UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS QUIMICAS DEPARTAMENTO DE INGENIERIA QUIMICA

5 3 0 9 5 5 2 8 1 3 UNIVERSIDAD COMPLUTENSE

EQUILIBRIO DE ADSORCION DE MEZCLAS GASEOSAS EN TAMICES MOLECULARES

MEMORIA

que para optar al grado de Doctor en Ciencias Químicas presenta:

JAVIER PAU GAMARRA

MADRID, 1994

D. GUILLERMO CALLEJA PARDO, CATEDRATICO DEL DEPARTAMENTO DE INGENIERIA QUIMICA DE LA FACULTAD DE CIENCIAS QUIMICAS DE LA UNIVERSIDAD COMPLUTENSE DE MADRID.

CERTIFICA: Que el presente trabajo de investigación titulado *Equilibrio de Adsorción de Mezclas Gaseosas en Tamices Moleculares,* constituye la memoria que presenta el licenciado D. Javier Pau Gamarra para aspirar al grado de Doctor en Ciencias Químicas y ha sido realizada en los laboratorios del Departamento de Ingeniería Química bajo mi dirección.

Para que conste firmo la presente en Madrid a uno de Junio de mil novecientos noventa y cuatro.

Celling-

Guillermo Calleja Pardo.

A mis padres

.

.

AGRADECIMIENTO

La presente investigación se realizó en el Departamento de Ingeniería Química de la Facultad de Ciencias Químicas de la Universidad Complutense de Madrid, bajo la dirección del Catedrático D. Guillermo Calleja Pardo, en quien siempre encontré el estímulo, la ayuda y los consejos que posibilitaron mi labor y a quien quiero expresar mi más sincero agradecimiento.

También quiero expresar mi gratitud a mis compañeros del Departamento y en especial a aquellas otras personas que me han apoyado en todo momento y cuya influencia ha sido decisiva en la realización de este trabajo.

Por último he de citar al Claustro de Profesores de la Facultad de Ciencias Químicas de la Universidad Complutense al que debo mi formación científica y técnica, así como al Proyecto Joule de la C.E.E. que hizo posible la financiación de este proyecto.

Madrid, Junio de 1994.

1. RESUMEN				
2. INTRODUCCION				
2.1 CONCEPTO DE ADSORCION				
2.2 ADSORBENTES				
2.2.1 PRINCIPALES ADSORBENTES DE USO INDUSTRIAL				
2.3 EQUILIBRIO DE ADSORCION				
2.3.1 TERMODINAMICA DE LA ADSORCION.202.3.2 ISOTERMAS DE ADSORCION.242.3.3 DESORCION.262.3.4 ADSORCION DE COMPONENTES PUROS.302.3.5 ADSORCION DE MEZCLAS DE GASES.36				
2.4 APLICACIONES INDUSTRIALES DE LA ADSORCION				
2.5 OBJETO Y ALCANCE DE LA PRESENTE INVESTIGACION				
3. INSTALACION EXPERIMENTAL				
3.1 INSTALACION ATMOSFERICA				
3.2 INSTALACION A PRESION				
4. MATERIALES Y PROCEDIMIENTO 79				
4.1 ADSORBENTES				
4.2 GASES				
4.3 PROCEDIMIENTO				
4.3.1 PREPARACION DE LA INSTALACION ATMOSFERICA				

4.3.3 PREPARACION DE LA INSTALACION A PRESION			
4.3.4 EXPERIMENTOS DE ADSORCION A PRESION ELEVADA			
5 RESULTADOS			
5.1 ISOTERMAS DE COMPONENTES PUROS A PRESION ATMOSFERICA			
5.2 ISOTERMAS DE COMPONENTES PUROS A ALTA PRESION			
5.3 ISOTERMAS DE MEZCLAS BINARIAS A PRESION ATMOSFERICA			
5.4 ISOTERMAS DE MEZCLAS BINARIAS A ALTA PRESION			
5.5 ISOTERMAS DE MEZCLAS TERNARIAS A PRESION ATMOSFERICA.			
5.6 ISOTERMAS DE MEZCLAS TERNARIAS A ALTA PRESIÓN 126			
6. DISCUSION DE RESULTADOS			
4 1 EVER INFINITOS DEFUTOS			
C.I EXPERIMENTOS FREATOS			
6.2 COMPUNENTES FURUS			
6.2.1 ISUTERMAS DE ADSORCION DE COMPONENTES POROS À PRESION			
6.2.2 ISOTERMAS DE ADSORCION DE COMPONENTES PUROS À PRESION			
ELEVADA			
6.2.3 CURVA DE ADSORCION CARACTERISTICA DE LAS ADSORBENTES135			
6.2.4 CALCULO DE LA PRESION SUPERFICIAL DE LOS COMPONENTES PUROS136			
6.2.5 CALCULO DEL CALOR ISOSTERICO DE ADSORCION DE LOS COMPONEN-			
TES PUROS			
6.2.6 AJUSTE DE LAS ISOTERMAS EXPERIMENTALES DE COMPONENTES			
PUROS A ISOTERMAS TEORICAS			
6.2.7 INFLUENCIA DE LA COMPOSICION QUIMICA DEL ADSORBENTE. ESTU-			
DIO DE LA RELACION SIO2/A1203			
6.3 ISOTERMAS DE ADSORCION DE MEZCLAS BINARIAS EN ZEOLITAS ZSM-5 A			

•

.

