain); O1 and A2B5 were

obtained from hybridoma supernatants (Raff et al. 1979, 1983);

polyclonal anti-GFAP antibody, raised in rabbits, was from Dako

(Glostrup, Denmark); antirabbit polyclonal Bcl-2, Bax and Bcl-xS/l

antibodies were from Sta. Cruz Biotechnology, Inc. (CA, USA).

Chemicals

Trypan blue, bovine serum albumin, poly-d-lysine, p-phenylene-

diamine, bis-benzimide, pargyline, N-(1-napthyl)-ethylenediamine,

sulfanilamide, 5,5 0-dithio-bis-2-nitrobenzoic acid (DTNB), reduced

and oxidized forms of glutathione and 2-vinylpyridine were from

Sigma (Madrid, Spain); NADPH, lactate dehydrogenase standard

(LDH), the cytotoxicity detection kit (LDH) and glutathione

reductase (GR) were from Boehringer-Manheim (Barcelona,

Spain); ascorbic acid was from Merck (Darmstadt, Germany),

1H-[1,2,4]oxadiazolo[4,3a]quinoxaline-1-one (ODQ) from Biomol

Research Lab., Inc. (PA, USA), and diethylamine/nitric oxide

complex sodium (DEA±NO) from RBI (Natick, MA, USA). The

radiochemical [3H]DA (70 Ci/mmol) was obtained from Dupont

NEN (Boston, MA, USA) and 3H-guanosine (6.3 Ci/mmol) from

Moravek Biochemicals (CA, USA). The apoptosis TUNEL

detection kit was obtained from Promega (Madison, WI, USA).

The BCA protein assay kit was from Pierce (Rockford, Illinois,

USA). All other reagents were of the highest purity commercially

available from Merck or Sigma.

Neuronal and glial cultures

Neuronal-enriched cultures from embryonic Sprague±Dawley rat

midbrain E-14 (crown±rump length 10±12 mm) were obtained and

prepared as previously described (Mena et al. 1993; Pardo et al.

1997). The cells were seeded in DMEM with 15% fetal calf serum

(DMEM-FCS) at a density of 105 cells/cm2 in multiwells or glass

cover slides previously coated with poly-d-lysine, 4.5 mg/cm2, in

0.1 m borate buffer, pH 8.4. The cultures were kept in a humidi®ed

chamber at 378C in a 5% CO2 atmosphere. Twenty-four hours after

plating, the cells were changed to serum-free de®ned medium

(EF12) as previously reported (Mena et al. 1993; Pardo et al. 1997).

EF12 consisted of a 1 : 1 (v/v) EMEM and nutrient mixture of

Ham's F-12, supplemented with d-glucose (6 mg/mL), insulin

(25 mg/mL), transferrin (100 mg/mL), putrescine (60 mm), proges-

terone (20 nm) and sodium selenite (30 nm).

Glia-enriched mesencephalic cultures were obtained from sibling

cells kept in culture for 10±15 days in DMEM-FCS (Levison and

McCarthy 1991). The DMEM-FCS medium was then discarded,

the cells were washed out three times with Leibovitz's L-15 and

subsequently cultured in serum-free de®ned medium. After 24 h of

culture in such conditions, the medium was collected and stored

frozen. This medium was considered glia-conditioned medium

(GCM). Positive staining with anti-GFAP antibody identi®ed the

astrocytes in these cultures. After 10±15 days in culture, the

number of astrocytes constituted around 80±90% of total cells.

Experimental treatments

After 5 days in culture, the cells, randomly allocated to the

different experimental groups, received two main treatments with

no change of culture media: a dose±response curve of DEA±NO

(0, 5, 10, 25, 50, 100, 200 and 400 mM), dissolved in de®ned

medium, for 24 h and a time-response curve of 0, 4 and 8 h with

400 mm DEA±NO in de®ned medium.

The effect of low doses of DEA±NO on cell survival and

phenotype expression was investigated in sister cultures plated at

similar cell density and treated with solvent or DEA±NO. TH1 cell

count was carried out after 1, 5 and 6 days in culture. After 5 days

in culture, some wells were treated with 25 mm DEA±NO, the

culture maintained for an additional 24 h and the number of TH1

cells counted.

Finally, the effect of GCM on DEA±NO-induced toxicity was

evaluated in a set of cultures that were changed to GCM or fresh

DM and treated with 200 mm DEA±NO or solvent (de®ned

medium) for 24 h.

Measurement of cGMP formation

For cGMP determination, the culture medium was removed from

the wells and the cells were incubated for 24 h with 2 mCi/ml

[3H]guanosine in 1 mL of serum-free de®ned medium. After

radiolabelling, cells were washed once with Krebs±Henseleit±

Hepes buffer (KHH) (118 mm NaCl, 4.7 mm KCl, 2.5 mm CaCl2,

1.2 mm MgSO4, 1.2 mm KH2PO4, 10 mm glucose, 20 mm Hepes,

25 mm NaHCO3, pH 7.4 and 0.5 mm IBMX). After washing, the

cells were incubated at 378C in KHH for 30 min prior to addition of

DEA±NO, at different concentrations, for 5 min. The reaction was

stopped by aspiration of the buffer and addition of 1 mL of cold

methyl alcohol (MeOH) and 0.12 m HCl (1 : 1). Plates were then
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kept in the freezer at 2 208C for 1 h and aliquots (900 mL) of the

MeOH±HCl extract were used to determine cGMP production as

previously described (HernaÂndez 1995).

Immunocytochemistry

DA neurones were characterized by immunostaining with a mouse

monoclonal anti-TH antibody (1 : 100), astrocytes with a rabbit

policlonal anti-GFAP antibody (1 : 500); glial progenitors with

monoclonal anti-A2B5 antibody (1 : 10) (Raff et al. 1979, 1983)

and oligodendrocytes with monoclonal anti-O1 (1 : 10) (Sommer

and Schachner 1981). In brief, cultures were ®xed with 4%

paraformaldehyde, washed in 0.1 m phosphate-buffered saline

(PBS), pH 7.4, permeabilized with ethanol±acetic acid (19 : 1)

and incubated at 48C for 24 h with primary antibodies diluted in

PBS containing 10% fetal calf serum. Fluorescein- and rhodamine-

conjugated secondary antibodies were employed to visualize

positive cells under ¯uorescent microscopy. The number of

immunoreactive cells was counted in 1/7 of the total area of the

cover slides. The cells were counted in prede®ned parallel strips

using a counting reticule inserted in the ocular.

Cell death measurements

Cells growing on cover slides were treated with DEA±NO at the

concentrations and incubation times indicated in the ®gure legends.

Apoptosis was measured by DNA staining and the TUNEL assay.

Cultures were ®xed in 4% paraformaldehyde, nuclei were stained

with bis-benzimide 33342 Hoechst added in the antifading solution

(3 � 1026 m ®nal concentration) (Hilwig and Gropp 1975; Pardo

et al. 1997) and counted in 1/14 of the cover slide area; apoptotic

cells were identi®ed by chromatin condensation.

The apoptosis TUNEL detection system measures the frag-

mented DNA of apoptotic cells by incorporating ¯uorescein-12-

dUTP* at the 3 0-OH ends of the DNA using the enzyme terminal

deoxynucleotidyl transferase (TdT) (Kerr et al. 1972; Gavrieli et al.

1992). For this assay, the cells were ®xed in 4% paraformaldehyde

and permeabilized with 0.2% Triton X-100. The ¯uorescein-12-

dUTP-labelled DNA of apoptotic cells was visualized by

¯uorescence microscopy (positive cells with green ¯uorescence).

The number of apoptotic cells was counted in 1/14 of the cover

slide area. Cells were counted in prede®ned parallel strips using a

counting reticule in the ocular. Cells incubated with buffer in the

absence of TdT enzyme were used as negative controls.

For necrotic cell death determination, Trypan blue dye exclusion

assay was performed (Pardo et al. 1997) and LDH activity was

measured in the culture medium by using a cytotoxicity detection

kit (Decker and Lohmann-Matthes 1988).

Fig. 1 Dose-dependent effects of DEA±NO on fetal midbrain cul-

tures. Cells were cultured for 5 days and subsequently treated with

DEA±NO, in concentrations ranging from 25 to 400 mM, for 24 h. (a)

Nitrite concentration in the culture medium induced by DEA±NO. (b)

Apoptotic cells induced by DEA±NO, counted with bis-benzimide

and expressed as a percentage of chromatin condensed nuclei with

respect to the total number of cells. (c) Apoptotic cells counted by

the TUNEL assay, expressed as a percentage of positive nuclei with

respect to the total number of cells. (d) Western blot analysis of

proteins from the Bcl-2 family in control cultures (1) and cultures

treated with 400 mM DEA±NO for 24 h (2). Charge control with

b-actin. (e) Data represent the ratio Bax/b-actin and the ratio Bcl-xL/S

in control cultures and in cultures treated with 400 mM DEA±NO for

24 h. Values are expressed as the mean ^ SEM (for at least three

independent experiments n � 3 2 9) Statistical analysis was per-

formed by ANOVA followed by the Student's t-test. *p , 0.05,

**p , 0.01, ***p , 0.001 vs. controls.
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Nitrite measurement

NO production was routinely quanti®ed by measuring nitrite, a

stable oxidation end product of NO (Green et al. 1982). Brie¯y,

400 mL of culture medium were mixed with 800 mL of Griess

reagent (1.5% sulfanilamide in 1 m HCl plus 0.15% N-(1-

naphtyl)ethylenediamine dihydrochloride in distilled water, v:v).

After 10 min of incubation at room temperature, the absorbance at

540 nm was determined, using sodium nitrite as a standard.

Uptake studies

[3H]DA uptake was measured after incubation of the cells with

1028 m [3H]DA (70 Ci/mmol), in the presence of pargyline 1025 m,

and ascorbic acid (AA) 1023 m, at 378C for 30 min. Non-speci®c

uptake/binding was calculated in the presence of 1025 m mazindol

(Beart and McDonald 1980). Proteins were measured according to

the Bradford assay (1976).

Western blot analysis

Primary midbrain cultures were homogenized with a sonicator in

buffer containing 20 mm TrisHCl, 10 mm AcK, 1 mm DTT, 1 mm

EDTA, 1 mm PMSF, 1 mm benzamidine, 0.25% NP-40, pH 7.4

(Sigma), and then centrifuged at 12 000 g for 30 min at 48C.

The supernatant was used for protein determination by the BCA

protein assay kit and for electrophoretical separation. Samples

(30 mg) were added to SDS sample loading buffer, electrophoresed

in Bio-Rad SDS-polyacrilamide gels (4±20%) and then electro-

blotted to 0.45 mm nitrocellulose membranes. For immunolabel-

ling, the blots were blocked with TTBS (20 mm Tris-HCl pH 7.6,

137 mm NaCl plus 0.1% (v/v) Tween-20 and 5% dry skimmed

milk) for 1 h at room temperature. After blocking non-speci®c

binding, the membranes were incubated with mouse anti-TH

(1 : 2000), rabbit anti-Bax (1 : 1000), mouse anti-Bcl-2 (1 : 250),

rabbit anti Bcl-xS/l (1 : 500) and mouse anti-b-actin (1 : 5000) in

blocking solution overnight at 48C. The blots were developed by

chemiluminiscence detection using a commercial kit (Amersham)

Fig. 2 Effect of DEA±NO (200 and 400 mM) for 24 h on apoptotic

cell death in fetal midbrain cultures. Photomicrograph of total nuclei

stained with bis-benzimide (a c and e) and of apoptotic cells

obtained by the TUNEL assay (b, d and f ), corresponding to the

same ®eld. (a) and (b): Control cells, (c) and (d): Cultures treated

with 200 mM DEA±NO, (e) and (f ): cultures treated with 400 mM

DEA±NO. Scale bar � 50 mm. Inset shows that both methods mark

the same apoptotic cells (arrows).

Fig. 3 Dose- and time-dependent effects of

DEA±NO on necrotic cell death in fetal mid-

brain cultures. (a) Trypan blue dye exclu-

sion assay at 8 and 24 h and (b) LDH

activity in the culture medium at 8 and 24 h

after DEA±NO (25±400 mM) treatment.

Values are expressed as the mean (SEM

from n � 4±6. Statistical analysis was per-

formed by ANOVA followed by the Student's

t-test. *p , 0.05, **p , 0.01, ***p , 0.001

vs. controls.
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and quanti®ed by computer-assisted videodensitometry. b-Actin

was employed as a control of charge.

Catecholamine levels

CA levels were measured by HPLC with an ESA coulochem

detector, according to Mena et al. (1989, 1995a), as follows: The

cells were detached from the wells and centrifuged. The resultant

supernatant was discarded and the pellets were sonicated in 0.4 m

perchloric acid (PCA) with 0.5 mm Na2S2O5 and 2% EDTA and

then centrifuged for 5 min. CA levels were determined in 20 mL of

the latter supernatant, and the pellet was used for protein

determination.

Glutathione measurements

Total glutathione levels were measured by the method of Tietze

(1969). Brie¯y, 4 � 105 cells were washed with PBS, lysed in

100 mL of 3% perchloric acid (PCA) for 30 min at 48C,

centrifuged, and the supernatants were neutralized with four

volumes of 0.1 m NaH2PO4, 5 mm EDTA, pH 7.5. Glutathione

content was measured in a P96 automatic reader by the addition of

DTNB (0.6 mm), NADPH (0.2 mm) and glutathione reductase

(1 U) and the reaction monitored at 412 nm during 6 min. Oxidized

glutathione (GSSG) was measured in the cells by the method of

Grif®th (1980). Brie¯y, after PCA extraction and pH neutralization,

reduced glutathione (GSH) was derivatized with 2-vinylpyridine at

Fig. 4 Time-dependent effects and cell

selectivity of DEA±NO-induced neuro-

toxicity. Cells were cultured for 5 days and

then treated with 400 mM DEA±NO for 4 h

or 8 h. (a) Cellular nuclei were stained

with bis-benzimide, the chromatin-condensed

nuclei were counted and expressed as a

percentage of apoptotic cells with respect

to the total number of cells. (b) Number of

DA neurones expressed as a percentage

vs. control. (c) Apoptotic DA neurones

expressed as the percentage of TH1-

chromatin condensed cells vs. total number

of TH1 cells. (d) Number of oligodendro-

cytes expressed as a percentage vs. con-

trol. Values are the mean ^ SEM from

n � 4 2 6. Control values (per well):

2171 ^ 239 TH1 cells; 6884 ^ 1315 O11

cells. Statistical analysis was performed

by ANOVA followed by the Student's t-test.

*p , 0.05, ***p , 0.001 vs. controls.

Fig. 5 Time-selectivity of the DEA±NO-induced neurotoxic effect for

the different cell types in fetal midbrain cultures. Cells were cultured

for 5 days and then treated with 400 mM DEA±NO for 4 h or 8 h.

Photo-micrographs show DA neurones (TH1), astrocytes (GFAP1),

mature oligodendrocytes (O11), glial progenitors (A2B51) and their

corresponding phase-contrast images. Scale bar � 50 mm.
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room temperature for 1 h and the reaction carried out as above.

GSH was obtained by substracting GSSG levels from total

glutathione levels. Extracellular glutathione measurements were

made in culture media treated with PCA (3% ®nal concentration)

and monitored as above.

Statistical analysis

The results were statistically evaluated for signi®cance using one

way analysis of variance followed by the Student's t-test as a post

hoc evaluation. Differences were considered statistically signi®cant

when p , 0.05.

Table 1 Neurotrophic and neurotoxic effects of DEA±NO on dopamine neurones, intracellular glutathione concentration and nitrite levels in the

culture medium

[DEA±NO]

(mM)

Number of

TH1 cells

[3H]DA uptake

(cpm x 103/well)

Endogenous DA

(pg/well)

[Glutathione]

(ng/mg of protein)

[Nitrites]

(mM)

0 3036 �^ 188 15.6 �̂ 1.6 575 �^ 66 20.2 �̂ 1.2 3.3 �^ 0.1

5 3061 �^ 220 15.7 �̂ 1.7 499 �^ 26 24.1 �̂ 3.1 8.8 �^ 0.9**

10 3696 �^ 333 13.6 �̂ 1.3 558 �^ 83 21.8 �̂ 1.6 12.7 �^ 1.6**

25 4454 �^ 255** 27.1 �̂ 4.5* 1006 �^ 164* 35.0 �̂ 4.3** 23.3 �^ 1.8**

50 3461 �^ 172 22.0 �̂ 2.0* 821 �^ 111 30.3 �̂ 2.3** 41.3 �^ 2.0***

100 2459 �^ 142 19.6 �̂ 2.8 628 �^ 111 20.2 �̂ 1.1 75.2 �^ 3.2***

200 1943 �^ 177** 13.2 �̂ 1.0 507 �^ 97 17.1 �̂ 1.0 171.1 �^ 9.4***

400 486 �̂ 145*** 6.3 �^ 0.9** 266 �^ 17** 15.5 �̂ 0.8* 304.5 �^ 23.3***

Cells were cultured for 5 days and subsequently treated with DEA±NO in doses ranging from 5 to 400 mM for 24 h. Values are expressed as the

mean ^ SEM from three independent experiments with n � 4 2 6 replicates in each experiment. Statistical analysis was performed by ANOVA

followed by the Student's t-test. *p , 0.05, **p , 0.01, ***p , Temp 0.001 vs. controls.

Fig. 6 Neurotrophic and neurotoxic effects of DEA±NO on DA

neurones. TH immunocytochemistry of six day-postplating fetal mid-

brain cultures, treated for 24 h with: vehicle (a), 25 mM DEA±NO (b),

or 400 mM DEA±NO (c). Scale bar � 50 mm. (d) Western blot analy-

sis of TH protein in control cultures (1) and cultures treated with 25

mM DEA±NO for 24 h (2). Charge control with b-actin. (e) Effect of

25 mM DEA±NO on DA cell survival. Values are the mean (SEM

from n � 4 2 6. Statistical analysis was performed by ANOVA fol-

lowed by the Student's t-test. **p , 0.01, 6-day cultures treated with

25 mM DEA±NO, from day 5±6, vs. their respective con-

trols; ²p , 0.05, 6-day cultures treated with 25 mM DEA±NO vs.

control cultures of 5 days.

Nitric oxide effects on DA neurones 61

q 2001 International Society for Neurochemistry, Journal of Neurochemistry, 76, 56±68

YAGO
RESULTADOS                                                                                                                       Trabajo 1

YAGO


YAGO
21

YAGO




Results

Effects of NO on cell death

Dose-dependent effect

Treatment of fetal midbrain cultures with increasing

concentrations of DEA±NO, ranging from 25 to 400 mm,

for 24 h produced a dose-dependent increase in nitrite

concentration in the culture medium (Fig. 1a) as a

consequence of NO released from the donor (Keefer et al.

1996; Ferrero et al. 1999). In addition, a dose-dependent

increase in apoptotic cell number was detected in the culture

by chromatin condensation with bis-benzimide nuclear

staining (Fig. 1b and Fig. 2c,e) and by DNA fragmentation

with the TUNEL assay (Fig. 1c, 2d,f). The apoptotic nature

of cell death in our system was corroborated by Western blot

analysis of Bcl-2 family protein levels. A 24 h treatment

with 400 mm DEA±NO increased Bax protein levels and

reduced the ratio between Bcl-xL/Bcl-xS proteins

(144 ^ 10.3% and 62.6 ^ 2.4%, respectively) (Fig. 1e),

indicating a role for these proteins in the apoptotic process

triggered by NO. No changes in Bcl-2 protein expression

were detected in the same blots (data not shown). DEA±NO

induced a dose- and time-dependent increase in necrotic cell

number, as determined by Trypan blue dye exclusion

(Fig. 3), concomitant with an increase in LDH activity,

which was measured in the culture media (Fig. 3).

Time-dependent effects and cell selectivity

The apoptotic effect was observed at 4 h after treatment

with 400 mm DEA±NO (23 ^ 2% of apoptotic cells vs.

Fig. 7 Effect of 25 and 400 mM DEA±NO on glutathione levels.

Intracellular reduced form (GSH) (a), intracellular oxidized form

(GSSG) (b), and extracellular reduced 1 oxidized (GSx) forms (c).

Values are the mean (SEM from n � 6. Statistical analysis was per-

formed by ANOVA followed by the Student's t-test. *p , 0.05,

**p , 0.01 vs. controls.

Fig. 8 (a) Dose-dependent increase in cGMP production induced by

DEA±NO in fetal midbrain cultures. Results are expressed as the

mean ^ SEM (n � 3). (b) Effect of ODQ (0.5 mM) on [3H]DA uptake

in DEA±NO (25 and 400 mM)-treated cell cultures. Results are

expressed as a percentage of the control group and are the

mean ^ SEM (n � 3±6). Basal levels: 16 045 ^ 581 cpm/well. Statis-

tical analysis was performed by ANOVA followed by the Student's

t-test. **p , 0.01, ***p , 0.001 vs. control group. No signi®cance

differences (N.S.) were detected with ODQ-treatment when

compared to their respective controls.
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11 ^ 1% in controls) and increased to 54 ^ 4% at 8 h

(Fig. 4a). Immunocytochemical characterization of cell

death in these time-related treatments (Figs 4 and 5)

revealed that dopamine neurones (TH1 cells, Fig. 4b) and

mature oligodendrocytes (O11 cells, Fig. 4d) were the cell

types most affected by 400 mm DEA±NO at 4 h (72 ^ 9%

and 85 ^ 12% vs. control values, respectively) and 8 h

(17 ^ 3% and 18 ^ 3%, respectively). Astrocytes (GFAP1

cells, Fig. 5) and glial progenitors (A2B51 cells, Fig. 5)

were unaffected, both in number and morphology, by this

treatment at any of the time periods studied. Using double

staining with bis-benzimide and TH1 immunoreactivity, we

proved that dopamine cell death occurs by an apoptotic

mechanism (Fig. 4c).

Neurotrophic and neurotoxic effects of NO on dopamine

cells

We have found that treatment of fetal midbrain cultures with

DEA±NO, ranging from 5 to 400 mm, exerts neurotrophic

and neurotoxic effects on functional dopamine parameters.

Doses of 25±50 mm DEA±NO enhanced dopamine function

(Table 1 and Fig. 6), increasing the number of TH1 cells by

147 ^ 10%, the TH1 neurite processes (Fig. 6b), high

af®nity [3H]DA uptake (173 ^ 25%), intracellular DA

levels (175 ^ 29%) and TH protein levels (Fig. 6d).

To determine if these changes were due to de novo

synthesis of TH1 cells in the culture, we counted these

neurones at 24 h, 5 and 6 days in vitro, in cultures treated

with 25 mm DEA±NO from days 5±6. This dose of DEA±

NO not only protected TH1 cells from apoptosis, but also

induced de novo synthesis of these cells; the number of TH1

cells at 5 days in vitro was 3841 ^ 243, increasing to

4473 ^ 66 at 6 days (Fig. 6e).

Higher doses of DEA±NO (200 and 400 mm), however,

were neurotoxic since they produced a dose-dependent

decrease in the number of TH1 cells (64 ^ 6.8% and

16 ^ 2.7%, respectively) and in the TH1 neurite processes

(Fig. 6c and Table 1). High af®nity [3H]DA uptake and

endogenous DA levels were also decreased by 400 mm

DEA±NO (40 ^ 6% and 46 ^ 3%, respectively)

(Table 1).

Fig. 9 Protective effects of glia-conditioned

medium (GCM) on DEA±NO-induced toxi-

city in fetal midbrain cultures. After 5 days

in culture, cells were changed to GCM or

freshly de®ned medium (DM) and then

treated with vehicle or 200 mM DEA±NO for

24 h. (a) Cellular nuclei were stained with

bis-benzimide, chromatin-condensed nuclei

were counted and expressed as a percent-

age of apoptotic cells with respect to the

total cell number. (b) Number of DA neu-

rones expressed as a percentage vs. DM.

(c) High-af®nity [3H]DA uptake normalized

by protein content. Right panels show TH

immunocytochemistry of cultures treated in

DM with vehicle (d) or 200 mM DEA±NO

(e), and cultures treated in GCM with 200

mM DEA±NO (f). Scale bar � 50 mm.

Values are expressed as the mean ^ SEM

for n � 4±6. Basal level for the number of

TH1 cells per well was 1638 ^ 101. Statis-

tical analysis was performed by ANOVA fol-

lowed by the Student's t-test. *p , 0.05,

**p , 0.01, ***p , 0.001 vs. DM.

²²²p , 0.001 vs. DEA±NO 1 DM.
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Effect of DEA±NO on glutathione homeostasis

When primary midbrain cultures were treated with DEA±

NO in doses ranging from 5 to 400 mm, an increase in

glutathione levels was observed at 25±50 mm and a decrease

at 400 mm, coincident with an increase and decrease,

respectively, in DA function (Table 1). Extracellular

glutathione levels were altered in a similar fashion as the

intracellular GSH levels (Fig. 7a,c). Glutathione disul®de

(GSSG) was increased only at 400 mm DEA±NO (Fig. 7b).

Altogether, these data suggest that low doses of NO enhance

the free radical neutralizing capacity of cells whereas high

doses produce an increase in oxidative stress.

Effect of DEA±NO on cGMP levels

cGMP levels, as well as nitrite levels, in fetal midbrain

cultures were affected by DEA±NO in a dose-dependent

manner (Fig. 8a). To determine if cGMP is involved in the

NO-induced neurotoxic/neurotrophic effects in fetal mid-

brain cultures, the effect of DEA±NO was examined in the

presence of the speci®c soluble guanylate cyclase inhibitor,

ODQ. The DEA±NO-induced increase of cGMP levels in

the cell cultures was inhibited by ODQ (0.001±10 mm) in a

concentration-dependent manner (IC50 � 0.072 mm, data

not shown). Subsequent experiments were therefore con-

ducted at 0.5 mm ODQ. The cells were treated with ODQ

30 min before addition of DEA±NO. Control groups were

treated with ODQ solvent (3.75 � 1024 % DMSO). ODQ

(0.5 mm) did not affect the cell viability (data not shown),

nor did it revert the DEA±NO-induced effect on [3H]DA

uptake (Fig. 8b).

Glia-conditioned medium protects fetal midbrain

cultures from NO-induced toxicity

Cultures that were treated with the neurotoxic dose of

200 mm DEA±NO, in the presence of GCM, did not show

any signs of toxicity. No neurite degradation was detected,

as shown by phase contrast and TH immunostaining, nor

was a decrease in TH1 cell number or [3H]DA uptake

observed. In addition, we detected no increase in apoptotic

cell death (Fig. 9). GCM protects from DEA±NO-induced

neurotoxic effects when given simultaneously.

Discussion

NO donors exert their effects through the spontaneous

release of NO. Most often, NO is toxic for nerve cells and

induces apoptosis and necrosis. In some cases, however, NO

reduces neuronal death resulting from excitotoxicity or

serum deprivation (Lei et al. 1992; Kim et al. 1999). The

differential effects of NO on cell death are due, in part, to

the type of NO donor and cells used (Keefer et al. 1996;

Ferrero et al. 1999; Yamamoto et al. 2000). In this regard,

the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP),

which has a half-life of 37.2 ^ 13.8 min (in Krebs buffer, at

248C), induces differentiation of NB69 neuroblastoma cells

(RodrõÂguez-MartõÂn et al. 2000). In this study, we have

investigated the effects of DEA±NO, a nitric oxide donor,

on neuronal-enriched fetal rat midbrain cultures. We found

that the effects of NO depend on the dose, time and cell

type. At low concentrations, NO has anti-apoptotic effects

on DA cells whereas at high concentrations, it increases

apoptosis in neurones and oligodendrocytes. Cell death,

induced by DEA±NO, takes places by apoptosis and

necrosis. Early neurotoxicity, consisting in apoptosis, occurs

in DA neurones at high DEA±NO concentrations (400 mm).

GCM, obtained from fetal midbrain astrocyte cultures,

totally protects neuronal-enriched midbrain cultures from

NO-induced apoptosis and rescues [3H]DA uptake and TH1

cell number.

The family of Bcl-2-related proteins, that includes Bcl-2,

Bcl-x, Bad, Bak and Bax, constitutes a class of apoptosis

regulatory gene products that act at the effector stage of

apoptosis. It has been shown recently that NO-induced cell

death alters the expression of Bcl-2 and Bax (Tamatani et al.

1998; Matsuzaki et al. 1999). We found that treatment with

400 mm DEA±NO increases Bax levels but reduces the

ratios of Bcl-xL/Bcl-xS and Bcl-2/Bax.

Our results suggest that NO may be neurotrophic or

neurotoxic for fetal DA cells. Neurotrophism, as shown by

an increase in the number of TH1 cells, the number and

branching of DA processes, TH-protein content, [3H]DA

uptake and DA levels, takes place at low doses of DEA±NO

(25 and 50 mm); neurotoxicity, as shown by a reduction of

all these parameters, occurs at higher DEA±NO concen-

trations. The neuroprotective and neurotoxic roles of brain

NO may derive from the local intracellular oxidation±

reduction potential, since a reductive environment favours

the production of NO-free radicals (Lipton et al. 1993;

Smith et al. 1994). NO reacts with the superoxide anion and

produces peroxynitrite. This reactive species damages

proteins by sulfydryl oxidation and nitration, mechanisms

that inactivate TH (Ara et al. 1998; Kuhn et al. 1999).

Regulatory effects of NO on TH activity may be due to a

transcriptional mechanism, since we found an increase of

TH protein levels, as assessed by Western blotting. Other

mechanisms underlying TH activation by NO, including

post-transcriptional phosphorylation of the protein, cannot

be excluded (Ohki et al. 1995; Kumer and Vrana 1996; Bhat

et al. 1998; RodrõÂguez-Pascual et al. 1999). At low

concentrations, NO may act as a second messenger that

activates the TH protein producing the opposite effects at

high doses, probably related to a nitrosylation or a sulfydryl

oxidation of the TH enzyme. Rauhala et al. (1998) reported

that S-nitrosylation of GSH by NO and oxygen may be part

of the antioxidative cellular defense system as well as the

inactivation of caspases by GSNO via S-nitrosylation of

cysteine residues. In this context, Wink et al. (1993) have

proposed that NO protects against cellular damage and

cytotoxicity from reactive oxygen species. Mena et al.
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(1998b) suggested that mild pro-oxidant treatments could

protect different types of neurones from death by upregulat-

ing GSH. In the present study, we observed a signi®cant

increase in intracellular GSH levels at low doses of

DEA±NO (25 and 50 mm), and a signi®cant and progressive

decrease from 200 to 400 mm, indicating a neuroprotective

role for GSH. The ratio of GSSG/GSH has been used as an

index of oxidative stress in the brain (Slivka et al. 1987) and

GSH/total glutathione as an antioxidant index (Weber

1999). There is relevant in vivo evidence suggesting that

nanomolar concentrations of GSNO can protect brain DA

neurones from iron-induced oxidative stress and degenera-

tion. GSNO may be formed in NO-generating cells such as

astrocytes, which also contain millimolar concentrations of

GSH (Murphy et al. 1993; BolanÄos et al. 1995). The cellular

redox status is an important factor during neuronal

apoptosis. Under conditions of increased reactive oxygen

species, production of high intracellular glutathione content

could protect neurones from apoptotic injury. Likewise,

drugs inhibiting GSH depletion could prevent neurones from

oxidative damage (Ahlemeyer and Krieglstein 2000). The

intracellular redox status determines whether NO is toxic or

protective for rat oligodendrocytes in culture (Rosenberg

et al. 1999). Generation of NO and subsequent formation of

ONOO2 or nitrite may contribute to the selective vulner-

ability of DA neurones through the oxidation of DA and

protein modi®cation. GSH is the most potent endogenous

antioxidant known so far and blocks the binding of the DA

quinone to the protein induced by ONOO2 (LaVoie and

Hastings 1999).

We observed a dose-dependent increase of nitrite levels in

the supernatant of DEA±NO-treated cells that appeared less

than 10 min after addition of the NO donor. The nitrite

levels were identical in the absence of cells. It is unlikely

that the effect of DEA±NO on DA levels is related to a

competition between NOS and TH for BH4, the cofactor of

both enzymes (Hwang et al. 1998), since NO production

from DEA±NO does not require NOS activity.

DEA±NO produces a dose-dependent increase of cGMP

levels in midbrain cells. We used ODQ, a guanylate cyclase

inhibitor, to investigate the role of the cGMP pathway in cell

function (Moro et al. 1998; Kim et al. 1999) and DEA±NO-

induced neurotrophic and neurotoxic effects. ODQ (0.5 mm)

did not revert the DEA±NO-induced effect on [3H]DA

uptake. These data suggest that the mechanism through

which NO modulates DA function is independent of cGMP.

GSNO and NO have antioxidant properties independent of

cGMP in other systems (Chiueh and Rauhala 1999), as well

as in DA differentiation in human neuroblastoma cells

(RodrõÂguez-MartõÂn et al. 2000).

Altogether, our ®ndings may have important clinical

implications. Low GSH levels are present in the brains of

patients with Parkinson's disease (PD) (Jenner and Olanow

1998; Weber 1999). GSH is enriched in the mitochondria

(Meister 1988), where the thiolic groups play an essential

role in the activity of complex I (MartõÂnez-Banaclocha

2000). In addition, GSH depletion in the substantia nigra is

an early indicator of oxidative stress in PD (Jha and

Andersen 1999). Peroxynitrite may also play a role in this

disease; an increase of nitrite concentration in the cerebro-

spinal ¯uid of patients with PD has been reported (Qureshi

et al. 1995) and NO radicals have been detected in PD

substantia nigra (Shergill et al. 1996). Finally, the core of

Lewy bodies in PD are immunoreactive for nitrotyrosine

(Good et al. 1998).

GCM protects from DEA±NO-induced neurotoxic effects

when given simultaneously. It inhibits apoptosis but is also

neurotrophic for DA neurones (Mena et al. 1996, 1997,

1999). GCM is very rich in antioxidants (mainly GSH and

ascorbic acid), molecules that are neuroprotective during

acute exposure to DEA±NO. In addition, glia produces

neurotrophic and neurite-promoting agents that enhance

development, survival and neurite extension of DA neurones

and confer resistance to neurotoxins (Engele et al. 1991;

Nagata et al. 1993; Hoffer et al. 1994; Takeshima et al.

1994a, 1994b; Muller et al. 1995). Several gliotrophic

factors, such as ®broblast growth factor (Gall et al. 1994;

Mena et al. 1995b; Hou et al. 1997) and glial-derived

neurotrophic factor (GDNF) (Lin et al. 1994), share with the

antioxidants the neuroprotective effects of GCM. We have

shown that the neurotrophic effect of GCM on DA neurones

is greater than what could be attributed to GDNF (Mena

et al. 1997). Other neurotrophic factors (Mena et al. 1995b;

Engele et al. 1996; Grove et al. 1997; Mena et al. 1998a)

could also participate in the neurotrophic effect of GCM.

Thus, GCM seems a promising source of neurotrophic

agents for PD.

