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Departamento de F́ısica Teórica II, Facultad de Ciencias F́ısicas

Universidad Complutense, 28040 Madrid, Spain

14 de diciembre de 2005



Caṕıtulo 1

Introducción

Sea X un campo de vectores (suave o anaĺıtico) en Rn. La función I :
Rn → R, que se asume suficientemente suave, es una integral primera de
X si X(I) = 0. El significado geométrico de esta definición es el siguiente:
las órbitas de X son tangentes a los conjuntos de nivel de I en sus puntos
regulares (∇I 6= 0). Cada hoja I = c, c ∈ R, es un conjunto invariante de X.

La noción de conjunto invariante es más general que la de integral primera.
El conjunto Σ ⊂ Rn es invariante bajo X si φt(p) ∈ Σ para todo (p, t) ∈ Σ×R
(el campo se asume completo sin pérdida de generalidad). Recordemos que
φt es el flujo uniparamétrico inducido por X.

En este trabajo estudiamos las integrales primeras y los conjuntos in-
variantes de X desde diferentes puntos de vista. La literatura sobre estos
objetos es extensa, en cada bloque haremos referencia al estado actual de
cada cuestión aśı como a las novedades introducidas.

La estructura de la tesis es la siguiente:

En el caṕıtulo 2 estudiamos la relación entre integrales primeras y es-
tabilidad (tanto de puntos cŕıticos como frente a perturbaciones).

En el caṕıtulo 3 analizamos la conexión entre integrales primeras y
simetŕıas.

En el caṕıtulo 4 se presentan algunas aplicaciones de las integrales
primeras a modelos f́ısicos espećıficos, por ejemplo campos magnéticos
creados por configuraciones de hilos.

1



CAPÍTULO 1. INTRODUCCIÓN 2

Finalmente en el caṕıtulo 5 se estudian dos tipos de conjuntos invari-
antes no asociados a integrales primeras: los conjuntos invariantes de
las ecuaciones Newtonianas y los atractores.

Al final se incluye una sección de conclusiones aśı como una lista de
otros art́ıculos, no directamente relacionados con el tema de tesis, en los que
se ha visto envuelto el solicitante. Todos los trabajos que aqui se detallan
corresponden al peŕıodo 1999-2005. Me gustaŕıa expresar mi agradecimiento
al Profesor Francisco González Gascón por haber confiado hace muchos años
en mı́ como colaborador cient́ıfico.



Caṕıtulo 2

Integrales primeras: estabilidad

Sea el campo de vectores X con (al menos) una integral primera I, suave
o anaĺıtica. Las trayectorias del campo yacen sobre los conjuntos de nivel
de I, reduciendo aśı la dimensionalidad del sistema. Esta reducción tiene
consecuencias topológicas, por ejemplo en la estabilidad de los puntos cŕıticos,
en la acotación y no acotación de órbitas o en los ω–ĺımite de las curvas
integrales de X. En este caṕıtulo describimos algunos de estos fenómenos.

2.1. Instability of vector fields induced by first

integrals: J. Math. Phys. 40 (1999) 3099

Consideremos en Rn un campo de vectores X con un cero aislado en el
origen. Si el punto cŕıtico es hiperbólico entonces su estabilidad se puede
averiguar a partir de la linealización del campo [1]. En el caso degenerado
no existen criterios universales. El uso de funciones de Liapunov es una her-
ramienta extendida [2], nosotros sin embargo tomaremos otro camino: pro-
bar la inestabilidad del punto cŕıtico cuando se conocen integrales primeras
anaĺıticas que verifican ciertas condiciones.

Si X es un sistema Hamiltoniano anaĺıtico con 1 o 2 grados de libertad
entonces la inestabilidad del cero se sigue si el origen no es un mı́nimo del
potencial [3]. En dimensión más alta este teorema no ha sido probado en
general, aunque śı imponiendo más condiciones [4].

En el art́ıculo obtenemos un resultado análogo al caso Hamiltoniano, pero
para campos no Hamiltonianos en R3 (y su posible extensión a Rn) con una
integral primera anaĺıtica que verifica que el origen es un punto regular o una
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CAPÍTULO 2. INTEGRALES PRIMERAS: ESTABILIDAD 4

silla. La demostración depende fuertemente de la dimensionalidad del sistema
(teorema de Bendixon-Poincaré [1]) y de la analiticidad de la integral primera
(teorema de estructura de Lojasiewicz [5]).

2.2. A separation bound for non-Hamiltonian

differential equations with proper first

integrals: J. Math. Phys. 41 (2000) 2922

Las integrales primeras juegan un papel relevante no sólo en la estabili-
dad de puntos cŕıticos, sino en la estabilidad de las órbitas del campo cuando
éste es perturbado. Uno de los resultados más importantes en esta ĺınea es el
teorema KAM [6], que bajo ciertas condiciones garantiza la persistencia de
toros invariantes cuando se perturban sistemas Hamiltonianos integrables.
Esto implica que con 1 ó 2 grados de libertad las órbitas permanecen confi-
nadas en regiones acotadas del espacio de fases, pudiendo escapar cuando el
número de grados de libertad es mayor (difusión de Arnold [7]).

Las teoŕıas del promedio y de los invariantes adiabáticas [6] también per-
miten estudiar la estabilidad de las órbitas y obtener cotas para la separación
de las variables acción en el caso Hamiltoniano. El principal problema de es-
tas técnicas es que generalmente exigen que las variables acción-ángulo estén
definidas globalmente [8] o que las trayectorias del campo sean periódicas.

En este art́ıculo se estudia la perturbación de campos de vectores en
Rn con integrales primeras propias. Cuando la perturbación verifica ciertas
condiciones, aśı como las integrales primeras, se prueba que la separación
entre las órbitas del campo X y del campo X +Xp es polinómica (en tiempo
finito), en contraste con los resultados clásicos de separación exponencial. La
demostración depende fuertemente de ciertas propiedades algebraicas de la
integral primera y de que el módulo del gradiente esté acotado superiormente.

2.3. Unbounded trajectories of dynamical sys-

tems: Appl. Math. Lett. 17 (2004) 253

La idea de estudiar las propiedades topológicas de las hojas de las inte-
grales primeras y su posible conexión con las propiedades de las órbitas del
campo es debida a Smale [9], que explotó este enfoque para sistemas Hamil-
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tonianos, en particular potenciales centrales y el problema de N cuerpos en
R2. La mayor parte de la literatura sobre la relación entre topoloǵıa de con-
juntos invariantes y acotación de órbitas se centra en la existencia de órbitas
periódicas [10].

En este art́ıculo se muestra cómo la existencia de integrales primeras
cuyas hojas tienen cierta topoloǵıa implica la existencia de órbitas no aco-
tadas si el campo inducido no tiene puntos cŕıticos y es de divergencia nula.
La demostración depende fuertemente de la dimensionalidad del sistema (di-
mensión 2). Es importante señalar que se exige que la divergencia del campo
inducido sea cero con respecto a alguna forma de volumen, no necesaria-
mente la forma de volumen inducida. En los ejemplos esta propiedad se pone
de manifiesto ya que la forma que se considera es la de Godbillon [11], no la
heredada del espacio ambiente.

2.4. Bagpipes configurations in Mechanics and

Electromagnetism: Math. Comput. Mod-

elling 42 (2005) 921-930

Las herramientas más extendidas para estudiar la estabilidad de puntos
cŕıticos de campos de vectores son el teorema de LaSalle y las funciones de
Liapunov [2]. Las hipótesis fundamentales son la existencia de una función
que decrezca con el flujo y la acotación de las órbitas del campo. En este
caso se puede garantizar que el conjunto ĺımite, estable, está contenido en
el conjunto estacionario de la función de Liapunov. Si bien un punto cŕıtico
estable generalmente posee función de Liapunov [12] el cálculo práctico de
ésta es inviable, con lo cual el criterio no se puede aplicar normalmente para
averiguar la estabilidad.

En este art́ıculo enfocamos el problema desde una perspectiva distin-
ta, usando la existencia de integrales primeras que poseen cierta estructura
topológica. El criterio puede verse como una generalización del sencillo re-
sultado que afirma que si las hojas de una integral primera alrededor del
punto cŕıtico son esferas topológicas entonces el punto cŕıtico es estable. Las
integrales primeras que nosotros consideramos tienen forma de gaita, además
se asume que el campo es asintoticamente estable en el esqueleto de la gaita.
La demostración depende fuertemente de estas dos hipótesis. Esto permite
definir una región de trampa que fuerza a la estabilidad del campo.
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La forma de gaita de los conjuntos de nivel de la integral primera surge
al estudiar el campo magnetico creado por N hilos rectiĺıneos que se cortan
en el origen. Esto permite demostrar que las ĺıneas magnéticas son ćırculos
topológicos cerca de los hilos.



Caṕıtulo 3

Integrales primeras: simetŕıas

La existencia de cantidades conservadas suele asociarse a simetŕıas del
sistema, posiblemente ocultas. No es claro que una integral primera I nece-
sariamente proceda, en cierto sentido, de una simetŕıa S del campo X, al
igual que una simetŕıa no genera necesariamente una integral primera. En
este caṕıtulo estudiamos integrales primeras y conjuntos invariantes que son
consecuencia de la existencia de simetŕıas u otras estructuras algebraicas
relacionadas con el campo de vectores.

3.1. Symmetries and first integrals of divergence-

free R3 vector fields: Int. J. Nonlinear

Mech. 35 (2000) 589

La relación entre la existencia de simetŕıas de campos de vectores y la ex-
istencia de integrales primeras, foliaciones invariantes o conjuntos invariantes
es un tema clásico en la literatura [13]. Bajo ciertas condiciones se puede ver
que las simetŕıas permiten integrar el campo local o globalmente, y que cier-
tas estructuras complejas de las órbitas, por ejemplo atractores extraños o
ergodicidad en abiertos, no pueden darse [14]. Estos resultados son revisados
en el art́ıculo, también se obtienen ciertos conjuntos invariantes a partir de
la existencia de simetŕıas.

Un caso particularmente interesante que también se estudia es el de cam-
pos de vectores de divergencia nula (como el campo magnético o el campo
de velocidades de un flúıdo). Se obtienen integrales primeras y conjuntos in-
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variantes de estos campos asumiendo la existencia de simetŕıas que verifican
ciertas propiedades.

La existencia de integrales primeras, obtenida con los anteriores proced-
imientos, se aplica al análisis de la estabilidad o inestabilidad de los puntos
cŕıticos. Los resultados que se obtienen en esta ĺınea están contenidos en los
art́ıculos del caṕıtulo anterior.

3.2. Dynamical Systems embedded into Lie

algebras: J. Math. Phys. 42 (2001) 5741

Este art́ıculo sigue la ĺınea del anterior, obtener conjuntos invariantes,
integrales primeras u otras propiedades cualitat́ıvas de las órbitas a partir
de la existencia de simetŕıas. En este caso se asume que los campos de vec-
tores cierran a la Lie con constantes, dando lugar a un álgebra de Lie. Este
contexto es nuevo en la literatura ya que los campos de vectores que cierran
no necesariamente lo hacen como simetŕıas de X. Se analiza con detalle los
casos de dos campos de vectores (A2,2) y tres campos de vectores (A3,3).

La hipótesis de algebra de Lie no es suficiente para obtener conjuntos
invariantes o integrales primeras. En el art́ıculo se imponen condiciones extra,
como ciertas relaciones en los coeficientes que definen el álgebra, existencia
de integrales primeras de los campos que cierran con X o existencia de formas
diferenciales invariantes bajo X o los otros campos. Todos estos resultados
se aplican a conocidas ecuaciones que surgen en F́ısica, como por ejemplo el
sistema de Lorenz.



Caṕıtulo 4

Integrales primeras:
aplicaciones

En este caṕıtulo se consideran sistemas dinámicos concretos que surgen
en diferentes contextos f́ısicos: Mecánica de Fluidos, Electrodinámica, . . ..
La existencia de integrales primeras para estos campos es relevante a la ho-
ra de estudiar su complejidad orbital o la presencia de caos y turbulencia.
Analizaremos algunos sistemas f́ısicos que poseen integrales primeras y por
tanto presentan comportamientos ordenados.

4.1. On the first integrals of Lotka-Volterra

systems: Phys. Lett. A 266 (2000) 336

El sistema de Lotka–Volterra en R3 aparece en contextos tan diferentes
como bioloǵıa matemática [15], f́ısica de fluidos [16] y cinética qúımica [17].
Se trata de un conjunto de 3 ecuaciones diferenciales ordinarias que dependen
de 9 parámetros. El problema esencial consiste en entender la estructura de
las órbitas del campo de vectores asociado en función de los parámetros. En
este art́ıculo se obtienen 9 nuevos casos para los que Lotka–Volterra tiene
una integral primera, generalmente local, complementando aśı otros estudios
en la literatura [18].

La técnica de la demostración se basa en encontrar 2 simetŕıas gener-
alizadas (independientes en casi todo R3) del campo de vectores de Lotka-
Volterra. Una de ellas es bien conocida, la simetŕıa de dilatación, la otra se
busca para diferentes valores de los parámetros mediante cálculos con el orde-

9
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nador. Una vez se tienen estas simetŕıas el cálculo de las integrales primeras
es inmediato aplicando los algoritmos clásicos de integración.

4.2. Ordered behavior in force-free magnetic

fields: Phys. Lett. A 292 (2001) 75

En este trabajo se estudia un tipo particular de campos magnéticos de
especial relevancia en magnetohidrodinámica, los campos“force-free”[19]. La
ecuación que se verifica es rotB = λB, donde λ es una función. El caso
λ = constante es el más interesante desde el punto de vista de la complejidad
de las órbitas, ya que es fácil ver que λ es una integral primera de B.

Los campos“force-free”pueden ser muy complejos (e.g. ergodicos en abier-
tos de R3, como el célebre campo ABC [20]), nosotros nos restringimos sin
embargo al caso en el que existen integrales primeras. Por primera vez en la
literatura se obtienen obstrucciones a la geometŕıa de las integrales primeras
de estos campos. También se estudian integrales primeras con simetŕıa eu-
cĺıdea e integrales primeras inducidas por la existencia de simetŕıas euclideas
de B. Las técnicas que se emplean son nuevamente los algoritmos de inte-
gración cuando se conocen simetŕıas.

4.3. Motion of a charge in the magnetic field

created by wires, impossibility of reach-

ing the wires: Phys. Lett. A 333 (2004)

72

Dada una configuración de hilos que genera un campo magnético es un
problemas clásico, aśı como dif́ıcil, el estudiar la relación entre la estructura
del campo y el movimiento de las cargas sometidas a dicho campo [21]. En
este art́ıculo se prueba que cuando el campo posee dos integrales primeras que
verifican ciertas propiedades entonces las ecuaciones del movimiento heredan
una integral primera diferente de la enerǵıa. Esto permite probar que para
ciertas configuraciones, i.e. hilos rectiĺıneos paralelos e hilos planos circulares
coaxiales, las part́ıculas nunca pueden alcanzar los cables, encontrándose,
por tanto, apantallados. Al final del art́ıculo se prueba que las hipótesis del
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criterio implican la existencia de una simetŕıa eucĺıdea de B. Esta propiedad
de inaccesibilidad de los hilos magnéticos es la primera vez que se encuentra
en la literatura.



Caṕıtulo 5

Otros conjuntos invariantes

Los conjuntos invariantes de sistemas dinámicos no están necesariamente
asociados a una integral primera. Este caṕıtulo estudia dos ejemplos rele-
vantes en los que sucede precisamente esto, a saber, los conjuntos invariantes
de las ecuaciones de Newton y los atractores. Ambos casos tienen interés
f́ısico, el primero en Mecánica Clásica, el segundo en ecuaciones de evolución
(como por ejemplo Navier-Stokes) donde se sabe de la existencia de conjuntos
atractores de dimensión finita.

5.1. Invariant sets of second order differential

equations: Phys. Lett. A 325 (2004) 340

Las ecuaciones de Newton, tanto en Mecánica Clásica como Relativista,
son EDOs de segundo orden, que definen un campo de vectores en el espa-
cio de fases [6]. Un tipo concreto de conjunto invariante de estas ecuaciones,
particularmente interesante para las aplicaciones, es el dado por conjuntos
invariantes en el espacio de fases cuya proyeccion en el espacio de configu-
racion es también invariante. Aparte de ejemplos concretos (e.g. potenciales
centrales), este tipo de conjuntos está poco estudiado en la literatura, y el
caso relativista nunca es considerado [22].

En este trabajo las ecuaciones diferenciales no lineales que definen estos
conjuntos son obtenidas. Como resultado se prueba que si la fuerza no de-
pende de la velocidad entonces los conjuntos invariantes son siempre planos.
El caso de fuerzas cuadráticas en la velocidad es también analizado, con-
cluyéndose la posibilidad de conjuntos invariantes curvos aśı como su no
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existencia. En el caso relativista se obtiene el interesante resultado de que los
conjuntos invariantes curvos están prohibidos, lo mismo sucede en las ecua-
ciones de la óptica geométrica. Las técnicas que se usan en las demostraciones
son esencialmente de tipo anaĺıtico. Esta clase de conjuntos invariantes in-
cluye las subvariedades totalmente geodésicas de una variedad Riemanniana.

5.2. Note on a paper of J. Llibre and G. Ro-

dŕıguez concerning algebraic limit cycles:

J. Diff. Eqs. 217 (2005) 249

El estudio del número y distribución de los ciclos ĺımite de campos polinómi-
cos es un problemas clásico que se remonta a Hilbert [23]. El problema in-
verso de averiguar si cualquier configuración de ciclos en R2 puede realizarse,
salvo homeomorfismo, por un campo polinómico fue resuelto por Llibre y Ro-
dŕıguez [24] usando la teoŕıa de integrabilidad de Darboux. En este trabajo
se prueba el mismo resultado de forma más sencilla usando una construcción
clásica. Un resultado análogo se demuestra en Rn (n > 2), siendo particu-
larmente importante el caso n = 3, debido a la existencia de nudos y links.
Esto responde una pregunta de Ronald Sverdlove formulada en 1981 [25]. La
técnica de la demostración envuelve el teorema de Nash-Tognoli, el teorema
de Liapunov y una construcción expĺıcita. Además se muestra la estabilidad
estructural de los ciclos ĺımite y la no existencia de ceros del campo.



Caṕıtulo 6

Conclusiones

En esta tesis se han obtenido diversos resultados sobre integrales primeras
y conjuntos invariantes de campos de vectores, generalmente anaĺıticos, en
Rn. Las propiedades que se han estudiado son, básicamente, la estabilidad
de puntos cŕıticos y de soluciones cuando se conocen integrales primeras,
la relación entre simetŕıas, integrales primeras y conjuntos invariantes, y la
existencia de conjuntos invariantes atractores. Estos resultados son de interes
fundamentalmente matemático. La tesis también ha aportado aplicaciones a
diferentes contextos f́ısicos, que incluyen las ecuaciones de la mecánica de
Newton, campos magnéticos creados por hilos y campos de Lotka-Volterra.
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Otros art́ıculos

El solicitante ha participado en otros art́ıculos, no directamente relaciona-
dos con el tema de la tesis, los cuales se detallan a continuación:

F.G. Gascón, D. Peralta-Salas y J.M. Vegas-Montaner: Limit velocity
of charged particles in a constant electromagnetic field under friction.
Phys. Lett. A 251 (1999) 39

F.G. Gascón y D. Peralta-Salas: Escape to infinity in a Newtonian
potential. J. Phys. A: Math. Gen. 33 (2000) 5361

F.G. Gascón y D. Peralta-Salas: Escape to infinity under the action
of a potential and a constant electromagnetic field. J. Phys. A: Math.
Gen. 36 (2003) 6441

F.G. Gascón y D. Peralta-Salas: On the construction of global coordi-
nate systems in Euclidean spaces. Nonlinear Anal. 57 (2004) 723

J. Almeida, D. Peralta-Salas y M. Romera: Can two chaotic systems
give rise to order?. Phys. D 200 (2005) 124

F. Mañosas y D. Peralta-Salas: Note on the Markus–Yamabe conjecture
for gradient dynamical systems. J. Math. Anal. Appl., aceptado para
su publicación

D. Peralta-Salas: A geometric approach to the classification of the equi-
librium shapes of self–gravitating fluids. Comm. Math. Phys., aceptado
para su publicación
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A. Enciso y D. Peralta-Salas: On the classical and quantum integra-
bility of Hamiltonians without scattering states. Theor. Math. Phys.,
aceptado para su publicación
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Downloade
Instability of vector fields induced by first integrals
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It is shown that when a first integral of aR3 vector fieldX is known, instabilities
are induced on the equilibrium points ofX. © 1999 American Institute of Physics.
@S0022-2488~99!03106-0#

I. INTRODUCTION

Let X be an analytic (Cw) Rn vector field~v.f.! with an isolated singularity at the origin, i.e
X(0)50. We are concerned here with establishing criteria for the instability ofX at 0 ~the origin!.

It is a classical result that when the linear partXL of X at 0 has an eigenvalue of positive re
part then0 is an unstable equilibrium point ofX ~Ref. 1!. This criterion gives no information
concerning instability when there are not eigenvalues ofXL to the right of the imaginary axis.

WhenXH is a Hamiltonian v.f. andH is an analytic function of the form

H5 (
i , j 51

m

pipjai j ~q!1V~q! ~qPRm, n52m!, ~1!

and ~i! ai j (q) is definite positive for anyq, ~ii ! 0 is a critical point ofV, ~iii ! 0 is not a strict
minimum of V, and~iv! m51,2. Then0 is an unstable equilibrium point ofXH ~Ref. 2!.

Whenm.2, the instability ofXH at 0, under the above assumptions, is an unproved con
ture. Nevertheless, the unstable behavior ofXH at 0 has been obtained under additional requi
ments onV(q) ~Ref. 3!.

The stability of periodic solutions of Hamiltonian v.f. when first integrals are known has
been recently investigated~Ref. 4!.

The technique proposed in this paper is valid forR3 v.f. with an isolated singularity~equilib-
rium point! at 0 and with a knownCw first integralI. The technique is illustrated with example
that show that the method is valid, even in the case of trivial center~that is, when all the
eigenvalues ofXL lie on the imaginary axis!.

The method proposed here is based on the well-known fact that thew limit of a bounded
trajectory of a planar vector field must include either a singularity or a closed traje
~Bendixon–Poincare´ theorem!.

The possibilities of extending the new technique toRn v.f. (n.3) are also discussed.

II. INSTABILITY INDUCED BY FIRST INTEGRALS

Let X be aR3 dynamical system with an isolated singularity at0 and I a Cw first integral of
X. Assume that either

~ i! “I u0Þ0,

or ~2!

~ ii ! “I ~P!50, PPN0⇒P5~0,0,0!,

and I has a saddle at the origin.
Then0 is an unstable equilibrium point ofX.
30990022-2488/99/40(6)/3099/5/$15.00 © 1999 American Institute of Physics
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Remember that“I stands for the gradient ofI. On the other hand,I by definition has a saddle
at 0 if “I u050 and there are pointsP andQ arbitrarily near0 on whichI takes values of opposite
signs. Remember that we assume in this paper that the first integralI has the value 0 at0.

Proof: Assume that“I u0Þ0. In this case local coordinates (u1 ,u2 ,u3) can be introduced on
N0 ~a neighborhood of0! on whichI takes the canonical formI 5u1 . Therefore, ifX is assumed
stable at0 its trajectories will lie inN0 and on the local planesul5k1 . The w limits of these
trajectories must be, on account of the Poincare´–Bendixon theorem,5 singular points ofX, po-
lygonals whose vertices are singular points ofX or closed trajectories.

In any of these three cases, singular points ofX, lying on the planesu15k1 and arbitrarily
near 0, are obtained. But since0 was assumed to be an isolated singularity ofX, we get a
contradiction. ThereforeX cannot be stable at0.

Assume now that“I vanishes onN0 just at0 and thatI has a saddle at0.
These assumptions imply~as we now explain! that on a certain domainZ0,N0 the level sets

of I resemble locally topological planes, to which the above reasoning can be applied, g
again a contradiction if0 is assumed to be a stable singularity ofX. Therefore0 must be an
unstable singularity ofX, as we desired to prove.

We now show that ifI is anR3 analytic function with a saddle at0 and“I uN0
vanishes just at

0, then a domainZ0,N0 exists on which the setsI 21(c)ùZ0 are local planes~disks!.
In fact, the analiticity ofI implies thatI 21(0)ùN0 is the finite union of the surfacesCi , i

PJ, through0. Condition~ii ! of Eq. ~2! implies that the surfacesCi do not intersect each other o
N02$0%. The surfacesCi divide N0 into solid zonesZj , whose boundary is made up of one
several of the surfacesCi .

By topological reasons it is not too difficult to show that one at least~sayZ0! of the zonesZj

is diffeomorphic toR3. This is due to the fact thatCi is, insideN0 , either a topological plane~if
Ci has a tangent at0! or a topological cone~if Ci has not a tangent plane at0!; in any case, each
Ci separatesN0 into zones, one of which is clearly diffeomorphic toR3. This property, valid for
any of the surfacesCi , is the geometric reason underlying the existence of the zoneZ0 .

For example, consider the functionsI 15(x21y22z2)z, I 25(x21y22z2)(x21y224z2). I 1

andI 2 have clearly a saddle at0, and it is easy to check that“I i ( i 51,2) vanishes just at0. The
setZ0 diffeomorphic toR3 can be chosen to be

Z05$~x,y,z!ux21y2,z2, z.0%. ~3!

Consider now theCw curveswa , defined either by

wa5I 21~c!ùZ0ùpa , ~4!

pa standing for a family of planes through0, intersectingZ0 , or by

I upaùZ0
5c. ~5!

Calling I upa
by I a* , we have the following.

~1! ~0,0! is a saddle ofI a* . This is a consequence of the fact that the sign ofI changes on the
surfacesCi , since otherwise“I 50 on points ofN02$0%.

~2! “I a* has an isolated zero at~0,0!. In fact, if “I auw* 50, wherew is a curve through~0,0! we
would getI uw50, in contradiction with the fact thatIÞ0 insideZ0 . A similar contradiction is
obtained if“I a* vanishes on a succession of points tending to~0,0!.

Summarizing, the curveswa are the zeros of planeCw functions with a saddle at~0,0! and an
isolated critical point at~0,0!. Therefore~Ref. 6!, wa is just an open segment. The union of the
segments, when the planepa varies is, given the topology ofZ0 , a local plane~a disk!.

ThereforeI 21(c)ùZ0 is locally a plane.
The reasoning above is sketchy and probably can be improved.
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We have not been able to improve it by consultations with professional mathematician
now give some examples ofR3 v.f. whose instability at0 can be detected with the above
mentioned techniques. To our knowledge they cannot be integrated via quadratures and t
interesting since most of them have a vanishing linear part.

A. Consider the R3 v.f.

Here

X5„y~11z2!2x2z…]x1„2y2x~11z2!…]y1„~x21y21xz!~11z2!…]z . ~6!

It is easy to check that this v.f. has an isolated zero at~0,0,0! and the eigenvalues ofXL at 0 are
0 and216 i . Therefore the eigenvalues cannot decide between stability and instability at0.

This v.f. has the first integralI 5 1
2(x

21y2)2arctan(z). Note that“I u0Þ0. Therefore by~i! of
Eq. ~2!, X is unstable at0.

B. Consider the v.f.

Here

X5„x4~y21z2!1x21y2
…]x2„2x3~y21z2!~11y!1x21y21z2

…]y1„2x~x21y2!~11y!

2x2~x21y21z2!…]z . ~7!

It is easy to check that~i! 0 is an isolated zero ofX and thatXL ~the linear part ofX at 0! is
identically zero;~ii ! I 5x2(11y)2z is a first integral ofX. ~iii ! ¹I u0Þ0.

Therefore, according to~i! of Eq. ~2!, 0 is an unstable singular point ofX.

C. Let X be the v.f.

Here

X5„2x~y2z!~x21y21z2!…]x2„~3x21y21z2!~x21y21z2!2x2yz…]y

1„~3x21y21z2!~x21y21z2!12x2y2
…]z . ~8!

It is easy to check that~i! 0 is an isolated zero ofX andXL50; ~ii ! I 5x(x21y21z2) is a first
integral ofX. The first integral has a saddle at0 and its gradient vanishes just at0.

According to~ii ! of Eq. ~2!, 0 is an unstable singularity ofX.

D. Consider the R3 v.f.

Here

X522~y21zx21zxy21xz3!]x1„2~z213x2!y12xyz~x21y21z2!…]y

1„~x21y21z2!~3x212y21z2!…]z . ~9!

It is easy to check that~i! 0 is an isolated zero ofX andXL50; ~ii ! I 5z2x1x32y2 is a first
integral ofX. In addition,I has a saddle at0 and“I vanishes just at0.
Therefore, by applying~ii ! of Eq. ~2!, we can conclude thatX is unstable at0.

We conclude by noting that our instability criterion can be applied toRn v.f. (n.3) when
(n22) first integrals ofX are known and rank(“I 1 ,...,“I n22) u05n22. This can be seen by
introducing local coordinates (u1 ,...,un) in N0 on which the first integrals take the local form
I 15u1 ,...,I n225un22 .

Therefore the local level sets ofI 1 ,...,I n22 will be local planes~two-dimensional disks!. By
applying to them the considerations used to demonstrate of Eq.~2!, we get instability ofX at 0.
d 30 May 2003 to 147.96.22.70. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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When rank(“I 1 ,...,“I n22) u0,n22, a general criterion for instability seems difficult to ge
We list now several partial results in this direction.

~i! Let X be aR4 v.f. with an isolated zero at0 and the two first integrals:

I 15~11x2!y21~11x4!z22~11ex!u4,
~10!

I 25x.

Note that rank(“I 1 ,“I 2) u051.
On the level setI 250, I 1 andX become

I 1* 5y21z222u4,
~11!

X* 5a]y1b]z1c]u .

It is clear that“I 1* vanishes just at~0,0,0!, thatX* has an isolated zero at~0,0,0!, and thatI 1* has
a saddle at0. Therefore the couple (X* ,I 1* ) satisfies the assumptions of~ii ! of Eq. ~2!, and we
conclude thatX* , and thereforeX, is unstable at~0,0,0,0!.

Examples of this type are not only academic, since they appear in the study of systems
type

ẍ5V,x~x,y!,
~12!

ÿ5V,y~x,y!,

whenever a pair of first integrals of aR4 v.f. are known and the gradient of one of them does
vanish at0 ~Ref. 7!. The second first integral is, usually, linear in the components of the velo

In fact, via a local change of variables this first integral can be reduced to a canonica
similar to the functionI 2 of ~10!. This fact gives generality to the couple of first integrals chos
in ~10!.

~ii ! Let I 1 and I 2 be defined by

I 15un2P~x,y,z!,
~13!

I 25xm2Q~y,z!,

where n and m are positive integers (n,m.1), P and Q non-negative polynomials an
rank(“I 1 ,“I 2) u050.

It is immediate to check that the level sets

I 15C1 ,
~14!

I 25C2 ,

are planes whenC1 ,C2.0 ~one has just to getu andx as global functions ofy andz!. Therefore,
by using similar arguments to those given in the proof of~2!, anyR4 v.f. with an isolated zero a
0 and these first integrals is unstable at0.

~iii ! Let I 1 and I 2 be defined by

I 15y22 f ~x!,
~15!

I 25xu2zy,

f (x) being a non-negative function andf 8(0)50.
Note thatI 2 has the form of an angular momentum and that rank(“I 1 ,“I 2) u050.

On the other hand, the level sets,
d 30 May 2003 to 147.96.22.70. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



3103J. Math. Phys., Vol. 40, No. 6, June 1999 F. G. Gascón and D. P. Salas

Downloade
y22 f ~x!5C,

xu2zy5D, ~16!

C.0,

can be globally parametrized in the form

S x,6AC1 f ~x!,
xu2D

6AC1 f ~x!
,uD , ~17!

and they are a couple of two-dimensional planes~note that the parametersx and u are free!.
Therefore any v.f. with an isolated zero at0 and the two first integrals~15! is unstable at0.