.

.

6.3.1 INFLUENCIA DE LA RELACION SIO2/A1203 EN LA ADSORCION DE
MEZCLAS BINARIAS
6.3.2 PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINA-
RIAS EN ZEOLITAS ZSM-5 MEDIANTE LA TEORIA I.A.S
6.3.3 PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINA-
RIAS EN ZEOLITAS ZSM-5 MEDIANTE LA TEORIA H.I.A.S
6.3.4 PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINA-
RIAS EN ZEOLITAS ZSM-5 MEDIANTE LA TEORIA R.A.S192
6.3.5 PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINA-
RIAS EN ZEOLITAS ZSM-5 MEDIANTE LA TEORIA S.P.D
6.4 ISOTERMAS DE ADSORCION DE MEZCLAS BINARIAS EN TAMIZ MOLECULAR
DE CARBON 5A Y ZEOLITA 5A A PRESION ELEVADA
-
6.4.1 MODIFICACIONES REALIZADAS EN LOS MODELOS PARA SU APLICA-
CION A PRESION ELEVADA
6.4.2 PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINA-
RIAS EN CMS 5A Y ZEOLITA 5A MEDIANTE LA TEORIA I.A.S284
6.4.3 PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINA-
RIAS EN CMS 5A Y ZEOLITA 5A MEDIANTE LA TEORIA H.I.A.S286
6.4.4 PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINA-
RIAS EN CMS 5A Y ZEOLITA 5A MEDIANTE LA TEORIA R.A.S286
6.4.5 PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINA-
RIAS EN CMS 5A Y ZEOLITA 5A MEDIANTE LA TEORIA S.P.D288.
6.4.6 PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINA-
RIAS EN CMS 5A Y ZEOLITA 5A MEDIANTE LA TEORIA V.S.M289
6.4.7 PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINA-
RIAS EN CMS 5A Y ZEOLITA 5A MEDIANTE LA TEORIA S.T.M291
6.5 MEZCLAS TERNARIAS
6.5.1 ISOTERMAS DE ADSORCION DE MEZCLAS TERNARIAS EN ZEOLITA

- 6.5.2 PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS TERNA-RIAS EN ZEOLITA ZSM-5 SiO $_2/A1_2O_3 = 29$ MEDIANTE LAS TEO-. 415 RIAS I.A.S., H.I.A.S., R.A.S. Y S.P.D..... 6.5.3 ISOTERMAS DE ADSORCION DE MEZCLAS TERNARIAS EN CMS 5A Y

6.5.4 PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS TERNA-

RIAS A PRESION ELEVADA MEDIANTE LAS TEORIAS I.A.S., H.I. 6.6 COMPARACION DE LOS RESULTADOS OBTENIDOS MEDIANTE LOS DIFERENTES 6.7 COMPARACION DE LOS RESULTADOS OBTENIDOS EN DIFERENTES ADSORBENTES488 9.2.1 CALCULO DEL PESO Y VOLUMEN DE LOS LECHOS DE ADSORBENTE.... 498 9.3 DETALLES DE CALCULO EN LA APLICACION DE LOS MODELOS DE ADSORCION. 9.3.1 CALCULO DE LOS PARAMETROS DE LA CURVA CARACTERISTICA......507 9.3.4 CALCULO DE LAS REGIONES DE CONFIANZA DE LOS PARAMETROS DE 9.3.6 PROGRAMA DE CALCULO PARA LA REPRODUCCION DEL EOUILIBRIO DE ADSORCION DE MEZCLAS BINARIAS MEDIANTE LA TEORIA S.P.D....515

10.	NOMENGLATURA.	40
11.	BIBLIOGRAFIA	43

.

1. RESUMEN

El presente trabajo forma parte de un extenso programa de investigación sobre adsorción que se viene desarrollando desde hace años en el Departamento de Ingeniería Química de la Facultad de Ciencias Químicas de la Universidad Complutense de Madrid, la parte sustancial de este trabajo fué subvencionada a través de los fondos del programa JOULE de la C.E.E.

En esta memoria se informa de los resultados obtenidos en la investigación sobre el equilibrio de adsorción de mezclas gaseosas de etileno, propano, etano y CO_2 en zeolitas ZSM-5 (sintetizadas en el laboratorio) de relación SiO_/Al_O_ = 29 y 56 a presión atmosférica y en un tamiz molecular de carbón 5A (CMS 5A) y en zeolita 5A comercial a elevadas presiones.

El fenómeno de la adsorción de gases se ha utilizado a escala industrial desde hace años. Sin embargo, ha sido en los últimos años en los que, debido al avance tecnológico en este campo y al desarrollo de nuevos adsorbentes, la adsorción se ha convertido en una importante operación de separación a nivel industrial, competitiva en algunos casos con otras operaciones ya clásicas como la extracción, rectificación etc.