These studies provide new insights into the complex

regulatory activity of NO on DA neurones in vitro. The role

of NO in the regulation of these neurones in vivo, in health

and disease, and the putative pharmacological manipulation

of the NO pathway in neurodegenerative diseases, must be

further investigated.
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Abstract

The nitric oxide (NO) donor, S-nitroso-N-acetyl-D,L-penicillamine (SNAP), induced differentiation of human neuroblastoma
NB69 cells to a dopamine phenotype, as shown by phase-contrast microscopy and tyrosine hydroxylase (TH) immunocytochemistry.
NB69 cells were treated with 50 to 750µM SNAP in serum-free-defined medium for 24 h. SNAP treatment did not increase the
number of necrotic or apoptotic cells. However, a decrease in the number of viable cells was observed at 750µM SNAP. In
addition, a decrease in3H-thymidine uptake was detected at the highest dose of SNAP. An increase in the antiapoptotic Bcl-2 and
Bcl-xL protein levels and a decrease in the proapoptotic Bax and Bcl-xS protein levels were also detected by Western blot analysis
after SNAP treatment. At low doses (50–125µM), SNAP induced an increase in catecholamine levels,3H-dopamine uptake, TH
activity and monoamine metabolism, while a decrease in all these parameters was observed at high doses (250–750µM). The TH
protein content, analyzed by Western blot, remained unchanged in SNAP-treated cells throughout the range of doses studied, when
compared with the control group. SNAP produced a dose-dependent decrease in the glutathione (GSH) content of the culture
medium, without altering intracellular GSH. In addition, cGMP levels and nitrite concentration, measured in the supernatant of
SNAP-treated cells, increased in a dose-dependent manner, as compared to control levels. The guanylate cyclase inhibitor lH-
[1,2,4]oxadiazolo[4,3a]quinoxaline-l-one (ODQ) did not revert the SNAP-induced effect on3H-dopamine uptake to control values.
These results suggest that NO, released from SNAP, induces differentiation of NB69 cells and regulates TH protein at the post-
transcriptional level through a cGMP-independent mechanism. 2000 Elsevier Science Ltd. All rights reserved.

Keywords:Nitric oxide; Dopamine; Tyrosine hydroxylase; Differentiation; Bcl-2 family proteins; Glutathione; cGMP; Neuroblastoma cells

1. Introduction

Nitric oxide (NO) is synthesized by various isoforms
of nitric oxide synthase (NOS) that catalyse the conver-
sion of L-arginine to L-citrulline and NO in the presence
of oxygen and NADPH (Bredt and Snyder, 1990;
Knowles and Moncada, 1994). NO plays an important
role in cell-to-cell modulation (Garthwaite and Boulton,
1995) and vasodilation via activation of NO-sensitive
guanylyl cyclase and the generation of cGMP (Miki et
al., 1977; Moncada et al., 1991). NO has been shown to
exert a dual action: it ameliorates glutamate neurotoxic-
ity by reducing N-methyl-D-aspartate (NMDA) currents

* Corresponding author. Tel.:+34-91-336-8384; fax:+34-91-336-
9016.

E-mail address:maria.a.mena@hrc.es (M.A. Mena).

0028-3908/00/$ - see front matter 2000 Elsevier Science Ltd. All rights reserved.
PII: S0028-3908 (00)00049-6

when converted to its oxidized form (NO+) but has a
neurotoxic action when converted to its reduced form
(NOI) (Lipton et al., 1993). NO formation may be neuro-
protective or neurotoxic (Bolan˜os et al., 1997). It has
been reported that primary cortical neurons exposed to
NO donors such as S-nitroso-N-acetyl-D,L-penicillam-
ine (SNAP), sodium nitroprusside (SNP), or 3-morpholi-
nosydnonimine (SIN-l) exhibit concentration-dependent
cytotoxicity, indicating that increasing concentrations of
NO can be neurotoxic (Dawson et al. 1991, 1993). Sev-
eral authors have found neuroprotection with NOS
inhibitors (Izumi et al., 1992; Schulz et al., 1995), while
others report no neuroprotection (MacKenzie et al.,
1995) or exacerbation of NMDA-induced toxicity
(Connop et al., 1995). On the other hand, Sawada et al.
(1996) have shown that the mechanism which protects
from NO neurotoxicity in dopamine neurons is based on
an inhibition of the conversion of NO to the peroxynitr-
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ite anion, independent of the NO redox state, and is poss-
ibly due to a suppression of superoxide anion production.
Recently, it has been described that the protective
actions of NO could be mediated by cGMP-dependent
mechanisms (Hindley et al., 1997; Kim et al., 1999).

In the present study, we examined the effects of the
NO donor SNAP on human neuroblastoma NB69 cells,
a catecholamine-rich cell line whose biochemical and
pharmacological profile has been described previously
(Mena et al. 1989, 1992; Pardo et al., 1995). For this
purpose, endogenous catecholamine levels, TH activity,
TH protein levels, monoamine metabolism,3H-dopam-
ine uptake, glutathione (GSH) levels, cGMP formation,
nitrite levels, viability and necrotic and apoptotic cell
death were determined in NB69 cells. In order to evalu-
ate the differentiation of this catecholamine cell line,
microscopy and immunocytochemical studies were car-
ried out. In addition, to determine if NB69 cell differen-
tiation is mediated through a cGMP-dependent mech-
anism, 1H-[1,2,4]oxadiazolo[4,3a]quinoxaline-1-one
(ODQ), a guanylate cyclase inhibitor, was used.

2. Materials and methods

2.1. Material

The culture reagents Dulbecco’s modified Eagle’s
medium (DMEM) with glucose (4.5 g/L), fetal calf
serum, penicillin-streptomycin, pyruvate, glutamine,
Nutrient mixture F-12 (Ham) with L-glutamine and
minimum essential medium (MEM) with Earle’s salts
and L-glutamine, were obtained from GIBCO-Life Tech-
nologies (Scotland). Trypan blue, bovine serum albumin,
mouse monoclonalb-actin antibody, pargyline, 3-hyd-
roxibenzyl hydrazine (NSD 1015), N-(1-napthyl)-ethy-
lenediamine and sulfanilamide were purchased from
Sigma (Madrid, Spain); ascorbic acid was from Merck
(Darmstadt, Germany), lH-[1,2,4]oxadiazolo[4,3a]qui-
noxaline-1-one (ODQ) from Biomol Research Lab., Inc.
(PA, USA), S-Nitroso-N-acetylpenicillamine (SNAP)
from Tocris (UK), mouse monoclonal anti-tyrosine
hydroxylase (TH) antibody and anti-mouse Ig fluor-
escein from Boehringer-Manheim (Barcelona, Spain).
Anti-rabbit polyclonal Bax and Bcl-xS/L antibodies
were from Sta. Cruz Biotechnology, Inc. (CA, USA) and
mouse monoclonal Bcl-2 antibody was from Dako
(Denmark).3H-dopamine (53.7 Ci/mmol) (3H-DA) and
3H-methyl-thymidine (20 Ci/mmol) were from American
Radiolabeled Chemical, Inc. (St. Louis, MO, USA) and
3H-guanosine (6.3 Ci/mmol) from Moravek Biochemi-
cals (CA, USA). The apoptosis TUNEL detection kit
was obtained from Promega (Madison WI, USA). All
other agents were of the highest purity commercially
available from Merck or Sigma. 3,4-dihydroxy-49-
methyl-S-nitrobenzenophenone (RO-40-7592) was

kindly donated by Hoffman LaRoche (Basel,
Switzerland).

2.2. Cell culture

Human neuroblastoma NB69 cells were grown and
maintained as described previously (Mena et al. 1989,
1992). In brief, the cells were grown in DMEM sup-
plemented with 15% (v/v) heat-inactivated fetal calf
serum, penicillin (100 U/mL), streptomycin (100µg/ml),
pyruvate (1 mM) and glutamine (4 mM) (DMEM-FCS).
Cells were obtained from 4–6 subcultures after thawing.
Five days after plating at a density of 1×105 cells/mL
on 35 mm-diameter multiwells, the culture medium was
changed to a serum-free defined medium (EF12) and the
cells were treated with SNAP or vehicle, with slight
modifications of the method described by O’Malley et
al. (1991). The cells were incubated with SNAP, dis-
solved in EF12, at five different concentrations (50, 125,
250, 500, 750µM) for 24 h.

The number of viable cells was estimated by trypan
blue dye exclusion in a Neubauer hemocytometer. The
cells were collected in the culture medium and an aliquot
of these cells was used for cell viability determination.
Protein content was determined by the method of Brad-
ford (1976), using bovine serum albumin as the standard.
Estimation of deoxyribonucleic acid (DNA) was perfor-
med according to Burton (1956). For the biochemical
assays, cultured cells were harvested by scraping in
Ca2+-and Mg2+- free phosphate-buffered saline (PBS),
centrifuged at 500×g for 7 min, and resuspended in PBS.
Differentiation of the NB69 cells was evaluated accord-
ing to morphological changes detected by microscopy,
by TH immunostaining, and by determination of cat-
echolamine (CA) levels and3H-DA uptake. Cell pro-
liferation was detected by3H-thymidine uptake (Mena
et al., 1995).

2.3. Catecholamine levels, TH immunostaining and
3H-DA uptake

CA levels were measured by HPLC with an ESA
coulochem detector, according to Mena et al. (1989,
1995), as follows: The cells were detached from the
wells and centrifuged. The resultant supernatant was dis-
carded and the pellets were sonicated in 300µL of 0.4
N perchloric acid (PCA) with 0.5 mM Na2S2O5 and 2%
EDTA and then centrifuged for 5 min. CA levels and
TH activity were determined in 20µL of the resulting
supernatant, and the pellet was used for protein and
DNA determination. CA neurons were characterized by
immunostaining with a mouse monoclonal anti-TH anti-
body (Mena et al., 1995). Nuclei were stained with
bisbenzimide (Hoechst 33342) (Hilwig and Gropp,
1975). High affinity 3H-DA uptake was evaluated
according to the method of Beart and McDonald (1980).
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TH activity was evaluated by measuring the accumu-
lation of DOPA during the 2 h following inhibition of
its decarboxylation by NSD 1015 (150 mg/L) (Carlsson
et al., 1973). Monoamine metabolism was measured
after inhibition of monoamine oxidase (MAO) and cat-
echol O-methyl transferase (COMT), for 4 h, using par-
gyline (1025 M) and RO-40-7592 (30 mg/L), respect-
ively.

2.4. 3H-thymidine uptake

The rate of cell division was evaluated by the uptake
and incorporation of3H-(methyl)thymidine in NB69
cells cultures, according to the following experimental
procedure: After 5 days in culture,3H-thymidine
(specific radiactivity 20 Ci/mmol; 0.008µCi/ml of cul-
ture medium) was added at the same time as SNAP treat-
ment. Incubation was continued for 24 h at 37°C. The
medium was then removed, the cells were washed twice
with PBS, dislodged from the wells and suspended in
200 µL, of 5% perchloric acid. The cell suspension was
then vortexed and incubated at 70°C for 15 min. After
this incubation, 100µL aliquots of the supernatants were
suspended in 3 mL of scintillation liquid (Optiphase) and
counted in a scintillation counter.

2.5. Measurement of glutathione levels

Glutathione (GSH) levels were measured according to
Hyland and Bottiglieri (1992) by HPLC using a spectro-
fluorimeter detector, with minor modifications as
described previously (Mena et al., 1998a). Extracellular
GSH levels were measured in the culture medium of
NB69 cells previously deproteinized with 0.4 N PCA.
Intracellular GSH levels were determined in 20µL of
the second supernatant, as explained above.

The chromatographic system consisted of two
Beckman-112 pumps, a 231 XL-Gilson autosampler, and
a 5 µm Beckman ODS (15 cm×4.6 mm I.D.) reversed-
phase column. The OPA-derivatized GSH was achieved
using a Perkin Elmer LS4 spectrofluorimeter. Excitation
and emission wavelengths were set at 365 and 455
nm, respectively.

Mobile phase A was 0.05 M sodium acetate (pH 6.8),
and phase B was acetonitrile. The flow rate was 1.3
ml/min and a linear gradient from 8% to 25% B in 5
min was performed. A volume of 20µl of sample
(culture media plus PCA to a final concentration of 0.4 N
or intracellular supernatant) was injected every 10 min.

In order to evaluate the content of oxidized (GSSG)
and reduced (GSH) glutathione, GSSG levels were
determined by the method of Griffith (1980) and GSH
levels by the method of Tietze (1969).

2.6. Immunoblot analysis

Analysis of TH and Bcl-2 family proteins was perfor-
med according to the method described by Labatut et al.
(1988). The cells were detached from the wells in analy-
sis buffer (20 mM Tris HCl, 10 mM AcK, 1 mM DTT,
1 mM EDTA, 1 mM PMSF, 1 mM benzamidine, 0.25%
NP-40, pH 7.4), homogenized and then centrifuged at
12.000g for 30 min at 4°C. The supernatant was used
for electrophoretical assay and protein determination.
Samples (30µg) were added to SDS sample loading
buffer, electrophoresed in Bio-Rad SDS-polyacrilamide
gels (4–20%) and then electroblotted to 0.45µm nitro-
cellulose membranes. For immunolabeling, the blots
were blocked with TTBS (20 mM Tris-HCI pH 7.6, 137
mM NaCl plus 0.1% (v/v) Tween-20 and 5% dry
skimmed milk) for 1 h at room temperature. After block-
ing non-specific binding, the membranes were incubated
with mouse anti-TH (1:2000), rabbit anti-Bax (1:1000),
mouse anti-Bcl-2 (1:250), rabbit anti Bcl-xS/L (1:500)
and mouse anti-b-actin (1:5000) in blocking solution for
16 h at 4°C. The blots were appropriately washed and
further incubated for 1 h at room temperature with anti-
mouse Ig- or anti-rabbit Ig-antibodies linked to horserad-
ish peroxidase (HRP) (1:1000) in blocking solution.
After washing, the immunoreactive bands were vis-
ualized by chemiluminescence detection using a com-
mercial kit (Amersham). Autoradiograms were quantit-
ated by computer-assisted videodensitometry. Neither
TH nor Bcl-2, Bax, Bcl-xS/L orb-actin immunoreactiv-
ity was observed when primary antibodies were removed
from the assay (data not shown). The same test was car-
ried out for HRP-conjugated secondary antibody and no
immunoreactivity was detected at that time. In addition,
membranes were immunolabeled for control of charge
usingb-actin or 0.1% fast green diluted in 25% methanol
and 10% acetic acid.

2.7. Measurement of cGMP formation

For cGMP determination, the culture medium was
removed from the wells and the cells were incubated for
24 h with 2 µCi/mL [3H]guanosine in 1 mL of serum-
free defined medium. After radiolabelling, cells were
washed once with Krebs-Henseleit-Hepes buffer (KHH)
(118 mM NaCl, 4.7 mM KCI, 2.5 mM CaCl2, 1.2 mM
MgS04, 1.2 mM KH2PO4, 10 mM glucose, 20 mM
Hepes, 25 mM NaHC03, pH 7.4 and 0.5 mM IBMX).
After washing, the cells were incubated at 37°C in KHH
for 30 min prior to addition of SNAP, at different con-
centrations, for 5 min. The reaction was stopped by
aspiration of the buffer and addition of 1 ml of cold
methyl alcohol (MeOH) and 0.12 N HCl (1:1). Plates
were then kept in the freezer at -20°C for 1 h and ali-
quots (900µL) of the MeOH-HCl extract were used to
determine cGMP production as described previously
(Hernández, 1995).
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2.8. Apoptosis detection

The apoptosis TUNEL detection system measures the
fragmented DNA of apoptotic cells by incorporating
fluorescein-12-dUTP* at the 39-OH ends of the DNA
using the enzyme Terminal deoxynucleotidyl Transfer-
ase (TdT), which forms a polymeric tail using the prin-
ciple of the TUNEL (TdT-mediated dTP Nick-End
Labeling) assay (Kerr et al., 1972; Gavrieli et al., 1992).
The assay was performed on glass cover slides at a den-
sity of 15 000 cells per cover slide. The cells were incu-
bated with SNAP at different concentrations for 24 h,
fixed in 4% p-formaldehide and permeabilized with
0.2% Triton X-100. The number of apoptotic cells was
counted in 21 fields of the coverslip, at random. Cells
were counted in pre-defined parallel strips using a coun-
ting reticule in the ocular. Cell nuclei, stained bybis-
Benzimide, were counted in 21 fields of the coverslip,
at random.

2.9. Nitrite measurement

NO production was quantified by measuring nitrite, a
stable oxidation end product of NO (Green et al., 1982).
Briefly, 400µL of culture medium were mixed with 800
µL of Griess reagent (1.5% sulfanilamide in 1N HCl plus
0.15% N-(1-naphtyl)-ethylenediamine dihydrochloride
in distilled water, v:v). After 10 min of incubation at
room temperature, the absorbance at 540 nm was
determined. Sodium nitrite was used as a standard.

2.10. Data analysis

All data presented in this study are expressed as the
mean ±S.E.M. The results were statistically evaluated
for significance by using one-way analysis of variance
followed by the Student’st test. Means among groups
were considered significantly different when thep value
was less than 0.05.

3. Results

3.1. Effect of SNAP on cell death

SNAP (50–750µM) induced differentiation of NB69
cells, as shown by phase-contrast microscopy and by
tyrosine hydroxylase immunocytochemistry (Figs. 1A
and B).

The treatment of NB69 cells with SNAP did not
induce any significant change in the number of dead cells
at any of the doses studied. We did find, however, a
decrease in the number of viable cells at 750µM of
SNAP (Table 1), as measured by trypan blue dye
exclusion. The cells were collected in the culture
medium and an aliquot of these cells was used for cell

viability determination. In this regard, a decrease was
also shown at 750µM of SNAP by the3H-thymidine
uptake assay (Table 1) when compared to controls.
These results are in agreement with the cell differen-
tiation shown previously (Figs. 1A and B). The treatment
with SNAP did not increase the number of apoptotic
cells (Table 1). Protein and DNA levels were reduced to
90% and 79% of control values, respectively, in cultures
treated with 750µM of SNAP (Table 1). In addition, an
increase in the antiapoptotic Bcl-2 and Bcl-xL protein
levels and a decrease in the proapoptotic Bax protein
levels were detected by western blot analysis (Fig. 2).

3.2. Effect of SNAP on catecholamine levels and TH
activity

In NB69 cells, SNAP induced an increase in CA, nor-
adrenaline (NA) and DA levels at 50 and 125µM, and
a decrease in these levels at doses from 250 to 750µM
of SNAP, when compared to controls (Table 2). In paral-
lel, a similar effect of SNAP on high affinity3H-DA
uptake was observed in NB69 cells, with an increase
from 50 to 250µM of SNAP and a decrease from 500
to 750 µM when compared to control levels (Table 2).
In both cases, the maximal effect was detected at 50µM
SNAP. In addition, TH activity and monoamine metab-
olism assays showed a similar pattern: 50µM SNAP
increased both parameters whereas 500–750µM SNAP
induced a decrease in DOPA as well as in NA and DA
levels, respectively.

3.3. Effect of SNAP on glutathione, nitrite and cGMP
levels

SNAP, at doses ranging from 250 to 750µM, induced
a dose-dependent reduction in the level of GSH in the
culture medium of NB69 cells, without affecting the
intracellular levels (Table 3). Moreover, no GSSG was
detectable in either control or in SNAP-treated cells
(data not shown).

Cells that were not treated with SNAP released very
little nitrite into the supernatant. After addition of SNAP,
nitrite levels in the supernatant were increased in a dose-
dependent manner (213.29µM±1.54 vs 3.31µM±0.15,
SNAP 750µM vs control cells). In addition, we detected
an identical nitrite concentration in the absence or pres-
ence of cells at the different doses of SNAP (Fig. 3A).
cGMP levels in NB69 cells were also affected by SNAP
in a dose-dependent manner (Fig. 3B). To determine if
cGMP is the mechanism involved in the NO-induced
NB69 cell differentiation, the effect of SNAP was exam-
ined in the presence of the specific inhibitor of soluble
guanylate cyclase, ODQ. The SNAP-induced increase in
cGMP levels in the NB69 cells was inhibited by ODQ
(0.001–10 µM) in a concentration-dependent manner
(IC50=0.072µM, data not shown). The experiments were
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Fig. 1. (A) Phase-contrast microscopy and (B) Tyrosine hydroxylase immunocytochemistry of NB69 human neuroblastoma cells after six days
in culture. On the 5th day, the cultures were treated with SNAP or vehicle (serum-free defined medium) for 24 h. (a) Control cells treated with
vehicle. (b) Cells treated with 50µM SNAP. (c) Cells treated with 125µM SNAP. (d) Cells treated with 250µM SNAP. (e). Cells treated with
500 µM SNAP. Scale bar=100 µm.

therefore conducted at 1µM ODQ. The cells were
treated with ODQ 30 min before addition of SNAP.
ODQ (1 µM) did not affect the cell viability (data not
shown) and did not revert the SNAP-induced effect on
3H-DA uptake (Fig. 4).

3.4. Effect of SNAP on TH protein

To evaluate whether the changes in TH activity in
NB69 cells were due to post-transcriptional activation or
de novo protein synthesis, we measured TH protein lev-
els by Western blot analysis (Fig. 5). TH protein levels
were not altered by any of the SNAP doses studied (50–
750µM). We also testedb-tubulin levels by immunoblot
and detected no changes in the amount of protein (data
not shown).

4. Discussion

NO donors produce their effects through the spon-
taneous release of NO. We have investigated the effect
of SNAP, a nitric oxide donor, on human neuroblastoma
NB69 cells, a catecholamine-rich cell line. Our studies
reveal that SNAP induces differentiation of NB69 cells
to a mature DA phenotype, as shown by phase contrast
microscopy and by tyrosine hydroxylase immunocytoch-
emistry. Arrest of cell division is a prerequisite for cells
to enter a program of terminal differentiation. In this
regard, the decrease in the number of viable cells with
no change in the number of dead cells, and the reduction
in the rate of division, expressed by the3H-thymidine
uptake, observed at 750µM SNAP, also support the NO-
induced-differentiation of NB69 cells. These results are
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Fig. 1. (continued).

Table 1
Effect of SNAP on NB69 cell viabilitya

SNAP (µM) Viable cells Dead cells % apoptotic cells Proteins (µg/ml) DNA (µg/ml) 3H-thymidine
(×106/ml) (×106/ml) uptake cpm×103/ml

Control (0 µM) 2.25±0.17 0.91±0.06 0.50±0.03 1470±49 101.84±1.55 78.51±3.80
100% 100% 100% 100% 100%

SNAP 50µM 2.48±0.17 0.85±0.16 0.46±0.05 1595±39 107.35±3.92 82.83±4.00
110% 93% 109% 105% 106%

SNAP 125µM 2.59±0.12 0.77±0.05 0.47±0.02 1570±49 109.77±3.16 84.01±4.07
115% 85% 107% 108% 107%

SNAP 250µM 2.34±0.08 0.84±0.02 0.46±0.05 1570±30 108.43±3.03 96.57±4.67
104% 92% 107% 106% 123%

SNAP 500µM 2.42±0.07 0.82±0.09 0.48±0.02 1523±100 108.13±1.56 76.16±3.69
108% 90% 104% 106% 97%

SNAP 750µM 1.21±0.28* 0.90±0.11 0.42±0.01 1320±106* 80.83±3.00*** 58.89±2.85***
54% 99% 90% 79% 75%

a Cells were cultured for 5 days in complete medium. On the 5th day, the cultures were treated with SNAP or vehicle (serum-free defined
medium) for 24 h. Results are representative of two experiments and are expressed as the mean±S.E.M. (n=10). Statistical analysis was performed
by one-way analysis of variance followed by the Student’s “t” test. *p,0.05, ***p,0.001.
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Fig. 2. Top panel: Representative Western blot of Bcl-2, Bax, Bcl-
xS/L proteins from control (lane 1) and SNAP-treated cells (50, 125,
250, 500 and 750µM SNAP, lanes 2 to 6). The protein levels were
determined by computer-assisted videodensitometry from Western blot
films. Each lane contains 30µg of total protein. Control of charge with
b-actin was carried out and no changes between lanes were detected.
Bottom pannel: Data represent the ratio Bcl-2 family proteins/b-actin
at the different SNAP doses used. Values are expressed as the
mean+S.E.M. (n=3). Statistical analysis was performed by one-way
analysis of variance followed by the Student’s “t” test. *p,0.05, **
p,0.01, ***p,0.001. Bottom panel.
SNAP (µM) Bcl-xL/β- Bcl-xS/β- Bcl-2/β-actin Bax/β-actin

actin actin
Control 0.534±0.09 0.4510±0.04 0.6950±0.05 0.7960±0.02
(0µM)
SNAP 1.200±0.14* 0.4560±0.04 0.8360±0.07 0.6910±0.02*
50µM
SNAP 125 1.200±0.10** 0.4300±0.03 0.8120±0.06 0.4920±0.05**
µM
SNAP 250 1.622±0.19** 0.3880±0.05 0.6050±0.08 0.6210±0.01**
µM
SNAP 500 1.042±0.13* 0.4240±0.02 0.7020±0.05 0.5440±0.01***
µM
SNAP 750 0.593±0.02 0.4030±0.02 0.6530±0.02 0.4090±0.01***
µM

Table 2
Effect of SNAP on the catecholaminergic system in NB69 cellsa

SNAP (µM) TH activity MAO+COMT inhibition Endogenous levels 3H-DA uptake
D DOPA (ng/well) cpm/well

NA (ng/well) DA (ng/well) NA ng/mg protein DA ng/mg protein

Control (0 µM) 1.94±0.12 4.22±0.11 2.52±0.11 2.70±0.03 1.20±0.07 6988±216
100% 100% 100% 100% 100% 100%

SNAP 50µM 2.46±0.1** 5.01±0.36 4.39±0.27*** 3.81±0.14*** 2.43±0.08*** 26813±935***
127% 119% 174% 141% 202% 383%

SNAP 125µM 2.65±0.15 2.02±0.06*** 23130±1665**
98% 168% 352%

SNAP 250µM 1.37±0.06*** 0.9±0.07* 13170±1170***
51% 75% 188%

SNAP 500µM 1.19±0.07*** 0.77±0.05*** 0.75±0.02*** 0.59±0.06*** 0.27±0.02*** 3285±148***
61% 21% 30% 22% 22% 47%

SNAP 750µM 1.08±0.003*** 0.28±0.01*** 0.37±0.03*** 0.39±0.03*** 0.15±0.01*** 1233±110***
56% 7% 15% 14% 12% 17%

a Cells were cultured for 5 days in complete medium. On the 5th day, the cultures were treated with SNAP or vehicle (serum-free defined
medium) for 24 h. For TH activity experiments, cells were treated with NSD 1015 (150 mg/l) for 2 h. For metabolism experiments, MAO and
COMT enzymes were inhibited by pargyline (1025 M) or RO-40-7592 (30 mg/l), respectively, for 4 h. Results are expressed as the mean±S.E.M.
(n=8). Statistical analysis was performed by one-way analysis of variance followed by the Student’s “t” test. *p,0.05, **p,0.01, ***p,0.001.

Table 3
Effect of SNAP on glutathione (GSH) contenta

SNAP (µM) GSH in the culture Intracellular GSH
medium (µM) (nmoles/mg of

protein)

Control (0µM) 1.08±0.04 9.17±1.02
100% 100%

SNAP 50µM 1.08±0.03 8.29±0.40
100% 90%

SNAP 125µM 0.93±0.05 9.28±1.01
86% 101%

SNAP 250µM 0.70±0.06*** 8.01±0.43
65% 87%

SNAP 500µM 0.60±0.05*** 9.63±1.27
56% 105%

SNAP 750µM 0.62±0.07*** 8.48±0.71
57% 92%

a Cells were cultured for 5 days in complete medium. On the 5th
day, the cultures were treated with SNAP or vehicle (serum-free
defined medium) for 24 h. Results are expressed as the mean±S.E.M.
(n=6). Statistical analysis was performed by one-way analysis of vari-
ance followed by the Student’s “t” test. *** p,0.001.

in agreement with other studies reporting a relationship
between NO and cell differentiation. In this context, it
has been shown that NO may play a role in the differen-
tiation of neuronal and glial cells (Tanaka et al., 1994;
Peunova and Enikolopov, 1995; Viani et al., 1997).

Although NO donors can be toxic and cause changes
in cellular morphology such as apoptosis and necrosis,
NO can also block neuronal death resulting from various
cytotoxic stimuli (Lei et al., 1992; Kim et al., 1999). The
effects of NO on cell death are due, in part, to the type
of NO donor used. Nisoli et al. (1998) have reported
that 300µM SNAP decreases cell proliferation and is
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Fig. 3. (A) Dose-dependent increase of nitrite concentration in the
culture medium induced by SNAP, in the presence (I) or absence of
(s) cells (n=10), and (B) dose-dependent increase in cGMP production
induced by SNAP in NB69 cells (n=10). For sake of clarity, the S.E.M.
are not represented in the graph since they were always below 5% of
the mean values. Statistical analysis was performed by one-way analy-
sis of variance followed by the Student’s “t” test. *** p,0.001.

accompanied by the expression of two genes which are
upregulated during differentiation.

The family of Bcl-2-related proteins, that includes
Bcl-2, Bcl-x, Bad, Bak and Bax, constitutes a class of
apoptosis regulatory gene products that act at the effector
stage of apoptosis. In this context, Bax, a proapoptotic
protein, forms a dimer with Bcl-2 and prevents the death
repressor activity of the antiapoptotic protein Bcl-2
(Sedlak et al., 1995). The ratio of endogenous Bcl-2 to
Bax is suggested to determine the sensitivity of cells to
apoptosis response to specific stimuli (Oltvai et al.,
1993). It has been demonstrated recently that changes in
Bcl-2 and Bax expression are involved in NO-induced
cell death (Tamatani et al., 1998). Our results show that
Bax protein content was decreased after SNAP treat-
ment, whereas Bcl-2 and Bcl-xL protein levels were
increased, that is, NO induces a decrease in pro-apop-
totic protein expression and an increase in anti-apoptotic

Fig. 4. Effect of ODQ (1µM) on 3H-DA uptake in SNAP (50 and
500 µM)-treated cells. Results are expressed as a percentage of the
control group (245, 30, 95, 241, 26%). Basal levels: 39365±2350
cpm/mf protein (n=12). Statistical analysis was performed by one-way
analysis of variance followed by the Student’s “t” test. *** p,0.001
vs control group. No significance differences (N.S.) were detected with
ODQ-treatment when compared to their respective controls.

Fig. 5. Representative Western blot of total TH protein from control
(lane 1) and SNAP-treated cells (50, 125, 250, 500 and 750µM SNAP,
lanes 2 to 6) (n=3). Values are expressed as a percentage of the control
blot (111, 104, 89, 110, 106%). The protein level was determined by
computer-assisted videodensitometry from Western blot films. Each
lane contains 30µg of total protein. Control of charge with fast green
was carried out and no changes between lanes were detected.

protein expression. In addition, no changes in apoptotic
or necrotic cells were detected in SNAP-treated cells.
Taken together, these results suggest that NO did not
induce apoptosis, at the doses studied, in the human
NB69 catecholamine-rich cell line.

We have found that NO exerts a biphasic effect on
NB69 cells, increasing TH activity, monoamine metab-
olism, 3H-DA uptake and catecholamine levels at low
doses and exerting the opposite effect at high doses. The
neuroprotective and neurotoxic roles of brain NO may
derive from the local intracellular oxidation-reduction
potential with a reductive environment favoring the pro-
duction of NO free radical (Lipton et al., 1993; Smith
et al., 1994). TH activity was increased by SNAP prob-
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ably due to a post-translational mechanism because no
changes in the amount of TH protein, as assessed by
Western blotting, were observed in the present study. It
has been reported that TH can be phosphorylated at dif-
ferent amino acid residues, mainly at Ser-40 (Kumer and
Vrana, 1996). This mechanism is related to an activation
of the preexisting protein and could explain the results
observed at low doses of SNAP. There is, however, no
information available regarding the effects of low con-
centrations of NO on protein phosphorylation, although
it has been reported that NO interacts with cAMP-depen-
dent protein kinases (Ohki et al., 1995; Bhat et al., 1998).

On the other hand, it has been reported recently that
NO can react with the superoxide anion to produce per-
oxynitrite. This reactive species damages proteins by
sulfhydryl oxidation and nitration, mechanisms that inac-
tivate TH (Ara et al., 1998; Kuhn et al., 1999). There-
fore, NO, at low doses, may act as a second messenger
that activates TH protein and produces the opposite
effects at high doses, probably related to a nitrosylation
or a sulfhydryl oxidation of the TH enzyme. Further
studies are needed to elucidate the mechanism that leads
to NO-induced TH activation.

SNAP produces spontaneous release of NO, but it
may also be catalyzed at the cell membrane (Uehara et
al., 1999). We observed a dose-dependent increase in
nitrite levels in the supernatant of SNAP-treated cells.
In addition, we detected an identical nitrite concentration
in the absence or presence of cells at the different doses
of SNAP. The hypothetic mechanism of action of SNAP
in our system would not include a competition of these
cells for the NOS cofactor BH4, required for TH and
NOS activity (Hwang et al., 1998), because we found
that NOS activity is not necessary for NO production
from SNAP.

We have shown that cGMP levels in NB69 cells are
affected by SNAP in a dose-dependent manner. NO
mediates signal transduction in the brain via glutamate
receptor stimulated NO formation, guanylate cyclase
activation and, subsequently, increasing cGMP levels
(Moncada et al., 1991). ODQ, a guanylate cyclase inhibi-
tor, is commonly used to determine if the cGMP path-
way is implicated in the regulation of cellular function
(Moro et al., 1998; Kim et al., 1999). We used ODQ
to test the possible role of cGMP in cell differentiation
detected after SNAP treatment. ODQ (1µM) did not
revert the SNAP-induced effect on3H-DA uptake and
catecholamine levels (data not shown) in NB69 cells.
These data suggest that the mechanism through which
NO may act to cause cell differentiation is independent
of cGMP.

Rauhala et al. (1998) have described that S-nitrosyl-
ation of GSH by NO and oxygen may be part of the
antioxidative cellular defense system. In this context,
Wink et al. (1993) have proposed that NO protects
against cellular damage and cytotoxicity from reactive

oxygen species. In a recent study, Mena et al. (1998b)
suggest that mild pro-oxidant treatments could protect a
range of cells from death by up-regulating GSH. In our
study, we observed a significant and progressive
decrease in the level of GSH in the culture medium from
250–750µM SNAP-treated cells, in comparison with
control levels. In contrast, no changes in intracellular
GSH levels were detected. Thus, NB69 cells may use
GSH from the medium as a mechanism to protect them-
selves from high concentrations of free radicals.

In summary, the NO donor SNAP induces a differen-
tiation of NB69 cells. These results suggest that NO gen-
erated from SNAP has no neurotoxic effects in the con-
ditions studied, and that it regulates TH activity in a
human catecholamine-rich cell line through a cGMP-
independent mechanism.

These studies provide new insights, into the complex
regulatory activity of NO on dopamine neurons in vitro.
The role of NO in the regulation of these neurons in
vivo, in health and disease, and the putative pharmaco-
logical manipulation of the NO pathway in neurodegen-
erative diseases, should be investigated.
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Mena, M.A., Garcı´a de Yébenes, J., Dwork, A., Fahn, S., Latov, N.,
Herbert, J., Flaster, E., Slonim, D., 1989. Biochemical properties
of monoamine-rich human neuroblastoma cells. Brain Res. 486,
286–296.

