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Capitulo 1

Introduccion

Sea X un campo de vectores (suave o analitico) en R". La funcién I :
R™ — R, que se asume suficientemente suave, es una integral primera de
X si X(I) = 0. El significado geométrico de esta definicion es el siguiente:
las orbitas de X son tangentes a los conjuntos de nivel de I en sus puntos
regulares (VI # 0). Cada hoja I = ¢, ¢ € R, es un conjunto invariante de X.

Lanocién de conjunto invariante es mas general que la de integral primera.
El conjunto ¥ C R" es invariante bajo X si ¢;(p) € ¥ para todo (p,t) € ExR
(el campo se asume completo sin pérdida de generalidad). Recordemos que
¢ es el flujo uniparamétrico inducido por X.

En este trabajo estudiamos las integrales primeras y los conjuntos in-
variantes de X desde diferentes puntos de vista. La literatura sobre estos
objetos es extensa, en cada bloque haremos referencia al estado actual de
cada cuestion asi como a las novedades introducidas.

La estructura de la tesis es la siguiente:

= En el capitulo 2 estudiamos la relacién entre integrales primeras y es-
tabilidad (tanto de puntos criticos como frente a perturbaciones).

= En el capitulo 3 analizamos la conexion entre integrales primeras y
simetrias.

= En el capitulo 4 se presentan algunas aplicaciones de las integrales
primeras a modelos fisicos especificos, por ejemplo campos magnéticos
creados por configuraciones de hilos.
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= Finalmente en el capitulo 5 se estudian dos tipos de conjuntos invari-
antes no asociados a integrales primeras: los conjuntos invariantes de
las ecuaciones Newtonianas y los atractores.

Al final se incluye una seccién de conclusiones asi como una lista de
otros articulos, no directamente relacionados con el tema de tesis, en los que
se ha visto envuelto el solicitante. Todos los trabajos que aqui se detallan
corresponden al periodo 1999-2005. Me gustaria expresar mi agradecimiento
al Profesor Francisco Gonzélez Gascon por haber confiado hace muchos anos
en mi como colaborador cientifico.



Capitulo 2

Integrales primeras: estabilidad

Sea el campo de vectores X con (al menos) una integral primera I, suave
o analitica. Las trayectorias del campo yacen sobre los conjuntos de nivel
de I, reduciendo asi la dimensionalidad del sistema. Esta reduccién tiene
consecuencias topoldgicas, por ejemplo en la estabilidad de los puntos criticos,
en la acotaciéon y no acotacién de érbitas o en los w-limite de las curvas
integrales de X. En este capitulo describimos algunos de estos fenémenos.

2.1. Instability of vector fields induced by first
integrals: J. Math. Phys. 40 (1999) 3099

Consideremos en R™ un campo de vectores X con un cero aislado en el
origen. Si el punto critico es hiperbdlico entonces su estabilidad se puede
averiguar a partir de la linealizacién del campo [1]. En el caso degenerado
no existen criterios universales. El uso de funciones de Liapunov es una her-
ramienta extendida [2], nosotros sin embargo tomaremos otro camino: pro-
bar la inestabilidad del punto critico cuando se conocen integrales primeras
analiticas que verifican ciertas condiciones.

Si X es un sistema Hamiltoniano analitico con 1 o 2 grados de libertad
entonces la inestabilidad del cero se sigue si el origen no es un minimo del
potencial [3]. En dimensién mds alta este teorema no ha sido probado en
general, aunque s{ imponiendo més condiciones [4].

En el articulo obtenemos un resultado analogo al caso Hamiltoniano, pero
para campos no Hamiltonianos en R? (y su posible extensién a R™) con una
integral primera analitica que verifica que el origen es un punto regular o una
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silla. La demostracion depende fuertemente de la dimensionalidad del sistema
(teorema de Bendixon-Poincaré [1]) y de la analiticidad de la integral primera
(teorema de estructura de Lojasiewicz [5]).

2.2. A separation bound for non-Hamiltonian
differential equations with proper first
integrals: J. Math. Phys. 41 (2000) 2922

Las integrales primeras juegan un papel relevante no sélo en la estabili-
dad de puntos criticos, sino en la estabilidad de las érbitas del campo cuando
éste es perturbado. Uno de los resultados més importantes en esta linea es el
teorema KAM [6], que bajo ciertas condiciones garantiza la persistencia de
toros invariantes cuando se perturban sistemas Hamiltonianos integrables.
Esto implica que con 1 6 2 grados de libertad las érbitas permanecen confi-
nadas en regiones acotadas del espacio de fases, pudiendo escapar cuando el
nimero de grados de libertad es mayor (difusién de Arnold [7]).

Las teorias del promedio y de los invariantes adiabéticas [6] también per-
miten estudiar la estabilidad de las érbitas y obtener cotas para la separacion
de las variables accién en el caso Hamiltoniano. El principal problema de es-
tas técnicas es que generalmente exigen que las variables accién-angulo estén
definidas globalmente [8] o que las trayectorias del campo sean periddicas.

En este articulo se estudia la perturbacién de campos de vectores en
R™ con integrales primeras propias. Cuando la perturbacién verifica ciertas
condiciones, asi como las integrales primeras, se prueba que la separacién
entre las érbitas del campo X y del campo X + X, es polinémica (en tiempo
finito), en contraste con los resultados clasicos de separacién exponencial. La
demostracion depende fuertemente de ciertas propiedades algebraicas de la
integral primera y de que el médulo del gradiente esté acotado superiormente.

2.3. Unbounded trajectories of dynamical sys-
tems: Appl. Math. Lett. 17 (2004) 253

La idea de estudiar las propiedades topoldgicas de las hojas de las inte-
grales primeras y su posible conexién con las propiedades de las orbitas del
campo es debida a Smale [9], que exploté este enfoque para sistemas Hamil-
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tonianos, en particular potenciales centrales y el problema de N cuerpos en
R2. La mayor parte de la literatura sobre la relacién entre topologfa de con-
juntos invariantes y acotacién de orbitas se centra en la existencia de orbitas
periddicas [10].

En este articulo se muestra cémo la existencia de integrales primeras
cuyas hojas tienen cierta topologia implica la existencia de orbitas no aco-
tadas si el campo inducido no tiene puntos criticos y es de divergencia nula.
La demostracién depende fuertemente de la dimensionalidad del sistema (di-
mension 2). Es importante sefialar que se exige que la divergencia del campo
inducido sea cero con respecto a alguna forma de volumen, no necesaria-
mente la forma de volumen inducida. En los ejemplos esta propiedad se pone
de manifiesto ya que la forma que se considera es la de Godbillon [11], no la
heredada del espacio ambiente.

2.4. Bagpipes configurations in Mechanics and
Electromagnetism: Math. Comput. Mod-
elling 42 (2005) 921-930

Las herramientas méas extendidas para estudiar la estabilidad de puntos
criticos de campos de vectores son el teorema de LaSalle y las funciones de
Liapunov [2]. Las hipétesis fundamentales son la existencia de una funcién
que decrezca con el flujo y la acotacién de las érbitas del campo. En este
caso se puede garantizar que el conjunto limite, estable, estd contenido en
el conjunto estacionario de la funciéon de Liapunov. Si bien un punto critico
estable generalmente posee funcién de Liapunov [12] el célculo practico de
ésta es inviable, con lo cual el criterio no se puede aplicar normalmente para
averiguar la estabilidad.

En este articulo enfocamos el problema desde una perspectiva distin-
ta, usando la existencia de integrales primeras que poseen cierta estructura
topoldgica. El criterio puede verse como una generalizacién del sencillo re-
sultado que afirma que si las hojas de una integral primera alrededor del
punto critico son esferas topoldgicas entonces el punto critico es estable. Las
integrales primeras que nosotros consideramos tienen forma de gaita, ademés
se asume que el campo es asintoticamente estable en el esqueleto de la gaita.
La demostracion depende fuertemente de estas dos hipdtesis. Esto permite
definir una regién de trampa que fuerza a la estabilidad del campo.
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La forma de gaita de los conjuntos de nivel de la integral primera surge
al estudiar el campo magnetico creado por N hilos rectilineos que se cortan
en el origen. Esto permite demostrar que las lineas magnéticas son circulos
topologicos cerca de los hilos.



Capitulo 3

Integrales primeras: simetrias

La existencia de cantidades conservadas suele asociarse a simetrias del
sistema, posiblemente ocultas. No es claro que una integral primera I nece-
sariamente proceda, en cierto sentido, de una simetria S del campo X, al
igual que una simetria no genera necesariamente una integral primera. En
este capitulo estudiamos integrales primeras y conjuntos invariantes que son
consecuencia de la existencia de simetrias u otras estructuras algebraicas
relacionadas con el campo de vectores.

3.1. Symmetries and first integrals of divergence-
free R® vector fields: Int. J. Nonlinear
Mech. 35 (2000) 589

La relacion entre la existencia de simetrias de campos de vectores y la ex-
istencia de integrales primeras, foliaciones invariantes o conjuntos invariantes
es un tema clasico en la literatura [13]. Bajo ciertas condiciones se puede ver
que las simetrias permiten integrar el campo local o globalmente, y que cier-
tas estructuras complejas de las érbitas, por ejemplo atractores extranos o
ergodicidad en abiertos, no pueden darse [14]. Estos resultados son revisados
en el articulo, también se obtienen ciertos conjuntos invariantes a partir de
la existencia de simetrias.

Un caso particularmente interesante que también se estudia es el de cam-
pos de vectores de divergencia nula (como el campo magnético o el campo
de velocidades de un fluido). Se obtienen integrales primeras y conjuntos in-
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variantes de estos campos asumiendo la existencia de simetrias que verifican
ciertas propiedades.

La existencia de integrales primeras, obtenida con los anteriores proced-
imientos, se aplica al analisis de la estabilidad o inestabilidad de los puntos
criticos. Los resultados que se obtienen en esta linea estan contenidos en los
articulos del capitulo anterior.

3.2. Dynamical Systems embedded into Lie
algebras: J. Math. Phys. 42 (2001) 5741

Este articulo sigue la linea del anterior, obtener conjuntos invariantes,
integrales primeras u otras propiedades cualitativas de las orbitas a partir
de la existencia de simetrias. En este caso se asume que los campos de vec-
tores cierran a la Lie con constantes, dando lugar a un algebra de Lie. Este
contexto es nuevo en la literatura ya que los campos de vectores que cierran
no necesariamente lo hacen como simetrias de X. Se analiza con detalle los
casos de dos campos de vectores (Ay o) y tres campos de vectores (As ).

La hipétesis de algebra de Lie no es suficiente para obtener conjuntos
invariantes o integrales primeras. En el articulo se imponen condiciones extra,
como ciertas relaciones en los coeficientes que definen el dlgebra, existencia
de integrales primeras de los campos que cierran con X o existencia de formas
diferenciales invariantes bajo X o los otros campos. Todos estos resultados
se aplican a conocidas ecuaciones que surgen en Fisica, como por ejemplo el
sistema de Lorenz.



Capitulo 4

Integrales primeras:
aplicaciones

En este capitulo se consideran sistemas dindmicos concretos que surgen
en diferentes contextos fisicos: Mecédnica de Fluidos, Electrodinamica, .. ..
La existencia de integrales primeras para estos campos es relevante a la ho-
ra de estudiar su complejidad orbital o la presencia de caos y turbulencia.
Analizaremos algunos sistemas fisicos que poseen integrales primeras y por
tanto presentan comportamientos ordenados.

4.1. On the first integrals of Lotka-Volterra
systems: Phys. Lett. A 266 (2000) 336

El sistema de Lotka—Volterra en R? aparece en contextos tan diferentes
como biologfa matematica [15], fisica de fluidos [16] y cinética quimica [17].
Se trata de un conjunto de 3 ecuaciones diferenciales ordinarias que dependen
de 9 pardmetros. El problema esencial consiste en entender la estructura de
las orbitas del campo de vectores asociado en funcién de los pardmetros. En
este articulo se obtienen 9 nuevos casos para los que Lotka—Volterra tiene
una integral primera, generalmente local, complementando asi otros estudios
en la literatura [18].

La técnica de la demostracién se basa en encontrar 2 simetrias gener-
alizadas (independientes en casi todo R?) del campo de vectores de Lotka-
Volterra. Una de ellas es bien conocida, la simetria de dilatacién, la otra se
busca para diferentes valores de los pardmetros mediante calculos con el orde-
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nador. Una vez se tienen estas simetrias el cdlculo de las integrales primeras
es inmediato aplicando los algoritmos clasicos de integracion.

4.2. Ordered behavior in force-free magnetic
fields: Phys. Lett. A 292 (2001) 75

En este trabajo se estudia un tipo particular de campos magnéticos de
especial relevancia en magnetohidrodindmica, los campos “force-free”[19]. La
ecuacién que se verifica es rotB = AB, donde A es una funcién. El caso
A = constante es el mas interesante desde el punto de vista de la complejidad
de las orbitas, ya que es facil ver que A es una integral primera de B.

Los campos “force-free” pueden ser muy complejos (e.g. ergodicos en abier-
tos de R3, como el célebre campo ABC [20]), nosotros nos restringimos sin
embargo al caso en el que existen integrales primeras. Por primera vez en la
literatura se obtienen obstrucciones a la geometria de las integrales primeras
de estos campos. También se estudian integrales primeras con simetria eu-
clidea e integrales primeras inducidas por la existencia de simetrias euclideas
de B. Las técnicas que se emplean son nuevamente los algoritmos de inte-
graciéon cuando se conocen simetrias.

4.3. Motion of a charge in the magnetic field
created by wires, impossibility of reach-
ing the wires: Phys. Lett. A 333 (2004)
72

Dada una configuracion de hilos que genera un campo magnético es un
problemas clasico, asi como dificil, el estudiar la relacion entre la estructura
del campo y el movimiento de las cargas sometidas a dicho campo [21]. En
este articulo se prueba que cuando el campo posee dos integrales primeras que
verifican ciertas propiedades entonces las ecuaciones del movimiento heredan
una integral primera diferente de la energia. Esto permite probar que para
ciertas configuraciones, i.e. hilos rectilineos paralelos e hilos planos circulares
coaxiales, las particulas nunca pueden alcanzar los cables, encontrandose,
por tanto, apantallados. Al final del articulo se prueba que las hipotesis del
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criterio implican la existencia de una simetria euclidea de B. Esta propiedad
de inaccesibilidad de los hilos magnéticos es la primera vez que se encuentra

en la literatura.



Capitulo 5

Otros conjuntos invariantes

Los conjuntos invariantes de sistemas dinamicos no estdn necesariamente
asociados a una integral primera. Este capitulo estudia dos ejemplos rele-
vantes en los que sucede precisamente esto, a saber, los conjuntos invariantes
de las ecuaciones de Newton y los atractores. Ambos casos tienen interés
fisico, el primero en Mecanica Clasica, el segundo en ecuaciones de evolucion
(como por ejemplo Navier-Stokes) donde se sabe de la existencia de conjuntos
atractores de dimension finita.

5.1. Invariant sets of second order differential
equations: Phys. Lett. A 325 (2004) 340

Las ecuaciones de Newton, tanto en Mecédnica Clasica como Relativista,
son EDOs de segundo orden, que definen un campo de vectores en el espa-
cio de fases [6]. Un tipo concreto de conjunto invariante de estas ecuaciones,
particularmente interesante para las aplicaciones, es el dado por conjuntos
invariantes en el espacio de fases cuya proyeccion en el espacio de configu-
racion es también invariante. Aparte de ejemplos concretos (e.g. potenciales
centrales), este tipo de conjuntos estd poco estudiado en la literatura, y el
caso relativista nunca es considerado [22].

En este trabajo las ecuaciones diferenciales no lineales que definen estos
conjuntos son obtenidas. Como resultado se prueba que si la fuerza no de-
pende de la velocidad entonces los conjuntos invariantes son siempre planos.
El caso de fuerzas cuadraticas en la velocidad es también analizado, con-
cluyéndose la posibilidad de conjuntos invariantes curvos asi como su no

12
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existencia. En el caso relativista se obtiene el interesante resultado de que los
conjuntos invariantes curvos estan prohibidos, lo mismo sucede en las ecua-
ciones de la éptica geométrica. Las técnicas que se usan en las demostraciones
son esencialmente de tipo analitico. Esta clase de conjuntos invariantes in-
cluye las subvariedades totalmente geodésicas de una variedad Riemanniana.

5.2. Note on a paper of J. Llibre and G. Ro-
driguez concerning algebraic limit cycles:
J. Diff. Egs. 217 (2005) 249

El estudio del nimero y distribucién de los ciclos limite de campos polinémi-
cos es un problemas cldsico que se remonta a Hilbert [23]. El problema in-
verso de averiguar si cualquier configuracién de ciclos en R? puede realizarse,
salvo homeomorfismo, por un campo polinémico fue resuelto por Llibre y Ro-
driguez [24] usando la teoria de integrabilidad de Darboux. En este trabajo
se prueba el mismo resultado de forma mas sencilla usando una construccion
clasica. Un resultado andlogo se demuestra en R" (n > 2), siendo particu-
larmente importante el caso n = 3, debido a la existencia de nudos y links.
Esto responde una pregunta de Ronald Sverdlove formulada en 1981 [25]. La
técnica de la demostracién envuelve el teorema de Nash-Tognoli, el teorema
de Liapunov y una construccién explicita. Ademéds se muestra la estabilidad
estructural de los ciclos limite y la no existencia de ceros del campo.



Capitulo 6

Conclusiones

En esta tesis se han obtenido diversos resultados sobre integrales primeras
y conjuntos invariantes de campos de vectores, generalmente analiticos, en
R". Las propiedades que se han estudiado son, basicamente, la estabilidad
de puntos criticos y de soluciones cuando se conocen integrales primeras,
la relacién entre simetrias, integrales primeras y conjuntos invariantes, y la
existencia de conjuntos invariantes atractores. Estos resultados son de interes
fundamentalmente matematico. La tesis también ha aportado aplicaciones a
diferentes contextos fisicos, que incluyen las ecuaciones de la mecénica de
Newton, campos magnéticos creados por hilos y campos de Lotka-Volterra.

14
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Otros articulos

El solicitante ha participado en otros articulos, no directamente relaciona-
dos con el tema de la tesis, los cuales se detallan a continuacion:

F.G. Gascon, D. Peralta-Salas y J.M. Vegas-Montaner: Limit velocity
of charged particles in a constant electromagnetic field under friction.
Phys. Lett. A 251 (1999) 39

F.G. Gascén y D. Peralta-Salas: Escape to infinity in a Newtonian
potential. J. Phys. A: Math. Gen. 33 (2000) 5361

F.G. Gascon y D. Peralta-Salas: Escape to infinity under the action
of a potential and a constant electromagnetic field. J. Phys. A: Math.
Gen. 36 (2003) 6441

F.G. Gascon y D. Peralta-Salas: On the construction of global coordi-
nate systems in Euclidean spaces. Nonlinear Anal. 57 (2004) 723

J. Almeida, D. Peralta-Salas y M. Romera: Can two chaotic systems
give rise to order?. Phys. D 200 (2005) 124

F. Manosas y D. Peralta-Salas: Note on the Markus—Yamabe conjecture
for gradient dynamical systems. J. Math. Anal. Appl., aceptado para
su publicacion

D. Peralta-Salas: A geometric approach to the classification of the equi-
librium shapes of self-gravitating fluids. Comm. Math. Phys., aceptado
para su publicacion
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= A. Enciso y D. Peralta-Salas: On the classical and quantum integra-
bility of Hamiltonians without scattering states. Theor. Math. Phys.,
aceptado para su publicacién
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It is shown that when a first integral of & vector fieldX is known, instabilities
are induced on the equilibrium points ¥f © 1999 American Institute of Physics.
[S0022-24889)03106-0

I. INTRODUCTION

Let X be an analyticC") R" vector field(v.f.) with an isolated singularity at the origin, i.e.,
X(0)=0. We are concerned here with establishing criteria for the instabili% afO (the origin.

It is a classical result that when the linear pdrtof X at0 has an eigenvalue of positive real
part thenO is an unstable equilibrium point of (Ref. 1). This criterion gives no information
concerning instability when there are not eigenvalueX oto the right of the imaginary axis.

When Xy is a Hamiltonian v.f. andH is an analytic function of the form

H=ijE:1 pip;a;(@+V(q) (qeR™ n=2m), 1)

and (i) ajj(q) is definite positive for anyy, (i) O is a critical point ofV, (iii) 0 is not a strict
minimum of V, and(iv) m=1,2. ThenO is an unstable equilibrium point of, (Ref. 2.

Whenm>2, the instability ofX,; at 0, under the above assumptions, is an unproved conjec-
ture. Nevertheless, the unstable behavioXgfat 0 has been obtained under additional require-
ments onV(q) (Ref. 3.

The stability of periodic solutions of Hamiltonian v.f. when first integrals are known has also
been recently investigatd@Ref. 4.

The technique proposed in this paper is valid kdrv.f. with an isolated singularityequilib-
rium poind at 0 and with a knownC" first integrall. The technique is illustrated with examples
that show that the method is valid, even in the case of trivial ceftbet is, when all the
eigenvalues oK, lie on the imaginary axis

The method proposed here is based on the well-known fact thaw thait of a bounded
trajectory of a planar vector field must include either a singularity or a closed trajectory
(Bendixon—Poincar¢heorem.

The possibilities of extending the new techniqueRtbv.f. (n>3) are also discussed.

II. INSTABILITY INDUCED BY FIRST INTEGRALS

Let X be aR® dynamical system with an isolated singularityGeand| a C" first integral of
X. Assume that either

(i) Vip#O0,
or (2
(i) VI(P)=0, PeNy=P=(0,0,0),

andl has a saddle at the origin.
ThenO is an unstable equilibrium point of.

0022-2488/99/40(6)/3099/5/$15.00 3099 © 1999 American Institute of Physics
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Remember thaV| stands for the gradient &f On the other hand, by definition has a saddle
at0if VI ,=0 and there are point3 andQ arbitrarily near0 on whichl| takes values of opposite
signs. Remember that we assume in this paper that the first intelgaal the value 0 &3

Proof: Assume thaV1,# 0. In this case local coordinates|(,u,,us) can be introduced on
Ny (a neighborhood 0®) on whichl takes the canonical fori=u;. Therefore, ifX is assumed
stable at0 its trajectories will lie inNy and on the local planeg,=k;. The w limits of these
trajectories must be, on account of the Poine&@endixon theorem,singular points ofX, po-
lygonals whose vertices are singular pointsXobr closed trajectories.

In any of these three cases, singular pointXplying on the planesi;=Kk; and arbitrarily
near 0, are obtained. But sinc® was assumed to be an isolated singularityXofwe get a
contradiction. Therefor& cannot be stable &

Assume now tha¥ | vanishes o\, just atO and thatl has a saddle 4.

These assumptions implgs we now explainthat on a certain domaifi,C N, the level sets
of | resemble locally topological planes, to which the above reasoning can be applied, getting
again a contradiction iD is assumed to be a stable singularity %f Therefore0 must be an
unstable singularity oK, as we desired to prove.

We now show that if is anR® analytic function with a saddle &andV| IN, Vanishes just at
0, then a domaitZ,C N, exists on which the sets *(c)NZ, are local planegdisks.

In fact, the analiticity ofl implies thatl ~1(0)NN, is the finite union of the surfaces;, i
e J, throughO. Condition(ii) of Eq. (2) implies that the surfaces; do not intersect each other on
No—1{0}. The surface<; divide N into solid zone<Z;, whose boundary is made up of one or
several of the surfaceS; .

By topological reasons it is not too difficult to show that one at lésayZ,) of the zone<Z;
is diffeomorphic toRk3. This is due to the fact that; is, insideN,, either a topological plangf
C; has a tangent &) or a topological congif C; has not a tangent plane @, in any case, each
C; separated\, into zones, one of which is clearly diffeomorphic k3. This property, valid for
any of the surface€;, is the geometric reason underlying the existence of the Zgne

For example, consider the functiohg= (xX2+y?—27%)z, 1,= (X2+y?—22) (x> +y?—47%). |,
andl, have clearly a saddle & and it is easy to check thatl; (i=1,2) vanishes just d. The
setZ, diffeomorphic toR® can be chosen to be

Zo=1{(x,y,2)|x?+y?<z?, z>0}. ©)
Consider now theC" curvese,, defined either by
¢o=1"HC)NZoN,, )
7, standing for a family of planes throudh intersectingZ,, or by
I, nz,=C- ©)

Calling I, by I*, we have the following.

(1) (0,0 is a saddle of?% . This is a consequence of the fact that the sign ohanges on the
surfacesC;, since otherwis&/ | =0 on points ofNy,—{0}.

(2) VI% has an isolated zero &®,0). In fact, if VIZM,:O, whereg is a curve through0,0) we
would getl|,= 0, in contradiction with the fact that# 0 insideZ,. A similar contradiction is

obtained ifV1% vanishes on a succession of points tendingot6).

Summarizing, the curvesg, are the zeros of plan€" functions with a saddle 40,0) and an
isolated critical point at0,0). Therefore(Ref. 6, ¢, is just an open segment. The union of these
segments, when the plang, varies is, given the topology &,, a local planga disk.

Thereforel “1(c)NZ, is locally a plane.

The reasoning above is sketchy and probably can be improved.
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We have not been able to improve it by consultations with professional mathematicians. We
now give some examples di® v.f. whose instability at0 can be detected with the above-
mentioned techniques. To our knowledge they cannot be integrated via quadratures and they are
interesting since most of them have a vanishing linear part.

A. Consider the R3 v.f.

Here
X=(Y(1+2%) = X—2)dy+ (—y—X(1+2%))dy+ (XP+y?+Xx2)(1+2?))d,. (6)

It is easy to check that this v.f. has an isolated zer@d1,0 and the eigenvalues of, atO are
0 and—1=i. Therefore the eigenvalues cannot decide between stability and instability at

This v.f. has the first integral= 3(x*+y?) —arctang). Note thatV % 0. Therefore by(i) of
Eqg. (2), X is unstable a0.

B. Consider the v.f.
Here
X= (x4 y?+2%) + X2+ y2)dy— (2x3(y2+ ) (1+Y) + X2+ y2+ 29 dy+ (2X(X2+y?) (1+Y)
—X2(x2+y?+7%))d,. (7)

It is easy to check thdi) 0 is an isolated zero oX and thatX, (the linear part oiX at0) is
identically zero;(ii) 1 =x?(1+y)—z is a first integral ofX. (iii) VI 107 0.
Therefore, according tG) of Eq. (2), 0 is an unstable singular point .

C. Let X be the v.f.
Here
X=(2X(y = 2)(X2+y?+2%))dx— ((3X2+ Y2+ 22) (X2 + y?+ 2%) 2X%y 2)d,
+ (324 y2+ 22) (X2+ y2+ 22) + 2x°y?)4, . (8)

It is easy to check thadt) O is an isolated zero of andX, =0; (ii) | =x(x?+y?+Z?) is a first
integral of X. The first integral has a saddle @and its gradient vanishes just @t
According to(ii) of Eq. (2), 0 is an unstable singularity of.

D. Consider the R3 v.f.

Here
X=—2(y?+ 22X+ z2XY* +XZ%) dy+ (— (22 4+ 3X2)y + 2Xy AX* + y? + 2%))d
+ (X2+y?+2°)(3x°+ 2y?+ 72))d,. 9

It is easy to check thdi) 0 is an isolated zero ok and X, =0; (ii) | =zx+x3—y? is a first
integral of X. In addition,| has a saddle @ and VI vanishes just ab.
Therefore, by applyindii) of Eq. (2), we can conclude tha{ is unstable af.

We conclude by noting that our instability criterion can be applie®'tos.f. (n>3) when
(n—2) first integrals ofX are known and rani{l,,...,VI,_,)0c=n—2. This can be seen by
introducing local coordinatesug,...,u,) in Ny on which the first integrals take the local form
Il:Ul,...,In,ZZUnfz.

Therefore the local level sets bf,...,I,_, will be local planesitwo-dimensional disks By
applying to them the considerations used to demonstrate ofZEqwe get instability ofX at 0.
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When rank¥1,,...,VIl,_5)0<n—2, a general criterion for instability seems difficult to get.
We list now several partial results in this direction.
(i) Let X be aR* v.f. with an isolated zero & and the two first integrals:

I1=(1+x)y?+ (1+xH 22— (1+e)u?,

(10)
| 2= X.

Note that rank¥1,,V15)o=1.
On the level set,=0, I; andX become

1T =y2+ 22— 2u4,
(11)
X*=ady+bd,+cd,.