Este desarrollo hace evidente la necesidad de disponer de datos de equilibrio en un amplio intervalo de presiones , así como de modelos para la predicción de dichos datos , necesarios para el diseño de los equipos.

El programa de investigación planteado para este trabajo constaba de las siguientes etapas:

-Puesta a punto de la instalación experimental a presión atmosférica y diseño y puesta a punto de una nueva instalación experimental para la obtención de datos de equilibrio a elevadas presiones.

-Selección de los adsorbatos y adsorbentes adecuados.

-Obtención de las isotermas de equilibrio de adsorción, tanto de componentes puros como de las mezclas elegidas.

-Reproducción de los datos experimentales de los componentes puros mediante diferentes modelos de isotermas teóricas y comprobación de la validez de la curva característica de equilibrio de adsorción propuesta por Myers y Sircar.

-Aplicación de diferentes modelos existentes en la bibliografía a la predicción y reproducción del equilibrio de adsorción de mezclas y comparación de los resultados obtenidos con los mismos. Para ello se harían las modificaciones necesarias en los modelos para su aplicación a los datos obtenidos a presiones elevadas.

-Estudio de la influencia de la composición química del adsorbente en el equilibrio de adsorción, tanto de componentes puros como de mezclas.

La instalación experimental a presión atmosférica es igual a la utilizada en anteriores trabajos (Jimenez, 1989; Costa, 1981, Costa, 1991). En cuanto a la instalación diseñada para la obtención de datos a presión elevada, básicamente consta de un circuito cerrado de acero inoxidable en el que se introduce el lecho de adsorbente y un aparato que permite realizar variaciones en el volumen de la misma. Los gases se hacen circular a través del lecho por medio de una bomba. La instalación dispone de los elementos necesarios para la medida de la presión y la temperatura.

Se eligieron como adsorbentes dos zeolitas ZSM-5 de distinta relación SiO_2/AI_2O_3 , sintetizados en nuestro laboratorio (Costa, 1987) para poder realizar el estudio de la influencia de dicha relación en la adsorción, al ser zeolitas de estructura idéntica en las que sólo varía la composición química. A su vez se eligió el CMS 5A, proporcionado por una firma comercial japonesa dado la escasez de datos existentes con este adsorbente y su creciente interés desde el punto de vista industrial. La zeolita 5A se eligió para comparar los datos con los obtenidos en el CMS 5A ya que el tamaño medio de poro es similar en ambos adsorbentes.

La elección de los adsorbatos se realizó por dos motivos. Por un lado, el etileno, propano y etano son gases comunes en las corrientes de refinería. Por otro lado se intentó utilizar una gama de adsorbatos que tuviese una serie de propiedades diferentes como polarizabilidad, peso molecular etc., para facilitar el estudio de la influencia de la composición química del adsorbente en distintos tipos de moléculas.

Se determinaron las isotermas de adsorción de los componentes puros CO_2 , etileno, etano y propano en zeolitas ZSM-5 a las temperaturas de 281, 293 y 308 K y presión atmosférica. Así mismo se obtuvieron las isotermas de etileno, etano y CO_2 en CMS 5A y zeolita 5A a 278, 293 y 308 K en un intervalo de presiones de O a 1500 y de O a 3000 KPa, respectivamente. Se observaron diferencias en la selctividad debido a la diferencia tanto de estructura como de composición química de los adsorbentes.

Los datos obtenidos se ajustaron a las isotermas de Langmuir, B.E.T., Prausnitz, Toth y UNILAN. Se observó que las tres últimos ecuaciones proporcionaban el mejor ajuste y que no había diferencias significativas en dicho ajuste en función del intervalo de presión estudiado. Se obtuvo la curva característica de equilibrio de adsorción de los cuatro adsorbentes, observándose en todos un buen ajuste.

Se aplicaron los modelos de la Solución Adsorbida Ideal (I.A.S.), Solución Adsorbida Heterogénea Ideal (H.I.A.S.), Solución Adsorbida Real (R.A.S.), y Dependencia de la Presión Superficial (S.P.D.), al equilibrio de adsorción de mezclas en ambas zeolitas ZSM-5, realizando los programas de cálculo necesarios para su aplicación. Los modelos R.A.S y S.P.D. proporcionaron mejores resultados que los otros dos. El modelo H.I.A.S. mejoraba en la mayoría de los casos al I.A.S. Dichos modelos fueron aplicados también a los datos obtenidos en CMS 5A y zeolita 5A a presión elevada. Para ello hubo que introducír una serie de modificaciones en los modelos matemáticos. Los resultados fueron similares a los obtenidos a presión atmosférica.

Se aplicó el modelo Termodinámico Estadístico (S.T.M.) y el de la Teoría del Disolvente Imaginario ("Vacancy Solution Model", V.S.M.)a los datos obtenidos en CMS 5A. Ambos modelos condujeron a errores superiores al R.A.S. y S.P.D.