Mena, M.A., Pardo, B., Casarejos, M.J., Fahn, S., Garcı´a de Yébenes,
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Abstract

Nitric oxide (NO) may act as a neuroprotector or neurotoxic agent in dopamine neurons, depending on cell redox status. We
have investigated the effect of several thiolic antioxidants, glutathione (GSH), its cell permeable analog GSH ethyl ester (GSHEE),
and the GSH synthesis precursorl-N-acetyl cysteine (L-NAC), as well as non-thiolic antioxidants like ascorbic acid (AA) and uric
acid, on NO-induced toxicity in fetal midbrain cultures. The cultures were treated for 8–24 h with neurotoxic doses of the NO
donor diethylamine/nitric oxide complex sodium DEA/NO (200–400µM) and/or antioxidants. Thiolic antioxidants, at equimolar
concentrations, added at the same time or previous to DEA/NO, protected from cell death, from tyrosine hydroxylase (TH) positive
cell number decrease and from intracellular GSH depletion, induced by DEA/NO, without increasing intracellular GSH content. In
these conditions,S-nitrosothiol compound formation was detected in the culture media. Protection disappeared when antioxidants
were supplied 30 min after NO treatment. Nevertheless, non-thiolic antioxidants, AA and uric acid, with similar peroxynitrite
scavenging activity to thiolic antioxidants, and free radical-scavenging enzymes as catalase and Cu/Zn-superoxide dismutase, which
prevent extracellular peroxynitrite ion formation, and 4,5-dihydroxy-1,3-benzene-disulfonic acid (Tiron), which prevents intracellular
peroxynitrite ion formation, did not rescue cell cultures from neurotoxicity induced by NO. In addition, AA exacerbated DEA/NO-
induced toxicity in a dose-dependent manner from 200µM AA. The present results suggest that only antioxidants with thiol group
exert neuroprotection from NO-induced toxicity in fetal midbrain cultures, probably by direct interaction of NO and thiol groups,
resulting in NO blocking. On the other hand, some classical antioxidants, like AA, exacerbate neurotoxicity due to NO.
 2002 Elsevier Science Ltd. All rights reserved.

Keywords:Nitric oxide; Dopamine neurons; Glutathione; Ascorbic acid; Cu/Zn-superoxide dismutase; Catalase; Superoxide scavengers; Free rad-
icals

1. Introduction

Oxidative stress has been implicated in the develop-
ment of several neurodegenerative diseases including
Parkinson’s disease (PD). Consistent with this, a
decreased activity of several antioxidant enzymes, as
well as reduction of glutathione (GSH) content, have

Abbreviations:NO, nitric oxide; DEA/NO, diethylamine/nitric oxide
complex sodium; TH, tyrosine hydroxylase; DA, dopamine; GSH,
reduced glutathione; GSSG, oxidized glutathione; GSHEE, glutathione
ethyl ester; GSNO,S-nitrosoglutathione; AA, ascorbic acid; PD, Park-
inson’s disease; Cu/Zn-SOD, Cu/Zn-superoxide dismutase; L-NAC,l-
N-acetyl cysteine
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been reported in substantia nigra of parkinsonian brain
(Di Monte et al., 1992; Perry et al., 1982). Loss of dopa-
minergic neurons in PD substantia nigra may be due to
the effects of nitric oxide (NO). NO, a modulator of cell
activity may act as a neuroprotector or neurotoxic agent
depending on cell redox status. Our previous results have
shown that the NO donor diethylamine/NO complex
sodium (DEA/NO), at doses of 25 and 50µM, exerts
neurotrophic effects on dopamine (DA) cells, by increas-
ing the number of tyrosine hydroxylase positive (TH+)
cells, TH+ neurite processes, DA levels, 3H-DA uptake
and by elevating intracellular and extracellular GSH con-
centration. However, doses ranging from 200 to 400µM
had neurotoxic effects in midbrain cultures, decreasing
TH+ cells and GSH levels and increasing both necrosis
and apoptosis (Canals et al., 2001b). Furthermore, GSH
depletion switches NO neurotrophic effects to cell death
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in DA neurons (Canals et al., 2001a). We have also
reported that glia-conditioned medium (GCM), obtained
from fetal midbrain astrocyte cultures, totally protects
DA neurons from NO-induced apoptotic and necrotic
cell death and rescues 3H-DA uptake and TH+ cell num-
ber (Canals et al., 2001b). GCM is rich in small antioxi-
dants and peptidic growth factors, that increase free rad-
ical scavengers enzymatic activities (Mena et al., 1997a,
1998a, 2002).

NO may react with superoxide anion to produce per-
oxynitrite, a powerful oxidant (Beckman et al., 1990;
Bolaños et al., 1995; Lizasoain et al., 1996). There is
evidence to indicate that peroxynitrite-mediated damage
occurs in the PD brain (Good et al., 1998; Giasson et al.,
2000). Furthermore, it has been shown that peroxynitrite
inactivates TH and consequently L-DOPA synthesis in
PC12 (Ischiropoulos et al., 1995). Tyrosine nitration, as
well as sulfhydryl oxidation, have been proposed as the
mechanisms for TH inactivation (Ara et al., 1998; Kuhn
et al., 1999). NO also exerts its effects by reacting with
intracellular GSH to form a nitrosylated adduct, S-
nitrosoglutathione (GSNO), which may regulate cellular
functions and protect DA neurons from oxidative stress
and damage caused by reactive oxygen species (Rauhala
et al., 1996, 1998; Clancy et al., 1994).

The aim of this study was to investigate whether thi-
olic and non-thiolic antioxidants, as well as free-radical
scavenging enzymes, can modulate NO-induced toxicity
for midbrain cultures and DA neurons. The mechanisms
of neuroprotection were also addressed.

2. Materials and methods

2.1. Materials

The culture reagents Dulbecco’ s modified Eagle’ s
medium (DMEM) with high glucose (4.5 g/l), Ham’s
F12 nutrient mixture, Eagle’ s minimal essential medium
(EMEM) with Earl’ s salts and Leibovitz’ s L-15 medium,
all of which were supplemented with l-glutamine, fetal
calf serum (FCS), sodium pyruvate and l-glutamine,
were purchased from Gibco BRL (Paisley, Scotland,
UK). Glucose 45%, insulin, putrescine, progesterone and
sodium selenite were from Sigma (Madrid, Spain) and
human transferrin, 30% iron-saturated, from Boehringer-
Mannheim (Barcelona, Spain). Trypan blue, bovine
serum albumin, poly-d-lysine, p-phenylenediamine,
bisBenzimide, pargyline, N-(1-naphthyl) ethylenediam-
ine, sulfanilamide, 5,5�-dithio-bis-2-nitrobenzoic acid
(DTNB), reduced and oxidized forms of glutathione,
glutathione ethyl ester (GSHEE), catalase, Cu/Zn-super-
oxide dismutase (Cu/Zn-SOD), 4,5-dihydroxy-1,3-ben-
zene-disulfonic acid (Tiron) and diethylamine/nitric
oxide complex sodium (DEA/NO) were from Sigma
(Madrid, Spain); l-N-acetyl cysteine (L-NAC) from Cal-

biochem (CA, USA); NADPH, the cytotoxicity detection
kit (LDH), cell proliferation kit I (MTT) and GSH
reductase (GR) were from Boehringer-Mannheim
(Barcelona, Spain) and ascorbic acid (AA) was from
Merck (Darmstadt, Germany). The apoptosis TUNEL
detection kit was obtained from Promega (Madison, WI,
USA). The BCA protein assay kit was from Pierce
(Rockford, IL, USA), mouse monoclonal anti-tyrosine
hydroxylase (TH) antibody from Chemicon Inter-
national, Inc. (CA, USA). All other reagents were of the
highest purity commercially available from Merck or
Sigma.

2.2. Cell culture

Neuronal-enriched cultures from embryonic Sprague–
Dawley rat midbrain E-14 (crown-rump length 10–12
mm) were obtained and prepared as described previously
(Pardo et al., 1997; Mena et al., 1993). The cells were
seeded in DMEM with 15% fetal calf serum (DMEM-
FCS) at a density of 105 cells/cm2 in multiwells or glass
cover slides previously coated with poly-d lysine, 4.5
µg/cm2, in 0.1 M borate buffer, pH 8.4. The cultures
were kept in a humidified chamber at 37 °C in a 5%
CO2 atmosphere. Twenty-four hours after plating, the
cells were changed to serum-free defined medium
(EF12) as reported previously (Pardo et al., 1997; Mena
et al., 1993), supplemented with d-glucose (6 mg/ml),
insulin (25 µg/ml), transferrin (100 µg/ml), putrescine
(60 µM), progesterone (20 nM) and sodium selenite
(30 nM).

After 7 days in culture, the cells were mostly β-tubulin
III+ cells (neurons), non-neuronal cells were also present
in low numbers: GFAP+(astrocytes) were around 2% of
the total cells. Slightly more abundant were glial pro-
genitors and oligodendrocytes (A2B5+ and O-1+,
respectively), nestin-positive cells, which stain pluripot-
ential neural progenitors, as well as radial glial cells,
were present in the culture. Microglia accounted for less
than 0.5%. TH+ cells ranged between 2.1 and 5.4% of
the total, and the rest of neurons were mainly GABA-
ergic (Pardo et al., 1997; Mena et al., 1998a, 1999).

2.3. Experimental treatments

After 5 days in culture, the cells, randomly allocated
to the different experimental groups, were treated with
thiolic and non-thiolic antioxidants, L-NAC, GSH,
GSHEE or AA, uric acid, and free-radical scavenging
enzymes, catalase and Cu/Zn-SOD, Tiron and/or neuro-
toxic doses of DEA/NO (200–400 µM) for 8 or 24 h,
dissolved in distilled water, with no change of culture
media. Antioxidants were added 30 min or 24 h before,
or 30 min, 1 or 2 h after DEA/NO treatment, catalase,
Cu/ZN-SOD and Tiron, a cell-permeable superoxide
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scavenger, were added 30 min before treatment with
DEA/NO.

2.4. Immunocytochemistry

DA neurons were characterised by immunostaining
with a mouse monoclonal anti-TH antibody (1:100)
(Mena et al., 1993). In brief, cultures were fixed with 4%
paraformaldehyde, washed in 0.1 M phosphate-buffered
saline, pH 7.4 (PBS), permeabilized with ethanol-acetic
acid (19:1) and incubated at 4 °C for 24 h with primary
antibodies diluted in PBS containing 10% FCS. A fluor-
escein-conjugated secondary antibody was employed to
visualize positive cells under fluorescent microscopy.
The number of immunoreactive cells was counted in 20
fields that represent 1/7 of the total area of the cover
slides. The cells were counted in predefined parallel
strips using a counting reticule inserted in the ocular.

2.5. Cell death measurements

Apoptosis was measured by light microscopy morpho-
logical features, DNA staining with bisBenzimide
(Hoechst 33342), and the TUNEL assay. Briefly, cul-
tures were fixed in 4% paraformaldehyde, nuclei were
stained with bisBenzimide added in the anti-fading sol-
ution (3 × 10�6M final concentration) (Hilwig and
Gropp, 1975; Pardo et al., 1997) and counted in 10 pre-
defined fields that represent 1/14 of the cover slide area;
apoptotic cells were identified by condensation and frag-
mentation of chromatin.

The apoptosis TUNEL detection system measures the
fragmented DNA of apoptotic cells by incorporating
fluorescein-12-dUTP∗ at the 3�-OH ends of the DNA
using the enzyme Terminal deoxynucleotidyl Transfer-
ase (TdT) (Kerr et al., 1972; Gavrieli et al., 1992). For
this assay, the cells were fixed in 4% p-formaldehyde
and permeabilized with 0.2% Triton X-100. The fluor-
escein-12- dUTP-labeled DNA of apoptotic cells was
visualized by fluorescence microscopy (positive cells
with green fluorescence). The number of apoptotic cells
was counted in 1/14 fields of the coverslide area. Cells
were counted in predefined parallel strips using a coun-
ting reticule in the ocular. Cells incubated with buffer in
the absence of TdT enzyme were used as negative con-
trols (Rodrı́guez-Martı́n et al., 2000).

For necrotic cell death determination, trypan blue dye
exclusion assay and lactate dehydrogenase activity were
performed (Pardo et al., 1997).

Mitochondrial activity was measured with the MTT
assay. The MTT assay determines the ability of cells
to metabolize 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT). At the end of the cell treat-
ment period, 300 µl of culture medium were removed
from total 500 µl of each well and 20 µl of MTT solution
(5 mg/ml) were added and incubated for 1 h. At this

time, 200 µl of solubilization solution (10% SDS in HCl
0.01 M) were then added to the wells and after 24 h of
incubation at 37 °C, 100 µl were transferred into 96-well
microtitre plates, and the absorption value at 540 nm
was measured in an automatic microtitre reader (Spectra
Fluor, Tecan). The thiolic antioxidants used in this study,
with exception for L-NAC; interfered with the MTT
assay and all of them interfered with the LDH assay.

2.6. Glutathione measurements

Total glutathione levels were measured by the method
of Tietze (1969). Briefly, 4 × 105 cells were washed with
PBS, lysed in 100 µl of 3% perchloric acid (PCA) for
30 min at 4 °C, centrifuged, and the supernatants were
neutralized with 4 vol of 0.1 M NaH2PO4, 5 mM EDTA,
pH 7.5. Glutathione content was measured in a P96 auto-
matic reader by the addition of DTNB (0.6 mM),
NADPH (0.2 mM) and glutathione reductase (1 U) and
the reaction monitored at 412 nm during 6 min. Oxidized
glutathione (GSSG) was measured in the cells by the
method of Griffith (1980). Briefly, after PCA extraction
and pH neutralization, reduced glutathione (GSH) was
derivatized with 2-vinylpyridine at room temperature for
1 h and the reaction carried out as above. GSH was
obtained by subtracting GSSG levels from total gluta-
thione levels. Extracellular glutathione measurements
were made in culture media treated with PCA (3% final
concentration) and monitored as above. Formation of
GSNO in fetal midbrain culture media was measured by
incubation with/without 100 µM CuSO4, which breaks
thiol bonds, for 20 min at 37 °C (Clancy et al., 1994).
After incubation, extracellular GSH levels were determ-
ined as described (Cook et al., 1996).

2.7. Uptake studies

High affinity 3H-DA uptake was measured after incu-
bation of the cells with 10�8 M [3H]DA (70 Ci/mmol),
in the presence of pargyline 10�5 M and AA 10�3 M,
at 37 °C for 20 min. Non-specific uptake/binding was
calculated in the presence of 10�5 M mazindol (Beart
and McDonald, 1980). Proteins were measured accord-
ing to the BCA assay.

2.8. Nitrite measurement

NO production was quantified by measuring nitrite, a
stable oxidation end product of NO (Green et al., 1982).
Briefly, 400 µl of culture medium were mixed with 800
µl of Griess reagent (1.5% sulfanilamide in 1 N HCl
plus 0.15% N-(1-naphtyl)-ethylenediamine dihydrochlo-
ride in distilled water, v:v). After 10 min of incubation
at room temperature, the absorbance at 540 nm was
determined. Sodium nitrite was used as a standard.
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2.9. Statistical analysis

The results were statistically evaluated for signifi-
cance using one way analysis of variance followed by
the Newman–Keuls test as a post hoc evaluation. Differ-
ences were considered statistically significant when
p � 0.05.

3. Results

3.1. Cell viability and GSH depletion time course
after DEA/NO treatment

Cell death induced by 400 µM DEA/NO has features
of both necrosis and apoptosis. DNA condensation of
NO-treated cells, determined by bisBenzimide staining,
correlates with the TUNEL assay results, as showed in
Fig. 1(A). Necrosis was measured by Trypan blue and
LDH activity assays. The percentage of dead cells meas-
ured by Trypan blue after 24 h of 400 µM DEA/NO
treatment (39.4 ± 2.8%) was concomitant with an
increase in LDH activity, which was measured in the
culture media (32.16 ± 4.34%) (Fig. 1(B)).

A time course of injury along with the measurement
of intracellular GSH is indicated in Fig. 1(C) and (D).

Fig. 1. Effects of 400 µM DEA/NO treatment on cell death and GSH depletion in fetal midbrain cultures. (A) Photomicrographs of cellular nuclei
stained with bisBenzimide (left panels) and of apoptotic cells stained by the TUNEL assay (right panels), corresponding to the same field. Cells
were treated with 400 µM DEA/NO or vehicle for 24 h. Scale bar � 25µm. (B) Trypan blue dye exclusion assay and LDH activity in the culture
medium at 24 h after 400 µM DEA/NO treatment. (C) Time-course of glutathione intracellular levels after DEA/NO addition. (D) Time-dependent
effects of DEA/NO treatment on cell viability measured by MTT assay and presented as a percentage vs controls. Results are expressed as the
mean ± SEM (n � 4�6). Statistical analysis was performed by ANOVA followed by the Newman–Keuls multiple comparison test. ∗∗p � 0.01,
∗∗∗p � 0.001 vs controls.

As shown, a time-dependent decrease in cell viability,
analyzed by the MTT assay, was detected at 4 h after
treatment with 400 µM DEA/NO, decreasing at 8 and
24 h after NO addition. However, GSH decrease was not
observed until 24 h after DEA/NO treatment. A decrease
in intracellular GSH levels does not precede cell death
and as such this cannot be the mechanism by which NO
mediates cell death in this model.

Immunocytochemical characterization of cell death
revealed that DA neurons TH+ cells and mature oligod-
endrocytes O1+ cells were the cell types most affected
by 400 µM DEA/NO at 4 and 8 h (Canals et al., 2001b).

3.2. Thiolic antioxidants protect from DEA/NO-
induced neurotoxicity

We have previously described that neurotrophic doses
(25–50 µM) of the NO donor DEA/NO increase GSH
levels, whereas high doses (200–400 µM) exert the
opposite effect on fetal midbrain cultures (Canals et al.,
2001b). Pretreatment for 24 h with 600 µM GSH before
treatment with 400 µM DEA/NO for additional 8 h, pro-
tected from DEA/NO-induced decrease of TH+ cell num-
ber (Fig. 2(A) and (C)) and increase of apoptosis (Fig.
2(B) and (D)). In addition, GSH rescued TH+ cells and
midbrain neurons from the loss of their neurite processes
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Fig. 2. Protective effects of GSH pretreatment for 24 h on DEA/NO-induced cell death in fetal midbrain cultures. After 4 days in vitro, the
cultures were treated with GSH 600 µM or vehicle, then on the fifth day, pre-established groups were treated with DEA/NO 400 µM for additional
8 h. (A) TH immunocytochemistry and (B) cellular nuclei stained with bisBenzimide (Hoechst 33342). (C) Number of DA neurons expressed as
TH+ cells/well. (D) Chromatin-condensed nuclei were counted and expressed as a percentage of apoptotic cells with respect to the total cell number.
Arrow indicates a representative apoptotic cell. Values represent the mean ± SEM from (n � 4�6). Control basal levels were 4350 ± 214 TH+
cells/well and 8.47 ± 0.45% of apoptotic cells. Statistical analysis was performed by ANOVA followed by the Newman–Keuls multiple comparison
test. ∗∗p � 0.01, ∗∗∗p � 0.001 vs controls; � � � p � 0.001 GSH � DEA/NO vs DEA/NO.

(Fig. 2(A)). The pretreatment with the GSH synthesis pre-
cursor L-NAC also showed a neuroprotector dose-depen-
dent effect on DEA/NO-treated cells, rescuing DA neu-
rons (Fig. 3(A) and (C)) and midbrain cultures from
apoptosis (Fig. 3(B), (D) and (E)). A total protection was
detected when 600 µM L-NAC was used previous to the
addition of 400 µM DEA/NO for 24 h (Fig. 3(E)).

DA neurons treated with thiolic antioxidants were pro-
tected from DEA/NO toxicity more effectively than
other cells in the culture. As shown, DA neurons TH+
cells are recovered to 100% when NO is added in the
presence of 300 µM L-NAC (Fig. 3(C)). However, the
rest of the cells, mainly neurons, are partially recovered
by L-NAC treatment (Fig. 3(D)). In addition, L-NAC
and GSH protected from DEA/NO-induced decrease of
3H-DA uptake (Fig. 4(B)).

Both antioxidants, GSH and L-NAC, prevent from
intracellular GSH depletion without increasing its intra-
cellular levels (Fig. 4(C) and (D)). With regard to this,
neither GSHEE, a cell permeable compound, nor cyst-

eine or cystine addition to the cell culture increased the
GSH intracellular levels (data not shown), these data
support that the GSH synthesis enzymatic system is satu-
rated in our experimental model. Experiments carried out
with astrocyte cultures and NB69 cells-treated with GSH
synthesis precursors (L-NAC, cysteine and cystine from
300 to 600 µM), and PC12 treated with L-NAC 300–
600 µM (Mena et al., 1998b) increased intracellular GSH
levels (data not shown). Although thiolic antioxidants
did not increase intracellular GSH content, they pro-
tected midbrain cultures from DEA/NO-induced GSH
decrease (Fig. 4(A)–(D)).

We have investigated the effect of several thiolic,
GSH, GSHEE, L-NAC, and non-thiolic antioxidants,
AA and uric acid, on NO-induced cell death in fetal mid-
brain cultures. Cell treatment with thiolic antioxidants
protected from cell death induced by DEA/NO, whereas
non-thiolic antioxidants did not exert neuroprotection
(Fig. 4(A)). The same results were observed for per-
meable and non-permeable GSH compounds and for
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Fig. 3. Protective effects of 24 h L-NAC pretreatment on DEA/NO-induced cell death in fetal midbrain cultures. After 4 days in vitro, the cultures
were treated with L-NAC 300–600 µM or vehicle, then on the fifth day, pre-established groups were treated with DEA/NO 400 µM for additional
8 or 24 h. (A) TH immunocytochemistry and (B) cellular nuclei stained with bisBenzimide (Hoechst 33342). (C) Number of DA neurons expressed
as TH+ cells/well. (D, E) Chromatin-condensed nuclei were counted and expressed as a percentage of apoptotic cells with respect to the total cell
number. In (E), 24 h of DEA/NO treatment instead 8 h (A–D) was used. Arrow indicates a representative apoptotic cell. Values represent the
mean ± SEM from (n � 4�6). Control levels were 2540 ± 132 TH+ cells/well and 5.4 ± 0.8% of apoptotic cells. Statistical analysis was performed
by ANOVA followed by the Newman–Keuls multiple comparison test. ∗∗p � 0.01, ∗∗∗p � 0.001 vs controls; � � � p � 0.001 L-NAC+DEA/NO
vs DEA/NO.

L-NAC, suggesting that antioxidant mechanism of pro-
tection occur extracellularly. In addition, the neuropro-
tection exerted by L-NAC showed that antioxidant had to
be present in the culture medium previous to DEA/NO,
because 30 min, 1 and 2 h after it did not protect (Fig.
5(A) and (B)).

Antioxidants, at the doses used, did not modify by
themselves the percentage of cell death, measured by
trypan blue dye exclusion (data not shown). Treatment
with antioxidants did not change the amount of nitrites
measured in the culture media. DEA/NO addition
increased nitrite concentration in an equimolar range, but
this production was not diminished by pretreatment with
antioxidants (data not shown).

These results suggest that NO interacts with thiol
groups at the extracellular level. To confirm this hypoth-
esis, GSNO formation in the culture media was determ-
ined by measurement of extracellular GSH levels after
incubation with/without 100 µM CuSO4, a compound

that breaks thiol bonds. Extracellular GSH levels were
decreased to 59.16 ± 1.16% in GSH � DEA/NO-
treated cells when compared to GSH-treated group levels
(Fig. 6). After breaking the S–N bond with CuSO4 the
GSH amount was restored to 92.17 ± 4.77% in the
GSH � DEA/NO-treated cells vs GSH-treated group.
GSNO formation in the culture media is involved in the
decrease of GSH levels and after GSNO breakdown,
GSH amount was recovered because of GSH release.

Our data show that in the neuroprotective effects of
thiolic antioxidants from NO-induced toxicity, extra-
cellular mechanisms play an important role. However,
we cannot exclude that an intracellular mechanism may
also be involved.

3.3. Non-thiolic antioxidant effects on DEA/NO-
induced cell death. Exacerbation of toxicity by AA

The non-thiolic antioxidants AA and uric acid, with
similar peroxynitrite scavenging activities to thiolic anti-
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Fig. 4. Comparison of pretreatment with several antioxidants on DEA/NO-induced cell death in fetal midbrain cultures. After 5 days in vitro, the
cells were treated with antioxidants (L-NAC, GSH, GSHEE and AA) 600 µM or vehicle 30 min previous to DEA/NO 400 µM for additional 24
h. (A) Cell viability measured by trypan blue dye exclusion is presented as a percentage of cell death. (B) High-affinity [3H]-dopamine uptake
expressed as cpm/µg of protein. After 5 days in vitro, the cultures were treated with 600 µM L-NAC, GSH or vehicle 30 min previous to 400
µM DEA/NO addition for 24 h. (C–E) Intracellular GSH levels measured after DEA/NO and/or antioxidants (L-NAC, GSH and AA, respectively)
treatment. Values are presented as percentage vs control levels. GSH intracellular basal levels are 17.23 ± 0.48ng/µg of protein. Results are
expressed as the mean ± SEM from n � 4�6. Statistical analysis was performed by ANOVA followed by the Newman–Keuls multiple comparison
test. ∗∗p � 0.01, ∗∗∗p � 0.001 vs controls; � p � 0.05, � � p � 0.01, � � � p � 0.001, antioxidant � DEA/NO vs DEA/NO.

oxidants, were also used to investigate mechanisms of
neuroprotection from NO toxicity. Neither AA nor uric
acid rescued cell cultures from cell death induced by
neurotoxic doses of DEA/NO (Figs. 4(A), 7 and 8(A)).
In addition, AA did not protect from GSH decrease
induced by DEA/NO (Fig. 4(E)) and potentiated neuro-
toxicity in a dose-dependent manner, increasing the per-
centage of cell death in the culture (Fig. 7(A)) and
exacerbated the decrease of 3H-DA uptake in DEA/NO-
treated cells (Fig. 7(B)).

3.4. Free radical scavengers

The effects of DEA/NO and catalase plus Cu/Zn-SOD
enzymes on cell death, measured as mitochondrial
activity by the MTT assay, is summarized in Fig. 8(B).
Fifty and 100 U/ml of catalase and Cu/Zn-SOD,
enzymes that prevent extracellular peroxynitrite forma-
tion, did not recover the increase of cell death induced
by 200 µM DEA/NO treatment for 24 h to basal levels.
Tiron 1–2 mM, a cell-permeable superoxide scavenger

used 30 min before NO treatment, did not protect from
400 µM DEA/NO-induced toxicity at 24 h of treatment
(Fig. 8(C)).

All together, these data support that mechanism of
neuroprotection by antioxidants is not mediated through
peroxynitrite scavenging. The presence of a thiol group
in the antioxidant to exert neuroprotection from
DEA/NO-induced toxicity is also important, probably by
a direct interaction of NO and thiolic group through for-
mation of S-nitrosothiol compounds.

4. Discussion

NO has been implicated to play an important role in
a number of physiological processes in the CNS, such
as pain perception, synaptic plasticity and learning
(Moncada et al., 1991; Bredt and Snyder, 1992;
Garthwaite and Boulton, 1995). However, NO, by itself
or by reaction with superoxide anion giving peroxynitrite
(ONOO�), has also been involved in the pathogenesis
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Fig. 5. (A) Dose- and (B) time-response-curves of L-NAC effects on
DEA/NO-induced mitochondrial activity in fetal rat midbrain cultures.
Cells were treated with L-NAC at different doses and times, and/or
DEA/NO 400 µM, for 24 h. Cell viability was measured by MTT assay
and is presented as a percentage vs controls. Values are the
mean ± SEM from n � 4. Statistical analysis was performed by
ANOVA followed by the Newman–Keuls multiple comparison test.
∗∗∗p � 0.001 vs control; � � � p � 0.001 L � NAC � DEA/NO
vs DEA/NO.

of neurodegenerative disorders as PD (Dawson, 1995;
Bolaños et al., 1997; Good et al., 1998; Heales et al.,
1999). We have previously reported that the biphasic
effects of NO depend on the dose, time of exposure and
cell type, as well as cell redox status. At low concen-
trations (25–50 µM), DEA/NO has neurotrophic effects
on fetal midbrain cultures, and increases intracellular

Fig. 6. GSNO formation in the media of fetal midbrain cultures
treated with DEA/NO and a thiolic antioxidant. After 5 days in vitro,
the cultures were pretreated with 600 µM GSH or vehicle 30 min
previous to 400 µM DEA/NO addition for 8 h. GSNO production was
determined by measurement of GSH levels after incubation
with/without 100 µM CuSO4, a compound that breaks thiolic bonds.
Basal levels of extracellular GSH: 1.30 ± 0.14µM. Values are the
mean ± SEM from n � 6. Statistical analysis was performed by
ANOVA followed by the Newman–Keuls multiple comparison test.
� � � p � 0.001 GSH � DEA/NO vs GSH.

GSH levels. Neurotoxicity occurs at high DEA/NO
doses (200–400 µM), and is accompanied by a decrease
in GSH levels. Cell death, induced by DEA/NO, takes
place by apoptosis and necrosis, and is detected at 4 h
of NO treatment, while GSH depletion occurs after 24
h of treatment.

It has also been proven that antioxidant therapies are
a powerful instrument against oxidative stress which is
closely related to neurodegenerative diseases (Ho et al.,
1997; Iwata-Ichikawa et al., 1999; Gilgun-Sherki et al.,
2001; Lee et al., 2001a). In this regard the role of thiolic
and non-thiolic antioxidants, as well as free radical scav-
enger enzymes, was implicated on DEA/NO-induced
cell death in neuronal-enriched fetal midbrain cultures.
We have found that thiolic antioxidants, as GSH,
GSHEE or L-NAC, exert neuroprotection on DA neu-
rons and midbrain cultures when they are present pre-
viously or at the same time as NO in the culture media;
their effects were dose- and time-dependent and did not
implicate up-regulation of the GSH synthesis. Formation
of S-nitrosothiol compounds from NO and GSH was
detected in the culture media. However, neither non-thi-
olic antioxidants such as AA and uric acid, nor extra-
cellular free-radical scavenging enzymes like catalase
and Cu/Zn-SOD or the intracellular superoxide scaven-
ger Tiron, protected midbrain cultures from cell death
induced by DEA/NO, suggesting that the mechanism of
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Fig. 7. A Effect of AA on DEA/NO-induced neurotoxicity. Cell
viability in fetal rat midbrain cultures pretreated with AA (200–400
µM) for 30 min previous and/or 400 µM DEA/NO for additional 24
h. Cell viability was determined by trypan blue dye exclusion and is
presented as a percentage of cell death. (B) High-affinity [3H]-dopam-
ine uptake expressed as cpm/well. After 5 days in vitro, the cultures
were treated with AA 200 µM or vehicle 30 min previous to 400 µM
DEA/NO addition for 24 h. Basal levels: 5678 ± 476cpm/well. Values
represent the mean ± SEM from (n � 4). Statistical analysis was per-
formed by ANOVA followed by the Newman–Keuls multiple compari-
son test. ∗p � 0.05, ∗∗p � 0.01, ∗∗∗p � 0.001 vs controls; � p �
0.05, � � p � 0.01 AA � DEA/NO vs DEA/NO.

protection by antioxidants is not mediated through per-
oxynitrite scavenging.

DEA/NO-induced cell death is totally abolished by
astroglia-conditioned medium treatment (Canals et al.,
2001b). It is known that GCM is rich in small antioxi-
dants, and peptidic growth factors, that increase free rad-
icals scavengers enzymatic activities (Takeshima et al.,
1994; Muller et al., 1995; Mena et al., 1997a,b, 1998a,

Fig. 8. Effect of peroxynitrite scavengers, 600 µM uric acid, 50 and 100
U/ml catalase and Cu/Zn-SOD, as well as the cell-permeable superoxide
scavenger Tiron 1–2 mM, on 200–400 µM DEA/NO-induced cell death in
fetal midbrain cultures treated for 24 h. Peroxynitrite and superoxide scaven-
gers were added 30 min before DEA/NO treatment. (A) Cell viability was
determined by trypan blue dye exclusion and is presented as a percentage
of cell death. (B, C) Mitochondrial activity measured by MTT assay is
presented as viability percentage vs controls. Values represent the
mean ± SEM from (n � 4�6). Statistical analysis was performed by
ANOVA followed by the Newman–Keuls multiple comparison test. ∗p �
0.05, ∗∗∗p � 0.001 vs controls.
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2002), and enhance development, survival, neurite
extension and resistance to neurotoxins of DA neurons.
Glial cells protect neurons from oxidative stress by tran-
scriptional up-regulation of oxidative stress-related
genes, such as the γ-glutamyl-cysteine synthetase gene
(Iwata-Ichikawa et al., 1999). Furthermore, we have
recently described that GSH depletion switches NO neu-
rotrophic effects to cell death in DA neurons (Canals et
al., 2001a).

The present study shows that DA neurons are rescued
from NO-induced cell death by thiolic antioxidants more
effectively than other cells of the culture. Buettner and
Jurkiewicz (1993) have described that DA cells are more
resistant to GSH depletion; the preferential resistance of
DAergic neurons to the toxicity induced by GSH
depletion has also been reported by Nakamura et al.
(2000), which explains that less susceptibility to cell
death is independent of cellular GSH peroxidase and is
mediated from the antioxidant capacity of tetrahydrobi-
opterin (BH4). In addition, they have shown that BH4

decreases superoxide in vitro through a direct scaveng-
ing mechanism independent of its role as a cofactor for
DA or NO synthesis. Superoxide levels are inversely
related to BH4 levels in mesencephalic neurons
(Nakamura et al., 2001).

We have found that AA exacerbates DEA/NO-
induced cell death in a dose-dependent manner. AA is
a well-known reducing agent and is involved in several
types of protective mechanisms (Rice, 2000). However,
AA can also exert a pro-oxidant activity related to ascor-
byl radicals produced through a non-enzymatic degra-
dation of AA. This latter action is stimulated under a
higher oxidation potential environment (Choi et al.,
2000). Dehydroascorbate, the total oxidized form of AA,
is carried into cells and reduction of the cytosolic dehy-
droascorbate to AA causes oxidative stress (Song et al.,
1999), which decreases cellular reducing agents as GSH
and other thiols (Winkler et al., 1994). The balance
between anti- and pro-oxidant effect of AA is dependent
on vitamin E, GSH or other reducing agents (Wefers and
Sies, 1988). A recent report has proven that vitamin C
lacks efficacy as a cancer chemoprevention agent by
generating bifunctional electrophiles and enhancement
of hydroperoxide-dependent lipid peroxidation (Lee et
al., 2001b). Taken altogether, our data may be explained
by formation of ascorbyl radicals from AA in an oxidis-
ing environment induced by high doses of DEA/NO.