1L. Perko,Differential Equations and Dynamical Systems~Springer-Verlag, New York, 1996!; S. Wiggins,Introduction
to Applied Non Linear Dynamical Systems and Chaos~Springer-Verlag, New York, 1990!; F. Gantmacher,Lectures on
Analytical Mechanics~Mir. Moscow, 1975!.
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3S. Tagliaferro, Arch. Ration. Mech. Anal.109, 183 ~1989!; 73, 183 ~1980!; V. Kozlov, Appl. Math. Mech.~in Chinese!
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Perko in Ref. 1.
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A separation bound for non-Hamiltonian differential
equations with proper first integrals

F. G. Gascón and D. Peralta Salas
Facultad de Ciencias Fı´sicas, Departamento de Fı´sica Teo´rica II,
Universidad Complutense, 28040 Madrid, Spain

J. Ruiz Sancho
Facultad de Ciencias Matema´ticas. Departamento de Geometrı´a y Topologı´a,
Universidad Complutense, 28040 Madrid, Spain
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It is shown that when a dynamical systemX0 with a proper set of global first
integrals is perturbed, the phase space region accessible to the orbits of the per-
turbed vector fieldX01Xp is bounded~we are assuming here that the time variable
runs over afinite interval!. A polynomial new bound is obtained for the separation
between the solutions ofX0 andX01Xp. Perturbations near an equilibrium point of
X0 are also considered. ©2000 American Institute of Physics.
@S0022-2488~00!02905-4#

I. INTRODUCTION

The role played by first integrals of vector fields~v.f.’s! in the integration of them via quadra
tures and other reduction mechanisms is well known.1 Remember that a smooth functionI is
called first integral of the v.f.Y whenLY(I )50, LY standing for the Lie derivative ofI along the
streamlines ofY. Most of the first integrals considered in this paper areproper first integrals: a
function I is proper when I 21(K) is a compact set wheneverK is compact. The reader will hav
no difficulty in proving that when lim̀ I (x)5`, then I is a proper function~of Rn in R!. More
information and some examples of proper functions can be found in Appendix B.

First integrals have also been used in other contexts: to estimate limiting possibiliti
optimal control systems,2 in averaging techniques of perturbed Hamiltonian v.f.’s,1,3 and in the
obtention of bounds for the number of periodic orbits surviving when a completely degen
linear, Hamiltonian system is perturbed.4 We now show that they also play an interesting role
relation to~i! the wideness of the phase space region accessible to the perturbed orbits and~ii ! the
obtention of bounds for the separation of perturbed and unperturbed solutions. Since the on
of studying the perturbed v.f. is, in general, numerical, these phase space domains and
could be useful in order to control the errors of the numerical computations.

Let us now compare our method with other perturbations methods. Consider, for exa
KAM theory. In this theoryn/2 first integrals, in involution, of an unperturbed v.f.X0 are used.X0

is Hamiltonian andn is the phase space dimension. On the phase space domain where th
sets of the first integrals meet in tori and where the Kolmogorov condition holds1,5 most of the
nonresonant tori survive the perturbation and do not disappear, but are slightly deforme~the
perturbing termXp is assumed conveniently small!.

For n52,4 KAM implies the boundedness of the perturbed solutions. But whenn.4, un-
bounded orbits can appear~Arnold diffusion!. The theory is not applicable if the first integrals a
not in involution or if they are but the geometry where its level sets meet is not toruslike~X0 might
vanish on one of these compact intersections!. The same applies ifX0 ~the unperturbed v.f.! is not
Hamiltonian.

Concerning the relation between KAM and the work developed here, we note the follo
~i! The bounds obtained in this paper are valid for any v.f.X0, integrable or not, Hamiltonian o
not, in so long as its first integrals form a proper set of first integrals. This implies that the
29220022-2488/2000/41(5)/2922/9/$17.00 © 2000 American Institute of Physics
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where the level sets meet are compact. The theory is also applicable whenoneof the connected
components of the set where the level sets meet is a compact set. On the other hand, the g
of these compact intersections of level sets is not necessarily toruslike: any compact diffe
manifold is equally valid to us.~ii ! Our bounds are valid for finite intervals of time, while KAM’
are valid for infinite intervals of time.~iii ! Local coordinates around the compact sets defined
the first integrals are never used in this paper. Therefore we do not get problems when try
globalize them.6

Now, we will give some information concerning our method and the techniques of aver
and adiabatic invariants.1 Most of these methods are designed in order to study the perturba
of Hamiltonian v.f.’s, withn/2 first integrals in involution and with global action-angle variable6

on a certain compact set filled with tori, or for v.f.’s with parameters drifting ‘‘slowly with time
We have already mentioned that global action-angle variables do not always exist, beca
topological obstructions. On the other hand, in order to define the term ‘‘slowly with time,’’ u
in the theory of adiabatic invariants, some authors are compelled to consider only Hamil
v.f.’s X0 of degenerate type; that is, v.f.’s, all of whose orbits are of typeS1 ~topological circles!,
at least on a certain phase space domain. The periods of theS1 orbits can be used as a scale of tim
in order to give a certain meaning to the term ‘‘slowly with time.’’ We have to say that in
approach the v.f.X0 is not constrained to be degenerate.

We explain now why our treatment has little in common with the so-called ‘‘averag
methods.’’1 In these methods bounds for the separation between the evolution of theaction
variables~slow variables! in the v.f. X01Xp andA(X01Xp) are obtained,A(Y) standing for the
average ofp(Y) over the angle variables@p(Y) is the projection ofY over the action variables
space#.

On the contrary, we get bounds for the separationix(t)2y(t)i between the position vectors o
the solutions ofX0 andX01Xp at timet. We show that for large values oft this separation canno
grow faster than a polynomial function oft. This result improves previous exponential bounds
the literature.

The plan of the paper is the following: the bounding regions are introduced in Sec. II. Bo
for the separation between the unperturbed and perturbed solutions, with the same initial
tions, are given in Sec. III, and these bounds are compared, in Sec. IV, with other bounds
literature. An application to the perturbations near a stable equilibrium point is given in Se

II. THE BOUNDING REGIONS

We prove in this section the following Proposition:
Assume that~i! I is a uniformly bounded and smooth first integral@see formula~6!# of X0 ; ~ii !
y0 is a common initial condition of the v.f.X0 andX01Xp with corresponding solutionsx(t)
andy(t) satisfyingx(0)5y0, y(0)5y0 ; and ~iii ! Xp satisfies Eq.~7!.

Under these assumptionsy(t) must lie inside the phase space domain defined by Eq.~8!. Certain
consequences of Eq.~8! are also discussed at the end of this section.

In fact, consider the differential equations associated with the v.f.X0 andX01Xp ,

ẋ5X0~x!, ~1!

ẏ5X0~y!1Xp~ t,y!, ~2!

wherex andy are vectors inRn andXp is the perturbing term. The rate of change ofI along the
solutions ofX01Xp is

İ 5¹I •~X01Xp!5¹I •Xp , ~3!

where¹ stands for the gradient operator. Note that the identity¹I •X050 has been used in~3!,
sinceI is a first integral ofX0 . We immediately obtain from~3!
d 30 May 2003 to 147.96.22.70. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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2u¹I •Xpu< İ<u¹I •Xpu ~4a!

and

2i¹I i•iXpi< İ<i¹I i•iXpi , ~4b!

i i standing for the Euclidean norm ofRn. Integrating~4b! betweent50 and t5T, T.0, we
obtain

2E
0

T

i¹I i•iXpi dt<I 2I 0<E
0

T

i¹I i•iXpidt, ~5!

with I 05I (y0).
We discuss now some consequences of Eq.~5!. Assume that¹I satisfies the uniform bound

edness condition:

i¹I i<K, ;xPRn ~6!

~see Appendix A for a study concerning this point! and thatXp factorizes in the form

Xp5 f ~ t !•X̂p~y!,

iX̂pi>K8, ;yPRn ~7!

f ~ t !PC0.

Under these requirements we get from~5!

2K•K8E
0

T

u f ~ t !u dt<I ~y!2I 0<K•K8E
0

T

u f ~ t !u dt. ~8!

A similar equation holds whenXp is a linear combination of terms of type~7!.
Let us discuss now some consequences of Eq.~8!.

~i! If we assume, in addition, that*0
1`u f (t)u dt is bounded and thatI is proper~see Appendix

B!, Eq. ~8! defines a bounded domain ofRn wherey(t) lies whent runs over the interval
@0,T# for any value ofT. Thereforey(t) cannot blow up to infinite in a finite time. Thes
conclusions hold as well if we assume thatI 1 ,...,I s is a proper set of first integrals ofX0
such thati¹I i,K (I[I 1

21¯1I s
2). In fact, it is easy to show thatI is a proper function.

~ii ! Assume now thatI is a first integral ofX0 not necessarily proper and that the connec
component of the level setI 21(I 0) throughy0 is compact. On the other hand, we do n
assume the validity of Eq.~6! on the whole ofRn, as it is obviously verified on any
compact setC containing the compact component ofI 21(I 0). Under these assumptions th
perturbed solutiony(t) remains inC when t (t.0) is sufficiently small. We get in this
way, through Eq.~8!, a restriction on the phase space domain~contained inC! accessible to
the perturbed solutiony(t).

~iii ! Let us clarify the meaning of this section and the last paragraph with an example. As
thatX0 is the electromagnetic inductionB0(x), xPR3, andI is not necessarily a proper firs
integral ofB0 , whose level sets, inside a certain compact setC, are tori. Let us compare th
orbits ofB0 andB01Bp , with the same initial conditions, whiley(t) lies in C. Note that the
boundK of Eq. ~6! can be made arbitrarily small ifC is chosen near the central linew of
the tori, since¹I vanishes onw. This fact implies that the termK•K8•*0

Tu f (t)u dt in Eq. ~8!
can be made small, and small will also be the domain accessible toy(t) defined by Eq.~8!.
d 30 May 2003 to 147.96.22.70. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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We obtain, in this way, a convenient finite time confinement of the orbits ofX01Xp . This
confinement has been induced by the presence of the first integralI and its compact leve
sets onC.

~iv! Note that a first integral ofB0 with toruslike level sets can be obtained ifB0 possesses a
transverse symmetry vectorS of zero divergence.

That is, whenS commutes withB0 and DivS50.
This is what happens, for instance, whenB0 is symmetric under rotations around thez axis. In

this caseS5]w , Div (]w)50, andI is given by

~9!

standing for the contraction operator between v.f. and differential forms.
Under these conditions it is easy to see that the compact components of the level setsI are

tori. One just has to remember that the functionI defined in Eq.~9! is also a first integral of]w .

III. A NEW BOUND OF ix„t …Ày„t …i

We prove in this section the following Proposition:
Assume that~i! I is a proper, or locally proper, polynomial first integral of Eq.~1!, ~ii !

u f (t)u,K9,;t, and~iii ! the assumptions used to obtain Eq.~8!.
Under these requirements a polynomial upper bound forix(t)2y(t)i is obtained@see Eq.~12!#.

In fact, under the above requirements, Eq.~8! implies

2K-•T<I 2I 0<K-•T, ~10!

K- being the product of the bounds ofi¹I i , iXpi , and u f (t)u on C. Remember thatC is a
compact set containingy(t) for tP@0,T#.

We see in~10! that I cannot increase faster than linearly along the solutions ofX01Xp. We
can now obtain, out of Eq.~10!, a bound for the maximal separationix(t)2y(t)i . In fact, we can
write

ix~ t !2y~ t !i<D~T!<2R~T!, ~11!

D(T) being the diameter of the bounded setI 21@ I 02K-•T, I 01K-•T#, and R(T) being the
maximum distance from the points of this set to any fixed arbitrary point ofRn.

Now, it is shown in Appendix C that whenI is a polynomialR(T) cannot increase, for large
values ofT, faster thanTm(mPN). Therefore, we obtain from Eq.~11!

ix~ t !2y~ t !i<aTm, mPN, ~12!

a standing for a positive real number.
Let us compare next the bound~12! with other bounds in literature.

IV. COMPARING THE POLYNOMIAL BOUND WITH OTHER BOUNDS

We compare now the polynomial bound of Sec. III with some classical bounds.
~i! First of all, consider the well-known expression7

ix~ t !2y~ t !i<K8•L21
•@exp~L•T!21#, tP@0,T#, T.0, ~13!

L being a Lyschitz constant ofX0 andK8 a bound ofiXpi . Remember that sinceX0 is analytic,
L is just a bound of the matrixDX0 ~D is the differential operator!.
d 30 May 2003 to 147.96.22.70. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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We see in~13! that ix(t)2y(t)i increases exponentially withT. Therefore, the bound~13! is
worse~whenT is large! than the polynomial bound inT obtained in Sec. III. Our improvement i
to be ascribed to the presence of the proper uniformly bounded first integrals.

~ii ! Assume now thatX05A0•x, whereA0 is a constantn3n matrix andXp5f(t) with f(t)
satisfyingi f(t)i<K8 for any t. In this case writing the explicit expressions forx(t) andy(t) we
obtain

ix~ t !2y~ t !i<iexp~A0•t !i• I E
0

t

exp~2A0•s!•f~s! dsI . ~14!

Using now the inequality8

iexpAi<~n21!1expiAi , ~15!

whereA is again a~n,n! matrix, we get from Eqs.~14! and ~15!

ix~ t !2y~ t !i<K8•@~n21!1exp~ iA0i•T!#2
•T tP@0,T#, T.0. ~16!

Equation~16! is a new bound ofix(t)2y(t)i , of exponential type, and valid whenX0 is a linear
v.f. This bound is, therefore, worse than the polynomial bound of Sec. III.

In particular cases the bound~16! becomes linear inT. Assume, for example, that the eige
values ofA0 are purely imaginary and simple. Then it is easy to see that exp (iA0i•T) is bounded
for any T. Let k be a bound of exp (iA0i•T).

In this case we can write~16! in the form

ix~ t !2y~ t !i<K8•@~n21!1k#2
•T, ~17!

which is a bound ofix(t)2y(t)i linear in T.
It is easy to see that this improvement is due to the presence of a proper set of first int

Indeed, under the hypothesis considered on the eigenvalues ofA0 , X0 has a set of proper, an
quadratic, first integrals.9

What we learn from this example is that it is again the presence of proper first integral
induces improvements of the bounds ofix(t)2y(t)i .

V. PERTURBATIONS AROUND STABLE EQUILIBRIUM POINTS

We show now that the existence of bounding regions and the separation bound of Eq.~12! are
sufficient to explain the stability of systems of linear oscillators under nonlinear perturba
Assume that0 is an equilibrium point ofX0 andXu1Xp and thatI is a proper first integral ofX0 ,
with I (0)50, ¹I (0)50. These assumptions imply that the level sets ofI near0 are topological
spheres. We also assume thatI and the v.f.X0 andXp are analytic. We can, therefore, write

İ 5¹I •Xp5 (
i 5n0

`

Ai~u!•r i , n0>2, ~18!

~r, u! standing for the generalized spherical coordinates inRn around0.
For convenient values ofy0 , y(t) lies inside an arbitrary ballBr of radiusr centered at0, and

we obtain from Eq.~18!

2S (
i 5n0

`

Âi•r i D •T<I 2I 0<S (
i 5n0

`

Âi•r i D •T, ~19!

Âi being the maximum ofAi(u) on the unit sphereixi51. Whenr is small the series( i 5n0

` Âi

•r i behaves like its leading termÂn0
•r n0 and we can write
d 30 May 2003 to 147.96.22.70. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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DI'Ân0
•r n0

•T. ~20!

We see in~20! thatDI becomes quite small, even ifT is large, whenBr is sufficiently small. This
implies thatix(t)2y(t)i becomes small, since~see Sec. III! ix(t)2y(t)i is proportional toDI .
This fact makes the solutionsx(t) andy(t) practically indistinguishable.

In some physical problems~motion of a spherical pendulum near the equilibrium position, a
related problems, normal modes of vibration of molecular systems10! X0 is a linear v.f. with a
proper and quadratic first integral~the total energy!. The perturbed v.f.X01Xp has a first integral
Î . Here Î has the structureI 1I p , whereI p is a perturbation ofI near0.

In the above physical problemsÎ is also proper. Therefore, it is possible to getx(t) andy(t)
insideBr for any t. One has just to choose the initial conditiony0 sufficiently near0. Under these
conditions Eq.~20! can be applied, but nowT is anunrestrictedpositive number, sincex(t) and
y(t) never get out ofBr .

The key to this stability of linear systems with proper integrals is

~i! the presence in~20! of the factorr n0
•T, which can be made small even ifT is large, and

~ii ! the existence of proper integrals ofX0 andX01Xp .

The smallness ofDI andix(t)2y(t)i explains why the theory of linear oscillations is usef
since the separation between the small amplitude solutions ofX0 and those ofX01Xp is so small
that its detection is practically impossible.

VI. FINAL REMARKS

The effect of proper first integrals on the separationix(t)2y(t)i between the solutions of th
perturbed and the unperturbed systems has been studied. It has been shown that unde
conditions this separation cannot become, whenT is large, larger than a polynomial function ofT,
while in the absence of proper first integrals the separation is exponential inT.

The influence of proper integrals on the stability of linear systems has also been cons
Open problems in this field are the following.

~i! To get bounds ofix(t)2y(t)i , improving the exponential bound of Equation~13!, when
the first integrals do not form a proper set or when they are not polynomials. Note th
molecular systems and for the motion of a point on the surfacez5 f (x,y), where f is a
polynomial and lim̀ f 51`, there are proper and polynomial first integrals.

~ii ! To improve the bounds of this paper whenmore than onepolynomial, proper first integrals
of X0 are known.

~iii ! To obtain relations betweenI and the integerm of Eq. ~12!.
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APPENDIX A: UNIFORM BOUNDESNESS OF PROPER FIRST INTEGRALS

Assume thatI is a first integral ofX0 . We show that ifI is proper, an increasing function,f,
can be obtained such that

i¹ f ~ I !i<1. ~A1!

Note thatf (I ) is proper wheneverI is proper. In fact, letI (x)5C be the compact level sets ofI.
Define

M ~C!5Maxi¹I i on I ~x!5C. ~A2!

Note that in generalM (C) is continuous but not differentiable.
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We definef by

f ~z!5Ez

M ~C!21 dC. ~A3!

Note thatf is aC1 function@its first derivatives are continuous, but is not in general a smooth (C`)
function#.

Let us see thatf (I ) satisfies Eq.~A1!:

i¹ f ~ I !i5 Id f

dI
•¹I I5M ~C!21

•i¹I i<1, ~A4!

as we wanted to prove.
Note that if$I i%, i 51,...,s, is a proper set of first integrals, thenI 5I 1

21¯1I s
2 is a proper

function, to which the above construction can be applied.
Remark that Eq.~A3! is of difficult handling, since the analytical expression ofM (C) can

rarely be obtained and, on the other hand, the integrand in~A3! becomes singular at those valu
of C corresponding to the singular level sets ofI @manifolds degenerating into points, curves,
manifolds of dimension (n22)#. Because of these problems it is preferable to use Eq.~A3! in
order to get suggestions on the form of possible functionsf̂ for which f̂ (I ) satisfies Eq.~A1!.

Let us now give some examples. In all of themf̂ has been suggested by the form ofM (C).
This form can be obtained using the Lagrange multipliers rule to get the extrema ofi¹I i on I
5C.

Example 1:Let I be given by the following polynomial,

I ~x!5(
i 51

n

ai•xi
2pi,

whereai are positive real numbers andpi are natural numbers. In this casef̂ is of the formz1/p

with p5Greater(2p1 ,...,2pn)11. It is easy to check thatf̂ (I )5k•I 1/p is proper and satisfies~A1!

for a suitable value ofk. Note thatf̂ (I ) is C` on R2$0%.
Example 2:

I ~x!5Pm~x!1pm21~x!,

where Pm is a homogeneous polynomial of even degree (m), lim
`

Pm51`, and Pm21 is a

polynomial of degreem21. In this case the computations withM (C) suggest thatf̂ (I ) is of the
form k• ln I. In fact, k• ln I is proper and satisfies Eq.~A1! for a suitable value ofk.

Example 3:

I ~x!5(
i 51

n

exi
2
.

In this casef̂ (I )5k• ln (ln I).
Note that in these two last examplesf̂ (I ) is C` in R12$0%. This local C` behavior is

sufficient in order to be able to apply the techniques of Appendix C. On the other hand, the
first integral f̂ (I ) can be of interest in so far as the interval@I 02K-•T, I 01K-•T# lies inside the
region wheref̂ (I ) is smooth (C`).
d 30 May 2003 to 147.96.22.70. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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APPENDIX B: A SUMMARY ON PROPER FUNCTIONS

A summary of certain useful properties concerningproper functions is given here.
A function I is called proper ifI 21(K) is compact for every compact setK, K,R. The

function ~total energy! ż21V(z) is proper when lim
`

V51`.

A function I is called locally proper ifI 21(K) is compact for any compact setK,K,D,R ~D
is a fixed subset ofR!. The total energy of a pendulum is a locally proper function of the ang
displacement~u! and u̇. When u̇ is small, the level sets ofE are bounded.

The set of functions$I i%, i 51,...,s is proper if ù
i 51

s

I i
21(K) is a compact set for anyK,Rs. If

$I i% is a proper set, thenI 1
21¯1I s

2 is a proper function, since its level sets are formed by
compact union of the~compact! level sets ofI i .

The functions

I 15x1
21x2

21sen~x3!,
~B1!

I 25x2
21x3

21exp~2x1
2!,

are not proper, but they form a proper pair. ThereforeI 1
21I 2

2 is a proper function, as the reade
can check directly.

A set of functionsI i i 51,...,s, is locally proper onD if for any compact set contained i

D,Rs the setù
i 51

s

I i
21(K) is compact. The energy and the angular momentum form a proper

set of integrals of Kepler’s problem. In this caseD is any R2 domain on whichE~energy!,0,
L~angular momentum!Þ0.

Note that when$I i%, i 51,...,s, is a locally proper set of functions onD the function I 1
2

1¯1I s
2 is not always locally proper onD. For instance, the energy and the angular momen

of Kepler’s problem do not satisfy this requirement. In fact, the level sets ofE21L2 are always
unbounded.

APPENDIX C: A USEFUL BOUND FOR R„T…

We now get a bound forR(T), the maximum distance from0PRn to the setS defined by

S5$xuI 02K-•T<I ~x!<I 01K-•T%. ~C1!

The following evaluations shall be made by computing the maximum distance from0 to the part
of the Boundary~S! given by the compact setI 21(I 01K-•T). By Sard’s theorem11 we may
assume thatI 21 (I 01K-•T) is a differential manifold. Note that the same evaluations apply
computing the maximum distance from0 to the compact setI 21 (I 02K-•T).

Consider the projectionspri (MT) of the compact setMT5I 21 (I 01K-•T) on the coordinate
axis xi . That is,

pri~x1 ,...,xn!5xi . ~C2!

We can also write

pri~MT!,@ai~T!,bi~T!#,

ai~T!5Min pri~MT!, ~C3!

bi~T!5Max pri~MT!.
d 30 May 2003 to 147.96.22.70. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



r

i

.

2930 J. Math. Phys., Vol. 41, No. 5, May 2000 Gascón, Salas, and Sancho

Downloade
Now, since we assume thatI is a polynomial it can be shown using the Tarski theorem12 thatai(T)
and bi(T) are semialgebraic inT ~Ref. 12! and whenT→1` they are bounded by an intege
power ofT, Tmi, miPN.

It follows that R(T)5Dmax(0,MT) shall be bounded by

$~Tm1!21¯1~Tmn!2%1/2'Tm, ~C4!

m standing for the maximum of the natural numbers (m1 ,...,mn). ThereforeR(T) cannot in-
crease, for large values ofT, faster thanTm, as we desired to prove.

When I is a nonpolynomial first integral we can use the Stone–Weierstrass theorem13 to
approximateI, and a finite number of its derivatives, nearMT by a polynomialPm(«,T)(x) of
degreem(«,T). Moreover, by the Thom isotopy lemma,14 the sets defined by

i ~x!5I 01K-•T, ~C5!

Pm~e,T!~x!5I 01K-•T, ~C6!

are diffeomorphic and the set defined by~C5! lies in a neighborhood of the set defined by~C6!.
Fixing now the value of« ~say«51! andassumingthat the coefficients ofPm(1,T)(x) depend

algebraically onT ~Ref. 12!, we define the projectionspri(MT) and obtain again, via Tarsk
theorem,12 the polynomial boundR(T)'Tm. It must be said that when the dependence onT of the
coefficients ofPm(1,T)(x) is not semialgebraic, the problem of obtaining a bound ofR(T) is a very
difficult one and no general solution of it is known to us.
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1. I N T R O D U C T I O N  

In recent papers  [1,2], the  blow-up of R ~ vector fields (v.f.) has been s tudied by  means of local 

series a round movable singulari t ies (Painlev6 analysis) [3-7]. 

In this paper ,  we s tudy  a re la ted problem: the existence of unbounded  orbi ts  of differential 

equations.  They  shall be called escape orbits,  and they  play an impor t an t  role in Newtonian 

gravi ta t ion,  in which unbounded orbi ts  of equations of type  

m~ = -VV,  
K-" 

V 
-c~z~ IIx- xiIL' (1) 

xi = posi t ion of the  a t t rac t ing  masses, 

G = gravi ta t ional  constant  

appear  [8]. 

The  following are addi t ional  examples of forces admi t t ing  escape solutions. 

(i) The magnet ic  force ± A B(x ) ,  where B(x )  is paral lel  to  a fixed direct ion (say the  z-axis) 

and B(x )  is constant .  

(ii) A constant  gravi ta t ional  force g(x)  parallel  to the  z-axis. 
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The reader can easily check that for any initial conditions (xo, Yo, zo, ~:o, ~)o, zo ~ O) the solutions 
to i ---- :~ A B(x )  and i = g(x)  verify 

[z (t)l -* +~o , when t -~ +oc .  

The t ime taken by the particle in reaching I[xll = +oo can be finite or infinite, but  we are not 
interested here in this issue. 

A first formulation of our problem is: can we choose the initial conditions (x0, ±0) in such a 
way tha t  the corresponding solution x(t)  of equation (1) is unbounded in x(t) ,  in ±(t) ,  or in both  
x(t) and 

Note tha t  when V(x)  is a central potential  this question has an easy reply since in this case 
equation (1) is integrable. However, when several a t t rac t ing masses are present, equation (1) is 
no longer integrable and escape to infinity must  be analyzed in other ways. 

Escape to infinity in the presence of non-Newtonian [9-19] or Newtonian potentials [8,20-22] 
has been analyzed via analytical techniques. On the contrary, we shall s tudy  escape to infinity 
using topological means. 

Topological means were suggested by Smale [23] in order to get propert ies  of the orbits of 
equation (1) when topological invariants of a certain number  of first integrals I of equation (1) 
are known (Bett i  numbers,  homotopy, or homology groups of the level sets of I ,  . .. ). 

This paper  follows exact ly this line and its main  result is as follows. 

THEOREM. 
Let X be the v.f. representing the dynamics. Let X i v  2 be the restriction of X to an invariant 

unbounded differential manifold V2 of dimension two, where 1/'2 is not a cylinder. Assume, finally, 

that 

(i) X l v  2 is divergence flee, and 
(ii) X is free from zeros. 

Then, there is an unbounded orbit of XIv2 on 1/'2. 

The proof  of this theorem appears  in Section 2. 
In ending this introduction, we must  say tha t  the s tudy of escape orbits of differential equations 

of type  
, ~  = F (t, x ) ,  (2) 

x c R  n 

was init iated by Kneser  [2@ H a r t m a n  and Wintner  [25] extended Kneser theory to include 
velocity dependent  forces, when n = 1, and finally (see [26]; see also [27], where systems of linear 

repulsive forces are considered) for arbi t rary  values of n. 
The  techniques used by all these authors are analytical. 

2. P R O O F  OF T H E  T H E O R E M  

We shall prove the theorem in Section 1 by contradiction. Tha t  is, if we assume tha t  all the 
orbits of X are bounded, we get a contradiction. Remember  tha t  X is a divergence-free v.f. 
without  zeros defined on a two-dimensional unbounded manifold V2 (a surface). 

In fact, if X is free from zeros and is divergence free then the w-limit set of any bounded orbit 
of X is an S i orbit  [28,29]. Therefore, if all the orbits of X were bounded,  I12 would be foliated 

by disjoint circles. 
Now, it is immediate  to prove (see below) tha t  the only unbounded surface V2 covered with 

topological circles is the topological cylinder. Therefore, if 172 is not a topological cylinder, at 

least one of the orbits of X must  be unbounded. 
We now briefly sketch the proof  tha t  an unbounded II2 orientable manifold covered with circles 

is a topological cylinder. This fact is an easy consequence [30] of the fact tha t  we can form in a 
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neighbourhood of every S 1 orbit  in V2 a local tubular  neighbourhood N which is covered with S 1 
orbits. Under prolongation of N repeatedly one gets either a cylinder or a torts- l ike (compact) 
surface. As we are working with unbounded manifolds 1/2 the last case is excluded. 

3 .  E X A M P L E S  

Il lustrative examples in R 3 and R 4 are now given. The  common features underlying them are 
the following: 

( i )  the construction of divergence-free v.f. X in R 3 or R 4, 
(ii) the appearance of one or two first integrals Ii of X, 

(iii) the manifold 1/2 of Sections 1 and 2 is obtained as a common level set of the first integrals; 
(iv) the v.f. XIv  2 (the restriction of X to 1/2 is divergence free [31], by choosing conveniently 

a volume form w2 on 1/2. 

For R 3 v.f., w2 has the form 

ivI1 ~3 

IIvIlll 

~3 = dx A dy Adz,  
(3) 

i -- contraction operator.  

For R 4 v.f. w2 has the form 
ivI1 ivI2 ~4 

I (VI1) VI1VI2 

V/1V/2  (VI2)2 I (4) 

~ 4  = dx A dy Adz  A dt 

Note tha t  (3) and (4) are valid on the level sets of I1 (or I1 and I2) when r a n k ( V I i )  = 1 (or 
r ank (VI i ,  VI2) = 2) on them. 

EXAMPLE 30).  Consider the divergence-free v.f. in R 3 

X = ( -y l~ ,  xr~, y - x + z (yrI~ - x n  ~)),  
(5) 

H 

One can check tha t  the funct ion/1 ,  defined as 

I1 = zII  + x + y, (6) 

is a first integral of X and tha t  X is free from zeros on the level sets 

zII + x + y = c ,  

c ~- O, c # 1. (7) 

On the other hand, VI1 does not vanish on the level sets defined in (7); the topology of these 
level sets is tha t  of a plane with two points deleted, as the reader will easily check out. Therefore, 
they are not cylinders. 

We can, therefore, apply to these level sets the results of Section 1 and conclude tha t  the v.f. X 
of equation (5) possesses an unbounded orbit  on each of the manifolds defined in equation (7). 

EXAMPLE 3(ii). Consider the complex polynomial 

P ( z l , z 2 )  -- ~ -  Z l ( Z ~ -  1) ,  

ZI~Z 2 E C, 
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and the Hamil tonian differential equations [32-34] 

OP OP 

h = Oz2 ~2 ~ OZl 

tha t  is, 

Zl = Z2, Z2 : 3z~ - 1. 

Writing zl = Xl + iyl ,  z2 = x2 + iy2, xi, y~ C R, in (10), one gets the R 4 v.f. 

(9) 

(10) 

x : ~ 0 . ~  + y ~ o ~  + (3Xl ~ - 3y~ - 1) 0 ~  + 6 ~ 1 y ~ o ~ ,  (11) 

with the first integrals 

I1 : x~ - y~ Xl ~ + 3x ly~  + ~1, 
2 (12) 

I2 = x2Y2 - 3x2yl + y3 + Yl. 

I t  is immedia te  to check tha t  X, I1, a n d / 2  satisfy all the conditions of our theorem on the level 
sets 

/1 = C 1 ,  

I2 : c2, (13) 
2 

cl # ± 3v~' c2 # 0. 

Since these sets [33] have the topology of a torus with a point deleted they are not cylinders. 
Accordingly, in each of t hem lies an unbounded t ra jec tory  of X. Nevertheless, we can predict in 
this case the existence of unbounded orbits in another  way. In fact, from equation (10), we get 

~1 : 3z~ - 1, (14) 

and therefore, 
x l  = 3Xl 2 -  3Y 2 -  1, 

(15) 
ijl = 6xly1. 