Se realizó un estudio de la influencia de la composición química del adsorbente en el equilibrio de adsorción. Se observó que una disminución de la relación SiO_2/AI_2O_3 , favorecía la adsorción de compuestos polarizables como el etileno o el CO_2 frente a otros como el propano o el etano. Así mismo, la zeolita 5A presenta esa afinidad por compuestos polarizables de forma acusada mientras que el CMS 5A no la presenta.

Finalmente, se aplicaron estos modelos a los correspondientes sistemas ternarios en los diferentes adsorbentes. Se comprobó que los resultados obtenidos en la predicción eran algo peores que los obtenidos para mezclas binarias, pero que comparando los modelos entre sí se podían llegar a las mismas conclusiones.

2. INTRODUCCION.

2.1. CONCEPTO DE ADSORCION.

La adsorción es una operación de separación que se ha utilizado con fines prácticos desde hace mucho tiempo. Quizás, su primera aplicación está asociada a la observación, en la antigüedad, de que el agua tratada con carbón de madera tenía un sabor mejor que el agua sin tratar. Ya en el siglo XV, se conocía la capacidad de ciertos materiales para eliminar el color de disoluciones y en el siglo XVIII se comercializaba un carbón de hueso para decolorar disoluciones de azúcar. A nivel industrial, la adsorción se utilizó, por primera vez, simultáneamente, en dos procesos. Uno fue desarrollado en Alemania por Bayer AG (Rousseau, 1987) y consistía en la recuperación de alcohol y benceno de corrientes gaseosas. El otro proceso se desarrolló en U.S.A. por Union Carbide Corporation (Rousseau, 1987) para recuperar etano e hidrocarburos pesados del gas natural.

La adsorción actualmente es una importante operación de separación, competitiva en muchos casos con la rectificación, la extracción, la absorción, etc. La importancia relativa de la adsorción frente a otras operaciones clásicas de separación como la rectificación, ha aumentado en los últimos tiempos como consecuencia de la elevación de los costes energéticos que favorece los procesos de mayor eficacia térmica. La rectificación es la operación que se elige preferentemente frente al resto siempre que su uso sea viable, debido a su sencillez y universal aplicación. Sin embargo, cuando la volatilidad relativa de los componentes de la mezcla a separar es suficientemente baja (en general inferior a 1,2) y existe un adsorbente adecuado para el sistema a tratar, o cuando las temperaturas de ebullición llegan a ser muy extremas la adsorción puede constituir la operación de separación más interesante.

La adsorción consiste en la retención selectiva de uno o más componentes (adsorbatos) de un gas o un líquido en la superficie de un sólido poroso (adsorbente). La definición que propone la "International Union of Pure and Applied Chemistry" (Sing, 1985) es la siguiente: es el enriquecimiento, en uno o más componentes, de una superficie interfacial.

La adsorción es un fenómeno dinámico, de forma que las moléculas de adsorbato están continuamente chocando con la superficie del sólido adsorbente, adsorbiéndose parte de ellas. A su vez, continuamente se están desorbiendo las moléculas adsorbidas, por lo que, llega un momento en que cuantitativamente el número de moléculas que se adsorben por unidad de tiempo es igual al de las que se desorben, llegando, de esta forma, al estado de equilibrio dinámico.

En este equilibrio puede ocurrir que la concentración de adsorbato en la fase sólida sea mayor que en la fase gaseosa o viceversa. Esta propiedad se puede aprovechar para el uso de la adsorción como técnica de separación y purificación.

Atendiendo a la diferente naturaleza de las fuerzas de atracción adsorbato-adsorbente, puede distinguirse dos tipos de adsorción: adsorción física (fisisorción) y adsorción química (quimisorción).

La adsorción física es un fenómeno que tiene lugar siempre que se pone en contacto un sólido con un gas. Las fuerzas intermoleculares que intervienen son las que provocan la separación de los gases reales del comportamiento ideal y la condensación de los vapores (fuerzas de Van der Waals y fuerzas dipolo-dipolo). La adsorción química es un fenómeno más selectivo y las fuerzas intermoleculares que intervienen son enlaces químicos.

Las principales características de la adsorción física y química, ya clásicas, se resumen en la Tabla 2.1 (Ruthven, 1984).

La adsorción física es la que se utiliza a nivel industrial como operación de separación, porque las fuerzas de atracción relativamente bajas que existen entre el adsorbente y el adsorbato hace que sea posible, mediante técnicas sencillas, la desorción y por lo tanto la recuperación tanto del gas adsorbido como del adsorbente, que se puede utilizar para una nueva operación. De aquí la importancia de la desorción en las operaciones de separación por adsorción.

Diferencias fundamentales entre la adsorción física y química		
ADSORCION FISICA	ADSORCION QUIMICA	
Fenómeno no específico.	Fenómeno específico.	
Monocapa o multicapa.	Monocapa.	
Bajo calor de adsorción (2 o 3 veces el calor latente de vaporización).	Alto calor de adsorción. (Del orden del calor de una reacción química).	
Significativa a temperaturas relativamente bajas.	Posible en un amplio inter- valo de temperaturas.	
No activada.	Activada.	
Reversible.	Irreversible.	
No hay transferencia de e ⁻ pero puede producirse la po- larización del adsorbato.	Hay transferencia de e ⁻ con formación de enlace entre el adsorbato y el adsorbente.	