It is clear thatV17 vanishes just af0,0,0, thatX* has an isolated zero &2,0,0, and that } has
a saddle aD. Therefore the coupleX*,17) satisfies the assumptions @i) of Eq. (2), and we
conclude thaiX*, and thereforeX, is unstable at0,0,0,0.

Examples of this type are not only academic, since they appear in the study of systems of the

type

X=V «(X,y),
(12
y:V,y(X-Y),

whenever a pair of first integrals of R v.f. are known and the gradient of one of them does not
vanish at0 (Ref. 7). The second first integral is, usually, linear in the components of the velocity.
In fact, via a local change of variables this first integral can be reduced to a canonical form
similar to the functionl, of (10). This fact gives generality to the couple of first integrals chosen
in (10).
(i) Let I, andl, be defined by

l,=u"—P(x,y,2),
(13
|2:Xm_Q(yrz)a

where n and m are positive integersnim>1), P and Q non-negative polynomials and
rank(VI 1,V| 2)‘0:0.
It is immediate to check that the level sets

|l:C1,
(14
|2:C2,

are planes whef;,C,>0 (one has just to gat andx as global functions of andz). Therefore,
by using similar arguments to those given in the proof®f any R* v.f. with an isolated zero at
0 and these first integrals is unstableOat

(iii) Let 1, andl, be defined by

I =y?—f(x),
(15
l,=Xxu—2zy,

f(x) being a non-negative function arid(0)=0.

Note thatl, has the form of an angular momentum and that r&ik(V1,),=0.
On the other hand, the level sets,
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y?=f(x)=C,
Xu—zy=D, (16)
C>0,

can be globally parametrized in the form

-D
X,i\/C‘l‘f(X),#\/T(X),U ; (17

and they are a couple of two-dimensional plafieste that the parametessand u are free.
Therefore any v.f. with an isolated zero@and the two first integral6l5) is unstable ab.
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It is shown that when a dynamical systexg with a proper set of global first
integrals is perturbed, the phase space region accessible to the orbits of the per-
turbed vector fieldy+ X, is boundedwe are assuming here that the time variable
runs over dinite interval). A polynomial new bound is obtained for the separation
between the solutions of, andX,+ X,,. Perturbations near an equilibrium point of

Xg are also considered. @000 American Institute of Physics.
[S0022-248800)02905-4

I. INTRODUCTION

The role played by first integrals of vector fielfsf.’s) in the integration of them via quadra-
tures and other reduction mechanisms is well kndviRemember that a smooth functionis
called first integral of the v.fY whenZy(1)=0, £y standing for the Lie derivative dfalong the
streamlines ofY. Most of the first integrals considered in this paper reper first integrals: a
function| is properwhenl ~1(K) is a compact set whenevkris compact. The reader will have
no difficulty in proving that when lim1(x) =<, thenl is a proper functior{of R" in R). More
information and some examples of proper functions can be found in Appendix B.

First integrals have also been used in other contexts: to estimate limiting possibilities of
optimal control system%,n averaging techniques of perturbed Hamiltonian v¥2sand in the
obtention of bounds for the number of periodic orbits surviving when a completely degenerate,
linear, Hamiltonian system is perturb&dVe now show that they also play an interesting role in
relation to(i) the wideness of the phase space region accessible to the perturbed orliis thed
obtention of bounds for the separation of perturbed and unperturbed solutions. Since the only way
of studying the perturbed v.f. is, in general, numerical, these phase space domains and bounds
could be useful in order to control the errors of the numerical computations.

Let us now compare our method with other perturbations methods. Consider, for example,
KAM theory. In this theoryn/2 first integrals, in involution, of an unperturbed v, are usedX,
is Hamiltonian andh is the phase space dimension. On the phase space domain where the level
sets of the first integrals meet in tori and where the Kolmogorov condition hdtdsst of the
nonresonant tori survive the perturbation and do not disappear, but are slightly def@ihmed
perturbing termX,, is assumed conveniently small

For n=2,4 KAM implies the boundedness of the perturbed solutions. But whed, un-
bounded orbits can appegkrnold diffusion). The theory is not applicable if the first integrals are
not in involution or if they are but the geometry where its level sets meet is not tor@xlikaight
vanish on one of these compact intersectjofibe same applies i, (the unperturbed v fis not
Hamiltonian.

Concerning the relation between KAM and the work developed here, we note the following:
(i) The bounds obtained in this paper are valid for any X¢. integrable or not, Hamiltonian or
not, in so long as its first integrals form a proper set of first integrals. This implies that the sets
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where the level sets meet are compact. The theory is also applicableonbef the connected
components of the set where the level sets meet is a compact set. On the other hand, the geometry
of these compact intersections of level sets is not necessarily toruslike: any compact differential
manifold is equally valid to ugii) Our bounds are valid for finite intervals of time, while KAM’s

are valid for infinite intervals of time(iii) Local coordinates around the compact sets defined by

the first integrals are never used in this paper. Therefore we do not get problems when trying to
globalize thenf.

Now, we will give some information concerning our method and the techniques of averaging
and adiabatic invarianfsMost of these methods are designed in order to study the perturbations
of Hamiltonian v.f.’s, withn/2 first integrals in involution and with global action-angle variables
on a certain compact set filled with tori, or for v.f.’s with parameters drifting “slowly with time.”

We have already mentioned that global action-angle variables do not always exist, because of
topological obstructions. On the other hand, in order to define the term “slowly with time,” used

in the theory of adiabatic invariants, some authors are compelled to consider only Hamiltonian
v.f.’s X, of degenerate type; that is, v.f.’s, all of whose orbits are of $béopological circley

at least on a certain phase space domain. The periods 6 thrbits can be used as a scale of time

in order to give a certain meaning to the term “slowly with time.” We have to say that in our
approach the v.fX; is not constrained to be degenerate.

We explain now why our treatment has little in common with the so-called “averaging
methods.” In these methods bounds for the separation between the evolution afctive
variables(slow variablegin the v.f. Xo+ X, and A(Xy+ X,) are obtainedA(Y) standing for the
average ofp(Y) over the angle variabldp(Y) is the projection ofY over the action variables
spacé.

On the contrary, we get bounds for the separafid) — y(t)|| between the position vectors of
the solutions oKy andXy+ X, at timet. We show that for large values bfhis separation cannot
grow faster than a polynomial function ofThis result improves previous exponential bounds in
the literature.

The plan of the paper is the following: the bounding regions are introduced in Sec. Il. Bounds
for the separation between the unperturbed and perturbed solutions, with the same initial condi-
tions, are given in Sec. lll, and these bounds are compared, in Sec. IV, with other bounds in the
literature. An application to the perturbations near a stable equilibrium point is given in Sec. V.

IIl. THE BOUNDING REGIONS

We prove in this section the following Proposition:
Assume thati) | is a uniformly bounded and smooth first intedrede formula6)] of Xg; (ii)
Yo is @ common initial condition of the v.K, and Xy+ X, with corresponding solutiorns(t)
andy(t) satisfyingx(0)=yo, y(0)=Yo; and(iii) X, satisfies Eq(7).
Under these assumptiog$t) must lie inside the phase space domain defined by(&qCertain
consequences of E¢B) are also discussed at the end of this section.
In fact, consider the differential equations associated with thexy.and X+ X,,,

x=Xo(X), )

y=Xo(y) +Xp(t,y), )

wherex andy are vectors irR" and X, is the perturbing term. The rate of changel @flong the
solutions ofXy+ X, is

=VI-(Xo+Xp)=VI-X,, 3)

whereV stands for the gradient operator. Note that the iderityX,=0 has been used if8),
sincel is a first integral ofX,. We immediately obtain fron3)
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—|VI-Xp|<I<|VI-X,| (4a)
and
=V IXplI=T=< [V 1X, (4b)
| || standing for the Euclidean norm &f". Integrating(4b) betweent=0 andt=T, T>0, we
obtain
T T
= [ IV Xl dt<t=To< | [IVI]-[[X/ldt, (5
0 0

We discuss now some consequences of(Bg.Assume tha¥| satisfies the uniform bound-
edness condition:

[VI|<K, VxeR" (6)
(see Appendix A for a study concerning this poiahd thatX, factorizes in the form
Xp=f(t)-Xy(y),
[X,=K’, VyeR" 7
f(t) e CO.

Under these requirements we get fr¢i

T T
—K-K'f |f(t)|dts|(y)—|osK-K’f (0] dt. ®
0 0

A similar equation holds whek,, is a linear combination of terms of tyf&).
Let us discuss now some consequences of(&q.

(i) If we assume, in addition, thgt, *|f(t)| dt is bounded and thdtis proper(see Appendix
B), Eq. (8) defines a bounded domain Bf' wherey(t) lies whent runs over the interval
[0,T] for any value ofT. Thereforey(t) cannot blow up to infinite in a finite time. These
conclusions hold as well if we assume thaf... | is a proper set of first integrals of,
such thaf]VI||<K (I1=1,2+---+1Z2). In fact, it is easy to show thatis a proper function.

(i)  Assume now that is a first integral ofX, not necessarily proper and that the connected
component of the level sét (1) throughy, is compact. On the other hand, we do not
assume the validity of Eq6) on the whole ofR", as it is obviously verified on any
compact se€ containing the compact componentlofi(l,). Under these assumptions the
perturbed solutiory(t) remains inC whent (t>0) is sufficiently small. We get in this
way, through Eq(8), a restriction on the phase space dom(aontained inC) accessible to
the perturbed solutiog(t).

(i)  Let us clarify the meaning of this section and the last paragraph with an example. Assume
thatX is the electromagnetic inductidy(x), x e R3, andl is not necessarily a proper first
integral of By, whose level sets, inside a certain compactGetre tori. Let us compare the
orbits of B andBy+ B, with the same initial conditions, whilgt) lies in C. Note that the
boundK of Eq. (6) can be made arbitrarily small & is chosen near the central lireof
the tori, sinceéV| vanishes orp. This fact implies that the term-K’-f$|f(t)| dtin Eq.(8)
can be made small, and small will also be the domain accessiplé)taefined by Eq(8).
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We obtain, in this way, a convenient finite time confinement of the orbid$,efX,,. This
confinement has been induced by the presence of the first infegnal its compact level
sets onC.

(iv)  Note that a first integral 0B, with toruslike level sets can be obtainedB§ possesses a
transverse symmetry vect&of zero divergence.

That is, whenS commutes withB, and DivS=0.
This is what happens, for instance, wHggis symmetric under rotations around thaxis. In
this caseS=4,,, Div(d,)=0, andl is given by

By d] (dx/\dy/\dz)=dl, 9

J standing for the contraction operator between v.f. and differential forms.
Under these conditions it is easy to see that the compact components of the levell sats of
tori. One just has to remember that the functicstefined in Eq(9) is also a first integral of,, .

Ill. A NEW BOUND OF |[x(t)—y(t)|

We prove in this section the following Proposition:
Assume that(i) | is a proper, or locally proper, polynomial first integral of E4), (ii)
|f(t)|<K”,Vt, and(iii) the assumptions used to obtain E8§).
Under these requirements a polynomial upper boundX¢t) —y(t)|| is obtained see Eq(12)].
In fact, under the above requirements, E8).implies

—K”-T<I—1o<K"-T, (10)

K™ being the product of the bounds §VI|, [|X,, and|f(t)| on C. Remember thaC is a
compact set containing(t) for te[0,T].

We see in(10) that| cannot increase faster than linearly along the solutionsgfX,. We
can now obtain, out of Eq10), a bound for the maximal separatifs(t) —y(t)|. In fact, we can
write

Ix(t) =y(1)[[<D(T)<2R(T), 11

D(T) being the diameter of the bounded $et[l,— K" T, ,+K"”-T], and R(T) being the
maximum distance from the points of this set to any fixed arbitrary poift"of

Now, it is shown in Appendix C that whelnis a polynomialR(T) cannot increase, for large
values ofT, faster thanT™(meN). Therefore, we obtain from Eq11)

Ix()—y(b)[|<aT™, meN, (12)

a standing for a positive real number.
Let us compare next the bouidl2) with other bounds in literature.

IV. COMPARING THE POLYNOMIAL BOUND WITH OTHER BOUNDS

We compare now the polynomial bound of Sec. Il with some classical bounds.
(i) First of all, consider the well-known expressfon

[x(t)—y(t)[|<K’-L~ - [exp(L-T)—1], te[0T], T>0, (13

L being a Lyschitz constant ofo andK’ a bound of|X,||. Remember that sinc¥, is analytic,
L is just a bound of the matriP X, (D is the differential operatdr
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We see in(13) that | x(t) —y(t)| increases exponentially wifii Therefore, the boun(l3) is
worse(whenT is large than the polynomial bound if obtained in Sec. Ill. Our improvement is
to be ascribed to the presence of the proper uniformly bounded first integrals.

(i) Assume now thaK,=A,- X, whereA, is a constanh X n matrix andX,=f(t) with f(t)
satisfying||f(t)||<K’ for anyt. In this case writing the explicit expressions fqt) andy(t) we

obtain
Iyt =l | [ oo f191ds 19
Using now the inequalify/
lexpAll=<(n—1)+expl|A, (15)
whereA is again a(n,n) matrix, we get from Eqs(14) and(15)
(D) =y(OlI<K’-[(n=1)+exp(|Ao|- T)]*T te[0T], T>0. (16)

Equation(16) is a new bound ofx(t) —y(t)||, of exponential type, and valid whefy, is a linear
v.f. This bound is, therefore, worse than the polynomial bound of Sec. IIl.

In particular cases the bouri@l6) becomes linear iff. Assume, for example, that the eigen-
values ofA, are purely imaginary and simple. Then it is easy to see that|@yp T) is bounded
for any T. Let k be a bound of exgdj|-T).

In this case we can writél6) in the form

Ix(t) =y(D<K'-[(n—=1) +Kk]*- T, 7

which is a bound ofjx(t) —y(t)|| linear inT.

It is easy to see that this improvement is due to the presence of a proper set of first integrals.
Indeed, under the hypothesis considered on the eigenvalugg, ok, has a set of proper, and
quadratic, first integral$.

What we learn from this example is that it is again the presence of proper first integrals that
induces improvements of the bounds|&ft) —y(t)].

V. PERTURBATIONS AROUND STABLE EQUILIBRIUM POINTS

We show now that the existence of bounding regions and the separation bound b2)Eage
sufficient to explain the stability of systems of linear oscillators under nonlinear perturbations.
Assume tha0 is an equilibrium point oK, andX,+ X, and thatl is a proper first integral oK,
with 1(0)=0, VI(0)=0. These assumptions imply that the level set$ nkar0 are topological
spheres. We also assume thand the v.f.X, andX,, are analytic. We can, therefore, write

1=VI-X,= 2 A(6)-p', np=2, (18)
i=ng

(p, ) standing for the generalized spherical coordinateB"irmaroundo.
For convenient values gfy, y(t) lies inside an arbitrary baB, of radiusr centered a0, and
we obtain from Eq(18)

_(i Ai.ri).Ts|—|os(i§ Ai-ri)-T, (19

A, being the maximum of\;(6) on the unit spheréx||=1. Whenr is small the serie§f°=noAi
-r' behaves like its leading terv&nd r"o and we can write
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A|~An0.r“o.T. (20)

We see in(20) thatAl becomes quite small, evenTfis large, wherB, is sufficiently small. This
implies that||x(t) —y(t)|| becomes small, sincsee Sec. ) ||x(t) —y(t)| is proportional toAl.
This fact makes the solutiongt) andy(t) practically indistinguishable.

In some physical problenisnotion of a spherical pendulum near the equilibrium position, and
related problems, normal modes of vibration of molecular systdnxs, is a linear v.f. with a
proper and quadratic first integréhe total energy The perturbed v.fXy+ X, has a first integral
i. Herel has the structure+1,, wherel , is a perturbation of nearo0.

In the above physical problenﬁsis also proper. Therefore, it is possible to gét) andy(t)
insideB, for any t One has just to choose the initial conditignsufficiently near0. Under these
conditions Eq(20) can be applied, but now is anunrestrictedpositive number, sincg(t) and
y(t) never get out 0B, .

The key to this stability of linear systems with proper integrals is

(i) the presence ii20) of the factorr™- T, which can be made small evenTifis large, and
(i) the existence of proper integrals ¥f and Xq+ X,.

The smallness oAl and||x(t) —y(t)|| explains why the theory of linear oscillations is useful,
since the separation between the small amplitude solutioXs ahd those oXy+ X, is so small
that its detection is practically impossible.

VI. FINAL REMARKS

The effect of proper first integrals on the separatfieft) —y(t)|| between the solutions of the
perturbed and the unperturbed systems has been studied. It has been shown that under certain
conditions this separation cannot become, whéslarge, larger than a polynomial function Bf
while in the absence of proper first integrals the separation is exponenfial in

The influence of proper integrals on the stability of linear systems has also been considered.
Open problems in this field are the following.

(i)  To get bounds offx(t) —y(t)||, improving the exponential bound of Equati€iB), when
the first integrals do not form a proper set or when they are not polynomials. Note that for
molecular systems and for the motion of a point on the surfaeé(x,y), wheref is a
polynomial and lim f=+, there are proper and polynomial first integrals.

(i)  Toimprove the bounds of this paper whemore than ongolynomial, proper first integrals
of X, are known.
(i)  To obtain relations betwednand the integem of Eq. (12).
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APPENDIX A: UNIFORM BOUNDESNESS OF PROPER FIRST INTEGRALS

Assume that is a first integral ofX,. We show that ifl is proper, an increasing functiofy,
can be obtained such that

[VE(D]<1. (AL)

Note thatf(l) is proper whenever is proper. In fact, let(x) =C be the compact level sets bf
Define

M(C)=Max|VI|| on I(x)=C. (A2)

Note that in generaM (C) is continuous but not differentiable.

Downloaded 30 May 2003 to 147.96.22.70. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



2928 J. Math. Phys., Vol. 41, No. 5, May 2000 Gascon, Salas, and Sancho

We definef by

f(z)=f2|v|((:)*ldc. (A3)

Note thatf is aC* function[its first derivatives are continuous, but is not in general a smadth (
function).
Let us see thaf(l) satisfies Eq(A1):

df
IIVf(I)II=‘m-VI‘=M(C)‘1-IIVIII<1. (A4)

as we wanted to prove.

Note that if{l;}, i=1,...s, is a proper set of first integrals, thérm:1,2+---+12 is a proper
function, to which the above construction can be applied.

Remark that Eq(A3) is of difficult handling, since the analytical expressionM{C) can
rarely be obtained and, on the other hand, the integrarid3in becomes singular at those values
of C corresponding to the singular level setsldimanifolds degenerating into points, curves,...,
manifolds of dimensionr{—2)]. Because of these problems it is preferable to use(&8) in

order to get suggestions on the form of possible functiofer which (1) satisfies Eq(AL).

Let us now give some examples. In all of thénhas been suggested by the form\d{C).
This form can be obtained using the Lagrange multipliers rule to get the extreff¥al pfon |
=C.

Example 1:Let | be given by the following polynomial,

1(0=2, a-x",
=1

wherea; are positive real numbers amg are natural numbers. In this cabés of the formz'P
with p=Greater(d,,...,2,) + 1. It is easy to check thd{(1) =k- 1P is proper and satisfig#\1)

for a suitable value ok. Note thatf(1) is C* on R—{0}.
Example 2:

1(X)=Pm(X) + Pm-1(X),
where P, is a homogeneous polynomial of even degred,(limP,=+0», andP,_; is a

polynomial of degreen— 1. In this case the computations wikh(C) suggest thaf(l) is of the
form k-In|l. In fact, k-In | is proper and satisfies EGA1) for a suitable value ok.
Example 3:

|(x)=i§1 e

In this casef(1)=k-In(In).

Note that in these two last examplégl) is C* in R* —{0}. This local C* behavior is
sufficient in order to be able to apply the techniques of Appendix C. On the other hand, the local
first integralf(l) can be of interest in so far as the interjig— K" - T, 15+ K" -T] lies inside the
region wheref(1) is smooth C*).
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APPENDIX B: A SUMMARY ON PROPER FUNCTIONS

A summary of certain useful properties concernprgper functions is given here.
A function | is called proper ifl “1(K) is compact for every compact s KCR. The
function (total energy 7>+ V/(2) is proper when lifv=+o.

A function | is called locally proper if “1(K) is compact for any compact S€tK CDCR (D
is a fixed subset oR). The total energy of a pendulum is a locally proper function of the angular

displacement#) and 6. When 6 is small, the level sets df are bounded.
S
The set of functiongl;}, i=1,...s is proper if N I, *(K) is a compact set for anf CRS. If
i=1

{1;} is a proper set, then,>+---+1¢2 is a proper function, since its level sets are formed by the
compact union of thécompact level sets ofl;.
The functions

I1=X,2+ X2+ ser(X3),
(B1)
| 2= X22+ X32+ exp( - Xlz),

are not proper, but they form a proper pair. Therefgrer 1,2 is a proper function, as the reader
can check directly.
A set of functionsl; i=1,...s, is locally proper onD if for any compact set contained in

S
DCR? the setN Ii’l(K) is compact. The energy and the angular momentum form a proper local
i=1

set of integrals of Kepler's problem. In this caBeis any R> domain on whichE(energy<O0,
L (angular momentuns 0.

Note that when{l;}, i=1,...s, is a locally proper set of functions oR the functionl,2
+---+142 is not always locally proper of. For instance, the energy and the angular momentum
of Kepler's problem do not satisfy this requirement. In fact, the level seB?6fL? are always
unbounded.

APPENDIX C: A USEFUL BOUND FOR R(T)
We now get a bound foR(T), the maximum distance frofie R" to the setS defined by
S={X|lo— K" -T<l(X)<ly+K"-T}. (Cy

The following evaluations shall be made by computing the maximum distance(ftonthe part
of the Boundar{S given by the compact sdt *(1,+K"”-T). By Sard’s theoredt we may
assume that™! (I,+K"”-T) is a differential manifold. Note that the same evaluations apply in
computing the maximum distance frobnto the compact sdt™* (1,— K" - T).

Consider the projectionsr; (M) of the compact sé¥l+=1"1 (I,+ K" - T) on the coordinate
axisx;. That is,

Pri(Xg, ... Xp) =X . (C2
We can also write
pri(Mr)Cla(T),bi(T)],
a(T)=Min pri(My), (€3

b;(T)=Maxpr;(M+).
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Now, since we assume thiais a polynomial it can be shown using the Tarski thedretmata; (T)
and b;(T) are semialgebraic i (Ref. 12 and whenT— +oo they are bounded by an integer
power of T, T™ m, e N.

It follows that R(T) =D ,,,{0,M ) shall be bounded by

{(Tml)2+ ceet (Tmn)Z}lIZ%Tm, (C4)

m standing for the maximum of the natural numbens, (...,m,). ThereforeR(T) cannot in-
crease, for large values af faster thariT™, as we desired to prove.

When | is a nonpolynomial first integral we can use the Stone—Weierstrass théoiem
approximatel, and a finite number of its derivatives, nedr; by a polynomialP ., 1)(x) of
degreem(e,T). Moreover, by the Thom isotopy lemmathe sets defined by

i(X)=1o+K"-T, (CH
Pm(e,T)(X) = I 0+ Km' T, (CG)

are diffeomorphic and the set defined (§5) lies in a neighborhood of the set defined (86).

Fixing now the value ot (saye =1) andassuminghat the coefficients o, 1)(x) depend
algebraically onT (Ref. 12, we define the projectionpr;(M{) and obtain again, via Tarski
theorem'? the polynomial boundR(T)~T™. It must be said that when the dependencd af the
coefficients ofP ,,; 1(X) is notsemialgebraic, the problem of obtaining a boundR¢T) is a very
difficult one and no general solution of it is known to us.
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1. INTRODUCTION

In recent papers [1,2], the blow-up of R™ vector fields (v.f.) has been studied by means of local
series around movable singularities (Painlevé analysis) [3-7].

In this paper, we study a related problem: the existence of unbounded orbits of differential
equations. They shall be called escape orbits, and they play an important role in Newtonian
gravitation, in which unbounded orbits of equations of type

m¥x = -VV,

.
V=-Gmd> ——,
2 l[x — x|
x; = position of the attracting masses,
G = gravitational constant
appear [8].
The following are additional examples of forces admitting escape solutions.

(1) The magnetic force X A B(x), where B(x) is parallel to a fixed direction (say the z-axis)
and B(x) is constant.
(if) A constant gravitational force g(x) parallel to the z-axis.

*Author to whom all correspondence should be sent. This author is supported by a FPI predoctoral grant from
Universidad Complutense (Spain).
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The reader can easily check that for any initial conditions (2o, ¥o, 20, %o, Y0, 20 # 0) the solutions
to X =% AB(x) and ¥ = g(x) verify

|2 (t)] — +o0, when ¢ — +o0.

The time taken by the particle in reaching |x|| = +co can be finite or infinite, but we are not
interested here in this issue.

A first formulation of our problem is: can we choose the initial conditions (xg,%o) in such a
way that the corresponding solution x(¢) of equation (1) is unbounded in x(t), in %(t), or in both
x(t) and %X(¢)7 '

Note that when V(x) is a central potential this question has an easy reply since in this case
equation (1) is integrable. However, when several attracting masses are present, equation (1) is
no longer integrable and escape to infinity must be analyzed in other ways.

Escape to infinity in the presence of non-Newtonian [9-19] or Newtonian potentials [8,20-22]
has been analyzed via analytical techniques. On the contrary, we shall study escape to infinity
using topological means.

Topological means were suggested by Smale [23] in order to get properties of the orbits of
equation (1) when topological invariants of a certain number of first integrals I of equation (1)
are known (Betti numbers, homotopy, or homology groups of the level sets of I, ...).

This paper follows exactly this line and its main result is as follows.

THEOREM.

Let X be the v.f. representing the dynamics. Let Xy, be the restriction of X to an invariant
unbounded differential manifold V, of dimension two, where Vz is not a cylinder. Assume, finally,
that

i) Xy, is divergence free, and
Vo
(ii) X is free from zeros.

Then, there is an unbounded orbit of Xy, on V3.

The proof of this theorem appears in Section 2.
In ending this introduction, we must say that the study of escape orbits of differential equations
of type
m¥ =F (t,x),

xe R"

(2)

was initiated by Kneser [24]. Hartman and Wintner [25] extended Kneser theory to include
velocity dependent forces, when n = 1, and finally (see [26]; see also [27], where systems of linear
repulsive forces are considered) for arbitrary values of n.

The techniques used by all these authors are analytical.

2. PROOF OF THE THEOREM

We shall prove the theorem in Section 1 by contradiction. That is, if we assume that all the
orbits of X are bounded, we get a contradiction. Remember that X is a divergence-free v.f.
without zeros defined on a two-dimensional unbounded manifold V3 (a surface).

In fact, if X is free from zeros and is divergence free then the w-limit set of any bounded orbit ¢
of X is an S orbit [28,29]. Therefore, if all the orbits of X were bounded, V2 would be foliated
by disjoint circles.

Now, it is immediate to prove (see below) that the only unbounded surface V covered with
topological circles is the topological cylinder. Therefore, if V3 is not a topological cylinder, at
least one of the orbits of X must be unbounded.

We now briefly sketch the proof that an unbounded V; orientable manifold covered with circles
is a topological cylinder. This fact is an easy consequence [30] of the fact that we can form in a
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neighbourhood of every S! orbit in V3 a local tubular neighbourhood N which is covered with S*
orbits. Under prolongation of N repeatedly one gets either a cylinder or a torus-like {compact)
surface. As we are working with unbounded manifolds V5 the last case is excluded.

3. EXAMPLES

Tllustrative examples in B> and R* are now given. The common features underlying them are
the following:
(i) the construction of divergence-free v.f. X in R® or R*,
(ii) the appearance of one or two first integrals I; of X,
(ili) the manifold V; of Sections 1 and 2 is obtained as a common level set of the first integrals;
(iv) the v.f. Xy, (the restriction of X to V; is divergence free [31], by choosing conveniently
a volume form wy on V5.

For R? v.f., wy has the form

ivr, 3
IvL|*

Qs = dz Ady N dz,

1 = contraction operator.

For R* v.f. wy has the form

v v, Qe
(VL)? VILVI
VIVI, (VIp)? (4)

Qi=dzANdyAndzNdt

Note that (3) and (4) are valid on the level sets of I; (or I and I5) when rank(VI;) = 1 (or
rank(VI;, VI3) = 2) on them.

ExAMPLE 3(i). Consider the divergence-free v.f. in R3
X = (—yll,zIly — z + 2z (yII , — zI1)),
I= (e +y%) (-1 +4?).
One can check that the function I;, defined as
L=:l+z+y, (6)
is a first integral of X and that X is free from zeros on the level sets

2l+x+y=e
(7
c#0, c# 1.