In the cascade of NO-induced neurotoxicity, three
types of oxygen radicals, NO, superoxide, and peroxyn-
itrite anions play an important role. NO is easily con-
verted into peroxynitrite anion in the presence of super-
oxide anion (Beckman et al., 1990; Radi et al., 1991).
This anion is highly reactive and can cause subsequent
cytotoxic radical chain reactions (Dawson et al., 1993).
Therefore, a possibility to explain NO-induced toxicity
in fetal midbrain cultures could be the NO conversion

to its metabolite peroxynitrite. In this study, uric acid
and AA, with similar peroxynitrite scavenging activities
to thiolic antioxidants, (Keller et al., 1998; Ciriolo et
al., 2000), failed to protect from cell death induced by
DEA/NO. Furthermore, catalase plus Cu/Zn-SOD,
detoxifying enzymes that avoid extracellular peroxynitr-
ite formation, and the cell-permeable superoxide scaven-
ger Tiron, also failed to protect cell culture from
DEA/NO-induced neurotoxicity. We may assess that the
scavenging of peroxynitrite ion is not involved in the
mechanism of protection in our model of neurotoxicity.

We found GSNO in the culture media of GSH plus
DEA/NO-treated cells. S-nitrosothiol compounds such as
GSNO may function as stable intracellular intermediates
of NO activity and, perhaps, protect against NO-induced
neurotoxicity. Analysis of S-nitrosothiols may help to
understand the biology of NO. Rauhala et al. (1998) have
reported that S-nitrosylation of GSH by NO may be part
of the antioxidative cellular defence system of brain DA
neurons. Our results show that NO reacts extracellularly
with GSH to form a nitrosylated adduct which may regu-
late cellular functions and exert neuroprotective effects.
These data could help to elucidate the protective role of
thiolic antioxidants from neurotoxicity induced by
DEA/NO.

This study supports the involvement of oxidative
stress in the DEA/NO-induced neurotoxicity on neu-
ronal-enriched fetal midbrain cultures and the neuropro-
tective role of thiolic antioxidants rescuing DA neurons
from NO-induced cell death. Our results may be useful
for the development of new therapeutic strategies against
neurodegenerative disorders such as PD.
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of glia-conditioned medium on dopamine neurons in culture.

YAGO


YAGO
RESULTADOS                                                                                                                              Trabajo 3

YAGO


YAGO
52



888 E. Rodrı́guez-Martı́n et al. / Neuropharmacology 43 (2002) 877–888

Modulation of apoptosis, tyrosine hydroxylase expression and 1-
methyl-4-phenylpyridinium toxicity. Journal of Neural Trans-
mission 106, 1105–1123.

Mena, M.A., de Bernardo, S., Casarejos, M.J., Canals, S., Rodrı́guez-
Martı́n, E., 2002. The role of astroglia on the survival of dopamine
neurons. Molecular Neurobiology 25, 245–263.

Moncada, S., Palmer, R.M.J., Higgs, E.A., 1991. Nitric oxide: physi-
ology, pathophysiology, and pharmacology. Pharmacological
Review 43, 109–143.

Muller, H.W., Junghans, U., Kappler, J., 1995. Astroglial neurotrophic
and neurite-promoting factors. Pharmacology and Therapeutics 65,
1–18.

Nakamura, K., Wright, D.A., Wiatr, T., Kowlessur, D., Milstien, S.,
Lei, X.G., Kang, U.J., 2000. Preferential resistance of dopami-
nergic neurons to the toxicity of glutathione depletion is inde-
pendent of cellular glutathione peroxidase and is mediated by
tetrahydrobiopterin. Journal of Neurochemistry 74, 2305–2314.

Nakamura, K., Bindokas, V.P., Kowlessur, D., Elas, M., Milstien, S.,
Marks, J.D., Halpern, H.J., Kang, U.J., 2001. Tetrahydrobiopterin
scavenges superoxide in dopaminergic neurons. Journal of Biologi-
cal Chemistry 276, 34402–34407.

Pardo, B., Paı́no, C.L., Casarejos, M.J., Mena, M.A., 1997. Neuronal-
enriched cultures from embryonic rat ventral mesencephalon for
pharmacological studies of dopamine neurons. Brain Research Pro-
tocols 1, 127–132.

Perry, T.L., Godin, D.V., Hansen, S., 1982. Parkinson’s disease: a dis-
order due to nigral glutathione deficiency? Neuroscience Letters
33, 305–310.

Radi, R., Beckman, J.S., Bush, K.M., Freeman, B.A., 1991. Peroxynitr-
ite oxidation of sulfhydryls. The cytotoxic potential of superoxide
and nitric oxide. Journal of Biological Chemistry 266, 4244–4250.

Rauhala, P., Lin, A.M.-Y., Chiueh, C.C., 1998. Neuroprotection by S-
nitrosoglutathione of brain dopamine neurons from oxidative stress.
FASEB Journal 12, 165–173.

Rauhala, P., Mohanakumar, K.P., Sziraki, I., Lin, A.M., Chiueh, C.C.,
1996. S-nitrosothiols and nitric oxide, but not sodium nitroprusside,
protect nigrostriatal dopamine neurons against iron-induced oxidat-
ive stress in vivo. Synapse 23, 58–60.

Rice, M.E., 2000. Ascorbate regulation and its neuroprotective role in
the brain. Trends in Neuroscience 23, 209–216.

Rodrı́guez-Martı́n, E., Casarejos, M.J., Bazán, E., Canals, S., Herranz,
A.S., Mena, M.A., 2000. Nitric oxide induces differentiation in the
NB69 human catecholamine-rich cell line. Neuropharmacology 39,
2090–2100.

Song, J.H., Shin, S.H., Ross, G.M., 1999. Prooxidant effects of ascorb-
ate in rat brain slices. Journal of Neuroscience Research 58,
328–336.

Takeshima, T., Johnston, J.M., Commissiong, J.W., 1994. Mesen-
cephalic type I astrocytes rescue dopaminergic neurons from death
induced by serum deprivation. Journal of Neuroscience 14,
4769–4779.

Tietze, F., 1969. Enzymatic method for quantitative determination of
nanogram amounts of total and oxidized glutathione: application to
mammalian blood and other tissue. Analytical Biochemistry 27,
502–522.

Wefers, H., Sies, H., 1988. The protection by ascorbate and glutathione
against microsomal lipid peroxidation is dependent on vitamin E.
European Journal of Biochemistry 174, 353–357.

Winkler, B.S., Orselli, S.M., Rex, T.S., 1994. The redox couple
between glutathione and ascorbic acid: a chemical and physiologi-
cal perspective. Free Radical Biology and Medicine 17, 333–349.

YAGO


YAGO
RESULTADOS                                                                                                                              Trabajo 3

YAGO


YAGO
53



RESULTADOS 

 
 

 

 

 

 

 

 

 

 

 

 

 

Trabajo 4 
 

Glutathione depletion switches nitric oxide neurotrophic effects to 
cell death in midbrain cultures: implications for Parkinson’s disease 
 

 54 



q 2001 International Society for Neurochemistry, Journal of Neurochemistry, 79, 1183±1195 1183

Journal of Neurochemistry, 2001, 79, 1183±1195
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Abstract

Nitric oxide (NO) exerts neurotrophic and neurotoxic effects

on dopamine (DA) function in primary midbrain cultures. We

investigate herein the role of glutathione (GSH) homeostasis

in the neurotrophic effects of NO. Fetal midbrain cultures were

pretreated with GSH synthesis inhibitor, L-buthionine-(S,R)-

sulfoximine (BSO), 24 h before the addition of NO donors

(diethylamine/nitric oxide-complexed sodium and S-nitroso-N-

acetylpenicillamine) at doses tested previously as neurotro-

phic. Under these conditions, the neurotrophic effects of NO

disappeared and turned on highly toxic. Reduction of GSH

levels to 50% of baseline induced cell death in response to

neurotrophic doses of NO. Soluble guanylate cyclase (sGC)

and cyclic GMP-dependent protein kinase (PKG) inhibitors

protected from cell death for up to 10 h after NO addition; the

antioxidant ascorbic acid also protected from cell death but its

ef®cacy decreased when it was added after NO treatment

(40% protection 2 h after NO addition). The pattern of cell

death was characterized by an increase in chromatin

condensed cells with no DNA fragmentation and with break-

down of plasmatic membrane. The inhibition of RNA and

protein synthesis and of caspase activity also protected from

cell death. This study shows that alterations in GSH levels

change the neurotrophic effects of NO in midbrain cultures

into neurotoxic. Under these conditions, NO triggers a pro-

grammed cell death with markers of both apoptosis and

necrosis characterized by an early step of free radicals pro-

duction followed by a late requirement for signalling on the

sGC/cGMP/PKG pathway.

Keywords: ascorbic acid, cGMP-dependent protein kinase,

dopamine neurones, glutathione, guanylate cyclase, nitric

oxide.

J. Neurochem. (2001) 79, 1183±1195.

Glutathione (GSH) depletion occurs in several forms of cell

death and is associated with Parkinson's disease (PD). GSH

has been reported to be markedly reduced in PD, particularly

in patients with advanced disease (Perry et al. 1982; Di

Monte et al. 1992). Furthermore, the GSH decrease seems to

appear before neurodegeneration in presymptomatic PD

(Sian et al. 1994; Merad-Boudia et al. 1998) and is not a

consequence thereof. This suggests that a link may exist

between these two events although it remains to be estab-

lished whether or not the loss of GSH can induce neuro-

degeneration. Nitric oxide (NO) has been also implicated in

neurodegenerative diseases. Several authors have reported

markers that suggest a NO overproduction in PD brains, i.e.

NO radicals detected in PD substantia nigra (Shergill et al.

1996), as well as increased nitrosilated proteins such as

a-synuclein (Giasson et al. 2000) and increased nitrite con-

centration in cerebrospinal ¯uid (Qureshi et al. 1995).

Finally, the core of Lewy bodies in PD are immunoreactive

for nitrotyrosine (Good et al. 1998).

Decreased GSH may predispose cells to the toxicity of

other insults that are selective targets for dopaminergic

neurones. GSH depletion synergistically increases the

selective toxicity of MPP1 in dopamine (DA) cell cultures

(Nakamura et al. 1997), and the toxicity of 6-OHDA and

MPTP in vivo (Pileblad et al. 1989; Wullner et al. 1996).

GSH peroxidase (GPx)-knockout mice show increased
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vulnerability to MPTP (Klivenyi et al. 2000). There is

evidence that NO may play an important role in DA cell

death and functionality (Przedborski et al. 1996; LaVoie and

Hastings 1999; Liberatore et al. 1999; RodrõÂguez-MartõÂn

et al. 2000; Canals et al. 2001). A redox-based mechanism

for the neuroprotective and neurodestructive effects of NO

and related nitroso-compounds has been postulated (Lipton

et al. 1993). In this regard, GSH is an endogenous thiol that

reacts with NO to form S-nitrosoglutathione and which

protects DA neurones from oxidative stress (Rauhala et al.

1998; Chiueh and Rauhala 1999).

We show that the NO donor diethylamine/nitric oxide

complexed sodium (DEA/NO) at doses of 25 and 50 mm

exert neurotrophic effects on DA cells, by increasing the

number of tyrosine hydroxylase positive (TH1) cells, TH1

neurite processes, DA levels, [3H]DA uptake and by ele-

vating intracellular and extracelular GSH concentration

(Canals et al. 2001). When we tried to block the NO

neurotrophic effect by GSH synthesis inhibition with the

g-glutamylcysteine synthetase inhibitor l-buthionine-(S,R)-

sulfoximine (BSO), NO effects switched from neurotrophic

to induce cell death.

In this work, we study the combined effect of nontoxic

GSH down-regulation and neurotrophic doses of NO for

midbrain cultures and DA neurones. Cell viability in the

culture was analysed, the nature of cell death, the cell type

susceptibly, the time course of cell death were characterized,

and the mechanism of cell death induction and neuroprotec-

tion were addressed.

Materials and methods

Materials

Culture media

Dulbecco's modi®ed Eagle's medium (DMEM) with high glucose

(4.5 g/L), Ham's F12 nutrient mixture, Eagle's minimal essential

medium (EMEM) with Earl's salts and Leibovitz's L-15 medium,

all of which were supplemented with l-glutamine, fetal calf serum

(FCS), sodium pyruvate and l-glutamine, were purchased from Gibco

BRL (Paisley, Scotland, UK). Glucose 45%, insulin, putrescine,

progesterone and sodium selenite were from Sigma (Madrid, Spain)

and human transferrin, 30% iron-saturated, from Boehringer-

Mannheim (Barcelona, Spain).

Antibodies

Rabbit polyclonal anti-tyrosine hydroxylase (TH) antibody was

from Chemicon International, Inc. (CA, USA), anti-microtubule-

associated protein 2a 1 2b (MAP-2) antibody and anti-rabbit IgG

conjugated with tetramethylrhodamine (TRITC) were purchased

from Sigma (Madrid, Spain) and anti-mouse Ig ¯uorescein was

from Jackson (West grove, PA, USA).

Chemicals

Trypan blue, bovine serum albumin, poly d-lysine, p-phenylenedia-

mine, bis-benzimide, BSO, pargyline, N-(1-naphthyl)ethylenediamine,

sulfanilamide, dimethyl sulfoxide (DMSO), 5,5 0-dithio-bis-2-nitro-

benzoic acid (DTNB), reduced and oxidized forms of glutathione,

and diethylamine/nitric oxide complexed sodium (DEA/NO) were

from Sigma (Madrid, Spain), denitrosylated DEA/NO (± NO) was

obtained by incubating a 5-mm stock solution of DEA/NO for 2 h

at room temperature (22±248C) under illumination. S-Nitroso-N-

acetylpenicillamine (SNAP) was from Tocris (Bristol, UK);

NADPH, lactate dehydrogenase standard (LDH), the cytotoxicity

detection kit (LDH), cell proliferation kit I (MTT) and GSH reductase

(GR) were from Boehringer-Mannheim (Barcelona, Spain); methy-

lene blue and ascorbic acid were from Merck (Darmstadt, Germany);

LY-83583 was from Biomol (Plymouth, PA, USA) and KT5823,

caspase inhibitor III (Boc-d-FMK), cycloheximide and actinomycin

D were from Calbiochem (Darmstadt, Germany). The radio-

chemicals [3H]DA (70 Ci/mmol) and [3H]GABA (90 Ci/mmol)

were obtained from Dupont NEN (Boston, MA, USA). The

apoptosis TUNEL detection kit was from Promega (Madison, WI,

USA) and the Live/Dead Viability/Cytotoxicity kit from Molecular

Probes (Eugene, OR, USA). The BCA protein assay kit was from

Pierce (Rockford, IL, USA). All other reagents were of the highest

purity commercially available from Merck or Sigma.

Neuronal culture

Neuronal-enriched cultures from embryonic Sprague±Dawley rat

midbrain E-14 (crown-rump length 10±12 mm) were obtained and

prepared as previously described (Mena et al. 1993; Pardo et al.

1997). The cells were seeded in DMEM with 15% fetal calf serum

(DMEM±FCS) at a density of 105 cells/cm2 in multiwells or glass

cover slides previously coated with poly-d-lysine, 4.5 mg/cm2, in

0.1 m borate buffer, pH 8.4. The cultures were kept in a humidi®ed

chamber at 378C in a 5% CO2 atmosphere. Twenty-four hours

after plating, the cells were changed to serum-free de®ned medium

(EF12) as reported elsewhere (Mena et al. 1993; Pardo et al. 1997).

EF12 consisted of a 1 : 1 (v/v) EMEM and nutrient mixture of

Ham's F-12, supplemented with d-glucose (6 mg/mL), insulin

(25 mg/mL), transferrin (100 mg/mL), putrescine (60 mm), proges-

terone (20 nm) and sodium selenite (30 nm).

Immunocytochemistry

To study cell type susceptibility to BSO 1 DEA/NO treatment in

the fetal midbrain cultures, we performed immunostaining tech-

niques. Rabbit polyclonal anti-TH antibody (1 : 500) was employed

to identify DA neurones and mouse monoclonal anti-MAP-2

antibody (1 : 250) to detect all neurones in the culture. In brief,

cultures were ®xed with 4% paraformaldehyde, washed in 0.1 m

phosphate-buffered saline (PBS), pH 7.4, permeabilized with ethanol-

acetic acid (19 : 1) and incubated at 48C for 24 h with primary

antibodies diluted in PBS containing 10% FCS. Fluorescein- and

rhodamine-conjugated secondary antibodies were employed to

visualise positive cells under ¯uorescent microscopy. The number

of immunoreactive cells was counted in 1/7 of the total area of the

cover slides. The cells were counted in prede®ned parallel strips

using a counting reticule inserted in the ocular.

Cell viability measurements

Mitochondrial activity was measured with the MTT assay. Cells were

grown on 24-well culture plates with 500 mL de®ned medium and

treated with various reagents according to the experimental design.

The MTT assay measures the ability of cells to metabolize 3-(4,5-

dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). At
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the end of the treatment period, 300 mL of culture medium were

removed from each well and 20 mL of MTT solution (5 mg/mL)

were added and incubated for 1 h. At this time, 200 mL of

solubilization solution (10% SDS in HCl 0.01 m) were then added

to the wells and after 24 h of incubation at 378C, 100 mL were

transferred into 96-well microtitre plates, and the absorption value

at 540 nm was measured in an automatic microtitre reader (Spectra

Fluor; Tecan, Mannedorf, Switzerland).

In some experiments, calcein acetoxymethyl ester and ethidium

homodimer staining (live/dead viability/cytotoxicity assay) was

employed to check viability under ¯uorescence microscopy (Mena

et al. 1997). Calcein acetoxymethyl ester is a membrane-

permanent dye that labels cells with esterase activity and an

intact membrane is required to retain the esterase products (viable

cells). Ethidium homodimer is a membrane-impermeable DNA

dye that identi®es cells in which plasma membrane integrity has

been disrupted (dead cells). Cultures were washed and then

incubated with 0.5 mm calcein acetoxymethyl ester and 1 mm

ethidium homodimer for 30 min at room temperature before

examination.

Apoptosis was measured by light microscopy features, DNA

staining and the TUNEL assay. Cells growing on cover slides were

®xed in 4% paraformaldehyde, nuclei were stained with bis-

benzimide (Hoechst 33342) added in the antifading solution

(3 � 1026 M ®nal concentration) (Hilwig and Gropp 1975; Pardo

et al. 1997) and counted in 1/14 of the cover slide area; apoptotic

cells were identi®ed by chromatin condensation. TUNEL detection

system for apoptosis measures the fragmented DNA of cells by

incorporating ¯uorescein-12-dUTP* at the 3 0-OH ends of the DNA

by using the enzyme terminal deoxynucleotidyl transferase (TdT)

(Kerr et al. 1972; Gavrieli et al. 1992). For this assay, the cells were

®xed in 4% paraformaldehyde and permeabilized with 0.2% Triton

X-100. The ¯uorescein-12-dUTP-labelled DNA of apoptotic cells

was visualized by ¯uorescence microscopy (positive cells with

green ¯uorescence). The number of TUNEL1 cells was counted in

1/14 of the cover slide area. Cells were counted in prede®ned

parallel strips by using a counting reticule in the ocular. Cells

incubated with buffer in the absence of TdT enzyme were used as

negative controls.

For necrotic cell death determination, trypan blue dye exclusion

assay was performed (Pardo et al. 1997), and lactate dehydrogenase

(LDH) activity was measured in the culture medium by using a

cytotoxicity detection kit (Decker and Lohmann-Matthes 1988),

and expressed as a percentage versus detergent-extracted controls

(100% cytotoxicity).

Nitrite measurement

NO production was routinely quanti®ed by measuring nitrite, a

stable oxidation end product of NO (Green et al. 1982). Brie¯y,

400 mL of culture medium were mixed with 800 mL of Griess

reagent [1.5% sulfanilamide in 1 N HCl plus 0.15% N-(1-

naphthyl]ethylenediamine dihydrochloride in distilled water, v/v).

After 10 min of incubation at room temperature, the absorbance at

540 nm was determined in an automatic microtitre reader, by

means of sodium nitrite as standard.

Uptake studies

[3H]DA uptake was measured after incubation of the cells with

1028 m [3H]DA (70 Ci/mmol), in the presence of pargyline 1025 m,

and ascorbic acid 1023 m, at 378C for 30 min. Non-speci®c uptake/

binding was calculated in the presence of 1025 m mazindol and

represented # 5% (Beart and McDonald 1980). [3H]GABA uptake

was performed in the presence of 1025 m aminooxyacetic acid and

1023 m ascorbic acid and incubated for 4 min with 10 nm

[3H]GABA (90 Ci/mmol). Non-speci®c uptake/binding was calcu-

lated by incubating cultures at 08C and represented # 7% of the

total (Michel and Hefti 1990). Proteins were measured by the BCA

protein assay kit.

Glutathione measurements

Total glutathione levels were measured by the method of Tietze

(1969). Brie¯y, 1 � 105 cells were washed with PBS, lysed in

100 mL of 3% perchloric acid (PCA) for 30 min at 48C, centri-

fuged, and the supernatants were neutralized with 4 volumes of 0.1

m NaH2PO4, 5 mm EDTA, pH 7.5. Fifty microlitres of resulting

supernatants were mixed with DTNB (0.6 mm), NADPH (0.2 mm)

and glutathione reductase (1 U) and the reaction monitored in a P96

automatic microtiter reader at 412 nm during 6 min. Oxidized

glutathione (GSSG) was measured in the cells by the method of

Grif®th (1980). Brie¯y, after PCA extraction and pH neutralization,

GSH was derivatized with 2-vinylpyridine at room temperature for

1 h and the reaction carried out as above. GSH was obtained by

subtracting GSSG levels from total glutathione levels.

Statistical analysis

The results were statistically evaluated for signi®cance with one-

way analysis of variance followed by the Newman±Keuls multiple

comparison test as a post-hoc evaluation. Differences were

considered statistically signi®cant when p , 0.05.

Results

GSH depletion switches NO-induced neurotrophic

effect on DA function to neurotoxic

Low doses of NO released by the NO-donor DEA/NO

(25±50 mm) induce a neurotrophic effect on fetal midbrain

cultures, characterized by increased TH1 cell number and

arborization, DA levels, [3H]DA uptake, TH protein by

western blot and GSH levels (Canals et al. 2001). Figure 1

shows how 50 mm DEA/NO-induced up-regulation of

[3H]DA uptake in midbrain cultures disappeared with 24 h

of 20 mm BSO pretreatment and turned on down-regulation

of neurotransmitter uptake. Cultures treated with 20 mm

BSO alone without DEA/NO addition, did not show changes

in neurotransmitter uptake. NO-induced neurotrophic effect

is DA function-speci®c since [3H]GABA uptake was not

up-regulated, but in combination with GSH depletion, NO

caused greater decrease in [3H]GABA uptake than in

[3H]DA uptake (Fig. 1).

Neurotrophic levels of NO cause a loss of viability when

applied to GSH down-regulated fetal midbrain cultures

NO treatment on GSH-down-regulated cultures not only

decreased neurotransmitter uptake but also resulted in a loss

of cell viability. Several doses of the NO donors DEA/NO

(Figs 2a and b) and SNAP (Figs 2c and d) were applied to

Glutathione, nitric oxide and midbrain cultures 1185
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cultures pretreated for 24 h either with BSO 20 mm or

vehicle. BSO 20 mm treatment without DEA/NO addition

did not show any changes in cell viability. Neurotrophic

doses of NO that caused no alterations in cell viability

parameters (50 mm DEA/NO or 100 mm SNAP), turned on

highly toxic in GSH-down-regulated cultures, increasing

LDH release by 20±30% (Figs 2a and c) and decreasing

MTT viability assay values by 75±85% (Figs 2b and d). A

minimal amount of NO was required to switch on the cell

death cascade, since 25 mm DEA/NO or 50 mm SNAP did

not alter cell viability in the cultures. Both NO donors had

similar effects on BSO-pretreated cultures and the addition

of denitrosylated DEA/NO 50 mm (2 h after having been

dissolved) exerted no effects on cell viability (Fig. 2, last

bar to the right of graphs in (a) and (b), indicated as ±NO),

suggesting that NO is essential to initiate the cell death

cascade.

GSH depletion after BSO treatment was dose- and time-

dependent (Figs 3a and b). Treatment of cell cultures for

24 h with 1, 3, 10 and 20 mm BSO decreased intracellular

GSH to 60%, 50%, 30% and 20% versus controls,

respectively. GSH content in cultures treated with 20 mm

BSO decreased from 20% at 24 h to 10% at 48 h of

treatment, respectively. No signs of toxicity were seen with

Fig. 1 GSH depletion switches NO-induced up-regulation of DA

function to neurotoxic effect in midbrain cultures. After 4 days in

vitro, the cultures were treated with BSO 20 mM or vehicle, then on

the ®fth day, pre-established groups were treated with DEA/NO

50 mM for additional 24 h. The ®gure shows high-af®nity [3H]DA and

[3H]GABA uptakes expressed as a percentage versus controls.

Values are the mean ^ SEM from n � 6. Control values were

6.6 � 105 cpm/mg protein for [3H]DA and 4.0 � 105 cpm/mg protein

for [3H]GABA. Statistical analysis was performed by ANOVA followed

by the Newman±Keuls multiple comparison test. **p , 0.01;

***p , 0.001 versus their respective controls.

Fig. 2 Effects of NO donors and GSH depletion on cell viability.

After 4 days in vitro, the cells were treated with BSO 20 mM or

vehicle, and then on the ®fth day, pre-established groups were

treated with either the NO donors DEA/NO or SNAP in concen-

trations ranging from 25 to 200 mM, for 24 h. Cell viability was

measured by MTT assay and is presented as a percentage versus

controls. Cell cytotoxicity was measured by LDH activity in the

culture medium and is expressed as a percentage versus detergent-

extracted controls (100% cytotoxicity). (a) and (b) represent release

of LDH and viability, respectively, in midbrain cultures treated with

BSO 20 mM and DEA/NO in concentrations ranging from 25 to

100 mM. The last graph-bar on the right (± NO) corresponds to

groups that were treated with denitrosylated DEA/NO 50 mM (added

to the culture 2 h after DEA/NO reconstitution). (c) and (d) represent

LDH cytotoxicity and MTT viability, respectively, in midbrain cultures

treated with BSO 20 mM and SNAP in concentrations ranging from

50 to 200 mM. Values are the mean ^ SEM from n � 4±6. Statistical

analysis was performed by ANOVA followed by the Newman±Keuls

multiple comparison test. ***p , 0.001 versus controls.
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BSO 20 mm at 48 h (BSO-pretreated DEA/NO-untreated

groups) and at 72 h (data not shown) in midbrain cultures.

When used in combination with 25 and 50 mm DEA/NO,

20 mm BSO prevented NO-induced GSH up-regulation in

the cultures and depleted intracellular GSH to the same

extent that when applied alone (Fig. 3c).

To investigate which level of GSH depletion is suf®cient

to trigger NO-induced cell death cascade, midbrain cultures

were pretreated for 24 h with the same doses of BSO than in

Fig. 3, and then 50 mm DEA/NO was added for additional

24 h. Results, as shown in Fig. 4, indicate that a neuro-

trophic dose of NO turns on neurotoxic from 3 mm BSO

pretreatment, that is 50% depletion of intracelular GSH, and

the toxicity increases in a dose-dependent manner in parallel

with BSO concentration. We have used a pretreatment with

20 mm BSO for the cell death characterization and the cell

death protection studies because such dose was not toxic by

itself but it produced a high degree of toxicity when

combined with 50 mm DEA/NO.

Soluble guanylate cyclase (sGC) and cyclic

GMP-dependent protein kinase (PKG) are involved

in the cell death cascade

GSH depletion has been shown to increase cyclic GMP

(cGMP) synthesis in rat brain and primary culture neurones

(Heales et al. 1996). Also, it is well known that NO is an

endogenous activator for sGC (Bredt and Snyder 1989).

However, we have previously shown that neurotrophism

induced by 50 mm DEA/NO and cell death induced by

400 mm DEA/NO in fetal midbrain cultures are not mediated

by cGMP (Canals et al. 2001). To study the implication of

cGMP in the toxicity induced by low doses of NO in GSH

down-regulated cultures, two structurally differentiated sGC

inhibitors, LY83583 and methylene blue (MB), were used.

Fig. 3 Intracellular GSH levels in midbrain cultures treated with

BSO and DEA/NO separately and in combination. GSH concentra-

tion is normalized by protein content and expressed as a percentage

versus controls. (a) Dose±response curve of BSO (1, 3, 10 and

20 mM) treated for 24 h; (b) time-response curve of 20 mM BSO treat-

ment; and (c) effect of pretreatment with 20 mM BSO for 24 h on

DEA/NO-induced up-regulation of GSH synthesis. Basal levels of

GSH were 17.2 ^ 0.3 mg/mg protein in (a), 16.9 ^ 0.4 mg/mg pro-

tein in (b), and 18.8 ^ 0.9 mg/mg protein in (c). Values are the

mean ^ SEM from n � 4±8. Statistical analysis was performed by

ANOVA followed by the Newman±Keuls multiple comparison test.

***p , 0.001 versus control.

Fig. 4 Effect of pretreatment with different doses of BSO followed

by DEA/NO 50 mM on cell viability. After 4 days in vitro, the cultures

were treated with increasing concentrations of BSO (3, 10 and

20 mM) or vehicle, then on the ®fth day, pre-established groups were

treated with DEA/NO 50 mM for an additional 24 h. (a) Cell cytotoxi-

city measured in the culture medium by LDH activity. (b) Cell viability

measured by MTT assay and presented as a percentage versus

controls. Values are the mean ^ SEM from n � 4. Statistical analy-

sis was performed by ANOVA followed by the Newman±Keuls multiple

comparison test. *p , 0.05; ***p , 0.001 versus controls.
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Addition of 0.2 mm LY83583 or 0.1 mm MB to the cultures

30 min before DEA/NO treatment (Figs 5a and b) or up to

10 h after (Fig. 5d), rescued the cultures from cell death as

seen by MTT viability assay (Figs 5a and d), LDH activity

assay (Figs 5b and 7), and calcein-AM/ethidium homo-

dimer-1 staining (Fig. 5c). Protection was 100% when

inhibitors were applied before NO treatment and by about

80% when applied 2±10 h after DEA/NO treatment

(Fig. 5d). sGC inhibitors protected from cell death but not

from GSH depletion (data not shown).

The PKG inhibitor KT5823 was used to investigate the

way in which cGMP participates in the induced cell death.

At concentrations of 0.5 and 1 mm, this inhibitor added to

GSH-depleted cultures 30 min before DEA/NO treatment

and up to 10 h after, strongly prevented the loss of viability

as measured by MTT (Figs 6a and c) and LDH assays

(Figs 6b and 7), indicating that cGMP-induced cell death

occurs through a PKG-dependent mechanism. Since dimethyl

sulfoxide (DMSO), used as solvent for KT5823, interfered

with our model in a dose-dependent manner (Figs 6d and e),

we reduced DMSO concentration as much as allowed by

KT5823 solubility and treated the cultures with the usual dose

of DEA/NO and a higher one. PKG inhibitor protected from

cell death but not from GSH depletion (data not shown).

Fig. 5 Guanylate cyclase inhibitors protect from NO-induced toxicity

in GSH-down-regulated midbrain cultures. After 4 days in vitro,

the cultures were treated with BSO 20 mM, then on the ®fth day,

pre-established groups were treated with methylene blue 0.1 mM

(MB), 0.2 mM LY83583 (LY) or vehicle and 30 min later with DEA/

NO 50 mM for 24 h. (a) Cell viability measured by MTT assay and

presented as a percentage versus controls. (b) Cell cytotoxicity mea-

sured by LDH activity in the culture medium. (c) Photomicrographs

of cells stained with calcein-AM and ethidium homodimer-1. (d)

LY83583 was added to the cultures 30 min before DEA/NO addition

or up to 10 h later, in 2 h-intervals. At 24 h of DEA/NO addition,

cell viability was measured by MTT assay and is expressed as a

percentage versus controls. Values are expressed as the mean

^ SEM from n � 4±6. Statistical analysis was performed by ANOVA

followed by the Newman±Keuls multiple comparison test. *p , 0.05,

***p , 0.001 versus controls; 111p , 0.001 versus BSO 20 mM 1

DEA/NO 50 mM.
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Free radicals are also involved in cell death

The antioxidant ascorbic acid (AA) was supplied to BSO-

pretreated cultures 30 min before DEA/NO addition or up to

10 h after (Fig. 7). AA protected from cell death when was

present in the culture before NO addition. The protection

was progressively decreasing from 2 h (40% protection) to

10 h (no protection) after NO treatment, suggesting that free

radical production occurs soon in the cell death cascade and

that free radical levels correlate with cell death in the

culture. When the ability of AA, sGC and PKG inhibitors to

prevent cell death was compared in parallel, the protective

effect of AA was lost sooner after NO treatment than the

inhibitors protective effects (Fig. 7). This suggests that free

radical production precedes sGC and PKG activation in the

cell death cascade.

Involvement of free radicals in the BSO 1 DEA/NO-

induced cell death is also suggested by GSH/GSSG ratios.

Cultures treated with 50 mm DEA/NO alone doubled its

GSH/GSSG ratio, 20 mm BSO treatment decreased it and

BSO 1 DEA/NO combined treatment, although not statis-

tically signi®cant versus BSO alone, further decreased the

GSH/GSSG ratio. Inhibition of PKG protected from cell

death but did not restore GSH/GSSG ratio, indicating that

free radical production precedes PKG activation (Table 1).

Cell type susceptibility to NO-induced toxicity in

GSH-down-regulated cultures

Immunocytochemical characterization of cell death in

cultures pretreated for 24 h with 20 mm BSO and treated

for additional 24 h with 50 mm DEA/NO, reveals that all

neurones in the cultures (TH1 and MAP-21 cells) are

strongly affected by the treatment (Fig. 8b), but TH1 cells

remain more preserved. Untreated groups showed that TH1

cells represent a minor proportion of the total neurones in

the cultures (Fig. 8a, top panels), but when treated with

Fig. 6 The cGMP-dependent kinase inhibitor KT5823 protects from

NO-induced toxicity in GSH-down-regulated midbrain cultures. After

4 days in vitro, the cultures were treated with BSO 20 mM, then on

the 5th day, preestablished groups were treated with DEA/NO 50±

100 mM for 24 h. Cell viability was measured by MTT assay and is

presented as a percentage versus controls. Cell cytotoxicity was

measured by LDH activity in the culture medium. (a) and (b) repre-

sent viability and release of LDH, respectively, in cultures treated

with 0.5 mM KT5823 in 0.1% DMSO or 1 mM KT5823 in 0.2% DMSO,

30 min before DEA/NO addition. Control and BSO 1 DEA/NO

groups received the appropriate dose of DMSO under each condi-

tion. ***p , 0.001 versus controls; 111p , 0.001 versus BSO

20 mM 1 DEA/NO 50 mM in 0.1% DMSO; ²²²p , 0.001 versus BSO

20 mM 1 DEA/NO 100 mM in 0.2% DMSO. (c) 0.5 mM KT5823 was

added to the cultures 30 min before and 2, 6 and 10 h after 50 mM

DEA/NO treatment. At 24 h of DEA/NO addition, cell viability was

measured by MTT assay. Values are expressed as a percentage

versus controls. (d) and (e) show viability and release of LDH,

respectively, in BSO 1 DEA/NO-treated midbrain cultures in the

absence or presence of 0.1% or 0.2% DMSO. ***p , 0.001 versus

DMSO untreated group. Values are the mean ^ SEM from n � 4±6.