A part icular  solution of equation (15) is yl( t )  -- 0 and x l ( t )  any solution ~l( t )  of the second- 
order differential equat ion 

h = 3x~ - 1. (16) 

This last equation is integrable and trivially possesses unbounded solutions. From this, the 
existence of the unbounded solutions of X immediately  follows 

x l = ~ l ( t ) ,  

52 = ~'l(t),  

Yl = 0, 

Y2 = 0 .  

(17) 

EXAMPLE 3(iii). Consider now the complex polynomial  

P (Zl, z2) = + iz l  + -~,  ( i s )  

and the associated Hamil tonian differential equations 

Z'I = Z2, 

Z2 = --i  -- z~, 
(19) 
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whose real form is 
Xl ----- X2, 

j l  = Y~, 
~ (20) 

x2 = - X l  + Y l ,  

Y2 = - 1  - 2xlyl.  

The reader can check that all the assumptions of our theorem are met on the level sets 

f l  = C1, 

/2 = C2, (21) 
2 

Cl + ic2 ¢ + ~ i  - i, 

I1, I2 defined by 

il 
2 3 (22) 

3x~yl - y~ 
12 = x2y2 + x l  + 

3 

These level sets axe again [33,34] of type torus with a point deleted, and therefore, unbounded 
orbits in R 4 must appear on the level sets defined by equation (21). 

4. T W O  E X A M P L E S  R E L A T E D  
T O  E L E C T R O M A G N E T I C  F I E L D S  

EXAMPLE 4(i). Let E(x, y) be the R2-vector field created by the N >_ 2 electric charges (q~, xi), 
x~ standing for the position of the charge q~ (xi E R2). We assume that  E(x, y) is given by 

q~ ( x -  x~) (23) E (~, y) = ~ (~ - : ~  - - -  ~. 
~=1 -x~) + ( y - y ~ )  

The reader can check that  this vector field is divergence-free (div(E) de f ~ x  ~ -~ ~ y )  and has a finite 
number of zeros; this last property can be immediately shown by eliminating the denominators 
appearing in E = 0 and introducing the complex variable z = x + iy. We get in this way an 
expression whose zeros are just the zeros of a complex polynomial of degree N - 1. 

Therefore, we can apply to E(x, y) the results of Sections 1 and 2 on the manifold V2 defined 
by 

V2 = R 2 - Z - S, (24) 

Z being the set of zeros of E and S the singular points of E (these last points being, of course, 
the positions xi of the charges q~). 

Since 1/2 is not certainly a cylinder (the caxdinality of the set Z U S is greater than one for 
N >_ 2), we conclude that  there is, at least, an unbounded orbit of E on 172. 

EXAMPLE 4(ii). Consider now the magnetic field B created by a planar circular wire on which 
a electric current of intensity I flows. It  is well known [35,36] that  if the planar wire W lies 
on the xy-plane and the origin of coordinates coincides with the center of W ,  then any plane ~r 
containing the z-axis is invariant under B. On the other hand, B is singular on w at the two 
points given by 

w n ~, (25) 

and B is free from zeros on ~ [35,36]. 
Since B is divergence free [35,36], that  is, 

OBx OBu OBz 
d i v ( B ) = ~ + - - ~ y  + ~ = 0 ,  (26) 

it is easy to check that  the vector field BI~ (the restriction of B to ~r) is also divergence free. 
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The definition domain of BI~ is 

1/2 -= R 2 - ( W  N 7r), (27) 

which is not a topological cylinder (remember that  1/2 is just R 2 with two points deleted). 
Therefore, as BI~ is free from zeros on 1/2, we can apply to this example the results of 

Sections 1 and 2 and conclude that  Bp~ has at least an unbounded orbit on 1/2. In fact, it 
can be shown [35,36] that  the Z-axis is the unique unbounded orbit of BI~. 

5. F I N A L  C O M M E N T S  

A criterion in order to get unbounded solutions of differential equations by topological means 
has been obtained. Several examples are given in Section 3. Examples related to electromag- 
netism are developed in Section 4. A similar criterion for bounded solutions (for example, for 
periodic solutions) would be interesting. 

A related problem is that  of knowing whether or not a divergence-free zero free v.f. X, on any 
unbounded manifold 1/2, exists such that  1/2 is foliated by orbits of type R. Note that  when the 
v.f. X is not necessarily divergence free, it is known [37] that  1/2 can indeed be foliated by the 

type R orbits of X. 
Another problem related to this one is that  of knowing if orbits of type R (unbounded) and 

S 1 (periodic) can coexist on two-dimensional unbounded manifolds 1/2 when div X = 0 and X is 
free from zeros. The coexistence is impossible for 1/2 = R 2 since a periodic orbit of X implies the 
appearance of a zero of X. When V2 = R 2 the condition div X = 0 plays no role, but we suspect 

it does when 1/2 ~ R ~. 
Finally, in order to get a generalization of the results of this paper to unbounded manifolds Vn 

(n > 3) a previous study and classification of the manifolds that  can be foliated by circles would 
be necessary [38]. The main difficulty of this study is that  the w-limit sets of orbits, of three- 
dimensional vector fields (in contrast with what happens in 1/2), are, up to now, not topologically 

classified. 
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Abstract—It is shown that when a first integral I of a vector field (v.f. in what follows) X is
known, the level sets of I resemble bagpipes, and X is asymptotically stable (a.s. in what follows) on
the skeleton of I (the set where ∇I vanishes), then the v.f. is stable at 0 (a singular, not necessarily
isolated, zero of X). A similar bagpipes configuration is shown to appear concerning the orbits of the
magnetic field created by a set of concurrent straight line wires. c© 2005 Elsevier Science Ltd. All
rights reserved.

1. INTRODUCTION

It is well known that if 0 is an isolated critical point of X (a smooth dynamical system) and I is
a first integral of X with an isolated (or strict) minimum (or maximum) at 0, then 0 is a stable
equilibrium point of X [1–6]. The essence of this result is that the level sets of I near zero (I−1(ε),
|ε| small) are bounded sets; in fact, they are topological (or deformed) spheres. Note that we
have assumed that the value of I at 0 is zero. This can always be achieved by the addition to I
of a trivial constant.

When 0 is a critical point of X but it is not an isolated minimum of I the above criterion
fails as the reader can check by considering the differential equation of a nonrelativistic moving
charge (q = m = 1) in a constant magnetic field B0 (B0 6= 0, B0 ∈ R3),

ẍ = ẋ ∧B0, x ∈ R3, (1)

and the classical first integral I of equation (1),

I = ẋ2 = ẋ2 + ẏ2 + ż2. (2)

Note that ∇I vanishes on the three-dimensional manifold M3 given by

M3 = {(x, ẋ), such that ẋ = 0} = (x, y, z, 0, 0, 0). (3)

Moreover, I and ∇I vanish on the manifold M3 of equation (3).

*Author to whom all correspondence should be addressed.
*This author is supported by an FPU grant from MEC, Spain.
The authors are grateful to one of the referees for his/her critical comments concerning the relationship between
our criterion and Liapunov’s stability theorem.

0895-7177/05/$ - see front matter c© 2005 Elsevier Science Ltd. All rights reserved. Typeset by AMS-TEX
PII:00



2 F. G. Gascon and D. Peralta-Salas

Note that I possesses an absolute minimum (equal to zero) on M3.
Note also that the v.f. X = (ẋ, ẋ ∧B0) associated to equation (1) vanishes on M3; that is the

zeros of this v.f. are never isolated.
On the other hand, the zeros of X are not stable. Indeed, consider the following solution of

equation (1),
x = εB0t, ẋ = εB0, ε ∈ R, (4)

corresponding to the initial conditions,

x(t = 0) = 0, ẋ(t = 0) = εB0. (5)

The initial conditions (5) are, for small values of ε, arbitrarily near P0 = (0,0) ∈ M3. The
solution of equation (1) corresponding to x0 = 0, ẋ0 = 0 is

x(t) = 0, ẋ(t) = 0. (6)

A look at equations (4) and (6) shows that the initial point P0 is unstable. Moreover, the
corresponding solution given in equation (4) is unbounded .

In the following, we shall study stability around zeros x0 of v.f. Under certain conditions that
we will specify in Section 2, a new stability criterion is given. The criterion is valid for critical
points (not necessarily isolated) of Rn v.f. (possessing a nonnegative first integral I). The zero
(x0) of X must be on the critical level set of I, that is, x0 must satisfy the equation ∇I|x0 = 0.

Along this paper the only allowed critical sets C of I (the set where ∇I = 0) are a finite
number of straight lines. Namely, C =

⋃N
i=1 Li, Li being straight lines meeting at x0.

The reader can check that the criterion in section II holds when Li is substituted by L>i (a
closed topological curve diffeomorphic with R).

Note that assuming I(x0) = 0 implies (since ∇I = 0 on C) I(Li) = 0, ∀ i; therefore,

I

(
N⋃
i=1

Li

)
= 0,

that is, I reaches an absolute minimum on
⋃N
i=1 Li.

To the above hypotheses we must add a final requirement: the v.f. X|C , induced by X on C

(note that C lies on the level set I=0) must be a.s. at x0.
Under these conditions it is shown that X is stable at x0. The proof of this criterion is given

in Section 2 and applications of it are discussed in Section 3.
In Section 4, it is shown that the orbits of the magnetic field B created by N straight line

wires wj (j = 1, . . . , N) intersecting at x0, are (near the wires) topological circles. Therefore,
a bagpipes structure appears concerning the magnetic induction v.f. created by a set of current
carriers.

In ending this introduction, we must say that our criterion is similar, but has not very much
to do with LaSalle invariance principle [7,8] (connecting limit sets of orbits with the set of zeros
of a function V (x) satisfying V̇ = ∇V ·X ≤ 0) for the following reasons.

• The functions V (x) considered in LaSalle invariance principle satisfy the condition ∇V ·
X ≤ 0, while our first integral I satisfies the condition ∇I ·X = 0 on all Rn.

• On the other hand, LaSalle invariance principle deals with the limit sets ω+(x(t)) of the
bounded solutions of X (for t > 0) and asserts that for bounded x(t), we get

ω+(x(t)) ⊂ A, (7)

A being the maximal invariant set of X lying in the set B defined by the equation,

B = {x : ∇V ·X = 0} . (8)
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In our case, equation (8) holds on all Rn (since it holds ∀x ∈ Rn when V is a first integral
of X) and the maximal invariant set (of X) contained in Rn is again Rn. Therefore, LaSalle’s
theorem is useless concerning the stability question of this paper.

2. A NEW STABILITY CRITERION

In this section, the new stability criterion is established (Section 2.1). The proof is given in
Section 2.2. For simplicity, the proof is given in R3, but the criterion holds in Rn, n ≥ 3.

2.1. Criterion

Assume that 0 is a critical point of X, an Rn v.f., (X(0) = 0), that I is a nonnegative first
integral of X, such that I(0)=0. Assume that I−1(0) is the union of a finite number of straight
lines Li (i = 1, . . . , N) through 0 and that I−1(c), c 6=0, are bagpipes with 2N pipes (see
Figure 1). Assume, finally that X|Li is, for every Li, a.s. at 0 (the reader will easily check that
the straight lines Li are invariant sets under the v.f. X). Then, it follows that X is stable at 0.

Note that the above conditions imply that ∇I|I−1(0) = 0, as 0 is the absolute minimum of I.
An Rn hypersurface S is called a bagpipes with 2N pipes if S is homeomorphic to the surface

of a sphere Sn−1 with 2N points deleted. When N = 1, S is just a cylinder. See Figure 1 for
N = 2.

Geometrically, the lines Li (i = 1, . . . , N) act as the skeleton of the bagpipes. A cylinder can be
thought of as the surface obtained by blowing-up this skeleton (the single line L1). Analogously,

Figure 1. A typical bagpipes with four pipes (N = 2). See Example 3.(iii).
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a bagpipes can be thought of as the surface obtained by blowing-up simultaneously the lines,
L1, . . . , LN .

Note that the intersections of an R3 bagpipes with planes π orthogonal to the lines Li (0 /∈ π)
are topological circles (S1). For an Rn bagpipes these intersections are (n-2)-dimensional spheres
(Sn−2).

Note also that the straight lines Li can be replaced by other more general curves L>i through 0
and stability at 0 would also follow.

Finally, some comments on the relation of this criterion with the Liapunov’s stability theorem
are in order.

• It is well known [9,10] that, under very general conditions, a Liapunov’s function F (x)
exists around any stable equilibrium point of a v.f. X. Nevertheless, except when X is
a linear v.f., the practical computation of F (x) is a very difficult problem (see reference
[10]). In general, the construction of F (x) depends on the prior knowledge of the general
solution of the v.f. X. Moreover, in some cases, F is necessarily time dependent [10].

• Our criterion is similar to Liapunov’s in that I ≥ 0 and İ = 0. Nevertheless the level sets
of I(x) are unbounded, while the level sets of F (x), near the critical point, are compact
(topological spheres). Moreover, our criterion assumes that X|Li is a.s. at 0. This last
assumption is not made in the usual Liapunov’s stability theorem.

In Section 3, we show some examples for which the stability of 0 is proved by applying our
criterion. It is not clear how to construct Liapunov’s functions in all these cases and therefore,
Liapunov’s stability theorem seems to be useless. A detailed discussion of this fact is made
in example 3.(i), where no obvious Liapunov’s functions, e.g., trivial modifications of the first
integral I(x), are found.

2.2. Proof of the Criterion

Let us prove stability of X at 0, when N = 1.
Let Bε be the closed ball of radius ε centered at 0 and Pε any of the two points where L1

intersects ∂Bε. Assume that L1 lies on the z-axis. Let us find a δ(ε) > 0 such that for the points
x0 ∈ Bδ(ε) it follows ‖x(t,x0)‖ < ε (x0 being the initial condition underlying x(t,x0)).

Indeed, for ε sufficiently small the vector X(Pε) points towards 0 (remind that X is a.s., on
L1, at 0) and by continuity reasons X · n < 0 on a region Rε of ∂(Bε) containing Pε (∂(Bε) is
the spherical surface ‖x‖2 = ε2 and n the outer normal to ∂(Bε)). Under these conditions Rε is
a repellor for the orbits of X arriving to Rε from the interior of Bε.

Let I−1(cε) be a level set of I, such that(
I−1(cε) ∩ ∂Bε

)
⊂ Rε, (9)

and consider the set Cε formed by the points P ∈ R3 satisfying

P ∈ I−1(cε),

distance (P,L1) < ε,

|zP | < ε.

(10)

These hypotheses can be accomplished since the set of points (0, 0, z), |z| ≤ ε is compact and
I−1(cε) ∩ (z = k) are topological circles of radius rε,k vanishing with ε (|k| ≤ ε).

Consider, finally, the ball Bδ (centered at 0) of radius δ defined by

δ = distance (0, Cε) . (11)

It is easy to see that if x0 is an initial condition lying on Bδ the corresponding solution x(t,x0)
will always remain inside Bε.
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Therefore, X is stable at 0.
The reader will have noticed that the proof holds also when the number of pipes is greater

than one.
Some applications of the criterion are given in Section 3.
Note that stability at (0,0,0) can also be obtained if the level sets of I induce a local bagpipes

structure in R3 and these level sets are bounded near (0,0,0) in the region |x · ui| < ki, ki ∈ R
∀ i = 1, . . . , N , ui being a unitary vector along Li (see Section 3, Example (iii), for the definition
of local bagpipes structure and an example).

In ending this section some comments are in order.

(i) When C is near x0 a curve or the local union of several curves branching at x0, it is easy
to show that the proof of this section holds, and therefore, x0 inherits stability in R3 from
the assumed a.s., of X|C at x0.

(ii) The same thing happens when C is a circle where f vanishes and the sets f > 0 are tori
blowing up from the circle C. Therefore, stability of X at x0 ∈ C holds when asymptotic
stability of X|C is assumed (see Example 3.(iv)).

3. EXAMPLES

Five examples are now given for which the criterion of Section 2 can be applied.

3.1. Example (i)

Let X be the family of v.f.,

X = (−ya(x, y, z))∂x + (xa(x, y, z))∂y + (−zn + xb(x, y, z) + yc(x, y, z))∂z, (12)

a standing for a positive function of (x, y, z), b, and c for arbitrary functions of (x, y, z) and
n for an odd positive integer.

This v.f. vanishes at (0,0,0) and has the first integral I = x2+y2. It is clear that I−1(0) = z-axis
and I−1(c) (c > 0) are cylinders (bagpipes with two pipes).

On the other hand,
X|z−axis = −zn∂z. (13)

Therefore, the family of v.f. X meets all the conditions required in the criterion of Section 2
and we can say that (0,0,0) is a stable point of X.

Note that Liapunov’s theorem cannot be applied in this case because there is no obvious
candidate to be a Liapunov’s function F (x, y, z). Indeed, since the level sets of F must be
compact (topological spheres) around the critical point 0, we can verify whether the typical
Liapunov’s function for a critical point, F (x, y, z) = x2 + y2 + z2, works in this example. It
is straight forward to see that Ḟ = 2z(xb(x, y, z) + yc(x, y, z) − zn), which in general does not
satisfy Liapunov’s condition Ḟ ≤ 0 around the origin. We have not found easy modifications of
this F (x,y,z) which work, and therefore the task of finding a suitable Liapunov’s function for this
family is so difficult that it does not seem clear how to ascertain stability of 0 without invoking
our criterion.

3.2. Example (ii)

In this example the level sets of I (the first integral) are also topological cylinders (bagpipes
with two pipes).

Let X be the v.f.,

X =
(
2z2x+ x2y

)
∂x +

(
2z2y − x3

)
∂y − z

(
3x2 + 3y2 + z2

)
∂z, (14)
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This v.f. has a nonhyperbolic zero at (0,0,0), in fact X vanishes on the y-axis. Therefore, its
stability character cannot be ascertained via the computation of the linear approximation XL

of X at (0,0,0).
The function I = (x2 + y2)(x2 + y2 + z2)2 is a first integral of X.
It is immediate to check (introduce cylindrical coordinates) that the level sets I−1(c) (c¿0) are

cylinders (bagpipes with two pipes) and I−1(0) is the z-axis. On the other hand the v.f. induced
by X on the z-axis is

X|z−axis = −z3∂z. (15)

Since the v.f. in equation (15) is a.s., at z = 0, we can apply the criterion of Section 2 and
conclude that X is stable at (0,0,0).

3.3. Example (iii)

In this example the level sets of I resemble bagpipes with four pipes near the z and y axis, as
it is explained immediately.

Let X be the v.f.,
X =

(
x2 + y2 + z2

)
(M∂x +N∂y + P∂z) , (16)

M , N , P being defined by

M = −Ny
(
Ax2 +B

)
+ Pz

(
A+Bx2

)
x [(1 + z2)B + (1 + y2)A]

,

N = x− y
(

y2

1 + x2 + z2
− z2

)
,

P = z

(
y2

1 + x2 + z2
− z2

)
,

A = x2
(
1 + z2

)
+ y2,

B = x2
(
1 + y2

)
+ z2.

(17)

Note that the term x in the denominator of X gets cancelled by the same factor x appearing in
the numerator of X. We have preferred keeping x at the denominator of X, instead of simplifying
it in order not to complicate the formulas.

The reader can check that the v.f. X defined by (16) and (17) is C1 (on R3) and has a
nonhyperbolic zero at (0,0,0).

The reader can also check that I = [x2(1 + z2) + y2][x2(1 + y2) + z2] is a first integral of X.
Its level sets I−1(c) are as follows.

(i) The z-axis and the y-axis when c = 0.
(ii) When c > 0 and c is small the intersection of the surface I(x, y, z) = c with the planes

z = k (k 6= 0) are topological circles (deformed circles) near the z-axis, as follows from the
fact that I has a strict minimum on z = k at the point (0,0,k). The same thing happens
with the intersection of I(x, y, z) = c with the planes y = k′ (k′ 6= 0) when c > 0 is small.

By definition, when (i) and (ii) hold, we say that the first integral I induces a local bagpipes
structure in a neighbourhood of the z and y axis.

The z-axis and the y-axis are invariant sets under X and the v.f. induced by X on them are

X|y−axis = −y5∂y,

X|z−axis = −z5∂z.
(18)

On the other hand, the points of the level set I = c (c > 0) for which |z| < k1, |y| < k2 form a
bounded set in R3, since we get for them

c =
[
x2(1 + z2) + y2

] [
x2(1 + y2) + z2

]
≥ x4, (19)

and therefore, |x| ≤ c1/4.
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Since the v.f. of (18) are a.s. at y=0 and z=0, the reader will check that the stability criterion of
Section 2 remains valid for local bagpipes structures whose level sets are bounded for |x · ui| < ki,
ki ∈ R, ∀ i = 1, . . . , N , ui being a unitary vector along Li. Therefore, X is stable at (0,0,0).

3.4. Example (iv)

In this example the critical level set of the first integral I, I=0, is a circle (ϕ) and the level
sets of I, I = c (c > 0, c small), are topological tori around ϕ.

Let X be the family of v.f. in R3

X = X1∂x +X2∂y +X3∂z,

X1 = 4xy(y − 1) · a(x, y, z)− 2yz · b(x, y, z),
X2 = 2yz · c(x, y, z)− 4x2y · a(x, y, z),

X3 = 4y(x2 + (y − 1)2 − 1)(x · b(x, y, z)− (y − 1) · c(x, y, z)),

(20)

a standing for a positive function of (x, y, z) and b, c for arbitrary functions of (x, y, z).
This v.f. vanishes at (0,0,0) (a nonisolated zero of X) and has the first integral,

I =
(
x2 + (y − 1)2 − 1

)2
+ z2.

It is clear that I−1(0) = ϕ = {(x, y, 0) : x2 + (y − 1)2 = 1} (a circle on the z = 0 plane) and
I−1(c) (c > 0, c small) are topological tori around ϕ.

On the other hand the v.f. induced by X on the circle ϕ is

X|ϕ = [4xy · a (x, y, 0) ((y − 1) ∂x − x∂y)] |x2+(y−1)2=1.

The point (x = 0, y = 0) is an isolated zero of the v.f. defined in (21). The reader can also
check that it is a.s. at (x = 0, y = 0) (remember that a(x, y, z) is a positive function). Therefore,
we can apply the criterion of Section 2 and conclude that X is stable at (0,0,0).

3.5. Example (v)

This is an example in R4.
Let X be the v.f.,

X = xu4∂x + x2u4∂y + x2u4∂z + u3
(
−1− u2 − y − z

)
∂u.

The v.f. X vanishes at 0 (a nonhyperbolic singular point of X).
It is immediate to check that I = (1 + u2)x2 + y2 + z2 is a first integral of X. Its level sets

I−1(c) are cylinders of type S2xR (c > 0) or the u-axis (c = 0). The v.f. induced by X on this
axis is

X|u−axis = −u3 − u5. (23)

Since the v.f. in equation (23) is a.s. at u = 0, we can again conclude that X is stable at 0.

4. THE MAGNETIC FIELD CREATED BY
N CONCURRENT WIRES: A PHYSICAL

EXAMPLE OF A LOCAL BAGPIPES STRUCTURE

A similar bagpipes configuration arises concerning the level sets of a first integral (see IT in
equation (31) of the magnetic field created by N straight-line wires (Wj , ij) (j = 1, . . . , N)
concurrent at (0,0,0); ij stands for the intensity of the current flowing through the Wj wire. Note
that ij can be a positive or a negative real number (depending on the j index).
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The reader should note that no stability claiming is made in this section, in contrast with the
contents of Section 2. Note also that the first integrals of Sections 2 and 3 are global while the
first integrals of the magnetic field B in this section are just local.

Let Bj(x,y,z) be the magnetic field created by just the wire (Wj , ij) at the point (x, y, z). It
is immediate [11] that

I = x2 + y2 + z2, (24)

is a first integral of Bj and BTotal =
∑N
j=1 Bj.

Let us now show that the orbits of BTotal on

Sc =
{
x2 + y2 + z2 = c2, c > 0

}
, (25)

near the singular points Sc ∩Wj are topological circles (that is, deformed circles).
In fact, from a general result [12] in the theory of R3 divergence-free v.f. (Bj in our case),

and the presence of the first integral x2 + y2 + z2, whose level sets Sc (c > 0) are of trivial first
homotopy group, one gets a first integral Ij of Bj on Sc provided that∫

ϕ

iBj
Ω2 = 0, (26)

Ω2 standing for

Ω2 ≡
i∇IΩ3

‖∇I‖2
,

Ω3 = dx ∧ dy ∧ dz,
(27)

ϕ being a closed curve around each one of the singular points Sc ∩Wj of Bj on Sc and i being
the contraction operator of v.f. and differential forms [12].

Now, in a spherical coordinate system around Wj as polar line, we can write Ω3 = ρ2 sin θ dρ∧
dθ∧dφ and ∇I = 2ρ∂ρ. Therefore, i∇IΩ3 = 2ρ3 sin θ dθ∧dφ and we get Ω2 = (1/2)ρ sin θ dθ∧dφ
and

∫
iBj

Ω2 trivially vanishes (remember that the orbits of Bj on Sc are the lines θ = constant).
Accordingly equation (26) holds.

Therefore, the first integral Ij exists and is defined by

iBj
Ω2 = dIj . (28)

Remember that although Sc is simply connected, Sc−(Sc∩Wj) is not. Therefore, equation (26)
is necessary in order that equation (28) defines a function Ij globally defined on Sc − (Sc ∩Wj).

It is straightforward to show that Ij is given by

Ij = ij

∫
dθj

sin θj
, (29)

θj being the angle formed by the vector (x, y, z) ∈ Sc and the line Wj .
Moreover, from equation (28) we get (by adding on j)

iBTotalΩ2 = dIT . (30)

Therefore IT is given by

IT =
N∑
j=1

ij

∫
dθj

sin θj
. (31)

Note that this formula for IT is valid for any value of the intensities ij (ij 6=0). Note also that
near the points (x,y,z) of Sc defined by θj=0 or θj = π, we get either

lim IT = +∞,
for ij > 0, j = 1, . . . , N,

(32)
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or
lim IT = −∞,
for ij < 0, j = 1, . . . , N.

(33)

Equations (31)–(33) and the fact that IT is a continuous function for any P ∈ Sc − (Sc ∩Wj),
imply that the level sets of IT near Sc ∩Wj are topological circles and therefore, the orbits of
BTotal near the singular points Sc ∩Wj are topological circles as well. It follows that the level
sets of the function IT defined by equation (31) are bagpipes in a neighbourhood of the wires Wj .

Note that although the function IT is only defined in Sc− (Sc ∩Wj) the structure of IT makes
it clear that IT extends to a global function on R3 −

⋃N
j=1Wj . Therefore, IT defines a local

bagpipes structure in R3 −
⋃N
j=1Wj , as we desired to prove.

5. FINAL REMARKS

It would be interesting to know under what circumstances stability at 0 can be obtained when
the level sets of I are not bagpipes. Can additional topological conditions on the level sets of I
near C (the critical set of I) be found in order to guarantee stability at 0?

Concerning the presence of bagpipes in the first integrals of the magnetic field B created by
wires the problem remains of studying the possible influence of these structures on the motion
of charged particles (m,q) subjected to a purely magnetic electromagnetic field B (that is, the
electric field E vanishing everywhere) with bagpipes structures. A magnetic field B is said to
possess a bagpipes structure when B has a first integral whose level sets are bagpipes. For
instance, can a first integral of a purely magnetic field B, with a bagpipes structure, prevents a
material particle (m,q), subjected to B, from approaching the wires creating B indefinitely?

Another interesting problem is that of studying the possible relation between bagpipes struc-
tures in the orbits of the magnetic field B and the existence of solutions of the Lorentz equation,

mẍ = qẋ ∧B, (34)

confined to remain inside a certain domain of the configuration space.
We can easily check, by using cylindrical coordinates, that the motion of a particle subjected

to the magnetic field created by a straight-line wire is confined to an annular domain of the
configuration space around the wire, the axis of the annular region being the straight-line wire
(remember that a cylinder is just a bagpipes with two pipes, that is, N=1). In fact, as we now
show, this domain is defined for each solution of equation (34) by an interval [r1, r2], r1 > 0, r
being the radial cylindrical coordinate.

Indeed, in cylindrical coordinates around the wire the differential equations of motion of a unit-
mass, unit-charge particle under the action of the magnetic field B created by the straight-line
wire are (recall that ‖B‖ is proportional to 1/r, r =

√
x2 + y2):

r̈ − rφ̇2 = − ż
r
,

rφ̈+ 2ṙφ̇ = 0,

z̈ =
ṙ

r
.

(35)

From equations (35), we get
ṙ2 + r2φ̇2 + ż2 = E,

r2φ̇ = L,

ż − Ln(r) = A.

(36)

The last of equations (36) implies that r(t) cannot reach the z-axis since otherwise we would
have that Ln(r)→ −∞ which is in contradiction with the first of equations (36).
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On the other hand by eliminating φ̇ and ż in equations (36) we get:

ṙ2 +
L2

r2
+ (A+ Ln(r))2 = E, (37)

and therefore, r is limited by the equation

L2

r2
+ (A+ Ln(r))2 ≤ E, (38)

which defines an annulus.
Therefore, the solutions of equations (35) satisfy

r1 ≤ r(t) ≤ r2, (39)

r1, r2 being the roots of the equation,

L2

r2
+ (A+ Ln(r))2 = E. (40)

Generalizing to N¿1, and considering the magnetic field created by N straight-line wires inter-
secting in (0,0,0), does a bagpipes type domain (of the configuration space) with 2N pipes exist
(depending on the initial conditions x0, ẋ0) in which the particle remains forever?

Concerning section IV an interesting question is to generalize the physical sources of the mag-
netic field by assuming that wires are not concurrent and/or they are no longer straight lines.
Under these circumstances, can we assert that a bagpipes configuration holds?

REFERENCES

1. F. Gantmacher, Lectures in Analytical Mechanics, Mir, Moscow, (1970).
2. L. Meirovitch, Methods of Analytical Dynamics, McGraw-Hill, New York, (1970).
3. V. Laksmikantham and S. Leela, Nonlinear Anal. 1, 215, (1977).
4. B. Garay, Nonlinear Anal. 8, 1033, (1984).
5. F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer-Verlag, Berlin, (1990).
6. B. Kalitin, Diff. Eqs. 31, 541, (1995).
7. J.P. LaSalle, Proc. Nat. Ac. Sci. USA 46, 363, (1960).
8. N. Rouche, P. Habets and M. Laloy, Stability Theory by Liapounov’s Direct Method, Springer-Verlag, New

York, (1977).
9. J.L. Massera, Ann. Math. 64, 182, (1956).

10. W. Hahn, Stability of Motion, Springer-Verlag, New York, (1967).
11. J.D. Jackson, Classical Electrodynamics, Wiley, New York, (1999).
12. C. Godbillon, Geometrie Differentielle et Mecanique Analytique, Hermann, Paris, (1969).



*Corresponding author.

International Journal of Non-Linear Mechanics 35 (2000) 589}596

Symmetries and "rst integrals of divergence-free R3 vector "elds

F. Gonzalez Gascon*, D. Peralta Salas

Fac. C. Fn&sicas, Univ. Complutense, Ciudad Universitaria, Madrid 28040, Spain

Received 7 February 1999; accepted 25 May 1999

Abstract

First integrals and invariant sets of divergence-free vector "elds with symmetries are obtained; the results are applied to
the solution of certain stability questions. ( 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The orbit structure of R3 vector "elds (v.f.) X is
quite tangled and phenomena like the presence of
strange attractors [1}4], ergodicity [5], chaos [6}8],
turbulence [9], etc. complicate it enormously.

On the other hand, important v.f. in physics, like
the magnetic induction B [10,11] and the "eld of
velocities of a #uid [12] are R3 v.f.. These v.f. have
been recently studied by adapting to them Hamil-
tonian-like structures [13}16]. R3 v.f. arise as well
in connection with the study of magnetic force-free
v.f. (rotB"j(x)B, x3R3) [17}19] appearing in the
study of solar #ares, superconductors and plasma
con"nement [20].

It would be expected that the orbit structure of
divergence-free R3 v.f. (DivX"0) be simpler. But
this is not the case; in fact [21}23] ergodicity and
chaos seem to be compatible with the restriction
DivX"0.