On the other hand, VI; does not vanish on the level sets defined in (7); the topology of these
level sets is that of a plane with two points deleted, as the reader will easily check out. Therefore,
they are not cylinders.

We can, therefore, apply to these level sets the results of Section 1 and conclude that the v.f. X
of equation (5) possesses an unbounded orbit on each of the manifolds defined in equation (7).

ExampLE 3(ii). Consider the complex polynomial

P = é - 2
(21, z2) 5 z (zl 1) ,

21,29 € C,
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and the Hamiltonian differential equations [32-34]

z —-2_’1 P op 9

1= 622’ 2 = 8217 ( )
that is, .

B =29, =322 -1 : (10)

Writing 21 = 1 + Y1, 22 = 22 + Y3, 2;, ¥ € R, in (10), one gets the R* v.f.
X =100, +y20,, + (3ac% - 3yf — 1) Oz, + 621910y, (11)

with the first integrals
x5 — s 3 2
I = 5~ o1 dnyy +a,

I = zoys — 323y1 + 45 +y1-

(12)

It is immediate to check that X, I;, and I, satisfy all the conditions of our theorem on the level
sets

Il =0,
I =, (13)
2

e # t—= e #0.

33’

Since these sets [33] have the topology of a torus with a point deleted they are not cylinders.
Accordingly, in each of them lies an unbounded trajectory of X. Nevertheless, we can predict in
this case the existence of unbounded orbits in another way. In fact, from equation (10), we get

51 =328 -1, (14)

and therefore,
i1 =322 - 3y7 - 1,
S (15)
i1 = 6z1y1.
A particular solution of equation (15) is y1(¢) = 0 and z;(¢) any solution Z;(t) of the second-

order differential equation ‘
# =3z - 1. (16)

This last equation is integrable and trivially possesses unbounded solutions. From this, the
existence of the unbounded solutions of X immediately follows

I = 53'1 (t),
Ty =Z1(t ,
2 = Z1(1) an)
1= 0,
y2=0.
ExaMPLE 3(iii). Consider now the complex polynomial
2 3
P(n,2) = 2 +in + 2, (18)
2 3
and the associated Hamiltonian differential equations
Z1 = 29,
1= 22 (19)

22 = '—'L'——Z%,
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whose real form is

-’kl =T,
j = Y2,
R 20)
Ly = —T] + Y7,
P2 = —1—2z191.
The reader can check that all the assumptions of our theorem are met on the level sets
I =¢,
I =ec, (21)
2
c1 +teg F :i:gi -1,
Il,I2 defined by
L= 73 — y2 . 73 ~ 37993
2 L5 (22)
3riy1 — 1y

Ig =$2y2+331+ 3

These level sets are again [33,34] of type torus with a point deleted, and therefore, unbounded
orbits in R* must appear on the level sets defined by equation (21).

4. TWO EXAMPLES RELATED
TO ELECTROMAGNETIC FIELDS

EXAMPLE 4(i). Let E(z,y) be the R?-vector field created by the N > 2 electric charges (g;, x;),
x; standing for the position of the charge g; (x; € R%). We assume that E(z,y) is given by

N

o) — g (X — %)
E(z,y) ;(a:—mi)2+(y—yi)2' (23)

The reader can check that this vector fleld is divergence-free (div(E) - I %%L) and has a finite

number of zeros; this last property can be immediately shown by eliminating the denominators
appearing in E = 0 and introducing the complex variable z = z + iy. We get in this way an
expression whose zeros are just the zeros of a complex polynomial of degree N — 1.
Therefore, we can apply to E(z,vy) the results of Sections 1 and 2 on the manifold V; defined
by
Vo=R*-Z -8, (24)

Z being the set of zeros of E and S the singular points of E (these last points being, of course,
the positions x; of the charges g;).

Since V; is not certainly a cylinder (the cardinality of the set Z U S is greater than one for
N > 2), we conclude that there is, at least, an unbounded orbit of E on V5.

ExAMPLE 4(ii). Consider now the magnetic field B created by a planar circular wire on which
a electric current of intensity I flows. It is well known [35,36] that if the planar wire W lies
on the zy-plane and the origin of coordinates coincides with the center of W, then any plane «
containing the z-axis is invariant under B. On the other hand, B is singular on 7 at the two
points given by

wnm, (25)

and B is free from zeros on 7 [35,36].
Since B is divergence free [35,36], that is,

0B, + 0By + 0B,
Oz Oy 0z

it is easy to check that the vector field By, (the restriction of B to =) is also divergence free.

div(B) =

=0, (26)
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The definition domain of By, is
Vo=R?>- (Wnn), (27)

which is not a topological cylinder (remember that V3 is just B2 with two points deleted).

Therefore, as By, is free from zeros on V3, we can apply to this example the results of
Sections 1 and 2 and conclude that Bj, has at least an unbounded orbit on V;. In fact, it
can be shown [35,36] that the z-axis is the unique unbounded orbit of Bj.

5. FINAL COMMENTS

A criterion in order to get unbounded solutions of differential equations by topological means
has been obtained. Several examples are given in Section 3. Examples related to electromag-
netism are developed in Section 4. A similar criterion for bounded solutions (for example, for
periodic solutions) would be interesting.

A related problem is that-of knowing whether or not a divergence-free zero free v.f. X, on any
unbounded manifold V5, exists such that V5 is foliated by orbits of type R. Note that when the
v.f. X is not necessarily divergence free, it is known [37] that V2 can indeed be foliated by the
type R orbits of X.

Another problem related to this one is that of knowing if orbits of type R (unbounded) and
S* (periodic) can coexist on two-dimensional unbounded manifolds Vz when divX =0 and X is
free from zeros. The coexistence is impossible for V5 = R? since a periodic orbit of X implies the
appearance of a zero of X. When V; = R? the condition divX = 0 plays no role, but we suspect
it does when V; # R2.

Finally, in order to get a generalization of the results of this paper to unbounded manifolds V,
(n > 3) a previous study and classification of the manifolds that can be foliated by circles would
be necessary [38]. The main difficulty of this study is that the w-limit sets of orbits, of three-
dimensional vector fields (in contrast with what happens in V3), are, up to now, not topologically
classified.
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Abstract—It is shown that when a first integral I of a vector field (v.f. in what follows) X is
known, the level sets of I resemble bagpipes, and X is asymptotically stable (a.s. in what follows) on
the skeleton of I (the set where VI vanishes), then the v.f. is stable at 0 (a singular, not necessarily
isolated, zero of X). A similar bagpipes configuration is shown to appear concerning the orbits of the
magnetic field created by a set of concurrent straight line wires. (© 2005 Elsevier Science Ltd. All
rights reserved.

1. INTRODUCTION

It is well known that if 0 is an isolated critical point of X (a smooth dynamical system) and I is
a first integral of X with an isolated (or strict) minimum (or maximum) at 0, then 0 is a stable
equilibrium point of X [1-6]. The essence of this result is that the level sets of I near zero (I71(¢),
le| small) are bounded sets; in fact, they are topological (or deformed) spheres. Note that we
have assumed that the value of I at 0 is zero. This can always be achieved by the addition to I
of a trivial constant.

When 0 is a critical point of X but it is not an isolated minimum of I the above criterion
fails as the reader can check by considering the differential equation of a nonrelativistic moving
charge (g =m = 1) in a constant magnetic field By (Bo # 0, Bg € R?),

% = % A By, x € R3, (1)
and the classical first integral I of equation (1),
I=3% =i+ 9> + 2 (2)
Note that VI vanishes on the three-dimensional manifold M3 given by
Ms = {(x,%), such that x = 0} = (z,y, 2,0,0,0). (3)

Moreover, I and VI vanish on the manifold Mj; of equation (3).
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Note that I possesses an absolute minimum (equal to zero) on Ms.
Note also that the v.f. X = (%X,% A By) associated to equation (1) vanishes on Mj; that is the
zeros of this v.f. are never isolated.
On the other hand, the zeros of X are not stable. Indeed, consider the following solution of
equation (1),
x = eBgt, X =¢eBy, € € R, (4)

corresponding to the initial conditions,
x(t=0) =0, x(t =0) = eBy. (5)

The initial conditions (5) are, for small values of e, arbitrarily near Py = (0,0) € M5. The
solution of equation (1) corresponding to xg = 0, Xg = 0 is

x(t) =0,  x(t)=0. (6)

A look at equations (4) and (6) shows that the initial point Py is unstable. Moreover, the
corresponding solution given in equation (4) is unbounded.

In the following, we shall study stability around zeros x( of v.f. Under certain conditions that
we will specify in Section 2, a new stability criterion is given. The criterion is valid for critical
points (not necessarily isolated) of R™ v.f. (possessing a nonnegative first integral ). The zero
(x0) of X must be on the critical level set of I, that is, xo must satisfy the equation VI|x, = 0.

Along this paper the only allowed critical sets C' of I (the set where VI = 0) are a finite
number of straight lines. Namely, C' = vazl L;, L; being straight lines meeting at xo.

The reader can check that the criterion in section II holds when L; is substituted by L] (a
closed topological curve diffeomorphic with R).

Note that assuming I(xg) = 0 implies (since VI = 0 on C) I(L;) = 0, Vi; therefore,

I@L) “o

that is, I reaches an absolute minimum on vazl L;.

To the above hypotheses we must add a final requirement: the v.f. X|¢, induced by X on C
(note that C' lies on the level set =0) must be a.s. at xq.

Under these conditions it is shown that X is stable at x¢. The proof of this criterion is given
in Section 2 and applications of it are discussed in Section 3.

In Section 4, it is shown that the orbits of the magnetic field B created by N straight line
wires w; (j = 1,...,N) intersecting at x¢, are (near the wires) topological circles. Therefore,
a bagpipes structure appears concerning the magnetic induction v.f. created by a set of current
carriers.

In ending this introduction, we must say that our criterion is similar, but has not very much
to do with LaSalle invariance principle [7,8] (connecting limit sets of orbits with the set of zeros
of a function V'(x) satisfying V = VV - X < 0) for the following reasons.

e The functions V(x) considered in LaSalle invariance principle satisfy the condition VV -
X <0, while our first integral I satisfies the condition VI - X = 0 on all R™.

e On the other hand, LaSalle invariance principle deals with the limit sets w™ (x(¢)) of the
bounded solutions of X (for ¢ > 0) and asserts that for bounded x(t), we get

wt(x(t)) C A, (7)
A being the maximal invariant set of X lying in the set B defined by the equation,

B={x:VV -X=0}. (8)
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In our case, equation (8) holds on all R™ (since it holds Vx € R™ when V is a first integral
of X) and the mazimal invariant set (of X) contained in R™ is again R™. Therefore, LaSalle’s
theorem is useless concerning the stability question of this paper.

2. A NEW STABILITY CRITERION

In this section, the new stability criterion is established (Section 2.1). The proof is given in
Section 2.2. For simplicity, the proof is given in R?, but the criterion holds in R, n > 3.

2.1. Criterion

Assume that 0 is a critical point of X, an R" v.f., (X(0) = 0), that I is a nonnegative first
integral of X, such that I(0)=0. Assume that I~!(0) is the union of a finite number of straight
lines L; (i = 1,...,N) through 0 and that I=1(c), ¢ #0, are bagpipes with 2N pipes (see
Figure 1). Assume, finally that X|, is, for every L;, a.s. at 0 (the reader will easily check that
the straight lines L; are invariant sets under the v.f. X). Then, it follows that X is stable at 0.

Note that the above conditions imply that VI|;-1y = 0, as 0 is the absolute minimum of .

An R™ hypersurface S is called a bagpipes with 2N pipes if S is homeomorphic to the surface
of a sphere S"~! with 2N points deleted. When N = 1, S is just a cylinder. See Figure 1 for
N =2.

Geometrically, the lines L; (i = 1,..., N) act as the skeleton of the bagpipes. A cylinder can be
thought of as the surface obtained by blowing-up this skeleton (the single line L;). Analogously,

Figure 1. A typical bagpipes with four pipes (N = 2). See Example 3.(iii).
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a bagpipes can be thought of as the surface obtained by blowing-up simultaneously the lines,
L17 ey LN

Note that the intersections of an R3 bagpipes with planes 7 orthogonal to the lines L; (0 ¢ 7)
are topological circles (S1). For an R™ bagpipes these intersections are (n-2)-dimensional spheres
(S"72).

Note also that the straight lines L; can be replaced by other more general curves L, through 0
and stability at 0 would also follow.

Finally, some comments on the relation of this criterion with the Liapunov’s stability theorem
are in order.

e It is well known [9,10] that, under very general conditions, a Liapunov’s function F(x)
exists around any stable equilibrium point of a v.f. X. Nevertheless, except when X is
a linear v.f., the practical computation of F(x) is a very difficult problem (see reference
[10]). In general, the construction of F(x) depends on the prior knowledge of the general
solution of the v.f. X. Moreover, in some cases, F' is necessarily time dependent [10].

e Our criterion is similar to Liapunov’s in that 7 > 0 and I = 0. Nevertheless the level sets
of I(x) are unbounded, while the level sets of F(x), near the critical point, are compact
(topological spheres). Moreover, our criterion assumes that X|,, is a.s. at 0. This last
assumption is not made in the usual Liapunov’s stability theorem.

In Section 3, we show some examples for which the stability of 0 is proved by applying our
criterion. It is not clear how to construct Liapunov’s functions in all these cases and therefore,
Liapunov’s stability theorem seems to be useless. A detailed discussion of this fact is made
in example 3.(i), where no obvious Liapunov’s functions, e.g., trivial modifications of the first
integral I(x), are found.

2.2. Proof of the Criterion

Let us prove stability of X at 0, when N = 1.

Let B. be the closed ball of radius ¢ centered at 0 and P. any of the two points where L,
intersects OB.. Assume that L lies on the z-axis. Let us find a d(¢) > 0 such that for the points
Xo € Bj(e) it follows ||x(Z,%0)|| < € (xo being the initial condition underlying x(t,xo)).

Indeed, for e sufficiently small the vector X(P.) points towards 0 (remind that X is a.s., on
Ly, at 0) and by continuity reasons X -n < 0 on a region R, of d(B.) containing P. (9(B;) is
the spherical surface ||x||? = ? and n the outer normal to d(B.)). Under these conditions R, is
a repellor for the orbits of X arriving to R, from the interior of B..

Let I7!(c.) be a level set of I, such that

(I"*(cc) NOB:) C R, (9)
and consider the set C. formed by the points P € R? satisfying

Pel Yec),
distance (P, L1) < ¢, (10)
|Zp| <e.
These hypotheses can be accomplished since the set of points (0,0, z), |z| < € is compact and

I7'(c.) N (2 = k) are topological circles of radius 7. j vanishing with e (Jk| < ¢).
Consider, finally, the ball Bs (centered at 0) of radius § defined by

0 = distance (0,C.). (11)

It is easy to see that if x¢ is an initial condition lying on Bs the corresponding solution x(t, xg)
will always remain inside B..
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Therefore, X is stable at 0.

The reader will have noticed that the proof holds also when the number of pipes is greater
than one.

Some applications of the criterion are given in Section 3.

Note that stability at (0,0,0) can also be obtained if the level sets of I induce a local bagpipes
structure in R* and these level sets are bounded near (0,0,0) in the region |x - w;| < k;, k; € R
Vi=1,...,N, u; being a unitary vector along L; (see Section 3, Example (iii), for the definition
of local bagpipes structure and an example).

In ending this section some comments are in order.

(i) When C is near x¢ a curve or the local union of several curves branching at xg, it is easy
to show that the proof of this section holds, and therefore, xq inherits stability in R® from
the assumed a.s., of X|¢ at xo.

(ii) The same thing happens when C is a circle where f vanishes and the sets f > 0 are tori
blowing up from the circle C. Therefore, stability of X at xg € C' holds when asymptotic
stability of X|¢c is assumed (see Example 3.(iv)).

3. EXAMPLES

Five examples are now given for which the criterion of Section 2 can be applied.

3.1. Example (i)

Let X be the family of v.f.,
X = (—ya(x,y, 2))0; + (za(x,y, 2))0y + (—2" + xb(x, y, 2) + yc(x, v, 2))0-, (12)

a standing for a positive function of (x,y, z), b, and ¢ for arbitrary functions of (z, y, z) and
n for an odd positive integer.
This v.f. vanishes at (0,0,0) and has the first integral I = x?+y?2. It is clear that I~1(0) = z-axis
and I7%(c) (¢ > 0) are cylinders (bagpipes with two pipes).
On the other hand,
X|z7axis = _Znaz~ (13)

Therefore, the family of v.f. X meets all the conditions required in the criterion of Section 2
and we can say that (0,0,0) is a stable point of X.

Note that Liapunov’s theorem cannot be applied in this case because there is no obvious
candidate to be a Liapunov’s function F(z,y,z). Indeed, since the level sets of F' must be
compact (topological spheres) around the critical point 0, we can verify whether the typical
Liapunov’s function for a critical point, F(x,y,2) = 2% + y? + 22, works in this example. It
is straight forward to see that F' = 2z(xb(x,y, z) + yc(z, y, z) — 2"), which in general does not
satisfy Liapunov’s condition ' < 0 around the origin. We have not found easy modifications of
this F'(z,y,z) which work, and therefore the task of finding a suitable Liapunov’s function for this
family is so difficult that it does not seem clear how to ascertain stability of 0 without invoking
our criterion.

3.2. Example (ii)

In this example the level sets of I (the first integral) are also topological cylinders (bagpipes
with two pipes).
Let X be the v.f.,

X = (222x + x2y) Oy + (2z2y — x3) Oy — 2 (3x2 + 3y + 22) 0., (14)
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This v.f. has a nonhyperbolic zero at (0,0,0), in fact X vanishes on the y-axis. Therefore, its
stability character cannot be ascertained via the computation of the linear approximation X,
of X at (0,0,0).

The function I = (2% + y?)(z% + y* + 22)? is a first integral of X.

It is immediate to check (introduce cylindrical coordinates) that the level sets I-1(c) (c0) are
cylinders (bagpipes with two pipes) and 171(0) is the z-axis. On the other hand the v.f. induced
by X on the z-axis is

X|z—axis = _Z362~ (15)

Since the v.f. in equation (15) is a.s., at z = 0, we can apply the criterion of Section 2 and
conclude that X is stable at (0,0,0).
3.3. Example (iii)

In this example the level sets of I resemble bagpipes with four pipes near the z and y axis, as
it is explained immediately.
Let X be the v.f.,
X = (2% +y* +2°) (MO, + N9, + P3,), (16)

M, N, P being defined by
Ny (Ax2 + B) + Pz (A + B:cz)
r[(1+22) B+ (1+y*) Al 7

Neooy(—Y .
=*r-y 1422422 =)

17
y2 9 ( )
2| ———2"],
1+ 2%+ 22

P:
A:x2(1+22)+y2,
B:x2(1—|—y2)—|—22.

M =

Note that the term x in the denominator of X gets cancelled by the same factor x appearing in
the numerator of X. We have preferred keeping = at the denominator of X, instead of simplifying
it in order not to complicate the formulas.

The reader can check that the v.f. X defined by (16) and (17) is C! (on R®) and has a
nonhyperbolic zero at (0,0,0).

The reader can also check that I = [22(1 + 2?) + y?][z?(1 + y?) + 2?] is a first integral of X.
Its level sets I~1(c) are as follows.

(i) The z-axis and the y-axis when ¢ = 0.

(ii) When ¢ > 0 and c is small the intersection of the surface I(x,y,z) = ¢ with the planes
z =k (k # 0) are topological circles (deformed circles) near the z-axis, as follows from the
fact that I has a strict minimum on z = k at the point (0,0,k). The same thing happens
with the intersection of I(x,y, z) = ¢ with the planes y = k' (k' # 0) when ¢ > 0 is small.

By definition, when (i) and (ii) hold, we say that the first integral I induces a local bagpipes
structure in a neighbourhood of the z and y axis.

The z-axis and the y-axis are invariant sets under X and the v.f. induced by X on them are
X| —axis — _y58 ’
y—axis . Yy (]_8)
X|zfaxis = —z 82.

On the other hand, the points of the level set I = ¢ (¢ > 0) for which |z| < k1, |y| < k2 form a
bounded set in R?, since we get for them

c= [m2(1 +22) + y2] [(EQ(l +9%) + zQ} > g4, (19)

and therefore, |z| < ¢'/%.
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Since the v.f. of (18) are a.s. at y=0 and z=0, the reader will check that the stability criterion of
Section 2 remains valid for local bagpipes structures whose level sets are bounded for |x - u;| < k;,
k; € R,Vi=1,...,N, u; being a unitary vector along L;. Therefore, X is stable at (0,0,0).

3.4. Example (iv)

In this example the critical level set of the first integral I, =0, is a circle () and the level
sets of I, I = ¢ (¢ > 0, ¢ small), are topological tori around .
Let X be the family of v.f. in R?

X = X190, + X20, + X30.,
Xy =dwy(y — 1) - a(z,y,2) — 2yz - b(x, y, 2),
Xo = 2yz - c(x,y,2) — 42y - al,y, 2),
X = dy(a® + (y = 1)° = D)@ bz, y,2) — (y = 1) - (w9, 2)),

a standing for a positive function of (z,y, z) and b, ¢ for arbitrary functions of (z,y, z).
This v.f. vanishes at (0,0,0) (a nonisolated zero of X) and has the first integral,

I= (:L‘2+(y—1)2—1)2+22.

It is clear that I=1(0) = ¢ = {(2,4,0): 2%+ (y — 1)®> = 1} (a circle on the z = 0 plane) and
I7%(c) (¢ > 0, ¢ small) are topological tori around ¢.
On the other hand the v.f. induced by X on the circle ¢ is

Xlp = [Mry - a(z,y,0) ((y — 1) 0x — 20y)] |24 (y—1)221-

The point (x = 0, y = 0) is an isolated zero of the v.f. defined in (21). The reader can also
check that it is a.s. at (z = 0, y = 0) (remember that a(z,y, z) is a positive function). Therefore,
we can apply the criterion of Section 2 and conclude that X is stable at (0,0,0).

3.5. Example (v)

This is an example in R*.
Let X be the v.f.,

X = zu'd, + x2u48y + 220, + u? (71 —u?—y— z) Ou-

The v.f. X vanishes at 0 (a nonhyperbolic singular point of X).

It is immediate to check that I = (1 + u?)z? + y? + 22 is a first integral of X. Its level sets
I71(c) are cylinders of type S2zR (¢ > 0) or the u-axis (¢ = 0). The v.f. induced by X on this
axis is

Xy axis = —u® — u®. (23)

Since the v.f. in equation (23) is a.s. at u = 0, we can again conclude that X is stable at 0.

4. THE MAGNETIC FIELD CREATED BY
N CONCURRENT WIRES: A PHYSICAL
EXAMPLE OF A LOCAL BAGPIPES STRUCTURE

A similar bagpipes configuration arises concerning the level sets of a first integral (see It in
equation (31) of the magnetic field created by N straight-line wires (Wj, 4;) (j = 1,...,N)
concurrent at (0,0,0); ¢; stands for the intensity of the current flowing through the W; wire. Note
that ¢; can be a positive or a negative real number (depending on the j index).
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The reader should note that no stability claiming is made in this section, in contrast with the
contents of Section 2. Note also that the first integrals of Sections 2 and 3 are global while the
first integrals of the magnetic field B in this section are just local.

Let Bj(z,y,2) be the magnetic field created by just the wire (W, i;) at the point (z,y, z). It
is immediate [11] that

I =2+ + 22 (24)

is a first integral of B; and Broga = Zf;l B;.
Let us now show that the orbits of Bryia on

SC:{x2+yQ+zzzcz,c>0}7 (25)

near the singular points S. N W, are topological circles (that is, deformed circles).

In fact, from a general result [12] in the theory of R?® divergence-free v.f. (B; in our case),
and the presence of the first integral 2% + y? + 22, whose level sets S, (¢ > 0) are of trivial first
homotopy group, one gets a first integral I; of B; on S, provided that

/ 5,0 = 0, (26)
)

Q9 standing for
iyl

v (27)
Q3 =dx Ndy Ndz,

2

¢ being a closed curve around each one of the singular points S. N W; of B; on S, and i being
the contraction operator of v.f. and differential forms [12].

Now, in a spherical coordinate system around W; as polar line, we can write Q3 = p?sinfdp A
df ANdg and VI = 2pd,. Therefore, iy Q3 = 2p>sin 6 df Adp and we get Q2 = (1/2)psind do Ade
and f iB; {22 trivially vanishes (remember that the orbits of B, on S, are the lines # = constant).
Accordingly equation (26) holds.

Therefore, the first integral I; exists and is defined by

in, Qs = dI;. (28)

Remember that although S, is simply connected, S, — (S.NWj) is not. Therefore, equation (26)
is necessary in order that equation (28) defines a function I; globally defined on S. — (S. N W;).
It is straightforward to show that I; is given by

do;
I =i [ —L 2
J ZJ/Sinaj7 (9>

0; being the angle formed by the vector (x,y, z) € S, and the line W;.
Moreover, from equation (28) we get (by adding on j)

By 22 = dlp. (30)

Therefore I is given by

N
. do;
Ir = sz / s 93" (31)
j=1

Note that this formula for It is valid for any value of the intensities ¢, (i; #0). Note also that
near the points (z,y,z) of S, defined by 6,=0 or 6; = 7, we get either
lim Iy = 400,

32
for i; > 0, 7=1,...,N, (32)
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or
lim I+ = —o0, 23

for i; <0, j=1,...,N. (33)

Equations (31)—(33) and the fact that I is a continuous function for any P € S, — (S. N W),
imply that the level sets of I near S. N W; are topological circles and therefore, the orbits of
Brotal near the singular points S, N W; are topological circles as well. It follows that the level
sets of the function Ir defined by equation (31) are bagpipes in a neighbourhood of the wires W.
Note that although the function I is only defined in S, — (S. N W) the structure of I makes

it clear that I7 extends to a global function on R3 — U;V:1 W;. Therefore, Ir defines a local

bagpipes structure in R> — Ujvzl W;, as we desired to prove.

5. FINAL REMARKS

It would be interesting to know under what circumstances stability at 0 can be obtained when
the level sets of I are not bagpipes. Can additional topological conditions on the level sets of I
near C' (the critical set of I) be found in order to guarantee stability at 07

Concerning the presence of bagpipes in the first integrals of the magnetic field B created by
wires the problem remains of studying the possible influence of these structures on the motion
of charged particles (m,q) subjected to a purely magnetic electromagnetic field B (that is, the
electric field E vanishing everywhere) with bagpipes structures. A magnetic field B is said to
possess a bagpipes structure when B has a first integral whose level sets are bagpipes. For
instance, can a first integral of a purely magnetic field B, with a bagpipes structure, prevents a
material particle (m,q), subjected to B, from approaching the wires creating B indefinitely?

Another interesting problem is that of studying the possible relation between bagpipes struc-
tures in the orbits of the magnetic field B and the existence of solutions of the Lorentz equation,

mX = gx A B, (34)

confined to remain inside a certain domain of the configuration space.

We can easily check, by using cylindrical coordinates, that the motion of a particle subjected
to the magnetic field created by a straight-line wire is confined to an annular domain of the
configuration space around the wire, the axis of the annular region being the straight-line wire
(remember that a cylinder is just a bagpipes with two pipes, that is, N=1). In fact, as we now
show, this domain is defined for each solution of equation (34) by an interval [r1,ro], r1 > 0, 7
being the radial cylindrical coordinate.

Indeed, in cylindrical coordinates around the wire the differential equations of motion of a unit-
mass, unit-charge particle under the action of the magnetic field B created by the straight-line
wire are (recall that ||B|| is proportional to 1/r, r = \/22 + y?):

P—rd? = ,f’
r
r¢ +2r¢ =0, (35)
= -
r

From equations (35), we get
2 +1r2¢? + 22 = E,
r’¢=1L, (36)
Z2—1Ln(r) = A.
The last of equations (36) implies that r(t) cannot reach the z-axis since otherwise we would
have that Ln(r) — —oo which is in contradiction with the first of equations (36).
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On the other hand by eliminating (;5 and Z in equations (36) we get:

L2
72+ A+ In(r))? = E, (37)

and therefore, r is limited by the equation

L2
A+ Ln(r))? < E, (38)

which defines an annulus.
Therefore, the solutions of equations (35) satisfy

r1 < r(t) < re, (39)

r1, T2 being the roots of the equation,

L2
=t (A+Ln(r))? = E. (40)

Generalizing to N1, and considering the magnetic field created by N straight-line wires inter-
secting in (0,0,0), does a bagpipes type domain (of the configuration space) with 2N pipes exist
(depending on the initial conditions xg, Xo) in which the particle remains forever?