Tabla 2.1.

2.2. ADSORBENTES.

El fenómeno de adsorción física se produce entre cualquier sólido en presencia de un fluido, pero sólo en algunos casos el sólido se puede utilizar como adsorbente industrial. Para que un sólido pueda ser utilizado como adsorbente en un proceso a escala industrial tiene que tener las siguientes características:

i) Capacidad de adsorción:

Debe de ser lo más elevada posible, puesto que para una misma cantidad a adsorber se necesitará menor cantidad de adsorbente, con el consiguiente ahorro económico. Está relacionada con la superficie específica y el volumen específico de poros del sólido.

ii) Selectividad:

La selectividad es la preferencia de un sólido por adsorber determinados componentes de una mezcla frente a otros. Este factor es muy importante en la elección de un adsorbente para un determinado proceso. Así, hay que elegir un adsorbente que sea capaz de separar, con la pureza adecuada, los componentes que requiere el proceso. Esta propiedad depende de la estructura del adsorbente y de su naturaleza química. Además la selectividad de un adsorbente hacia un determinado compuesto puede variar en función de las condiciones de operación. Cuanto mayor sea la selectividad, menores serán las dimensiones y consecuentemente el coste de los equipos de separación por adsorción.

iii) Propiedades mecánicas y tamaños de partícula:

El adsorbente debe presentar suficiente resistencia mécanica y resistencia a la abrasión, para que no cambie su forma y tamaño durante los sucesivos ciclos de adsorción. Las operaciones de adsorción pueden hacerse cada vez más frecuentes en el futuro como consecuencia del descenso simultáneo del tamaño de partícula y del cambio de escala de las columnas, de tal forma que las pérdidas de presión permanezcan constantes (Wankat, 1986). Hoy en día los adsorbentes industriales se suelen presentar en forma de pastillas con tamaños entre 1 cm y 50 micras. El tamaño y la forma de la pastilla depende de un criterio económico, donde

se tiene en cuenta las pérdidas de carga y la eficacia del proceso de adsorción. En ocasiones el adsorbente se mezcla con un aglomerante inerte para comunicar al sólido resistencia mecánica y para disminuir la pérdida de carga que se produce en el lecho de adsorción.

iv) Vida del adsorbente:

Un adsorbente pierde paulatinamente su capacidad y selectividad como consecuencia de los sucesivos ciclos de adsorción-desorción. Por tanto, será preferible un adsorbente con una vida lo más prolongada posible. La vida del adsorbente depende de la naturaleza de éste, del sistema con el que trabaja y del tipo de regeneración escogido.

En algunos casos la pérdida progresiva de capacidad de adsorción en cada ciclo de regeneración es el factor que puede encarecer más un proceso de adsorción. Por ello, es interesante escoger el tipo de regeneración adecuado para cada proceso.

v) Costes:

El coste del adsorbente debe ser evidentemente el menor posible. Ello implica en el caso de un adsorbente natural, una abundancia suficiente y en el caso de uno sintético, un bajo coste de fabricación y utilización de materias primas baratas, abundantes y seguras, preservando en todo caso, al máximo, el medio ambiente. En algunos casos el coste del adsorbente puede suponer la partida más cara del proceso de adsorción y ser por tanto el factor decisivo para elegir la adsorción como la operación de separación más interesante desde el punto de vista industrial.

2.2.1. PRINCIPALES ADSORBENTES DE USO INDUSTRIAL.

i) Arcillas naturales.

Principalmente son silicatos de aluminio y magnesio, bajo la forma de atapulgita y montmorillonita. Para poder ser utilizada como adsorbente, la arcilla se calienta y se seca, y durante esta operación desarrolla una estructura porosa. Generalmente se regenera por una técnica destructora del adsorbato.

Existen otro tipo de arcillas naturales como la bentonita, que no muestran ningún poder de adsorción hasta que se activan mediante un tratamiento con ácido sulfúrico o clorhídrico. Generalmente se descartan después de una sola aplicación.

ii) Bauxita:

Es una cierta forma de la alúmina hidratada natural que debe activarse mediante calentamiento a temperaturas que varían entre 150 a 450 ⁰F, con el fin de activar su poder de adsorción. Se suele regenerar mediante calentamiento.

iii) Alúmina:

Es un óxido de aluminio hidratado, duro, que se activa por calentamiento para eliminar la humedad. Se suele utilizar para eliminar agua de corrientes gaseosas o líquidas. Este tipo de adsorbente puede regenerarse para un posterior uso.

iv) Gel de sílice:

Es un producto muy duro, granular, muy poroso. Se prepara a partirdel gel precipitado por tratamiento ácido de una solución de silicato de sodio. Cuidando las condiciones de síntesis, es posible influir sobre el tamaño de poro, que generalmente muestra una distribución unimodal.