Divergence-free vector "elds (v.f.) with symmet-
ries have recently been studied concerning their
integrability [24}31]. Nevertheless, most of the

results obtained in these papers are local and un-
suitable (see Section 2 for the explanation) in order
to study the behaviour of the orbits of a v.f. X near
an equilibrium point of X (that is, near a point
P where X vanishes). This study is essential, for
example, if the stability or instability of X at P is
required. Certain of these di$culties are overcome
in this paper. This has been achieved via the obten-
tion of global "rst integrals and invariant sets out
of the symmetry vectors.

Our results are useful in order to ascertain the
stability of X around a point (we shall call it 0)
where X vanishes. These results are valid for Rn v.f.
but in order not to complicate the notation most of
the v.f. considered in this paper are R3 v.f..

A brief summary of other methods used in the
literature in order to ascertain stability is given
below.

When no symmetries are known but 0 is an
hyperbolic equilibrium point of X, the Hartman}
Grobman theorem [32] can be applied and we
can assert that X is locally topologically similar to
its linear part XL. Remember that X is hyperbolic
at 0 if XL is free from eigenvalues of zero real part.

When X is a Rn v.f. non-hyperbolic at 0 little is
known of the local structure of its orbits near 0.

0020-7462/00/$ - see front matter ( 2000 Elsevier Science Ltd. All rights reserved.
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Leaving aside the trivial case n"1, when n"2 and
X is analytic the organization of the orbits of X near
0 is known [33]; blowing-up techniques are often
used ([34], see also Ref. [1]) in order to resolve the
singularity of X at 0 (in the sense that by using
a "nite number of singular changes of variables the
organization of the orbits near 0 can be ascertained).

In contrast with the situation in R2, little ad-
vance in the direction of knowing the organization
of the orbits near 0 (when n'2) has been made.

Concerning this point we quote the work of-
Samardzija [35], who studied polynomial v.f. in R3,
Golubitsky, Schaefer and Stewart who studied the
bifurcations of R3 v.f. symmetric under continuous
or discrete linear groups [36}38], and Dumortier,
Roussarie, Sotomayor, Zoladek and Bonckaert
[39}44], who considered the bifurcations of three-
parameter families of v.f.. Many of the results ob-
tained in these papers are based on the use of
normal-forms and blowing-up techniques.

Our techniques complement the above ones in
the sense that they have a geometrical base: the use
of symmetry vectors. On the other hand, our tech-
niques hold when the symmetry vectors are non-
linear, in contrast with the results in Refs. [13}16].

The paper is organized as follows: In Section
2 the classical local integration algorithm and its
di$culties near equilibrium points of X are re-
viewed. Section 3 deals with the obtention of invari-
ant sets and its consequences concerning stability
matters. Global "rst integrals of divergence-free v.f.
are obtained in Section 4. In Section 5 we apply the
methods of Section 4 to a higher-dimensional
example. Finally, an instability criterion for R3 v.f.
with a "rst integral is given in Section 6.

2. The classical integration algorithm

We now summarize the classical local integra-
tion algorithm of the R3 v.f. X when two symmetry
vectors of it are known [24}28]. We shall see that
the algorithm fails at the equilibrium points of X.

Let X be an analytic v.f. vanishing at 0 and S
1
, S

2
a pair of independent symmetry vectors. By inde-
pendent we mean that the function * de"ned by

*"Det(X,S
1
, S

2
) (1)

is not identically zero.

Recall that S is a symmetry of X if

LSX"j(x) 'X, (2)

LS standing for the Lie derivative along the
streamlines of S and j(x) being an arbitrary func-
tion of x. Many times along this paper we consider
symmetries for which the function j(x) is the zero
function.

Let us now see how X can be locally integrated
when two symmetries of it are known.

Consider the 1-form w
1

de"ned by

w
1
"(iXiS

1
')

3
) '*~1, (3)

where iY stands for the operator of contraction
between v.f. and di!erential forms [45],
)

3
"dx

1
'dx

2
'dx

3
is the standard volume form

of R3, and * is the function de"ned by (1).
It is easy to verify that w

1
is closed (dw

1
"0).

Therefore, we can locally write

w
1
"dI, (4)

the function I satisfying

iX ' dI"0,

iS
1
' dI"0. (5)

Therefore I is a "rst integral of X and S
1
. Note

that the "rst integral is global if MX,S
1
, S

2
N are

globally independent.
Consider now the v.f. X

c
and S

1c
(the v.f. induced

by X and S
1

on the level sets I"c of I). These v.f.
can be written in the local form:

X
c
"X

1
(u, v) ' L

u
#X

2
(u, v) ' L

v
,

S
1c
"S

11
(u, v) ' L

u
#S

12
(u, v) ' L

v
, (6)

u and v standing for a set of local coordinates on the
level set I"c.

De"ne now the 1-form wH
1

wH
1
"(iX

c
w

2
) ' (iX

c
' iS

1c
'w

2
)~1, (7)

where w
2

stands for du'dv.
It is easy to verify that wH

1
is closed and, therefore,

we can locally write

wH
1
"dIH

1
, (8)

IH
1

standing for a function of the variables (u, v).
On the other hand, it is clear that

iX
c
' dI

1
"0. (9)
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Therefore, IH
1

is a "rst integral of X
c
. Since X

c
is,

locally, a R2 v.f. we conclude that X
c
is integrable,

and this implies the local integrability of X.
Nevertheless, this algorithm cannot be applied

around an equilibrium point of X since the func-
tion * appearing in formula (3) vanishes on the
equilibrium points of X, which makes the forms
w
1

and wH
1

unde"ned wherever X vanishes.
Therefore the above algorithm is not valid in order
to answer stability questions near equilibrium
points of X.

Just in order to circumvent this di$culty that the
techniques of the following sections are introduced.
As we shall see the symmetries of X will allow us to
compute invariant sets and "rst integrals of
X (when X is a divergence-free) with whose help
stability questions around equilibrium points of
X can be succesfully answered.

3. Symmetries and invariant sets

We show here that if X is divergence-free, invari-
ant sets, families of invariant sets and "rst integrals
of X can be obtained. All these mathematical struc-
tures can be useful as far as stability is concerned, as
is shown with an example.

First of all, let us demonstrate that the set (Z) of
points of R3 de"ned by

Z"Mx D *(x)"0N (10)

is invariant under X (note that *(0)"0, since
X(0)"0).

In fact, writing * in the form

*"iX ' iS
1
' iS

2
'w

3
, (11)

we get, through straightforward manipulations.

LX*"DivX '*, (12)

DivX being, as usual, de"ned by

LXw3
"DivX 'w

3
. (13)

Let us now discuss some consequences of Eq.
(12).

(i) When the set Z de"ned in Eq. (10) is a di!er-
ential manifold, that is when the `normala vector
+(*) on Z never vanishes, the set Z is invariant

under X. In fact, Eq. (12) implies

LX(*)
@Z
"0, (14)

that is, X is tangent to Z on any of its points.
Therefore, the set Z is invariant under X. The
invariance of Z under X can also be shown when
Z fails to be a di!erential manifold, but the proof
shall not be given.

(ii) We are assuming in this paper that X, S
1

and
S
2

are analytic v. f.. Therefore, the function * is an
analytic function. This entails [46] that the set Z is,
in a neighbourhood of 0, a "nite union of strata of
dimension 1 and 2.
If a certain strata E is invariant under X we can
restrict X to it getting a vector"eld X

@E
of lower

dimensionality. The instability of X
@E

at 0 implies
the instability of X at 0.

An example on this point can be found at the end
of these notes.

(iii) When X is divergence-free Eq. (12) becomes

LX(*)"0. (15)

Therefore the function * is a global "rst integral
of X.

The reader can see in Section 6 the consequences
of global "rst integrals in stability matters.

An illustrative example is the following. Consider
the v.f.

X"!x
2
L
1
#x

1
L
2
,

S
1
"x

1
L
1
#x

2
L
2
#x

3
L
3
,

S
2
"L

3
. (16)

In this case DivX"0 and *"!x2
1
!x2

2
is

a global "rst integral of X.
Note that this "rst integral can also be obtained

using the methods of Section 4 for the pair of
divergence-free v.f. X, S

2
.

The above example is trivial but shows that the
assumptions of this paragraph are not incompatible.

A more interesting example is this one:

X"(x
1
x
3
!2x2

1
#x2

3
)L

1
#5x

2
(x

1
!x

3
)L

2

# (!x
1
x
3
!x2

1
#2x2

3
)L

3
,

S
1
"x

3
L
1
#x

2
L
2
#x

1
L
3
,

S
2
"x

1
L
1
#x

2
L
2
#x

3
L
3
.
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The reader can check that X is divergence-free and
that S

i
(i"1, 2) are symmetries of X. The function

* of Eq. (11) is *"8x
2
(x

3
!x

1
)2 ' (x

1
#x

3
) and

* is a global "rst integral of X.
(iv) Assume that the strata E is invariant under

X. E is not necessarily invariant under the sym-
metry vectors S

1
, S

2
. Therefore, if the following

conditions hold:

1. X
E

is stable at 0,

2. 6
t

u
t
(E)"N(0) where N(0)

is a neighbourhood of 0

(17)

then we can safely conclude that X is stable at 0.
Note that in Eq. (17) u

t
stands for the #ow of the

symmetry vector under which E is not invariant.
Assumptions (17) are not empty, and they are

met in the following example:

X"!x
1
L
1
!x

2
L
2
!x

3
L
3
,

S
1
"!x

3
L
2
#x

2
L
3
,

S
2
"!x

2
L
1
#x

1
L
2
. (18)

In this case one gets *"x
2
(x2

1
#x2

2
#x2

3
). The

set Z is composed of just one stratum: the set
x
2
"0. This stratum Mx

2
"0N is invariant under

X but is not invariant under the symmetry vectors.
It is easy to verify that the assumptions (17)(1) and
(17)(2) are satis"ed.

To illustrate all these matters we terminate this
section with an example.

Let X be the v.f. associated with the system of
di!erential equations:

x5
1
"F(x

3
) ' (x2

1
#x2

2
)n ' x

1
,

x5
2
"F(x

3
) ' (x2

1
#x2

2
)n ' x

2
,

x5
3
"G(x

3
) ' (x2

1
#x2

2
)n, (19)

where F and G are analytic, G(0)"0, F(0)O0 and
n is a natural number.

It is easy to check that X is symmetric under
the v.f.:

S
1
"x

1
L
1
#x

2
L
2
, S

2
"x

2
L
1
!x

1
L
2
. (20)

The v.f. X is clearly non-hyperbolic at 0 and the
function * associated with (X, S

1
, S

2
) is

*"(x2
1
#x2

2
)n`1 'G(x

3
). (21)

Therefore, the set Z is composed, in a neigh-
bourhood of 0, of two strata: the x

3
-axis and

the plane x
3
"0. The reader will check that, in

this case, the strata are invariant under S
1
, S

2
and X.

The restriction of X to these strata is

X
@x3v!9*4

"0 (identically), (22)

X
@x3/0

"F(0) ' (x2
1
#x2

2
)n 'S

1
. (23)

Therefore, if F(0) is positive then X
@x3/0

will be
unstable at (0, 0), and X unstable at (0, 0, 0).

Note that the above procedure fails when G(x
3
)

never vanishes, since the strata x
3
"0 is no longer

contained in the set Z. In this case we cannot say
anything about the behaviour of X near 0. But if
X is divergence-free the methods of Section 4 (ii)
can be applied to the pair (X, S

2
), since it is a couple

of divergence-free v.f. .

4. First integrals of divergence-free vector 5elds

We give in this section two methods for the
obtention of "rst integrals of divergence-free v.f. out
of symmetry vectors.

(i) We assume in this paragraph that X is diver-
gence-free with respect to )

3
(a R3 volume form)

and that LS(X)"0. When nothing more is added
)

3
is the standard volume form of R3, that is

)
3
"dx

1
'dx

2
'dx

3
.

In fact, taking into account the assumption
LS(X)"0 and the relations [45]

L
*S,X+

"LSLX!LXLS,

Lu)3
"(Div u))

3
(24)

we immediately get

LS(DivX)!LX(DivS)"0 (25)

and since X is divergence-free we get from (25)

LX(DivS)"0 (26)

That is, DivS is a "rst integral of X. Immediate "rst
integrals obtained from DivS are

LS(DivS), LSLS(DivS),2 . (27)

Note that Div S can be a trivial constant. This is
the case when the components of S are "rst-degree
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polynomials in x
1
,x

2
, x

3
, as happens when S is the

generator of a translation, rotation or dilatation.
On the other hand, if the components of S are
polynomials of degree greater than one Div S can
be a non-constant "rst integral. This is the case of
the generators of proper conformal transforma-
tions [45].

A typical conformal symmetry is

S"2x
1A

3
+
i/1

x
i
L
iB!A

3
+
i/1

x2
i B ' L1 (28)

and the "rst integral Div S is the non-constant
function 6x

1
.

(ii) We assume in this paragraph that the sym-
metry vector S is not parallel to X everywhere, that
X is divergence-free and that the symmetry condi-
tion (2) is of the form

LSX"!(DivS) 'X. (29)

Eq. (29) is, of course satis"ed, if S is divergence-
free and (X,S) is a pair of commuting v.f. .

A three-parameter family of R3 v.f. for which Eq.
(29) holds, for S"x

3
L
1
#x

2
L
2
#x

1
L
3
, is

X"(!px
1
x
2
#qx

1
x
3
#px

2
x
3
!(q#t)x2

1

#tx2
3
)L

1
# ((2t#3q)x

1
x
2
!(2t#3q)x

2
x
3
)L

2

# (!px
1
x
2
!qx

1
x
3
#px

2
x
3
!tx2

1

#(q#t)x2
3
)L

3
. (30)

Note that S is not divergence-free (DivS"1)
and that LS(X)"!X, which is just Eq. (29) when
DivS"1.

Let us now see that under the assumptions of
Section 4(ii), that is DivX"0 and assumption (29),
a non-trivial "rst integral of X can be obtained.

In fact, it is easy to check that de"ning w
1

via

w
1
"iXiS)3

, (31)

the 1-form w
1
is closed (dw

1
"0). Therefore, we can

globally write

w
l
"dI. (32)

On the other hand, and since iXdI"iSdI"0, the
function I is a "rst integral common to X and S.

I cannot become a trivial constant as X and S were
assumed to be transversal.

By following this method the reader can easily
show that the v.f. X of Eq. (30), symmetric under
S"x

3
L
1
#x

2
L
2
#x

1
L
3

possess the "rst integral

I"(q#t)x
2
[x3

1
#x3

3
!x

1
x
3
(x

1
#x

3
)]

#

p

2
x2
2
(x

1
!x

3
)2. (33)

On the other hand, when S represents the rota-
tions around the x

3
-axis the level sets of I are

revolution surfaces around the x
3
-axis. A level set

not meeting the x
3
-axis will have a cylinder-like

appearance and those level surfaces meeting the
x
3
-axis, in one or more points, will have a cone-like

appearance near these points. These two types of
level sets appear in the following example.

Let X be the R3 v.f. associated with the system of
di!erential equations

x5
1
"A!

C@
2
!

D@
4
' uBx1

!x
2
'B(u,x

3
),

x5
2
"A!

C@
2
!

D@
4
' uBx2

#x
1
'B(u,x

3
),

x5
3
"C(x

3
)#D(x

3
) ' u,

u"x2
1
#x2

2
,

C(0)"0, C@(0)O0, (34)

C, D and B standing for analytic functions of its
arguments.

It is easy to verify that X is divergence-free and
that S"x

2
L
1
!x

1
L
2

is a symmetry vector of X.
Note that X(0)"0.

The 1-form w
1

associated to the couple (X,S) is

w
1
"!x

1
(C#D ' u) dx

1
!x

2
(C#D ' u) dx

2

# uA!
C@
2
!

D@
4
' uBdx

3
. (35)
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The "rst integral of X associated with w
1

via
Eq. (32) is

I"
u

2A!C(x
3
)!

D(x
3
)

2
uB. (36)

The level sets of I, being invariant under S, are
revolution surfaces around the x

3
-axis. The level set

I~1(0) of this "rst integral contains the x
3
-axis and

the surface

2C(x
3
)#D(x

3
)u"0. (37)

Surface (37) is a cone of vertex 0 (remember that
we assumed in (34) that C@(0)O0).

The existence of invariant cones in R3 v.f. was
signalled by Dumortier et al. [39}44]. Our contri-
bution here is just having obtained the analytic
expression of them.

Note also that the x
3
-axis is a topologically iso-

lated part of I~1(0). These isolated invariant lines
have also been studied in [39}44], but using other
methods.

The level sets I~1(c), cO0, are cylinder like. This
can be seen by drawing the two-dimensional
curves:

r2

2 A!C(x
3
)!

D(x
3
)

2
r2B"c (38)

and rotating them around the x
3
-axis.

The "rst integral (36) is important in order to
prove the instability of X at 0. This is immediate by
casting X and I in cylindrical coordinates around
the x

3
-axis and having into account that I(u,x

3
)

presents a saddle point at u"0, x
3
"0. The details

of the proof are left to the reader.

5. A higher-dimensional example

We consider in this section the di!erential equa-
tion of a non-relativistic charge moving on the
x
3
"0 plane under the action of a magnetic "eld

B orthogonal to this plane.
The di!erential equations of this motion are

xK"B(x, y)y5 ,

yK"!B(x, y)x5 .
(39)

The v.f. associated to Eq. (39) is

X"x5 L
x
#y5 L

y
#B(x, y)y5 L

x5
!B(x, y)x5 L

y5
. (40)

This v.f. is divergence-free but four dimensional;
a three-dimensional v.f. (to which we can apply the
results of Section 4) can immediately be obtained
taking into account that x5 2#y5 2 is a "rst integral
of X.

We show now that when B(x, y) is symmetric
under rotations or translations a second integral of
X can be obtained (using the methods of the last
section). Note that there are other methods in order
to obtain the "rst integrals that follow. We get them
following the methods of Section 4 just for illustra-
tive purposes.

The second integral of X is obtained in this way:
(i) Assume that B is of the form B(x2#y2). In this

case it is easy to verify that LS(X)"0, S being the
divergence-free v.f.

S"!yL
x
#xL

y
!y5 L

x5
#x5 L

y5
. (41)

Note that x5 2#y5 2 is a "rst integral of S.
The v.f. XH, SH, induced by X, S on the level sets

x5 2#y5 2"k2 of x5 2#y5 2 are

XH"k cos h L
x
#k sin h L

y
!BLh,

SH"!yL
x
#xL

y
#Lh.

(42)

The vector "elds X and S are, again, divergence-
free with respect to the volume form dx'dy'kdh.
By applying to them the methods of Section 4 we
get the "rst integral

I"kx sin h!ky cos h#
1

2PB(u) du,

u"x2#y2,
(43)

that is

I"xy5 !yx5 #
1

2PB(u) du. (44)

(ii) When B"B(y) it is immediate that
LS(X)"0, S being the divergence-free v.f.

S"1 ' L
x
. (45)

Note that x5 2#y5 2 is a "rst integral of S.
The three-dimensional v.f. XH and SH induced by

X, S on the level sets x5 2#y5 2"k2 are

XH"k cos h L
x
#k sin h L

y
!BLh,

SH"1 ' L
x
.

(46)
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Since these two v.f. are divergence-free we can
proceed as above, getting the "rst integral

I"k cos h!PB(y) dy"x5 !PB(y) dy. (47)

6. First integrals and instability

We close this paper by showing how important
the "rst integrals obtained in the preceding sections
can be in the applications. Speci"cally, we now
show that if 0 is an isolated zero of X and I is a "rst
integral of X satisfying a certain technical assump-
tion then 0 is an unstable equilibrium point.

The technical assumption is
Let I(0)"0 and D

ar
be the set de"ned by

D
ar
"I~1(a)WDDxDD)r, (48)

DD DD standing for the Euclidean norm of R3. We
assume that these sets D

ar
are (for aO0) di!eomor-

phic to a disk. That is, each D
ar

is the deformation
of a two-dimensional disk.

This assumption is satis"ed if, for example,
I"x

3
!F(x

1
,x

2
), and is not satis"ed if the level

sets of I are sphere-like or cylinder-like.
Let us show now (by contradiction) that our

hypothesis imply that 0 is an unstable equilibrium
point.

Let x(t) be the solution of X starting at x
0

when
t"0; x(t) remains on the level surface I(x)"I(x

0
)

and near 0 (since we are assuming stability at 0).
Therefore, when DDx

0
DD is small, x(t) lies on a cer-

tain D
ar
. Since D

ar
has the structure of a topological

disk, the Bendixon}PoincareH theorem [47,48] can
be applied to conclude that X will vanish in a cer-
tain point d

ar
in D

ar
.

For small values of r it is clear that d
ar

ap-
proaches 0. But this contradicts the assumption
that 0 is an isolated zero of X. Therefore X cannot
be stable at 0.

Let us apply this criterion to an example.
Consider the R3 v. f. given by

(x
2
(1#x2

3
)!x

1
!x

3
) ' L

x1

#(!x
2
!x

1
(1#x2

3
)) ' L

x2

#((x2
1
#x2

2
#x

1
x
3
) ' (1#x2

3
)) ' L

x3
. (49)

It is not di$cult to check that this v.f. has an
isolated, non-hyperbolic, zero at (0, 0, 0); the eigen-
values of its linear part at (0, 0, 0) are 0 and !1$i.
Therefore, linear stability arguments are unable to
decide between stability or instability at (0, 0, 0).

On the other hand I"(x2
1
#x2

2
)/2#arctg x

3
is

a "rst integral of X. It is not di$cult to verify that
the level sets of this "rst integral are either topologi-
cal planes or topological cylinders (deformations of
ordinary plane or cylinder via di!eomorphisms):
one has just to introduce cylindrical coordinates
around the x

3
-axis and draw the level sets of the

function

r2

2
#arctg x

3
.

The level sets of I turn out to be topological
planes near (0, 0, 0). Therefore, the results of this
section can be applied and we conclude that (0, 0, 0)
is an unstable equilibrium point of X.

Note that in our example arguments based on
the computation of a one-dimensional center mani-
fold through (0, 0, 0) can also be used in order to get
the instability of X at 0.

Nevertheless, when the dimension of the center is
greater than one the criterion of this section can be
useful. This is due to the fact that to ascertain the
stability character of X

#%/5%3
(the v.f. induced

by X on a center manifold), when dimension
(Center)* 2, can be a problematic issue, as
X

@#%/5%3
is, in general, unknown, and one has to

work with just an approximation of it. On the
contrary, the arguments of this section are not
based on approximations.
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I. INTRODUCTION

This article deals with the problem of extracting information of a three-dimensional dynam
systemX, whenX is embedded into a Lie algebra of 3-D vectorfields.

This approach is interesting since up to now, as we explain later in this work, the only
considered has been that in which the generators of the Lie algebra areX and a certain number o
symmetries or pseudosymmetries ofX. Such restriction is dropped in this article.

Let us explain this in more detail.
It is well known1 that when a vectorfieldX ~v.f. in what follows! admits a symmetry vector

that is, a v.f.S satisfying

LS~X!50, ~1!

LS standing for the Lie derivative along the streamlines ofS, useful consequences on the local a
global structure ofX can be obtained: existence of local and global first integrals, limit cycle
X,2 etc.

Remember that~1! implies that the flow of the v.f.S acts on the set of solutions of th
differential equations

dx

dt
5X~x!. ~2!

In other words, the local flow ofS transforms a solution of~2! into another solution of Eq.~2!.
Sometimes the pair of v.f. (X,S) does not satisfy Eq.~1! but the equations

LS~X!5l~x!X, ~3!

l(x) being a function. In this caseS is called a pseudosymmetry ofX. The geometrical meaning
of Eq. ~3! is that the local flow ofS conservesnot the solutions of~2! but the trajectories on which
these solutions lie~a trajectory ofX is just an unparametrized solution ofX!.

Interesting geometric information on the trajectories ofX when ~3! holds can be found in
Ref. 2.

Motivated by Eqs.~1! and~3! we consider in this article thatX ~a R3 v.f. from now on! is one
of the generators of a Lie algebraA2,2 of dimension two orA3,3 of dimension three. That is,

@X,S1#5a0X1a1S1 ,
57410022-2488/2001/42(12)/5741/12/$18.00 © 2001 American Institute of Physics
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a0 ,a1PR, ~4!

rank~X,S1!52 for anyxPR3,

in the first case, and

@X,S1#5a0X1a1S11a2S2 ,
@X,S2#5b0X1b1S11b2S2 ,
@S1 ,S2#5c0X1c1S11c2S2 ,

ai ,bi ,ciPR,
rank~X,S1 ,S2!53 for anyxPR3,

~5!

in the case of an algebra of typeA3,3.
Note that@,# stands for the Lie bracket of v.f. andAi , j ( i> j ) stands for a Lie algebra withi

generators~including X! and rank (X,S1 ,..,Si 21)5 j .
We shall say thatX belongs to a certain Lie algebra ifX is one of its generators. For exampl

X belongs to the Lie algebrasA2,2 andA3,3 defined by Eqs.~4! and ~5!.
Note that the case of pseudosymmetries corresponds toa150 in Eq. ~4! and a15a25b1

5b250 in Eq. ~5!.
We shall prove in what follows that when a dynamical systemX belongs to a Lie algebra thi

information can be useful in order to get qualitative information on the orbits ofX.
This article is organized this way. Lie algebras of typeA2,2 are briefly considered in Sec. II

where their influence onX is studied. The structure constants ofA3,3 algebras are reduced to
finite number of canonical forms in Sec. III. The case of a v.f.X embedded into anA3,3 Lie algebra
is studied in Sec. IV. Illustrative examples are given in Sec. V, and some open problem
discussed in Sec. VI.

We end this section by motivating our study with some considerations of the significanc
applicability of the idea of embedding a v.f.X into a Lie algebra.

We shall refer to the illustrative example ofA2,2 algebras@that is, algebras with two generato
and rank equal 2: see Eq.~4!#. For these algebras Eq.~4! can be interpreted in two ways:

~i! as the structure equation of a Lie transformation~local! group G acting onR3 of generators
X andS, or

~ii ! as the equations defining an involutive distribution3,4 generated byX andS.

The fact thata0 and a1 in Eq. ~4! are real numbers instead of functions ofx5(x1 ,x2 ,x3) is a
useful piece of information that should be taken into account.
Therefore the philosophy of this article is the following:

~i! get X ~if you can, via computer packages, etc.! be embedded into the algebrasAr ,3(r
>3) or Ar ,2(r>2) of some Lie transformation groupG. We shall speak immediately abou
the difficulties of this process.

~ii ! apply the techniques of this article in order to get information on some structures ofX, as
first integrals, invariant sets, existence of partitions ofR3 invariant underX, integrability
via quadratures, etc.

The most difficult point is, of course, the finding of the concrete embedding ofX. In fact it may
even happen that~for structural reasons connected with the orbit structure ofX, strange or com-
plicated limit behavior of the orbits whent→1`! the embedding process will be a failur
because it does not exist at all. For example, by topological reasons it isimpossibleto get an
embedding ofX into an algebra of typeA3,2 or A2,2 if X is a dynamical system with an orbit whic
is an asymptotic ‘‘limit cycle’’~orbit of typeS1 acting as limit set of neighboring orbits!. Never-
theless, the dynamical systemX could be embedded into an algebra of typeA3,3.
d 30 May 2003 to 147.96.22.70. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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However, we havenot been able to find analytical conditions, geometric structures, etc.
that if X satisfies them, thenX cannot be embedded into an algebra of typeA3,3. Upto today open
problems are to decide

~i! whether or not a given v.f.X can be embedded into a finite dimensional Lie algebra,
~ii ! whether or not a given v.f.X can be embedded into an algebra of typeAn,3(n>3), where

n is a fixed natural number.

In general, the problem of studying the relation between the geometry of the orbits ofX and the
type of algebra into whichX can or cannot be embedded seems to be a very difficult one.

In conclussion, this article could be of interest to people working in differential equat
dynamical systems, etc., and to all those normally handling symmetry techniques in differ
equations since we offer here a certain generalization of them yielding, under some cond
first integrals, invariant sets, integrability via quadratures, foliations ofR3 invariant underX, etc.

II. R3 DYNAMICAL SYSTEMS EMBEDDED INTO A LIE ALGEBRA A 2,2

Let us now develop some consequences of the fact that our dynamical systemX is embedded
into a Lie algebra of typeA2,2, that is,

@X,S1#5a0X1a1S1 ,

a0 ,a1PR, ~6!

rank~X,S1!52.

We shall now obtain from Eq.~6! consequences of several kinds concerning the orbit structu
X. Most of these results fail when the real constantsa0 and a1 of ~6! are substituted by rea
functionsa(x) andb(x), xPR3. Therefore, most of these results cannot be obtained whenX is
embedded into a two-dimensional foliation instead of being embedded into aA2,2 algebra.

From now on all the functions v.f.’s, and differential forms of this article are assumed t
analytic (Cw). See Refs. 3–5 for the theory and applications of differential forms.

A. First integrals of X

We obtain now first integrals ofX via the construction of exact one-forms. The reader
have a look at this method whena05a150 in Ref. 3.

Our assumptions are the following:
X belongs to aA2,2 Lie algebra@see Eq.~6!# and

Div X52a1 , Div S15a0 , ~7!

a0 anda1 being the real numbers of Eq.~6! and Div Y standing for

Div Y5
]Y1

]x1
1

]Y2

]x2
1

]Y3

]x3
,

~8!
Y5Y1]11Y2]21Y3]3 .

Div Y can be alternatively defined byLYV35Div Y•V3 , V3 being the standard volume form
dx1∧dx2∧dx3 of R3.

Under these hypotheses the one-formw1 defined by

w15 i xi s1
V3 ~9!

is exact (dw150) and we can write
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ra-

ssible

: see,

er

lobal
ve

be
e non-

5744 J. Math. Phys., Vol. 42, No. 12, December 2001 Campoamor-Stursberg, Gascon, and Peralta-Salas

Downloade
w15dI, ~10!

and sincei xw150 we can write

Lx~ I !50. ~11!

ThereforeI is a global first integral ofX.
Note that I can never become a trivial constant, as this would implyw150 ~identically!,

getting a contradiction with the rank condition appearing in Eq.~6!.

B. Independent first integrals

Let us now assume thatI 1 , I 2 are two independent first integrals ofS1; this situation often
appears in physics6 asS1 usually is a v.f. easier to handle thanX ~isometries ofR3 considered as
Euclidean space, linear or affine v.f. and so on!. Under this assumption let us see that the integ
tion of X can be simplified.

Under these conditions Eq.~6! implies

2LS1
LX~ I i !5a0LX~ I i !, i 51,2, ~12!

and whena050 we get

LX~ I i !5w i~ I 1 ,I 2!, ~13!

that is,X projects to theR3 v.f.

X25w1~ I 1 ,I 2!] I 1
1w2~ I 1 ,I 2!] I 2

, ~14!

that is

dI1

dt
5w1~ I 1 ,I 2!,

~15!
dI2

dt
5w2~ I 1 ,I 2!.

Therefore, the integration ofX has been simplified.
We now summarize the results of this section: We have seen that it is, in general, impo

to get geometric information on the trajectories of theR3 v.f. X just by knowing thatX belongs to
a certain Lie algebra of v.f. More information concerning the v.f. of the Lie algebra is needed
for example, the requirements in~7!.

A similar observation can be made in relation to the study of the pseudosymmetries ofX @see
Eq. ~3!#. Namely, pseudosymmetries,per se, are insufficient in order to get first integrals and oth
geometric structures related to the trajectories ofX.

What is new in this section is the fact that we have shown the possibility of getting g
geometric information on the trajectories ofX whenno pseudosymmetries are known but we ha
discovered that our dynamical systemX is a generator of anA2,2 algebra of vectorfields.

For brevity reasons we shall not study in the following sections algebras of typeA3,2, but just
algebras of typeA3,3.

III. CLASSIFICATION OF A 3,3 ALGEBRAS

A classification list of theA3,3 algebras is given now. The proof shall not be given and will
sent on request. As we can see the classification contains 18 different types. Note that th
d 30 May 2003 to 147.96.22.70. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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written brackets betweenX, S1 andS2 vanish and have been omitted. Nevertheless, all brac
have been written in the algebra of type number one~for esthetic reasons!.