Statistical analysis was performed by ANOVA followed by the

Newman±Keuls multiple comparison test.
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BSO 1 DEA/NO, TH1 cells reached the main population

of surviving neurones (Fig. 8a, middle panels). These results

are in agreement with those shown in Fig. 1 referred to

[3H]DA and [3H]GABA uptakes, and indicate that DA

neurones, although very affected, are the most resistant

neurones to NO-induced toxicity in GSH-down-regulated

midbrain cultures.

The sGC inhibitor MB, added to the culture 30 min

before DEA/NO treatment in GSH-down-regulated cultures,

totally protected MAP-21 and TH1 cells from NO-induced

toxicity, showing intact neuronal processes (Fig. 8a, bottom

panels and 8b).

NO induces on GSH-down-regulated cultures a form of

programmed cell death with characteristics of apoptosis

and necrosis

Cell death induced by DEA/NO 50 mm in cultures pretreated

with BSO 20 mm for 24 h is characterized by shrinkage,

rounded cells with chromatin condensation without DNA

fragmentation. Chromatin-condensed cells in the cultures

increased above 70% with no increase in TUNEL1 cells

(Table 2). Chromatin condensed peripherally in the nucleus,

as seen by bis-benzimide staining and phase contrast (inset

in bis-benzimide photomicrograph and arrows in Fig. 9).

TUNEL staining in the same ®elds showed that peripherally

condensed chromatin did not comark as TUNEL1 (insets in

Fig. 9). Neither BSO 20 mm nor DEA/NO 50 mm alone

caused changes in cell or nuclear morphology by phase

contrast, or bis-benzimide or TUNEL staining. On the other

hand, the combined treatment of BSO and DEA/NO gave

rise to breakdown of plasmatic membrane, since LDH

released to the culture medium increased to 30%, suggesting

necrotic cell death. Furthermore, the membrane-imperme-

able DNA dye ethidium homodimer (Fig. 5c) and trypan

Fig. 7 Protection time pattern of the antioxidant ascorbic acid (AA),

the sGC inhibitor LY83583 and the PKG inhibitor KT5823 on cell

death induced by NO in GSH-down-regulated midbrain cultures.

After 4 days in vitro, the cultures were treated with BSO 20 mM or

vehicle, then on the ®fth day, pre-established groups were treated

with DEA/NO 50 mM for an additional 24 h. At different time points

after DEA/NO treatment, 200 mM AA, 0.2 mM LY83583 or 0.5 mM

KT5823 were added to the culture. Cell death was measured at

24 h by LDH activity. Values are the mean ^ SEM from n � 4.

Table 1 Effects of treatments with BSO, DEA/NO and PKG inhibitor

on GSH/GSSG ratios

Control 29.6 ^ 4.9

DEA/NO 50 mM 60.4 ^ 5.5***

BSO 20 mM 6.1 ^ 1.2***

BSO 1 DEA/NO 50 mM 3.6 ^ 0.6***

BSO 1 DEA/NO 1 KT5823 0.5 mM 3.4 ^ 0.5***

KT5823 0.5 mM 28.3 ^ 3.1

After 4 days in vitro, the cultures were treated with BSO 20 mM or

vehicle, then, on the ®fth day, pre-established groups were pretreated

with 0.5 mM KT5823 or vehicle and 30 min later with DEA/NO 50 mM

for additional 24 h. Control values for GSH and GSSG are 22.2 ^ 1.5

and 0.8 ^ 0.1 ng/mg of protein, respectively. Values are expressed as

the mean ^ SEM for n � 4. Statistical analysis was performed by

ANOVA followed by the Newman±Keuls multiple comparison test.

***p , 0.001 versus control.

Table 2 Effects of BSO and DEA/NO treatment on chromatin condensation and DNA fragmentation

TUNEL cells

(�103)

Condensed nuclei

(� 103)

Condensed nuclei

(% versus total nuclei)

Control 2.3 ^ 0.3 2.6 ^ 0.3 9.7 ^ 0.9

DEA/NO 25 mM 2.3 ^ 0.2 2.4 ^ 0.1 9.0 ^ 0.9

DEA/NO 50 mM 2.6 ^ 0.2 2.9 ^ 0.2 10.2 ^ 1.1

BSO 20 mM 2.2 ^ 0.2 2.5 ^ 0.3 9.3 ^ 0.6

BSO 1 DEA/NO 25 mM 2.2 ^ 0.3 2.6 ^ 0.3 9.8 ^ 0.7

BSO 1 DEA/NO 50 mM 2.7 ^ 0.2 19.3 ^ 0.6*** 72.6 ^ 2.3***

After 4 days in vitro, the cultures were treated with BSO 20 mM or vehicle, then, on the ®fth day, pre-established groups were treated with DEA/NO

25 or 50 mM for an additional 24 h. Values are expressed as the mean ^ SEM for n � 4±6. Statistical analysis was performed by ANOVA followed by

the Newman±Keuls multiple comparison test. ***p , 0.001 versus control.
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blue dye exclusion assay (data not shown), stained almost all

the chromatin-condensed cells, indicating that both chro-

matin condensation and breakdown of plasmatic membrane

occur simultaneously in the same cell. The de®nitive nature

of programmed cell death is suggested because the inhibi-

tion of RNA and protein synthesis and of caspase activity

did revert or attenuate cell death in the cultures (Fig. 10).

The protein synthesis inhibitor, cycloheximide, at 0.01 mg/

mL, added to the culture 30 min before DEA/NO 50 mm

treatment, prevents the loss of viability as measured by MTT

assay (Fig. 10a) and the increased LDH released to the

culture medium (Fig. 10b). Similar results were obtained

with the transcriptional inhibitor, actinomycin D, but the

inhibitor by itself at 0.1 mg/mL caused more toxicity than

did cycloheximide (Figs 10a and b), and lower concen-

trations failed to protect midbrain cultures from BSO 1

DEA/NO toxicity (data not shown). Furthermore, the broad

spectrum inhibitor of caspases Boc-D-FMK also reverted

the loss of viability induced by BSO- and DEA/NO-

cotreatment (Fig. 10c).

Discussion

We have previously shown that the NO donor DEA/NO at

low doses (25 and 50 mm) not only protects DA cells from

apoptosis but also induces de novo TH synthesis and exerts

Fig. 8 Cell type selectivity of BSO 1 DEA/

NO-induced neurotoxicity and cell protec-

tion by the sGC inhibitor methylene blue

(MB). After 4 days in vitro, the cultures

were treated with BSO 20 mM, then on the

®fth day, pre-established groups were trea-

ted with MB 0.1 mM or vehicle and 30 min

later with DEA/NO 50 mM for 24 h addi-

tional. (a) Photomicrographs show total

neurones and DA neurones, corresponding

to the same ®eld, after cell treatments.

Arrows indicate TH- and MAP-2-costained

cells in the same ®eld. Scale bar � 50 mm.

(b) Number of total neurones (MAP-21) and

DA neurones (TH1) expressed as a percen-

tage versus controls. Values are expressed

as the mean ^ SEM for n � 4±6. Statistical

analysis was performed by ANOVA followed

by the Newman±Keuls multiple comparison

test. ***p , 0.001 versus their respective

controls.
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neurotrophic effects on DA function. In addition, it increases

intracellular and extracellular GSH (Canals et al. 2001). To

investigate the importance of correct GSH homeostasis for

the neurotrophic capacity of NO, we pretreated cell cultures

with different doses of the g-glutamylcysteine synthetase

inhibitor BSO. With this model, we demonstrated that a

GSH depletion of only 50% is suf®cient to transform the

neurotrophic effect on DA function exerted by low doses of

NO into neurotoxic effects. Under these conditions, NO

triggers a programmed cell death with markers of both

apoptosis and necrosis that is characterized by an early step

of free radicals production followed by a late requirement

for signalling on the sGC/cGMP/PKG pathway.

Several authors have reported that experimental depletion

of GSH potentiates the toxicity of 6OH-DA and MPTP in

vivo (Pileblad et al. 1989; Wullner et al. 1996; Klivenyi

et al. 2000), sul®te plus ONOO2 in CSM14.1.4 cell line

(Marshall et al. 1999) and ONOO2 in astrocytes (Barker

et al. 1996). Furthermore, cellular GPx-de®cient mice show

increased vulnerability to MPTP (Klivenyi et al. 2000). A

very important aspect of our data is that a 50% depletion of

GSH, similar to that observed in PD (Sian et al. 1994;

Merad-Boudia et al. 1998), is enough to enable NO, at low

doses, to trigger the cell death cascade. Although under

these conditions, cell death induced by NO is less signi®cant

than that induced with higher GSH depletions, it may

become more outstanding over longer time periods, like in

neurodegenerative diseases with development over decades.

Soluble guanylate cyclase inhibitors, LY83583 and MB,

protect from cell death induced by BSO 20 mm pretreatment

and DEA/NO 50 mm treatment up to 10 h after NO addition,

suggesting that sGC is directly linked to neuronal death.

Also, it suggests that NO released from DEA/NO is not

the major source of sGC activation in our model because

DEA/NO totally decomposes in less than 15 min (half-life

decomposition of 3.5 ^ 0.2 min) and sGC activation occurs

up to 10 h after NO donor addition. Only a 20% decrease in

cell viability was seen when sGC was inhibited 2 h or more

after NO treatment, which may be explained by direct acti-

vation of sGC by NO. In addition to NO, other compounds

like hydroxyl radicals and lipid peroxides activate sGC

(Weber 1999; Snider et al. 1984; Reiser 1990) and have

been involved in this way, with cell death (Li et al. 1997a).

These compounds might participate in the cell death cascade

observed in our model. This hypothesis is further supported

by the experiments showing AA protection from BSO 1

DEA/NO-induced cell death. Because AA protects at earlier

stages of the cell death cascade than sGC and PKG inhibi-

tors, free radical species may initiate the death signalling.

Furthermore, GSH/GSSG ratios indicate an increase in

intracellular oxidative stress after the treatments that is not

reverted by PKG inhibition. These results corroborate the

Fig. 9 Effect of GSH-down-regulation and

NO treatment in apoptotic cell death of fetal

midbrain cultures. After 4 days in vitro, the

cultures were treated with BSO 20 mM or

vehicle, then on the ®fth day, pre-estab-

lished groups were treated with DEA/NO

50 mM for additional 24 h. The ®gure shows

the phase-contrast microscopy of midbrain

cultures and of total nuclei stained with bis-

benzimide and nuclear fragmented cells

stained by the TUNEL assay, correspond-

ing to the same ®eld. Arrows mark a

constant position in the photomicrographs

of BSO 1 DEA/NO group. Inset shows

that chromatin-condensed nuclei are not

comarked by TUNEL assay. Scale bar �
50 mm.

1192 S. Canals et al.

q 2001 International Society for Neurochemistry, Journal of Neurochemistry, 79, 1183±1195

YAGO
RESULTADOS                                                                                                                       Trabajo 4

YAGO


YAGO


YAGO
64



involvement of oxidative stress as the major mechanism in

this process and the neuroprotective role of AA in PD.

The PKG inhibitor KT5823 totally protects midbrain

cultures from BSO 1 DEA/NO-induced cell death for up to

10 h after NO addition. PKG has been identi®ed in neurones

of the basal ganglia (Walaas et al. 1989), where its major

substrate, the protein phosphatase I inhibitor DARPP-32, is

highly represented (Tsou et al. 1993; Wang and Robinson

1997). The NO/cGMP/PKG pathway has been implicated

in protein phosphatase regulation, calcium signalling, cyto-

skeletal dynamics, neurotransmitter release (Wang et al.

1997), the regulation of catecholamine synthesis, and secre-

tion in CNS (RodrõÂguez-Pascual et al. 1999), but no data is

available about its participation in cell death processes in

CNS. Since we noted that macromolecular synthesis inhibi-

tors also protects from cell death induced by BSO 1 DEA/

NO treatment, and PKG has been implicated in fos promoter

activation (Gudi et al. 1996; Gudi et al. 1999), the sGC/

cGMP/PKG pathway may activate genes implicated in the

cell death induced by NO in GSH down-regulated midbrain

cultures.

NO is essential to initiate the cell death cascade. This is

supported because two structurally differentiated donors

exerted the same results and denitrosylated DEA/NO did not

cause loss of viability. Also, in our experimental model,

BSO by itself at any of doses used and for up to 3 days in

culture (data not shown), did not result in any signs of

toxicity. This is in agreement with other data in midbrain

cultures that show no toxicity after 3 days of 50 mm BSO

treatment (Mytilineou et al. 1999) and in rat mesencephalic

cell line CSM14.1.4, in which 100 mm BSO for up to

60 h does not compromise cell viability detected by trypan

blue exclusion or MTT reduction (Marshall et al. 1999).

However, in other models with embryonic cortical primary

neurones and HT22 hippocampal nerve cell line, GSH

depletion above 80%, induced with glutamate or BSO treat-

ment, causes cell death by sGC activation and extracellular

Ca21 in¯ux, without PKG participation (Li et al. 1997a,b).

Here we show that 50 mm DEA/NO induces a type of cell

death in the GSH down-regulated cultures that integrates

simultaneously in the same cell morphological character-

istics of apoptosis and necrosis. The biochemical study

indicates that this type of cell death constitutes an active

process with cell participation because inhibitors of macro-

molecule synthesis, such as cycloheximide and actinomycin

D, and caspase inhibitors attenuate cell death, like in many

other cases of apoptosis (Oppenheim et al. 1990; Koh et al.

1995; Ahn et al. 2000). A type of cell death with charac-

teristics of both apoptosis and necrosis has been previously

reported by using a mouse hippocampal cell line (HT-22)

treated with either 5 mm glutamate or 250 mm BSO (Tan

et al. 1998). Intracellular ATP depletion switches the mode

of cell death from apoptosis to necrosis (Leist et al. 1999).

NO donors caused necrosis in the absence of glucose due to

inhibition of respiration and subsequent ATP depletion, but

in the presence of glucose, to maintain ATP level via

glycolysis, NO donors caused apoptosis. GSH depletion

inhibits mitochondrial complex I activity (Jha et al. 2000)

leading to mitochondrial respiration failure and ATP

depletion. Finally, ATP is essential for the morphological

changes in the nuclei typical of apoptosis (Kass et al. 1996).

Fig. 10 Inhibition of macromolecular synthesis and caspase activity

prevent cell death. After 4 days in vitro, the cultures were treated

with BSO 20 mM or vehicle, then on the ®fth day, pre-established

groups were treated with DEA/NO 50 mM for an additional 24 h. The

transcriptional inhibitor actinomycin D (ActD), the protein synthesis

inhibitor cycloheximide (CHx), the broad spectrum caspase inhibitor

Boc-D-FMK or its correspond solvents, were added 30 min before

DEA/NO treatment. (a) and (c) show cell viability measured by MTT

assay and presented as a percentage versus controls. (b) Cell cyto-

toxicity measured by LDH activity in the culture medium. Values are

expressed as the mean ^ SEM for n � 4±6. Statistical analysis was

performed by ANOVA followed by the Newman±Keuls multiple com-

parison test. **p , 0.01, ***p , 0.001 versus untreated groups.
11p , 0.01, 111p , 0.001 versus BSO 20 mM 1 DEA/NO 50 mM.
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These experiments may contribute to understand the type of

programmed cell death observed in GSH-depleted cultures.

We found that DA neurones are more resistant than

GABA neurones to GSH depletion plus NO treatment.

Nakamura et al. (2000) reported that the preferential

resistance of DA neurones to the toxicity of GSH depletion

was independent of cellular GPx and was mediated by

tetrahydrobiopterin (BH4). The resistance of dopaminergic

neurones to oxidative stress may be critical to their survival

and disturbances in their capacity to produce BH4 or other

antioxidants from genetic mutations or exposure to exogen-

ous toxins could underlie their demise in PD. Such a multihit

hypothesis for DA cell death is consistent with the current

view that PD is a heterogeneous disease that can arise from

combinations of genetic susceptibilities and environmental

insults (Langston 1998).

If our results can be extended to in vivo situations, then

intervention of the sGC/cGMP/PKG pathway could be

bene®cial to individuals suffering from PD or other pathol-

ogies associated with NO and GSH disregulation. Experi-

ments to elucidate the molecular and cellular mechanisms,

to identify of cell death genes and the role played by

mitochondria, leading to cell death initiated by NO when

GSH synthesis is compromised in neuronal models, could

lead to novel preventive or therapeutic strategies for PD.
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Nitric Oxide Triggers the Toxicity Due to Glutathione Depletion in Midbrain
Cultures Through 12-Lipoxygenase*

Santiago Canals, MªJosé Casarejos, Sonsoles de Bernardo, Eulalia Rodríguez-Martín, and MªAngeles Mena‡
Departamento de Investigación, Servicio de Neurobiología, Hospital “Ramón y Cajal”, 28034 Madrid, Spain.

Glutathione (GSH) depletion is the earliest biochemical al-
teration shown to date in brains of Parkinson’s disease (PD)
patients. However, data from animal models show that GSH
depletion by itself is not sufficient to induce nigral degenera-
tion. We have previously shown that non-toxic inhibition of
GSH synthesis with L-buthionine-(S,R)-sulfoximine (BSO) in
primary midbrain cultures, transforms a nitric oxide (NO)
neurotrophic effect, selective for DA neurons, into a toxic
effect with participation of guanylate cyclase (GC) and cGMP-
dependent protein kinase (PKG). Here we demonstrate that
arachidonic acid (AA) metabolism through the 12-
lipoxygenase (12-LOX) pathway is also central for this GSH-
NO interaction. LOX inhibitors (NDGA and baicalein) but not
cyclooxygenase (indomethacin) or epoxygenase (clotrimazole)
ones, prevent cell death in the culture, even when added 10h
after NO treatment. Furthermore, AA addition to GSH de-
pleted cultures precipitates a cell death process that is indistin-
guishable from that initiated by NO, in its morphology, time
course and 12-LOX, GC and PKG dependency. The first AA
metabolite through 12-LOX enzyme, 12-HPETE, induces cell
death in the culture and its toxicity is greatly enhanced by
GSH depletion. In addition we show that if GSH synthesis
inhibition persists for up to 4 days without any additional
treatment, it will induce a cell death process that also depends
on 12-LOX, GC and PKG activation. In this study, therefore
we show that the signalling pathway AA/12-LOX/12-
HPETE/GC/PKG may be important in several pathologies in
which GSH decrease has been documented, like PD. The po-
tentiating effect of NO over such signalling pathway, may be of
relevance as part of the cascade of events leading to and sus-
taining nerve cell death.

In a number of neurological disorders including Parkinson’s dis-
ease (PD)1, several potentially toxic alterations related to oxidative
stress may coexist simultaneously in the brain (1). Decreased
levels of the thiolic antioxidant glutathione (GSH) have been
reported in the sustantia nigra (SN) of PD patients (2-4), as well as
iron accumulation (3, 5, 6) and decreased mitochondrial complex I
(7, 8) and α-ketoglutarate dehydrogenase (9) activities. In addition,
biochemical markers of lipid peroxidation (10, 11) and nitric oxide
(NO) overproduction, i.e. increased nitrite concentration in cere-
brospinal   fluid   (12),  NO  radicals  detected   in  PD  nigra  (13),

* This work was supported by the Spanish Government, FIS 2000/230,
FIS 2002/PI20265 and CAM 8.5/49/2001. S.C. is recipient of a predoctoral
fellowship (BEFI) and E.RM. of a postdoctoral fellowship (CAM).
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Investigación, Hospital Ramón y Cajal, Ctra. de Colmenar, Km. 9, Madrid
28034, Spain. Phone: +34-91-336 83 84; Fax: +34-91-336 90 16; E-mail:
maria.a.mena@hrc.es

1The abbreviations used are: NO, nitric oxide; DEA/NO, diethyla-
mine/nitric oxide complexed sodium; TH, tyrosine hydroxylase; DA,
dopamine; GSH, glutathione; LDH, lactate dehydrogenase; 12-LOX, 12-
lipoxygenase; 12-HETE, (12s)-hydroxyeicosatetraenoic acid; 12-HPETE,
(12s)-hydroperoxyeicosatetraenoic acid; AA, arachidonic acid; GC, gua-
nylate cyclase; PKG, cGMP-dependent protein kinase; PD, Parkinson’s
disease.

increased 3-nitrotyrosine immunostaining in Lewy bodies (14) and
α-synuclein nitration (15) have been found in PD brains. Whether
such alterations are a primary cause of the disease, part of the
degenerative mechanism or secondary to the cell death process,
remains to be resolved.

In cell cultures and animal models of several diseases, including
PD, these alterations may contribute to neuronal degeneration.
Furthermore, synergistic interactions between them have been
demonstrated and greatly enhance the neurodegenerative process
(1, 16, 17).

GSH depletion is the earliest biochemical alteration shown to
date in PD brains. It seems to appear before neurodegeneration in
incidental Lewy bodies disease, considered as the presymptomatic
manifestation of PD (3). However, data from animal models show
that GSH depletion by itself is not sufficient to induce nigral de-
generation (18, 19). Furthermore, dopamine (DA) neurons in
culture seem to be more resistant to GSH decrease than other
midbrain cell populations (20-22). However, reduction of GSH
levels may rather enhance the susceptibility of DA cells to the
toxicity of other insults, promoting the neurodegenerative process.
For example, GSH depletion induced by L-buthionine-(S,R)-
sulfoximine (BSO) treatment, a selective GSH synthesis inhibitor
(23), enhances the susceptibility of DA neurons to the toxicity of
the mitochondrial complex I inhibitor MPTP/MPP+ in vivo (18)
and in vitro (20), potentiates the toxicity of 6-OHDA in rat stria-
tum (24) and even changes the DA cell-specific trophic effect of
NO in midbrain cultures into neurotoxic (25).

We have previously described a culture model in which one of
these interactions was clearly stated. In midbrain cultures the short
lived NO donor diethyl-amine/nitric oxide complexed sodium
(DEA/NO) at doses of 25 and 50µM selectively increases the
number of tyrosine hydroxylase positive (TH+) cells, TH+ neurite
processes, DA syntheses and [3H]DA uptake (26). Interestingly,
this DA cell-specific neurotrophism of NO disappears when GSH
content is lowered to 50% by BSO pretreatment (25), a GSH de-
pletion similar to that occurring in PD (2-4). In addition, under
GSH-decreased conditions, neurotrophic doses of NO triggers a
programmed cell death with dependence on guanylate cyclase
(GC) and cyclic GMP-dependent protein kinase (PKG) activation.
Also we have shown that the GC activation that mediates cell
death is not produced by NO (25).

In the present work we go far inside the mechanism related to
the neurotoxic interaction between decreased GSH levels and NO,
by exploring the possible participation of arachidonic acid (AA)
metabolism. AA is an important component of membrane lipids
that can activate several signalling pathways directly by itself or
by its metabolites through lipoxygenase (LOX), cyclooxygenase
(COX), or epoxygenase pathways (27). In nervous tissue the major
enzymatic route for AA metabolism is the 12-LOX pathway and
the resulting metabolites play an important role in neuronal signal-
ling and degeneration (28-30). Several observations suggest that
12-LOX may participate in cell death triggered by NO in GSH-
decreased conditions. Fist, GSH depletion can induce the activa-
tion of 12-LOX (31) and such a mechanism is related to neuronal
death in GSH-depleted cultures (32). Second, 12-HPETE, the
initial AA metabolite from 12-LOX, is a potent activator of GC
(33), and a NO-independent GC activation is necessary for cell
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death in our model (25). Finally, NO has been shown to potentiate
AA metabolism by activating phospholipase (PLA) A2 (34, 35) or
inhibiting AA re-esterification to membrane (36, 37). Here we
show that NO and GSH synergically interact at the AA metabolic
pathway to induce cell death in midbrain cultures.

EXPERIMENTAL PROCEDURES
Materials
Culture media: Dulbecco’s modified Eagle’s medium (DMEM)

with high glucose (4.5g/l), Ham’s F12 nutrient mixture, Eagle’s
minimal essential medium (EMEM) with Earl’s salts and Leibo-
vitz’s L-15 medium, all of which were supplemented with L-
glutamine, fetal calf serum (FCS), sodium pyruvate and L-
glutamine, were purchased from Gibco BRL (Paisley, Scotland,
UK). Glucose 45%, insulin, putrescine, progesterone and sodium
selenite were from Sigma (Madrid, Spain) and human transferrin,
30% iron-saturated, from Boehringer-Mannheim (Barcelona, Spain).

Antibodies: rabbit polyclonal anti mouse leukocyte 12-
lipoxygenase antibody was from Alexis (Carlsbad, CA, USA);
mouse monoclonal anti-tyrosine hydroxylase (TH) antibody was
from Chemicon (Temecula, CA, USA); O1 was obtained from
hybridoma supernatants (38); polyclonal anti-GFAP antibody, raised
in rabbits, was from DAKO (Glostrup, Denmark); anti-microtubule-
associated protein 2a + 2b (MAP-2) antibody, mouse monoclonal
anti-β-actin antibody and anti-rabbit IgG conjugated with tet-
ramethylrhodamine (TRITC) were purchased from Sigma (Madrid,
Spain); anti-mouse Ig fluorescein was from Jackson (PA, USA) and
anti-mouse IgM Alexa Fluor 488 was from Molecular Probes
(Eugene, OR, USA).

Chemicals: poly-D-lysine, p-phenylenediamine, bis-Benzimide,
L-buthionine-[S,R]-sulfoximine (BSO), dimethyl sulphoxide
(DMSO), 5,5’-dithio-bis2-nitrobenzoic acid (DTNB), reduced and
oxidised forms of glutathione and arachidonic acid (AA) were from
Sigma (Madrid, Spain). Diethylamine/nitric oxide complexed so-
dium (DEA/NO) was from Alexis (Carlsbad, CA, USA). NADPH,
the cytotoxicity detection kit (LDH), cell proliferation kit I (MTT)
and GSH reductase (GR) were from Boehringer-Mannheim (Barce-
lona, Spain); 12-HPETE, 12-HETE and LY-83583 were from Bio-
mol (Plymouth, PA, USA), KT5823, baicalein, nordihydroguaiaretic
acid (NDGA), indomethacin and clotrimazole were from Calbio-
chem (Darmstadt, Germany). The BCA protein assay kit was from
Pierce (Rockford, Ill, USA). All other reagents were of the highest
purity commercially available from Merck or Sigma.

Neuronal culture—Neuronal-enriched cultures from embryonic
Sprague-Dawley rat midbrain E-14 (crown-rump length 10-12 mm)
were obtained and prepared as previously described (39, 40). The
cells were seeded in DMEM with 15% fetal calf serum (DMEM-
FCS) at a density of 105 cells/cm2 in multiwells or glass cover slides
previously coated with poly-D-lysine, 4.5 µg/cm2, in 0.1 M borate
buffer, pH 8.4. The cultures were kept in a humidified chamber at
37°C in a 5% CO2 atmosphere. Twenty-four hours after plating, the
cells were changed to a serum-free defined medium (EF12) as re-
ported elsewhere (39, 40). EF12 consisted of a 1:1 (v/v) EMEM and
nutrient mixture of Ham’s F-12, supplemented with D-glucose (6
mg/ml), insulin (25 µg/ml), transferrin (100 µg/ml), putrescine (60
µM), progesterone (20 nM) and sodium selenite (30 nM).

Experimental treatments—In the experiments designed to study
interactions between NO and GSH depletion on cell viability, the
cells, after 4 days in culture, received 20 µM BSO or vehicle, and
then on the fifth day, pre-established groups were treated with the
NO donor DEA/NO (50 or 100 µM) for additional 24 h. Enzymes
inhibitors for the three pathways of AA metabolism, LOX pathway
(NDGA and baicalein), COX pathway (indomethacin) and

epoxygenase pathway (clotrimazole and proadifen) or its
corresponding solvents, were routinely added 30 min before
DEA/NO treatment or up to 10 h later. For experiments with AA
and 12-LOX metabolites, cultures were treated with BSO as above
and on the fifth day received several doses of AA, 12-HPETE, 12-
HETE or solvent for additional 24h. Finally, experiments for time-
course effects of 100 µM DEA/NO or 20 µM BSO alone or in
combination, on 12-LOX expression were also depicted.

The long term effect of GSH synthesis inhibition on cell
viability was also studied. The cells received 20 µM BSO as above
and the treatment proceeded for up to 4 days (8th day in vitro). In
this experimental design, enzymes inhibitors or vehicles were
added to the culture on the fifth day in vitro. The participation of
12-LOX in neurotoxicity induced by higher doses of NO under
normal GSH homeostasys was investigated by pretreating cultures
with NDGA or baicalein 30 min before 200 and 400 µM DEA/NO
addition.

Immunocytochemistry—DA neurons were characterized by
immunostaining with a mouse monoclonal anti-TH antibody
(1:100), astrocytes with a rabbit policlonal anti-GFAP antibody
(1:500) and oligodendrocytes with monoclonal anti-O1 (1:10) (41).
To detect all neurons in the culture, a mouse monoclonal anti-MAP-
2 antibody (1:250) was used. For TH, GFAP and MAP-2
immunostaining, cultures were fixed with 4% paraformaldehyde,
washed in 0.1 M Phosphate-buffered saline, pH 7.4 (PBS),
permeabilized with ethanol-acetic acid (19:1) and incubated at 4ºC
for 24h with primary antibodies diluted in PBS containing 10% fetal
calf serum. Fluorescein- and rhodamine-conjugated secondary
antibodies were employed to visualize positive cells under
fluorescent microscopy. For oligodendrocytes detection, anti-O1
antibody was directly added (1:10) to living cells and incubated for
15 min at room temperature, washed in PBS and fixed with 4%
paraformaldehyde previous to anti-mouse IgM Alexa Fluor 488
development. The number of immunoreactive cells was counted in
1/7 of the total area of the cover slides. The cells were counted in
pre-defined parallel strips using a counting reticule inserted in the
ocular.

Cell viability measurements—Mitochondrial activity was meas-
ured with the MTT assay. Cells were grown on 24-well culture
plates with 500 µL defined medium and treated with various rea-
gents according to the experimental design. The MTT assay meas-
ures the ability of cells to metabolize 3-(4,5-dimethyldiazol-2-yl)-
2,5-diphenyl tetrazolium bromide (MTT). At the end of the treat-
ment period, 300 µL of culture medium were removed from each
well and 20 µL of MTT solution (5 mg/mL) were added and incu-
bated for 1 h. At this time, 200 µL of solubilisation solution (10%
SDS in HCl 0.01M) were then added to the wells and after 24 h of
incubation at 37ºC, 100 µL were transferred onto 96-well microtiter
plates, and the absorption value at 540 nm was measured in an
automatic microtiter reader (Spectra Fluor, Tecan).

Chromatin condensation was assesed by DNA staining with bis-
Benzimide (Hoechst 33342). Cells growing on cover slides were
fixed in 4% paraformaldehyde, nuclei were stained with bisBen-
zimide added in the anti-fading solution (3x10-6 M final concentra-
tion) (40, 42) and counted in 1/14 of the cover slide area.

For necrotic cell death determination, lactate dehydrogenase
(LDH) activity was measured in the culture medium by using a
cytotoxicity detection kit (43), and expressed as a percentage vs.
detergent-extracted controls (100% cytotoxicity). In our system,
LDH release to the culture medium correlates with cell death
measured by trypan blue dye exclusion assay (26).
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Western blot analysis—Primary midbrain cultures were homoge-
nized with a sonicator in buffer containing 20 mM TrisHCl, 10 mM
AcK, 1 mM DTT, 1 mM EDTA, 1 mM PMSF, 1 mM benzamidine,
leupeptin, aprotinin, pepstatin 5µg/mL each, 0.25% NP-40, pH 7.4,
and then centrifuged at 12.000 x g for 30 min at 4°C. The super-
natant was used for protein determination by the BCA protein assay
kit and for electrophoretical separation. Samples (30 µg) were added
to SDS sample loading buffer, electrophoresed in 10% SDS-
polyacrilamide gels and then electroblotted to 0.45 µm nitrocellulose
membranes. For immunolabeling, the blots were blocked with TTBS
(20 mM Tris-HCl pH 7.6, 137 mM NaCl plus 0.1% (v/v) Tween-20
and 5% dry skimmed milk) for 1 h at room temperature. After
blocking non-specific binding, the membranes were incubated with
rabbit anti-12-LOX (1:2000) and mouse anti-β-actin (1:10000) in
blocking solution overnight at 4°C. The blots were developed by
chemiluminiscence detection using a commercial kit (Amersham)
and quantified by computer-assisted videodensitometry. β-actin was
employed as a control of charge.

Glutathione measurements—Total glutathione levels were
measured by the method of Tietze (1969)(44). Briefly, 1 x 105 cells
were washed with PBS, lysed in 100 µL of 3% perchloric acid
(PCA) for 30 min at 4ºC, centrifuged, and the supernatants were
neutralised with 4 vol of 0.1 M NaH2PO4, 5 mM EDTA, pH 7.5.
Fifty µL of resulting supernatants were mixed with DTNB (0.6
mM), NADPH (0.2 mM) and glutathione reductase (1U) and the
reaction monitored in a P96 automatic microtiter reader at 412 nm
during 6 minutes. Oxidised glutathione (GSSG) was measured in
the cells by the method of Griffith (1980)(45). Briefly, after PCA
extraction and pH neutralisation, GSH was derivatized with 2-
vinylpyridine at room temperature for 1 hour and the reaction
carried out as above. GSH was obtained by subtracting GSSG
levels from total glutathione levels.

Statistical analysis—The results were statistically evaluated for
significance with one-way analysis of variance followed by the
Newman-Keuls multiple comparison test as a post-hoc evaluation.
Differences were considered statistically significant when p<0.05.

RESULTS
Inhibitors of lipoxygenase block NO triggered cell death in GSH

depleted cultures—Midbrain cultures treated for 24h with 20 µM
BSO decrease its GSH content from 17.5 ± 0.4 µg/mg of protein to
3.7 ± 0.1 µg/mg of protein (≈20 % vs control). In these GSH de-
pleted conditions, treatment of cultures with the NO donor
DEA/NO at doses previously shown to be neurotrophic for DA
neurons (50 µM), for additional 24h, results in extensive cell death
in the culture (Fig. 1a-b). The death process is characterised by 75-
85% loss of mitochondrial activity measured by MTT assay, 30-
35% increase in LDH release to the culture medium and 70-80%
of cells with chromatin condensation without DNA fragmentation
(Fig. 1a-b and 2; and data not shown), as previously shown (25).
However, this rate of GSH synthesis inhibition by itself did not
induce cell death in the culture at 48 h (Fig. 2a and b) and at 72h
(data not shown), in accordance with previously reported data for
neuronal enriched midbrain cultures (25, 46). To investigate the
possible role of lipoxygenase in cell death in the above conditions,
we first used the general LOX inhibitor nordihydroguaiaretic acid
(NDGA). Added 30 min before the NO treatment, NDGA pre-
serves cell viability in the culture (75-80% of controls viability)
and totally blocks LDH release and chromatin condensation in-
duced by BSO + DEA/NO treatment (Fig. 1c and 2a-c). The con-
centration required for maximal protection was 0.5 µM, being
toxic to the culture up to 2.5 µM (data not shown). Since 12-LOX
is the predominant brain isoform of this enzyme (28), we tested

baicalein, a selective 12-LOX inhibitor, for cell viability assays.
As seen for NDGA, baicalein rescues all viability parameters
measured in the culture, with maximal protection observed at 2.5
µM (Fig. 1d and 2a-d). Both inhibitors protect from cell death
induced by 50 µM as well as 100 µM DEA/NO in BSO pretreated
cultures (Fig. 2a-d), without interfering with BSO induced GSH
depletion (data not shown).