La gel de sílice adsorbe preferentemente compuestos polares sobre los no polares, por lo que se emplea fundamentalmente para secar gases y líquidos, por su gran afinidad por el agua

v) Carbón activado:

Son carbones muy porosos que se obtienen por descomposición térmica de la materia prima de origen vegetal (madera, cáscara de coco y almendra) o de origen animal (huesos) y posterior activación con aire; vapor de agua o dióxido de carbono a elevada temperatura (700-1100 $^{\circ}$ C), o mediante tratamientos químicos, con lo que se desarrolla una elevada superficie específica. Existen cientos de tipos de carbones activados,

cada uno con unas propiedades diferentes.

Los carbones activados pueden dividirse en dos grandes grupos: los empleados en adsorción en fase gaseosa y los utilizados en fase líquida. La principal diferencia entre ambos consiste en la distribución de tamaño de poros. En los primeros, la mayor parte son microporos (3 a 50 Å) y macroporos (1000 a 5000 Å), con un volumen pequeño de mesoporos (50 a 1000 Å). Los segundos, sin embargo, presentan una cantidad importante de mesoporos, permitiendo el acceso de los líquidos a la estructura microporosa del adsorbente.

La estructura del carbón activado puede considerarse como una disposición irregular de microcristales bidimensionales dispuestos en planos paralelos (Figura 2.1). Cada microcristal está formado por átomos de carbono dispuestos hexagonalmente. Los espacios que quedan entre estos planos constituyen la estructura porosa del carbón, en la que quedan retenidas las moléculas (preferentemente las no polares).

Figura 2.1. Estructura del carbón activado.

vi) Zeolitas

Las zeolitas son sólidos microporosos de estructura cristalina de aluminio y silicio de gran interés industrial, tanto en adsorción como en catálisis.

Las zeolitas pueden ser naturales o sintéticas. Aunque hay alrededor de 35 zeolitas naturales y más de de 100 sintéticas, sólo algunas de ellas tienen una aplicación práctica. Las zeolitas sintéticas tienen mucha mayor importancia que las naturales desde el punto de vista de su aprovechamiento industrial, pues existen inumerables variedades de bajo coste de fabricación y se obtienen puras con el tamaño de poro deseado.

Desde el punto de vista químico, las zeolitas son alumino-silicatos cristalinos hidratados, principalmente, de los elementos Ia y IIa de la tabla periódica, en particular Na, K, Ca, Mg, Sr, y Ba. Estructuralmente están constituidos por esqueletos silicoalumínicos basados en la prolongación infinita tridimensional de tetraedros SiO_4 y AlO_4 unidos entre sí por puentes de oxígeno. La electroneutralidad del cristal se alcanza mediante el exceso de carga positiva aportada por unos cationes móviles (y por tanto intercambiables), ya que, cada átomo de aluminio sustituye, isomórficamente, a uno de silicio, con lo cual se produce un defecto de carga positiva.

La composición de las zeolitas se puede representar mediante la fórmula empírica:

$$M_{2/n}$$
 (Al₂0₃)X(SiO₂)Y H₂0

donde M es el catión alcalino o alcalinotérreo intercambiable, n es la valencia del catión, X es la relación $\operatorname{SiO}_2/\operatorname{Al}_2_3$, ya que los tetraedros del AlO_4 están unidos mayoritariamente a tetraedros de SiO_4 ; e Y el múmero de moléculas de agua. El esqueleto forma canales y huecos interconectados ocupados por cationes y moléculas de agua. Los cationes son bastante móviles y frecuentemente se intercambian por otros. El agua zeolítica intercristalina, en una gran parte de las zeolitas, tiene también gran movilidad. Bastantes zeolitas naturales y sintéticas, al intercambiar cationes o deshidratarse, sufren cambios estructurales.

La fórmula estructural de una zeolita por celdilla unidad, se expresa como:

$$Mx/n [(AlO2)x (SiO2)y] wH2O$$

donde M es el catión de cambio con valencia n; w es el número de moléculas de agua. La suma (x + y) es el número total de tetraedros que forman la celdilla unidad. La expresión entre corchetes, representa la composición del esqueleto zeolítico.

En la figura 2.2 se representan las estructuras cristalinas típicas de algunas zeolitas de tipo comercial, que se comentarán más adelante.

En cuanto a la adsorción, las moléculas adsorbidas en las zeolitas se alojan las moléculas de agua y los cationes que mantienen la neutralidad de la estructura. Así, las diferentes zeolitas se diferencian en la relación Si/Al y en la forma de combinarse los tetraedros.

Las zeolitas más conocidas y de mayor aplicación industrial son las correspondientes a los grupos A, X e Y, así como la modernita y las pertenecientes al grupo pentasil(familia ZSM-5, etc.).

Figura 2.2. Estructura cristalina de los principales grupos de zeolitas.