Any A3,3 algebra can be obtained from those appearing in the list by means of linear c
nations of type

X* 5a0X,

S1* 5b0X1b1S11b2S2 ,

S2* 5g0X1g1S11g2S2 , ~16!

a0 ,b0 ,g0PR a0Þ0,

b1g22g1b2Þ0.

These linear combinations arise as the generatorX ~representing the dynamical system! must be
isolated in all the algebraic manipulations; otherwise a generatorX* could be obtained mixing the
dynamics ofX with the dynamics of the v.f.S1 andS2. Therefore, the orbit structure ofX would
be unrelated to the orbit structure ofX* .

The 18 types ofA3,3 algebras are

~1! @X,Si#50, @S1,S2#50, i 51,2;
~2! @X,S1#5X;
~3! @S1,S2#5X;
~4! @X,S1#5S1;
~5! @X,S2#5S1, @S1,S2#5aS1, aPR;
~6! @S1,S2#5S1;
~7! @X,S2#5X, @S1,S2#5X1aS1, aPR\$0%;
~8! @X,S2#5X1S1, @S1,S2#5X;
~9! @X,S2#5S1, @S1,S2#52X;
~10! @X,S2#5S1, @S1,S2#5X;
~11! @X,S1#5S1, @X,S2#5aS2, aPR\$0%;
~12! @X,S1#5S1, @X,S2#5S11S2;
~13! @X,S1#5aS11S2, @X,S2#52S11aS2, aPR\$0%;
~14! @X,S1#5X, @X,S2#5S1, @S1,S2#5X1S2;
~15! @X,S1#5S2, @X,S2#52S1, @S1,S2#5X;
~16! @X,S1#5S2, @X,S2#5S1, @S1,S2#5X;
~17! @X,S1#52S12S2, @X,S2#5S2, @S1,S2#5X; and
~18! @X,S1#52S11S2, @X,S2#5S2, @S1,S2#5X.

IV. INVARIANT SETS AND FIRST INTEGRALS WHEN THE DYNAMICAL SYSTEM IS
EMBEDDED INTO AN A 3,3 ALGEBRA

We now show that it is possible to get first integrals, invariant sets and foliations inva
underX when X belongs to anA3,3 algebra. Reduction ofX to a two-dimensional v.f. is also
possible~see Sec. IV C!.

A. Global results

We get in this paragraph global results onX assuming that

LXwi5 f ~x!wi , ~17!

wi being a C` differential form of degreei ~i 51,2,3).
Define the functionsD i via
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D l5 i Xi S1
i S2

w3 , ~18!

D25 i Xi Sj
w2 , j 51,2, ~19!

D35 i S1
i S2

w2 , ~20!

D45 i Xw1 , ~21!

D55 i Sj
w1 , j 51,2. ~22!

We then get under standard manipulations4

LX~D i !5~ f ~x!1K !D i , KPR, ~23!

where the real numberK depends on the constantsai , bi , ci ( i 50,1,2) defining theA3,3 algebra
@see Eq.~5!#.

Now, Eq. ~23! implies the following.

~i! When the set$D i50% is a differential manifold~¹(D i)Þ0 for any PP$D i50%!, then the
set$D i50% is invariant underX. See Example 1 in Sec. V.

~ii ! When f 1K is a function ofD i ~in particular whenf 1K is a constant real number!, then
the sets$D i5const% form a two-foliation invariant underX.

~iii ! When f (x) is a trivial constant function andf 1K is equal to zero, then the functionD i is
a global first integral ofX.

These results give useful information on the orbits ofX and they have been obtained witho
problems in spite of the fact thatS1 andS2 are, in general, not pseudosymmetries ofX.

See the examples on these results at the end of the article.
Note that the techniques of this section can be applied toanyof the canonical algebras of th

list in Sec. III.

B. Subalgebras

We now assume that ourA3,3 algebra contains twoA2,2 subalgebras satisfying

@X,S1#5aX1bS1,

@S2,X#5a8X1b8S1,
~24!

@S2,S1#5a9X1b9S1,

a,a8,a9,b,b8,b9PR,

or

@S1* ,S2* #5cS1* 1dS2* ,

@X,S1* #5c8S1* 1d8S2* ,
~25!

@X,S2* #5c9S1* 1d9S2* ,

c,c8,c9,d,d8,d9PR,
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or both @i.e., A3,3 might contain a subalgebra satisfying Eq.~24! and another two-dimensiona
subalgebra satisfying Eq.~25!#. Note that$X,S1% in the case of Eq.~24! and$S1* ,S2* % in the case
of Eq. ~25! are ideals of dimension two ofA3,3.7

First of all, notice that we can apply the techniques of Sec. II to the pair (X,S1) of Eq. ~24!.
Note that Eqs.~24! are fulfilled by the algebras 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 13 and Eqs.~25!

are satisfied by the algebras 1, 4, 5, 6, 11, and 12.
On the other hand, algebras 13–18 satisfy neither Eqs.~24! nor Eqs.~25!. The reader will

have no difficulty in checking all these points.
We give now the geometric meaning of Eqs.~24! and ~25!. Calling F2 and F2* the two-

foliations associated with the pairs (X,S1) and (S1* ,S2* ), Eqs.~24! and~25! can be rewritten in the
form

LS2
~F2!,F2 , ~26!

and

LX~F2* !,F2* . ~27!

Accordingly,F2 andF2* can be locally integrated via the well known formulas8

D21
•~ i Xi S1

V3!5dI,

V35dx1∧dx2∧dx3 , ~28!

D5 i Xi S1
i S2

V3 ,

and

D21
•~ i S1*

i S
2*
V3!5dI* , ~29!

I and I * satisfying

LX~ I !50 ~30!

and

LX~ I * !5 f ~ I * ! ~31!

for a certain functionf.
The functionI is, of course, a local integral ofX and it globalizes to aR3 first integral ofX

when the functionD of Eq. ~28! never vanishes.
On the other hand, the geometrical meaning of Eq.~31! is that the local flow ofX acts on the

level sets ofI * . When the functionf of ~31! never vanishes,X is free from closed trajectories. I
f (I 0* )50, then closed trajectories ofX might appear on the level setI * 5I 0* .

Note thatI and I * are genuine functions, not reducing to constant functions, since in anA3.3

algebra the ranks of the pairs (X,S) and (S1* ,S2* ) cannot be lower than 2.

C. Results

We now get several results on the orbits of the dynamical systemX assuming that a pair o
first integrals common toS1 andS2 are known. For brevity’s sake, the case of only a first integ
I common toS1 andS2 shall not be studied.

See Ref. 6 for a similar use of a pair of first integrals of a symmetry of aR3 dynamical system
related to the Bessel, Poisson–Boltzmann, Emden–Fowler and Fermi–Thomas equation
d 30 May 2003 to 147.96.22.70. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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approach can be justified since in most of the applications the v.f.Si are simple v.f.; often they are
affine, or even linear v.f., and therefore the finding of their first integrals is, in general
difficult.

Consider that

LSi
~ I j !50, i , j 51,2 ~32!

that is I 1 ,I 2 are independent first integrals common toS1,S2. We then get via Eq.~5! (c0Þ0)

LX~ I i !5w i~ I 1 ,I 2! i 51,2. ~33!

ThereforeX can be written in the form

X5w1~x,y!]11w2~x,y!]2 . ~34!

Accordingly,X has been reduced to aR2 v.f.

V. EXAMPLES

Examples 1:Consider the conformal v.f.4

X5~x1
22x2

22x3
2!]11~2x1x2!]21~2x1x3!]3 ~35!

and the v.f.

S15x3]22x2]3 ,
~36!

S25x1]11x2]21x3]3 ,

with commutation relations

@X,S1#50, @X,S2#52X, @S1,S2#50. ~37!

By application of the results obtained in Secs. IV A and IV B we get

D15 i Xi S1
i S2

~dx1`dx2`dx3!5~x2
21x3

2!~2x1
22x2

22x3
2!. ~38!

On the other hand,

LX~D1!56x1•D1 . ~39!

Therefore, the setD150 is invariant underX. Note that the setD150 is just thex1-axis.
Let us now get a local first integral ofX by application of the methods of Sec. IV B. In fac

computingi Xi S1
(dx1`dx2`dx3)/D1 we get the differential form

w1

D1
5

2x1dx1

2x1
22x2

22x3
2 1

~2x2dx22x3dx3!~x1
22x2

22x3
2!

~x2
21x3

2!~2x1
22x2

22x3
2!

, ~40!

which is locally exact (w1 /D15dI). Upon integration we get the local first integralI that can be
reduced to

I 85
x2

21x3
2

x1
21x2

21x3
2 . ~41!

Example 2:Consider now the family of v.f.
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X5F~x3!~x1
21x2

2!nx1]11F~x3!~x1
21x2

2!nx2]21G~x3!~x1
21x2

2!n]3 , n51,2,3,..., ~42!

whereF andG are analytic andG vanishes on the setZ(Z,R).
Let Si ( i 51,2) be the v.f.

S15x1]11x2]2 ,
~43!

S25x2]12x1]2 .

The three v.f.X,S1,S2 form a commutative algebra. By applying to them the techniques of S
IV A and IV B we get the invariant set

D15G~x3!~x1
21x2

2!n1150, ~44!

that is, the invariant sets

x1
21x2

250,
~45!

x35z, zPZ.

On the other hand, we can also write

w1

D1
5dI, ~46!

w1 standing for the one-form

w15 i xi s2
~dx1∧dx2∧dx3!. ~47!

We get in this way

I 5
1

2
L~x1

21x2
2!2E F~x3!

G~x3!
dx3 , ~48!

L standing for Neperian logarithm, that is, a local first integral ofX.
Example 3:We now give an example related to Sec. II B.
Let Hi(x1 ,x2 ,x3) be homogeneous polynomials of degreesd1 andd2 . DefineX andS viahe

equations

X5¹H1∧¹H21a0~x1]11x2]21x3]3!,

S5¹H1∧¹H2 , ~49!

a0PR, ¹5gradient operator.

The reader will check that

@X,S#5bS, bPR. ~50!

Therefore the pair (X,S) forms anA2,2 algebra.
SinceH1 andH2 are first integrals ofS, we get from~50!

Lx~H1!5w1~H1 ,H2!,
~51!

Lx~H2!5w2~H1 ,H2!,
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that is,X projects to theR2 v.f.

w1]H1
1w2]H2

. ~52!

Note that the v.f.X of ~49! is not trivial, as it isnot a homogeneous v.f.
Note also that any first integralI (H1 ,H2) of the reduced differential equations~51! is a first

integral ofX.
Example 4:The considerations of Example 3 can be extended to nonhomogeneous fun

in this way.
Let H1 andH2 be nonhomogeneous polynomials that can be transformed into homoge

ones via a transformation of type

x1→x1
a ,

x2→x2
b ,

~53!
x3→x3

c ,

a,b,cPR1.

For example, the pairs

H15x2x3 , H25x1
21x2

21x3

and

H15x2
21x3

2, H25x1
22x3

become homogeneous under the transformations

x1→x1 , x2→x2 , x3→3
2

and

x1→x1 x2→2
2, x3→x3

2.

Under these circumstances the v.f. defined by

X5¹H1`¹H21a0~x1]11x2]21x3]3!,
~54!

S5¹H1`¹H2 ,

commutes as in Eq.~50!. Therefore, the conclusions in Example 3 are valid for the v.f. of Eq.~54!.
For example, the Lorenz dynamical system9

XL5s~x22x1!]11~2x1x31rx12x2!]21~x1x22bx3!]3, s,r ,bPR, ~55!

for the following particular values of the parameters,

s5 1
2, r 50, b51,

forms anA2,2 algebra, of the type discussed in this example, with the v.f.

S5¹~x2
21x3

2!`¹~x1
22x3! ~56!

as the reader can check.
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Example 5:We end this section with a list of second order differential equations appeari
Physics~see in Ref. 6! admitting a symmetry vectorS to which the methods of this article can b
applied~see Sec. II B!.

~5.1! x2y,xx1xy,x1x2y50:

AssociatedX:X5
2xu2x2y

x2 ]u1u]y1]x u5y,x .

Symmetry vector:S5y]y1u]u .

Commutation relation:@X,S#50.

First integrals ofS: I 15x, I 25u/y.

~5.2! y,xx1y,x /x5ey.

AssociatedX: X5S ey2
u

xD ]u1u]y1]x , u5y,x .

Symmetry vector:X5x]x22]y2u]u .

Commutation relation:@X,S#5X.

First integrals of S: I 15x2ey, I 25xu.

~5.3! y,xx1(2/x)y,x1yn50.

AssociatedX: X5S 2yn2
2u

x D ]u1u]y1]x u5y,x .

Symmetry vector:S5x]x1
2y

12n
]y1

11n

12n
u]u .

Commutation relation:@X,S#5X.

First integrals ofS: I 15x2yn21, I 25xn11un21.

~5.4! y,xx5x21/2y3/2.

AssociatedX: X5~x21/2y3/2!]u1u]y1]x , u5y,x .

Symmetry vector:S5x]x23y]y24u]u .

Commutation relation:@X,S#5X.

First integrals ofS: I 15x3y, I 25x4u.

VI. FINAL REMARKS

We have seen that when aR3 dynamical systemX lies inside anA2,2, A3,2 or A3,3 algebra
useful information on its trajectories can be obtained from this piece of information.

What happens whenX can be embedded into a Lie algebraAn,3 whenn.3? Note that now
the canonical forms of Sec. III are harder to obtain. On the other hand,An,3 might contain ideals
I containingX of lower dimensionn8, reducing the problem to an algebraAn8,3 of lower dimen-
sion. If no ideal of this type can be found, we can always apply the techniques of Sec. IV
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Considering only contractions ofX andSi with differential forms of typew3 , we can get in
this way a whole set of functionsD i j :

D i j 5 i Xi Si
i Sj

w3 , i , j 51,...,n21, ~57!

leading to the sets

D i j ~x1 ,x2 ,x3!50 ~58!

that are invariant underX @at least near the pointsP on which~58! defines a differential manifold
that is¹(D i j )(P)Þ0#.

Therefore, whenn is high we can get, via Eq.~58!, a collection of more and more se
invariant underX.

An open problem is to study if the numberN of invariant sets in~58! is bounded or not when
n increases and whether or not these invariant sets accumulate~whenN is unbounded!. Does the
topology of the trajectories ofX ‘‘feel’’ that X is included in anAn,3 algebra~without proper
ideals! whenn is large?

Another open problem meriting a separate study is this one: Assume thatX is included among
the generators of anA`,3 algebra whereA`,3 is an infinite Lie algebra, free from finite or infinite
proper ideals containingX. Let us call themsimple`-algebras.

Equation~57! can now be written in the form

D i j 5 i Xi Si
i Sj

w3 , ~59!

and, therefore, invariant sets ofX can be obtained this way.
The question arises again of classifying topologically the v.f.X that can be included in a

simpleA`,3 algebra.
A final question is this one: can a dynamical systemX embedded into a Lie algebraAn,2 , An,3

or A`,2 , A`,3 possess a strange attractor?9
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Abstract

A new method for obtaining time independent first integrals of Lotka–Volterra systems is given. By applying this method
new integrable cases are found. q 2000 Elsevier Science B.V. All rights reserved.

Keywords: Lotka–Voltera; Integrability; Symmetry vectors

1. Introduction

In the last years much effort has been directed to
Ž 3.obtaining local and global first integrals of 3D R

w xdynamical systems 1–7 . Many of these studies are
Ž .centered around the Lotka–Volterra L-V systems

w x8,9 ; that is, the quadratical 3D vectorfields given
by:

x sx a x qa x qa x ,Ž .˙1 1 11 1 12 2 13 3

x sx a x qa x qa x ,Ž .˙2 2 21 1 22 2 23 3

x sx a x qa x qa x . 1Ž . Ž .˙3 3 31 1 32 2 33 3

w xInteraction models of biological species 8,9 , cer-
w xtain hydrodynamic equations 10–14 , autocatalytic

w xchemical reactions 15–19 , . . . are based on the L-V
systems.

The non-wandering points of these systems have
w x w xbeen studied by Chenciner 19 , Huang 20 and

w xHirsch 21 .

) Corresponding author. Fax: q34-1-3945497.

Nevertheless the dynamics of the L-V systems is
far from being understood, although certain results
about the organization of the orbits are known for
particular values of the parameters a appearing ini j

Ž . w x Ž w xEq. 1 . For instance, Gao and Liu 22 see also 23 ,
where first integrals of the inhomogeneous L-V

.equations are computed have recently obtained new
time dependent and time independent first integrals

Ž .of Eqs. 1 under certain restrictions on the coeffi-
cients a .i j

Following their research line we obtain in this
paper new time independent first integrals of L-V
systems. Our method is based on the computation of
generalized symmetry vectors S of the vectorfield
Ž . Ž .v.f. X associated with Eq. 1 .

A generalized symmetry vector S of X is a v.f.
satisfying

w xX ,S sa x , x , x Xqb x , x , x S , 2Ž . Ž . Ž .1 2 3 1 2 3

w xHere, , stands for the Lie–Jacobi bracket of vector-
fields.

Ž . w xNote that Eq. 2 reduces to X ,S saX for the
w xsymmetry v.f. of X 24 . It is for this reason that we

call S generalized symmetry vector of X.

0375-9601r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
Ž .PII: S0375-9601 00 00011-6
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We shall see immediately that, under some addi-
tional conditions, local first integrals of X can be

Ž .obtained when a v.f. S satisfying 2 has been com-
puted. Vectorfields of this kind have recently been

w xconsidered 25–29 , but using techniques different
than ours.

The paper is organized as follows: the theoretical
basis of our method appears in Section 2. The appli-
cations of this method to L-V systems are given in
Section 3. Some open problems are presented in
Section 4.

2. Theory

Let X be a 3D v.f. It is indifferent at this point
whether or not X is a L-V v.f. Let S and S be 3D1 2

v.f. satisfying

w xX ,S sa x Xqb x S , 3aŽ . Ž . Ž .1 1 1 1

w xS ,S sa x Xqb x S , 3bŽ . Ž . Ž .2 1 2 2 1

w xS , X sa x Xqb x S , 3cŽ . Ž . Ž .2 3 3 1

DsDet X ,S ,S /0 ,Ž .1 2

xs x , x , x , 3dŽ . Ž .1 2 3

where D stands for the determinant whose rows are
the components of X ,S ,S .1 2

Ž . Ž .Note that Eq. 3a is just Eq. 2 . Therefore the
v.f. S is a generalized symmetry of X.1

We now mention two important cases for which
Ž . Ž . Ž .the requirements 3a , 3b , 3c are satisfied.

Ž .1. X ,S ,S are 3D v.f. and S ,S is a pair of1 2 1 2

commuting symmetries of X. Note that in this
case we get b sb sb sa s0. And also that1 2 3 2

X is not necessarily a L-V vectorfield.
2. X is a L-V v.f.; S is a generalized linear symme-1

Ž .try of X ;S sx E qx E qx E dilatation .2 1 1 2 2 3 3

Under these assumptions it is immediate to check
Ž .that requirements 3 are satisfied with b sb s2 3

a s0. We shall see in the next section that under2

certain restrictions on the coefficients a of Eq.i j
Ž .1 a linear v.f. S satisfying the above require-1

ments can be computed.

Ž .We now show that under assumptions 3 a local
first integral of X can be obtained.

In fact, let w be the one-form defined by1

< <w sX S w , 4Ž .1 1 3

where w stands for dx ndx ndx .3 1 2 3

It is straightforward to check that w is integrable1
Ž . @i.e. w ndw s0 . As usual is the operator con-1 1

w xtracting v.f. and differential forms 30 , d, stands for
the exterior derivative of forms and n for the exte-
rior product of differential forms.

Now, w being integrable admits an integrating1
Ž .factor f, that is a function f such that d fw s0.1

There is no way, in general, of finding f, but we
shall show immediately how an integrating factor

Ž .can be found when Eqs. 3 are fulfilled.
We now indicate the geometrical meaning of Eqs.

Ž . Ž .3 . First of all note that by 3a the couple of v.f.
Ž . w xX ,S is a 2-distribution DD 30 , that is a pair of1 2

v.f. closed under the Lie–Jacobi bracket. On the
Ž . Ž .other hand 3b and 3c can be written in the

compact form:

LL DD ;DD , 5Ž .S 2 22

where LL stands for the Lie derivative operator.
Ž .Eq. 5 just means that S is a symmetry of DD2 2

Žthe flow of S induces a reshufling of the leaves, or2
.level sets, of DD . This symmetry is external to DD2 2

Ž .by Eq. 3d . Note that under an internal symmetry of
DD each of the level sets of DD is invariant under2 2

the symmetry.
We now give the analytical expression of the

integrating factor f of w .1

f is given by

y1y1 < < <fsD s X S S w . 6Ž .Ž .1 2 3

In fact, it is not too difficult to check that

< <X S w1 3
d s0 . 7Ž .ž /D

One has to remember and apply repeatedly the
identities:

< <Y Y s0 ,

< <dY qY dsLL ,Y

< < <LL ,Z sLL Z yZ LL ,Y Y Y

LL sLL LL yLL LL ,wY ,Z x Y Z Z Y
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Note that f is not defined where D vanishes.
Once f is known we can state

fw sdI , 8Ž .1

where I stands for a local function of x , x , x that1 2 3
Ž .can be obtained from 8 via quadratures.

Ž .The function I defined in 8 is a local first
integral of X since

< <X fw sX dI s0 . 9Ž . Ž . Ž .1

Sometimes I, or certain functions of I, can glob-
Žalize. This is the case when the function D see Eqs.

Ž ..3 never vanishes. These matters will become
clearer in the next section.

3. Applications

In this section X stands for a L-V vectorfield, S1

for a linear v.f., that is

S s b x qb x qb x EŽ .1 11 1 12 2 13 3 1

q b x qb x qb x EŽ .21 1 22 2 23 3 2

q b x qb x qb x E , 10Ž . Ž .31 1 32 2 33 3 3

and S for the dilatation v.f. x E qx E qx E .2 1 1 2 2 3 3

It is clear that under these assumptions we get

w x w xS ,S s0 , S , X sX . 11Ž .2 1 2

On the other hand we are looking for generalized
Ž .symmetry v.f. of type 10 satisfying

w xX ,S ya Xq B x qB x qB x S ,Ž .1 1 1 1 2 2 3 3 1

a , B , B , B gR . 12Ž .1 1 2 3

Ž . Ž .Note that 12 is just a particular case of Eq. 3a .
We shall immediately see that even if assump-

Ž . Ž .tions 10 and 12 are quite restrictive we will be
able to obtain many solutions for S leading to new1

first integrals of X. In fact, using the computer
packages MAPLE V and MATHEMATICA we have
obtained the solutions for S listed in Table 1.1

To any of the nine S v.f. appearing in this Table1

corresponds a first integral I obtained by integration
of the equation

< <X S w1 3
sdI . 13Ž .

< < <X S S w1 2 3

The generalized symmetry vectors S of the Table1

are valid under the restrictions on a listed in thei j

second column of the Table.

Table 1
Table of S leading to new integrable cases1

Different cases S Restrictions on a1 i j

a33
Case number 1 x E qx E q x E a sa /01 1 2 2 3 3 13 23a13

a22
Case number 2 x E q x E qx E a sa /01 1 2 2 3 3 12 32a32

a a a a a11 31 11 21 31
Case number 3 x E qx E q x E s s /01 1 2 2 3 3a a a a a21 21 13 21 33

a a a a a11 21 11 21 31
Case number 4 x E q x E qx E s s /01 1 2 2 3 3a a a a a31 31 12 22 32

a a a a a22 32 12 22 32
Case number 5 x E q x E q x E s s /01 1 2 2 3 3a a a a a12 12 13 23 33

a ya a31 11 33
Case number 6 x E qx E q x q x E a sa , a sa /01 1 2 2 1 3 3 12 32 13 23a a13 13

a a ya a a a31 32 22 31 21 23
Case number 7 x E qx E q x q x E a sa , a sa , s /01 1 2 2 2 3 3 11 31 13 33a a a a a21 23 21 31 13

Case number 8 x E qx E a sa , a s01 1 2 2 13 23 33
a a a13 31 33

Case number 9 x E qx E q x q x E a sa , a s0, a s0, a /01 1 2 2 1 3 3 12 32 11 21 23a a a23 23 23
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The readers will have no problems in verifying
that our restrictions on a are, in general, differenti j

w xand complement those appearing in Ref. 22,23 .
We are not giving the explicit expression of the

first integrals associated with S in all the cases1

listed in the Table and for all the values of ai j

compatible with the restrictions. But in order to see
how the vanishing of D implies the non-global char-
acter of I we give the explicit expression of I in the
following case.

Consider case 1 of the Table with the following
values of a :i j

a s2, a s3, a sa s1 ,11 12 13 23

a s4, a s5, a s6 ,21 22 31

a s7, a s10 . 14Ž .32 33

In this case we get

Xsx 2 x q3 x qx E qx 4 x q5x qx EŽ . Ž .1 1 2 3 1 2 1 2 3 2

qx 6 x q7x q10 x E ,Ž .3 1 2 3 3

S sx E qx E q10 x E ,1 1 1 2 2 3 3

S sx E qx E qx E . 15Ž .2 1 1 2 2 3 3

Therefore the integrating factor f is given by

y1
fs 18 x x x x qx . 16Ž . Ž .Ž .1 2 3 1 2

The expression of fw is1

34 x q43 x1 2
y dx118 x x qxŽ .1 1 2

14 x q23 x 11 2
q dx q dx . 17. Ž .2 318 x x qx 9 xŽ2 1 2 3

As fw sdI the expression of I is1

1 43 7 1< < < < < < < <ln x y ln x q ln x q ln x qx . 18Ž .3 1 2 1 29 18 9 2

Ž .We see in 18 that I is not defined on the set
formed by the union of the planes x s0, x s0, x1 2 3

s0, x qx s0. This set coincides with the set1 2
Ž .where the function f of 16 is not defined.

Let us point out that it is very difficult to say
Ž .when the local first integral I of Eq. 8 can global-

ize or not by means of functions of type:

ba a
exp I , exp exp I , . . .Ž . Ž .Ž . Ž .

and so on a,b ,gN . 19. Ž .

When I is of the form
p

< <Is r ln c x qc x qc x ,Ý j j1 1 j2 2 j3 3
js1

c ,c ,c gR, r gQq, pgN , 20Ž .j1 j2 j3 j

globalization is indeed possible. In fact I sglobal
Ž Ž ..aexp I for a certain agN, and I becomes aglobal

polynomial.
Ž .As we see in 20 , a crucial role to obtain a

Ž `.smooth global first integral C is played by the fact
that r is a rational number, this being a veryj

sensitive arithmetical condition, which is no longer
Ž .fulfilled when the coefficients a of Eq. 1 arei j

perturbed. Even so, global smooth first integrals can
be useful for the perturbed differential equations
Ž . w xKAM theory 31–36 . This fact makes them useful
when the perturbed v.f. X is free from them.

Ž .When the local first integral appearing in 8 is
Ž .not of type 20 its possible smooth globalization can

only be decided by a case by case study. On the
other hand globalization of the first integral I of Eq.
Ž .8 on the domain

<Os x , x , x x )0� 4Ž .1 2 3 i

is easier to discuss. In fact D/0 on O implies
Žglobalization of I on O remember that O is a

.simply connected domain . It remains to solve the
problem of knowing when D is free from zeros on O
Ž .note that D is a fourth degree polynomial . Never-
theless in cases 1, 2, 3, 4, 5 and 8 listed on the Table
D decomposes in a product of four linear factors, and
in cases 6, 7 and 9 D decomposes in a product of
two linear factors an a quadratic one. Therefore the
discussion of the sign of D on O can be carried out
without difficulty.

4. Final remarks

On looking at the Table in this paper we observe
that the numbers of restrictions on the coefficients

Ž .a is one cases 1 and 2 and two or three in the resti j

of the cases 3 to 9. All the restrictions are of
algebraic type, that is, they are given by polynomials
in the a . Restrictions of a similar type can be foundi j

Ž w x.in the literature see Ref. 22,23 .
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It is an open question to ascertain whether or not
first integrals of L-V systems can be obtained by
algorithms such that the coefficients a are free toi j

move inside open sets of R9. These possible open
sets can be defined by inequalities of algebraic type
on the a .i j

It is also of certain interest to determine the
Ž .structure of the limit sets w of the solutions x t of

L-V systems when a first integral is known. Note
Žthat sometimes like in the example of the last

. 3 � 4section I globalizes on R y Ds0 and the limit
Ž .sets must be contained either in the level sets IsC

of I or in the singular set Ds0. Note that the set
Ž .Ds0 is an invariant set of X the proof is easy .

The classification of the w-limit sets of v.f. on
w xcompact surfaces is well known 37 but very little is

known when the orbits of the dynamical system lie
on unbounded surfaces. Note that the level sets of I
are in general unbounded surfaces.

Acknowledgements

The authors wish to acknowledge the contribution
´of Diego Sanjuan Martinez in offering valuable help´

in the computer related issues during the course of
this work. We thank also one of the referees for
hisrher constructive remarks.

References

w x Ž .1 M. Strelcyn, Phys. Lett. A 133 1988 207.
w x Ž .2 L. Brenig, Phys. Lett. A 133 1988 378.
w x Ž .3 Y. Nutku, Phys. Lett. A 145 1990 27.
w x Ž .4 L. Cairo, M. Feix, J. Math. Phys. 33 1992 2440.
w x Ž .5 M. Plank, J. Math. Phys. 36 1995 3520.
w x Ž .6 M. Plank, J. Math. Phys. 33 1996 887.
w x Ž .7 M. Plank, J. Math. Phys. Nonlinearity 9 1996 887.
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Abstract

Conditions in order that the trajectories of a force-free vectorfield lie on the level sets of a given function are studied. Force-
free vectorfields symmetric under translations, rotations and roto-translations are also considered. 2001 Elsevier Science B.V.
All rights reserved.

1. Introduction

Force-free magnetic fields are characterized by the
differential equation

(1)curlB = λB,

whereλ may be a constant (a real number) or a func-
tion of (x, y, z) ∈ R

3, and B is the magnetic induc-
tion vectorfield (v.f. in what follows). They were first
introduced by Lundquist, Lust and Schluter [1] to al-
low magnetic fields and large currents to exist in stellar
matter (solar corona [2], the environment of magnetic
stars [3] and large domains in the magnetosphere of
accreting magnetic compact objects) with vanishing
Lorentz force [4]. In fact, the magnetic field formed
within a reversed field pinch machine or a sphero-
mak configuration relaxes to a minimum energy state
which is well approximated by a force-free magnetic
field [5].

On the other hand, the magnetic clouds ejected
from the Sun, producing the major perturbations to the
Earth’s radiation belts during the satellite era seem to

* Corresponding author.
E-mail address: dperalta@fis.ucm.es (D. Peralta-Salas).

possess force-free magnetic fields which have budded
from the solar magnetic field [6].

A similar equation (curlv = λv) concerning the
velocity field of an ideal stationary fluid arises in
hydrodynamics, as well as in electromagnetism and
accoustics [7]. Eigenfunctions of the curl operator and
helicity and geometrical implications of it are studied
in Ref. [8].

The case of constantλ is particularly interesting
since in this case the trajectories of the v.f.v or B can
have a complicated topology [9] (they can be ergodic
in open sets ofR3) due to a lack of integrability ofv
or B, as it happens with theABC solutions [10]

v = (
A sin(z) + C cos(y),B sin(x) + A cos(z),

C sin(y) + B cos(x)
)
,

(2)A,B,C ∈ R, ABC �= 0.

In contrast with Refs. [9–11] where the authors study
chaotic force-free v.f. we consider in this Letter
force-free v.f. with ordered trajectories. This ordered
behaviour can be ascertained via several visualization
techniques [12], using dyes and the smoke of certain
gases in the fluid.

An order is introduced by forcing the trajectories
to lie on the level set of a functionI . I is then a

0375-9601/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0375-9601(01)00766-6
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first integral ofv or B. Assuming that the functionI
is given, necessary conditions have been found in
order thatI can hold a force-free v.f. These conditions
take, in general, the form of one or several third-order
partial differential equations.