In contrast, when indomethacin, a specific inhibitor of cyclo-
oxygenses with an IC50 of 1 µM, was used at concentrations up to
50 µM, no protection from cell death was seen (Fig. 1e and 2a-b).
In addition, indomethacin, which is not toxic for fetal midbrain
cultures at doses used here, increases the toxicity of NO in GSH
depleted midbrain cultures (Fig. 2a and b). Two inhibitors of ep-
oxygenase, clotrimazole and proadifen, were also proved for cell
death protection. Clotrimazole, with an IC50 of 0.4 µM, used at
concentrations up to 5 µM, did not show any protective effect (Fig.
1f and 2a-b). In the same way as indomethacin, non toxic doses of
clotrimazole further increased cell death in the culture (Fig. 2a and
b). However, the other epoxygenase inhibitor, proadifen at 10 µM
provide partial neuroprotection (Fig. 2a and b). Although widely
used as an epoxygenase inhibitor, proadifen also inhibits LOX
activity (47). In view of the above results, the proadifen protective
effect is probably due to 12-LOX inhibition.

We have previously shown that NO induced cell death on GSH
down-regulated midbrain cultures required GC activation. The
protection afforded by GC inhibitors occurred up to 10h after NO
addition (25). To determine the temporal correlation between GC
inhibition and LOX inhibition on cell death prevention, we tested
the efficacy of baicalein to protect cells, when it is added to the
culture 2, 6 and 10 h after NO treatment. As shown in Fig. 2d, the
12-LOX inhibitor efficiently prevent cell death at any time used,
similar to that occurring for GC inhibitors.

Effect of BSO and DEA/NO treatment on 12-LOX protein lev-
els—Li et al. (32) have previously shown that GSH depletion
induced by glutamate treatment in primary immature cortical
cultures, induces a 2- to 3-fold increase in 12-LOX protein. To test
this possibility in midbrain cultures depleted of GSH, we per-
formed western blot analyses of 12-LOX protein. As shown in
figure 3, GSH depletion for up to 48h, alone or in combination
with NO treatment did not vary 12-LOX protein levels. Further-
more, NO alone (100 µM DEA/NO) neither changed 12-LOX
levels at 1, 4 nor after 8h of treatment (Fig 3b).

12-LOX inhibition protects all cell types in the culture—Immu-
nocytochemical characterization of cell death induced by BSO +
DEA/NO treatment in fetal midbrain cultures shows that the most
affected cell types were neurons (MAP-2+ cells) and oligodendro-
cytes (O1+ cells) (Fig. 4). Among neurons, TH+ cells, although
very affected, were more preserved (Fig. 4 and 5), in accordance
with previously reported data (25). Astrocytes (GFAP+ cells) was
the most resistant cell type in the culture. When the ability of LOX
inhibitors (NDGA and baicalein) to protect from cell death was
studied for different cell populations, we observed that all cell
types in the culture were protected from toxicity (Fig. 4 and 5).

Arachidonic acid and 12-HPETE but not 12-HETE, reproduce
in GSH-depleted midbrain cultures, all features of cell death trig-
gered by NO—Incubation of midbrain cultures for 24 h with in-
creasing concentrations of AA resulted in no sign of toxicity in
doses ranging from 0.3 to 6 µM and very slightly toxic for 12 µM.
By contrast, after GSH depletion, AA induced cell death in the
culture in a dose-dependent manner, reaching 100% toxicity from
3 µM (Fig. 6). Cell death is characterized by shrinkage, rounded
cells with chromatin condensed peripherally in the nucleus without
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DNA fragmentation (Fig. 6c and data not shown), loss of mito-
chondrial activity (measured by MTT assay; Fig. 6a) and break-
down of plasmatic membrane (measured as LDH released to cul-
ture medium; Fig. 6b), similar to that occurring with NO in GSH
depleted cultures (Fig. 1 and 2). Also, the temporal course of the
cell death process is similar to that initiated by NO since there was
no change in cell viability for at least 16 h after AA treatment (data
not shown). Furthermore, LOX inhibitors (NDGA and baicalein)
but not cyclooxygense (indomethacin) or epoxygenase (clotrim-
azole) inhibitors protect from AA induced cell death (Fig. 6d).
Finally, cell death was also blocked by the GC inhibitor LY83583
and the PKG inhibitor KT5823 (Fig. 6d) in the same way that NO
triggered cell death.

These results demonstrate that GSH depletion by itself potenti-
ates AA metabolism through the 12-LOX pathway and that AA is
limiting LOX activity in our model since AA supplementation is
sufficient to induce cell death in the culture. In addition, the results
indicate that the cell death process initiated by AA under GSH-
decreased conditions is indistinguishable from that induced by NO
and suggest that a relationship may exist between these two events.

Next we tested the ability of 12-HPETE, the first AA metabolite
through 12-LOX pathway, to induce cell death in solvent or BSO
pre-treated cultures. Incubation of control cultures with increasing
concentrations of 12-HPETE resulted in loss of viability from
3µM and BSO pretreatment greatly increased its toxicity (Fig. 7a
and b). Unlike NO or AA in GSH decreased cultures, 12-HPETE
did not require long exposure times for toxicity and cell death was
visible as soon as 2h after treatment, by phase contrast microscopy
(data not shown). This observation suggests that 12-HPETE par-
ticipates in the execution phase of the cell death process. In addi-
tion, the main down-stream product of 12-HPETE in brain, 12-
HETE, was unable to induce cell death in control nor GSH de-
pleted cultures (Fig. 7b). Overall these data indicate that 12-
HPETE is the metabolite responsible for cell death induction by
NO and AA in our model.

GSH depletion rather than NO determines the LOX/GC/PKG
dependency of cell death induced by BSO + DEA/NO treatment—
GSH depletion induced by 20µM BSO results in no sign of toxic-
ity in midbrain cultures after 48h of treatment (Fig. 2). If inhibition
persists, loss of viability occurs on the fourth day after BSO addi-
tion, without NO requirement (Fig. 8). Cell death produced in
these experimental conditions is prevented by 12-LOX, GC and
PKG inhibition (Fig. 8). The toxicity of NO for DA neurons in
midbrain cultures without pharmacological alteration of the GSH
system, is observed from 200 to 400µM DEA/NO, but this toxic
effect is not dependent on GC and LOX activation (26, and data
not shown). Overall these data suggest that GSH depletion did not
favour NO to be toxic due to loss of one of the most important
antioxidant systems in the cell, but rather that NO precipitates the
cell death process which takes place in GSH decreased conditions
and that requires LOX, GC and PKG activation.

DISCUSSION
The effect of GSH depletion on neuronal viability has been

widely studied in several experimental models of neurodegenera-
tive diseases. PD models have received special attention since a
severe GSH depletion in the SN of PD patients has been described
(2-4). Experimental GSH depletion does not cause nigral degen-
eration by itself in the rat, but it renders DA neurons more suscep-
tible to following insults (18, 19, 24). In cell culture models, dif-
ferent tolerance to GSH depletion has been reported depending on
cell type and the brain region used for primary cultures. Cell death
in primary immature cortical neurons and HT22 hippocampal
nerve cell line is dose-dependently induced by 50-95% GSH de-

pletion after 12h of BSO incubation and the death process depend
on 12-LOX and GC activation, without PKG participation (32,
48). By contrast, neuronal enriched midbrain cultures and the
CSM14.1.4 rat midbrain cell line are resistant to GSH depletions
of about 95% for up to 3 days of BSO treatment (25, 46, 49). As
we show in figure 8, if GSH synthesis inhibition in neuronal en-
riched midbrain cultures persists up to 4 days (by 20µM BSO
treatment), it causes the death of the culture. Cell death in those
GSH-depleted conditions is prevented by LOX, GC and PKG
inhibitors. Despite the differences in susceptibility, cell death
induced by GSH depletion seems to be tightly linked with 12-LOX
and GC activation in different culture models.

We have previously shown that the tolerance to GSH depletion
of neuronal enriched midbrain cultures and DA neurons is lost
after non-toxic NO addition. Neurotrophic doses of NO for DA
neurons, when added after 24h of 20µM BSO pretreatment, pre-
cipitate cell death in a GC and PKG dependent manner (25). Here
we demostrate that 12-LOX is also central for this NO effect since
NDGA and baicalein prevent cell death in the culture. Other path-
ways of AA metabolism in our model are excluded since cyclo-
oxygenase and epoxygenase inhibitors did not confer any protec-
tion. Furthermore, they increase both NO and AA induced cell
death. This potentiating effect may be related to a rise in AA avail-
ability for 12-LOX metabolism, as has been described for other
systems (50). We conclude that GSH decrease and NO, interacting
on AA metabolism through 12-LOX, cooperate to induce cell
death in neuronal enriched midbrain cultures. Interestingly, mid-
brain cultures containing serum, with a great proportion of glial
cells, become more sensitive to GSH depletion than neuronal
enriched cultures and dies after 48h of BSO treatment (46, 51). In
agreement with the role of NO in potentiating BSO toxicity
through 12-LOX pathway, cell death in those glia-containing
cultures is blocked by the NOS inhibitor L-NAME and by the
LOX inhibitor NDGA (46).

The 12-LOX enzyme is clearly detected in primary midbrain
cultures but its synthesis is not regulated by isolated or combined
depletion of GSH and NO treatment. Nevertheless, addition of AA
to BSO pretreated cultures precipitates neuronal cell death at doses
in which AA is not toxic for midbrain cultures and the effect is
prevented by NDGA and baicalein, indicating that GSH depletion
by itself is sufficient to activate 12-LOX. These observations are in
agreement with previously reported data showing that GSH di-
rectly inhibits LOX (31, 32, 52).

The exact mechanism by which NO potentiates BSO toxicity in
our neuronal enriched midbrain cultures needs further investiga-
tion. Cell death produced by AA supplementation in GSH-depleted
cultures is indistinguishable from that induced by NO, in its time
course, morphology and molecular signalling pathway (12-
LOX/GC/PKG), supporting the notion that increased AA metabo-
lism is behind NO effects and linking 12-LOX metabolites of AA
with GC/PKG activation and cell death. The fact that AA precipi-
tates cell death in BSO-pretreated cultures indicates that AA is
limiting LOX activity and therefore, one possibility for NO actions
is by increasing non-esterified AA availability for 12-LOX me-
tabolism. Several groups have implicated PLA2 activation and
decreased rate of AA re-esterification to the membrane as mecha-
nisms for NO induced increase in free AA (34-37). Since AA re-
esterification is dependent on cellular ATP and GSH depletion
potentiates NO inhibition of mitochondrial complex I (53) and thus
decreases ATP levels, this mechanism of free AA up-regulation is
possibly operating in our model.

Several sources of evidence support that 12-HPETE is the 12-
LOX metabolite implicated in the cell death process. 12-HPETE
induces cell death in midbrain cultures and its toxicity is greatly
enhanced by GSH depletion. It has been shown that 12-HPETE
activates GC (33) and a NO-independent GC activation is needed
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for cell death induced by DEA/NO in GSH decreased midbrain
cultures. The toxicity of AA under GSH depleted conditions as
well as the toxicity of long term GSH synthesis inhibition, also
require GC activation. There is a good temporal relation between
GC inhibition and LOX inhibition on cell death prevention in our
model. In addition, 12-HPETE plays a role in the execution phase
of the cell death process since its toxic effect is observed as soon
as 2h after treatment. Finally, 12-HETE, the main downstream
metabolite of 12-HPETE and without GC activation capacity did
not induce cell death in control nor BSO treated cultures. Although
the reduction of 12-HPETE to 12-HETE is very rapid and this has
long been known to be a major metabolite of AA in brain (28), 12-
HPETE metabolism is not limited to its reduction and therefore,
the participation of other derived compounds such as hepoxilins, in
cell death, may not be formally discarded.

Overall, the results with AA and 12-HPETE suggest that GSH
decrease fulfils at least two functions related to lipid peroxidation
in our model: a) increased 12-LOX activity and b) increased 12-
HPETE half life by decreasing its reduction rate. The last hypothe-
sis is based on the fact that GSH depletion potentiates 12-HPETE
toxicity and on data showing that the GSH system participates in
the reduction of lipid hydroperoxydes into hydroxy acids (28). But
another important function of GSH may be directly related to NO.
GSH can compete with cellular targets of NO by conjugating with
it to form nitrosoglutathione or by regenerating nitrosyl groups and
thus, limiting NO actions (54, 55). When intracellular GSH is
decreased, this NO-buffering effect, is expected to be lower.

Several observations in animal models of PD confer importance
to our results; in the MPTP model, cell protection has been re-
ported by neuronal and inducible (i) NOS gen ablation in mice (56,
57). Interestingly, PLA2 knock-out mice are protected from MPTP
toxicity (58) and the PLA2 inhibitor, mepacrine, also prevents the
toxin-induced DA depletion in rat striatum (59). All these data
indicate that NO and AA are implicated in the degeneration of
nigro-striatal system in rodents. Since GSH depletion potentiates
MPTP toxicity in vivo, we propose that interactions between GSH,
NO and AA metabolism may be important for DA cell toxicity in
PD experimental models. In PD patients, along with GSH deple-
tion a marked increase of glial cells expressing iNOS in the SN has
been described (60). This indicates the possibility that, in PD
nigra, NO concentration increases in the vicinity of DA neurons in
a general environment of GSH depletion. In combination, NO
overproduction and GSH depletion may interact, reaching a toxic
threshold responsible for DA degeneration. Our experiments sug-
gest that in such a scenario, intervention of the AA metabolism
through 12-LOX pathway may be beneficial to individuals suffer-
ing from PD. The model predicts that under GSH decreased con-
ditions such as PD, any stimuli that increase non-esterified AA
availability will also contribute to cell death through 12-LOX
pathway. In this way, pro-inflammatory cytokines (IL-1, TNF-α
and IFN-γ) which are increased in PD brains (16), have been
shown to induce activation and increased synthesis of cytosolic
PLA2 (61).

The signalling pathway AA/12-LOX/12-HPETE/GC/PKG may
be important in several pathologies in which GSH depletion has
been documented, like PD (62). The potentiating effect of NO over
such signalling pathway, may be of relevance as part of the cas-
cade of events leading to and sustaining nerve cell death.
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Fig. 1. Effect of inhibitors for LOX, COX and epoxygenase pathways of AA metabolism in the
toxicity of NO in GSH-decreased midbrain cultures. Phase-contrast photomicrographs showing: (a)
Control cultures. (b) Cultures treated on the 4th day in vitro with 20 µM BSO and on the 5th day
with 50 µM DEA/NO for additional 24 h. (c-f) Cultures treated with 0.5 µM NDGA (c), 2.5 µM
baicalein (d), 25 µM indomethacin (e) or 5 µM clotrimazole (f), 30 min before DEA/NO addition
in BSO-pretreated cultures. Insets show the morphology of bis-benzimide stained nuclei in each
experimental condition. Scale bar = 25 µm.
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Fig. 2. 12-Lipoxygenase inhibition protects from NO-induced toxicity in GSH decreased midbrain cultures.
After 4 days in vitro, the cultures were treated with 20 µM BSO, then on the 5th day, preestablished groups were
treated with NDGA (0.5 µM), baicalein (Bai; 2.5 µM), indomethacin (Ind; 25 µM), clotrimazole (Clo; 5 µM),
proadifen (Pro; 10 µM) or vehicle and 30 min later with DEA/NO (D; 50-100 µM) for 24 h. (a) Cell viability
measured by MTT assay and presented as a percentage vs. controls. (b) Cell cytotoxicity measured by LDH
activity in the culture medium. (c) Chromatin condensed nuclei stained with bis-benzimide and expressed as a
percentage vs. total cell number. (d) Baicalein (Bai, 2.5 µM) was added to the cultures 30 min before DEA/NO
treatment or up to 10 h later. After 24 h of DEA/NO addition, cell viability was measured by MTT assay and is
expressed as a percentage vs. controls. Values are expressed as the mean ± SEM from n=4-5 replicates. Similar
results were obtained in 3-4 independent experiments. Statistical analysis was performed by ANOVA followed
by the Newman-Keuls multiple comparison test. *p<0.05, **p<0.01, *** p<0.001 vs. controls; +p<0.05,
++p<0.01, +++p<0.001 vs. BSO + DEA/NO.
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Fig. 3. Effect of BSO and DEA/NO treatments on 12-LOX protein levels. (a) Mid-
brain cultures were treated for 24 and 48h with 20 µM BSO and 12-LOX protein
analysed by western blot. (b) Time course effect of 100 µM DEA/NO on 12-LOX
protein levels in vehicle or 20 µM BSO pretreated cultures. Western blot analysis
shows a 75 kDa band corresponding to 12-LOX protein. β-actin has been used as a
control of charge. These experiments have been replicated twice with identical re-
sults.



RESULTADOS                                                                                                                            Trabajo 5

GSH and NO interact on 12-LOX pathway to induce cell death

78

G
FA

P+
TH

+
O

1+
M

AP
-2

+

Control BSO+DEA/NO+BaiBSO+DEA/NO

Fig. 4. Cell type selectivity of BSO + DEA/NO-induced toxicity and cell protection by the 12-LOX
inhibitor baicalein (Bai). After 4 days in vitro, the cultures were treated with 20 µM BSO, then on
the 5th day, preestablished groups were treated with 2.5 µM Bai or vehicle and 30 min later with 50
µM DEA/NO for additional 24 h. Photomicrographs show total neurons (MAP-2+), DA neurons
(TH+), astrocytes (GFAP+) and oligodendrocytes (O1+). Scale bar = 50 µm.
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Fig. 5. Lipoxygenase inhibitors protect DA cells and midbrain neurons from BSO
+ DEA/NO-induced toxicity. After 4 days in vitro, the cultures were treated with
20 µM BSO, then on the 5th day, preestablished groups were treated with NDGA
(0.5 µM), baicalein (Bai, 2.5 µM) or vehicle and 30 min later with 50 µM
DEA/NO for additional 24 h. Number of (a) DA neurons (TH+) and (b) total
neurons (MAP-2+) are expressed as a percentage vs. controls. Values are ex-
pressed as the mean ± SEM from n=6 replicates. Similar results were obtained in
2 independent experiments. Statistical analysis was performed by ANOVA fol-
lowed by the Newman-Keuls multiple comparison test. *p<0.05, **p<0.01, ***
p<0.001 vs. controls; ++p<0.01, +++p<0.001 vs. BSO + DEA/NO.
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Fig. 6. Arachidonic acid (AA) supplementation to GSH depleted midbrain cultures precipitates a cell
death process that is indistinguishable from that initiated by NO. After 4 days in vitro, the cultures were
treated with 20 µM BSO (filled triangles in (a) and (b)) or vehicle (open squares in (a) and (b)), then on
the 5th day, preestablished groups were treated with indicated doses of AA, for additional 24 h. Cell
viability was investigated by (a) MTT assay, (b) LDH activity in the culture medium and (c) phase-
contrast microscopy. Inset in (c) shows peripherally-condensed chromain in nuclei stained with bis-
benzimide. Scale bar = 25 µm. (d) Inhibitors of LOX (NDGA 0.5 µM and baicalein 2.5 µM; Bai),
COX (indomethacin 25 µM; Ind), epoxygenase (clotrimazole 5 µM; Clo), GC (LY83583 0.2 µM; LY)
and PKG (KT5823 1 µM; KT) were added 30 min before AA in BSO pretreated cultures and cell vi-
ability was measured by MTT assay after 24h. As previously reported, 0.2 % DMSO used as solvent
for KT, slightly interferes with the model. The AA concentration in (c) and (d) was 6 µM. Values are
expressed as the mean ± SEM from n=4-5 replicates. Similar results were obtained in 3 independent
experiments. Statistical analysis was performed by ANOVA followed by the Newman-Keuls multiple
comparison test. *** p<0.001 vs. controls; +p<0.05, +++p<0.001 vs. BSO + AA alone.
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Fig. 7. Effect of 12-LOX products, 12-HPETE and 12-HETE, on cell
viability in primary midbrain cultures. After 4 days in vitro, the cultures
were treated with 20 µM BSO (filled triangles in (a)) or vehicle (open
squares in (a)), then on the 5th day, preestablished groups were treated
with indicated doses of 12-HPETE (a) or AA, 12-HPETE and 12-HETE
6µM each (b), for additional 24 h. Cell death in the culture was meas-
ured by LDH activity in the culture medium (a) and MTT assay (b).
Values are expressed as the mean ± SEM from n=4 replicates. Similar
results were obtained in 3 independent experiments. Statistical analysis
was performed by ANOVA followed by the Newman-Keuls multiple
comparison test. **p<0.01, *** p<0.001 vs. controls; +++p<0.001 vs.
AA or 12-HPETE.
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Fig. 8. Persistent GSH depletion induces cell death in midbrain cultures: participation of
12-LOX, GC and PKG. After 4 days in vitro, the cultures were treated with 20 µM BSO,
then on the 5th day, preestablished groups were treated with NDGA (0.5 µM), baicalein
(Bai, 2.5 µM), indomethacin (Ind, 25 µM), clotrimazole (Clo, 5 µM), LY83583 (LY, 0.2
µM), KT5823 (KT, 1 µM) or vehicle and the treatment proceeded for an additional 72 h.
(a) Cell viability measured by MTT assay and presented as a percentage vs. controls. (b)
Cell cytotoxicity measured by LDH activity in the culture medium. As previously reported,
0.2 % DMSO used as solvent for KT, slightly interferes with the model. Values are ex-
pressed as the mean ± SEM from n=4 replicates. Similar result were obtained in 3 inde-
pendent experiments. Statistical analysis was performed by ANOVA followed by the
Newman-Keuls multiple comparison test. **p<0.01, *** p<0.001 vs. controls; +++p<0.001
vs. BSO.
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Selective and Persistent Activation of Extracellular Signal-Regulated
Protein Kinase by Nitric Oxide in Glial Cells Induces Neuronal
Degeneration in Glutathione Depleted Midbrain cultures
Santiago Canals, Maria J. Casarejos, Sonsoles de Bernardo, Rosa M. Solano, and Maria A. Mena
Departamento de Investigación, Servicio de Neurobiología, Hospital “Ramón y Cajal”,
28034 Madrid, Spain.

Intracellular glutathione (GSH) levels determine whether nitric oxide (NO) is neurotrophic for dopamine neurons or
neurotoxic in primary midbrain cultures. We have investigated herein the role of the extracellular-signal regulated
protein kinase (ERK)-1/2 pathway in this GSH switching effect. The short lived NO donor DEA/NO induces a tran-
sient activation of ERK-1/2 that totally disappears 2h after NO administration. The depletion of GSH increases and the
supplementation of GSH, but not ascorbate, suppresses the ERK-1/2 activation peak 1h after NO treatment. More
interestingly, GSH depletion changes the kinetic of phosphorylation leading to a second prolonged phase of ERK-1/2
activation, from 2 to 16h after NO addition. This change of kinetic is ultimately responsible for NO-neurotoxicity un-
der GSH depleted conditions, since selective blockade of the second and persistent phase of activation, by MEK-1/2
inhibitors PD98059 and U0126, prevents cell death. In addition, the only transient ERK activation, induced by NO
under normal GSH conditions, did not cause ERK-dependent cell death. Immunocytochemical co-localization studies
demonstrate that ERK activation in response to NO takes place exclusively in astrocytes, oligodendrocytes and glial
progenitors. Furthermore, glial cell elimination from the culture, by gliotoxic drugs, abrogates NO-induced ERK acti-
vation. Finally, we demonstrate that active ERK-1/2 translocate into the nucleus during the first transient phase, as
well as the second sustained phase of the activation.
Our results indicate that neurotrophism of NO switches into neurotoxicity after GSH depletion, due to persistent acti-
vation of the ERK-1/2 signaling pathway in glial cells. The implication of these results in pathological conditions like
Parkinson’s disease, where GSH depletion and NO overproduction have been documented, are discussed.

Key Words: MAPK, ERK-1/2, nitric oxide, glutathione, midbrain cultures, cell death, dopamine neurons, glial cells, Parkin-
son’s disease

Introduction
Decreased levels of the thiolic antioxidant glutathione (GSH)
have been documented in several forms of cell death and
associated with neurodegenerative diseases like Parkinson’s
disease (PD) (Perry et al., 1982; Riederer et al., 1989; Sian et
al., 1994; Weber, 1999). GSH depletion is the earliest bio-
chemical alteration shown to date in PD brains. It seems to
appear before neurodegeneration in incidental Lewy bodies’
disease, considered as the presymptomatic manifestation of
PD (Riederer et al., 1989). However, data from animal mod-
els show that GSH depletion by itself is not sufficient to
induce nigral degeneration (Wullner et al., 1996; Toffa et al.,
1997; Toffa et al., 1997); though, reduction of GSH levels
may became deleterious in combination with other non-toxic
stimuli or enhance the susceptibility of dopamine (DA) cells
to the toxicity of other insults (Pileblad et al., 1989; Wullner
et al., 1996; Nakamura et al., 1997; Canals et al., 2001a), and
thus, promote the neurodegenerative process.

We have previously described in midbrain cultures, that
the short lived nitric oxide (NO) donor diethyl-amine/nitric
oxide  complexed  sodium  (DEA/NO)  at  doses  of  25  and

This work was supported by the Spanish Government, FIS 2000/230, FIS
2002/PI20265 and CAM 8.5/49/2001. S.C. and S.B. are recipients of predoctoral
fellowships (BEFI and FIS, respectively) and R.S. of a postdoctoral fellowship
(CAM).

Correspondence should be addressed to Dr. M.A. Mena, Dpto. Investigación,
Hospital Ramón y Cajal, Ctra. de Colmenar, Km. 9, Madrid 28034, Spain. Phone:
+34-91-336 83 84; Fax: +34-91-336 90 16; E-mail: maria.a.mena@hrc.es.

50µM  exerts a  DA cell-specific neurotrophic effect  (Canals
et al., 2001b). Interestingly, this neurotrophism of NO disap-
pears when the GSH content is lowered to 50% by L-
buthionine-(S,R)-sulfoximine (BSO) pretreatment (Canals et
al., 2001a), a GSH depletion similar to that occurring in PD
(Perry et al., 1982; Riederer et al., 1989; Sian et al., 1994;
Weber, 1999; Riederer et al., 1989; Sian et al., 1994). In
addition, under GSH-decreased conditions, neurotrophic
doses of NO trigger a programmed cell death characterized
by an early step of free radicals production, followed by a
late requirement of guanylate cyclase (GC) and cyclic GMP-
dependent protein kinase (PKG) activation (Canals et al.,
2001a).

Nitric oxide and reactive oxygen species contribute to cell
death in several experimental models by acting on cellular
signaling cascades including the mitogen-activated protein
kinase (MAPK) pathway (Jiménez et al., 1997; Lander,
1997; Turner et al., 1998; Srivastava et al., 1999; Ghatan et
al., 2000; Taimor et al., 2001; Kulich and Chu, 2001). In the
present work, we focus on MAPKs as a possible mediator of
cell death triggered by NO in GSH depleted midbrain cul-
tures. MAPKs are a family of related serine/threonine protein
kinases that becomes catalytically active upon tyrosine and
threonine phosphorylation by MAPK kinases (Boulton et al.,
1991; Davis, 1993; Chang and Karin, 2001) and participates
in a wide range of processes, ranging from cell division and
differentiation to cell survival and degeneration (Seger and
Krebs, 1995). Extracellular signal regulated kinases (ERK)-
1/2, p38 MAPK, c-Jun N-terminal kinase or stress-activated
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protein kinase (JNK/SAPK) and ERK5 comprise the four
major classes of MAPKs. Important features of the MAPKs
function, that finally determines their biological effects,
include the subcellular localization of the active kinase and
the precise kinetic parameters of the activation (Chang and
Karin, 2001; Hazzalin and Mahadevan, 2002).

The results reported in this study demonstrate that in mid-
brain cultures ERK-1/2 are activated in response to a pulse of
NO and that GSH levels determine whether such activation
is neurotoxic or not, in virtue of the kinetic parameters. In-
terestingly, this decision take place in glia, since we also
demonstrate that NO-induced and GSH-modulated ERK-1/2
activation in midbrain cultures exclusively occur in glial
cells.

Materials and Methods
Materials
Culture media: Dulbecco’s modified Eagle’s medium
(DMEM) with high glucose (4.5g/l), Ham’s F12 nutrient
mixture, Eagle’s minimal essential medium (EMEM) with
Earl’s salts and Leibovitz’s L-15 medium, all of which were
supplemented with L-glutamine, fetal calf serum (FCS), so-
dium pyruvate and L-glutamine, were purchased from Gibco
BRL (Paisley, Scotland, UK). Glucose 45%, insulin, putres-
cine, progesterone and sodium selenite were from Sigma
(Madrid, Spain) and human transferrin, 30% iron-saturated,
from Boehringer-Mannheim (Barcelona, Spain).
Antibodies: anti-tyrosine hydroxylase (TH) antibodies made in
mouse and rabbit were from Chemicon (Temecula, CA, USA);
O1, O4 and A2B5 were obtained from hybridoma supernatants
(Raff et al., 1979; Raff et al., 1983); polyclonal anti-GFAP
antibody, raised in rabbit, was from DAKO (Glostrup, Den-
mark); antibody against β-Tubulin (βIII) raised in rabbit was
from Babco (Richmond, CA, USA), isolectin B4 from Bandei-
raea simplicifolia FITC labelled, anti-mitogen activated pro-
tein kinase, anti-phospho-ERK1 and ERK2 antibody, anti-
microtubule-associated protein 2a + 2b (MAP-2) antibody and
anti-rabbit IgG conjugated with tetramethylrhodamine
(TRITC) were purchased from Sigma (Madrid, Spain), anti-
mouse Ig fluorescein was from Jackson (PA, USA) and anti-
mouse IgM Alexa Fluor 594, anti-mouse IgG Alexa Fluor

568 and anti-rabbit IgG Alexa Fluor 488 were from Molecu-
lar Probes (Eugene, OR, USA).
Chemicals: poly-D-lysine, p-phenylenediamine, bis-
Benzimide, L-buthionine-[S,R]-sulfoximine (BSO), dimethyl
sulphoxide (DMSO), 5,5’-dithio-bis2-nitrobenzoic acid
(DTNB), reduced and oxidised forms of glutathione, L-α-
aminoadipic acid and fluoroacetate were from Sigma (Madrid,
Spain). Diethylamine/nitric oxide complexed sodium
(DEA/NO) SB203580 and PD98059 were from Alexis
(Carlsbad, CA, USA). NADPH, the cytotoxicity detection kit
(LDH), cell proliferation kit I (MTT) and GSH reductase (GR)
were from Boehringer-Mannheim (Barcelona, Spain); 1H-
[1,2,4]oxadiazolo[4,3a]quinoxaline-1-one (ODQ) was from
Biomol (Plymouth, PA, USA); KT5823, baicalein, nordihy-
droguaiaretic acid (NDGA) and 1,4-diamino-2,3-dicyano-1,4-
bis(2-aminophenylthio)butadiene (U0126) were from Calbio-
chem (Darmstadt, Germany). The BCA protein assay kit was
from Pierce (Rockford, Ill, USA). All other reagents were of
the highest purity commercially available from Merck or
Sigma.

Neuronal culture
Animal use was in accordance with the European Conven-
tion for Animal Care and Use of Laboratory Animals and
was approved by the Ramón y Cajal University Hospital
Animal Care Committee. Neuronal-enriched cultures from
embryonic Sprague-Dawley rat midbrain E-14 (crown-rump
length 10-12 mm) were obtained and prepared as previously
described (Mena et al., 1993; Pardo et al., 1997). The cells
were seeded in DMEM with 15% fetal calf serum (DMEM-
FCS) at a density of 105 cells/cm2 in multiwells or glass cover
slides previously coated with poly-D-lysine, 4.5 µg/cm2, in
0.1 M borate buffer, pH 8.4. The cultures were kept in a
humidified chamber at 37°C in a 5% CO2 atmosphere.
Twenty-four hours after plating, the cells were changed to
serum-free defined medium (EF12) as reported elsewhere
(Mena et al., 1993; Pardo et al., 1997). EF12 consisted of a
1:1 (v/v) EMEM and nutrient mixture of Ham’s F-12, sup-
plemented with D-glucose (6 mg/ml), insulin (25 µg/ml),
transferrin (100 µg/ml), putrescine (60 µM), progesterone
(20 nM) and sodium selenite (30 nM).

With the above protocol, neuronal-enriched midbrain
cultures consist of 85-90 % neuronal cells (β-tubulin+ or
MAP-2+ cells) of which around 3-5 % are dopaminergic
neurons (TH+ cells), and 10-15 % glial cells composed
mainly by astrocytes (GFAP+), glial progenitors (A2B5+) and
oligodendrocytes (O1+ and O4+). Microglial cells are rarely
present in the culture and when detected (OX42+ or lectin
labelled cells) they represent less that 0.05 % of total cells.

Experimental treatments
After 4 days in culture, cells were treated with 20 µM BSO
or vehicle, and then on the fifth day, pre-established groups
were exposed to the NO donor DEA/NO (50 or 100 µM) for
different time periods; 1-16 h for western blot and immuno-
cytochemistry analysis and 24 h for viability assays. Enzyme
inhibitors or their corresponding solvents, were routinely
added 30 min before DEA/NO treatment or up to 10 h later.
To study the potential role of ERK-1/2 inhibition on NO-
induced toxicity in BSO-untreated cultures, we used higher
doses of DEA/NO (200 and 400 µM) for 24h, which induce
apoptotic as well as necrotic cell death in midbrain cultures
(Canals et al., 2001b).

To selectively kill glial cells in the culture, we used two
gliotoxins, L-α-aminoadipic acid (L-α-aa) and fluoroacetate
(FA). L-α-aa (10-30 µM) was added to the culture 48h after
plating and maintained in the culture media to the end of the
experiment (O'Malley et al., 1994). For FA treatment two
protocols were used: pre-incubation of 1h with 10 mM FA
before NO treatment or 4h with 1mM FA before NO addition.