Concerning section IV an interesting question is to generalize the physical sources of the mag-
netic field by assuming that wires are not concurrent and/or they are no longer straight lines.
Under these circumstances, can we assert that a bagpipes configuration holds?
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Abstract

First integrals and invariant sets of divergence-free vector fields with symmetries are obtained; the results are applied to
the solution of certain stability questions. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The orbit structure of R> vector fields (v.f.) X is
quite tangled and phenomena like the presence of
strange attractors [ 1-4], ergodicity [5], chaos [6-8],
turbulence [9], etc. complicate it enormously.

On the other hand, important v.f. in physics, like
the magnetic induction B [10,11] and the field of
velocities of a fluid [12] are R® v.f. These v.f. have
been recently studied by adapting to them Hamil-
tonian-like structures [13-16]. R* v.f. arise as well
in connection with the study of magnetic force-free
v.f (rotB = A(x)B, x € R*) [17-19] appearing in the
study of solar flares, superconductors and plasma
confinement [20].

It would be expected that the orbit structure of
divergence-free R* v.f. (DivX = 0) be simpler. But
this is not the case; in fact [21-23] ergodicity and
chaos seem to be compatible with the restriction
DivX =0.

Divergence-free vector fields (v.f.) with symmet-
ries have recently been studied concerning their
integrability [24-31]. Nevertheless, most of the

* Corresponding author.

results obtained in these papers are local and un-
suitable (see Section 2 for the explanation) in order
to study the behaviour of the orbits of a v.f. X near
an equilibrium point of X (that is, near a point
P where X vanishes). This study is essential, for
example, if the stability or instability of X at P is
required. Certain of these difficulties are overcome
in this paper. This has been achieved via the obten-
tion of global first integrals and invariant sets out
of the symmetry vectors.

Our results are useful in order to ascertain the
stability of X around a point (we shall call it 0)
where X vanishes. These results are valid for R" v.f.
but in order not to complicate the notation most of
the v.f. considered in this paper are R* v.f..

A brief summary of other methods used in the
literature in order to ascertain stability is given
below.

When no symmetries are known but 0 is an
hyperbolic equilibrium point of X, the Hartman-
Grobman theorem [32] can be applied and we
can assert that X is locally topologically similar to
its linear part X;. Remember that X is hyperbolic
at 0 if X, is free from eigenvalues of zero real part.

When X is a R" v.f. non-hyperbolic at 0 little is
known of the local structure of its orbits near 0.

0020-7462/00/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.
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Leaving aside the trivial case n = 1, when n = 2 and
X is analytic the organization of the orbits of X near
0 is known [33]; blowing-up techniques are often
used ([34], see also Ref. [1]) in order to resolve the
singularity of X at 0 (in the sense that by using
a finite number of singular changes of variables the
organization of the orbits near 0 can be ascertained).

In contrast with the situation in R?, little ad-
vance in the direction of knowing the organization
of the orbits near 0 (when n > 2) has been made.

Concerning this point we quote the work of-
Samardzija [35], who studied polynomial v.f. in R?,
Golubitsky, Schaefer and Stewart who studied the
bifurcations of R* v.f. symmetric under continuous
or discrete /inear groups [36-38], and Dumortier,
Roussarie, Sotomayor, Zoladek and Bonckaert
[39-44], who considered the bifurcations of three-
parameter families of v.f.. Many of the results ob-
tained in these papers are based on the use of
normal-forms and blowing-up techniques.

Our techniques complement the above ones in
the sense that they have a geometrical base: the use
of symmetry vectors. On the other hand, our tech-
niques hold when the symmetry vectors are non-
linear, in contrast with the results in Refs. [13-16].

The paper is organized as follows: In Section
2 the classical local integration algorithm and its
difficulties near equilibrium points of X are re-
viewed. Section 3 deals with the obtention of invari-
ant sets and its consequences concerning stability
matters. Global first integrals of divergence-free v.f.
are obtained in Section 4. In Section 5 we apply the
methods of Section 4 to a higher-dimensional
example. Finally, an instability criterion for R* v.f.
with a first integral is given in Section 6.

2. The classical integration algorithm

We now summarize the classical local integra-
tion algorithm of the R* v.f. X when two symmetry
vectors of it are known [24-287]. We shall see that
the algorithm fails at the equilibrium points of X.

Let X be an analytic v.f. vanishing at 0 and S;, S,
a pair of independent symmetry vectors. By inde-
pendent we mean that the function A defined by

A = Det(X,SbSZ) (1)

is not identically zero.

Recall that S is a symmetry of X if
ZX = Ax)- X, )]

Ps standing for the Lie derivative along the
streamlines of S and A(x) being an arbitrary func-
tion of x. Many times along this paper we consider
symmetries for which the function A(x) is the zero
function.

Let us now see how X can be locally integrated
when two symmetries of it are known.

Consider the 1-form w; defined by

Wi = (ixisl‘Qa)'Aila (3)

where iy stands for the operator of contraction
between v.f. and differential forms [45],
Q5 = dx; Adx, Adx; is the standard volume form
of R3, and A is the function defined by (1).

It is easy to verify that wy is closed (dw; = 0).
Therefore, we can locally write

wy =dlI, (4)
the function I satisfying

ix-dl =0,

is,*dl = 0. %)

Therefore I is a first integral of X and S;. Note
that the first integral is global if {X,S;,S,} are
globally independent.

Consider now the v.f. X, and S, (the v.f. induced
by X and S; on the level sets I = ¢ of I). These v.f.
can be written in the local form:

Xe = Xl(us v).au + XZ(u’ U).am
Sie = S11(,v)* 0, + S12(u,v)* 0, (6)

u and v standing for a set of local coordinates on the
level set I = c.
Define now the 1-form w§

wi = (ixw2) (ix.* is, " w2) ", (7

where w, stands for du A do.
It is easy to verify that w¥ is closed and, therefore,
we can locally write

wi =dIf, )

¥ standing for a function of the variables (u,v).
On the other hand, it is clear that

iXC * dIl = 0. (9)
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Therefore, IF is a first integral of X,. Since X, is,
locally, a R? v.f. we conclude that X, is integrable,
and this implies the local integrability of X.

Nevertheless, this algorithm cannot be applied
around an equilibrium point of X since the func-
tion A appearing in formula (3) vanishes on the
equilibrium points of X, which makes the forms
w; and wf undefined wherever X vanishes.
Therefore the above algorithm is not valid in order
to answer stability questions near equilibrium
points of X.

Just in order to circumvent this difficulty that the
techniques of the following sections are introduced.
As we shall see the symmetries of X will allow us to
compute invariant sets and first integrals of
X (when X is a divergence-free) with whose help
stability questions around equilibrium points of
X can be succesfully answered.

3. Symmetries and invariant sets

We show here that if X is divergence-free, invari-
ant sets, families of invariant sets and first integrals
of X can be obtained. All these mathematical struc-
tures can be useful as far as stability is concerned, as
is shown with an example.

First of all, let us demonstrate that the set (Z) of
points of R* defined by

Z = {x|A(x) =0} (10)

is invariant under X (note that A(0) =0, since
X(0) = 0).
In fact, writing A in the form

A =ix«ig, * i, " W3, (11)
we get, through straightforward manipulations.
LxA =DivX-A, (12)
DivX being, as usual, defined by

PLxws = DivX-ws. (13)

Let us now discuss some consequences of Eq.
(12).

(i) When the set Z defined in Eq. (10) is a differ-
ential manifold, that is when the “normal” vector
V(A) on Z never vanishes, the set Z is invariant

under X. In fact, Eq. (12) implies
Lx(A)z =0, (14)

that is, X is tangent to Z on any of its points.
Therefore, the set Z is invariant under X. The
invariance of Z under X can also be shown when
Z fails to be a differential manifold, but the proof
shall not be given.

(i) We are assuming in this paper that X, S; and

S, are analytic v. f.. Therefore, the function A is an
analytic function. This entails [46] that the set Z is,
in a neighbourhood of 0, a finite union of strata of
dimension 1 and 2.
If a certain strata E is invariant under X we can
restrict X to it getting a vectorfield X;; of lower
dimensionality. The instability of X,z at 0 implies
the instability of X at 0.

An example on this point can be found at the end
of these notes.

(ii1) When X is divergence-free Eq. (12) becomes

Px(A) = 0. (15)

Therefore the function A is a global first integral
of X.

The reader can see in Section 6 the consequences
of global first integrals in stability matters.

An illustrative example is the following. Consider
the v.f.

X = — Xzal + xlaz,
Sl = Xlal + Xzaz + X363,
Sz = 63. (16)

In this case DivX =0 and A =— x? — x2 is
a global first integral of X.

Note that this first integral can also be obtained
using the methods of Section 4 for the pair of
divergence-free v.f. X, S,.

The above example is trivial but shows that the
assumptions of this paragraph are not incompatible.

A more interesting example is this one:

X = (x;X3 — 2XT + x3)0; + 5x5(x; — Xx3)05
+ (= x1x3 — X1 + 2x3)03,

Si =x30; + X205 + X103,

Sy, = X101 + X305 + x30;.
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The reader can check that X is divergence-free and
that S; (i = 1,2) are symmetries of X. The function
A of Eq. (11) is A = 8x,(x3 — x{)**(x; + x3) and
A is a global first integral of X.

(iv) Assume that the strata E is invariant under
X. E is not necessarily invariant under the sym-
metry vectors S;, S,. Therefore, if the following
conditions hold:

1. X is stable at 0,
2. U @J(E)= N(0) where N(0) (17)
t
is a neighbourhood of 0

then we can safely conclude that X is stable at 0.
Note that in Eq. (17) ¢, stands for the flow of the
symmetry vector under which E is not invariant.
Assumptions (17) are not empty, and they are
met in the following example:

X = — x10; — X0, — X303,
Sl = — X362 + Xzag,,
SZ = — xZal + xlaz. (18)

In this case one gets A = x,(x7 + x3 + x3). The
set Z is composed of just one stratum: the set
x, = 0. This stratum {x, = 0} is invariant under
X but is not invariant under the symmetry vectors.
It is easy to verify that the assumptions (17)(1) and
(17)(2) are satisfied.

To illustrate all these matters we terminate this
section with an example.

Let X be the v.f. associated with the system of
differential equations:

X1 = F(x3)*(x] + x3)"* x4,
Xy = F(x3)* (xT + x3)"* x5,
X3 = G(x3)* (x] + x3)", (19)

where F and G are analytic, G(0) = 0, F(0) # 0 and
n is a natural number.

It is easy to check that X is symmetric under
the v.f:

Sl = Xlal + XZaz, SZ = Xzal — Xlaz. (20)

The v.f. X is clearly non-hyperbolic at 0 and the
function A associated with (X,S;,S,) is

A =(xt +x3)"""+ Glx3). (21)

Therefore, the set Z is composed, in a neigh-
bourhood of 0, of two strata: the x;-axis and
the plane x3; = 0. The reader will check that, in
this case, the strata are invariant under S;, S,
and X.

The restriction of X to these strata is

Xx,-axis = 0 (identically), (22)
Xjx,=0 = F(0)+ (xT + x3)"+S. (23)

Therefore, if F(0) is positive then X|,, -, will be
unstable at (0,0), and X unstable at (0,0, 0).

Note that the above procedure fails when G(x3)
never vanishes, since the strata x; = 0 is no longer
contained in the set Z. In this case we cannot say
anything about the behaviour of X near 0. But if
X is divergence-free the methods of Section 4 (ii)
can be applied to the pair (X, S,), since it is a couple
of divergence-free v.f. .

4. First integrals of divergence-free vector fields

We give in this section two methods for the
obtention of first integrals of divergence-free v.f. out
of symmetry vectors.

(1) We assume in this paragraph that X is diver-
gence-free with respect to Q3 (a R* volume form)
and that Z4(X) = 0. When nothing more is added
Q, is the standard volume form of R?3, that is
Q5 =dx; Adx, Adxs.

In fact, taking into account the assumption
ZL¢X) =0 and the relations [45]

PLisx1 = Lsx — LxLs,

L5 = (Divu)Q, (24)
we immediately get

ZDivX) — Lx(DivS) =0 (25)
and since X is divergence-free we get from (25)
ZLx(DivS) =0 (26)

That is, DivS is a first integral of X. Immediate first
integrals obtained from DivS are

Z(DivS), LsZ¢DivS), ... . 27)

Note that Div S can be a trivial constant. This is
the case when the components of S are first-degree
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polynomials in x1, X5, X3, as happens when S is the
generator of a translation, rotation or dilatation.
On the other hand, if the components of S are
polynomials of degree greater than one Div S can
be a non-constant first integral. This is the case of
the generators of proper conformal transforma-
tions [45].
A typical conformal symmetry is

3 3

S:2X1<Z x,-ﬁ,-)(Z Xi2>'61 (28)
i=1 i=1

and the first integral Div S is the non-constant

function 6x;.

(i) We assume in this paragraph that the sym-
metry vector S is not parallel to X everywhere, that
X is divergence-free and that the symmetry condi-
tion (2) is of the form

ZX = — (DivS)- X. (29)

Eq. (29) is, of course satisfied, if S is divergence-
free and (X, S) is a pair of commuting v.f. .

A three-parameter family of R* v.f. for which Eq.
(29) holds, for S = x30; + x,0, + x,03, is

X = (— px1Xs + gX1X3 + px2X3 — (¢ + 1)X1
+tx3)0; + (2t + 3g)x1x; — (2t + 39)x2X3)0,
+ (= pX1X3 — qX1X3 + pXaX3 — IX]
+ (g + 1)x3)03. (30)

Note that S is not divergence-free (DivS = 1)
and that #((X) = — X, which is just Eq. (29) when
DivS = 1.

Let us now see that under the assumptions of
Section 4(ii), that is Div X = 0 and assumption (29),
a non-trivial first integral of X can be obtained.

In fact, it is easy to check that defining w, via

wy = ixigQs, (31)

the 1-form w; is closed (dw; = 0). Therefore, we can
globally write

w; = dL (32)

On the other hand, and since ixdl = igdI = 0, the
function I is a first integral common to X and S.

I cannot become a trivial constant as X and S were
assumed to be transversal.

By following this method the reader can easily
show that the v.f. X of Eq. (30), symmetric under
S = x30; + x,0, + X103 possess the first integral

I =(q + 0x2[x3 4+ x3 — x1x3(x1 + x3)]

+ Ddon — (33)

On the other hand, when S represents the rota-
tions around the xj;-axis the level sets of I are
revolution surfaces around the x;-axis. A level set
not meeting the x;-axis will have a cylinder-like
appearance and those level surfaces meeting the
X3-axis, in one or more points, will have a cone-like
appearance near these points. These two types of
level sets appear in the following example.

Let X be the R? v.f. associated with the system of
differential equations

. C, D,
X, = < _3 _Z'L[)Xl — XZ'B(M,XS)),

. C, '
%y :<_?_Z-u>x2 + x1* B(u, x3),

X3 = C(x3) + D(x3)u,
u=xi+x3,

C(0) =0, C'(0) # 0, (34
C, D and B standing for analytic functions of its
arguments.

It is easy to verify that X is divergence-free and
that S = x,0; — x,0, is a symmetry vector of X.
Note that X(0) = 0.

The 1-form w; associated to the couple (X, S) is

wy =—x1(C + D-u)dx; — x,(C + D-u)dx,

C/ D!
+ u<—?—z°u>dx3. (35)
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The first integral of X associated with w; via
Eq. (32) is

I= g( — ) =2 (X3)u>. (36)

2

The level sets of I, being invariant under S, are
revolution surfaces around the x-axis. The level set
17Y(0) of this first integral contains the x5-axis and
the surface

2C(x3) + D(x3)u = 0. (37)

Surface (37) is a cone of vertex 0 (remember that
we assumed in (34) that C'(0) # 0).

The existence of invariant cones in R* v.f. was
signalled by Dumortier et al. [39-44]. Our contri-
bution here is just having obtained the analytic
expression of them.

Note also that the x3-axis is a topologically iso-
lated part of I~ '(0). These isolated invariant lines
have also been studied in [39-44], but using other
methods.

The level sets I~ *(c), ¢ # 0, are cylinder like. This
can be seen by drawing the two-dimensional
curves:

r? D(x3) ,\ _
5<— C(x3)—Tr >—C (38)

and rotating them around the x;-axis.

The first integral (36) is important in order to
prove the instability of X at 0. This is immediate by
casting X and I in cylindrical coordinates around
the xz-axis and having into account that I(u, x3)
presents a saddle point at u = 0, x5 = 0. The details
of the proof are left to the reader.

5. A higher-dimensional example

We consider in this section the differential equa-
tion of a non-relativistic charge moving on the
x3 = 0 plane under the action of a magnetic field
B orthogonal to this plane.

The differential equations of this motion are

X = B(x,)),

y = — B(x, y)x. (39)

The v.f. associated to Eq. (39) is
X = %0, + 30, + B(x,y)y0; — B(x, y)Xx0;. (40)

This v.f. is divergence-free but four dimensional;
a three-dimensional v.f. (to which we can apply the
results of Section 4) can immediately be obtained
taking into account that x> + j? is a first integral
of X.

We show now that when B(x,y) is symmetric
under rotations or translations a second integral of
X can be obtained (using the methods of the last
section). Note that there are other methods in order
to obtain the first integrals that follow. We get them
following the methods of Section 4 just for illustra-
tive purposes.

The second integral of X is obtained in this way:

(i) Assume that Bis of the form B(x> + y?). In this
case it is easy to verify that Z(X) = 0, S being the
divergence-free v.f.

S = — yoy + x0, — y0 + X0, (41)

Note that X + j? is a first integral of S.
The v.f. X*, S*, induced by X, S on the level sets

x* + j? =k* of x* + j* are
X* =kcos00, + ksin00, — Bo,,

(42)
S* = — y0, + x0, + 0.

The vector fields X and S are, again, divergence-
free with respect to the volume form dx A dy A kd6.
By applying to them the methods of Section 4 we
get the first integral

1
I =kxsinf — kycosf + EJB(M) du,

43
that is
1
I=xy—yx+ EJB(u) du. (44)

(i) When B=B(y) it is immediate that
LX) =0, S being the divergence-free v.f.
S=1-0,. (45)

Note that x* + j? is a first integral of S.
The three-dimensional v.f. X* and S* induced by
X, S on the level sets x> + j* = k? are

X* = kcos 00, + ksin00, — B0y,

46
S*=1-0,. 19
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Since these two v.f. are divergence-free we can
proceed as above, getting the first integral

I =kcosO — fB(y)dy =X — JB(y)dy. 47)

6. First integrals and instability

We close this paper by showing how important
the first integrals obtained in the preceding sections
can be in the applications. Specifically, we now
show that if 0 is an isolated zero of X and [ is a first
integral of X satisfying a certain technical assump-
tion then 0 is an unstable equilibrium point.

The technical assumption is

Let 1(0) = 0 and D,, be the set defined by

D, =1 Ya)nlixll <, (48)

Il || standing for the Euclidean norm of R®. We
assume that these sets D, are (for a # 0) diffeomor-
phic to a disk. That is, each D,, is the deformation
of a two-dimensional disk.

This assumption is satisfied if, for example,
I = x5 — F(xy,x,), and is not satisfied if the level
sets of I are sphere-like or cylinder-like.

Let us show now (by contradiction) that our
hypothesis imply that 0 is an unstable equilibrium
point.

Let x(t) be the solution of X starting at x, when
t = 0; x(t) remains on the level surface I(x) = I(x)
and near 0 (since we are assuming stability at 0).

Therefore, when ||x,|| is small, x(¢) lies on a cer-
tain D,,. Since D, has the structure of a topological
disk, the Bendixon-Poincaré theorem [47,48] can
be applied to conclude that X will vanish in a cer-
tain point d,, in D,,.

For small values of r it is clear that d, ap-
proaches 0. But this contradicts the assumption
that 0 is an isolated zero of X. Therefore X cannot
be stable at 0.

Let us apply this criterion to an example.

Consider the R* v. f. given by

(x2(1 + x3) — x; — x3)* 0y,
+(—x2 — xy(1 +x3)) 0y,

+ ((ef + X3 4 xpx3)* (1 + x3)* Os (49)

It is not difficult to check that this v.f. has an
isolated, non-hyperbolic, zero at (0,0,0); the eigen-
values of its linear part at (0,0,0) are0 and — 1 +i.
Therefore, linear stability arguments are unable to
decide between stability or instability at (0, 0, 0).

On the other hand I = (x} + x3)/2 + arctg x; is
a first integral of X. It is not difficult to verify that
the level sets of this first integral are either topologi-
cal planes or topological cylinders (deformations of
ordinary plane or cylinder via difffomorphisms):
one has just to introduce cylindrical coordinates
around the x3-axis and draw the level sets of the
function

r2
— 4+ arctg x;.
3 g X3

The level sets of I turn out to be topological
planes near (0,0,0). Therefore, the results of this
section can be applied and we conclude that (0,0, 0)
is an unstable equilibrium point of X.

Note that in our example arguments based on
the computation of a one-dimensional center mani-
fold through (0,0, 0) can also be used in order to get
the instability of X at 0.

Nevertheless, when the dimension of the center is
greater than one the criterion of this section can be
useful. This is due to the fact that to ascertain the
stability character of Xener (the v.f induced
by X on a center manifold), when dimension
(Center) > 2, can be a problematic issue, as
X|center 18, in general, unknown, and one has to
work with just an approximation of it. On the
contrary, the arguments of this section are not
based on approximations.
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[. INTRODUCTION

This article deals with the problem of extracting information of a three-dimensional dynamical
systemX, whenX is embedded into a Lie algebra of 3-D vectorfields.

This approach is interesting since up to now, as we explain later in this work, the only case
considered has been that in which the generators of the Lie algebXaaare a certain number of
symmetries or pseudosymmetries>of Such restriction is dropped in this article.

Let us explain this in more detail.

It is well known' that when a vectorfieléX (v.f. in what follows admits a symmetry vector,
that is, a v.f.S satisfying

Lg(X)=0, )

Lg standing for the Lie derivative along the streamlineSafiseful consequences on the local and
global structure oX can be obtained: existence of local and global first integrals, limit cycles of
X,? etc.

Remember thatl) implies that the flow of the v.fS acts on the set of solutions of the
differential equations

dx_
i =X @

In other words, the local flow 0% transforms a solution of2) into another solution of Eq2).
Sometimes the pair of v.f.X,S) does not satisfy Eq.l) but the equations

Lg(X)=A(X)X, )

N(X) being a function. In this casgis called a pseudosymmetry ®f The geometrical meaning
of Eq. (3) is that the local flow ofS conservesotthe solutions of2) but the trajectories on which
these solutions li€a trajectory ofX is just an unparametrized solution Xj.

Interesting geometric information on the trajectoriesXofvhen (3) holds can be found in
Ref. 2.

Motivated by Eqgs(1) and(3) we consider in this article that (a R3 v.f. from now on is one
of the generators of a Lie algebfg , of dimension two orA; 3 of dimension three. That is,

[X,S1]=acX+a;S;,

0022-2488/2001/42(12)/5741/12/$18.00 5741 © 2001 American Institute of Physics
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ag,a;eR, 4
rank X,S;)=2 for anyxe R,

in the first case, and

[X,S]=aoX+2a;S +a,Ss,,
[X,S:]=bpX+Db;S,+b,S,,
[S1,S]=coX+C1S + ¢S, (5)
a; !bi ,CiER,
rank X,S;,S,)=3 for anyxe R3,

in the case of an algebra of type ;.

Note that[,] stands for the Lie bracket of v.f. ar| ; (i=]) stands for a Lie algebra with
generatorgincluding X) and rank K,S;,..,.§_1)=].

We shall say thaK belongs to a certain Lie algebraXfis one of its generators. For example,
X belongs to the Lie algebras, , and A; ; defined by Eqs(4) and(5).

Note that the case of pseudosymmetries corresponds @ in Eq. (4) anda;=a,=b;
=b,=0 in Eq. (5).

We shall prove in what follows that when a dynamical syskinelongs to a Lie algebra this
information can be useful in order to get qualitative information on the orbits. of

This article is organized this way. Lie algebras of typg, are briefly considered in Sec. I,
where their influence oX is studied. The structure constants/Af3 algebras are reduced to a
finite number of canonical forms in Sec. Ill. The case of aX.émbedded into aA; ; Lie algebra
is studied in Sec. IV. lllustrative examples are given in Sec. V, and some open problems are
discussed in Sec. VI.

We end this section by motivating our study with some considerations of the significance and
applicability of the idea of embedding a vX. into a Lie algebra.

We shall refer to the illustrative example &f , algebragthat is, algebras with two generators
and rank equal 2: see E@})]. For these algebras E(}) can be interpreted in two ways:

(i) as the structure equation of a Lie transformatiimcal) group G acting oiik® of generators
X ands, or
(i)  as the equations defining an involutive distribufidiyenerated by andS.

The fact thatay anda; in Eq. (4) are real numbers instead of functions»af (x1,X5,X3) is a
useful piece of information that should be taken into account.
Therefore the philosophy of this article is the following:

(i) get X (if you can, via computer packages, ¢tbe embedded into the algebras x(r
=3) orA, 5(r=2) of some Lie transformation groud. We shall speak immediately about
the difficulties of this process.

(i)  apply the techniques of this article in order to get information on some structudésasf
first integrals, invariant sets, existence of partitionsidfinvariant undeiX, integrability
via quadratures, etc.

The most difficult point is, of course, the finding of the concrete embeddink. ¢h fact it may
even happen thdfor structural reasons connected with the orbit structur¥ o$trange or com-
plicated limit behavior of the orbits wheti—+) the embedding process will be a failure
because it does not exist at all. For example, by topological reasonsniipisssibleto get an
embedding oK into an algebra of typé; , or A, , if X is a dynamical system with an orbit which
is an asymptotic “limit cycle”(orbit of type S acting as limit set of neighboring orbjtsNever-
theless, the dynamical systexncould be embedded into an algebra of tyjg;.
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However, we haveot been able to find analytical conditions, geometric structures, etc. such
that if X satisfies them, theX cannot be embedded into an algebra of tigg. Upto today open
problems are to decide

(i) whether or not a given v.fX can be embedded into a finite dimensional Lie algebra, and
(i) whether or not a given v.iX can be embedded into an algebra of tyjes(n=3), where
nis a fixed natural number.

In general, the problem of studying the relation between the geometry of the ortXtauod the
type of algebra into whictlX can or cannot be embedded seems to be a very difficult one.

In conclussion, this article could be of interest to people working in differential equations,
dynamical systems, etc., and to all those normally handling symmetry techniques in differential
equations since we offer here a certain generalization of them yielding, under some conditions,
first integrals, invariant sets, integrability via quadratures, foliation&%ihvariant undeiX, etc.

Il. R DYNAMICAL SYSTEMS EMBEDDED INTO A LIE ALGEBRA Ass

Let us now develop some consequences of the fact that our dynamical sysseembedded
into a Lie algebra of typé\, ,, that is,

[X,S;]=agX+a;Sy,

ao,alE R, (6)

rank X,S;)=2.

We shall now obtain from Eq6) consequences of several kinds concerning the orbit structure of
X. Most of these results fail when the real constamjsand a; of (6) are substituted by real
functionsa(x) andb(x), xe R®. Therefore, most of these results cannot be obtained Whin
embedded into a two-dimensional foliation instead of being embedded iAg algebra.

From now on all the functions v.f.’s, and differential forms of this article are assumed to be
analytic (C"). See Refs. 3-5 for the theory and applications of differential forms.

A. First integrals of X

We obtain now first integrals ok via the construction of exact one-forms. The reader can
have a look at this method whepy=a;=0 in Ref. 3.

Our assumptions are the following:
X belongs to &, , Lie algebra[see Eq.(6)] and

DivX=—a;, DivS,=a,, (7)
ay anda, being the real numbers of E¢) and DivY standing for

Div'Y = (7Y1 " (9Y2 f7Y3
VY= Xy Xy OXg'
8
Y:Y161+Y2&2+Y363.

DivY can be alternatively defined bgvQ;=Div Y Q,;, Q3 being the standard volume form
dx,0dx,0dx; of R3.
Under these hypotheses the one-fosmdefined by
Wl:iXi 5193 (9)

is exact w;=0) and we can write
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w,=dl, (10
and sincda,w;=0 we can write
Ly(1)=0. (11

Thereforel is a global first integral oK.
Note thatl can never become a trivial constant, as this would imply=0 (identically),
getting a contradiction with the rank condition appearing in &g.

B. Independent first integrals

Let us now assume that, |, are two independent first integrals 8f; this situation often
appears in physiésas S, usually is a v.f. easier to handle th¥n(isometries ofR® considered as
Euclidean space, linear or affine v.f. and sg.dsnder this assumption let us see that the integra-
tion of X can be simplified.