Interesting related references on streamline dynam-
ics of magnetic fields and Hamiltonian representation
can be found in Ref. [13].

In brief, the Letter is organized as follows: a sum-
mary of the basic facts concerning symmetries and
first integrals is given in Section 2. Two geometri-
cal configurations incompatible with force-free v.f. are
given in Section 3, while geometrical configurations
compatible with (non-trivial) force-free v.f. are stud-
ied in Section 4. A similar study when first integralsI

and Euclidean symmetries ofB coexist appears in Sec-
tion 5. Finally, some open problems are discussed in
Section 6. Appendix A develops an specific calcula-
tion related to Section 5.

2. A brief account on symmetries and first
integrals of v.f.

We now give the definitions and some examples
concerning the terms symmetry vector and first inte-
gral for three-dimensional v.f.

A smooth (C∞) function I (x, y, z) is called a first
integral of theR3 v.f. v when the streamlines ofv are
contained in the level sets

(3)I (x, y, z) = c

of I .
It is easy to prove that whenI and v are smooth

condition (3) can also be written

(4)∇I · v = 0,

∇ standing for the gradient operator

(5)∇I =
(

∂I

∂x
,
∂I

∂y
,
∂I

∂z

)
.

For example, the functionI = x2 + y2 + z2 is a first
integral of the v.f.

(6)v = (
yz + xz, zy − xz,−x2 − y2).

Therefore, the streamlines (or trajectories) ofv lie on
the spherical surfacesx2 + y2 + z2 = c.

On the other hand, the v.f.S is called a symmetry
of v when the local flowθt associated toS transforms,
for every fixed value oft , every streamline ofv into
another streamline ofv. It is a classical result [14] that
this condition is satisfied when

(7)[S,v] = µv,

[ , ] standing for the Lie–Jacobi bracket andµ being a
function of(x, y, z).

For example, the reader can check that the v.f.

v = (
F(z)

(
x2 + y2)n

x,F (z)
(
x2 + y2)n

y,

(8)G(z)
(
x2 + y2)n)

has the two symmetry vectors

S1 = (x, y,0),

(9)S2 = (−y, x,0),

F (z),G(z) standing for arbitrary functions ofz andn

being any real number.
Analogously the v.f.v defined by

v =
((

−C,z

2
− D,z

4
u

)
x − yB,(

−C,z

2
− D,z

4
u

)
y + xB,C + Du

)
,

C(z),D(z),B(u, z),

(10)u = x2 + y2,

has the symmetry vectorS = (−y, x,0). C,D,B

stand for arbitrary functions of their arguments. Note
that in Eqs. (10)C,z and D,z stand fordC/dz and
dD/dz.

Many applications of these two concepts will appear
in the following sections of the Letter. Specifically we
shall study:

(i) The conditions under which a given function
I (x, y, z) can be a first integral of a non-trivial
(v �= 0) force-free v.f. (whenλ �= 0).

(ii) Same questions whenv is also symmetric un-
der translations, rotations or roto-translations (he-
licoidal motions).

3. First integrals incompatible with force-free
vectorfields

We show in this section that certain functionsI

cannot be first integrals of non-trivial force-free v.f.
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That is, if I is one of these functions the force-
free condition (1) (λ �= 0) and Eq. (4) implyB = 0.
CallingF the set of these functions, we show thatI =
ϕ = tan−1(y/x) andI = θ = tan−1[(x2 + y2)1/2z−1]
belong toF .

Note that the level sets of these functions are, re-
spectively, half-planes through thez-axis and right cir-
cular cones centered on thez-polar axis.

The fact thatF is not the empty set is in contrast
with the following well known property of divergence-
free v.f. (solenoidal v.f.):any function I admits a
solenoidal v.f.B satisfying Eq. (4). In fact, any v.f.B
defined by

(11)B = ∇I ∧ ∇J

is divergence-free (remember that div(a ∧ b) = b ×
curl(a) − a curl(b)) and admitsI as a first integral.
J stands for an arbitrary differentiable function.

It is an open problem to characterize the functionsI

belonging toF . Can this characterization be achieved
in terms of the derivatives ofI (up to a finite or
an infinite order) and a finite or infinite number of
partial differential equations to which the derivatives
of I should satisfy? How these partial differential
equations characterizingF can be obtained?

We remind the readers that if a functionI satisfies
(see Eq. (4))

(12)∆I · B = 0

then the trajectories ofB, that is, the curves satisfying

(13)
dx

Bx

= dy

By

= dz

Bz

,

are contained in the level sets ofI :

(14)I (x, y, z) = const.

WhenI (x, y, z) is analytic and not trivial (identically
constant) the level sets ofI have a very simple
structure: they resemble smooth differential manifolds
of dimension two except, maybe, on the pointsx0 ∈
R3 such that∇I (x0) = 0. As an example, consider
I (x, y, z) = x2 + y2 − z2. The level sets of this func-
tion,

(15)x2 + y2 − z2 = C,

are differential manifolds of dimension two forC �= 0.
ForC = 0 the set

(16)x2 + y2 − z2 = 0

is a cone: a differential manifold except on the point
(0,0,0), where∇(x2 + y2 − z2) = 0.

Therefore a global function satisfying Eq. (12) is
an element of order concerning the trajectories ofB.
What it is shown in this section is that certain types
of ordering (that is, certain level sets associated toI )
are not compatible with the force-free condition (1)
(λ �= 0) and, consequently, force-free magnetic fields
cannot be embedded into that kind of surfaces.

Note that in all what follows the force-free condi-
tion (1) has been used withλ(x, y, z) a constant real
number.

(a) Let us first consider the caseI = ϕ =
tan−1(y/x).

In cylindrical coordinates(r, ϕ, z) B takes the form

(17)B = Br(r,ϕ, z)ur + Bz(r,ϕ, z)uz,

(ur ,uϕ,uz) standing for the unitary vectors along
the coordinate linesr = C1, ϕ = C2, z = C3 (Ci =
real constants).

The force-free condition (1) becomes

(18a)
1

r
Bz,ϕ = λBr ,

(18b)Br,z − Bz,r = 0,

(18c)−1

r
Br,ϕ = λBz.

Note thatBz,ϕ stands for∂Bz/∂ϕ, etc.
From (18a) and (18c) we get

(19)Br,ϕϕ + λ2r2Br = 0,

and therefore

(20)Br = A1(r, z)cos(λrϕ) + A2(r, z)sin(λrϕ),

A1 andA2 being arbitrary functions of(r, z).
From (20) and (18c) we get

(21)Bz = A1 sin(λrϕ) − A2 cos(λrϕ),

and, finally, from (18b) we get

(A2,z − A1,r )sin(λrϕ) + (A1,z − A2,r)cos(λrϕ)

(22)− λA1ϕ cos(λrϕ) − λA2ϕ sin(λrϕ) = 0.

The functions sin(λrϕ), cos(λrϕ), ϕ sin(λrϕ) and
ϕ cos(λrϕ) are linearly independent (as functions of
the variableϕ), as can be checked by computing of
their Wronskian.
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Therefore we get from (22)

A2,z − A1,r = 0,

A1,z − A2,r = 0,

λA1 = 0,

(23)λA2 = 0,

and, sinceλ �= 0,

(24)A1 = A2 = 0.

Therefore

(25)Br = Bz = 0.

Accordingly B = 0. This is the only v.f. compatible
with the first integralI = ϕ and the force-free condi-
tion (1).

(b) Let us study now the case ofI = θ = tan−1[(x2

+ y2)1/2z−1].
In spherical coordinates (ρ,ϕ, θ ) B will have the

form

(26)B = Bρ(ρ,ϕ, θ)uρ + Bϕ(ρ,ϕ, θ)uϕ,

(uρ,uϕ,uθ ) standing for the unitary vectors along the
coordinate linesρ = C1, ϕ = C2, θ = C3 (Ci are real
constants).

The force-free condition (1) becomes

(27a)
1

ρ sinθ
(sinθBϕ),θ = λBρ,

(27b)
1

ρ sinθ
Bρ,ϕ − 1

ρ
(ρBϕ),ρ = 0,

(27c)− 1

ρ
Bρ,θ = λBϕ.

From (27a) and (27c) we get

(28)sinθBρ,θθ + cosθBρ,θ + λ2ρ2 sinθBρ = 0.

The particular solutions of (28) corresponding to the
initial values Bρ(θ = 0) = 1, Bρ,θ (θ = 0) = 0 and
Bρ(θ = 0) = 0, Bρ,θ (θ = 0) = 1 have been obtained
via a MAPLE V computer package and are

B(1)
ρ = 1− 1

4
λ2ρ2θ2 +

(
− 1

96
λ2ρ2 + 1

64
λ4ρ4

)
θ4

+ o
(
θ6),

B(2)
ρ = θ +

(
−1

3
λ2ρ2 + 1

9

)
θ3

+
(

8

675
− 4

135
λ2ρ2 + 1

45
λ4ρ4

)
θ5 + o

(
θ6).
(29)

Therefore we can write

(30)Bρ = A1(ρ,ϕ)B(1)
ρ + A2(ρ,ϕ)B(2)

ρ ,

A1 and A2 being arbitrary functions of their argu-
ments.

Bϕ can be obtained through (27c),

(31)Bϕ = − 1

λρ
Bρ,θ ,

but for brevity reasons its expression has not been
written.

Introducing the expressions ofBρ andBϕ into (27b)
and equating the coefficients of the powers ofθ i (0 �
i � 5) we get

(32a)θ0: A1,ϕ = 0,

(32b)θ1: A2,ϕ + A2,ρ

λ
= 0,

(32c)θ2: A1,ρ = 0,

θ3:
(

A2,ρ − λ

3
A2,ϕ

)(
λρ2 − 1

3λ

)

(32d)+ 1

6λ
A2,ρ + A2

3λρ
= 0,

(32e)θ4: A1 = 0,

θ5: A2,ϕ

(
8

675
− 4

135
λ2ρ2 + 1

45
λ4ρ4

)

− A2,ρ

(
31

540λ
− 1

9
λ3ρ4 − 1

54
λρ2

)

(32f)+ A2

(
λρ

27
− 4

9
λ3ρ3

)
= 0.

Therefore we getA1 = 0.
On the other hand, from (32b) we get

(33)A2,ρ = −λA2,ϕ.

Introducing (33) into (32d) and (32f) we get

(34)

(
5

18
− 4

3
λ2ρ2

)
A2,ϕ + A2

3λρ
= 0,(

187

2700
− 13

270
λ2ρ2 − 4

45
λ4ρ4

)
A2,ϕ

(35)+
(

λρ

27
− 4

9
λ3ρ3

)
A2 = 0.
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It is immediate to see that Eqs. (34) and (35) have
only the common solutionA2 = 0. Therefore,Bρ = 0,
Bϕ = 0 andB = 0.

A much more general problem arises at this point:
that of getting sufficient/necessary conditions in order
that a given functionI (x, y, z) cannot be a first
integral of a (non-trivial) force-free vectorfield.

4. First integrals compatible with force-free
vectorfields

Some examples are given in this section of first inte-
grals whose level sets are compatible with non-trivial
solutions of Eq. (1). Such is the case of cylindrical,
planelike and spherical level sets defined by the func-
tions

(i) I
(
x2 + y2),

(ii) I (z),

(36)(iii ) I
(
x2 + y2 + z2).

(i) In cylindrical coordinatesB will have the form

(37)B = Bϕ∂ϕ + Bz∂z.

Writing Eq. (1) in these coordinates we get [15]

r2Bϕ,z = Bz,ϕ,

−Bz,r = λrBϕ,

(38)
(
r2Bϕ

)
,r

= λrBz,

λ being a real number.
Trying solutions of the formB(r) we getBϕ = g(r)

with g(r) an arbitrary function ofr ; the remaining two
equations become

Bz = 1

λr

(
r2g(r)

)
,r

,

(39)−
(

1

λr

(
r2g(r)

)
,r

)
,r

= λrg(r).

Note that the second of Eq. (39) is the linear differen-
tial equation

(40)r
d2g

dr2
+ 3

dg

dr
+ λ2rg = 0,

which always possesses local non-trivial solutions
(g �= 0) and this implies thatB �= 0.

The reader can check that according to the singular-
ity theory of linear differential equations [15] Eq. (40)
has a regular analytic solution atr = 0 and, therefore,
analytic solutions valid for all values ofr. These solu-
tions are, in fact, Bessel functions of the first kind.

(ii) In a Cartesian coordinate systemB is now of the
form

(41)B = Bx∂x + By∂y

and writing Eq. (1) in Cartesian coordinates we get

−By,z = λBx,

Bx,z = λBy,

(42)By,x − Bx,y = 0.

Let us try solutions of the formB(z). With this as-
sumption Eqs. (42) become

−By,z = λBx,

(43)Bx,z = λBy,

which we write in the form

Bx = −1

λ
By,z,

(44)−1

λ
By,zz = λBy.

The second of these equations is a second-order, lin-
ear, differential equation with constant coefficients
possessing non-trivial solutions (By �= 0). These so-
lutions are, in fact, trigonometric functions. Therefore
B �= 0.

(iii) In a spherical coordinate systemB takes now
the form

(45)B = Bϕ∂ϕ + Bθ∂θ .

Writing Eq. (1) in spherical coordinates and assuming
thatB does not depend onϕ we get

ρ2 sin2 θ Bϕ = g(ρ),

− 1

λρ2 sinθ
g,ρ = Bθ ,

(46)
1

λρ2 sinθ

(
ρ2Bθ

)
,ρ

= Bϕ,

g standing for an arbitrary function ofρ.
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The first and second of Eqs. (46) defineBϕ andBθ

and the third equation becomes the second-order dif-
ferential equation

(47)
d2g

dρ2
+ λ2g(ρ) = 0,

whose solutions are, again, trigonometric functions.
Therefore we get again non-trivial solutions of

Eq. (1) lying on the spheresρ = const.

5. First integrals and Euclidean symmetries
compatible with force-free vectorfields

Force-free v.f. symmetric under rotations, transla-
tions and roto-translations are studied in this section.
The physical motivation of this is the following. The
magnetic inductionB(r) created by a current density
j(x ′, y ′, z′) is proportional to the well known expres-
sion [16]

(48)
∫

j (r ′) ∧ (r − r ′)
‖r − r ′‖3 d3r ′.

It is easy to see thatB inherits the Euclidean sym-
metries of j; this is essentially due to the fact that
Euclidean symmetries conserve volumes, the norm of
vectors and the exterior product∧.

Under these conditions, and due to the fact that

[SEucl,B] = 0,

(49)divSEucl = 0, divB = 0,

the one-formw1 defined by

(50)w1 = (B ∧ SEucl) · dr

is closed [17] (dw1 = 0) in the entire space and, hence,
is exact. Therefore we can write

(51)(B ∧ SEucl) · dr = dI.

The functionI defined in (51) is a first integral of
both B and SEucl. Note that the expressiondw1 = 0
can be written in the form

(52)curl(B ∧ SEucl) = 0

on account of Eqs. (49).

Since everySEucl can be reduced (via an orthogonal
transformation) to one of the v.f.

S = (0,0,1),

S = (−y, x,0),

(53)S = (−y, x, a), a �= 0,

our following task will be that of getting necessary and
sufficient conditions in order to know if there is a non-
trivial force-free v.f. symmetric under one of the v.f.
of Eqs. (53) and a given first integralI (remember
that I is symmetric underS, that is,∇I · S = 0, as
just explained).

5.1. We now study the case in whichS represents a
translation along thez-axis. We shall see thatI must
satisfy a set of two partial differential equations in
order to have a non-trivial force-free v.f.B compatible
with I andS = ∂z.

SinceI must be invariant underS, I must be of type
I (x, y). On the other hand, Eq. (51) becomes

By = I,x,

(54)Bx = −I,y,

and sinceB must be independent ofz, we get from
Eq. (1)

Bz,y = λBx,

−Bz,x = λBy,

(55)By,x − Bx,y = λBz,

and upon substitution of (54) into (55) we get

Bz,y = −λI,y,

Bz,x = −λI,x,

(56)I,xx + I,yy = λBz.

We see in Eqs. (56) thatBz is just the Laplacian of
the functionI timesλ−1. The first two equations (56)
imply thatI must satisfy the consistency equations(
∆I + λ2I

)
,x

= 0,(
∆I + λ2I

)
,y

= 0,

(57)∆ = Laplacian.

Note that (57) is automatic (whenλ = 0) whenI is an
harmonic function.
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It is easy to show that Eqs. (57) have non-trivial
solutionsI �= 0 just by puttingI = f (x) + g(y). We
obtain in this way the equations

f ′′′(x) + λ2f ′(x) = 0,

(58)g′′′(y) + λ2g′(y) = 0,

having as solutions

f (x) = A1 sin(λx) + A2 cos(λx) + A3,

g(y) = B1 sin(λy) + B2 cos(λy) + B3,

(59)A1,A2,A3,B1,B2,B3 ∈ R.

ThereforeI , and accordinglyB, is non-trivial (B �= 0)
and periodic in the variablesx, y (period 2π/λ).

5.2. Let us now study the caseS = (−y, x,0) un-
der whichB must be invariant. We shall use cylindri-
cal coordinates(r, ϕ, z) and we prove thatI (r, z) must
satisfy two third-order partial differential equations in
order to get a non-trivial v.f.B havingI as a first in-
tegral. These partial differential equations admit solu-
tions forI whose level sets are tori.

All along this section and the next one we shall
expandB in terms of the orthonormal basis

(60)

{
∂r ,

∂ϕ

r
, ∂z

}
.

Note thatB is of the formB(r, z) because of the sym-
metry S. On the other hand, condition (51) can be
written in the form

(61)det

(
dr r dϕ dz

Br Bϕ Bz

0 r 0

)
= dI,

from which we get

−rBz = I,r ,

(62)rBr = I,z.

On the other hand, writing Eq. (1) for this case we get

−Bϕ,z = λBr ,

Br,z − Bz,r = λBϕ,

(63)(rBϕ),r = λrBz,

and substituting (62) into (63) we get

Bϕ,z = −λ

r
I,z,

I,zz

r
+

(
I,r

r

)
,r

= λBϕ,

(64)(rBϕ),r = −λI,r .

The second of Eqs. (64) givesBϕ in terms ofI and its
derivatives. Substituting this value ofBϕ into the other
two equations we get the third-order partial differential
equations

(65)
1

λ

[
I,zzz

r
+

(
I,r

r

)
,rz

]
= −λ

r
I,z,

(66)

[
r

λ

(
I,zz

r
+

(
I,r

r

)
,r

)]
,r

= −λI,r .

If a given I does not satisfy Eqs. (65) and (66) then
the only solution to the problem of this section is the
trivial oneB = 0.

See Appendix A for the reduction of Eqs. (65)
and (66) to a single second-order partial differential
equation (depending on an arbitrary constant).

Eqs. (65) and (66) admit solutions of the form

(67)I = a(z) + b(r)

if a(z), b(r) satisfy the equations

(68)a′′′(z) + λ2a′(z) = 0,

(69)b′′′(r) − b′′(r)

r
+ b′(r)

(
λ2 + 1

r2

)
= 0.

Constant solutions of Eq. (68) correspond to stream-
lines of B ordered along the cylinderr = const, and
constant solutions of Eq. (69) correspond to an order-
ing along the planesz = const.

Let us now see that an ordering of the streamlines
of B along tori is also compatible with the functionsI

defined in (67).
In fact, choose the solution cos(λz) of Eq. (68). This

solution presents a strict maximum atz = 2kπ (k is an
integer). On the other hand, consider the initial values

b(r0) = a, b′(r0) = 0, b′′(r0) < 0,

r0 > 0,

of Eq. (69).
The solutionb̂(r) corresponding to them will have

a maximum atr = r0. ThereforeI = cos(λz) + b̂(r)

has a strict maximum at(2kπ, r0), and the level sets of
I (r, z) are ovals near the points(2kπ, r0) of the(r, z)

plane. These ovals become tori in three-dimensional
space by rotation around thez-axis.
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5.3. We now study the final case of roto-transla-
tions. The symmetry vectorS is in this caseS = (−y,

x, a) (a �= 0). Only the casea = 1 shall be considered
since no additional difficulties arise whena �= 1.

Two third-order partial differential equations forI

are again obtained, and certain solutions of them are
studied.

First of all, the first integralI must take the form
I (r, u)u = z − ϕ sinceI must be invariant underS.
AnalogouslyB must be of the formB(r, u) sinceB
andS commute.

On the other hand, equation(B ∧ S) dr = dI be-
comes

(70)det

(
dr r dϕ dz

Br Bϕ Bz

0 r 1

)
= dI,

from which we get

I,r = Bϕ − rBz,

(71)I,u = rBr .

From Eq. (1) we get, after substitutions ofBr andBz

in function ofBϕ andI ,

− 1

r2Bϕ,u + 1

r2 I,ur − Bϕ,u = λ

r
I,u,

1

r
I,uu + 1

r2Bϕ − 1

r
Bϕ,r − 1

r2I,r + 1

r
I,rr = λBϕ,

(72)
1

r
Bϕ + Bϕ,r + 1

r2 I,uu = λ

r
(Bϕ − I,r ).

Eliminating Bϕ,r between the second and third of
Eqs. (72) we get

1

r

(
1+ 1

r2

)
I,uu + λ − 1

r2 I,r + 1

r
I,rr

(73)=
(

λ − 2

r2
+ λ

)
Bϕ.

Therefore we have obtainedBϕ as a function ofI and
its derivatives.

If we now substituteBϕ in the first and second of
Eqs. (72) we get two third-order partial differential
equations forI . These two equations are not written
because of their length. In practical case it is better to
work with the first two of Eqs. (72) and (73) directly.

Note that forI = I (r) the first two equations (72)
and Eq. (73) become

(74)Bϕ,u = 0,

(75)
1

r2 Bϕ − 1

r
Bϕ,r − I,r

r2 + I,rr

r
= λBϕ,

(76)
λ − 1

r2 I,r + 1

r
I,rr =

(
λ − 2

r2 + λ

)
Bϕ.

Eq. (76) implies thatBϕ only depends onr . The first
of these equations holds automatically due to the third
one. After substitution ofBϕ (from (76)) into (75) we
get a third-order differential equation inI whose local
solutions are guaranteed. Therefore Eqs. (76) and (71)
defineB onceI is known.

We shall now prove that Eqs. (72) and (73) have
solutions of the form

I = a(r) + b(r)u,

(77)b(r) �= 0.

Writing the classical Chandrasekhar equation [18]

(78)∆ψ + λ2ψ = 0

in cylindrical coordinates, it is easy to see that it admits
a solution of the form

(79)ψ = A(r)u

if A(r) satisfies the linear differential equation

(80)r
d2A

dr2 + dA

dr
+ λrA = 0.

The v.f.B is given by

B = λ−1 curl
(
curl(aψ)

) + curl(aψ),

(81)a = (0,0,1).

After some computationsB can be written in the form

B =
(

A′

λ
− A

r

)
∂r + (−u′A)

∂ϕ

r
+

(−u(r ′A)′

λr

)
∂z.

(82)

Note thatB commute withS = (−y, x,1) = ∂ϕ + ∂z.
Therefore equation(B ∧ S) dr = dI becomes

det

(
dr r dϕ dz

Br Bϕ Bz

0 r 1

)
= dI,

Br = A′

λ
− A

r
,

Bϕ = −uA′,

(83)Bz = −u(r ′A)′

λr
.
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We get in this way

(84)I =
(

rA′

λ
− A

)
u + G(r),

G(r) standing for a function ofA and its derivatives
(after calculations it is easy to see thatG(r) is just a
constant function).

Note that the coefficient ofu in Eq. (84) cannot
identically vanish (remember thatA is a non-trivial
solution of Eq. (80)).

Eq. (84) gives the form of a first integralI depend-
ing onu.

6. Final remarks

We have shown in this Letter that certain geomet-
rical configurations (planes through a line, circular
cones through a point) are forbidden as first integrals
of a non-trivial force-free v.f. Others, like tori, parallel
planes, circular cylinders, spheres are not forbidden.

A first open question is: canI = const represent tori
with more than one handle and force-free v.f.B exist
with I as first integral? We cannot see at present any
physical consequence (on the motion of the charges)
of these toruslike configurations, but perhaps some
readers can.

At the mathematical level the following question
arises: It is well known that the streamlines of the mag-
netic inductionB can be closed loops. Stokes theorem
plus Eq. (1) makes this impossible to occur for force-
free v.f. having a first integralI with planelike level
sets (note that planelike level sets are just topological
planes; on these level sets a loop is deformable to a
point). The question is that of ascertain if a force-free
v.f. can have closed trajectories or not when the level
sets ofI are not topological planes or whenB is free
from global first integrals. Note that if the reply is neg-
ative if B �= 0 on the tori introduced in Section 5.2 the
streamlines ofB are dense on each of these tori [19].
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Appendix A

In the assumed absence of dependence onϕ the first
of Eqs. (64) can be written

(A.1)Bϕ + λ

r
I = f (r),

where f (r) stands for an arbitrary function ofr .
Substituting (A.1) into the third of Eqs. (64) one im-
mediately get

(A.2)f (r) = c

r
,

c being an arbitrary constant.
Therefore we can write

(A.3)Bϕ = c − λI

r
.

Substituting (A.3) into the second of Eqs. (64) we
finally get the second-order differential equation

(A.4)
I,zz

r
+

(
I,r

r

)
,r

= λ

(
c − λI

r

)
,

that is,

(A.5)I,zz + I,rr − I,r

r
+ λ2I − λc = 0,

as we desired.
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Abstract

Using a remarkable connection between pairs of first integrals of the magnetic fieldB and first integrals of the Newton
Lorentz equation̈x = ẋ ∧ B, it is shown that, under certain conditions, the wires creatingB are unreachable for electric charg
moving under the action ofB. Part of these mathematical results are of interest to electrical engineers, helping to keep th
lines electrically neutral.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

It is a well-known fact that, for appropriate initia
conditions(x0, ẋ0), a negative unit charge, unit mas
test particle, subjected to the Coulombian elec
field E created by the fixed charges(q1,x1), (q2,x2),
q1, q2 > 0, via Newton equations

(1)ẍ = −E(x), x ∈ R
3,

can reach the pointsx1 or x2 [1].

* Corresponding author.
E-mail address: dperalta@fis.ucm.es(D. Peralta-Salas).

1 Supported by an FPU grant from Ministerio de Educación, C
tura y Deportes, Spain.
0375-9601/$ – see front matter 2004 Elsevier B.V. All rights reserved
doi:10.1016/j.physleta.2004.09.084
In fact, this can be achieved simply by choos
ẋ0 = 0, x0 sufficiently nearx1 or x2 and (xi − x0) ‖
(x1 − x2) (i = 1,2).

This result obviously holds when the negative u
charge is substituted by a unit (positive) mass
the couple (q1, q2) by the pair (m1,m2) of (positive)
masses at the fixed points(x1,x2).

We show in this Letter that for the magnetic fie
B(x) created by a straight line wire (Ws ) or a circular
wire (Wc) the solutions of the Newton–Lorentz equ
tions[1] (unit charge, unit mass test particle again)

(2)ẍ = ẋ ∧ B(x),

cannot reach the wiresWs or Wc .
.

http://www.elsevier.com/locate/pla
mailto:dperalta@fis.ucm.es
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In fact, this result is valid as well whenWs repre-
sents not just a straight line wire but a finite numb
of straight line parallel wires and also whenWc rep-
resents a finite number of circular wires, lying on p
allel planes, with collinear centers lying on a straig
line L orthogonal to these planes. In any of these t
cases the wiresWs or the wiresWc cannot be reache
by a unit charge, unit mass particle moving accord
to Eq.(2).

The proof of our unreachability results is based
the knowledge of an adequate number of first in
grals of Eq.(2). It will be seen that, in addition tȯx2,
Eq. (2) can possess additional first integralsI when
two first integrals (I1, I2) of the magnetic induction
vector field B are known (see Section2). This re-
sult connecting, under certain conditions, the first in
grals(I1(x), I2(x)) of B(x) and those of the Newton
Lorentz equations(2), is apparently new (see Eqs.(6)
and (7)). An application of it in order to get unreach
bility when B is created either by a finite number
parallel straight line wires or by a finite number
circular wires (lying on parallel planes with colline
centers on a straight lineL orthogonal to these plane
appears in Sections3 and 4. Finally, a discussion o
Eq. (6), which is basic in the obtention of the first in
tegral(7), is given in Section5.

Note, finally, that when Eq.(2) is substituted by the
corresponding relativistic equation

d

dt
(γ ẋ) = ẋ ∧ B(x),

(3)γ = (
1− ẋ2)−1/2

, c = light velocity= 1,

the above unreachability results hold, as well. This
due to the fact thaṫx2 is again a first integral of Eqs.(3)
(this is immediately seen, since

ẋ · d

dt
(γ ẋ) = 0,

via quite easy computations). Therefore,γ is a posi-
tive constant, and Eqs.(3) can be written in the form:

(4)ẍ = ẋ ∧ B̃(x), B̃(x) = γ −1B(x),

which is just Eq.(2) with B rescaled (by the consta
factorγ −1). The reader will check in Sections3 and 4
that a factor like this has no effect on the unreacha
ity results of these sections.
2. First integrals of Newton–Lorentz equations
induced by pairs of first integrals of the magnetic
induction B

We show in this section that ifI1(x), I2(x) (x ∈ R
3)

are independent and orthogonal first integrals ofB,
that is

B∇I1 = 0, B∇I2 = 0,

(5)∇I1∇I2 = 0, rank(∇I1,∇I2) = 2,

where∇ is gradient operator, and if

(6)
ẍ · ∇I1

λ(∇I1)2 = d

dt

(
A(x, ẋ)

)
,

then

(7)I = I2(x) − A(x, ẋ),

is a first integral of Eq.(2).
Note that by orthogonality of(I1(x), I2(x)) we

mean orthogonality oftheir level setsI−1
1 (a), I−1

2 (b)

(a, b ∈ R). The meaning of the factorλ in Eq.(6) will
be clear immediately. Note also that the symbold/dt

in Eq. (6) stands for the derivative along the strea
lines of theR

6 vector fieldXL given by

(8)XL = ẋ
∂

∂x
+ (ẋ ∧ B)

∂

∂ ẋ
.

Therefore, Eq.(6) can also be written in the form

(9)
ẍ · ∇I1

λ(∇I1)2 = ∂A

∂x
ẋ + ∂A

∂ ẋ
(ẋ ∧ B).

The proof of Eq.(7) now follows.
By Eq.(5) we can write

(10)B = λ(∇I1 ∧ ∇I2), λ = λ(x),

and therefore Eq.(2) can also be written in the form

(11)ẍ = λẋ ∧ (∇I1 ∧ ∇I2),

or, equivalently,

(12)ẍ = λ
{
(ẋ · ∇I2)∇I1 − (ẋ · ∇I1)∇I2

}
,

and by the orthogonality of the pair(I1(x), I2(x)) we
get from Eq.(12)

(13)ẍ · ∇I1 = λ(ẋ · ∇I2)(∇I1)
2,

that is

(14)
ẍ · ∇I1

2 = ẋ · ∇I2 = d
(I2),
λ(∇I1) dt
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and by Eq.(6) Eq.(14)becomes

(15)
dA

dt
= dI2

dt
,

that is,I2 − A is a first integral of Eq.(2) (or of the
vector field in(8)), as we desired to prove.

As an application of this result, consider thatx =
(x, y, z) and that(I1 = z, I2 = I2(x, y)) are two first
integrals ofB. It is immediate to show that the ma
netic induction vector fieldB = ∇(z) ∧ ∇(I2(x, y)) is
parallel to thex–y plane (note thatλ = 1) and that
(z, I2(x, y)) are orthogonal functions.

On the other hand, Eq.(6) holds, sinceI1 = z im-
plies

(16)
ẍ · ∇I1

(∇I1)2
= z̈,

and thereforeA = ż. Accordingly, the first integralI
in Eq.(7) becomes

(17)I = I2(x, y) − ż.