Los grupos A, X e Y poseen la misma unidad estructural, denominada sodalita, constituida por 24 tetraedros de SiO_4 y AlO_4 coordinados en forma de octaedro truncado. Por entrelazamiento mutuo de estos octaedros por medio de puentes de oxígeno se obtiene:

Zeolita A. El entrelazamiento se hace a través de las caras cuadradas de los octaedros.

Zeolita X y zeolita Y. El entrelazamiento se verifica a través de la caras hexagonales de los octaedros. Los tipos X e Y sólo se diferencian en su relación Si/Al. Las zeolitas X con una relación SiO_2/Al_2O_3 que oscila entre 2 y 3 y las zeolitas Y con una relación de 3 a 6.

Dentro de los grupos A, X e Y hay diferentes zeolitas en función del tipo de catión que presente, variando con él, el tamaño de poro.

Las zeolitas pentasil están formadas por una serie de canales constituidos por anillos de diez átomos de oxígeno. Exiten dos posibilidades diferentes de disponer dichos canales entrecruzados, dando lugar a las variedades ZSM-11, que presenta canales en planos paralelos y ZSM-5 que presenta canales en zig-zag. Estas estructuras se muestran en la figura 2.3.

a)

ZSM-5 o Silicalita

ZSM-11

Figura 2.3. Sistema de canales de las zeolitas pentasil.

La unidad estructural de la zeolita ZSM-5 contiene doce unidades fundamentales (SiO_4 o AlO_4^-) enlazadas a través de los oxígenos tal como se muestra en la figura 2.4.

Estas unidades se unen por sus aristas formando primero cadenas (figura 2.4.b) y luego, mediante una operación de inversión, planos estructurales que a su vez, se unen hasta formar la estructura tridimensional definitiva (figura 2.4. a). Esta posee dos sistemas de canales que se entrecruzan: unos rectos, de sección elíptica $(5.7 \times 5.1 \text{ Å})$ y otro sinusoidal de sección casi circular $(5.4 \pm 0.2 \text{ Å})$, también mostrados en la figura 2.3.

Según las condiciones de síntesis, la relación Si/Al de la zeolita ZSM-5 puede variar entre 10 e infinito, aumentando la estabilidad térmica, la selectividad catalítica y el carácter hidrófobo de la zeolita al hacerlo dicha relación.

a)

4

Figura 2.4. Estructura de las zeolitas pentasil. a) Unidad estructural. b) Formación de las cadenas. vii) Aluminofosfatos.

Estos adsorbentes, de relativamente reciente aparición, son compuestos cristalinos microporosos cuya composición química expresada en forma de óxidos es:

$$A1_{20}$$
 : (1,0 ± 0,2) P_{20}

Su estructura porosa, al igual que en las zeolitas, está constituida por tetraedros coordinados de aluminio y fósforo, denominados átomos-T, que constituyen las unidades primarias de las estructuras de estos adsorbentes, tal y como se muestra en la figura 2.5. Estos átomos-T se unen entre sí mediante puentes de oxígeno formando las unidades secundarias (figura 2.6), que a su vez se unen para formar las terciarias (figura 2.7). Las distintas disposiciones en el espacio de estas unidades terciarias, dan lugar a la red tridimensional que caracteriza a los tamices moleculares microporosos.

Existen diferentes tipos de aluminofosfatos que se clasifican en función del número de átomos-T que definen la abertura del poro. Los principales son el $A1PO_4$ -5, $A1PO_4$ -7 y $A1PO_4$ -11.

Figura 2.5. Unidad estructural primaria o átomos-T de los aluminofosfatos.

2. INTRODUCCION

Figura 2.6. Unidades estructurales secundarias de los aluminofosfatos.

Figura 2.7. Unidades estructurales terciarias de los aluminofosfatos.

viii) Tamices moléculares de carbón.

Son carbones activados mediante un procedimiento especial que proporciona una distribución de tamaños de poros muy estrecha. Estos tamices moleculares se obtienen fundamentalmente de antracita, si bien se están investigando nuevas materias primas para su obtención.

El tamaño de poro se puede variar, modificando las condiciones de obtención del tamiz molecular. Esto hace que sea un adsorbente bastante util desde el punto de vista de la adsorción, pues se puede fabricar casi con el tamaño de poro deseado para una separación dada.

Todos los tamices moleculares, bien sean de carbón, silicoaluminatos o aluminofosfatos, poseen una estructura de poros bien definida. La diferencia estructural entre un tamiz molecular de carbón y una zeolita consiste en que en el primero, los microporos están considerados como ranuras, de una determinada medida, abiertas entre dos capas de carbón grafitizado. En el caso de las zeolitas los microporos tienen una estructura de red de cavidades y canales entrecruzados.

Las pastillas de tamiz molecular de carbón pueden ser consideradas como macropartículas formadas por un aglomerado de micropartículas. Estas micropartículas tienen una distribución al azar de formas y tamaños, si bien se puede considerar para todos los efectos que todas las micropartículas tienen una distribución de tamaños logarítmica normal. En la figura 2.8 se muestra una fotografía de un microcristal de tamiz molecular de carbón.

vii) Adsorbentes polímeros.