Under these conditions E6) implies

—Ls Lx(l)=aolx(ly), =12, (12)
and whenay=0 we get
Lx(1))=ei(l1,13), (13
that is, X projects to thek® v.f.
Xo=@1(l1,12)1 + @2l 1,12)d),, (14
that is
di,
H:%('l,'z),
(15
di,
HZQDZ(ILIZ)-

Therefore, the integration of has been simplified.

We now summarize the results of this section: We have seen that it is, in general, impossible
to get geometric information on the trajectories of fiiev.f. X just by knowing thaX belongs to
a certain Lie algebra of v.f. More information concerning the v.f. of the Lie algebra is needed: see,
for example, the requirements {i).

A similar observation can be made in relation to the study of the pseudosymmetkgseé
Eq. (3)]. Namely, pseudosymmetrigser sg are insufficient in order to get first integrals and other
geometric structures related to the trajectorieXof

What is new in this section is the fact that we have shown the possibility of getting global
geometric information on the trajectoriesXfwhenno pseudosymmetries are known but we have
discovered that our dynamical systefnis a generator of aA, , algebra of vectorfields.

For brevity reasons we shall not study in the following sections algebras oftypebut just
algebras of typé\; ;.

[ll. CLASSIFICATION OF A;3; ALGEBRAS

A classification list of theA; 3 algebras is given now. The proof shall not be given and will be
sent on request. As we can see the classification contains 18 different types. Note that the non-
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written brackets betweeX, S; and S, vanish and have been omitted. Nevertheless, all brackets
have been written in the algebra of type number @oe esthetic reasons

Any Aj; 3 algebra can be obtained from those appearing in the list by means of linear combi-
nations of type

* =a0X,
St =BoX+B1S1+B2S,,
S =YX+ ¥1S1+ 72, (16)

@9,Bo,v0eR ao#0,

B1v2—v1B270.

These linear combinations arise as the generdt@representing the dynamical systemust be
isolated in all the algebraic manipulations; otherwise a gene¥dtarould be obtained mixing the
dynamics ofX with the dynamics of the v.fS; andS,. Therefore, the orbit structure &f would
be unrelated to the orbit structure Xf .

The 18 types ofA; ; algebras are

D [X,§]=0,[$,$,]=0,i=12

@ [X,S]=X;
Q) [SuSI=X;
4 [X.§]=S;
6 [X.$]=S;, [S.§]=aS;, aek;
6 [S.S]=Sy;

(1) [X,S]=X, [S1.S]=X+aS;, aeR{0};

(8 [X,S]=X+S, [S1,S]=X;

(9) [X,Sz]:S_L, [SI!SZ:I:_X1

(10 [X,$]=Sy [S1,.S]=X;

11 [X,$]=Sy, [X,S]=aS, acR\{0};

(12) [X,$1]=Sy, [X,S]=5+S;

(13 [X,S]=aS+S,, [X,S]=—S;+aS,, acR\{0};
(14 [X,S]=X, [X,$]=S;, [S1.S]=X+S;

(15) [X!S].]:SZv [X!82]2_811 [81182]:)(1

(16) [X,S1]=S, [X,$]=S;, [S1,S]=X;

A7) [X,S1]= =81~ S, [X,$]=S,, [S1,$]=X; and
(18) [X,Sl]:_S_I_+Sz, [X!SZ:IZSZ! [S_IJSZ]:X

IV. INVARIANT SETS AND FIRST INTEGRALS WHEN THE DYNAMICAL SYSTEM IS

EMBEDDED INTO AN A;; ALGEBRA

We now show that it is possible to get first integrals, invariant sets and foliations invariant
under X when X belongs to am\; ; algebra. Reduction oK to a two-dimensional v.f. is also
possible(see Sec. IV E

A. Global results

We get in this paragraph global results ¥rassuming that
Lyw;=f(x)w;, (17

w; being a C differential form of degree (i=1,2,3).
Define the functiong\; via
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Aj=ixisisws, (18
Ap=ixigWz, =12, (19
Az=isisWa, (20)
Ay=ixwy, (21
As=igwi, j=12. (22)

We then get under standard manipulatfbns
Lx(A)=(f(x)+K)4;, Kek, (23

where the real numbé¢ depends on the constaras, b;, ¢; (i=0,1,2) defining the; ; algebra
[see Eq(5H)].
Now, Eg.(23) implies the following.

(i)  When the sefA;=0} is a differential manifoldV(A;)#0 for any P e {A;=0}), then the
set{A;=0} is invariant undeiX. See Example 1 in Sec. V.

(i)  Whenf+K is a function ofA; (in particular whenf +K is a constant real numbeithen
the setA;=const form a two-foliation invariant undeX.

(i)  Whenf(x) is a trivial constant function antHK is equal to zero, then the functiay is
a global first integral oX.

These results give useful information on the orbitXodnd they have been obtained without
problems in spite of the fact th&, andS, are, in general, not pseudosymmetriesxof

See the examples on these results at the end of the article.

Note that the techniques of this section can be appliezhyoof the canonical algebras of the
list in Sec. Ill.

B. Subalgebras
We now assume that ou; ; algebra contains twé\, , subalgebras satisfying
[X,S;]=aX+bs,,
[S,X]=a'X+b’S,,
(29)
[S:Si]=a"X+Db"S,,
a,a’,a”,b,b’,b" eR,
or
[S].S]=cS +dS;,
[X.S{]=c'S+d'S;,
[X.§]=c"S[ +d"S;,

c,c’',c”.d,d,d"eR,

(29
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or both[i.e., Az 3 might contain a subalgebra satisfying E@4) and another two-dimensional
subalgebra satisfying EG25)]. Note that{X, S]} in the case of Eq(24) and{S} ,S;} in the case
of Eq. (25) are ideals of dimension two oﬂﬁ33

First of all, notice that we can apply the techniques of Sec. Il to the paig,) of Eq. (24).

Note that Eqs(24) are fulfilled by the algebras 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 13 and(Egjs.
are satisfied by the algebras 1, 4, 5, 6, 11, and 12.

On the other hand, algebras 13-18 satisfy neither EB.nor Egs.(25). The reader will
have no difficulty in checking all these points.

We give now the geometric meaning of qu4) and (25). Calling 5, and F; the two-
foliations associated with the pair¥(S,) and S7 ,S5), Egs.(24) and(25) can be rewritten in the
form

Ls(F2)CFs, (26)
and

Lx(F3)CF5 . (27)
Accordingly, 7, and 75 can be locally integrated via the well known formflas

Afl'(ixislﬂs):dh

Q5=dx;0dx,0dx3, (28
A=ixigisQs,
and
AL (igr rig Qg)=dI*, (29
| and1* satisfying
Lyx(1)=0 (30)
and
Ly(I*)=1(1%) (31

for a certain functiorf.

The functionl is, of course, a local integral of and it globalizes to &2 first integral ofX
when the functiomA of Eq. (28) never vanishes.

On the other hand, the geometrical meaning of B@) is that the local flow oX acts on the
level sets oft *. When the functiorf of (31) never vanishesX is free from closed trajectories. If
f(15)=0, then closed trajectories &f might appear on the level st =17 .

Note thatl and1* are genuine functions, not reducing to constant functions, since Azan
algebra the ranks of the pairX(S) and (S} ,S;) cannot be lower than 2.

C. Results

We now get several results on the orbits of the dynamical sy3teassuming that a pair of
first integrals common t&, andS, are known. For brevity's sake, the case of only a first integral
I common toS; andS, shall not be studied.

See Ref. 6 for a similar use of a pair of first integrals of a symmetryltt dynamical system
related to the Bessel, Poisson—Boltzmann, Emden—Fowler and Fermi—Thomas equations. This
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approach can be justified since in most of the applications th&\afe simple v.f.; often they are
affine, or even linear v.f., and therefore the finding of their first integrals is, in general, not
difficult.

Consider that

Ls(1)=0, i,j=12 (32
that isl,l, are independent first integrals commonSgS,. We then get via Eq5) (cy#0)
Ly(1)=¢i(l1,15) =12 (33
ThereforeX can be written in the form
X=¢1(X,Y)d1+ @2(X,y)d;. (34)

Accordingly, X has been reduced toRf v.f.

V. EXAMPLES
Examples 1Consider the conformal V.
X = (X —X5=X5) 91+ (2X1X) 2+ (2X1X3) I3 (35
and the v.f.

S;= X302~ X203,
(36)
S,= X101+ X072+ X33,
with commutation relations
[X,$1]=0, [X.S$]=-X, [S,$]=0. (37)
By application of the results obtained in Secs. IV A and IV B we get
Ar=ixis s (dx/\dxp/\dxg) = (x3+x3)(—x3—x5—X3). (39
On the other hand,
Lx(A1)=6X1-Aq. (39

Therefore, the seh ;=0 is invariant undeX. Note that the seA ;=0 is just thex;-axis.
Let us now get a local first integral of by application of the methods of Sec. IV B. In fact,
computingixis, (dxy/Adxo/\dx3)/ A1 we get the differential form

wy o 2xydxg Jr(—xzdxz—xgdx3)(x§—x§—x§) 40
Ay —xi—x5—x5 (X5+X5)(—x5—x5—x3) ' (40

which is locally exact w,/A;=dl). Upon integration we get the local first integtahat can be
reduced to

X5+X3
=2, o2, o (41)
X3+ X5+ X5

Example 2:Consider now the family of v.f.
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X=F(X3) (X34 X3) X191+ F (X3) (X34 X3) X0+ G(X3) (X5 +X5)"d3, n=1,2,3,..., (42

whereF and G are analytic ands vanishes on the set(ZCR).
LetS (i=1,2) be the v.f.

S1=X1d1+ X205,
(43
S=Xpd1= X105

The three v.fX,S;,S, form a commutative algebra. By applying to them the techniques of Secs.
IVA and IV B we get the invariant set

A1=G(xg)(xj+x3)" =0, (44)
that is, the invariant sets
X2+ x5=0,
(45)
X3=2, zel.

On the other hand, we can also write

Wy

A, =dl, (46)
w; standing for the one-form
Wi =1, (dx; HdxpUdXs). (47
We get in this way
1 F(x3)
_ = 2 2y
= > L(x{+X5) f Gixy) dxs, (48

L standing for Neperian logarithm, that is, a local first integrakof

Example 3:We now give an example related to Sec. Il B.

Let H;(x;,X5,X3) be homogeneous polynomials of degregsaandd,. DefineX andS viahe
equations

X=VHOVH,+ag(X191+ X2+ X3d3),
S=VH;0VH,, (49)
apge R, V=gradient operator.
The reader will check that
[X,S]=bS, beR. (50

Therefore the pairX,S) forms anA, , algebra.
SinceH,; andH, are first integrals of, we get from(50)

Ly(H1)=¢1(Hy,Hy),

(51)
Ly(H2)=@y(Hy,Hy),
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that is, X projects to theR? v.f.
®104,F €20H,: (52)

Note that the v.fX of (49) is not trivial, as it isnot a homogeneous V.f.

Note also that any first integré(H,,H,) of the reduced differential equatiofsl) is a first
integral of X.

Example 4:The considerations of Example 3 can be extended to nonhomogeneous functions
in this way.

Let H; andH, be nonhomogeneous polynomials that can be transformed into homogeneous
ones via a transformation of type

X1 — X5,
X2—> Xg y
(53
X3— X3,
a,b,ceR*.
For example, the pairs
H,= _ 2 2
1= XoXg, Ho=X{+X53+X3
and
Hi=X3+x3, Hy=xi—x3
become homogeneous under the transformations
X1—= X1, X=X, X3—>§
and
2 2
X1—>Xl X2—> 21 X3—>X3.
Under these circumstances the v.f. defined by
X= VH]_/\VH2+ aO(Xlﬁl-i- X2(?2+X3(93),
(54)

S:VHl/\VHz,

commutes as in Eq50). Therefore, the conclusions in Example 3 are valid for the v.f. of(E4).
For example, the Lorenz dynamical system

XL =0(Xo—X1)d1+ (=X X3+ X1 —Xp)do+ (X1Xo—bX3)d3, o,r,beR, (55
for the following particular values of the parameters,
o=3% r=0, b=1,
forms anA, , algebra, of the type discussed in this example, with the v.f.
S=V(x3+x2) AV (x2—x3) (56)

as the reader can check.
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Example 5We end this section with a list of second order differential equations appearing in
Physics(see in Ref. admitting a symmetry vectd® to which the methods of this article can be
applied(see Sec. 1B

(5.1) X%y 4+ XY+ X%y =0:

2

. X7y
Assomatedx:x=—xz—c9u+u8y+«9x U=Yyx.

Symmetry vector:S=ydy+ud,.
Commutation relation:[ X,S]=0.
First integrals ofS: 1,=x, Il,=uly.

(5.2 Y xxt Yy x/x=¢".

Associated X: X=

u
ey— X dytudy+dy, U=Y,.

Symmetry vector:X=xdy—2d,—Uud,.
Commutation relation:[ X,S]=X.
First integrals of S 1;=x%Y, 1,=xu.

(5.3 y xxt (2/X)y x+y"=0.

2u
Associated X: X=(—y”—? dytudytdy U=Y .

s . 2y 1+n
ymmetry vector: S=Xdy+ may'f' in udy .

Commutation relation:[ X,S]=X.
First integrals oB: [,=x2y"" 1, |,=x""yn~1,
(5.4) y o= X~ 1232
AssociatedX: X=(x"Y4%¥%)9,+ud,+d,, u=y,.

Symmetry vector: S=Xdy—3ydy—4ud,.
Commutation relation:[ X,S]=X.

First integrals ofS: 1,=x%, I,=x%u.

VI. FINAL REMARKS

We have seen that whenRE dynamical systenX lies inside anA,,, Az, or Az algebra
useful information on its trajectories can be obtained from this piece of information.

What happens wheK can be embedded into a Lie algel#g; whenn>3? Note that now
the canonical forms of Sec. Il are harder to obtain. On the other higngimight contain ideals
| containingX of lower dimensiom’, reducing the problem to an algeb&g. 5 of lower dimen-
sion. If no ideal of this type can be found, we can always apply the techniques of Sec. IV A.
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Considering only contractions of and S with differential forms of typews;, we can get in
this way a whole set of functiona;; :

Aj=ixisisWs, 1j=1..n-1, 57
leading to the sets
Aij(xl,X21X3):0 (58)

that are invariant undex [at least near the poini8on which(58) defines a differential manifold,
that isV(4;;)(P)#0].

Therefore, whem is high we can get, via Eq58), a collection of more and more sets
invariant undetX.

An open problem is to study if the numbmrof invariant sets in(58) is bounded or not when
n increases and whether or not these invariant sets accuntwlaém N is unboundef Does the
topology of the trajectories oK “feel” that X is included in anA, ; algebra(without proper
idealg whenn is large?

Another open problem meriting a separate study is this one: Assumx thabcluded among
the generators of aA,, ; algebra wheré\, 5 is an infinite Lie algebra, free from finite or infinite
proper ideals containink. Let us call themsimple-algebras.

Equation(57) can now be written in the form

Aij:iXiSiiSjW31 (59)

and, therefore, invariant sets ®f can be obtained this way.

The question arises again of classifying topologically the X.fthat can be included in a
simple A, 5 algebra.

Afinal question is this one: can a dynamical sysiérambedded into a Lie algebrs, ,, A, 3
orA. ,, A, 3 possess a strange attractor?
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Abstract

A new method for obtaining time independent first integrals of Lotka—Volterra systemsis given. By applying this method
new integrable cases are found. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the last years much effort has been directed to
obtaining local and global first integrals of 3D (R®)
dynamical systems [1-7]. Many of these studies are
centered around the Lotka—Volterra (L-V) systems
[8,9]; that is, the quadratical 3D vectorfields given

by:
Xy = Xy(@y1 Xy + 85 X, + &3 X3)
Xo = Xo( @ X1 + 855 X, + 83 X3)
X3 = X3( 831 X; + 835 Xp + 83 X3) - (1)
Interaction models of biological species[8,9], cer-
tain hydrodynamic equations [10-14], autocatalytic
chemical reactions[15-19], ... are based on the L-V
systems.
The non-wandering points of these systems have

been studied by Chenciner [19], Huang [20] and
Hirsch [21].

* Corresponding author. Fax: +34-1-3945497.

Nevertheless the dynamics of the L-V systems is
far from being understood, although certain results
about the organization of the orbits are known for
particular values of the parameters a;; appearing in
Eqg. (1. For instance, Gao and Liu [22] (see also [23],
where first integrals of the inhomogeneous L-V
equations are computed) have recently obtained new
time dependent and time independent first integrals
of Egs. (1) under certain restrictions on the coeffi-
cients a;.

Following their research line we obtain in this
paper new time independent first integrals of L-V
systems. Our method is based on the computation of
generalized symmetry vectors S of the vectorfield
(v.f.) X associated with Eq. ().

A generalized symmetry vector S of X isav.f.
satisfying
[ X,S] =a( X, %,,%X3) X+ b( Xy, X2, X3) S, (2)
Here, [, ] stands for the Lie—Jacobi bracket of vector-
fields.

Note that Eg. (2) reduces to [ X,S] = aX for the
symmetry v.f. of X [24]. It is for this reason that we
call S generalized symmetry vector of X.

0375-9601,/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.
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We shall see immediately that, under some addi-
tional conditions, local first integrals of X can be
obtained when a v.f. S satisfying (2) has been com-
puted. Vectorfields of this kind have recently been
considered [25-29], but using techniques different
than ours.

The paper is organized as follows: the theoretical
basis of our method appears in Section 2. The appli-
cations of this method to L-V systems are given in
Section 3. Some open problems are presented in
Section 4.

2. Theory
Let X be a 3D v.f. It is indifferent at this point

whether or not X isalL-V v.f.Let S, and S, be 3D
v.f. satisfying

[X,8,]=ay(x) X+ by(x)S,, (32)
[S2.81]=a,(x) X +Dby(X) S, (30)
[S;,X]=2a5(x) X +bs(x)S,, (30)
A=Det( X,S,,S,) #0,

X = (Xq,X5,X3) , (3d)

where A stands for the determinant whose rows are
the components of X,S;,S,.

Note that Eq. (3a) is just Eq. (2). Therefore the
v.f. S, is ageneralized symmetry of X.

We now mention two important cases for which
the requirements (3a), (3b), (3c) are satisfied.

1 X,S,,S, ae 3D v.f. and (S,,S,) is a par of
commuting symmetries of X. Note that in this
case we get b, =b, =b; =a,=0. And aso that
X is not necessarily a L-V vectorfield.

2. XisalL-V v.f.; S isageneralized linear symme-
try of X;S,=x,0; +X,0,+x39; (dilatation).
Under these assumptions it is immediate to check
that requirements (3) are satisfied with b, = b, =
a, = 0. We shall see in the next section that under
certain restrictions on the coefficients a;; of Eq.
(D) alinear v.f. S, satisfying the above require-
ments can be computed.

We now show that under assumptions (3) a loca
first integral of X can be obtained.

In fact, let w, be the one-form defined by
W]_ = £|§|W3 1 (4)

where w; stands for dx; A dx, A dX,.

It is straightforward to check that w, is integrable
(i.e. w; A dw, =0). As usud | is the operator con-
tracting v.f. and differential forms [30], d, stands for
the exterior derivative of forms and A for the exte-
rior product of differential forms.

Now, w, being integrable admits an integrating
factor f, that is a function f such that d(fw,)=0.
There is no way, in genera, of finding f, but we
shall show immediately how an integrating factor
can be found when Egs. (3) are fulfilled.

We now indicate the geometrical meaning of Egs.
(3). First of al note that by (3a) the couple of v.f.
(X,S)) is a 2-distribution 2, [30], that is a pair of
v.f. closed under the Lie—Jacobi bracket. On the
other hand (3b) and (3c) can be written in the
compact form:

5, P, D, (5)

where . stands for the Lie derivative operator.

Eqg. (5) just means that S, is a symmetry of 9,
(the flow of S, induces a reshufling of the leaves, or
level sets, of 9,). This symmetry is externa to &,
by Eqg. (3d). Note that under an internal symmetry of
2, each of the level sets of 2, is invariant under
the symmetry.

We now give the analytical expression of the
integrating factor f of w;.

fis given by

f=4-'= (XISISiws) - (6)
In fact, it is not too difficult to check that
X|S,|w.

d(—% 3) =0. (7)

One has to remember and apply repeatedly the
identities:

YIY|=0,
dy|+Yld=2,,
[2,.2] -22-2.%,,
Liva) =Ly =L Ly,
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Note that f is not defined where A vanishes.
Once f is known we can state

fw, =dI, (8)
where | stands for a local function of X, X,, X5 that
can be obtained from (8) via quadratures.

The function | defined in (8) is a loca first
integral of X since

XI( fwy) = X|(di) = 0. (9)

Sometimes |, or certain functions of I, can glob-
adlize. Thisis the case when the function A (see Egs.
(3)) never vanishes. These matters will become
clearer in the next section.

3. Applications

In this section X stands for a L-V vectorfield, S;
for alinear v.f., that is
Sy = (by Xy + by X, +b15X5) 9y
+ (b Xy + by X5 + bysXs) 9,
+ (g Xy + bgy Xp + bggX5) 95, (10)

and S, for the dilatation v.f. x;0; + X,9, + X30;.

Tablel
Table of S, leading to new integrable cases

It is clear that under these assumptions we get

[S;.S]=0, [S,.X]=X. (11)

On the other hand we are looking for generalized
symmetry v.f. of type (10) satisfying

[X,S;] —a X+ (Byx, +ByX, + ByX3) Sy,

a,,B,,B,,B,€R. (12)

Note that (12) is just a particular case of Eq. (3a).

We shall immediately see that even if assump-
tions (10) and (12) are quite restrictive we will be
able to obtain many solutions for S; leading to new
first integrals of X. In fact, using the computer
packages MAPLE V and MATHEMATICA we have
obtained the solutions for S, listed in Table 1.

To any of the nine S, v.f. appearing in this Table
corresponds a first integral | obtained by integration
of the equation

Xisdws (13)
XISiSAws

The generalized symmetry vectors S; of the Table
are valid under the restrictions on a;; listed in the
second column of the Table.

Different cases S,

Restrictions on

ag3
Case number 1 X101 + X0, + — X305
a3

3

Case number 2 X10; + ——=Xp9, + X395
a3

Case number 3

Case humber 4

Case number 5

azn — 8y g3
Case number 6 X10; + X0, + X1+ —X5 |93
Q3 a3
az 83 — 8y as
Case number 7 ——Xq0q + Xp 0, + Xy + — X3
ay Ay an

Case number 8 X101 + X509,

a3 as; as3
Case number 9 —x191+x282+[—x1+—x3 I
a.

a3 23 a3

z3=a,+0

a,=azp#0
a1 8y a8y 0
&3 dxn A
Q1 8y Ay 0
qp; Ap ap
Ay 8p Ap 0
&3 3 A8gg
Ay =azp, z=ap+#0
_ _ 81 8y
a=ay, @&z=ag —=—+0
3 A3
Qg =ay3, azk=0
ap=agp, a;=0 a;=0 ay3#0
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The readers will have no problems in verifying
that our restrictions on a;; are, in general, different
and complement those appearing in Ref. [22,23].

We are not giving the explicit expression of the
first integrals associated with S, in dl the cases
listed in the Table and for al the values of g,
compatible with the restrictions. But in order to see
how the vanishing of A implies the non-global char-
acter of |1 we give the explicit expression of | in the
following case.

Consider case 1 of the Table with the following

vaues of a;;:

an =2, a,=3, az=a,y=1,
a, =4, a,=5 a;=6,
az, =7, ag=10. (14)

In this case we get
X =X(2Xy + 33X, + X3) 9; + X,(4X, + 5%, + X3) 9,
+ X5(6X; + 7X, + 10X3) 05,
S, = X0, + X,0, + 10X30; ,
S, =X,9; + X,0, + X305 . (15)
Therefore the integrating factor f is given by
f=(18x1x2x3(x1+x2))_1. (16)
The expression of fw, is
34x, + 43X,
18X, (X, + Xp) o,
14x, + 23X,

1
—_— —dX,. 17
18X,( X, + X, Xa (17)

dx, +
20 9x,

As fw, =dl the expression of | is
aIn[xgl = 2Inlx, |+ ZInlX,| + 3Inlx, + X,/ (18)

We see in (18) that | is not defined on the set
formed by the union of the planes x;, = 0,x, = 0, X,
=0,%X, + X, =0. This set coincides with the set
where the function f of (16) is not defined.

Let us point out that it is very difficult to say
when the local first integral | of Eq. (8) can global-
ize or not by means of functions of type:

(exp(1)) " [exp[ (exp(1)°]]"...
andsoon a,b,eN). (19)

When | is of the form

p
I =3 r;Inlcjy X, + Cjp Xy + G X,
j=1

C1,C2,C3€ER, 1,€Q", peN, (20)
globalization is indeed possible. In fact |yq, =
(exp(1))? for acertain a€ N, and Iy, becomes a
polynomial.

As we see in (20), a crucia role to obtain a
smooth global first integral (C”) is played by the fact
that r; is a rational number, this being a very
sensitive arithmetical condition, which is no longer
fulfilled when the coefficients a;; of Eq. (1) ae
perturbed. Even so, global smooth first integrals can
be useful for the perturbed differential equations
(KAM theory) [31-36]. This fact makes them useful
when the perturbed v.f. X is free from them.

When the local first integral appearing in (8) is
not of type (20) its possible smooth globalization can
only be decided by a case by case study. On the
other hand globalization of the first integral | of Eq.
(8) on the domain

O ={( %1%, X3) % > 0}

is easier to discuss. In fact A#0 on O implies
globalization of | on O (remember that O is a
simply connected domain). It remains to solve the
problem of knowing when A is free from zeroson O
(note that A is a fourth degree polynomial). Never-
thelessin cases 1, 2, 3, 4, 5 and 8 listed on the Table
A decomposes in a product of four linear factors, and
in cases 6, 7 and 9 A decomposes in a product of
two linear factors an a quadratic one. Therefore the
discussion of the sign of A on O can be carried out
without difficulty.

4. Final remarks

On looking at the Table in this paper we observe
that the numbers of restrictions on the coefficients
a;; is one(cases 1 and 2) and two or three in the rest
of the cases 3 to 9. All the redtrictions are of
algebraic type, that is, they are given by polynomials
inthe &;. Restrictions of a similar type can be found
in the literature (see Ref. [22,23]).
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It is an open question to ascertain whether or not
first integrals of L-V systems can be obtained by
agorithms such that the coefficients a;; are free to
move inside open sets of R°. These possible open
sets can be defined by inequalities of algebraic type
on the a;;.

It is also of certain interest to determine the
structure of the limit sets w of the solutions x(t) of
L-V systems when a first integral is known. Note
that sometimes (like in the example of the last
section) | globalizes on R® —{A = 0} and the limit
sets must be contained either in the level sets(1 = C)
of | or in the singular set A = 0. Note that the set
A=0isaninvariant set of X (the proof is easy).

The classification of the w-limit sets of v.f. on
compact surfaces is well known [37] but very littleis
known when the orbits of the dynamical system lie
on unbounded surfaces. Note that the level sets of |
are in general unbounded surfaces.
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Abstract

Conditions in order that the trajectories of a force-free vectorfield lie on the level sets of a given function are studied. Force-
free vectorfields symmetric under translations, rotations and roto-translations are also consi@edEIsevier Science B.V.
All rights reserved.