Note that vector fieldsB of type

(18)B = λ∇z ∧ ∇I2(x, y),

include the magnetic induction created by a finite
of parallel wires parallel to thez-axis. In fact[1] B is
in this case given by

(19)B =
N∑

i=1

Ji(y − yi,−(x − xi),0)

(x − xi)2 + (y − yi)2
,

(xi, yi,0) standing for the intersections of the straig
line wires with thez = 0 plane andJi for the current
intensities flowing along these wires.

On the other hand,I1 = z and

(20)I2(x, y) = −1

2

N∑
i=1

Ji ln
(
(x − xi)

2 + (y − yi)
2),

are independent first integrals of the vector field(19).
Note that it is not difficult to getI2, sinceB can be

considered to be a plane divergence-free vector fi
For these vector fields[2] it is a classical result that
first integral (ourI2) of them can always be found (v
quadratures). It is precisely using this classical re
that the functionI2 in (20)has been obtained from th
expression ofB in Eq.(19).
Using the first integralsI1 = z and I2 of B (see
Eqs.(19) and (20)) it is straightforward to check tha
Eq.(18)holds (withλ = 1), as we desired to prove.

Another application of the first integralI in (7)
appears in Section4, in relation with the magnetic in
ductionB created by circular wires.

We now prove, in Sections3 and 4, some unreach
ability results when electric charges move in the m
netic field created by certain configurations of strai
line or circular wires.

3. Unreachability in the magnetic field of parallel
wires

We now show that an electric charge under the
tion of the magnetic field created by a finite numb
of straight line parallel wiresWi (i = 1, . . . ,N), will
never reach the wires. This property holds for any
tial condition(x0, ẋ0), x0 ∈ R

3 − ⋃N
i=1 Wi .

As a consequence of this fact the set of para
wires constituting a power line[3] remain practically
uncharged when the wires are surrounded by an
mosphere of positive or negative ions. This neutra
is, in its turn, important since charged wires would
tract or repel via Coulombian forces tending to dest
the parallel wire configuration.

Note that although direct current transmission is
exception, rather than the rule, in power transmiss
in a number of applications HVDC (high-voltage d
rect current)[4] is often the preferred option, as in:

– Undersea cables;
– Endpoint-to-endpoint long-haul bulk power tran

mission without intermediate taps, for example
remote areas;

– Interconnecting unsynchronized AC systems.

The case of an infinite sequence of wires can
studied in a similar way, by substituting in Eqs.(22)
and (23)the finite sum

∑N
i=1 by infinite converging

series. This, of course, requires some restrictions oJi

andri =
√

x2
i + y2

i .
Consider the magnetic inductionB created by the

wires[1]:

B =
N∑

Ji
(y − yi,−(x − xi),0)

(x − xi)2 + (y − yi)2
,

i=1
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(21)Wi = (x = xi, y = yi, z = z),

whereJi is current intensity flowing across theWi

wire. This vector field possesses the two first integr

I1 = z,

(22)I2 = −1

2

N∑
i=1

Ji ln
(
(x − xi)

2 + (y − yi)
2).

It was shown in Section2 (see Eqs.(17) and (20)) that
the function

I = I2 − ż

(23)= −1

2

N∑
i=1

Ji ln
(
(x − xi)

2 + (y − yi)
2) − ż,

is a first integral of the Newton–Lorentz equations(2)
whenB is given by Eq.(21).

Note that whenN > 1 angular momentumLz is not
conserved since the physical system is not symme
under rotations around thez-axis.

Therefore, for initial conditions(x0, ẋ0), x0 /∈⋃N
i=1 Wi , and taking into account thatẋ2 is also a first

integral of Eq.(2), we get:

(3.1) ż(t) is bounded;

(3.2) −1

2

N∑
i=1

Ji ln
(
(x(t) − xi)

2 + (y(t) − yi)
2)

− ż(t) = I (x0, ẋ0).

Therefore, the functionI2(x(t)) would be bounded
But I2 is unbounded (see Eq.(22)) when x(t) ap-
proaches one of the wires indefinitely. This is a co
tradiction, and we conclude that the wires are unrea
able.

4. Unreachability in the magnetic field of circular
wires

We prove that a charged particle moving inR
3 un-

der the action of a magnetic fieldB created by a fi-
nite number of planar circular wiresWi , i = 1, . . . ,N

(their planes being parallel and their centers lying
a straight lineL orthogonal to the planes) will neve
reach the wires. This fact holds for any initial con
tions(x0, ẋ0), x0 ∈ R

3 − ⋃N
i=1 Wi .

Indeed, in cylindrical coordinates (r,φ, z), with L

acting asz-axis, sinceS = ∂φ is a symmetry ofB
(LSB = 0,LS standing for the Lie derivative along th
streamlines ofS [6]), and as∂φ andB are divergence
free, by a well-known result[5,6]

(24)(∂φ ∧ B) · dx = dI2,

whereI2 is a non-trivial first integral ofB when∂φ and
B are non-parallel and∧ stands for the standard vect
product inR

3.
Note that Eq.(24) is linear inB, and thereforeI2

has the remarkable property of being given by

(25)I2 =
N∑

i=1

I i
2,

I i
2 being defined by

(26)
(
∂φ ∧ Bi

) · dx = dI i
2,

Bi being the magnetic induction vector field crea
by each of the wiresWi .

We write now Eq.(24) in cylindrical coordinates

(27)det

(
dr r dφ dz

0 r 0
Br 0 Bz

)
= dI2,

since on account of the Biot–Savart law[1] Bφ = 0.
We can also write Eq.(27) in the form

(28)rBz = ∂I2

∂r
, −rBr = ∂I2

∂z
.

We now computeB = rotA taking into account tha
[1] A = Aφuφ (uφ = ∂φ/r) and that the expression o
rotA in cylindrical coordinates is

(29)B = rotA = 1

r

∣∣∣∣∣∣
ur ruφ uz

∂
∂r

∂
∂φ

∂
∂z

0 rAφ 0

∣∣∣∣∣∣ ,
obtaining

Br = −1

r

∂

∂z
(rAφ), Bφ = 0,

(30)Bz = 1

r

∂

∂r
(rAφ),

and therefore, by Eq.(28) we getI2 = rAφ . Note that
(ur ,uφ,uz) stand for the standard orthonormal ba
associated to the cylindrical coordinates.

For a circular wire centered at(0,0,0) and ra-
diusai on which a currentJi (Ji �= 0) is flowing, the
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expression ofAφ is known[1] in terms of elliptic in-
tegrals and hence we get

I i
2 = rAi

φ

(31)= 4Ji
√

air

ki

[(
1− k2

i

2

)
K

(
k2
i

) − E
(
k2
i

)]
,

K,E andki defined by

K
(
k2) =

π/2∫
0

dx√
1− k2 sin2 x

,

E
(
k2) =

π/2∫
0

√
1− k2 sin2 x dx,

(32)k2
i = 4air

(ai + r)2 + z2
.

When the center of the circular wire is(0,0, zi) I2 is
given by equations similar to(31) and(32) obtained
by substituting in these formulaek2

i by k̃2
i given by

(33)k̃2
i = 4air

(ai + r)2 + (z − zi)2 .

Note that the functions̃k2
i , K andE have the following

properties:

(4.1) (k̃2
i )|z-axis= 0;

(4.2) (k̃2
i )|circular wire(r=ai , z=zi) = 1;

(4.3) lim∞ k̃2
i = 0;

(4.4) k̃2
i � 1 andk̃2

i = 1 iff r = ai , z = zi ;
(4.5) K(k2) andE(k2) are analytic functions on an

intervalk2 � m (m < 1) [7];
(4.6) limk̃2

i →1− K(k̃2
i ) = +∞, limk̃2

i →1− E(k̃2
i ) = 1

andK(0) = E(0) = π/2.

As a consequence of these properties it follows
I2 is a global function onR3 − ⋃N

i=1 Wi . The key of
the proof is that the term in(31) (1 − k2

i /2)K(k2
i ) −

E(k2
i ) vanishes forki = 0.

On the other hand (recall property (4.2)) we g
from Eq.(31):

lim
r→ai
z→zi

I i
2 =

{+∞ whenJi > 0,

−∞ whenJi < 0,

(34)lim
r→ai
z→z

I2 = lim
r→ai
z→z

(
N∑

I i
2

)
= ∞.
i i i=1
Let us first apply Eq.(14) to I1 = φ, I2 = I2(r, z) in
order to get the first integralI2(r, z) + r2φ̇ of Eq. (2),
whereI2 = ∑N

i=1 I i
2 andI i

2 is given by Eq.(31).
In Cartesian coordinates we have

φ = arctan
y

x
, ∇φ = 1

r2 (−y, x,0),

(35)(∇φ)2 = 1

r2 , r2 = x2 + y2,

and then we get

(36)∇φ ∧ ∇I2 = 1

r

∂I2

∂z
ur − 1

r

∂I2

∂r
uz,

which by Eq.(28)becomes:

(37)∇φ ∧ ∇I2 = −Bzuz − Brur = −B.

Since the couple(φ, I2) satisfies Eqs.(5) and (10)with
λ = −1, by virtue of Eq.(35), Eq. (14) can be easily
transformed into the form

(38)
dlz

dt
= −dI2

dt
, lz = xẏ − yẋ.

Therefore,I2 + lz is a first integral of Eq.(2). In cylin-
drical coordinates the first integral is

(39)I2(r, z) + r2φ̇.

Note that this first integral is a kind of generalized a
gular momentum around thez-axis.

Unreachability immediately follows from the pre
ence of the first integralṡx2 = ṙ2 + r2φ̇2 + ż2 and
I2(r, z) + r2φ̇.

Indeed, the constancy oḟx2 implies that rφ̇ is
bounded. Therefore, near the wire (r = ai , z = zi ) the
termr2φ̇ is also bounded.

On the other hand, the equationI2(r, z) + r2φ̇ =
I2(r0, z0) + r2

0 φ̇0 (r0 �= ai and z0 �= zi ) implies the
boundedness ofI2 near the wire (r = ai , z = zi ), con-
tradicting Eq.(34).

5. Discussion of Eq.(6)

We now prove that ifI2 is a first integral ofB and
I1 is defined by[2]

(40)iBΩ2 = dI1, Ω2 = i∇I2(dx ∧ dy ∧ dz)

‖∇I2‖2
,

that is

(41)∇I1 = ∇I2 ∧ B
2 ,
‖∇I2‖
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(i) B = ∇I1 ∧ ∇I2, that isλ = 1 in Eq.(10).
(ii) The 1-form w1 = Bdx is closed (provided tha

rotB = 0). Therefore (locally),dI3 = Bdx.
(iii) The functions (I1, I2, I3) define an orthogona

(local) coordinate system inR3.
(iv) Eq. (6) holds (λ = 1) if and only if the vector field

∂/∂I1 = ∂I1 is an Euclidean symmetry ofB.

First of all, note that by Eq.(41) the level sets
of I1 and I2 are orthogonal (∇I1∇I2 = 0). On the
other hand, since rotB = 0 on (R3-wires), the func-
tion I3 in (ii) is (locally) well defined. The orthog
onality of the gradients of(I1, I2, I3) is immediate
from Eq. (41), and we obviously get rank(∇I1,∇I2,

∇I3) = 3. Therefore, the set of functions(I1, I2, I3)

forms an orthogonal (local) coordinate system.
The proof of (iv) is based on projecting Eq.(6)

on the orthonormal basis{u1,u2,u3} associated to th
functions(I1, I2, I3).

Remembering the useful equalities:

∂Ii = ∇Ii

‖∇Ii‖2
,

(42)ẍ =
3∑

i=1

ai(I , İ)ui , I = (I1, I2, I3)

Eq.(6) becomes

(43)
a1(I , İ )
‖∇I1‖ =

3∑
i=1

(
AIi (I , İ)İi + Aİi

(I , İ )Ïi

)
,

where the subscripts denote, as usual, partial diffe
tiation with respect to the corresponding variable.

Now, via straightforward computations we get

ẋ =
3∑

i=1

∂x
∂Ii

İi ,

ẍ =
3∑

i,j=1

(
∂2x

∂Ii∂Ij

İi İj + ∂x
∂Ii

Ïi

)

(44)=
3∑

i,j,k=1

(
1

‖∇Ii‖Γ i
jkİj İkui + 1

‖∇Ii‖ Ïiui

)
,

Γ i
jk standing for the Christoffel symbols[8], defined

by

Γ i
jk = 1

2
gim

(
∂gjm

∂Ik

+ ∂gkm

∂Ij

− ∂gjk

∂Im

)
,

(45)gij = 0 if i �= j andgii = 1

‖∇Ii‖2 .

Therefore, Eq.(43)becomes

a1(I , İ)
‖∇I1‖ = 1

‖∇I1‖2

(
Ï1 +

3∑
j,k=1

Γ 1
jkİj İk

)

(46)=
3∑

i=1

(
AIi (I , İ )İi + Aİi

(I , İ)Ïi

)
.

Since Eq.(46) must hold identically inİi and Ïi we
get from(46)

A = İ1

‖∇I1‖2
,

Γ 1
11 = ‖∇I1‖2 ∂

∂I1

(
1

‖∇I1‖2

)
,

Γ 1
12 = Γ 1

21 = 1

2
‖∇I1‖2 ∂

∂I2

(
1

‖∇I1‖2

)
,

Γ 1
13 = Γ 1

31 = 1

2
‖∇I1‖2 ∂

∂I3

(
1

‖∇I1‖2

)
,

(47)Γ 1
22 = Γ 1

23 = Γ 1
32 = Γ 1

33 = 0.

The reader can check now that Eqs.(45) and (47)im-
ply

∂gii

∂I1
= 0, i = 1,2,3,

and therefore

(48)L∂I1
(g) = 0.

That is,∂I1 is a Killing vector field of the Euclidean
metricg defined in Eq.(45).

On the other hand,

(49)B = ‖B‖u3 = ‖∇I1‖‖∇I2‖‖∇I3‖∂I3,

and since

∂

∂I1

(‖∇Ii‖2) = 0

we get

(50)[∂I1,B] = 0.
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Eqs.(48) and (50)show that when(6) holds then∂I1

is an Euclidean symmetry ofB.

6. Conclusion

For certain realistic configurations of power lin
we have shown that the wires creating a magn
field B are unreachable for electric charges wh
move under the action ofB. This result has been ob
tained by using a remarkable relation between fi
integrals of the Newton–Lorentz equation and first
tegrals of the corresponding magnetic field.

As an application of the study in Section5 con-
sider the magnetic field created byN > 1 straight-
line wires concurrent at(0,0,0). We can apply to
this physical system the results of this section si
I2 = x2 + y2 + z2 is a first integral ofB and conclude
that Eq.(6) cannot hold because forN > 1 this system
of wires is free from continuous groups of Euclide
symmetries (although it possesses a radial symme
Remember that continuous Euclidean symmetries
just translations, rotations and roto-translations
that an Euclidean symmetry of the wires is, autom
ically (via the Biot–Savart law), a symmetry of th
magnetic field created by the wires.

It is an open problem to prove, or disprove, u
reachability for wires geometrically located inR3 in
positions different from that considered in this Le
ter or which are no longer straight lines or circle
An easier question is: can unreachability be pro
for wires W̃i which are perturbations of the wiresWi

studied in this Letter? By the term perturbation
mean a small deformation of the original wire. Th
deformation is free and need not have any partic
symmetry. For instance, ifWi is a circular wire then
a perturbationW̃i could be an ellipse with very sma
eccentricity.

The reader can have a look at Ref.[9] where Ulam
pointed out the numerous open problems arising in
study of the magnetic fields created by electric c
rents flowing in wires such as the existence of erg
icity and knotted magnetic orbits.
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Abstract

The partial differential equations defining the invariant sets of Newtonian, second order, analytic differential equati
obtained and discussed. An example is given for whichnocodimension one invariant sets of typex3 = g(x1, x2) exist. Invariant
sets for relativistic equations of motion and for equations of motion of the rays of light in geometrical optics are also con
some examples are given and it is shown that the invariant sets for these equations must be planes; this is in stron
with the invariant sets of ordinary Newton equationsẍ = F(x, ẋ) allowing the presence of “curved” invariant surfaces. All the
results are apparently new.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A setI ⊂ R
n is called invariant under the dynamical systemX

(1)

X: dxi

dt
= Xi(x),

x ∈ R
n,

X = Xi∂i,

∂i = ∂

∂xi
,

xi = Cartesian coordinates,

1� i � n,



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when for initial conditionsx0 ∈ I the solution of Eq. (1)x = ϕ(t; x0), t ∈ E(0), corresponding tox0, lies inI , that
is

(2)
ϕ(t; x0) ⊂ I,

∀t ∈ E(0),

}

E(0) standing for the open interval aroundt = 0 for whichϕ(t; x0) is defined.
It is well known [1] that whenI is a differential submanifold defined by the set of zeros of severalC∞ or Cw

functionsfi(x) (i = 1,2, . . . , r < n) and

(3)rank


∇f1

...

∇fr




|I
= r,

then the invariance ofI under (1) is equivalent to the equations

(4)

ḟ1 = LX(f1)|I = 0,
...

ḟr = LX(fr )|I = 0,




LX(fi)|I standing for the restriction of the functionLX(fi) to the setI , ∇fi representing the gradient vector fie
(∂fi/∂x1, . . . , ∂fi/∂xn) andLX(fi) being(∇fi · X). LX(fi) is called the Lie derivative offi along the streamline
of X [1].

Invariant sets were discussed by Fermi [2–4] and Benettin et al. [5] in relation with the problem of whethe
or not they disappear when an integrable Hamiltonian systemXH0 is perturbed:XH0+Hpert. For similar stability
questions see Refs. [6–12].

For invariant manifolds passing through either a hyperbolic or non-hyperbolic zero ofX (and its behaviour unde
perturbations), and for relations between invariant hyperplanes and Darbouxtheory of integrability for polynomia
vector fields see Refs. [13–16].

We are interested in this Letter in the study of invariant sets of second order differential equations, spe
invariant sets of Newtonian equations. These invariant sets will be defined by:

(5)

f1
(
x1, . . . , xn

) = 0,
...

fr

(
x1, . . . , xn

) = 0,

ḟ1 = ∇f1 · ẋ = 0,
...

ḟr = ∇fr · ẋ = 0,

ẋ = (
ẋ1, . . . , ẋn

)
,

rank(∇f1, . . . ,∇fr ) = r < n.




The firstr equations in (5) define, via the rank condition in (5), a codimensionr differential submanifold in the
configuration spaceRn of the variables (x1, . . . , xn). The set of all Eqs. (5) defines a codimension 2r differential
submanifold of phase space.

Note that the first of Eqs. (5),{f1 = 0, . . . , fr = 0}, have little to do with what are called in Mechani
“holonomous constraints” [17].

Note also that invariant sets of type (5) are poorly studied. No references to them have been found ex
the particular case of the equation defining the geodesics in Riemannian or pseudo-Riemannian spaces.
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We will always refer along this Letter tothe first of Eqs. (5) when speaking about the invariant sets, s
the second of Eqs. (5) is just a consequence of the first one obtained via differentiation with respect to
variablet . Note also that the second of Eqs. (5) just expresses the fact that the velocity of the unit mass is
tangent to the submanifold{f1 = 0, . . . , fr = 0} for everyt ∈ E(0).

Concerning Newtonian equationsẍ = F(x, ẋ) we only consider in this Letter the cases

(6)ẍ = 0,

and

(7)
ẍi =

n∑
j,k=1

ai
jk(x)ẋj ẋk,

i = 1, . . . , n,




these last equations being a generalization of the differential equations of the geodesics of a Riemannian or pse
Riemannian space [18]. In fact, callinggij (x) the non-degenerate metric tensor the connection coefficients−ai

jk(x)

in Eq. (7) are given by

(8)
−ai

jk =
n∑

m=1

1

2
gmi(gjm,k + gkm,j − gjk,m),

gij = gji .




Note that (8) implies thatai
jk(x) = ai

kj (x), and therefore a non-symmetricai
jk(x) in its two lower indicescan never

be obtained through Eqs. (8) from a metric tensor.
Note that perturbing equations (6) and (7) with a “force”F(x) leads to the equations

(9)ẍ = F(x)

and

(10)ẍi =
n∑

j,k=1

ai
jk(x)ẋj ẋk + F i(x).

We shall see that these perturbed equations have identical invariant setsI as the unperturbed equations (6) and
The organization of the Letter is as follows:

(i) the non-linear partial differential equations for the invariant sets of type (5) for Newtonian equations o
ẍ = F(x, ẋ) are obtained in Section 2;

(ii) in Section 3 it is shown that the codimension one invariant sets of Eqs. (6) or (9) are hyperplanes
configuration space (or intersection of hyperplanes whenr = 2,3, . . .);

(iii) for differential equations of type (7) the partial differential equations of its invariant sets of type (5
obtained and examples of equations of type (7) with or without invariant sets, of type (5), are s
(Section 4);

(iv) in Section 5 we get the invariant sets for the relativistic equationsd(γ ẋ)/dt = F(x, ẋ), γ = (1 − ẋ2)−1/2,
F(x, ẋ) being a polynomial iṅx;

(v) finally we obtain (Section 6) the invariant sets for the geometrical optics equationsẍ + 2(∇n · ẋ)ẋ = ∇n/n2,
n(x) being the refraction index of the material medium.

Note that invariant sets of dimension one of Eqs. (10) doalways exist. They can be obtained through eliminati
of t in the solutionsxi = ϕi(t) (i = 1, . . . , n) of Eqs. (10) [19].
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Note, however, that higher-dimensional invariant sets of type (5) for 2� r � n − 1 do not necessarily exis
in general (even locally) since they have a very specificform (they are invariant sets in the phase space tha
obtained from the configuration space submanifold{f1 = 0, . . . , fr = 0}). A well known example is provided b
totally geodesic submanifolds of Riemannian manifolds. In Ref. [20] examples of Riemannian manifolds w
(local) totally geodesic submanifolds are given. In fact itis believed that “general” Riemannian manifolds do
have anyr-dimensional totally geodesic submanifolds for 2� r � n − 1 [20].

We finish this section by remarking that the treatment of Section 2 can be applied to differential equa
the form

(11)ẍ = F(x, ẋ),

F standing for a polynomial iṅx of degreeN ∈ N (see Eqs. (6) and (7) above, corresponding to the valuesN = 0
andN = 2, respectively).

Note, finally, that the techniques developed in this Letter have not very much to do with the techniques u
in Ref. [21], which involve Frechet differential calculus and the theory of tangent sets. Moreover the rela
equations (see Section 5) and the geometrical optics equations (see Section 6) are not considered in Ref

2. Invariant sets of Newtonian equations

In this section we get the non-linear partial differential equations that must be satisfied by the fu
fi in order that the codimension 2r submanifold defined by Eqs. (5) be invariant under the vectorfieldX =
ẋ∂x + F(x, ẋ)∂ẋ associated with the Newtonian equations of motionẍ = F(x, ẋ).

It is well known [1] that the necessary and sufficient conditions for the invariance of (5) under the solut
the Newtonian equations are:

(12)
LX(fi)|(5) = ḟi|(5) = 0,

LX(∇fi · ẋ)|(5) = 0,

}

whereE|(5) = 0 means thatE is not necessarily identically equal to zero, butE becomes zero on the manifo
defined by Eqs. (5).

Now, the first set of Eqs. (12) are automatically satisfied due to the secondr equations in (5); the second set
Eqs. (12) can be written in the form

(13)

[
n∑

j,k=1

fi,jk ẋ
j ẋk +

n∑
k=1

fi,k ẍ
k

]
|(5)

= 0,

fi,jk = ∂2fi

∂xj∂xk
,




and sincëx satisfies Newton equation we get the basic equation

(14)

[
n∑

j,k=1

fi,jk ẋ
j ẋk +

n∑
k=1

fi,kF
k

]
|(5)

= 0.

Basically Eqs. (14) are non-linear because, due to Eqs. (5)x andẋ depend on thefi andfi,j on the submanifold
defined by Eqs. (5). Concerning Eqs. (14) we will write them more explicitly in the useful cases of Eqs. (
and (10). These three cases are studied in the following sections.

Note that the expression of the system dynamics on the invariant set is given by the restriction of the Hamiltoni
vector field to the invariant submanifold, that isX|(5). This gives rise to 2(n − r) ordinary differential equation
defining a dynamical system on the invariant set defined by Eqs. (5). For example, if the phase spacR

4
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and the invariant set (in the configuration space) is the curvey = g(x) then the induced dynamics is given
ẍ = Fx(x, g(x), ẋ, g′(x)ẋ).

In this Letter we only study forces depending quadratically onẋ but, as we have mentioned in the introducti
the mathematical treatment is the same for other polynomial dependences. We are going to illustrate this fact
an example for whichFk is linear inẋ, n = 3 andr = 1.

Let the Newtonian equations be defined by

(15)

ẍ = ẋ ∧ B
(
x1, x2, x3

)
,

B|x3=0

∥∥(
x3-axis

)
,

x ∈ R
3.




Let us see that these equations admit the invariant setx3 = 0. Indeed, Eqs. (14) become in this case:

(16)
(
ẋ1B2 − ẋ2B1

)
|x3=0 = 0.

This last equation is satisfied since by hypothesisB is parallel to thex3-axis on the planex3 = 0.
Note that the magnetic field of a dipole at (0,0,0) (the Earth magnetic field) is parallel to the dipole axis (No

pole–South pole line) on thex3 = 0 plane (Earth equatorial plane). Therefore an electric charge under this ma
field, with initial velocity ẋ0 such thaṫx3

0 = 0 will get trapped forever in the invariant planex3 = 0 just considered
In ending this section, note that Eqs. (14) remain unchanged when the Newtonian equations are perturbed in

form

ẍ = F(x, ẋ) + P(x, ẋ),

P(x, ẋ) satisfying

∇fi · P(x, ẋ)|(5) = 0,

that is whenP is tangent to the submanifold{f1 = 0, . . . , fr = 0} on every point of it. Thereforëx = F
and ẍ = F + P have identical invariant sets of type (5) provided the perturbing forceP(x, ẋ) is tangent to
{f1 = 0, . . . , fr = 0}. One of the referees of the Letter has raised the following problem: for which class of ph
systems could one consider the perturbing forceP tangential to the submanifold of interest?

3. Invariant sets for velocity free forces

We now get the explicit form of Eqs. (14) when the equations

(17)f1(x) = 0, . . . , fr (x) = 0,

take the form

(18)

f1 = x1 − g1(x̃) = 0,
...

fr = xr − gr (x̃) = 0,

x̃ = (
xr+1, . . . , xn

)
.




The functionsgi in (18) are obtained after applying the implicit function theorem to Eq. (17), and an eve
reordering of the variablesx1, . . . , xn so that rank(∂(f1, . . . , fr )/∂(x1, . . . , xr )) = r.

Note that in general the reordering ofx1, . . . , xn can lead to more than one set of Eqs. (18) (see the exa
given in the next section).
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We now write the invariant set (18) in phase space:

(19)

x1 − g1(x̃) = 0,
...

xr − gr(x̃) = 0,

ẋ1 − ∇g1 · ˙̃x = 0,
...

ẋr − ∇gr · ˙̃x = 0.




Note that the local equations (18), (19) and (20) become global when the functionsf1, . . . , fr andF(x, ẋ) are
analytic. That is, on account of analyticity [22] Eqs. (20) are equivalent to Eqs. (12), which are global,
immediately prove.

Indeed, the basic equations (4) become, locally,(∇fi · X)|N(P )∩I = 0, N(P) being a neighbourhood around
pointP of I , and since the functions∇fi · X and the submanifoldI are analytic [22] we can write:

(∇fi · X)|N(P )∩I = 0 ⇔ (∇fi · X)|I = 0,

as we desired to prove.
Summarizing, the global invariant set (5) can be obtained via the use of the local analytic Eqs. (19).
Taking Eqs. (19) into account the basic equations (14) become

(20)

(
−

n∑
j,k=r+1

g1
,jkẋ

j ẋk + (first r components︷ ︸︸ ︷
1,0, . . . ,0 ,−∇g1) · F(x)

)
|(19)

= 0,

...(
−

n∑
j,k=r+1

gr
,jkẋ

j ẋk + (first r components︷ ︸︸ ︷
0,0, . . . ,1 ,−∇gr

) · F(x)

)
|(19)

= 0,

gα
,jk = ∂2gα

∂xj∂xk
,




and sincėxr+1, . . . , ẋn are subjected to no constraints equations (20) imply:

(21)
gi

,jk|(19) = gi
,jk = 0,

i = 1, . . . , r; r + 1 � j, k � n,

}

and thereforegi must be an affine function in thẽx variables, that is

(22)
gi = Ai

r+1x
r+1 + · · · + Ai

nx
n + Ai

0,

Ai
l ∈ R.

}

This affine dependence ofgi on the variables(xr+1, . . . , xn) is surelynot new, but we have not traced it back
the literature.
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(23)

invariant
The independence oḟxr+1, . . . , ẋn in Eqs. (20) also implies the following equations:

(23)

((r components︷ ︸︸ ︷
1,0, . . . ,0,−∇g1

) · F(x)

)
|(19)

= 0,

...((r components︷ ︸︸ ︷
0,0, . . . ,1,−∇gr

) · F(x)

)
|(19)

= 0.




Eqs. (23) mean thatF(x) must be tangent to the configuration space submanifold defined byxi = gi(x̃), i = 1, . . . , r

and Eqs. (22).
Note that Eqs. (23) are satisfied whenF(x) = 0 (force-free motion of the particle). On the other hand, Eqs.

are incompatible whenF(x) is not tangent to any codimensionr affine submanifold ofRn; this is the case of (n = 2,
r = 1)

(24)F(x) = (−x2, x1).
As a final, clarifying and well-known example, letn = 3, r = 1, andF(x) be a central force, that is

(25)
F(x)

∥∥x,

or F i = h · xi,

}

h standing for a function of (x1, x2, x3).
Let f1(x

1, x2, x3) be a linear function of (x1, x2, x3), then Eqs. (5) become:

(26)
A1x

1 + A2x
2 + A3x

3 = 0,

A1ẋ
1 + A2ẋ

2 + A3ẋ
3 = 0.

}

Note that the first of Eqs. (26) represents (in configuration space) a plane through the origin.
It is straightforward to see that Eqs. (14) reduce in this case to

(27)

(
3∑

i=1

Aiẍ
i

)
|(26)

=
(

h ·
3∑

i=1

Aix
i

)
|(26)

= 0,

where the above system of equations are satisfied due to (26). Therefore any plane through the origin is an
set (in the configuration space) when the forces acting on the material particles are central.

The Newtonian forces

(28)
F i = kxi

[(x1)2 + (x2)2 + (x3)2]3/2
,

k ∈ R,




are central and the above result is, of course, valid for them.
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4. Invariant sets for forces quadratic in the velocity

We get now the partial differential equations obtained when the basic equations (14) are applied to forces o
following type

(29)Fk =
n∑

l,m=1

ak
lm(x)ẋl ẋm.

Indeed, substituting (29) into Eqs. (14) leads to the equations

(30)

[
n∑

j,k=1

fi,j l ẋ
j ẋl +

n∑
k=1

fi,k

(
n∑

l,m=1

ak
lmẋl ẋm

)]
|(5)

= 0,

1� i � r,




that is:

(31)

(
n∑

j,l=1

[
fi,j l +

n∑
k=1

fi,ka
k
jl

]
ẋj ẋl

)
|(5)

= 0.

Using now the canonical local form (18) of Eq. (17) we get:

(32)

(
n∑

j,l=1

[
−gi

,j l +
n∑

k=1

fi,ka
k
jl

]
ẋj ẋl

)
|(19)

= 0,

i = 1, . . . , r,




fi,k standing for the vector

(33)(fi,1, fi,2, . . . , fi,n) = ( first r components︷ ︸︸ ︷
0,0, . . . , 1︸︷︷︸

ith place

,0, . . . ,0,

lastn−r components︷ ︸︸ ︷
−∇gi

)
.