Immunocytochemistry
Active phosphorylated ERK-1/2 was immunocytochemically
detected with the anti-phospho-ERK1/2 antibody (1:200). DA
neurons were characterized by immunostaining with a mouse
monoclonal anti-TH antibody (1:100) or a rabbit policlonal
anti-TH antibody (1:500), astrocytes with a rabbit policlonal
anti-GFAP antibody (1:500), oligodendrocytes with
monoclonal anti-O1 and anti-O4 antibodies (1:10) (Sommer
and Schachner, 1981), glial progenitors with anti-A2B5 (1:10)
(Raff et al., 1979; Raff et al., 1983) and microglial cells were
identified with isolectin B4 FITC-labelled (Streit and
Kreutzberg, 1987; Ashwell, 1991). To detect all neurons in the
culture, a mouse monoclonal anti-MAP-2 antibody (1:250) or



RESULTADOS                                                                                                                       Trabajo 6

86

rabbit policlonal anti-β-Tubulin (βIII) (1:1000) were used. For
TH, GFAP and MAP-2 immunostaining, cultures were fixed
with 4% paraformaldehyde, washed in 0.1 M Tris-buffered
saline, pH 7.4 (TBS), permeabilized with ethanol-acetic acid
(19:1) and incubated over night at 4ºC with primary antibodies
diluted in TBS containing 10% normal goat serum (NGS).
Alexa Fluor-conjugated secondary antibodies were employed
to visualize positive cells under fluorescent or confocal
microscopy. Co-localization of active ERKs with TH+ and
GFAP+ cells was made as above but including anti-phospho-
ERK1/2 during overnight incubation. For β-Tubulin and
phospho-ERK co-localization, paraformaldehyde fixed
cultures were incubated overnight with appropriate antibodies
in TBS containing 10% NGS and 0.01% Triton X-100, at 4ºC.
Different fixation protocols (paraformaldehyde +
glutardialdehyde) and permeabilizations (higher Triton
concentrations or ethanol-acetic acid) were also used with
similar results. For O1, O4 and A2B5 staining, antibodies
were directly added to living cells and incubated for 15 min at
room temperature, washed in DMEM and fixed with 4%
paraformaldehyde previous to anti-mouse IgM Alexa Fluor
488 development. For co-localization studies, after O4 or
A2B5 staining has been completed, cells were incubated
overnight with anti-phospho-ERK1/2 antibody in TBS
containing 10% NGS, 0.01% Triton X-100 and the next day
developed with FITC-conjugated anti-mouse IgG (Jackson).
Phospho-ERK1/2 and microglial cells co-localization was
performed in 4% paraformaldehyde, 1% glutardialdehyde
fixed cultures, by overnight incubation with 12.5 mg/L
isolectin B4 and anti-phospho-ERK1/2 in TBS with 1% Triton
X-100, at 4ºC. To eliminate glutardialdehyde auto-
fluorescence, after fixation cover slides were treated with 4
mg/ml NaBH4 in TBS for 10 min at room temperature. The
number of immunoreactive cells was counted in 1/7 of the
total area of the cover slides by random sampling.

Cell viability measurements
Mitochondrial activity was measured with the MTT assay.
Cells were grown on 24-well culture plates with 500 µL
defined medium and treated with various reagents according
to the experimental design. The MTT assay measures the
ability of cells to metabolize 3-(4,5-dimethyldiazol-2-yl)-2,5-
diphenyl tetrazolium bromide (MTT). At the end of the
treatment period, 300 µL of culture medium were removed
from each well and 20 µL of MTT solution (5 mg/mL) were
added and incubated for 1 h. At this time, 200 µL of solubili-
sation solution (10% SDS in HCl 0.01M) were then added to
the wells and after 24 h of incubation at 37ºC, 100 µL were
transferred into 96-well microtiter plates, and the absorption
value at 540 nm was measured in an automatic microtiter
reader (Spectra Fluor, Tecan).

Chromatin condensation was assesed by DNA staining
with bisBenzimide (Hoechst 33342). Cells growing on cover
slides were fixed in 4% paraformaldehyde and nuclei were
stained with bisBenzimide added in the anti-fading solution
(3x10-6 M final concentration) (Hilwig and Gropp, 1975;
Pardo et al., 1997).

For necrotic cell death determination, lactate dehydroge-
nase (LDH) activity was measured in the culture medium by
using a cytotoxicity detection kit (Decker and Lohmann-
Matthes, 1988), and expressed as a percentage vs. detergent-
extracted controls (100% cytotoxicity). In our system, LDH
release to the culture medium correlates with cell death

measured by trypan blue dye exclusion assay (Canals et al.,
2001b).

Western blot analysis
Primary midbrain cultures were homogenized with a soni-
cator in buffer containing 20 mM TrisHCl, 10 mM AcK, 1
mM DTT, 1 mM EDTA, 1 mM PMSF, 1 mM benzamidine,
leupeptin, aprotinin, pepstatin 5 µg/mL each, 10 mM FNa, 2
mM sodium molibdate, 10 mM β-glicerophosphate, 0.2 mM
ortovanadate, 0.25% NP-40, pH 7.4, and then centrifuged at
12.000 x g for 30 min at 4°C. The supernatant was used for
protein determination by the BCA protein assay kit and for
electrophoretical separation. Samples (30 µg) were added to
SDS sample loading buffer, electrophoresed in 10% SDS-
polyacrilamide gels and then electroblotted to 0.45 µm nitro-
cellulose membranes. For immunolabeling, the blots were
blocked with TTBS (20 mM Tris-HCl pH 7.6, 137 mM NaCl
plus 0.1% (v/v) Tween-20 and 5% dry skimmed milk) for 1 h
at room temperature. After blocking non-specific binding, the
membranes were incubated with mouse anti-phospho-ERK1/2
(1:5000) in blocking solution overnight at 4°C. The blots were
developed by chemiluminiscence detection using a commercial
kit (Amersham) and quantified by computer-assisted videoden-
sitometry. Rabbit anti-ERK1/2 (1:20000) was employed as a
control of charge after stripping nitrocellulose membrane.

Glutathione measurements
Total glutathione levels were measured by the method of
Tietze (1969). Briefly, 1 x 105 cells were washed with PBS,
lysed in 100 µL of 3% perchloric acid (PCA) for 30 min at
4ºC, centrifuged, and the supernatants were neutralised with
4 vol of 0.1 M NaH2PO4, 5 mM EDTA, pH 7.5. Fifty µL of
resulting supernatants were mixed with DTNB (0.6 mM),
NADPH (0.2 mM) and glutathione reductase (1U) and the
reaction monitored in a P96 automatic microtiter reader at
412 nm for 6 minutes. Oxidised glutathione (GSSG) was
measured in the cells by the method of Griffith (1980).
Briefly, after PCA extraction and pH neutralisation, GSH
was derivatized with 2-vinylpyridine at room temperature for
1 hour and the reaction carried out as above. GSH was ob-
tained by subtracting GSSG levels from total glutathione
levels.

Uptake studies
[3H]DA uptake was measured after incubation of the cells
with 10-8 M [3H]DA (70 Ci/mmol), in the presence of pargy-
line 10-5 M, and ascorbic acid 10-3 M, at 37º C for 30 min.
Non-specific uptake/binding was calculated in the presence
of 10-5 M mazindol and represented ≤ 5% (Beart and
McDonald, 1980). [3H]GABA uptake was performed in the
presence of 10-5 M aminooxyacetic acid and 10-3 M ascorbic
acid and incubated for 4 min with 10 nM [3H]GABA (90
Ci/mmol). Non-specific uptake/binding was calculated by
incubating cultures at 0ºC and represented ≤ 7% of the total
(Michel and Hefti, 1990). Proteins were measured by the
BCA protein assay kit.

Statistical analysis
The results were statistically evaluated for significance with
one-way analysis of variance followed by the Newman-
Keuls multiple comparison test as a post-hoc evaluation.
Differences were considered statistically significant when
p<0.05.
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Results
Nitric oxide activates ERK-1/2 in primary midbrain
cultures: intracellular GSH levels regulate the amplitude
and kinetic of that activation.
We have previously described a primary midbrain cell cul-
ture model in which the decrease of intracellular GSH con-
tent, transforms a NO neurotrophic effect, selective for DA
neurons, into a toxic effect inducing extensive cell death in
the culture (Canals et al., 2001a). To investigate in that
model the activation of EKR-1/2 in response to NO and/or
GSH depletion, we first studied the phosphorylation state of
these proteins by western blot analysis. Midbrain cultures
treated with the GSH synthesis inhibitor L-buthionine-(S,R)-
sulfoximine (BSO) at 20 µM, decrease their GSH content
from 19.4 ± 0.5 µg/mg of protein to 3.9 ± 0.1 µg/mg of pro-
tein (≈20 % vs control) after 24h and to 2.0 ± 0.1 µg/mg of
protein (≈10 % vs control) after 48h of treatment, but this
rate of GSH synthesis inhibition did not change the phospho-
rylation state of ERK-1/2 (Fig. 1A and 2B), indicating that
GSH decrease did not induce ERK activation in midbrain
cultures at least for 40 h of depletion. By contrast, the NO
donor diethylamine/nitric oxide-complexed sodium
(DEA/NO) dose-dependently increases the active phospho-
rylated state of ERK-1/2 in the culture (Fig. 1A and B) and
in accordance with reported data in Jurkat T cells (Lander et
al., 1996), this activation is 2 fold increased after GSH de-
pletion (24h of 20 µM BSO pre-treatment).

The NO-induced phosphorylation of ERK and the poten-
tiation afforded by GSH depletion is dose-dependently
blocked by GSH and its cell permeable analogue, glutathione
ethyl ester (GSHEE) (Fig. 1C and D) but not by the non-
thiolic antioxidant ascorbic acid in concentrations of up to
0.5 mM (Fig. 1D). In addition, neither the GC inhibitor 1H-
[1,2,4]oxadiazolo[4,3a]quinoxaline-1-one (ODQ, 1-10 µM),
nor the PKG inhibitor KT5823 (1 µM), added 30 min before
DEA/NO treatment, blocked NO-induced ERK activation
(data not shown). Since arachidonic acid metabolism through
the 12-lipoxygenase (12-LOX) pathway is implicated in the
cell death process triggered by NO under GSH depleted
conditions (S. Canals, M.J. Casarejos, S. de Bernardo, E.
Rodríguez-Martín and M.A. Mena, unpublished observa-
tions), and 12-LOX metabolites induce ERK-1/2 activation
(Stanciu et al., 2000), we tried to block ERK activation in
our model by inhibiting the 12-LOX pathway. The general
LOX inhibitor nordihydroguaiaretic acid (NDGA) and the
12-LOX specific inhibitor, baicalein, were both unable to
prevent NO-induced ERK activation in GSH depleted cul-
tures, when the phosphorylation state of ERK was measured
1 and 8h after DEA/NO addition (data not shown).

We next studied the kinetic of ERK activation in response
to NO (Fig. 2). BSO or vehicle pretreated cultures were
exposed to 100 µM DEA/NO and the phosphorylation state
of ERK-1/2 was analyzed 1, 2, 4, 8 and 16 h after NO addi-
tion. The maximal ERK activation was observed 1h after NO
exposure in both control (vehicle-treated) or BSO treated
cultures. In control conditions, DEA/NO induced a transient
ERK activation that totally disappeared after 2h. By contrast,
in BSO pretreated cultures the maximal peak of ERK activa-
tion decreased but maintained an augmented active steady-
state for at least 16h after NO addition. Therefore, GSH
depletion not only potentiates NO induced peak ERK activa-

tion but also changes the kinetic of phosphorylation leading
to a more sustained active state.

MEK-1/2 inhibitors, U0126 and PD98059, block NO
triggered cell death in GSH decreased conditions.
We and others have previously demonstrated that a GSH
depletion of 80-90% vs. controls for up to 72h, did not in-
duce cell death in neuron enriched primary midbrain cultures
(Marshall et al., 1999; Mytilineou et al., 1999; Canals et al.,
2001a). Nevertheless, under these GSH depleted conditions
(24h pre-treatment with 20 µM BSO), treatment of midbrain
cultures for an additional 24h with DEA/NO at doses previ-
ously shown to be neurotrophic for DA neurons and non-
toxic for the rest of the culture (50 µM) or slightly toxic (100
µM), results in extensive cell death (Figs. 3B, 4A and Canals
et al., 2001b). To investigate the role of the above described
GSH-modulated and NO-dependent ERK activation in the
cell death process, we used U0126 and PD98059, two selec-
tive inhibitors of the ERK-activating kinases, MEK-1 and
MEK-2 (MEK-1/2). As shown in figure 3, these inhibitors
prevent both ERK-1/2 activation and cell death induced by
NO in GSH-depleted conditions. Added to the culture 30 min
before NO treatment, U0126 preserves all cell viability pa-
rameters studied, being 10 µM the concentration required for
maximal protection (Fig. 4). In the same way, PD98059
preserves cell viability in the culture, with maximal protec-
tion observed at 20 µM (Fig. 5). Both inhibitors protect from
cell death without interfering with BSO induced GSH deple-
tion (data not shown) and have a low, but significant, effect
on cell viability by itself (Figs. 4B and 5A-B). Overall, these
results demonstrate that ERK-1/2 activation is a key step for
NO actions on cell death process when GSH synthesis is
altered. In contrast, when SB203580 a specific inhibitor of
p38 MAPK, was used at concentrations of up to 20 µM, no
protection from cell death was observed (Fig. 5C).

Immunocytochemical characterization of cell death in-
duced by NO in GSH decreased conditions showed that
MAP-2+ cells (neurons), TH+ cells (DA neurons) and O1+

cells (oligodendrocytes) were highly affected by the treat-
ment at 24h, being GFAP+ cells (astrocytes) the most resis-
tant cell type in the culture. In addition, when the ability of
PD98059 to protect from cell death was studied for different
cell populations, we observed that all damaged cell types in
the culture were protected from toxicity (Fig. 6).

MEK inhibitors protect GSH-decreased midbrain cultures
from NO toxicity even when added after NO treatment (Fig.
7). The ability of PD98059, given following NO treatment,
to protect cells from toxicity diminished over time but was
still apparent 10h after cells were initially exposed to 100
µM DEA/NO. When the MEK inhibitor was added to the
culture just after the initial peak of ERK activity (2h after
NO, see Fig. 2) and thus blocking only the delayed phase of
the activation, the cell survival at 24h was similar to that
afforded by pre-treating cells with the inhibitor before NO
addition. This indicate that the early transient phase of ERK
activation has a low impact on viability, being the delayed
and persistent activation crucial for cell death induction.

We have previously described the neurotoxic effects of
higher doses of DEA/NO (200-400 µM) for midbrain cul-
tures (Canals et al., 2001b). To test if ERK-1/2 activation
participates in NO-induced toxicity when the GSH system is
not altered, we pretreated midbrain cultures with MEK in-
hibitors prior to 100, 200 and 400 µM DEA/NO treatment.
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As previously shown, 24h of 100 µM DEA/NO results in
slight loss of viability (Fig. 4A) and the toxicity increases in
parallel with the DEA/NO concentration, reaching viability
values of 64 ± 2 % vs. control (MTT assay) for the highest
DEA/NO dose. In these conditions, MEK inhibitors did not
confer any protection from NO-induced toxicity at any of the
DEA/NO doses tested (data not shown). ERK-1/2 activation
by NO in not implicated in cell death when the GSH system
is not altered, reinforcing the notion that sustained but not
transient ERK activation participates in cell death induced by
NO in midbrain cultures.

Nitric oxide-induced ERK activation in control and GSH-
depleted primary midbrain cultures is restricted to glial
cells.
To investigate if NO induced ERK phosphorylation occurs in
concrete cell types or ubiquitously in the culture, we per-
formed immunocytochemical techniques for fluorescent and
confocal microscopy examination. In control conditions, we
found less than 1 % of cells showing a very light phospho-
ERK positive (p-ERK+) staining (Fig. 8). This proportion of
basal p-ERK+ cells did not vary with GSH depletion. By
contrast, after 100 µM DEA/NO treatment, p-ERK+ staining
become more evident and there was a 10 fold increase in the
number of positive cells (Fig. 8). Phospho-ERK labelled
cells were diverse in morphology and size. BSO pre-
treatment greatly increased the intensity of p-ERK+ staining
in response to NO, in accordance to western blot results, but
the net amount of positive cells in the culture did not vary
(Fig. 8). Similarly, there was increased intensity of p-ERK+

staining with higher DEA/NO doses (1 mM) but no changes
in the morphology and number of responsive cells were
observed (Fig. 8A, 8B and Fig. 9). All these data indicate
that there is a concrete subset of cells in the culture that
represents 10 % of the population, in which NO is able to
activate ERK-1/2.

The anti-phospho-ERK1/2 antibody used for the immu-
nocytochemical study was the same antibody that specifi-
cally recognizes the 42 and 44 kDa bands of active ERK-1
and ERK-2 in western blot studies (Figs. 1 and 2). The speci-
ficity of the staining technique is further supported because
pre-incubating cells with MEK-1/2 inhibitors before NO
addition, eliminates p-ERK labelling in the culture (data not
shown). In addition, the temporal course of p-ERK staining
in the culture, strongly correlates with that observed with
western blot analysis. The number and intensity of positive
cells decrease over time but are still evident after 8 h of NO
treatment in GSH depleted conditions (Fig. 8B last panel and
Fig. 9I), whereas no p-ERK staining is observed in BSO-
untreated, DEA/NO-treated cultures at this time (data not
shown).

To identify the midbrain culture cell types in which NO
activates ERK, co-localization studies were performed. The
basal level of p-ERK+ cells in control conditions were identi-
fied as β-tubulin positive (β-Tub+) cells (neurons) (Figs. 9A
and 9H) and GFAP+ cells (astrocytes) (Fig. 9H). Unexpect-
edly, the basal level of β-Tub+/p-ERK+ cells in the culture
did not vary under any of the studied treatments: 1, 4 and 8 h
of 100 µM DEA/NO under GSH depleted conditions (Figs.
9B, C and I), 1h of 100 µM or 1 mM DEA/NO in BSO-
untreated cultures (data not shown) and different immuno-
cytochemistry protocols (see methods). This result indicates
that NO released from DEA/NO is unable to activate ERK-

1/2 in primary midbrain neurons (β-Tub+ nor TH+ cells). By
contrast, the number of p-ERK labelled astrocytes greatly
increased 1h after NO treatment and persisted for more than
8h in GSH decreased cultures (Fig. 9D and I). In addition to
astrocytes, A2B5+ (glial progenitors) and O4+ cells (oligo-
dendrocytes) also co-localized p-ERK in response to NO
(Fig 9E and F). The relative contributions of each cell popu-
lation to the total number of p-ERK+ cells are presented in
the figure 9H. Despite the low proportion of microglial cells
in our cultures (see methods) we studied the ability of NO to
induce ERK phosphorylation in this cell type. As shown in
figure 9G a proportion of microglial cells (which represent
less than 0.03 % of total cells in the culture) responded to
NO treatment by activating ERK-1/2.

If ERK-1/2 activation in response to NO occurs selec-
tively in glial cells, then elimination of these cells from the
culture must prevent NO-dependent EKR phosphorylation.
To test this hypothesis, we eliminated glial cells in midbrain
cultures by using the specific gliotoxin L-α-aminoadipic acid
(L-α-aa;10-30 µM) (O'Malley et al., 1994) and then we
analyzed the activation of ERK in response to NO by west-
ern blot. At concentrations of L-α-aa that eliminated detect-
able GFAP+ cells in the culture (Fig. 10A), NO was unable to
activate ERK-1/2 (Fig. 10C). L-α-aa treatment did not alter
the morphology of MAP-2+ and TH+ labeled neurons (Fig.
10A and data not shown) nor the high affinity 3H-DA and
3H-GABA uptake (Fig. 10B), suggesting that neuronal cells
are preserved from L-α-aa toxicity. To corroborate the re-
sults obtained with L-α-aa we used another gliotoxic drug,
fluoroacetate (FA), an aconitase inhibitor (once metabolized
into fluorocitrate) that is selectively uptaken by glial cells
and rapidly depletes intracellular ATP levels (Peters, 1963;
Keyser and Pellmar, 1994; Waniewski and Martin, 1998).
After overnight incubation with 1 mM or 1h incubation with
10 mM FA, NO was unable to activate ERK-1/2 in midbrain
cultures (Fig. 10C). The concentrations and protocols used
for FA treatment showed altered glial morphology without
changes in the morphology of neuronal population (Fig.
10A) and neurotransmitters uptake (Fig. 10B), indicating a
glial-specific effect of the treatment.

Overall, co-localization experiments and gliotoxins stud-
ies demonstrate that in primary midbrain cultures, NO, alone
or in combination with GSH depletion, specifically activates
ERK-1/2 in glial cells.

Active ERK-1/2 translocates into the nucleus after NO
treatment
An important feature of ERK function is its translocation
into the nucleus to phosphorylate and regulate the activity of
several transcription factors. We studied the subcellular
distribution of p-ERK+ staining in the above experimental
conditions and we found that a proportion of cells in the
culture at every time analyzed (1 to 8h after 100 µM
DEA/NO in GSH depleted cultures) translocate active ERK
into the nucleus (see arrows in Fig. 8B). This translocation
did not depend on GSH levels since it was also observed 1h
after DEA/NO addition in BSO-untreated cultures (see arrow
in Fig. 8B). Co-localization studies showed that nuclear ERK
translocation occurs in astrocytes, oligodendrocytes, as well
as in glial progenitors (Fig. 9D-F).
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Discussion
The major finding of this study is the demonstration that in
primary midbrain cultures, NO selectively activates ERK-1/2
in glial cells and that such activation becomes persistent and
induces extensive neuronal death when intracellular GSH is
diminished. We have previously reported in primary mid-
brain cultures that GSH depletion from 50% switches a DA
neuron-specific trophic effect of NO into neurotoxic (Canals
et al., 2001a). This effect is mediated by the GC/cGMP/PKG
signaling cascade and requires de novo mRNA and protein
synthesis and caspase activation (Canals et al., 2001a). Re-
cent studies in our laboratory also implicates arachidonic
acid metabolism through 12-LOX as an upstream step in the
cell death cascade triggered by NO under GSH depleted
conditions (S. Canals, M.J. Casarejos, S. de Bernardo, E.
Rodríguez-Martín and M.A. Mena, unpublished observa-
tions). In the present work we demonstrate that the NO ac-
tion in the above cell death process is mediated by ERK-1/2
activation and that this kinase represents an interaction point
between NO and GSH. The amplitude of NO-induced ERK
activation is increased by GSH depletion, but more impor-
tant, GSH depletion changes the kinetic of such activation
leading to a more sustained active state. This change of ki-
netic is ultimately responsible for cell death induction. Fi-
nally, we demonstrate that NO-dependent and GSH-
modulated ERK-1/2 activation takes place selectively in glial
cells in the primary midbrain culture. This suggests that in
the above conditions, sustained ERK activation in glial cells
initiates a process that finally causes cell death in the culture,
mainly neurons (including DA cells) and oligodendrocytes.

To the best of our knowledge, this is the first report
showing glial cell specific activation of ERK-1/2 in response
to NO in a primary culture containing both neurons and glia.
This conclusion is based on: (1) there is a fixed subset of
cells in the culture that represents a 10 % of the total popula-
tion, in which NO is able to activate ERK-1/2. The propor-
tion of responsive cells did not vary by increasing the NO
concentration in the culture, nor after GSH depletion. (2)
Immunocytochemical co-localization studies demonstrates
that NO activates ERK-1/2 exclusively in astrocytes, glial
progenitors, oligodendrocytes and microglia, identifying the
NO-responsive population as glial cells. (3) Glial cell elimi-
nation from midbrain cultures or selective glial metabolic
impairment, by using gliotoxic drugs, eliminates ERK-1/2
activation in response to NO. The gliotoxins used, L-α-aa
and FA, have been widely employed to discriminate glial-
cell mediated actions in different models, including mixed
neuron-glia cultures (O'Malley et al., 1994; Kenigsberg and
Mazzoni, 1995; Krieglstein and Unsicker, 1997), brain slice
preparations (Keyser and Pellmar, 1994; Alvarez-Maubecin
et al., 2000) and in vivo studies (Largo et al., 1996). In all
this reports, as well as in the present study, L-α-aa and FA
have demonstrated high specific glial actions with low or no
effect on neuronal population. Specific MAPK activation in
glial cells has been reported with other stimuli; for example,
the transforming growth factor α, a member of the epidermal
growth factor family, activates ERK-1/2 in astrocytes but not
neurons in cortical cultures (Gabriel et al., 2002). A recent
report in hippocampal slices (Berkeley and Levey, 2003)
demonstrates that cell type specific activation of ERK-1/2 in
the CA1 region depends on heterotrimeric G protein sub-
types. G(q)-coupled receptors activate ERK-1/2 in CA1

pyramidal neurons, G(i/o)-coupled receptors activate ERK-
1/2 in glia scattered throughout CA1 and G(s)-coupled re-
ceptors activate ERK-1/2 in scattered interneurons. Investi-
gation of the mechanism underlying NO dependent glial cell-
specific ERK activation in our system may be of relevance to
understand the specificity of NO signaling.

Nitric oxide can activate MAPK through GC dependent
(Parenti et al., 1998; Callsen et al., 1998; Yamazaki et al.,
2001) and independent mechanisms (Lander et al., 1996;
Yun et al., 1998). Preliminary results indicate that ERK
activation in our model is GC independent since the soluble
GC inhibitor ODQ and the PKG inhibitor KT5823, did not
block NO-induced ERK activation. The GC-independent
mechanism consists in the S-nitrosylation of a critical cys-
teine residue (Cys 118) in Ras protein (Lander et al., 1997)
that stimulates guanine nucleotide exchange, resulting in an
active Ras form that finally activates its downstream effec-
tors ERK-1/2, JNK/SAPK and p38 (Lander et al., 1995a;
Lander et al., 1996). Interestingly, Ras dependent ERK-1/2
activation in response to NO is potentiated by BSO pretreat-
ment in Yurkat T cells (Lander et al., 1996), but no data of
GSH depletion effects on the kinetics of ERK activation are
reported in that study. Further investigation will be necessary
to clarify the exact mechanism of ERK activation in our
model.

Here we show that in primary midbrain cultures, BSO
treatment increases 2-fold the ERK activation peak 1h after
NO treatment, in agreement with previously reported data
(Lander et al., 1996). More interestingly, GSH depletion
changes the kinetic of phosphorylation leading to a second
prolonged phase of ERK-1/2 activation, from 2 to 16h after
NO addition, which is finally responsible for cell death in-
duction. The BSO effect on the early ERK activation peak
may be explained by decreased competition for NO due to
GSH depletion. Both GSH, which is unable to cross cell
membrane and its cell permeable analog GSHEE, blocked
NO-induced ERK activation, as well as the BSO potentiating
effect on the activation. The fact that extracellular GSH
blocks NO action suggests a direct interaction between NO
and GSH, possibly through the formation of GSNO
(Rodríguez-Martín et al., 2002). Since BSO inhibits the γ-
glutamylcysteine syntethase, a possible increase in intracel-
lular GSH concentration after cell culture supplementation
with impermeable GSH, due to transpeptidase and dipepti-
dase-dependent increase in cysteine availability, is discarded.
In addition, a general burst in free radicals due to GSH de-
pletion is not behind the BSO potentiating effect, since sup-
plementation of the culture medium with 0.5 mM ascorbate
before NO addition in BSO-pretreated cultures, did not de-
crease ERK activation. Nevertheless, the way in which GSH
influences ERK-1/2 activation and principally its kinetic
parameters, requires more investigation. Possible mecha-
nisms also include: (1) the facilitation of denitrosylation
events in exposed Cys 118 of ras protein (Stamler et al.,
2002), (2) the S-glutathiolation of cysteins involved in lipid
modifications of ras protein (Mallis et al., 2001), (3) the
restoration of the protein phosphatase function under oxida-
tive or nitrosative conditions (Chiarugi et al., 2001; Lu et al.,
2001; Rao and Clayton, 2002) and (4) oxidative stress-
mediated sustained ERK-1/2 activation (Lander et al.,
1995b).

In addition to the above possibilities, two independent re-
ports (Stanciu et al., 2000; Satoh et al., 2000) demonstrate
that in primary immature cortical neurons and the HT22
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hippocampal nerve cell line, glutamate initiates a persistent
and delayed ERK-1/2 activation that induces cell death. This
process is known as oxidative glutamate toxicity and is pro-
duced by glutamate competition of cystine transport and
subsequent GSH depletion (Murphy et al., 1989). Persistent
ERK-1/2 activation by oxidative glutamate toxicity in HT22
cells is produced by 12-LOX derived arachidonic acid me-
tabolites, since the 12-LOX inhibitor baicalein blocked it
(Stanciu et al., 2000). Furthermore, arachidonic acid me-
tabolites are responsible for both ERK and JNK/SAPK acti-
vation in response to oxidative stress in primary cultured
astrocytes (Thomas et al., 1997). Although 12-LOX partici-
pates in the cell death process observed in our model, its
participation in ERK-1/2 activation is discarded since bai-
calein or NDGA, a general LOX inhibitor, are unable to
block the first transient, or the second sustained phase of
ERK activation in response to NO. Interestingly, 12-LOX
inhibitors blocked cell death induced by NO in GSH-
depleted midbrain cultures, without interfering with ERK
activity, suggesting that ERK activation is necessary but not
sufficient to induce cell death in our model.

Although numerous reports have implicated ERK in neu-
ronal cell survival (Xia et al., 1995; Yujiri et al., 1998), ERK
does not appear to act always in this way. ERK-1/2 activa-
tion has been demonstrated after focal cerebral ischemia in
mice and MEK1 protein kinase inhibition protects against
damage in this model (Namura et al., 1999). Sustained acti-
vation of ERK-1/2, brought about by protein phosphatase
inhibition, induced neuronal cell death in hippocampal slice
cultures (Runden et al., 1998). Furthermore, cell death by
oxidative glutamate toxicity in immature cortical cultures
and in HT22 cells needs persistent activation and nuclear
retention of ERK-1/2 (Stanciu et al., 2000; Stanciu and De-
Franco, 2002). Finally, ONOO- induces apoptosis in human
DA neuroblastoma SH-SY5Y cells through ERK-1/2 and p-
38 MAPK pathways (Oh-hashi et al., 1999). It has been
proposed that the precise parameters of ERK-1/2 activation
ultimately determine whether the kinase participates in cell
death-promoting or cell survival pathways (Chang and Karin,
2001). Distinct kinetics of ERK-1/2 activation differentially
activates transcription factors of the AP1 family (Cook et al.,
1999) suggesting that unique sets of genes can be expressed
in response to concrete times of ERK-1/2 activation
(Marshall, 1995; Hazzalin and Mahadevan, 2002). Here, we
demonstrate that prolonged ERK-1/2 activation is critical for
cell death induction in primary midbrain cultures, since the
selective blockade of the second and persistent phase of
activation accounted for almost 90% of the protective effect
obtained by MEK inhibition, and the only transient ERK
activation induced by NO under normal GSH conditions, did
not cause ERK-dependent cell death. In addition we demon-
strate active ERK-1/2 translocation into the nucleus of glial
cells during the first transient phase, as well as the second
sustained phase of the activation.

We previously demonstrated de novo mRNA and protein
synthesis requirement for cell death induction in our model
(Canals et al., 2001a). This suggests the possibility that nu-
clear targets of ERK in glial cells, regulate the transcription
of genes implicated in this cell death process. In addition to
nuclear targets, cytoplasmic targets of active ERK-1/2, like
cPLA2, may be of relevance in the death cascade since we
demonstrated the participation of arachidonic acid metabo-
lites in the process. It has been shown that ERK-1/2 activa-
tion in murine primary astrocytes induces cPLA2 phospho-

rylation and regulates arachidonic acid release (Xu et al.,
2002).