1. Introduction possess force-free magnetic fields which have budded
from the solar magnetic field [6].
Force-free magnetic fields are characterized by the A similar equation (cutt = Av) concerning the

differential equation velocity field of an ideal stationary fluid arises in
hydrodynamics, as well as in electromagnetism and
curlB = AB, @ accoustics [7]. Eigenfunctions of the curl operator and

wherei may be a constant (a real number) or a func- _helicity and geometrical implications of it are studied
tion of (x,y,z) € R3, andB is the magnetic induc- N Ref. [8]. . _ . _

tion vectorfield (v.f. in what follows). They were first ~_The case of constarit is particularly interesting
introduced by Lundquist, Lust and Schluter [1] to al- SIncein this case the trajectories of the v.br B can _
low magnetic fields and large currents to existin stellar have a complicated topology [9] (they can be ergodic
matter (solar corona [2], the environment of magnetic 1N OPeN sets oR®) due to a lack of integrability of
stars [3] and large domains in the magnetosphere of O B, @s it happens with th& BC solutions [10]

accreting magnetic compact objects) with vanishing ,, _ (A sin(z) + C cogy), Bsin(x) + A cogz),
Lorentz force [4]. In fact, the magnetic field formed

within a reversed field pinch machine or a sphero- Csin(y) + B cog(x)),

mak configuration relaxes to a minimum energy state A, B,CeR, ABC#0. (2)
which is well approximated by a force-free magnetic |, contrast with Refs. [9-11] where the authors study
field [S]. chaotic force-free v.f. we consider in this Letter

On the other hand, the magnetic clouds ejected fqrce free v.f. with ordered trajectories. This ordered
from the Sun, producing the major perturbations to the pehayiour can be ascertained via several visualization

Earth’s radiation belts during the satellite era seem to techniques [12], using dyes and the smoke of certain
gases in the fluid.
* Corresponding author. An order is introduced by forcing the trajectories
E-mail address: dperalta@fis.ucm.es (D. Peralta-Salas). to lie on the level set of a functioh. 7 is then a

0375-9601/01/$ — see front mattér 2001 Elsevier Science B.V. All rights reserved.
Pll: S0375-9601(01)00766-6
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first integral ofv or B. Assuming that the functios

is given, necessary conditions have been found in
order that/ can hold a force-free v.f. These conditions
take, in general, the form of one or several third-order
partial differential equations.

Interesting related references on streamline dynam-

ics of magnetic fields and Hamiltonian representation
can be found in Ref. [13].

In brief, the Letter is organized as follows: a sum-
mary of the basic facts concerning symmetries and
first integrals is given in Section 2. Two geometri-
cal configurations incompatible with force-free v.f. are
given in Section 3, while geometrical configurations
compatible with (non-trivial) force-free v.f. are stud-
ied in Section 4. A similar study when first integrdls
and Euclidean symmetries Bfcoexist appears in Sec-
tion 5. Finally, some open problems are discussed in
Section 6. Appendix A develops an specific calcula-
tion related to Section 5.

2. A brief account on symmetriesand first
integralsof v.f.

We now give the definitions and some examples
concerning the terms symmetry vector and first inte-
gral for three-dimensional v.f.

A smooth () function I (x, y, z) is called a first
integral of theR3 v.f. v when the streamlines ofare
contained in the level sets

I(x,y,2)=c (3)

of I.
It is easy to prove that wheh andv are smooth
condition (3) can also be written

VI-v=0, (4)
V standing for the gradient operator
al dal al
Vi=(—,—,— ). (5)
dx dy 0z

For example, the functiof = x2 + y2 + z2 is a first
integral of the v.f.

(6)

Therefore, the streamlines (or trajectoriesydie on
the spherical surface€ + y2+ z2 =c.

v=(yz+xz,2y —xz, —x? — y?).
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On the other hand, the v.§ is called a symmetry
of v when the local flowd, associated t& transforms,
for every fixed value ot, every streamline o¥ into
another streamline of. It is a classical result [14] that
this condition is satisfied when

[S,V] = v, (7)

[, ] standing for the Lie—Jacobi bracket apceing a
function of (x, y, z).
For example, the reader can check that the v.f.

v=(FQ@@E2+y%) "5 F@@2+y%)"y.

G (x?+y?)") 8)
has the two symmetry vectors
S1=(x,y,0),
S2=(_y7-x70)7 (9)

F(2), G(z) standing for arbitrary functions afandn
being any real number.
Analogously the v.fv defined by

D
V= ((—% — T’Zu>x —yB,

C D
<——’Z - —’Zu>y ~|—xB,C~|—Du>,

2 4
C(z), D(2), B(u, 2),
u=x>+y>? (10)

has the symmetry vecto® = (—y,x,0). C,D, B
stand for arbitrary functions of their arguments. Note
that in Egs. (10)C; and D ; stand fordC/dz and
dD/dz.

Many applications of these two concepts will appear
in the following sections of the Letter. Specifically we
shall study:

(i) The conditions under which a given function
I(x,y,z) can be a first integral of a non-trivial
(v # 0) force-free v.f. (when. £ 0).

(i) Same questions whew is also symmetric un-
der translations, rotations or roto-translations (he-
licoidal motions).

3. First integralsincompatiblewith force-free
vectorfields

We show in this section that certain functions
cannot be first integrals of non-trivial force-free v.f.
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That is, if I is one of these functions the force-
free condition (1) ¥ # 0) and Eq. (4) implyB = 0.
Calling F the set of these functions, we show tliat

@ =tami(y/x) andl = 0 = tam 1[(x2 + y2)¥/2; 71
belong toF.

Note that the level sets of these functions are, re-
spectively, half-planes through theaxis and right cir-
cular cones centered on thepolar axis.

The fact thatF is not the empty set is in contrast
with the following well known property of divergence-
free v.f. (solenoidal v.f.):any function I admits a
solenoidal v.fB satisfying Eq. (4). In fact, any v.B
defined by

B=VIAVJ (11)

is divergence-free (remember that @w b) = b x
curl(@ — acurl(b)) and admits/ as a first integral.
J stands for an arbitrary differentiable function.

Itis an open problem to characterize the functidns
belonging taF. Can this characterization be achieved
in terms of the derivatives of (up to a finite or
an infinite order) and a finite or infinite number of
partial differential equations to which the derivatives
of I should satisfy? How these partial differential
equations characterizirg can be obtained?

We remind the readers that if a functidrsatisfies
(see Eq. (4))

Al-B=0 (12)
then the trajectories @, that is, the curves satisfying
are contained in the level sets bf

I(x,y,z)=const (14)

WhenI (x, y, z) is analytic and not trivial (identically
constant) the level sets of have a very simple
structure: they resemble smooth differential manifolds
of dimension two except, maybe, on the poirgse

R® such thatVI(xg) = 0. As an example, consider
I(x,y,2) =x%+ y2 — z2. The level sets of this func-
tion,

x2+y2-2=c, (15)

are differential manifolds of dimension two far+ 0.
For C =0 the set

x24y?—72=0 (16)

i

is a cone: a differential manifold except on the point
(0,0, 0), whereV (x2 + y2 — z2) =0.

Therefore a global function satisfying Eq. (12) is
an element of order concerning the trajectorie®of
What it is shown in this section is that certain types
of ordering (that is, certain level sets associated)to
are not compatible with the force-free condition (1)
(» # 0) and, consequently, force-free magnetic fields
cannot be embedded into that kind of surfaces.

Note that in all what follows the force-free condi-
tion (1) has been used with(x, y, z) a constant real
number.

(a) Let us first consider the casé = ¢ =
tam1(y/x).

In cylindrical coordinatesr, ¢, z) B takes the form

B =B, (r,¢, 2)U, + B,(r, ¢, 2)U;, a7

(ur, uy, uy) standing for the unitary vectors along
the coordinate lines = C1, ¢ = C2, z = C3 (C;
real constants).

The force-free condition (1) becomes

}Bw =AB,, (18a)
;3,,1 —B;,=0, (18b)
- %Bw = \B,. (18c)
Note thatB; , stands fod B;/d¢, etc.

From (18a) and (18c) we get
Br.yp +2%r?B, =0, (19)
and therefore
By = A1(r, 2) COSAr) + A(r, z) SIN(Arg), (20)
A1 and Az being arbitrary functions ofr, z).

From (20) and (18c) we get
B, = A1sin(Arg) — A2COArg), (21)

and, finally, from (18b) we get

(A2, — A1) SiN(Are) + (A1 — A2,;) COSAre)

— AA 19 COAr@) — AA2¢ Sin(Arg) = 0. (22)

The functions sithre), codire), ¢sin(ire) and

@ cogArg) are linearly independent (as functions of
the variabley), as can be checked by computing of
their Wronskian.
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Therefore we get from (22)

(23)
and, since. # 0,

A1=A2=0. (24)

Therefore

B, =B, =0. (25)

Accordingly B = 0. This is the only v.f. compatible
with the first integrall = ¢ and the force-free condi-
tion (1).

(b) Let us study now the case df= 6 = tan 1[(x2
+ yZ)l/ZZ—l].

In spherical coordinateso( ¢, #) B will have the
form

B:Bp(p7¢79)up+B<p(pv(P79)u<pv (26)

(up, Uy, Ug) standing for the unitary vectors along the
coordinate linep = C1, ¢ = C2, 6 = C3 (C; are real
constants).

The force-free condition (1) becomes

sind B =AB 27a

1 1

me,w - ;(pBw),p =0, (27Db)
1

— =By =XB,. (27¢)
0

From (27a) and (27¢) we get

SiNG B, go + COSO B, o + 1%p?sind B, = 0. (28)

The particular solutions of (28) corresponding to the
initial valuesB,(0@ =0) =1, B, (0 =0) =0 and
B,(0 =0)=0, B, 9(60 =0) =1 have been obtained
via a MAPLE V computer package and are

1 1 1
B(l)zl__)\’z 292 __)\’2 2 —)»4 4 94
, il N Ty
+0(6°),

1 1
B@ =04 (-=1%p?+ )63
o —|—< 3 o —i—g
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8 4 1

675 135 45
(29)
Therefore we can write
B, = A1(p, 9)B + Az(p, 9)B?, (30)

A1 and A, being arbitrary functions of their argu-
ments.

B, can be obtained through (27c),
B ! B

= _E 0,05
but for brevity reasons its expression has not been
written.

Introducing the expressions 8f, andB,, into (27b)
and equating the coefficients of the power®o{0 <
i <5)we get

(31)

0% A1,=0, (32a)
A
oL A2,¢+%=0, (32b)
6% Ap,=0, (32c)
A
63 (A A a2 — =
(120 =5120) (47~ 5)
1 Ao
— — =0, 32d
+ 6L A2 + 3p (32d)
6% A1=0, (32e)
8 4 1
0% Ag,| — — —120%+ =1%p?
2"”(675 135"~ Tt P
31 1,34 1.,
- Az’p(m M T e
Az == — =X =0. 32f
+ 2<27 % (320)
Therefore we geA; = 0.
On the other hand, from (32b) we get
Az p=—AA2,. (33)
Introducing (33) into (32d) and (32f) we get
5 4,, Az
= —2A%%)aA 22 0 34
(18 3 ") 20t 35, = (34)
187 13 , , 4 4.4
— — —%pt— —%t)A
(2700 270 45" P )72
— — =X Ax=0. 35
+ ( %0 Az (35)
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It is immediate to see that Egs. (34) and (35) have
only the common solutiod, = 0. ThereforeB, =0,
B, =0andB =0.

A much more general problem arises at this point:
that of getting sufficient/necessary conditions in order
that a given function/(x,y,z) cannot be a first
integral of a (non-trivial) force-free vectorfield.

4. First integrals compatible with force-free
vectorfields

Some examples are given in this section of first inte-
grals whose level sets are compatible with non-trivial
solutions of Eq. (1). Such is the case of cylindrical,
planelike and spherical level sets defined by the func-
tions

(i) 1(x2+y?),
(i) I(2),
(i) T(x®+y2+2?). (36)

(i) In cylindrical coordinate® will have the form

B = B,d, + B.0.. (37)

Writing Eq. (1) in these coordinates we get [15]

2
7By = Bz g,
—-B; ZAFB(p,

(rng,,),r = ArB., (38)

A being a real number.

Trying solutions of the fornB(r) we getB, = g(r)
with g(r) an arbitrary function of; the remaining two
equations become

B—l
ST

—(%(rzgm),)

Note that the second of Eq. (39) is the linear differen-
tial equation

(r?2m),,.

=Arg(r). (39)

\r

d2g
Fo 5
dr?
which always possesses local non-trivial solutions

(g # 0) and this implies thaB # 0.

d
) (40)
dr

79

The reader can check that according to the singular-
ity theory of linear differential equations [15] Eq. (40)
has a regular analytic solutionat= 0 and, therefore,
analytic solutions valid for all values @f These solu-
tions are, in fact, Bessel functions of the first kind.

(i) In a Cartesian coordinate syste®ris now of the
form

B=B,0;+ By ay (41)

and writing Eq. (1) in Cartesian coordinates we get

—By ; = ABy,
B, ;= ABy,
By x— By y=0. (42)

Let us try solutions of the fornB(z). With this as-
sumption Egs. (42) become

—By,=ABy,
By .=ABy, (43)
which we write in the form
1
B, = —XBLZ,
1
_XB}’,ZZ = )‘B)“ (44)

The second of these equations is a second-order, lin-
ear, differential equation with constant coefficients
possessing non-trivial solutionB{ # 0). These so-
lutions are, in fact, trigonometric functions. Therefore
B #0.

(i) In a spherical coordinate systeB) takes now
the form

B = B,d, + Bodp. (45)

Writing Eq. (1) in spherical coordinates and assuming
thatB does not depend opwe get

p?sin?6 B, = g(p),

1
S S—
p2singSP =
1 2
Ap2sing (o BQ)J’ =By, (46)

g standing for an arbitrary function @f.
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The first and second of Egs. (46) defiBg and By Since evenysg ¢ can be reduced (via an orthogonal
and the third equation becomes the second-order dif- transformation) to one of the v.f.
ferential equation

S=(07O’1)’
d’s ., S=(=y,x,0)
ﬁ‘f—)\ g(p) =0, (47) Yo X%
p S=(—y,x,a), a#0, 53
y

whose solutions are, again, trigonometric functions.
Therefore we get again non-trivial solutions of
Eq. (1) lying on the sphergs= const

our following task will be that of getting necessary and
sufficient conditions in order to know if there is a non-
trivial force-free v.f. symmetric under one of the v.f.
of Egs. (53) and a given first integradl (remember

o . ) that / is symmetric undes, that is,VI - S=0, as
5. First integralsand Euclidean symmetries just explained).

compatible with force-free vectorfields

_ _ 5.1. We now study the case in whi@rrepresents a
Force-free v.f. symmetric under rotations, transla- translation along the-axis. We shall see that must
tions and roto-translations are studied in this section. satisfy a set of two partial differential equations in
The physical motivation of this is the following. The order to have a non-trivial force-free vB.compatible
magnetic inductiorB(r) created by a current density  with 7 andS= 3,.

j(x',y',2) is proportional to the well known expres- Sincel must be invariant unde, I must be of type
sion [16] I(x,y). Onthe other hand, Eq. (51) becomes
. / /
fj(r)/\("/—?”’)dsr/. (48) By =1y,
llr =7l By =—1,, (54)

Itis easy ?O see .th£ inhe_rits the Euclidean sym- and sinceB must be independent af we get from
metries ofj; this is essentially due to the fact that Eq. (1) =
Euclidean symmetries conserve volumes, the norm of ~—
vectors and the exterior produet B,y =By,
Under these conditions, and due to the fact that

—B, . =ABy,

[SEUC|1 B] = Os By,x - Bx,y = )"BZ5 (55)

div Sguci =0, divB =0, (49) and upon substitution of (54) into (55) we get

the one-formw; defined by B.y=—Al,,

w1 = (B A Sgyc)) - dr (50)  Bex=—Aly

. . . I x+1,,=AB;. 56

is closed [17] w1 = 0) in the entire space and, hence, " = " ¢ (56)

is exact. Therefore we can write We see in Egs. (56) thak, is just the Laplacian of
the functionl timesx 1. The first two equations (56)

(B A Sgye)) -dr =dl. (51) imply that/ must satisfy the consistency equations

The function! defined in (51) is a first integral of (A7 +A21) =0,
both B and Sgy¢. Note that the expressiafwi = 0 2 ’

can be written in the form (AI +A I),y =0,

A = Laplacian (57)

curl(8 A =0 52
(B A Seuc) (52) Note that (57) is automatic (when= 0) when/ is an

on account of Egs. (49). harmonic function.
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It is easy to show that Egs. (57) have non-trivial
solutions! # 0 just by puttingl = f(x) + g(y). We
obtain in this way the equations

() +22f'(x) =0,

8" (y)+2%'(3») =0, (58)
having as solutions

f(x)=A1sin(Ax) + ApcogAix) + As,

g(y) = Basin(Ay) + B2 coAy) + Bs,

A1, A2, A3, B1, B2, B3 € R. (59)

Thereforel, and accordingl, is non-trivial B = 0)
and periodic in the variables y (period 2r/1).

5.2. Let us now study the case= (—y, x, 0) un-
der whichB must be invariant. We shall use cylindri-
cal coordinatesr, ¢, z) and we prove thak(r, z) must
satisfy two third-order partial differential equations in
order to get a non-trivial v.fB having/ as a first in-
tegral. These partial differential equations admit solu-
tions for I whose level sets are tori.

All along this section and the next one we shall
expandB in terms of the orthonormal basis

3
{ar,—‘”,az}.
r

Note thatB is of the formB(r, z) because of the sym-
metry S. On the other hand, condition (51) can be
written in the form

(60)

dr rdey dz

det(Br B, BZ) =dl, (61)
0 r 0

from which we get

—rB,=1,,

rBy=1.. (62)

On the other hand, writing Eq. (1) for this case we get

—By., =A\B;,
B, — B;, = A\B,,
(rBy),r =ArB, (63)
and substituting (62) into (63) we get

A

Bw,z=—;1,u

81

1 1
o <_’> = AB,,
r r o
(rBy) ., =—Al,. (64)

The second of Egs. (64) givé, in terms of/ and its
derivatives. Substituting this value B, into the other
two equations we get the third-order partial differential
equations

111 1 A

_[ 1222 _|_<’_r> i|=__[’Z’

Al r /) o r

H—I’“ * (Lr) )}
A\ r r) .

If a given I does not satisfy Eqs. (65) and (66) then
the only solution to the problem of this section is the
trivial oneB = 0.

See Appendix A for the reduction of Eqgs. (65)
and (66) to a single second-order partial differential
equation (depending on an arbitrary constant).

Egs. (65) and (66) admit solutions of the form

(65)

A, (66)

,r

I=a(z)+b(r) (67)

if a(z), b(r) satisfy the equations

a’ )+ Aza/(z) =0, (68)

B () — b (r) s <A2 n iz) -0 (69)
r r

Constant solutions of Eq. (68) correspond to stream-
lines of B ordered along the cylinder = const, and
constant solutions of Eq. (69) correspond to an order-
ing along the planes= const.

Let us now see that an ordering of the streamlines
of B along tori is also compatible with the functiohs
defined in (67).

In fact, choose the solution c0g) of Eq. (68). This
solution presents a strict maximumgat 2k (k is an
integer). On the other hand, consider the initial values

b(rg) =a, b'(rg) =0, b"(rg) <0,

ro> 0,

of Eqg. (69).

The solutionb(r) corresponding to them will have
a maximum at = ro. Thereforel = cosAz) + b(r)
has a strict maximum &Rk, rg), and the level sets of
I (r, z) are ovals near the point&kr, rg) of the (r, z)
plane. These ovals become tori in three-dimensional
space by rotation around theaxis.
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5.3. We now study the final case of roto-transla-

tions. The symmetry vect@is in this cases = (—y,
x,a) (a #0). Only the case = 1 shall be considered
since no additional difficulties arise when# 1.

Two third-order partial differential equations far

are again obtained, and certain solutions of them are

studied.

First of all, the first integrall must take the form
I(r,u)u = z — ¢ sincel must be invariant undes.
AnalogouslyB must be of the fornB(r, u) sinceB
andS commute.

On the other hand, equatidB A S)dr = dI be-
comes

dr rdeg dz

det(B, B, BZ) =dl, (70)
0 r 1

from which we get

I,=B,—rB;,

I, =rB:. (71)

From Eq. (1) we get, after substitutions Bf and B,
in function of B, and?,

1 1
_ﬁBw,u + ﬁl,ur - B(p,u = ;I,Mv

1 1 1 1 1
;I’“” + r_zB<ﬂ - ;Bw,r - r_zl,r + ;I,rr = ABy,

1

1 A
;B(p + B(p,r + r—zl,uu = ;(Bcp - I,r)~ (72)

Eliminating B, , between the second and third of
Egs. (72) we get

1 1 r—1 1
—| 1+ ) I,uu + —Q= I,r + _I,rr
r r r

,
r=2
= < r2 + )\.> B(p.
Therefore we have obtaindg), as a function of and
its derivatives.
If we now substituteB,, in the first and second of

Egs. (72) we get two third-order partial differential
equations for/. These two equations are not written

(73)

because of their length. In practical case it is better to

work with the first two of Egs. (72) and (73) directly.
Note that forl = I(r) the first two equations (72)
and Eq. (73) become

B(p,u = Os (74)

1 1 I I
r_sz_;Bw,r_r;;‘F%:)‘Bw’ (75)
A—1 1 A—2

rz 1,}’ + ;1,}’}’ = ( rz +)">B<ﬂ (76)

Eq. (76) implies thaiB, only depends om. The first
of these equations holds automatically due to the third
one. After substitution oB,, (from (76)) into (75) we
get a third-order differential equation inwhose local
solutions are guaranteed. Therefore Egs. (76) and (71)
defineB oncel is known.

We shall now prove that Egs. (72) and (73) have
solutions of the form

I=a@r)+b(r)u,

b(r) #0. (77)
Writing the classical Chandrasekhar equation [18]
AY + 2%y =0 (78)

in cylindrical coordinates, it is easy to see that it admits
a solution of the form

v =A(r)u

if A(r) satisfies the linear differential equation

(79)

—dZA + —dA +AarA=0
r rA=0.
dr? dr

The v.f.B is given by

(80)

B =1"curl(curl(ay)) + curl@y),
a=(0,0,1). (81)
After some computatior8 can be written in the form
A A ) —u(r'A)
B= (_ - —>a, +(—' A2+ (7”0 ) >az.
A r r Ar
(82)

Note thatB commute withS= (—y, x, 1) = 9, + 9;.
Therefore equatioB A S) dr = dI becomes

dr rde dz
det{ B, B, BZ>=d1,

0 r 1
A A
Br=———,
A r
B, =—uA’,
_ /A/
p, = ) (83)
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We get in this way

rA’
1= (T - A>u + G(r),

G (r) standing for a function ofi and its derivatives
(after calculations it is easy to see th@tr) is just a
constant function).

Note that the coefficient of in Eq. (84) cannot
identically vanish (remember that is a non-trivial
solution of Eq. (80)).

Eq. (84) gives the form of a first integraldepend-

(84)

Appendix A

In the assumed absence of dependence e first

of Egs. (64) can be written
A

where f(r) stands for an arbitrary function of.

Substituting (A.1) into the third of Egs. (64) one im-
mediately get

Cc
ing onu. f(}") = ;’ (AZ)
¢ being an arbitrary constant.
Therefore we can write
6. Final remarks N
c—
B, = . (A.3)

We have shown in this Letter that certain geomet- ’

rical configurations (planes through a line, circular Substituting (A.3) into the second of Egs. (64) we
cones through a point) are forbidden as first integrals finally get the second-order differential equation

of a non-trivial force-free v.f. Others, like tori, parallel I I

planes, circular cylinders, spheres are not forbidden. —*= ( r> = ( )

A first open question is: cah= const represent tori r
with more than one handle and force-free @fexist
with I as first integral? We cannot see at present any
physical consequence (on the motion of the charges)l
of these toruslike configurations, but perhaps some
readers can.

At the mathematical level the following question
arises: Itis well known that the streamlines of the mag-
netic inductiorB can be closed loops. Stokes theorem
plus Eq. (1) makes this impossible to occur for force-
free v.f. having a first integral with planelike level _
sets (note that planelike level sets are just topological ™ i ttgsijlsstéﬁﬁéry;iétlrg?)?yseéj;(lgs 4y 263
planes; on these level sets a loop is deformable to a 5 ;. Burn, K. Schindler, in: E. Priest (Ed.), Solar Flares Magne-
point). The question is that of ascertain if a force-free
v.f. can have closed trajectories or not when the level
sets ofl are not topological planes or whénis free &
from global first integrals. Note that if the reply is neg-
ative if B £ 0 on the tori introduced in Section 5.2 the
streamlines oB are dense on each of these tori [19].

(A.4)

r r r

that is,

1
et Ly — =2 4221 — e =0, (A.5)
r

as we desired.
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Abstract

Using a remarkable connection between pairs of first integrals of the magneti@faatd first integrals of the Newton—
Lorentz equatiork = X A B, it is shown that, under certain conditions, the wires credirzge unreachable for electric charges
moving under the action d8. Part of these mathematical results are of interest to electrical engineers, helping to keep the power
lines electrically neutral.
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1. Introduction In fact, this can be achieved simply by choosing
Xo = 0, Xo sufficiently nearxy or X2 and (x; — Xo) ||
It is a well-known fact that, for appropriate initial (X1 —X2) (i =1, 2).
conditions(xo, Xg), a negative unit charge, unit mass, This result obviously holds when the negative unit
test particle, subjected to the Coulombian electric charge is substituted by a unit (positive) mass and
field E created by the fixed chargég:, X1), (g2, X2), the couple ¢1, g2) by the pair (21, m2) of (positive)

q1, g2 > 0, via Newton equations masses at the fixed pointsy, x2).

. 3 We show in this Letter that for the magnetic field
X=—-E(X), xeR% @ B(x) created by a straight line wiré}{) or a circular
can reach the points; or x» [1]. wire (W,) the solutions of the Newton—Lorentz equa-

tions[1] (unit charge, unit mass test particle again)
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tura y Deportes, Spain. cannot reach the wired; or W..
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In fact, this result is valid as well wheW; repre-
sents not just a straight line wire but a finite number
of straight line parallel wires and also whé¥). rep-
resents a finite number of circular wires, lying on par-
allel planes, with collinear centers lying on a straight
line L orthogonal to these planes. In any of these two
cases the wire¥; or the wiresW, cannot be reached
by a unit charge, unit mass particle moving according
to Eq.(2).

The proof of our unreachability results is based on
the knowledge of an adequate number of first inte-
grals of Eq.(2). It will be seen that, in addition t&,

Eq. (2) can possess additional first integrdlsvhen
two first integrals (1, I2) of the magnetic induction
vector field B are known (see SectioB). This re-
sult connecting, under certain conditions, the first inte-
grals(11(X), I2(x)) of B(x) and those of the Newton—
Lorentz equation§?), is apparently new (see EJ$)
and (7). An application of it in order to get unreacha-
bility when B is created either by a finite number of
parallel straight line wires or by a finite number of
circular wires (lying on parallel planes with collinear
centers on a straight line orthogonal to these planes)
appears in Section3 and 4 Finally, a discussion of
Eq. (6), which is basic in the obtention of the first in-
tegral(7), is given in Sectiorb.

Note, finally, that when E(2) is substituted by the
corresponding relativistic equation

d . .
T30 =X AB(X),
y=@1-3)""2 3)

the above unreachability results hold, as well. This is
due to the fact that? is again a first integral of Eq63)
(this is immediately seen, since

¢ = light velocity =1,

d
X « — X :O,
X dt(yx)

via quite easy computations). Therefoyeis a posi-
tive constant, and Eq§3) can be written in the form:
X=XABX), B =y BX),

(4)

which is just Eq(2) with B rescaled (by the constant
factory —1). The reader will check in Sectio®sand 4
that a factor like this has no effect on the unreachabil-
ity results of these sections.

73

2. Firstintegrals of Newton—Lorentz equations
induced by pairs of first integrals of the magnetic
induction B

We show in this section that ffi (x), I2(X) (x € R3)
are independent and orthogonal first integralBof
that is

BVI; =0, BV =0,

vVIVI; =0, rank(VIy, VIp) =2, (5)
whereV is gradient operator, and if

S = (A ®
then

I = D(X) — A(X, X), )

is a first integral of Eq(2).

Note that by orthogonality of71(x), I2(X)) we
mean orthogonality ofheir level setd; *(a), I, (b)
(a, b € R). The meaning of the factarin Eqg. (6) will
be clear immediately. Ne also that the symbal/dr
in Eq. (6) stands for the derivative along the stream-
lines of theR® vector fieldX, given by

ad a

X =X—+ XAB)—. 8

L=X—+XAB) (8)
Therefore, Eq(6) can also be written in the form
X-VI 0A, 0A .

= —X+ — B). 9
MV Ip)2 axx+ X xAB) ©)
The proof of Eq(7) now follows.
By Eg. (5) we can write

B=A(VI1AVI), A=*xr(X), (10)
and therefore E(2) can also be written in the form
X=AXA (VL AVI), (12)
or, equivalently,
X=M{(X-VI)VIL — (X- VI1)VI2}, (12)

and by the orthogonality of the pairi(x), I2(x)) we
get from Eq(12)

X-VI=AX- V) (V)2 (13)
that is

X-VIi . d

2 XV =—(I 14
YCIAL 2 d[( 2), (14)
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and by Eq(6) Eq.(14) becomes

dA dD
dt  dt’
that is, I — A is a first integral of Eq(2) (or of the
vector field in(8)), as we desired to prove.