Note that in Eq. (33)i is fixed (1� i � r).
Finally, expressinġx1, . . . , ẋr linearly (see Eqs. (19)) in terms ofẋr+1, . . . , ẋn we get via Eqs. (32):

(34)
−gi

,j l + âi
j l = 0,

r + 1� j, l � n; 1 � i � r,

}

âi
j l standing for the coefficient oḟxj ẋl (r + 1 � j , l � n) after substituting in the term

(35)
n∑

j,k,l=1

fi,ka
k
jl(x)ẋj ẋl,

of Eqs. (32),x1, . . . , xr , ẋ1, . . . , ẋr by its values given by Eqs. (19).
Note thatâi

j l is, in general, non-linear in the functionsgi and its first derivatives since bothfi,k , ak
jl|(19) and

ẋj ẋl |(19) contain, respectively, first-order derivatives ofgi (see Eq. (35)), the functionsgi themselves whenak
jl(x)

are not free fromx1, . . . , xr , and products of∇gi arising from terms of type(ẋ1)2, ẋ1ẋ2, etc. Eqs. (34) are th
system of partial differential equations for theg1(x̃), . . . , gr (x̃) we were looking for.

We now give an example showing that (in general) the non-linear system (34) can be incompatible.
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(39)
In fact, let n = 3, r = 1 and consider a Newtonian differential equation quadratic inẋ of type (7) with ai
jk

defined by:

(36)

a1
11 = 0, a2

11 = 0, a3
11 = φ′(x3

)
,

a1
12 = a1

21 = 0, a2
12 = a2

21 = 0, a3
12 = a3

21 = 0,

a1
13 = a1

31 = −φ′(x3
)
, a2

13 = a2
31 = 0, a3

13 = a3
31 = 0,

a1
22 = 0, a2

22 = 0, a3
22 = φ′(x3

)
,

a1
23 = a1

32 = 0, a2
23 = a2

32 = −φ′(x3
)
, a3

23 = a3
32 = 0,

a1
33 = 0, a2

33 = 0, a3
33 = −φ′(x3

)
,




φ(x3) being an arbitrary smooth function ofx3, different from zero.
Let us now prove that Eqs. (7) do not posses invariant sets of typex3 = g(x1, x2) whenai

jk(x) are given by
Eqs. (36).

It is straightforward to check that Eqs. (32) become in this case:((−g,x1x1 + φ′(x3))(ẋ1)2 − 2g,x1x2ẋ
1ẋ2 + 2φ′(x3)g,x1ẋ

1ẋ3 + (−g,x2x2 + φ′(x3))(ẋ2)2

(37)+ 2φ′(x3)g,x2ẋ2ẋ3 − φ′(x3)(ẋ3)2
)

∣∣∣∣x
3=g

ẋ3=g
,x1 ẋ1+g

,x2 ẋ2

= 0

and Eqs. (34) are now

(38)

−g,x1x1 + φ′(x3
) + φ′(x3

)
g2

,x1 = 0,

−g,x1x2 + φ′(x3
)
g,x1g,x2 = 0,

−g,x2x2 + φ′(x3
) + φ′(x3

)
g2

,x2 = 0.




Let us now discuss Eqs. (38) according to the value ofφ′(x3).
(i) If φ′(x3) is not a constant function the second of Eqs. (38) is incompatible.
(ii) Whenφ′(x3) = a ∈ R, a �= 0, Eqs. (38) become

(39)

g,x1x1 = a
(
1+ g2

,x1

)
,

g,x1x2 = ag,x1g,x2,

g,x2x2 = a
(
1+ g2

,x2

)
.




Wheng(x1, x2) exists we must haveg,x1x1x2 = g,x1x2x1 and therefore we get from the first and second of Eqs.

(40)g,x1g,x1x2 = g,x2g,x1x1.

Analogously, we must haveg,x2x2x1 = g,x1x2x2 and therefore, via the second and third of Eqs. (39) we get

(41)g,x2g,x1x2 = g,x1g,x2x2.

Writing (40) and (41) in function of the first derivatives ofg(x1, x2) (by using Eqs. (39)) we get

(42)
g2

,x1g,x2 = (
1+ g2

,x1

)
g,x2,

g2
,x2g,x1 = (

1+ g2
,x2

)
g,x1.

}
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).

an one.
From Eqs. (42) we get

(43)
g,x1 = 0,

g,x2 = 0,

}

and thereforeg(x1, x2) = const. But a constant function does not satisfy Eqs. (39) (remember thata is a non-zero
real number). We conclude that Eqs. (7) are free from invariant sets of typex3 = g(x1, x2) whenai

jk(x) are given
by Eqs. (36).

However, these equations possess invariant sets of typeg(x1, x2) = 0,∇g �= 0. In fact the phase space equatio
of these invariant sets are

(44)
g
(
x1, x2

) = 0,

g,x1ẋ1 + g,x2ẋ2 = 0.

}

Let g,x2 �= 0. Then

(45)ẋ2 = −g,x1

g,x2
ẋ1.

The equivalent of Eqs. (34) are now the equations

(46)LX
(
g,x1ẋ1 + g,x2ẋ2)

|(44) = 0,

which after some computations become

(47)
(
g,x1x1

(
ẋ1)2 + 2g,x1x2ẋ

1ẋ2 − 2φ′(x3)g,x1ẋ
1ẋ3 + g,x2x2

(
ẋ2)2 − 2φ′(x3)g,x2ẋ

2ẋ3)
|(44)

= 0.

Finally, when (45) is substituted into (47) we get the equation

(48)g,x1x1 − 2g,x1x2
g,x1

g,x2
+ g,x2x2

g2
,x1

g2
,x2

= 0.

Note that Eq. (48) is free fromφ′(x3). Note also that Eq. (48) holds wheng(x1, x2) is a function of an affine
function inx1, x2:

(49)
g
(
x1, x2

) = F
(
ax1 + bx2 + c

)
,

a, b, c ∈ R and F ′(u) �= 0.

}

No other solutions of Eq. (48) exist since [18] the curvaturek of the plane curveg(x1, x2) = 0 is given by

(50)k =
(g,x1x1g2

,x2 − 2g,x1g,x2g,x1x2 + g,x2x2g2
,x1

(g2
,x1 + g2

,x2)
3/2

)
|g(x1,x2)=0

.

It is now immediate (when∇g �= 0) that the expression (50) fork vanishes identically for the solutions of Eq. (48
But it is well known [18] that in this case the curveg(x1, x2) = 0 must be a straight line, and thereforeg(x1, x2)

must have the structure (49), as we desired to prove.
Open remains the problem of giving equations of type (7) without invariant sets of dimension greater th

The dimensiononecase is a special one and was discussed in Section 1.



350 F.G. Gascon, D. Peralta-Salas / Physics Letters A 325 (2004) 340–354

e

5. Invariant sets in special relativity

For brevity, we only consider in this section the casen = 3, r = 1, F(x1, x2, x3) and invariant sets of typ
x3 = g(x1, x2). The relativistic differential equations replacingẍ = F(x) are now

(51)

d

dt
(γ ẋ) = F(x),

x ∈ R
3, γ = (

1− ẋ2
)−1/2

.




Let

(52)
x3 = g

(
x1, x2

)
,

ẋ3 = g,x1ẋ1 + g,x2ẋ2,

}

be invariant under Eqs. (51). It is easy to check that Eqs. (51) can also be written in the normal form:

(53)ẍ = (
1− ẋ2)1/2


1− (ẋ1)2 −ẋ1ẋ2 −ẋ1ẋ3

−ẋ1ẋ2 1− (ẋ2)2 −ẋ2ẋ3

−ẋ1ẋ3 −ẋ2ẋ3 1− (ẋ3)2


F(x),

and therefore the invariance of (52) under Eq. (53) reduces to the equation

(54)
[
ẍ3 − g,x1x1

(
ẋ1)2 − 2g,x1x2ẋ

1ẋ2 − g,x2x2

(
ẋ2)2 − g,x1ẍ

1 − g,x2ẍ
2]

|(52)
= 0.

Now, Eq. (53) can be written in the form:

(55)

ẍ1 = (
1− ẋ2

)1/2[
F 1(x)

(
1− (

ẋ1
)2) − F 2(x)ẋ1ẋ2 − F 3(x)ẋ1ẋ3

]
,

ẍ2 = (
1− ẋ2

)1/2[−F 1(x)ẋ1ẋ2 + F 2(x)
(
1− (

ẋ2
)2) − F 3(x)ẋ2ẋ3

]
,

ẍ3 = (
1− ẋ2

)1/2[−F 1(x)ẋ1ẋ3 − F 2(x)ẋ2ẋ3 + F 3(x)
(
1− (

ẋ3
)2)]

.




Substituting Eqs. (55) into Eq. (54)and taking (52) into account we get

(56)
(
1− ẋ2)1/2

|(52)
[
F 3 − g,x1F

1 − g,x2F
2 + P2(x̃, ˙̃x)

]
|(52) −

2∑
i,j=1

g,xixj ẋ
i ẋj = 0,

P2(x̃, ˙̃x) being a homogeneous polynomial of second degree inẋ1, ẋ2:

(57)P2(x̃, ˙̃x) =
2∑

i,j=1

Aij (F, g,x1, g,x2)ẋi ẋj ,

Aij standing for a function of its argumentsF, g,x1, g,x2. We shall see immediately thatP2|(52) vanishes.
Now, Eq. (56) cannot hold unless

(58)

F · (−g,x1,−g,x2,1) = 0,

P2(x̃, ˙̃x) = 0,

g,xixj = 0, i, j = 1,2,




|(52)

since otherwise(1− (ẋ1)2 − (ẋ2)2 − (ẋ3)2)1/2|(52) would be equal to a rational function ofx1, x2, ẋ1, ẋ2.
Note that 1− (ẋ1)2 − (ẋ2)2 − (g,x1ẋ1 + g,x2ẋ2)2 cannot be the square of a one-degree polynomial inẋ1, ẋ2:

(A + Bẋ1 + Cẋ2), as the reader can check immediately.
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The first and third of Eqs. (58) were obtained in Section 3 and imply thatF is tangent to the manifold
x3 = g(x1, x2) and thatg(x1, x2) must be affine inx1, x2. This same result was obtained in Section 3 in
non-relativistic case, and (to the best of our knowledge) is new.

The second of Eqs. (58), written explicitly, is

(59)P2(x̃, ˙̃x)|(52) =
[−ẋ3(F · ẋ) + g,x1ẋ

1(F · ẋ) + g,x2ẋ
2(F · ẋ)

]
|(52)

= 0,

and vanish identically via the second of Eqs. (52). Therefore only the first and third of Eqs. (58) are to b
into account.

Note, finally, that the first of Eqs. (58) holds automatically whenF ≡ 0 (free motion of the particle). In this cas
any straight line or plane ofR3 is invariant.

As an example, letF be central (see Eq. (25)). In this case only the planesπ for which the first of Eqs. (58
holds

(60)h
(
x1, x2, x3)(x1, x2, x3) · (−g,x1,−g,x2,1) = 0,

will be invariant under these forces. These are just the planesπ through the origin. The reader will check that t
last two equations in (58) are also satisfied.

In ending, note that considering the relativistic equations

(61)
d

dt
(γ ẋ) = F(x, ẋ),

F(x, ẋ) being a polynomial iṅx, and invariant sets of type (52) we obviously get for the functiong the equations
(see Eqs. (56) and (58)):

(62)

[
F · (−g,x1,−g,x2,1) + P2

]
|(52)

= 0,

g,xixj = 0, 1 � i, j � 2.

}

DecomposingF in the form

(63)F = F0(x, ẋ) + F1(x, ẋ) + · · · + Fd(x, ẋ),

Fk being a homogeneous polynomial of degreek (0 � k � d) in ẋ1, ẋ2, Eqs. (62) can be written in the form:

(64)
F · (−g,x1,−g,x2,1)|(52) = 0,

g,xixj = 0, 1 � i, j � 2.

}

Remember that (see Eq. (59))P2|(52) = 0 identically. Taking (63) into account we get from Eqs. (64)

(65)
Fk · (−g,x1,−g,x2,1)|(52) = 0, 0 � k � d,

g,xixj = 0, 1 � i, j � 2.

}

Thereforeg(x1, x2) must be affine inx1, x2, g = Ax1 + Bx2 + C, and the real numbers (A,B,C) must satisfy the
equations

(66)
Fk(x, ẋ) · (−A,−B,1)|(52) = 0,

k = 0,1, . . . , d.

}

As an example, consider the relativistic tridimensional motion of a unit mass, unit charge particle, ruled
equation

(67)
d

dt
(γ ẋ) = q

[
E(x) + ẋ ∧ B(x)

]
,
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curved

action
(E(x), B(x)) being the electromagnetic field acting on the particle. In this caseFk are given by

(68)
F0(x, ẋ) = E(x),

F1(x, ẋ) = (
B3ẋ2 − B2ẋ3,B1ẋ3 − B3ẋ1,B2ẋ1 − B1ẋ2

)
}

and therefore Eqs. (66) become

(69)

(
E1,E2,E3

) · (−A,−B,1)|x3=Ax1+Bx2+C = 0,(
B3ẋ2 − B2ẋ3,B1ẋ3 − B3ẋ1,B2ẋ1 − B1ẋ2

) · (−A,−B,1)∣∣∣∣x3=Ax1+Bx2+C

ẋ3=Aẋ1+Bẋ2

= 0.




One can always assume, via an adequate choosing of Cartesian coordinates, thatA = B = C = 0; that is that the
invariant plane is just the planex3 = 0, and therefore Eqs. (69) become

(70)

E3|x3=0 = 0,(
B2ẋ1 − B1ẋ2

)∣∣∣∣x
3=0

ẋ3=0

= 0.




The physical meaning of the first of Eqs. (70) is thatE must be parallel to the planex3 = 0. The second of Eqs. (70
just means thatB1|x3=0 = 0, B2|x3=0 = 0. That isB must be orthogonal to the planex3 = 0.

What is important, and apparentlynew is that Eq. (61), whenF(x, ẋ) is a polynomial of degreed in ẋ (see
Eq. (63)) and the invariant set is defined by Eqs. (52), imply that “curved” invariant sets are relativistical
forbidden. Only “not curved” invariant sets (planes inR3 of type x3 = Ax1 + Bx2 + C) are allowed. Curved
invariant sets are, of course,not forbiddenfor Newtonian equations̈x = F(x, ẋ).

As we can see, a strong difference between the invariant sets of equationsẍ = F(x, ẋ) andd(γ ẋ)/dt = F(x, ẋ)

has come out.
One of the referees of the Letter has raised the following problem: is there a physical reason on why

invariant sets are forbidden in the relativistic motion?

6. An application to geometrical optics

In this section we consider a ray of light which is moving in a material medium characterized by its refr
indexn(x, y, z) (n > 0).

It is known that its motion is ruled by the second order differential equations [23]

(71)
ẍ + 2(∇n · ẋ)ẋ = ∇n

n2 ,

c ≡ speed of light= 1.




If f (x, y, z) = 0 is an analytic invariant set for Eqs. (71), the phase space equations associated tof = 0 are

(72)
f = 0,

∇f · ẋ = 0.

}
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Casting Eqs. (72) in the standard form (19) and proceeding as in Sections 3 and 4 (after some computations
obtain the equations that the functiong(x, y) must satisfy

(73)

g,xx = 0,

g,xy = 0,

g,yy = 0,

(∇n · ∇f )|f=0 = 0.




The first three equations are obtained after application of Eqs. (34) to the equationẍ = −2(∇n · ẋ)ẋ and the fourth
equation corresponds to Eqs. (23) where the field forceF(x) has been substituted by∇n(x)/n2(x).

Eqs. (73) imply thatg must be an affine function, that isg(x, y) = Ax + By + C (A,B,C real numbers), and
∇n must be tangent to the invariant setz = g(x, y). Therefore we obtain the same result that was obtained
the relativistic equations of motion: curved invariant sets for the equations of motion of the rays of light a
allowed. Note that this result holds for any refraction indexn(x, y, z); that is the resultz = Ax + By + C is valid
independentlyof the possible Euclidean symmetries ofn(x, y, z).

Note finally that the fourth equation in (73) becomes, whenf = Ax + By + C − z,

(74)(An,x + Bn,y − n,z)|Ax+By+C−z=0. = 0.

Eq. (74) is satisfied for:

(a) n = n(x), whenn = n(x) = const for any values ofA, B andC, and forA = 0 whenn′(x) �= 0.
(b) n = n(x2 + y2 + z2), whenC = 0 (for any values ofA andB).

The discussion on the solutions of Eq. (74) whenn = n(x2 + y2, z) is trivial, and shall not be given.

7. Final remarks

We have studied analytic invariant sets ofR
n, the configuration space of the mass one particle. WhenR

n

is substituted byanother manifoldMn, on which a Riemannian metricg is defined, the equivalent of Newto
equations̈x = F(x, ẋ) is, locally, an equation of type

(75)ÿi =
n∑

j,k=1

ai
jk(y)ẏj ẏk + Gi(y, ẏ),

(yi) being a local coordinate system near a certain pointP0 ∈ M.
As long asG(y, ẏ) is a polynomial inẏ the techniques developed above can be applied to Eq. (75) in ord

get the invariant sets of it.
If the functionsai

jk(y) are obtained from a metric tensorgij (y) via Eqs. (8) andG(y, ẏ) ≡ 0, then Eq. (75)
are the geodesics equations in the Riemannian manifold (Mn,gij ). The invariant setsI = {y ∈ Mn/f1(y) =
0, . . . , fr (y) = 0} of Eq. (75) whenG = 0 are called by mathematicianstotally geodesic submanifolds[18] because
all the geodesics of the codimensionr submanifoldI are geodesics of the enveloping spaceMn. From this point
of view the treatment followed in this Letter can be applied to the study of totally geodesic submanifo
Riemannian manifolds. In local coordinates the non-linear partial differential equations that the functionsfi must
satisfy are Eqs. (34). Global results on analytic invariant sets are, as well, automatically obtained by work
analytic (Cw) local charts inMn.
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Abstract

In a recent paper of Llibre and Rodríguez (J. Differential Equations 198 (2004) 374–380) it is
proved that every configuration of cycles in the plane is realizable (up to homeomorphism) by
a polynomial vector field of degree at most 2(n+ r)− 1, wheren is the number of cycles and
r the number of primary cycles (a cycleC is primary if there are no other cycles contained in
the bounded region limited byC). In this letter we prove the same theorem by using an easier
construction but with a greater polynomial bound (the vector field we construct has degree
at most 4n − 1). By using the same technique we also constructR3 polynomial vector fields
realizing (up to homeomorphism) any configuration of limit cycles which can be linked and
knotted in R3. This answers a question of R. Sverdlove.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we are interested inR2 vector fields

X = Pm(x, y)�x +Qm(x, y)�y, (1)

where the functionsPm(x, y) and Qm(x, y) are polynomials of real variables(x, y)
with real coefficients and degree not higher thanm.
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The most important problem concerning planar polynomial vector fields was proposed
in 1900 by Hilbert[8] (in the second part of his 16th problem) and it consists in finding
the maximum number of limit cycles for the vector field (1) in terms of the degree
m and studying the relative positions of these cycles. Recall that a limit cycle of the
vector field (1) is an isolated periodic orbit of this vector field.

So far the 16th Hilbert’s problem remains unsolved. It has been proved that the
number of limit cycles of (1) must be finite [9,5] but even in the easiest case(m = 2)
it remains open to ascertain the maximum number of limit cycles of all quadratic
differential systems.

In this letter we are not interested in the 16th Hilbert’s problem but in the following
inverse problem: given a setC of planar cycles we wish to construct a polynomial
vector fieldX whose limit cycles are exactly the setC (up to homeomorphism).

Let us introduce some previous definitions in order to specify the problem we are
interested in. We follow here Llibre and Rodríguez [11] who have also studied the
same problem.

Definition 1. A configuration of cycles is a finite setC = {C1, . . . , Cn} of simple
planar closed curves such thatCi ∩ Cj = ∅ for all i �= j .

Definition 2. The curveCi ∈ C is primary if there is no curveCj ∈ C contained in
the bounded region limited byCi .

Definition 3. Two configurations of cyclesC andC′ are equivalent if there is a home-
omorphismH : R2 −→ R2 such thatH(C) = C′.

Definition 4. The vector fieldX realizes the configuration of cyclesC if the set of all
limit cycles of X is equivalent toC.

Now the question can be formulated as follows: can we give a constructive method
in order to find a polynomial vector fieldX realizing an arbitrary configurationC of
cycles? In[11] Llibre and Rodríguez answer this question affirmatively but their proof
is rather involved (they use the Darbouxian theory of integrability).

In the following section we prove the theorem of Llibre and Rodríguez by a different
and easier method. The advantage of our method is that it can be easily extended to
higher dimension, as we show in Section 3. Another advantage is that we control
the stability of the limit cycles (they are stable) while the limit cycles in Llibre and
Rodríguez’s construction can be stable, semi-stable or unstable, and we have no control
over it. Furthermore, our construction inR2 gives rise to hyperbolic limit cycles and
hence structurally stable under small perturbations of the vector field. We are not aware
whether Llibre and Rodríguez’s limit cycles are structurally stable. The disadvantage
is that, in general, the polynomial bound that we obtain is worse than Llibre and
Rodríguez’s.

Our main theorem is the following:

Theorem 1. Let C be a configuration of n cycles. Then we have that C is realizable
(as algebraic, stable and structurally stable limit cycles) by a polynomial vector field
X of degree�4n− 1.
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Note that the polynomial bound obtained in[11] is 2(n+ r)−1 and sincer�1 (r is
the number of primary cycles) our bound is greater than Llibre and Rodríguez’s except
in the case thatr = n, that is, when all the cycles are primary.

In Section 3 we prove a theorem analogous to Theorem 1 but inR3. Definitions 1,
3 and 4 extend naturally to the 3-space. Note that in this case the cycles ofC are not
planar and therefore they can be linked among them or even knotted. The theorem is:

Theorem 2. Let C be a configuration of n cycles inR3. Then we have that C is
realizable(as algebraic stable limit cycles) by a non-vanishing polynomial vector field
X ∈ R3 of degree high enough.

In the proof of Theorem2 (Section 3) we give a specific bound of the degree ofX.
As far as we know, this (constructive) result is new in the literature. In fact, a vector
field V with a given compact attracting setC is proved to exist in [7] but its construction
implies that the dynamics onC is trivial (all the points inC are zeros of the vector
field). SpecificallyV is a gradient field projecting a tubular neighborhood ofC onto C
so it cannot possess any periodic orbits. In general, most of the constructions of vector
fields with given attracting set that can be found in the literature give rise to trivial
dynamics on the attractor. Furthermore, it is not proved that under homeomorphism of
C this vector field can become polynomical.

On the other hand Theorem 2 answers a long-standing question posed by Sverdlove
[14]: what knot types can occur in polynomical systems? The answer is that all knot
types are possible and we give an explicit procedure for constructing a polynomial
vector field with a given knotted stable limit cycle.

2. Proof of Theorem 1

In this proof we follow the works of Sverdlove [14], Gascon et al. [6] and Winkel
[16].

Let C be a configuration ofn cycles in R2. By applying a homeomorphismH we
can deform these cycles into circles of center(xi, yi) and radiusri :

H(Ci) = {fi(x, y) = (x − xi)
2 + (y − yi)

2 − r2
i = 0}. (2)

Now let us construct the following function:

f (x, y) =
n∏
i=1

fi(x, y), (3)

where f is a polynomial of degree 2n. Since the cyclesH(Ci) do not intersect among
them we have that the set{f (x, y) = 0} defines exactly the configurationH(C). Note
also that(∇f )|f=0 �= 0.
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Consider the vector field

X = (−fy − ffx)�x + (fx − ffy)�y, (4)

where the subscripts off denote partial differentiation with respect to the corresponding
variables. The vector field defined in (4) has the following properties:

• X|f=0 �= 0.
• ḟ 2 = X(f 2) = −2f 2(f 2

x + f 2
y )�0 and in a neighborhood ofH(C) ḟ 2 = 0 only

on f = 0. f 2 is a Lyapunov function and therefore its level sets near the cycles of
H(C) are deformed circles[15]. These facts imply thatH(C) is a set of stable limit
cycles of the vector fieldX.

• X does not possess other periodic orbits apart fromH(C). Assume that� is a
periodic orbit different fromH(Ci) for all i = 1, . . . , n. Since this orbit does not
intersect any of the cycles ofH(C) we must have that, for example,f|� > 0. We
also require that(∇f )|� �= 0 in order thatX|� �= 0 (see Eq. (4)). Taking into account
these facts we obtaiṅf|� < 0 and therefore� cannot be a periodic orbit. This is a
contradiction.

• X is a polynomial vector field of degree at most 4n− 1.

Finally let us prove that the limit cycles of the vector fieldX (see Eq. (4)) are
hyperbolic, thus implying that they persist under small perturbations ofX. Indeed,
consider the following integral over a limit cycle ofX:

� = 1

T

∫ T

0
(divX)|f=0, (5)

where div stands for the standard divergence operator andT is the period of the cycle.
If � �= 0 then the limit cycle is hyperbolic[1]. Taking into account Eq. (4) it is
immediate to see that(divX)|f=0 = −(∇f )2, which does not vanish onf = 0, thus
proving the claim.

3. Proof of Theorem 2

In this section we have a configurationC of n cycles in R3. As mentioned in the
introduction these cycles can be untrivial knots and can be linked among them [10].
Assume that the cyclesCi are smooth enough, namelyC∞ submanifolds. Since each
componentCi is diffeomorphic toS1 then its normal bundle is trivial [12]. By the well-
known Tognoli’s theorem there always exists a diffeomorphismH : R3 −→ R3 (in fact
a diffeotopy) such thatH(C) is an algebraic set and hence an algebraic configuration
of cycles [3], that is, the curves inH(C) are given by

{
fm(x, y, z) = 0,
gm(x, y, z) = 0,

(6)
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wherefm and gm are polynomials of degree at mostm satisfying that

rk(∇fm,∇gm) = 2 (7)

on the cycles ofH(C). Note that Tognoli’s theorem guarantees that the setH(C) is
exactly formed byn algebraic cycles (no other compact or non-compact components
appear).

The degreem is in general unknown and it probably depends on the linking and
crossing numbers[10] of the cycles inC. It is evident that, for example, if all the
cyclesCi lie on a certain plane, thenm = 2n.

Our main polynomial function in this case isF = f 2
m + g2

m whose degree is at most
2m. Note that the configurationH(C) is given byF = 0 and that∇F = 0 in H(C)
but it is different from zero in a neighborhood of the cycles ofH(C). F is therefore
a Lyapunov function and its level sets near the cycles are deformed tori [15].

Let us construct the following vector field:

X = ∇fm ∧ ∇gm − F∇F (8)

with ∧ standing for the standard vector product inR3 and∇ standing for the gradient
operator.

The vector field (8) has these properties:

• X|F=0 �= 0 since∇fm and ∇gm are independent onH(C).
• Ḟ = −F(∇F)2�0 and in a neighborhood ofH(C) we have thatḞ = 0 only on

the cyclesH(C). SinceF is a Lyapunov function we conclude that the cycles in the
configurationH(C) are stable limit cycles ofX.

• X does not possess other periodic orbits. Assume that� is a periodic orbit ofX
which does not belong toH(C). It is immediate that, for example,F|� > 0 because
otherwise� would intersect some cycle ofH(C). SinceX|� �= 0 it is straightforward
that (∇F)|� �= 0 because otherwise in a certain point of� the gradients offm andgm
would be parallel and thereforeX would be zero. But these facts yield a contradiction
since we would have a periodic orbit� such thatḞ|� < 0.

• X is a polynomial vector field of degree at most 4m − 1. As mentioned above the
numberm does depend on the specific configurationC. Note the difference with the
planar case in whichm is always 2n. This difference is due to the many complex
ways in which the cycles ofC can be linked and knotted, this being a particular
property of the 3-dimensional case.

It is interesting to observe that the polynomialsfm andgm, defining the vector field
X in Eq. (8), can be chosen such thatX �= 0 in R3. To show this claim note that
for any given link L in R3 there exists a submersion� : R3 → R2 such that the
preimage of the origin�−1(0) is L [13]. Whenever the link is algebraic the submersion
� can be chosen to be polynomial, say� = (fm, gm), and hence the rank condition
rk(∇fm,∇gm) = 2 holds in allR3. Since the vector fields∇fm, ∇gm and∇fm∧∇gm
are independent it follows thatX = ∇fm ∧ ∇gm − F∇F cannot vanish at any point.
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The construction of this section thus provides an algebraic vector fieldX, X �= 0 in
R3, whose set of limit cycles, all of them stable, is given byH(C).

In ending this section we would like to pose the following open problem: are the
limit cycles of the vector field (8) structurally stable, as in the 2-dimensional case?

4. Final remarks

In this letter we have proved a recent theorem of Llibre and Rodríguez by using
a very different technique. Our technique is simpler and can be extended to the 3-
dimensional case as was shown in Section 3. On the contrary the polynomial bound
of the vector field that we construct is greater than Llibre and Rodríguez’s. Our bound
is therefore not sharp but note that Llibre and Rodríguez’s bound is not either; see the
work of Christopher [4] where polynomial vector fields of degree at most 2n realizing
a generic class of algebraic limit cycles are constructed.

On the other hand the application of this technique to the 3-dimensional case is, to the
best of our knowledge, new in the literature. We have proved that every configuration
of cycles inR3 can be deformed into an algebraic configuration of cycles that can be
realized as the limit cycles of a 3-dimensional polynomial vector field. This answers a
question formulated by Sverdlove [14].

If C is a configuration of smooth cycles inRn, n > 3, Tognoli’s theorem also guar-
antees the existence of a diffeotopyH : Rn → Rn such thatH(C) is an algebraic
set of cycles (note again that the normal bundle ofC is trivial [12]). H(C) is ex-
pressed through the polynomialsf 1

m, . . . , f
n−1
m of degree at mostm asH(C) = {f 1

m =
0, . . . , f n−1

m = 0}, rk(∇f 1
m, . . . ,∇f n−1

m ) = n−1 onH(C). Define now the vector field

Xt =
[
� (df 1

m ∧ · · · ∧ df n−1
m )

]i
, � standing for the Hodge star operator andi standing

for the index raising operator, and the functionF = ∑n−1
i=1

(
f im

)2
. Proceeding as in

Section 3 it is immediate to prove that the vector fieldX = Xt −F∇F has stable limit
cycles given by the curves inH(C), and it does not possess any other periodic orbits.
ThusX is a polynomial vector field (of degree at most max{(n−1)m−(n−1),4m−1})
realizing the setC of cycles. SinceH(C) can be realized as the level set�−1(0) of
a polynomial submersion� : Rn → Rn−1 [13] then we obtain that the polynomial
vector fieldX does not vanish inRn. Note that Miyoshi’s theorem [13] is proved for
codimension 2; anyway, it trivially holds when the set has codimensionn − 1 in Rn

(n > 3). Indeed, since the submanifoldH(C) can be embedded, through an ambient
diffeomorphism ofRn, into the 3-dimensional hyperplane{x4 = 0, . . . , xn = 0}, one
only has to apply Miyoshi’s theorem on this hyperplane in order to obtain a submersion
(fm, gm) : R3 → R2, and then to extend the submersion to the wholeRn in a trivial
way (fm, gm, x4, . . . , xn).

The degree of this vector field and the one constructed in Section 3 is surely not
sharp and it remains open to connect the topological properties of the configurationC
with the degreem, that is, can one give a formula expressingm in terms of the linking
and crossing numbers or other topological numbers related to the configurationC?
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A related question is the 16th Hilbert’s problem inRn, n > 2, e.g. do there exist
polynomial vector fields with an infinite number of limit cycles? An example of a 1-
parameter family of polynomial vector fields inR4, which has fixed (bounded) degree,
and the number of its limit cycles tends to infinity as the parameter� → 0 has
been recently constructed by Bobienski and Zoladek[2], but we are not aware of
examples in the literature ofRn (n�3) polynomial vector fields with infinitely many
limit cycles. Note that the techniques in this paper allow to solve the inverse problem
for a configuration of infinitely many cycles (locally finite) when the vector fieldX
is only required to be analytic. The fact that an infinite number of algebraic sets is
not algebraic prevents from constructing a polynomial vector field, thus suggesting that
new ideas are necessary to tackle this question.
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Note added in proof

The author has only recently been aware of a preprint by A. Ferragut, J. Llibre and
M.A. Teixeira (2005) where examples of polynomial vector fields inR3 with infinitely
many limit cycles are constructed. As far as we know the inverse problem of construct-
ing R3 polynomial vector fields realizing any infinite (locally finite) configuration of
cycles is not solved.
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