Regardless of the mechanism, our results indicate that NO
and GSH depletion interact in glial cells on the MAPK sig-
naling cascade to induce neuronal cell death and suggest a
process in which glial cells could actively participate in
neuronal degeneration in pathological conditions. Since GSH
depletion in neurons and glial cells, as well as increased NO
production and iNOS expression in glial cells, have been
demonstrated in the sustantia nigra of PD patients, the bio-
chemical conditions for the above described NO-GSH inter-
action are present in the brain of patients. In combination,
NO overproduction and GSH depletion may interact, reach-
ing a toxic threshold responsible for the DA-cell degenera-
tion. The identification of nuclear and cytoplasmic targets of
sustained ERK-1/2 activation may be of relevance in the
understanding of NO and GSH functions in brain physiology
and pathology.
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Fig. 1. Nitric oxide activates ERK-1/2 in primary midbrain cultures and that activation is potentiated by
GSH depletion and blocked by GSH supplementation. A, After 4 days in vitro, the cultures were treated
with 20 µM BSO or vehicle, then on the 5th day, preestablished groups were treated with the indicated
doses of DEA/NO for 1 h. Cells were then harvested and lysed, and active or total ERK-1/2 were visu-
alized by Western blot analysis. Relative active ERK levels were determined from densitometric scan-
ning of enhanced chemiluminescence-exposed films and corrected for charge differences with total
ERK-1/2 (B). Values are expressed as the mean ± SEM from n=3-6 independent experiments. Statistical
analysis was performed by ANOVA followed by the Newman-Keuls multiple comparison test. *p<0.05,
**p<0.01, *** p<0.001 vs. control; +p<0.05 vs. 50 µM DEA/NO alone; +++p<0.001 vs. 100 µM
DEA/NO alone. C, Cultures were treated as in (A) but the cell permeable GSH analog, GSH ethyl ester
(GSHEE), was added to the culture 30 min before DEA/NO treatment. D, Ascorbate or GSH 0.5 mM
each were added 30 min before DEA/NO treatment. Experiments in (C) and (D) have been replicated
three times with similar results.
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Fig. 2. GSH depletion changes the kinetic of NO-induced ERK-1/2
phosphorylation, leading to a more persistent active state. After 4 days
in vitro, the cultures were treated with 20 µM BSO (circles and squares)
or vehicle (triangles), then on the 5th day, preestablished groups were
treated with 100 µM DEA/NO (triangles and squares) for various
lengths of time (1-16 h). Cells were then harvested and lysed, and active
or total ERK-1/2 were visualized by Western blot analysis (A). Relative
active ERK levels were determined from densitometric scanning of
enhanced chemiluminescence-exposed films and corrected with total
ERK-1/2 (B). Values are expressed as the mean ± SEM from n=3 inde-
pendent experiments.
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25 µm. Experiments have been replicated three times with similar re-
sults.
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Fig. 5. Dose-dependent protective effect of MEK-1/2 inhibitor PD98059, against NO-induced
toxicity in GSH depleted cultures. After 4 days in vitro, the cultures were treated with 20 µM BSO
(squares and circles) or vehicle (triangles), then on the 5th day, preestablished groups were treated
with 15-30 µM PD98059 (A and B) or 1-20 µM p38 MAPK inhibitor, SB203580 (C), and 30 min
later with 50 (squares) and 100 (circles) µM DEA/NO, for additional 24 h. Cell viability was
measured by MTT assay (A and C) or LDH release to the culture medium (B). Values are ex-
pressed as the mean ± SEM from n=4 replicates. Similar results were obtained in 3-5 independent
experiments.
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BSO, then on the 5th day, preestablished groups were treated with 20 µM PD98059 or vehi-
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Fig. 7. MEK-1/2 inhibitor PD98059, protects GSH-depleted midbrain cultures
from NO toxicity when added after NO treatment. After 4 days in vitro, the
cultures were treated with 20 µM BSO or vehicle, then on the 5th day, prees-
tablished groups were treated with 100 µM DEA/NO, and 20 µM PD98059
was added to the culture thirty min before or 2, 6 and 10 h after DEA/NO
treatment. Cell death was measured in all groups 24 h after DEA/NO addition
by MTT assay (A) and LDH release to the culture medium (B). Values are
expressed as the mean ± SEM from n=4 replicates. Similar results were ob-
tained in 3 independent experiments. Statistical analysis was performed by
ANOVA followed by the Newman-Keuls multiple comparison test. ***
p<0.001 vs. BSO + DEA/NO alone.
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to activate ERK-1/2. After 4 days in vitro, the cultures were treated with 20 µM
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DEA/NO. A, 1 h after DEA/NO addition, the cultures were fixed and immu-
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presented as a % vs. control. Values are expressed as the mean ± SEM from n=3
replicates. Similar results were obtained in 3 independent experiments. Statistical
analysis was performed by ANOVA followed by the Newman-Keuls multiple com-
parison test. *** p<0.001 vs. control. B, Representative photomicrographs of p-
EKR+ cells in control (untreated) conditions, in cultures treated 1h with 100 µM
DEA/NO alone or after 24h of BSO pretreatment, and cultures 8h after 100 µM
DEA/NO in BSO pretreated cultures. Note that the intensity of p-ERK+ staining 1h
after DEA/NO addition but not the number of p-ERK+ cells, was increased by BSO
pretreatment. Arrows indicate p-ERK+ staining in the cellular nuclei. Scale bar = 50
µm.
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Fig. 9. Nitric oxide selectively activates ERK-1/2 in glial cells in primary midbrain cultures. A,
Double-staining immunocytochemistry showing a neuron (β-Tub+ cell) with cytoplasmic and nu-
clear distribution of active ERK (p-ERK) in control (untreated) conditions. B-G, After 4 days in
vitro, the cultures were treated with 20 µM BSO, and on the 5th day, received 100 µM DEA/NO for
1 h. At the end of the incubation time, cultures were fixed and doubled-stained with p-ERK anti-
body and: β-Tub (B), TH (DA neurons; C), GFAP (astrocytes; D), A2B5 (glial progenitors; E), O4
(oligodendrocytes; F) and lectin (microglia, G). Arrows in D-F show active ERK translocation into
the nucleus. Right panels in D-F correspond to total nuclei stained with bis-benzimide. In (G) two
different microglial cells are shown, one of which (inset) is p-ERK labeled. H, Double-stained cells
in control and BSO + DEA/NO groups were quantified and expressed as a percentage vs. total cells.
I, Temporal course of the number of total p-ERK+ (blue squares), p-ERK+/β-Tub+ (red triangles)
and p-ERK+/GFAP+ (green circles) cells in BSO + DEA/NO treated cultures. Values are expressed
as the mean ± SEM from n=5 independent experiments. Statistical analysis was performed by
ANOVA followed by the Newman-Keuls multiple comparison test. ** p<0.01, *** p<0.001 vs.
control; +, neither p-ERK+/A2B5+ nor p-ERK+/O4+ cells were found in control cultures. Scale bar
in all photomicrographs = 25 µm.
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Fig. 10. The gliotoxins, L-α-aminoadipic acid (L-α-aa) and fluoroacetate (FA), block NO-
induced ERK activation in midbrain cultures. For L-α-aa experiments, the cultures after 48h
in vitro received 10-30 µM L-α-aa, then on the 4th day, cultures were treated with 20 µM BSO
or vehicle and on the 5th day with 100 µM DEA/NO for 1h. For FA treatment, cultures were
treated on the 4th day with BSO and 12h or 1h before DEA/NO addition received 1 or 10 mM
FA, respectively. At the end of the incubation time cultures were processed for GFAP and
MAP-2 immunocytochemistry (A, Scale bar = 50 µm); for high affinity 3H-DA and 3H-GABA
uptake (B); and for Western blot analysis of active and total ERK-1/2 (C). Values are ex-
pressed as the mean ± SEM from n=4 replicates. Similar results were obtained in 2 independ-
ent experiments. Statistical analysis was performed by ANOVA followed by the Newman-
Keuls multiple comparison test.
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Trabajo 1 
En cultivos primarios de mesencéfalo de rata, el óxido nítrico (NO) tiene un efecto bifásico 

que depende de su concentración. Dosis de 25-50 µM del donador de NO sodio-(Z)-1-

(N,N-dietilamina) diazen-1-ium-1,2-diolato (DEA/NO) muestran un efecto neurotrófico, 

selectivo para la función dopaminérgica (DA), caracterizado por la expresión de novo de 

células tirosina hidroxilasa positivas, aumento de los procesos neuríticos y un incremento 

en los niveles endógenos de DA y en su captación de alta afinidad. Dosis superiores del 

donador (200-400 µM) inducen la muerte celular apoptótica y necrótica, selectiva de 

neuronas (incluidas las DA) y oligodendrocitos, quedando preservados del daño los 

astrocitos y progenitores gliales. Ambos efectos del NO, trófico y tóxico, son 

independientes de la activación de la guanilato ciclasa (GC) y correlacionan, 

respectivamente, con un incremento y disminución en los niveles de glutation (GSH). El 

efecto tóxico del NO es totalmente prevenido por factores solubles liberados por la glía. 

 

Trabajo 2 
El NO muestra un efecto bifásico dosis-dependiente en la funcionalidad DA de la línea 

celular catecolaminérgica humana, NB69. Dosis de 50-125 µM del donador de NO S-

nitroso-N-acetilpenicilamina (SNAP), potencian la función DA, incrementando la 

actividad del enzima tirosina hidroxilasa a nivel postraduccional y la captación de alta 

afinidad de dopamina, así como la extensión de neuritas. Dosis superiores del donador 

(500-750 µM) detienen la replicación celular y disminuyen todos los parámetros DA, sin 

inducir muerte celular. Ambos efectos del NO son independientes de la activación de la 

GC. 

 

Trabajo 3 
El efecto tóxico del NO (DEA/NO 200-400 µM) en cultivos primarios de mesencéfalo, se 

previene totalmente con antioxidantes tiólicos como el GSH y la N-acetil-L-cisteína (L-

NAC). Por el contrario, el antioxidante no tiólico, ácido ascórbico (200-400 µM), no solo 

no protege de la muerte celular inducida por altas dosis de NO, sino que potencia su 

toxicidad. El ácido úrico (300-600 µM), otro antioxidante no tiólicos con similar capacidad 

que el ácido ascórbico y el GSH, para detoxificar ONOO−, tampoco protege de la toxicidad 

del NO. Así mismo, ni el atrapador de radicales O2·−, tiron (1-2 mM), ni el sistema 
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enzimático detoxificante, superóxido dismutasa (100 U/mL) + catalasa (100 U/mL), 

previenen la muerte celular. 

El efecto protector del GSH frente a la toxicidad del NO, correlaciona con la formación de 

S-nitrosoglutation (GSNO) en el medio extracelular. 

 
Trabajo 4 
La disminución de la concentración intracelular de GSH, mediante la inhibición de su 

síntesis con L-butionina-(S,R)-sulfoximina (BSO), elimina la capacidad neurotrófica del 

NO sobre las células DA y la transforma en neurotóxica. El efecto tóxico es dosis 

dependiente entre un 50% y un 90% de depleción de GSH. La reducción en la 

concentración de GSH por debajo del 10%, no altera por sí sola la viabilidad celular 

durante el experimento (48 horas). 

La toxicidad consiste en un proceso de muerte celular programada, dependiente de síntesis 

de macromeléculas y activación de caspasas, caracterizado por la condensación de la 

cromatina sin fragmentación del ADN y por la ruptura de la membrana plasmática. Tanto 

el ácido ascórbico, como la inhibición de la guanilato ciclasa (GC) y la proteína kinasa 

dependiente de GMPc (PKG), previenen la muerte celular. Los inhibidores de la GC y la 

PKG mantienen esta cualidad hasta 10 horas después del tratamiento con NO, sin embargo, 

el ácido ascórbico la pierde a partir de las 2 horas. 

 

Trabajo 5 
En cultivos primarios de mesencéfalo, la depleción severa (≅ 90%) y prolongada de los 

niveles de GSH, induce muerte celular al cuarto día de tratamiento con BSO. En estas 

condiciones, la toxicidad se previene con inhibidores de la GC y la PKG, así como 

inhibidores de la lipoxigenasa-12 (12-LOX), no siendo efectiva la inhibición de rutas 

alternativas del metabolismo del ácido araquidónico (AA), como las ciclooxigenasas y las 

epoxigenasas. 

El NO acelera la toxicidad debida a la depleción de GSH, precipitando la muerte celular en 

24 horas, tras el tratamiento con el donador. Este efecto del NO se previene también con 

inhibidores de la 12-LOX. De igual forma que el NO, el AA precipita la toxicidad debida a 

la depleción de GSH. El proceso de muerte celular no se distingue del iniciado por NO, ni 

en su morfología, ni en su curso temporal, ni en la dependencia de 12-LOX, GC y PKG. 

Finalmente, el 12-HPETE, primer metabolito del AA en la ruta de la 12-LOX, induce 
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muerte celular en el cultivo de mesencéfalo y su toxicidad se incrementa tras la depleción 

de GSH. 

 

Trabajo 6 
En cultivos primarios de mesencéfalo, el NO activa las MAPKs (ERK-1/2), selectivamente 

en las células gliales. Dicha activación es modulada por los niveles intracelulares de GSH, 

de forma que su disminución produce un incremento tanto en la amplitud, como en la 

duración de la activación. La activación de ERK-1/2 es independiente de GC y se bloquea 

totalmente suplementando el medio de cultivo con GSH. Los inhibidores de ERK-1/2, 

U0126 y PD98059, previenen la muerte celular hasta 10 horas después del tratamiento con 

NO. El cambio en la cinética de activación de ERK-1/2 que se produce en condiciones de 

depleción de GSH, es necesario para que el NO precipite la muerte neuronal.  
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DISCUSIÓN GENERAL 

 

Existe cierta controversia en la literatura científica del óxido nítrico (NO) acerca de 

sus efectos sobre las neuronas dopaminérgicas (DA). Mientras algunos datos indican su 

participación en procesos de muerte celular in vitro e in vivo, otros investigadores han 

demostrado un papel neuroprotector frente al estrés oxidativo. La doble funcionalidad del 

NO ha sido descrita en diversos paradigmas experimentales y para distintos tipos celulares 

(Revisado en Yun et al., 1996; Chiueh, 1999), los estudios realizados son numerosos y bien 

contrastados, de forma que la pregunta que surge es: ¿Qué factor o factores determinan el 

efecto final del NO? 

 

En algunos modelos, como el de la neurotoxicidad del glutamato asociada a la 

activación de receptores NMDA, se han dado respuestas satisfactorias a la pregunta 

anterior. Mientras algunos autores demostraban que la toxicidad del NMDA se previene, in 

vivo e in vitro, con inhibidores de la NOS (Dawson et al., 1991; Nowicki et al., 1991), 

otros argumentaban que el tratamiento con NO protegía de la toxicidad del NMDA, 

disminuyendo la corriente de Ca2
+ a través del canal, por un mecanismo que implicaba la 

S-nitrosilación de un residuo/os tiólicos en el sitio de modulación redox del receptor (Lei et 

al., 1992). Esta aparente paradoja se resolvió con los trabajos de Lipton y colaboradores 

(1993) en cultivos primarios de corteza, donde demostraron que las acciones del NO, 

estaban relacionadas con su estado redox. En un ambiente reductor, conseguido añadiendo 

ácido ascórbico o compuestos tiólicos al medio de cultivo (L-NAC y cisteína), se favorece 

la reacción del NO (NO·) y el O2
·-, con la consiguiente formación de ONOO− y pérdida de 

viabilidad celular. Por el contrario, estados redox alternativos del NO (equivalentes NO+ 

como RS-NO y Fe-nitrosil), mediaban la S-nitrosilación del receptor de NMDA y con ello 

la prevención de la toxicidad. Estas observaciones pioneras centraron la cuestión de la 

influencia del microambiente celular en los efectos del NO y resolvieron la contradicción 

creada entorno a los efectos del NO en la toxicidad por glutamato. No obstante, en otros 

modelos experimentales, los mecanismos por los que el NO y el ambiente interaccionan 

para determinar los efectos biológicos finales, no se conocen bien. Se han descrito efectos 

tóxicos del NO independientes de la formación de ONOO− (Clementi et al., 1998), efctos 

protectores del ONOO− (Garcia-Nogales et al., 2003) y efectos protectores del NO que solo 

pueden ser mediados por NO· y no por NO+, como la terminación de reacciones en cadena 

de radicales libres (Chiueh and Rauhala, 1999). 
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Neurotrofismo y toxicidad del NO sobre las neuronas DA: 
papel del GSH 
 

En cultivos primarios de mesencéfalo de rata y en la línea DA de neuroblastoma 

humano NB69, hemos estudiado la influencia de la concentración del NO en su efecto 

final, cuando se aplica en un tratamiento agudo. Utilizamos para ello dos donadores de NO 

de liberación rápida, el DEA/NO (t1/2 de desintegración de 3,5 ± 0,2 min) y el SNAP (t1/2 

de desintegración de 37,2 ± 13,8 min). Los resultados, discutidos en los trabajos 1 y 2, 

demuestran la importancia de la concentración del NO, en la dualidad de sus efectos sobre 

las neuronas DA. Dosis bajas de NO resultan neurotróficas, selectivamente para las 

neuronas DA en el cultivo de mesencéfalo, y aumentan la funcionalidad DA de las células 

NB69. Por el contrario, dosis altas de NO, aproximadamente un orden de magnitud con 

respecto a las dosis neurotróficas, inducen muerte celular por apoptosis y necrosis en el 

cultivo primario y parada de la replicación celular con disminución de la funcionalidad 

DA, en la línea celular. Ambos efectos, trófico y tóxico, son independientes de la 

activación de la GC y correlacionan, en el cultivo primario, con un incremento y 

disminución, respectivamente, en los niveles intracelulares de GSH. 

 

Nuestros resultados muestran que la inhibición del enzima limitante en la síntesis 

de GSH, la γ-glutamilcisteina sintetasa, previa al tratamiento con NO, elimina la capacidad 

neurotrófica dopaminérgica de éste y la transforma en neurotóxica (trabajo 4). Si bien estos 

resultados no demuestran que el aumento de GSH sea el responsable del neurotrofismo del 

NO, sí nos permiten concluir que la correcta homeostasis del GSH es esencial para que se 

produzca. Por su parte, la pérdida de viabilidad celular inducida por altas dosis de NO en 

cultivos primarios de mesencéfalo, se previene totalmente con GSH, GSHEE (análogo 

permeable del GSH) y L-NAC. Por el contrario, la toxicidad no se previene con los 

antioxidantes no tiólicos, ácido ascórbico y ácido úrico, ni con atrapadores de O2
- o 

sistemas detoxificantes, como el constituído por SOD/CAT (trabajo 3). Esto indica en 

primer lugar, que solo los compuestos tiólicos previenen de la muerte celular inducida por 

NO en cultivos de mesencéfalo y en segundo lugar, que el ONOO− tendría una escasa 

participación en la toxicidad observada  en nuestro sistema. 
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En conjunto, los resultados sugieren un modelo en el que el GSH condiciona el 

efecto final del NO. El GSH contrarrestaría continuamente los efectos tóxicos del NO, de 

forma que si la concentración de NO supera un cierto umbral o el GSH disminuye por 

debajo de un nivel crítico, o ambos, el sistema se desborda. Cuando se sobrepasa la 

capacidad “protectora” del GSH, se produce una inflexión en el efecto del NO y los efectos 

neurotóxicos se manifiestan. Los mecanismos por los que el GSH puede actuar como 

neuroprotector incluyen: (1) detoxificación de especies nitrosilantes, (2) regeneración de 

proteínas nitrosiladas via transnitrosilación y (3) reacción con el NO para formar GSNO 

(Clementi et al., 1998; Chiueh and Rauhala, 1999). Aunque no se conoce el mecanismo 

exacto por el que NO y GSH forman GSNO a pH fisiológica (Yun et al., 1996), este 

compuesto ha sido identificado in vivo e in vitro y puede participar en la protección de las 

neuronas DA, en nuestro modelo, frente a dosis altas de NO (trabajo 3). Otros grupos han 

demostrado un efecto neuroprotector del GSNO para las neuronas DA  in vivo (Rauhala et 

al., 1996; Rauhala et al., 1998; Mohanakumar et al., 1998) frente al estrés oxidativo. De 

hecho, el GSNO es aproximadamente 100 veces más potente que el GSH en la supresión 

de la generación de radicales OH· y la peroxidación lipídica en el cerebro (Rauhala et al., 

1998). Además, comparado con el NO, la mayor estabilidad del GSNO supone que el 

GSH, por medio de su conjugación con NO, actuaría como tampón frente a un incremento 

agudo y potencialmente tóxico, en los niveles de NO. Por otro lado, el GSNO puede servir 

como vehículo de transporte de los efectos biológicos del NO a mayor distancia dada su 

estabilidad y como medio de transferencia de GSH entre células, dada su permeabilidad 

(Chiueh and Rauhala, 1999). 

 

Otro factor importante en la dualidad de los efectos del NO es la duración del 

estímulo, siendo diferente la respuesta celular frente a una exposición aguda o crónica. Por 

ejemplo, tiempos cortos de exposición a NO disminuyen reversiblemente la actividad de 

los complejos mitocondriales I y IV, regulando fisiológicamente la respiración 

mitocondrial (Clementi et al., 1998). Por el contrario, si el tiempo de exposición aumenta, 

se produce una inhibición irreversible del complejo I mitocondrial. Además, la conversión 

de NO en ONOO- no es necesaria para esta inhibición patológica del enzima. Resulta 

interesante que la inhibición del complejo I se hace progresivamente persistente a medida 

que disminuye la concentración de GSH intracelular y que la inhibición de la síntesis de 

GSH con BSO, precipita el proceso. Por el contrario, el tratamiento con GSH o agentes 
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reductores como el DTT (ditiotreitol), restablecen totalmente la actividad enzimática, 

sugiriendo la nitrosilación como mecanismo de inhibición del complejo I mitocondrial 

(Clementi et al., 1998). 

 

Los datos anteriores indican que, en la mitocondria, el GSH contrarresta los efectos 

del NO para que sean transitorios, probablemente previniendo o revirtiendo la nitrosilación 

de residuos clave de cisteína en el complejo I mitocondrial. Como hemos visto hasta el 

momento, tanto la concentración como el tiempo de exposición, son fundamentales a la 

hora de determinar la función fisiológica o patológica del NO. No obstante, el punto de 

inflexión en esta dualidad, parece estar determinado por la concentración de GSH. 

 

 

Toxicidad asociada a la depleción de GSH: papel del NO 
 

El modelo anterior, en el que el GSH condiciona los efectos del NO, se complica 

enormemente si tenemos en cuenta que la disminución de GSH tiene por sí misma 

numerosos efectos, algunos de los cuales son, en esta ocasión, influidos por el NO. Los 

resultados discutidos en el trabajo 5, demuestran que el metabolismo del AA en cultivos 

primarios de mesencéfalo, se ve afectado por variaciones en la concentración de GSH. La 

actividad del enzima 12-LOX incrementa con la disminución intracelular de GSH, por un 

mecanismo postraduccional no conocido (en correlación con los datos publicados por 

Shornick y Holtzman, 1993). El aumento de actividad 12-LOX inicia una cascada de 

muerte celular que requiere síntesis de macromoléculas y actividad caspasa y que se 

bloquea con inhibidores de la GC y la PKG, preservando totalmente la viabilidad celular. 

Como ha sido previamente discutido (trabajo 5), la toxicidad asociada a la depleción de 

GSH en diversos modelos experimentales, está estrechamente ligada a la activación de 12-

LOX y GC. Esto sugiere una ruta precisa de señalización de muerte, más que un fenómeno 

generalizado de estrés oxidativo, debido a la pérdida de capacidad antioxidante de la 

célula. 

 

El efecto de la disminución de GSH intracelular en la viabilidad neuronal, se ha 

estudiado intensamente en diversos modelos experimentales de enfermedades 

neurodegenerativas. Especial atención han recibido los modelos relacionados con la EP, ya 

que en los pacientes de esta enfermedad se ha descrito una severa depleción de GSH en la 
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substantia nigra (SN) (Perry et al., 1982; Riederer et al., 1989; Sian et al., 1994). No 

obstante, los resultados con animales de experimentación indican que la simple depleción 

de GSH, incluso con decrementos de GSH superiores al 70%, no induce la degeneración 

nigro-estriatal (Wullner et al., 1996; Toffa et al., 1997). Nuestros datos indican que la 

tolerancia de las neuronas DA a la depleción de GSH, desaparece tras el tratamiento con 

dosis no tóxicas de NO (neurotróficas cuando la síntesis de GSH no está alterada). La 

toxicidad por depleción de GSH en cultivos primarios de mesencéfalo, no se manifiesta 

hasta el cuarto día de depleción con BSO. Sin embargo, cuando se trata simultáneamente 

con BSO y NO, la muerte celular se precipita en menos de 24h tras el tratamiento con el 

donador, de forma 12-LOX/GC/PKG dependiente. 

 

El mecanismo por el que el NO acelera la cascada de muerte celular que se produce 

en condiciones de bajo GSH, no se conoce con precisión. La toxicidad producida por altas 

dosis de NO (neurotóxicas) en cultivos primarios de mesencéfalo, no se previene con la 

inhibición del enzima 12-LOX (trabajo 5), es más, los datos de que se disponen, indican 

que el NO no afecta (Ma et al., 1996) o inhibe (Maccarrone et al., 1996) la actividad de 

dicho enzima. Esto sugiere que la potenciación del NO sobre la toxicidad asociada a la 

disminución de GSH, no se debe a un incremento en la actividad 12-LOX. Nuestros 

resultados indican que la actividad del enzima está limitada por la disponibilidad de su 

sustrato, el AA, de forma que concentraciones de AA que no tienen ningún efecto sobre la 

viabilidad celular, en condiciones de depleción de GSH precipitan el proceso de muerte 

celular. Dicho proceso no se distingue del iniciado por NO, en su morfología, curso 

temporal y dependencia de la activación de 12-LOX, GC y PKG. Además, el efecto del 

NO en este modelo, se incrementa inhibiendo las rutas alternativas de metabolización del 

AA. En conjunto, los datos sugieren que la potenciación del NO sobre la toxicidad 

asociada a la disminución de GSH, es debida a un incremento en la disponibilidad de AA 

no esterificado, para su metaboización por la 12-LOX (discutido en el trabajo 5). La 

activación de la GC por acción directa del NO, se descarta como mecanismo de 

potenciación, debido al desfase temporal entre la aplicación del NO y la activación de la 

GC (discutido en el trabajo 4). 

 

El GSH y el NO aparecen como una pareja funcional en cultivos primarios de 

mesencéfalo de rata. Los efectos del uno son drásticamente determinados por los niveles 

intracelulares del otro. 
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Interacción entre el NO y el GSH: papel de la glía 
 

En un contexto biológico más amplio, podemos hablar del NO y el GSH como 

parte de un sistema de señalización basado en la modificación postraduccional de 

proteínas. De igual forma que las kinasas y fosfatasas mantienen un equilibrio entre 

fosforilación y desfosforilación que regula la actividad de numerosas proteínas, el NO y el 

GSH participan en fenómenos de nitrosilación y denitrosilación de proteínas tiólicas. 

Alrededor de 100 ejemplos de proteínas susceptibles de regulación por S-nitrosilación, 

incluyendo factores de transcripción, canales iónicos y receptores, proteínas G y kinasas, 

se pueden consultar en http://www.cell.com/cgi/content/full/106/6/675/DC1 (Stamler et al., 

2002). La nitrosilación se produce generalmente en un residuo de cisteína localizado en un 

motivo estructural hidrofóbico, que es además susceptible de ser modificado por GSH y 

oxígeno (Stamler et al., 2002). En conjunto, podemos hablar de una señalización celular 

basada en el equilibrio redox, donde el NO y el GSH ocupan papeles principales junto con 

el oxígeno. 

 

En cultivos primarios de mesencéfalo, el NO activa las proteínas kinasa ERK-1 y 

ERK-2 (ERK-1/2), y dicha activación es modulada por los niveles intracelulares de GSH 

(trabajo 6). Aunque el mecanismo exacto de activación de las ERK-1/2 en nuestro modelo, 

no se conoce, la participación de la GC en el proceso ha sido descartada mediante el uso de 

inhibidores específicos. Se ha caracterizado una activación independiente de GC de las 

ERK1/2, en respuesta al NO, (Lander et al., 1995; Lander et al., 1996; Lander, 1997) que 

consiste en la activación por S-nitrosilación de la proteína Ras y la subsiguiente cascada de 

señalización hasta la activación de las kinasas ERK-1/2, JNK/SAPK y p38. Los trabajos 

anteriores en células Yurkat (Lander et al., 1996) y los nuestros en cultivos primarios de 

mesencéfalo, muestran que la activación de las ERK-1/2 en respuesta al NO, aumenta 

cuando los niveles intracelulares de GSH están disminuidos farmacológicamente. 

 

En nuestros trabajos se demuestra por primera vez, que los niveles de GSH 

modulan, no solo la amplitud de la activación de ERK-1/2 por NO, sino también la cinética 

de dicha activación. De forma que la activación de ERK-1/2, que desaparece al cabo de 2 

horas tras el tratamiento con el donador en condiciones control, se mantiene durante al 
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menos 16 horas, tras la depleción de GSH. Algunos mecanismos por los que el GSH puede 

modular la actividad de estas kinasas en respuesta al NO, como la alteración de las 

reacciones de nitrosilación/denitrosilación y la formación de GSNO, se discuten en el 

trabajo 6. 

 

Como se ha comentado anteriormente, en condiciones de depleción de GSH el NO 

precipita un proceso de muerte celular que implica activación de 12-LOX/GC/PKG. En el 

trabajo 6 demostramos que la inhibición de la cascada de las ERK-1/2 previene este efecto 

neurotóxico del NO. Es más, es el cambio en la cinética de activación de las ERK-1/2, 

fruto de la interacción entre el NO y la depleción de GSH, lo que determina el disparo de la 

cascada de muerte celular. Estos resultados están en concordancia con los de otros 

investigadores, que han propuesto que los parámetros precisos de activación de ERK-1/2, 

determinan si estas kinasas participan en procesos de supervivencia o muerte celular 

(Marshall, 1995; Cook et al., 1999; Chang and Karin, 2001). Nuestros resultados indican 

que la descompensación del equilibio entre NO y GSH, puede alterar las rutas de 

transducción basadas en el equilibrio redox, transformando un proceso de señalización 

fisiológico en una cascada de muerte celular, sin necesidad de producir daños oxidativos 

generalizados. 

  

En conjunto podemos concluir que, en cultivos primarios de mesencéfalo, ERK-1/2 

se activan en respuesta a un pulso de NO y que los niveles intracelulares de GSH 

determinan si esta activación precipita o no una cascada neurotóxica, en virtud de los 

parámetros cinéticos de la activación. Pero además, en el trabajo 6 demostramos que esta 

decisión tiene lugar en las células gliales del cultivo. Las kinasas activas se detectan 

inmunocitoquímicamente solo en este tipo celular y la eliminación de la glía del cultivo o 

su inhibición metabólica, previene la activación de ERK-1/2 en respuesta al NO. Esto 

quiere decir, que en condiciones de depleción de GSH, el NO inicia en la glía una cascada 

de señalización que mata a las neuronas del cultivo. Aunque no se conoce la forma en que 

la glía ejerce esta influencia sobre las neuronas, debe implicar liberación de sustancias al 

medio de cultivo capaces de inducir la muerte, y el AA puede ser un buen candidato 

(discutido en los trabajos 5 y 6). El estudio del mecanismo que subyace a la activación 

selectiva de ERK-1/2 en las células gliales, puede ser relevante para comprender la 

especificidad en la señalización por NO, una molécula con capacidad de difusión y un 

promiscuo espectro de influencia (Stamler et al., 2002). 
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La reacción glial o gliosis, es una característica neuropatológica en numerosas 

enfermedades del cerebro, incluida la EP (Vila et al., 2001). Esta respuesta glial puede ser 

fuente de factores tróficos y antioxidantes y puede rescatar a las neuronas del proceso de 

muerte. En contraposición con este efecto beneficioso, la reacción glial puede contribuir 

activamente a la muerte neuronal, liberando radicales libres, citoquinas y prostaglandinas 

pro-inflamatorias, etc. (Vila et al., 2001; Hunot et al., 2001; Mena et al., 2002). Esta doble 

funcionalidad de la glía, neurotrófica y tóxica, se pone de manifiesto en nuestros 

experimentos. La muerte neuronal inducida por altas dosis de NO se previene con factores 

solubles liberados por astrocitos (trabajo 1), entre los que se incluye el GSH (Mena et al., 

2002), cuyo papel protector también ha sido demostrado (trabajo 3). Por el contrario, la 

activación persistente de las ERK-1/2 en las células gliales (principalmente astrocitos), 

inducida por NO en condiciones de depleción de GSH, dispara una cascada de muerte 

neuronal en el cultivo (trabajo 6). Los efectos que la glía ejerce sobre las neuronas en el 

sistema nervioso pueden depender de diversos factores, pero uno de ellos parece ser el 

equilibrio redox. 

 

 

Correlación con los datos in vivo e implicaciones en la enfermedad de 
Parkinson 
 

El NO participa en la degeneración del sistema DA en modelos experimentales de 

la EP. En el modelo del MPTP, tanto la inhibición farmacológica como la ablación 

molecular de los genes de la NOSn o NOSi, atenúan la muerte de las neuronas DA (Schulz 

et al., 1995; Przedborski et al., 1996; Liberatore et al., 1999). De igual forma, los ratones 

en los que el gen de la fosfolipasa A2 (PLA2) citosólica ha sido eliminado, son resistentes 

al MPTP (Klivenyi et al., 1998) y el inhibidor general de las PLA2s, mepacrina, previene la 

depleción de dopamina en el estriado de la rata, en respuesta a esta toxina (Tariq et al., 

2001). Esto quiere decir, que tanto el NO como el AA están implicados en la degeneración 

del sistema nigro-estriatal en roedores. Puesto que el GSH potencia la toxicidad del 

MPTP, podemos argumentar que las interacciones descritas en nuestros trabajos, entre 

GSH, NO y AA, pueden ser importantes en la muerte de las neuronas DA en modelos 

experimentales de la EP. 
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Los estudios bioquímicos e histológicos post-mortem en cerebros de pacientes con 

EP, demuestran la coexistencia en la SN de algunas de las condiciones que hemos 

modelizado experimentalmente en nuestro sistema in vitro. Una severa depleción en los 

niveles de GSH y un incremento en la liberación de NO. Además de una prominente 

gliosis, se ha descrito en la SN de estos enfermos, un marcado incremento en el número de 

células gliales que expresan NOSi (Hunot et al., 2001). Estos datos sugieren que en la SN 

de los pacientes con EP, la concentración de NO aumenta en las células gliales y en torno a 

las neuronas DA, en un microambiente deplecionado de GSH. En combinación, la 

sobreproducción de NO y la depleción de GSH podrían interaccionar in vivo, de forma 

similar a como lo hacen in vitro, precipitándose la cascada de muerte celular. De 

confirmarse nuestros resultados en modelos experimentales in vivo, los elementos de la 

cascada de señalización descrita, AA/12-LOX/12-HPETE/GC/PKG, así como las ERK-1/2 

y sus sustratos (Figura 3), podrían convertirse en dianas terapéuticas interesantes en el 

tratamiento de la EP y otras patologías asociadas a la desregulación del NO y el GSH. 

 

No hay que olvidar, no obstante, las funciones “buenas” del NO. Además del efecto 

neurogénico y neurotrófico del NO para las células DA in vitro (discutido en los trabajos 1, 

2 y 4) y del efecto protector del NO y el GSNO en el sistema nigro-estriatal in vivo 

(Rauhala et al., 1996; Rauhala et al., 1998; Mohanakumar et al., 1998; Chiueh and 

Rauhala, 1999), recientemente se ha demostrado que la expresión de la NOSi tras una 

isquemia cerebral focal, estimula la neurogénesis en el giro dentado de ratas y ratones 

adultos (Zhu et al., 2003), sugiriendo una posible estrategia para la recuperación funcional 

del sistema nervioso. Todo ello hace deseable y necesario un conocimiento preciso de las 

rutas de señalización subcelular e intercelular, disparadas por el NO y reguladas por el 

GSH y viceversa, que nos permita diseccionar farmacológicamente los efectos deseables e 

indeseables, con el fin de alcanzar las terapias más satisfactorias, paliativas o curativas y 

regeneradoras. 
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Figura 3: Efecto bifásico del NO en cultivos primarios de mesencéfalo. En primer lugar, la 

concentración de NO determina si el efecto final, sobre las neuronas DA, es neurotrófico o 

neurotóxico. En segundo lugar, la concentración intracelular y extracelular de GSH, condiciona 

el resultado final de la exposición al NO. Cuando la concentración intracelular de GSH 

disminuye (fondo amarillo), el NO en concentraciones neurotróficas, precipita una cascada de 

muerte celular. Cuando la concentración de GSH extracelular (u otros antioxidantes tiólicos) 

aumenta, se previene la toxicidad del NO. Por su parte, la depleción prolongada de GSH, 

dispara por sí misma, la cascada de muerte celular (fondo amarillo), activando la 12-LOX y 

disminuyendo la metabolización del 12-HPETE. El NO acelera dicha cascada, actuando en 

combinación con la disminución de GSH, sobre la ruta de las ERK-1/2 (ver texto).  

MCG, medio condicionado de glía. 
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1. En cultivos primarios de mesencéfalo de rata y en células DA de neuroblastoma humano, 

el NO tiene un efecto bifásico que depende de su concentración. Dosis bajas de NO 

aumentan selectivamente la funcionalidad de las células DA e incrementan la expresión de 

novo de células con este fenotipo. Dosis altas de NO disminuyen la funcionalidad DA en 

ambos modelos y resultan tóxicas para los cultivos primarios y citostáticas para las células 

de neuroblastoma. Ambos efectos del NO, trófico y tóxico, son independientes de la 

activación de la GC. 

 

2. La concentración intracelular y extracelular de GSH condiciona los efectos del NO en 

cultivos primarios de mesencéfalo. Una disminución de los niveles intracelulares de GSH 

(a partir de un 50%), elimina la capacidad neurotrófica dopaminérgica del NO y la 

transforma en neurotóxica. Un incremento en los niveles extracelulares de GSH (u otros 

antioxidantes tiólicos) previene totalmente la muerte celular en respuesta a dosis altas de 

NO y preserva la funcionalidad DA. 

 

3. La inhibición persistente de la síntesis de GSH, en cultivos primarios de mesencéfalo, 

produce muerte celular a largo plazo, en un proceso que implica la activación de los 

enzimas 12-LOX, GC y PKG. Esta cascada de muerte celular, es acelerada por dosis bajas 

(neurotróficas) de NO, sugún un mecanismo que podría implicar el aumento en la 

disponibilidad de AA no esterificado. 

 

4. En cultivos primarios de mesencéfalo, el NO activa selectivamente las ERK-1/2 en células 

gliales. Esta activación es modulada en amplitud y duración por los niveles intracelulares 

de GSH, y media la toxicidad del NO en condiciones de depleción de GSH. 

 

5. Las células de la glía son muy resistentes a la toxicidad del NO y desempeñan una doble 

funcionalidad en los efectos del NO sobre las neuronas. Tienen un papel neuroprotector, 

previniendo totalmente la muerte neuronal en respuesta a altas dosis de NO, a través de 

factores solubles liberados al medio extracelular. Por otro lado, cuando la concentración de 

GSH está disminuida, la glía desempeña un papel neurotóxico induciendo la muerte 

neuronal en respuesta a bajas dosis de NO.  
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