As an application of this result, consider that
(x,y,2) and that(I1 = z, I = I>(x, y)) are two first
integrals ofB. It is immediate to show that the mag-
netic induction vector fiel® = V(z) A V(I2(x, y)) is
parallel to thex—y plane (note thak = 1) and that
(z, I2(x, y)) are orthogonal functions.

On the other hand, E@6) holds, sincel; = z im-
plies

(15)

X- VI]_
(VI)?

and thereforeA = z. Accordingly, the first integral
in Eq.(7) becomes

(16)

I = 12()6, y) - Z (17)
Note that vector field8 of type
B=AVzAVI(x,y), (18)

include the magnetic induction created by a finite set
of parallel wires parallel to the-axis. In fact[1] B is
in this case given by

B= Z

(x;, yi, 0) standing for the intersections of the straight
line wires with thez = 0 plane and/; for the current
intensities flowing along these wires.

On the other hand; =z and

Ji(y —yi, —(x — x;), 0)
(x—xz)2+(y yi)2

19)

N
I(x,y) = —% X; Jin((x = x)? + (y = y)%), (20)
are independent first integrals of the vector figl@).

Note that it is not difficult to gef», sinceB can be
considered to be a plane divergence-free vector field.
For these vector fieldR] it is a classical result that a
first integral (ourl,) of them can always be found (via
quadratures). It is precisely using this classical result
that the function/z in (20) has been obtained from the
expression oB in Eq. (19).
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Using the first integrald; = z and I, of B (see
Eqgs.(19) and (20) it is straightforward to check that
Eq.(18) holds (withi = 1), as we desired to prove.

Another application of the first integrdl in (7)
appears in Sectio#, in relation with the magnetic in-
ductionB created by circular wires.

We now prove, in Section3 and 4 some unreach-
ability results when electric charges move in the mag-
netic field created by certain configurations of straight
line or circular wires.

3. Unreachability in the magnetic field of parallel
wires

We now show that an electric charge under the ac-
tion of the magnetic field created by a finite number
of straight line parallel wiredv; (i =1,..., N), will
never reach the wires. This property holds for any ini-
tial condition(xo, Xo), Xo € R® — (1Y, W;.

As a consequence of this fact the set of parallel
wires constituting a power ling8] remain practically
uncharged when the wires are surrounded by an at-
mosphere of positive or negative ions. This neutrality
is, in its turn, important since charged wires would at-
tract or repel via Coulombian forces tending to destroy
the parallel wire configuration.

Note that although direct current transmission is the
exception, rather than the rule, in power transmission,
in a number of applications HVDC (high-voltage di-
rect current]4] is often the preferred option, as in:

— Undersea cables;

— Endpoint-to-endpoint long-haul bulk power trans-
mission without intermediate taps, for example, in
remote areas;

— Interconnecting unsynchronized AC systems.

The case of an infinite sequence of wires can be
studied in a similar way, by substituting in Eq22)
and (23)the finite suleN:l by infinite converging
series. This, of course, requires some restrictiong on
andr; =, /)ci2 + yiz.

Consider the magnetic inductid created by the
wires[1]:
Z (y Yi, — xl) 0)

B b
C(x —xi)? + (y ¥i)?
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Wi=x=x;,y=yi,2=2), (21) (LsB =0, Lg standing for the Lie derivative along the
streamlines o6 [6]), and as)y andB are divergence-

where J; is current intensity flowing across thé;
! y g ' free, by a well-known resuls,6]

wire. This vector field possesses the two first integrals:

L=z, (0p AB) -dx=dIp, (24)
1Y 5 ) wherel; is a non-trivial first integral oB whendg and
L= 5 Z Jin(G = x)%+ (v = y)%). (22) B are non-parallel and stands for the standard vector
i=1 product inR3,
It was shown in Sectiof (see Eqs(17) and (20) that Note that Eq(24)is linear inB, and thereford,
the function has the remarkable property of being given by
I=1—2 N o
1N , o L=Y"1I, (25)
:_EZL In((x —x)°+ (y —y)?) —z,  (23) i=1

i=1
is a first integral of the Newton—Lorentz equati@@%
whenB is given by Eq(21). (9 AB')-dx=dI}, (26)
Note that whenV > 1 angular momenturh, is not o o _ )
conserved since the physical system is not symmetric B being the magnetic induction vector field created

1} being defined by

under rotations around theaxis. by each of the wiresv;. .
Therefore, for initial conditions(Xo, Xg), Xo ¢ We write now Eq{(24)in cylindrical coordinates
_vazl W;, and taking into account that is also a first dr rd¢ dz
integral of Eq.(2), we get: det( 0 p 0 ) =dly, 27)
(3.1) z(¢) is bounded B, 0 B
1 N since on account of the Biot—Savart |§i§ By = 0.
(3.2) -5 D JiIn(e() = xi)% + (y(1) = yi)?) We can also write Eq27)in the form
i=1
al al
— 2(1) = I (X0, %o0). rB.="2,  —rB, =2 (28)
ar 0z

Therefore, the functior2(x(z)) would be bounded.
But I> is unbounded (see E¢22)) when x(¢) ap-
proaches one of the wires indefinitely. This is a con-
tradiction, and we conclude that the wires are unreach-

We now computeB = rotA taking into account that
[1] A = Aguy (Up = d4/r) and that the expression of
rotA in cylindrical coordinates is

able. 1 U- rug U
— — 9 d d
B=rotA=—11 & | (29)
4. Unreachability in the magnetic field of circular 0 rdy 0
wires obtaining
. . 19
We prove that a charged particle movingRa un- B, =———(rAy). By =0,
der the action of a magnetic fieBl created by a fi- . roz
nite number of planar circular wire®;, i =1,..., N B. — —i(rA(/)), (30)

(their planes being parallel and their centers lying on Cror
a straight lineL orthogonal to the planes) will never and therefore, by Eq28) we getl> =rAy. Note that
reach the wires. This fact holds for any initial condi- (u,, ug, u;) stand for the standard orthonormal basis
tions (Xo, Xg), Xo € R3 — U,N:l W;. associated to the cylindrical coordinates.

Indeed, in cylindrical coordinates, (@, z), with L For a circular wire centered &0,0,0) and ra-
acting asz-axis, sinceS = 9, is a symmetry ofB diusa; on which a current/; (J; # 0) is flowing, the
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expression ofd4 is known[1] in terms of elliptic in-
tegrals and hence we get

Iy =rAl
i/ k?
=4~’k.“’[(1_?!)K(k,.2)_E(k,?)], (31)
K, E andk; defined by
/2 4
K (k2 2/7)6’
9 , V1—k2sirfx
/2
E(k2)=/\/l—kzsin2xdx,
0
da;r
=t 32
"o(ai+r)?42? (32)

When the center of the circular wire 8,0, z;) I> is

given by equations similar t(81) and (32) obtained

by substituting in these formuldé by k,? given by

=2 4a,r
Y@+ (z—z)?

Note that the function&?, K andE have the following

properties:

(33)

(4.1) (kP)|z-axis= 0;

4.2) (];,-2)|circular wire (r=a;, z=z;) = 1;

(4.3) limy k2 =0;

(@44 k2<landk®=1iff r=a;, z=1z;

(4.5) K (k%) and E(k?) are analytic functions on any
intervalk? <m (m < 1) [7];

(4.6) limg_ - K(k?) = +oo, limp_ - E(k?) =1
andk (0) = E(0) = /2.

As a consequence of these properties it follows that

I is a global function orR® — [ J_, W;. The key of
the proof is that the term i(81) (1 — k2/2)K (k) —
E (k?) vanishes fok; = 0.

On the other hand (recall property (4.2)) we get

from Eq.(31).

im i — 400 whenJ; >0,
r—a 2~ | —co whenJ; <0,
=7
N
Jim 1o = lim (le) = 0. (34)
=7 2=z \i=1

Let us first apply Eq(14)to I1 = ¢, Io = I2(r, 2) in
order to get the first integrdp(r, z) + r2¢ of Eq. (2),
wherel, = YN | 15 and1j is given by Eq(31).

In Cartesian coordinates we have

1
¢ = arctan>, Vo =—=(=y,x,0),
X r
1
Vo)P=—.  rP=xPty? (35)
and then we get
107 107
VoAV =-22y, - 222y, (36)
r 0z r or
which by Eq.(28) becomes:
V¢ AVI>=—B.uU, — B.U, = —B. (37)

Since the couplép, 1) satisfies Eqq5) and (10)with
A= —1, by virtue of Eq.(35), Eq.(14) can be easily
transformed into the form

dlz dIZ . .
7 Z_W’ l,=xy— yx.
Therefore I + [, is a first integral of Eq(2). In cylin-
drical coordinates the first integral is

Io(r, 2) + . (39)

Note that this first integral is a kind of generalized an-
gular momentum around theaxis.

Unreachability immediately follows from the pres-
ence of the first integral&? = /2 + r2¢2 + z2 and
In(r, 2) +r?¢.

Indeed, the constancy of? implies thatr¢ is
bounded. Therefore, near the wire=£ a;, z = z;) the
termr2¢ is also bounded.

On the other hand, the equatidp(r, z) + r2¢ =
I>(rg, z0) + rgéo (ro # a; and zg # z;) implies the
boundedness ab near the wire = a;, z = z;), con-
tradicting Eq.(34).

(38)

5. Discussion of Eq(6)

We now prove that ifl; is a first integral oB and
I1 is defined by[2]

iv12(dx ANdy ANdz)

ig§22 =dlI1, 20 = , (40)
V122
thatis
Vi AB
L=-2 (41)

V)2’
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thenl; is also a first integral oB and we get:

(i) B=VI1 AV, thatish =1 in Eq.(10).
(iiy The 1-form w1 = Bdx is closed (provided that
rotB = 0). Therefore (locally)d I3 = Bdx.
(i) The functions (11, I, Is) define an orthogonal
(local) coordinate system iR3.
(iv) Eq.(6)holds (. = 1) if and only if the vector field
d/011 = 9y, is an Euclidean symmetry @&.

First of all, note that by Eq(41) the level sets
of I1 and I, are orthogonal V/1VI> = 0). On the
other hand, since r@& = 0 on (R3-wires), the func-
tion I3 in (ii) is (locally) well defined. The orthog-
onality of the gradients ofl1, I, I3) is immediate
from Eq.(41), and we obviously get rarik' I1, VI,
VI3) = 3. Therefore, the set of function$y, I», I3)
forms an orthogonal (local) coordinate system.

The proof of (iv) is based on projecting E(f)
on the orthonormal basisi1, u», us} associated to the
functions(11, I, I3).

Remembering the useful equalities:

_ VI
v
3 . .
K=Y da'(,Du, 1=, I, I3) (42)
i=1
Eq.(6) becomes
aah S . .
= Ap(,DL+ A (LD, 43
IVl ;( ! D) “

where the subscripts denote, as usual, partial differen-

tiation with respect to the corresponding variable.
Now, via straightforward computations we get

3 aX
XZZ—L"’
i=1
3 2
X . . X ..
X = —— il +—1
Z(alal ”+al,~ ’)

[ +——1u; |, (44
/k jlk l+||VIi|| i l) ( )

I'' j standing for the Christoffel symbol8], defined
by

i 1 ,-m(agjm Ogkm 3gjk>

2 alx ;3
e 1
8ij =0 ifi 75 ] andgii = —”VI”Z (45)
1
Therefore, Eq(43) becomes
ald,hy 1 3
I+ rt el j I
TR kzl !
3
=Y (A (. D+ Aj (D). (46)
i=1

Since Eq.(46) must hold identically in/; and I; we
get from(46)

VA
ry=I1vi|? 8( = )
_vnRr
n= WAL
||2a( = )
L2
WAL
1 28 1
~Ivhl 5
2 IV

F212=F213=F32=F33=0~ (47)
The reader can check now that E(#5) and (47)m-
ply

0gii

0l

and therefore

L811 (g) = 0 (48)

That is, dy, is a Killing vector field of the Euclidean
metric g defined in Eq(45).
On the other hand,

1 1
F12=F21=—||

1 _ -1
FlS_F3l_

=0, i=123,

B=Bllus = VI1[IIVL2][I VI3]0, (49)

and since

d

—(IVL ) =
811(” lll)
we get

[97,,B]=0 (50)
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Egs.(48) and (50)show that wher{6) holds thend;, for wires W; which are perturbations of the wird&;
is an Euclidean symmetry &. studied in this Letter? By the term perturbation we
mean a small deformation of the original wire. This
deformation is free and need not have any particular
6. Conclusion symmetry. For instance, iW; is a circular wire then
a perturbatior; could be an ellipse with very small
For certain realistic configurations of power lines eccentricity.
we have shown that the wires creating a magnetic  The reader can have a look at R where Ulam
field B are unreachable for electric charges which pointed out the numerous open problems arising in the
move under the action d@. This result has been ob-  study of the magnetic fields created by electric cur-
tained by using a remarkable relation between first rents flowing in wires such as the existence of ergod-
integrals of the Newton—Lorentz equation and first in- icity and knotted magnetic orbits.
tegrals of the corresponding magnetic field.
As an application of the study in Sectidncon- References
sider the magnetic field created By > 1 straight-
line wires concurrent at0,0,0). We can apply to [1] J.D. Jackson, Classical Electrodynamics, Wiley, New York,
this physical system the results of this section since 1999,
I =x2+ y2 4+ 72is afirst integral oB and conclude  [2] C. Godbillon, Géométrie Différentielle et Mécanique Anali-
that Eq.(6) cannot hold because fof > 1 this system tique, Hermann, Paris, 1969.
of wires is free from continuous groups of Euclidean [l i'oﬁsfﬂi:i F;pl\rliiggfrﬁgwwﬂffcgéo% Kaintzyk, Overhead
Remember that continuous Eucidean symmeties areLd 463 HVOC websiehip hmmabboomih
. ; . . [5] V.I. Arnold, Mathematical Methods of Classical Mechanics,
just translations, rotations and roto-translations and ** springer, New York, 1989.
that an Euclidean symmetry of the wires is, automat- [6] F.G. Gascon, D. Peralta-Salas, Int. J. Nonlinear Mech. 35 (2000)
ically (via the Biot—Savart law), a symmetry of the 589.
magnetic field created by the wires. [7] G. Arfken, Mathematical Methods for Physicists, Academic
It is an open problem to prove, or disprove, un- __ Fress Orlando, CA, 1985. _ _
- . . . [8] L.P. Eisenhart, Riemannian @metry, Princeton Univ. Press,
reachability for wires geometrically located & in Princeton, 1997.
positions different from that considered in this Let- 9 5.m. Ulam, Problems in Modern Mathematics, Wiley, New
ter or which are no longer straight lines or circles. York, 1960.
An easier question is: can unreachability be proved
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Abstract

The partial differential equations defining the invariant sets of Newtonian, second order, analytic differential equations, are
obtained and discussed. An example is given for whizbodimension one invariant sets of type= g (x1, x2) exist. Invariant
sets for relativistic equations of motion and for equations of motion of the rays of light in geometrical optics are also considered,
some examples are given and it is shown that the invariant sets for these equations must be planes; this is in strong contrast

with the invariant sets of ordinary Newton equatiéns F(x, x) allowing the presence of “curved” invariant surfaces. All these
results are apparently new.
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1. Introduction

A setl Cc R" is called invariant under the dynamical syst&m

dx! .
X: — = X"(X),
i (x)
xeR",
X:X"a,-,
1
) (1)
0i=_—,
axt
x' = Cartesian coordinates
1<i<n,
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when for initial conditiong € I the solution of Eq. (1x = ¢(¢; Xo0), t € E(0), corresponding tap, lies in/, that
is

@(t;%0) C 1, } @

vVt € E(0),

E(0) standing for the open interval arounet: O for which¢(z; Xo) is defined.
It is well known [1] that wherV is a differential submanifold defined by the set of zeros of sev&talor C%W
functionsf;(x) i=1,2,...,r <n)and

Vi
rank( : ) =r, (3)
Vil

then the invariance of under (1) is equivalent to the equations
fi=Lx(fu =0,
: (4)
fr=Lx(f) =0,
Lx (fi)1 standing for the restriction of the functidik (f;) to the setl, V f; representing the gradient vector field
@f;/oaxt, ..., 8f;/ax™) andLx (f;) being(V f; - X). Lx (f;) is called the Lie derivative of; along the streamlines
of X [1].

Invariant sets were discussed by Fermi [2—4] and Benet al. [5] in relation with the problem of whether
or not they disappear when an integrable Hamiltonian systemis perturbedX gy mpe.. FOr similar stability
questions see Refs. [6—-12].

For invariant manifolds passing through either a hyperbolic or non-hyperbolic z&réewfd its behaviour under
perturbations), and for relations betan invariant hyperplanes and Darbabgory of integrability for polynomial
vector fields see Refs. [13-16].

We are interested in this Letter in the study of invariant sets of second order differential equations, specifically
invariant sets of Newtonian equations. These invariant sets will be defined by:

fl(xl, .. .,x”) =0,

fr(xl,...,x”) =0,

f1=Vf1-X=0, 5)

f‘rzvfr')'(=07
rankVfi,...,Vf,)=r <n.

The firstr equations in (5) define, via the rank condition in (5), a codimensidifferential submanifold in the
configuration spac®” of the variablesx?, ..., x). The set of all Egs. (5) defines a codimensierd#ferential
submanifold of phase space.

Note that the first of Eqs. (5)f1 =0,..., f; = 0}, have little to do with what are called in Mechanics
“holonomous constraints” [17].

Note also that invariant sets of type (5) are poorly studied. No references to them have been found except for
the particular case of the equation defining the gemmdeén Riemannian or pseudo-Riemannian spaces.
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We will always refer along this Letter tthe firstof Eqgs. (5) when speaking about the invariant sets, since
the second of Egs. (5) is just a consequence of the first one obtained via differentiation with respect to the time
variabler. Note also that the second of Egs. (5) just expresses the fact that the velocity of the unit mass is a vector
tangent to the submanifolds =0, ..., f. = 0} for everyr € E(0).

Concerning Newtonian equatioikis= F(x, X) we only consider in this Letter the cases

% =0, (6)
and
n
=" a0l i,
k=1 (7)
i=1,...,n,

these last equations being a generalization of the eiffial equations of the geodesics of a Riemannian or pseudo-
Riemannian space [18]. In fact, calligg (x) the non-degenerate metric tensor the connection coeffic{te:};;(x)
in Eq. (7) are given by

n
. 1 .
_a}k = E Egm’ (8jmk + 8km,j — &jk.m)s
m=1

8ij = 8ji-

©)

Note that (8) implies thatj.k(x) = a,ij (X), and therefore a non—symmeta"yk (X) in its two lower indicesan never
be obtained through Egs. (8) from a metric tensor.
Note that perturbing equations (6) and (7) with a “foré&X) leads to the equations

% = F(X) 9)
and
#= " ah, 05+ Fl(x). (10)
jk=1

We shall see that these perturbed dipures have identical invariant sefsas the unperturbed equations (6) and (7).
The organization of the Letter is as follows:

(i) the non-linear partial differential equations for the invariant sets of type (5) for Newtonian equations of type
X = F(x, X) are obtained in Section 2;

(ii) in Section 3 it is shown that the codimension one invariant sets of Egs. (6) or (9) are hyperplanes in the
configuration space (or intersection of hyperplanes wher?, 3, .. .);

(i) for differential equations of type (7) the partial differential equations of its invariant sets of type (5) are
obtained and examples of equations of type (7) with or without invariant sets, of type (5), are studied
(Section 4);

(iv) in Section 5 we get the invariant sets for the relativistic equatib®s)/dr = F(x, X), y = (1 — x%)~1/2,

F(x, X) being a polynomial irx;

(v) finally we obtain (Section 6) the invariant sets for the geometrical optics equéitior®&Vn - X)X = Vn/n?,

n(x) being the refraction index of the material medium.

Note that invariant sets of dimension one of Egs. (10ahteays existThey can be obtained through elimination
of 7 in the solutions! = ¢'(¢) (i =1,...,n) of Egs. (10) [19].
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Note, however, that higher-dimensional invariant sets of type (5) farr2< n — 1 do not necessarily exist
in general (even locally) since they have a very speéifim (they are invariant sets in the phase space that are
obtained from the configuration space submanitgid=0, ..., f, = 0}). A well known example is provided by
totally geodesic submanifolds of Riemannian manifolds. In Ref. [20] examples of Riemannian manifolds without
(local) totally geodesic submanifolds are given. In fads ibelieved that “general” Riemannian manifolds do not
have any--dimensional totally geodesic submanifolds fox2 <» — 1 [20].

We finish this section by remarking that the treatment of Section 2 can be applied to differential equations of
the form

% = F(x, X), (11)

F standing for a polynomial itt of degreeN € N (see Egs. (6) and (7) above, corresponding to the values)
andN = 2, respectively).
Note, finally, that the techniques developed in thistéehave not very much to do with the techniques used
in Ref. [21], which involve Frechet differential calculus and the theory of tangent sets. Moreover the relativistic
equations (see Section 5) and the geometrical optics equations (see Section 6) are not considered in Ref. [21].

2. Invariant setsof Newtonian equations

In this section we get the non-linear partial differential equations that must be satisfied by the functions
fi in order that the codimension- Zubmanifold defined by Egs. (5) be invariant under the vectorield
Xdx + F(x, X)9x associated with the Newtonian equations of motiea F(x, X).

It is well known [1] that the necessary and sufficient conditions for the invariance of (5) under the solutions of
the Newtonian equations are:

Lx ()i = fi) =0,
Lx(V fi -X) 5y =0,

where E|5) = 0 means thak is not necessarily identically equal to zero, Eitbecomes zero on the manifold
defined by Egs. (5).

Now, the first set of Egs. (12) are automatically satisfied due to the secemquaiations in (5); the second set of
Egs. (12) can be written in the form

[ 3 fupdlit 4y f,-,kﬁek} =0,
k=1

jk=1 15) (13)

(12)

32 f;
Tk = gToa

and since& satisfies Newton equation we get the basic equation

n n
{ 3 ikl 4 Zf,,ka} =0. (14)
k=1 k=1 1(5)
Basically Eqgs. (14) are non-linear because, due to Eqx g)dx depend on thef; and f; ; on the submanifold
defined by Egs. (5). Concerning Egs. (14) we will write them more explicitly in the useful cases of Egs. (7), (9)
and (10). These three cases are studied in the following sections.

Note that the expression of the system dynamics on ttagiemt set is given by the restriction of the Hamiltonian
vector field to the invariant submanifold, thatXss). This gives rise to & — r) ordinary differential equations
defining a dynamical system on the invariant set defined by Egs. (5). For example, if the phase &face is
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and the invariant set (in the configuration space) is the cur¥eg(x) then the induced dynamics is given by
¥ = Fx(x, g(x), X, g'(x)X).

In this Letter we only study forces depending quadraticallyk dnut, as we have mentioned in the introduction,
the mathematical treatment is the safar other polynomial dependences. We are going to illustrate this fact with
an example for whictF* is linear inx, n = 3 andr = 1.

Let the Newtonian equations be defined by

X=XA B(xl, xz, x?’),
By 3o (x3-axis), (15)
x e R3,
Let us see that these equations admit the invariant%et0. Indeed, Egs. (14) become in this case:
('B2 — ¥%B1) s_o =0. (16)

This last equation is satisfied since by hypothésis parallel to ther3-axis on the plane® = 0.

Note that the magnetic field of a dipole at (00) (the Earth magnetic field) is parallel to the dipole axis (North
pole—South pole line) on the’ = 0 plane (Earth equatorial plane). Therefore an electric charge under this magnetic
field, with initial velocity xo such thati3 = 0 will get trapped forever in the invariant plang= 0 just considered.

In ending this section, note that Eqgs. (14) remain ungea when the Newtonian equations are perturbed in the
form

X =F(Xx, X) + P(X, X),
P(x, x) satisfying
V fi - P(X, X)) =0,

that is whenP is tangent to the submanifolfify =0, ..., f, = 0} on every point of it. Therefor& = F

and X = F + P have identical invariant sets of type (5) provided the perturbing f&ce X) is tangent to
{f1=0,..., f, =0}. One of the referees of the Letter has raised the following problem: for which class of physical
systems could one consider the perturbing fd?¢angential to the submanifold of interest?

3. Invariant setsfor velocity freeforces

We now get the explicit form of Egs. (14) when the equations
fl(x)zo’ L] fr(x)=07 (17)
take the form
fi=xt—g'® =0,
' . 18
fr=x"—g" ) =0, (18)
X= (x”rl,...,x”).
The functionsg’ in (18) are obtained after applying the implicit function theorem to Eq. (17), and an eventual
reordering of the variables!, ..., x" so thatrankd (f1, ..., f;)/0(xL, ..., x") =r.

Note that in general the reordering.of, ..., x” can lead to more than one set of Egs. (18) (see the example
given in the next section).
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We now write the invariant set (18) in phase space:
xt—gl) =0,

x"—g"(X) =0,

#l—vgl.x=0, (19)

xr—Vg’.izo.

Note that the local equations (18), (19) and (20) become global when the fungtions, f, andF(x, X) are
analytic. That is, on account of analyticity [22] Egs. (20) are equivalent to Eqgs. (12), which are global, as we
immediately prove.

Indeed, the basic equations (4) become, locaWyf; - X)|n(pyn; = 0, N(P) being a neighbourhood around a
point P of I, and since the functior f; - X and the submanifold are analytic [22] we can write:

Vi Xnveynr =0 & (Vfi- X)) =0,

as we desired to prove.
Summarizing, the global invariant set (5) can be obtained via the use of the local analytic Egs. (19).
Taking Egs. (19) into account the basic equations (14) become

first r components

n . ——
(— Z gl /it 4+ (1 1,0,...,0 ,—Vg1)~F(x)> =0,
1(19)

J.k=r+1

(20)

first r components

- Xn: Tl ik 0,0 1 ,-Vg')-F =0
g,jkx-x +( AR ) g) (X) — Y
. 1(29)

and sincei” 1, ..., i" are subjected to no constraints equations (20) imply:
i S
8 jkias) = 8.jx =0 (21)
i=1...,r;r4+1<j, k<n,

and therefor@’ must be an affine function in thevariables, that is

i:Ai )Cr+1+-~-+AiX”+Ai,
g=A 0 (22)

Al eR.

This affine dependence gf on the variablegx” 1, ..., x") is surelynot new, but we have not traced it back in
the literature.
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The independence af 1, ..., " in Egs. (20) also implies the following equations:

r components

—_—~—
((1, 0,...,0,—Vgl). F(x)) =0,
119)

(23)

r components

—_—~
((0, 0,....,1,—Vg")- F(x)) =0.

1(19)

Egs. (23) mean th&t(x) must be tangent to the configuration space submanifold definedby! (X),i =1,...,r
and Egs. (22).

Note that Egs. (23) are satisfied whiegx) = O (force-free motion of the particle). On the other hand, Egs. (23)
are incompatible wheR(x) is not tangent to any codimensiemaffine submanifold oR”; this is the case of((= 2,
r=1)

F(x) = (—xz,xl). (24)

As a final, clarifying and well-known example, let= 3, » = 1, andF(x) be a central force, that is

FOO | x, }
(25)

orFi=h-xi,

h standing for a function ofx(t, x2, x2).
Let f1(x1, x2, x3) be alinear function ofx?, x2, x3), then Egs. (5) become:

(26)

Alxl + A2x2 + A3x3 =0,
Al 4+ Ax? 4+ A3 =0.

Note that the first of Eqgs. (26) represents (@mfiguration space) a plane through the origin.
It is straightforward to see that Egs. (14) reduce in this case to

3 3
(ZAJ") = (h : ZA,x’) =0, (27)
(26) i=1 (26)

i=1

where the above system of equations are satisfied due to (26). Therefore any plane through the origin is an invariant
set (in the configuration space) ainthe forces acting on the material particles are central.
The Newtonian forces

i kx!
F= [(x1)2 + (x2)2 + (x3)2]3/2° (28)
keR,

are central and the above result is, of course, valid for them.
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4. Invariant setsfor forcesquadratic in the velocity

We get now the partial differential equations obtaindtewthe basic equations (14) are applied to forces of the
following type

n
Fh= 3" af 0x'5". (29)
I,m=1

Indeed, substituting (29) into Egs. (14) leads to the equations

n n n
[ > gl +zm( > afm*’*’"ﬂ
k=1 1(5)

j.k=1 I,m=1 (30)
1<i<r,
that is:
n n )
( > {f,,,-, + Zﬁ,ka(;,}xfx’> =0. (31)
j=1 k=1 (5)
Using now the canonical local form (18) of Eq. (17) we get:
( > |:—g,l,/1 + ﬂwﬂﬂ;&’) =0,
jl=t k=1 I(19) (32)
i=1,...,r
fi.x standing for the vector
first » components lastn—r components
—_——
(fi,l,fi,Z,uwfi,n):(0,07“-7 1 507""07 _vgl )' (33)
ith place
Note that in Eq. (33) is fixed (1< i <r).
Finally, expressing?, ..., x” linearly (see Egs. (19)) in terms of 1, ..., x* we get via Egs. (32):
—gl 44, =0,
81T 4ji (34)
r+1<j,1<n; 1<i<r,
&j.l standing for the coefficient of/ X! (r + 1 < j, I < n) after substituting in the term
n .
> firdb 08 (35)

JikI=1
of Egs. (32)x%,...,x", &1, ..., &" by its values given by Egs. (19).

Note thata’; is, in general, non-linear in the functiog$ and its first derivatives since botf, aj‘.ll(lg) and
%/ #,19) contain, respectively, first-order derivativesgf(see Eq. (35)), the functiong themselves when’/?l x)

are not free fromx!, ..., x”, and products oW g’ arising from terms of typexl)?, i1i?, etc. Egs. (34) are the
system of partial differential equations for th&X), . . ., g" (X) we were looking for.
We now give an example showing that (in general) the non-linear system (34) can be incompatible.
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In fact, letn = 3, r = 1 and consider a Newtonian differential equation quadratik of type (7) with aj.k
defined by:

“%1 =0, a:%l =0, a:?l = ‘P/(xs)’

af=az =0, afy=a3; =0, afz = aSl =0,

afz=az =—¢'(x°). af3=a5=0, ajy=a3; =0, 36
az,=0, agz =0, agz = ‘P/(xs)’ )
“%3 = “?1,2 =0, a§3 = “%2 = _¢/(x3)’ a§3 = agz =0,

azy=0, agy3 =0, agy=—¢'(x%),

¢ (x3) being an arbitrary smooth function f, different from zero.

Let us now prove that Egs. (7) do not posses invariant sets ofiypeg(x?, x?) whena;k(x) are given by
Egs. (36).

It is straightforward to check #t Eqgs. (32) become in this case:

((—g,xlxl + ¢/ (x%)) (£1)? - 2g 128152 4 29/ (x3) g 15183 + (—g 202 + ¢/ (x3)) (£2)°

+2¢/ (x%)g 25253 — ¢/ (x) (x?’)z) o -0 (37)

3=g 1il+g 2i?

and Eqgs. (34) are now
—g1 +¢'(x°) +¢'(x%)g%, =0
—g 1,2+ ¢ (x?’)g,xlg,xz =0, (38)
—g. 22+ ¢’(x3) + ¢’(x3)g’2xz =0.

Let us now discuss Egs. (38) according to the valug’of3).
(i) If ¢'(x%) is not a constant function the second of Egs. (38) is incompatible.
(i) When ¢’ (x%) =a € R, a #0, Egs. (38) become

8 xlyl = a(1+ gil),
g 11,2 =0ag (18 2, (39)
822 =a(1+8%,).
Wheng(x1, x?) exists we must havg 1,12 = g ,1,2,1 and therefore we get from the first and second of Egs. (39)
8 (18 x1x2 = § y28 x1y1- (40)
Analogously, we must havg 22,1 = g ,1,2,2 and therefore, via the second and third of Egs. (39) we get
8 128 x132 = § 418 12,2- (41)
Writing (40) and (41) in function of the first derivatives gfx, x2) (by using Egs. (39)) we get
82182 = (1+8%1)8 .12,
5 5 (42)
8%28.1 = (1+8°%2)8 1.
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From Egs. (42) we get

=0,
g1 } (43)
g2 = 0,

and thereforg (x1, x2) = const. But a constant function does not satisfy Egs. (39) (remember thatnon-zero
real number). We conclude that Eqgs. (7) are free from invariant sets offpeg (x1, x?) whena}k(x) are given
by Egs. (36).

However, these equations possess invariant sets ogiygex?) =0, Vg # 0. In fact the phase space equations
of these invariant sets are

g(xl,xz) =0, (4a)
g axl4g 282=0.
Letg ,2#0.Then
=8 (45)
8 x2
The equivalent of Eqgs. (34) are now the equations
.1 .2
Ly (g’xlx + g y2xX )|(44) =0, (46)
which after some computations become
.1\2 .1, .1, .2 .2,
(g 1 (3 +2g 1,20 04% — 29/ (x¥) g 1k 183 + g 12,2(¥7) " — 2¢’(x3)g’xzx2x3)‘(44) =0. (47)
Finally, when (45) is substituted into (47) we get the equation
2
g .1 8.1
8 x1xl — 2g,xlxzi + g,xzxzé—x =0. (48)
8 2 8 2

X

Note that Eq. (48) is free from’(x3). Note also that Eq. (48) holds wherix?, x2) is a function of an affine
function inx®, x2:

g(xl,xz) = F(ax1+bx2+c), (49)
a,b,ceR and F'(u)#0.
No other solutions of Eq. (48) exist since [18] the curvaturd the plane curvg(x!, x?) = 0 is given by
L (g’xlxlg’zxz — 2g’x1g’x2g’x1x2 + g’xzngil) (50)
(%1 +8%2% 8 a?)=0

It is now immediate (whelW g # 0) that the expression (50) férvanishes identically for the solutions of Eq. (48).
But it is well known [18] that in this case the curgéx®, x?) = 0 must be a straight line, and therefare:!, x2)
must have the structure (49), as we desired to prove.
Open remains the problem of giving equations of type (7) without invariant sets of dimension greater than one.
The dimensioronecase is a special one and was discussed in Section 1.
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5. Invariant setsin special relativity

For brevity, we only consider in this section the case 3, r = 1, F(x1, x2, x3) and invariant sets of type
x3=g(x1, x2). The relativistic differential equations replacikg= F(x) are now

d .
0= F(X),

(51)
xeR3, y=(1-%x%)""2
Let
eoE ), (52)
X7 =g X"+ g y2xt,
be invariant under Egs. (51). It is easy to check that Egs. (51) can also be written in the normal form:
1—@h2  —pl;2 _;1;3
g=1-)Y -2 1-(92 23 | Fo, (53)
_1;8 323 1— (532
and therefore the invariance of (52) under Eq. (53) reduces to the equation
[£° = g ()7 = 28 ,2d4% = g 2,0(37)7 = g 0¥ = g 28] ) = 0. 4

Now, Eq. (53) can be written in the form:
#1= (1- )Y’ [Fro0 (1 - (1)%) — F200£L2 — F3004149],
$2= (1-33) [~ Floiki2 + F2(0 (1 - (£2)%) — F3(012:3], (55)
3= (1- )Y [—F i3 - F205253 + F300 (1 - (+3)7)].

Substituting Egs. (55) into Eq. (54hd taking (52) into account we get

2
.2\1/2 - & Qe
(1—X2) / ‘(52)[F3—g’x1Fl—g’x2F2+Pg(X, X)]\(SZ)_ E g’xixjxlxj =0, (56)
i,j=1

P>(X, %) being a homogeneous polynomial of second degreé in?:

2
Py(%,3) = Y Aij(F,g 1,8 2%/, (57)
i,j=1

A;; standing for a function of its argumerfts g ,1, g 2. We shall see immediately th&sz) vanishes.
Now, Eq. (56) cannot hold unless
F- (—g’xl, —& 12 1) =0,
P2(%,%) =0, (58)

8xixi =0, ,j=12 1}

since otherwisél — (i1)? — (12)? — (1%)?)Y/2 52 would be equal to a rational function ot, x2, i1, ¥2.
Note that 1— (i1)? — (¥%)? — (g 141 + g ,2%)? cannot be the square of a one-degree polynomiafini2:
(A + Bxl + Cx?), as the reader can check immediately.
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The first and third of Eqgs. (58) were obtained in Section 3 and imply Eh& tangent to the manifold
x3 = g(x1,x?) and thatg(x1, x%) must be affine incl, x2. This same result was obtained in Section 3 in the
non-relativistic case, and (to the best of our knowledge) is new.

The second of Egs. (58), written explicitly, is

Po(%, 02 = [~33(F - %) + g 11 (F - %) + g 28%(F - )] 5 = 0, (59)

and vanish identically via the second of Egs. (52). Therefore only the first and third of Eqgs. (58) are to be taken
into account.
Note, finally, that the first of Egs. (58) holds automatically wikea O (free motion of the particle). In this case
any straight line or plane @2 is invariant.
As an example, leF be central (see Eq. (25)). In this case only the plandsr which the first of Eqgs. (58)
holds

h(xl, x2, x?’)(xl, x2, x3) (=841, 8,2 D=0, (60)

will be invariant under these forces. These are just the plarthsough the origin. The reader will check that the
last two equations in (58) are also satisfied.
In ending, note that considering the relativistic equations

d
T =F(x.%). (61)

F(x, x) being a polynomial irx, and invariant sets of type (52) we obviously get for the functidhe equations
(see Egs. (56) and (58)):

[F : (_g’xlv _g,xzv 1) + P2]|(52) = Ov (62)
g’xiszo, 1<i,j<2
Decomposing in the form

Fx being a homogeneous polynomial of degkd® < k < d) in 11, 2, Egs. (62) can be written in the form:

Fo(—g,1,—8 2 '1)|.(52) =0, (64)
g’xiszo, 1<i,j<2

Remember that (see Eq. (59s2) = 0 identically. Taking (63) into account we get from Eqs. (64)
Fr - (—g .1, —g,xzj 1?|(52) =0, 0<k<d, (65)
8.xixi =0, 1<i,j<2

Thereforeg(x?, x%) must be affine incl, x2, g = Ax! + Bx?+ C, and the real numbers\( B, C) must satisfy the
equations

Fr(X,X) - (—A, =B, 1);52 =0, }

66
k=0,1,...,d. (66)

As an example, consider the relativistic tridimensional motion of a unit mass, unit charge particle, ruled by the
equation

d
20 =4[EC) +XABWXY], (67)
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(E(x), B(x)) being the electromagnetic field acting on the particle. In this Easee given by

Fo(x, X) = E(X), (68)
Fi(x, %) = (B32 — B%i3, B1i3 — B3it, B%i! — Bli?)
and therefore Eqgs. (66) become
(EY E? E®) - (—A, =B, 1)3_g 1, g2y c =0,
(B2 — B%3 BYi® — B3, B2 — B%?) - (=A, =B, 1) 5_, 1, 0. =0. (69)

i3=Ail+Bi2

One can always assume, via an adequate choosing of Cartesian coordinatés-tBat C = 0; that is that the
invariant plane is just the plan€ = 0, and therefore Egs. (69) become

Eg‘x:%:o = 0,

(B2l — Bi?) , =0 (70)

x3=0 —
3=0

The physical meaning of the first of Egs. (70) is tBahust be parallel to the plané€ = 0. The second of Egs. (70)
just means thaB?|,s_o =0, B2 ;s_o = 0. That isB must be orthogonal to the plané = 0.

What is important, and apparenthewis that Eq. (61), wherir(X, X) is a polynomial of degred in x (see
Eq. (63)) and the invariant set is defined by Egs. (52),lyripat “curved” invariant sets are relativistically
forbidden Only “not curved” invariant sets (planes & of type x3 = Ax! + Bx2 + C) are allowed. Curved
invariant sets are, of courseot forbidderfor Newtonian equation$ = F(x, X).

As we can see, a strong difference between the invariant sets of equatioRé&x, X) andd(yX)/dt = F(X, X)
has come out.

One of the referees of the Letter has raised the following problem: is there a physical reason on why curved
invariant sets are forbidden in the relativistic motion?

6. An application to geometrical optics

In this section we consider a ray of light which is moving in a material medium characterized by its refraction
indexn(x, y, z) (n > 0).
It is known that its motion is ruled by the second order differential equations [23]

%4 2(Vn %= 1
n- = —5,
n2 (72)

¢ = speed of light= 1.
If f(x,y,z)=0Iis an analytic invariant set for Egs. (71), the phase space equations assocjatedtare

f=0,
Vf&:&} (72)
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Casting Eqgs. (72) in the standard form (19) and proceediin Sections 3 and 4 (after some computations) we
obtain the equations that the functigtx, y) must satisfy

8.xx = 0»

=0,
i’” I (73)

oy =0,

(Vn-Vf)r=0=0.

The first three equations are obtained after application of Eqgs. (34) to the egtiatio2(Vn - X)X and the fourth
equation corresponds to Egs. (23) where the field {6168 has been substituted B (x)/n?(X).

Egs. (73) imply thag must be an affine function, that igx, y) = Ax + By + C (A, B, C real numbers), and
Vn must be tangent to the invariant set g(x, y). Therefore we obtain the same result that was obtained for
the relativistic equations of motion: curved invariant sets for the equations of motion of the rays of light are not
allowed. Note that this result holds for any refraction index, y, z); that is the result = Ax + By + C is valid
independentlyf the possible Euclidean symmetriesagk, v, z).

Note finally that the fourth equation in (73) becomes, wifea Ax + By + C — z,

(An,x + Bn,y - ”,z)\Ax+By+C—z:0. =0. (74)
Eq. (74) is satisfied for:

(@) n =n(x), whenn = n(x) = const for any values od, B andC, and forA = 0 whenn'(x) # 0.
(b) n=n(x2+ y? + z?), whenC = 0 (for any values ofs andB).

The discussion on the solutions of Eq. (74) whea n(x2 + y2, z) is trivial, and shall not be given.

7. Final remarks

We have studied analytic invariant sets®f, the configuration space of the mass one particle. WR&n
is substituted byanother manifoldM”, on which a Riemannian metrig is defined, the equivalent of Newton
equationt = F(x, X) is, locally, an equation of type

n
¥= Y a i+ Gy Y. (75)
jok=1

(') being a local coordinate system near a certain pBirg M.

As long asG(y, y) is a polynomial iny the techniques developed above can be applied to Eq. (75) in order to
get the invariant sets of it.

If the functionSa;k(y) are obtained from a metric tensgy; (y) via Egs. (8) ands(y,y) = 0, then Eq. (75)
are the geodesics equations in the Riemannian manifdle, §,;). The invariant setd = {y e M"/fi(y) =
0,..., f+(y) =0} of Eq. (75) wherG = 0 are called by mathematiciatwtally geodesic submanifoldts8] because
all the geodesics of the codimensiosubmanifold/ are geodesics of the enveloping spa¢é. From this point
of view the treatment followed in this Letter can be applied to the study of totally geodesic submanifolds in
Riemannian manifolds. In local coordinates the nomdinpartial differential equations that the functigfsnust
satisfy are Egs. (34). Global results on analytic invariant sets are, as well, automatically obtained by working with
analytic %) local charts inM".
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Abstract

In a recent paper of Llibre and Rodriguez (J. Differential Equations 198 (2004) 374-380) it is
proved that every configuration of cycles in the plane is realizable (up to homeomorphism) by
a polynomial vector field of degree at mostn2-r) — 1, wheren is the number of cycles and
r the number of primary cycles (a cycte is primary if there are no other cycles contained in
the bounded region limited bg). In this letter we prove the same theorem by using an easier
construction but with a greater polynomial bound (the vector field we construct has degree
at most 4 — 1). By using the same technique we also constf@&tpolynomial vector fields
realizing (up to homeomorphism) any configuration of limit cycles which can be linked and
knotted in R3. This answers a question of R. Sverdlove.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we are interested i vector fields
X:Pm(xay)ax‘i‘Qm(x»y)aya 1)

where the functionsP,, (x, y) and Q,,(x, y) are polynomials of real variableg, y)
with real coefficients and degree not higher than
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The most important problem concerning planar polynomial vector fields was proposed
in 1900 by Hilbert[8] (in the second part of his 16th problem) and it consists in finding
the maximum number of limit cycles for the vector field (1) in terms of the degree
m and studying the relative positions of these cycles. Recall that a limit cycle of the
vector field (1) is an isolated periodic orbit of this vector field.

So far the 16th Hilbert's problem remains unsolved. It has been proved that the
number of limit cycles of (1) must be finite [9,5] but even in the easiest ¢ase 2)
it remains open to ascertain the maximum number of limit cycles of all quadratic
differential systems.

In this letter we are not interested in the 16th Hilbert's problem but in the following
inverse problem: given a sé@ of planar cycles we wish to construct a polynomial
vector field X whose limit cycles are exactly the s€t(up to homeomorphism).

Let us introduce some previous definitions in order to specify the problem we are
interested in. We follow here Llibre and Rodriguez [11] who have also studied the
same problem.

Definition 1. A configuration of cycles is a finite sef = {Cy, ..., C,} of simple
planar closed curves such th@tNC; =¥ for all i # j.

Definition 2. The curveC; € C is primary if there is no curveC; e C contained in
the bounded region limited by;.

Definition 3. Two configurations of cycle€ and C’ are equivalent if there is a home-
omorphismH : R? — R? such thatH (C) = C'.

Definition 4. The vector fieldX realizes the configuration of cycl&s if the set of all
limit cycles of X is equivalent toC.

Now the question can be formulated as follows: can we give a constructive method
in order to find a polynomial vector fielX realizing an arbitrary configuratio@ of
cycles? In[11] Llibre and Rodriguez answer this question affirmatively but their proof
is rather involved (they use the Darbouxian theory of integrability).

In the following section we prove the theorem of Llibre and Rodriguez by a different
and easier method. The advantage of our method is that it can be easily extended to
higher dimension, as we show in Section 3. Another advantage is that we control
the stability of the limit cycles (they are stable) while the limit cycles in Llibre and
Rodriguez’s construction can be stable, semi-stable or unstable, and we have no control
over it. Furthermore, our construction & gives rise to hyperbolic limit cycles and
hence structurally stable under small perturbations of the vector field. We are not aware
whether Llibre and Rodriguez’s limit cycles are structurally stable. The disadvantage
is that, in general, the polynomial bound that we obtain is worse than Llibre and
Rodriguez’s.

Our main theorem is the following:

Theorem 1. Let C be a configuration of n cycles. Then we have that C is realizable
(as algebrai¢ stable and structurally stable limit cycle®y a polynomial vector field
X of degree<4n — 1.
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Note that the polynomial bound obtained]itil] is 2(n +r) — 1 and since->1 (r is
the number of primary cycles) our bound is greater than Llibre and Rodriguez’s except
in the case that = n, that is, when all the cycles are primary.

In Section 3 we prove a theorem analogous to Theorem 1 b@EirDefinitions 1,
3 and 4 extend naturally to the 3-space. Note that in this case the cyclesa not
planar and therefore they can be linked among them or even knotted. The theorem is:

Theorem 2. Let C be a configuration of n cycles iR%. Then we have that C is
realizable (as algebraic stable limit cycl@dy a non-vanishing polynomial vector field
X € R® of degree high enough

In the proof of Theoren? (Section 3) we give a specific bound of the degreeof
As far as we know, this (constructive) result is new in the literature. In fact, a vector
field V with a given compact attracting s€tis proved to exist in [7] but its construction
implies that the dynamics o is trivial (all the points inC are zeros of the vector
field). SpecificallyV is a gradient field projecting a tubular neighborhoodCobnto C
S0 it cannot possess any periodic orbits. In general, most of the constructions of vector
fields with given attracting set that can be found in the literature give rise to trivial
dynamics on the attractor. Furthermore, it is not proved that under homeomorphism of
C this vector field can become polynomical.

On the other hand Theorem 2 answers a long-standing question posed by Sverdlove
[14]: what knot types can occur in polynomical systems? The answer is that all knot
types are possible and we give an explicit procedure for constructing a polynomial
vector field with a given knotted stable limit cycle.

2. Proof of Theorem 1
In this proof we follow the works of Sverdlove [14], Gascon et al. [6] and Winkel
[16].

Let C be a configuration of cycles in R2. By applying a homeomorphisti we
can deform these cycles into circles of center, y;) and radiusr;:

H(C) = {fi(x,y) = (x —x)?> + (y — )2 —r? =0} )

Now let us construct the following function:

fen =116, 3
i=1

wheref is a polynomial of degreer2 Since the cycledd (C;) do not intersect among
them we have that the s¢f (x, y) = 0} defines exactly the configuratiol (C). Note
also that(V f),r—o0 # 0.
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Consider the vector field

X = (_fy - ffx)ax + (fx - ffy)ay’ (4)

where the subscripts dfdenote partial differentiation with respect to the corresponding
variables. The vector field defined id)(has the following properties:

o X|r=0 # 0.

o f2=X(f? = -2f%(f2+ f2)<0 and in a neighborhood aff (C) f? =0 only
on f =0. f2is a Lyapunov function and therefore its level sets near the cycles of
H(C) are deformed circlefl5]. These facts imply that (C) is a set of stable limit
cycles of the vector fielX.

e X does not possess other periodic orbits apart frAC). Assume thatl” is a
periodic orbit different fromH (C;) for all i = 1,...,n. Since this orbit does not
intersect any of the cycles aff (C) we must have that, for exampl¢ir > 0. We
also require thatV f)r # 0 in order thatX - # O (see Eq.4)). Taking into account
these facts we obtairfir < 0 and thereford™ cannot be a periodic orbit. This is a
contradiction.

e X is a polynomial vector field of degree at most 4 1.

Finally let us prove that the limit cycles of the vector field (see Eg. 4)) are
hyperbolic, thus implying that they persist under small perturbations<.ofndeed,
consider the following integral over a limit cycle of

1 T
1= [ @y ©)
0

where div stands for the standard divergence operatorTascthe period of the cycle.
If v # 0 then the limit cycle is hyperboli¢l]. Taking into account Eq. (4) it is
immediate to see thaidiv X)|s—o = —(V f)?, which does not vanish oif = 0, thus
proving the claim.

3. Proof of Theorem 2

In this section we have a configurati@ of n cycles in R®. As mentioned in the
introduction these cycles can be untrivial knots and can be linked among them [10].
Assume that the cycle§; are smooth enough, namey™ submanifolds. Since each
componentC; is diffeomorphic tos? then its normal bundle is trivial [12]. By the well-
known Tognoli's theorem there always exists a diffeomorphigmR3 — R2 (in fact
a diffeotopy) such tha# (C) is an algebraic set and hence an algebraic configuration
of cycles [3], that is, the curves iH (C) are given by

(6)

{fﬂ‘l(-xvyvz) Os
gm(x, y’ Z) = 09
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where f,, and g,, are polynomials of degree at mast satisfying that
I’k(me, ng) =2 (7)

on the cycles ofH (C). Note that Tognoli's theorem guarantees that the £é€) is
exactly formed byn algebraic cycles (no other compact or non-compact components
appear).

The degreem is in general unknown and it probably depends on the linking and
crossing number$10] of the cycles inC. It is evident that, for example, if all the
cyclesC; lie on a certain plane, them = 2n.

Our main polynomial function in this case i§ = f2 + g2 whose degree is at most
2m. Note that the configuratioi/ (C) is given by F = 0 and thatVF =0 in H(C)
but it is different from zero in a neighborhood of the cycles®{C). F is therefore
a Lyapunov function and its level sets near the cycles are deformed tori [15].

Let us construct the following vector field:

X=Vf,AVgn— FVF (8)

with A standing for the standard vector productRA and V standing for the gradient
operator.
The vector field 8) has these properties:

e X|r—0 # 0 sinceVf, and Vg, are independent o (C).

e F = —F(VF)2<0 and in a neighborhood of/ (C) we have thatF" = 0 only on
the cyclesH (C). SinceF is a Lyapunov function we conclude that the cycles in the
configurationH (C) are stable limit cycles oK.

e X does not possess other periodic orbits. Assume thads a periodic orbit ofX
which does not belong t&/(C). It is immediate that, for exampld;r > 0 because
otherwisel” would intersect some cycle @ (C). SinceX | # 0 it is straightforward
that (VF)r # 0 because otherwise in a certain pointlofhe gradients off,, and g,
would be parallel and therefobé would be zero. But these facts yield a contradiction
since we would have a periodic ordit such thatFr < 0.

e X is a polynomial vector field of degree at most: 4 1. As mentioned above the
numberm does depend on the specific configurati©@nNote the difference with the
planar case in whicm is always 2. This difference is due to the many complex
ways in which the cycles o€ can be linked and knotted, this being a particular
property of the 3-dimensional case.

It is interesting to observe that the polynomigls and g,,, defining the vector field
X in Eg. @), can be chosen such that # 0 in R3. To show this claim note that
for any given linkL in R3 there exists a submersiop : R® — R? such that the
preimage of the origirnp~2(0) is L [13]. Whenever the link is algebraic the submersion
¢ can be chosen to be polynomial, say= (f, gn), and hence the rank condition
rk(V fm, Vgn) = 2 holds in allR3. Since the vector field¥ f,,, Vg, andV £, AVg,
are independent it follows that = V f,, A Vg,, — FVF cannot vanish at any point.
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The construction of this section thus provides an algebraic vector Xgl® # O in
R3, whose set of limit cycles, all of them stable, is given BYC).

In ending this section we would like to pose the following open problem: are the
limit cycles of the vector field§) structurally stable, as in the 2-dimensional case?

4. Final remarks

In this letter we have proved a recent theorem of Llibre and Rodriguez by using
a very different technique. Our technique is simpler and can be extended to the 3-
dimensional case as was shown in Section 3. On the contrary the polynomial bound
of the vector field that we construct is greater than Llibre and Rodriguez’s. Our bound
is therefore not sharp but note that Llibre and Rodriguez's bound is not either; see the
work of Christopher [4] where polynomial vector fields of degree at mastelizing
a generic class of algebraic limit cycles are constructed.

On the other hand the application of this technique to the 3-dimensional case is, to the
best of our knowledge, new in the literature. We have proved that every configuration
of cycles inR® can be deformed into an algebraic configuration of cycles that can be
realized as the limit cycles of a 3-dimensional polynomial vector field. This answers a
question formulated by Sverdlove [14].

If Cis a configuration of smooth cycles ", n > 3, Tognoli’s theorem also guar-
antees the existence of a diffeotopy : R” — R" such thatH(C) is an algebraic
set of cycles (note again that the normal bundleCois trivial [12]). H(C) is ex-
pressed through the polynomiafs, ..., £2~1 of degree at mostn as H(C) = {f} =
0, .., fi=1 =0} rk(VfL ..., Vi1 =n—1 on H(C). Define now the vector field

X, = [* dfin--n df,;}—l)]l, * standing for the Hodge star operator anstanding

N2
for the index raising operator, and the functidgh= Z;‘;ll (f,;) . Proceeding as in

Section 3 it is immediate to prove that the vector fiéddld= X; — FVF has stable limit
cycles given by the curves il (C), and it does not possess any other periodic orbits.
ThusX is a polynomial vector field (of degree at most @< 1)m — (n — 1), 4m —1})
realizing the setC of cycles. SinceH (C) can be realized as the level bt 1(0) of

a polynomial submersio® : R* — R"~1 [13] then we obtain that the polynomial
vector field X does not vanish iR". Note that Miyoshi’s theorem [13] is proved for
codimension 2; anyway, it trivially holds when the set has codimensienl in R"

(n > 3). Indeed, since the submanifold (C) can be embedded, through an ambient
diffeomorphism ofR", into the 3-dimensional hyperplangs = 0O, ..., x, = 0}, one
only has to apply Miyoshi’'s theorem on this hyperplane in order to obtain a submersion
(fm, gm) : R® > R2?, and then to extend the submersion to the whifein a trivial
Way (fum, &m» X4y -+ .y Xn)-

The degree of this vector field and the one constructed in Section 3 is surely not
sharp and it remains open to connect the topological properties of the configu€ation
with the degream, that is, can one give a formula expressingn terms of the linking
and crossing numbers or other topological numbers related to the configu@ition
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A related question is the 16th Hilbert's problem R, » > 2, e.g. do there exist
polynomial vector fields with an infinite number of limit cycles? An example of a 1-
parameter family of polynomial vector fields iR*, which has fixed (bounded) degree,
and the number of its limit cycles tends to infinity as the parameter O has
been recently constructed by Bobienski and Zolaf&gk but we are not aware of
examples in the literature dR” (n>3) polynomial vector fields with infinitely many
limit cycles. Note that the techniques in this paper allow to solve the inverse problem
for a configuration of infinitely many cycles (locally finite) when the vector fixd
is only required to be analytic. The fact that an infinite humber of algebraic sets is
not algebraic prevents from constructing a polynomial vector field, thus suggesting that
new ideas are necessary to tackle this question.
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Note added in proof

The author has only recently been aware of a preprint by A. Ferragut, J. Llibre and
M.A. Teixeira (2005) where examples of polynomial vector fieldsthwith infinitely
many limit cycles are constructed. As far as we know the inverse problem of construct-
ing R® polynomial vector fields realizing any infinite (locally finite) configuration of
cycles is not solved.
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