Existe una gran variedad de polímeros sintéticos macroporosos que se están comenzando a utilizar a escala industrial, (Faust, 1987; Yang, 1991; Baksh, 1992).

Estos adsorbentes están formados, en general, por una matriz aromática o alifática, diferenciándose de las resinas de intercambio iónico por la ausencia de grupos funcionales iónicos. La preparación de estas resinas se realiza mediante polimerización de un monómero en suspensión y un agente reticulante, en presencia de un disolvente y determinados catalizadores de reacción. Se consigue así una elevada area superficial, en el interior de la partícula, bastante homogénea. Las características de esta superficie, así como la distribución del tamaño de poro son controlables durante el proceso de fabricación.

Las principales características de estos adsorbentes son:

-Facilidad de regeneración mediante disolventes apropiados, recuperables posteriormente.

-No se producen adsorciones irreversibles.

-Presentan una amplia variedad de polaridades, según el tipo, lo que implica una mayor selectividad en sus aplicaciones.

-Buena homogeneidad de su superficie adsorbente.

-Presentan excelentes características hidrodinámicas en sistemas de flujo descendente convencionales.

-Gran estabilidad térmica, pudiendo utilizarse incluso a temperaturas de 250 °C.

Figura 2.8. Fotografía de un microcristal de MSC.

2.3. EQUILIBRIO DE ADSORCION.

2.3.1. TERMODINAMICA DE LA ADSORCION.

El diseño de los equipos industriales de adsorción depende del conocimiento tanto de la cantidad de adsorbato que puede retener el sólido adsorbente como de la velocidad del proceso. La primera de estas exigencias se determina mediante el equilibrio que se establece entre el fluido y el adsorbente, de ahí la importancia que tiene el buen conocimiento de los fundamentos termodinámicos de la adsorción.

Cuando un fluido que contiene un adsorbato, está en contacto con un sólido, las moléculas de adsorbato se transfieren desde el fluido hasta la superficie del sólido, hasta que los potenciales químicos de ambas fases se igualan. Así, se establece un equilibrio dinámico en el cual las velocidades de adsorción y desorción son iguales: en estos momentos se dice que se ha alcanzado el equilibrio de adsorción.

El tratamiento termodinámico que se puede hacer del equilibrio de adsorción es bastante general y puede ser aplicado tanto al fenómeno de la adsorción como a algunos otros equilibrios entre fases, como el equilibrio líquido-vapor. La única suposición que hay que hacer es que la superficie adsorbida puede ser tratada como una fase diferenciable desde el punto de vista termodinámico. Esto es en general correcto, a pesar de que la localización exacta de los límites de dicha fase puede ser algo incierta. Nuestro actual conocimiento de los principios de la termodinámica clásica que rigen los fenómenos de adsorción es debido principalmente a los trabajos de Hill (1949, 1950, 1960), Everett (1950), Myers y Prausnitz (1965), Van Ness (1969) Y Sircar y Myers (1973), que han desarrollado la termodinámica de la adsorción de gases en analogía con el equilibrio líquido-vapor.

Es posible adoptar dos perspectivas, algo diferentes, en la aplicación de los principios termodinámicos al equilibrio de adsorción: la capa superficial, constituida por el adsorbente más el adsorbato que se encuentra retenido, puede ser considerada como una sola fase que posee las propiedades generales de una disolución. La otra alternativa supone que si las propiedades termodinámicas y geométricas del adsorbente pueden ser consideradas como independientes de la presión y la temperatura

del gas circundante y de la concentración de las moléculas adsorbidas, se podrá considerar al adsorbente como un sólido termodinámicamente inerte. En estas últimas condiciones, las moléculas adsorbidas pueden ser consideradas, en sí mismas, como una fase diferente; y los efectos del sólido adsorbente quedan limitados a la creación de un campo de fuerzas cuya naturaleza exacta no precisa ser detallada, si bien se trata de fuerzas del tipo Van der Waals y electrostáticas. Este punto de vista fue formulado originalmente por Gibbs (1928) y va a ser el que se va a seguír en lo sucesivo. En cierta bibliografía, a esta fase adsorbida se le denomina región interfacial y se define como la zona localizada entre la fase gaseosa y la superficie del sólido adsorbente (es una porción de ambas) cuyas propiedades se alteran debido a la proximidad de la otra.

La extensión de esta fase adsorbida o región interfacial es imposible de precisar, por lo que se supone como una fase bidimensional asentada sobre una superficie matemática imaginaria a la cual se atribuyen propiedades termodinámicas características, que se corresponden con los gradientes de propiedades que se producen en la región interfacial real. Además, se supone que el area de esta fase adsorbida bidimensional, A, es una propiedad independiente de la temperatura, de la presión, de la composición y de la cantidad adsorbida. Esta fase adsorbida viene caracterizada por la presión superficial II que equivale a la presión P de la fase gaseosa. Para el cálculo de esta presión superficial hay que acudir a las relaciones termodinámicas que se presentan a continuación.

Considerando el sistema cerrado constituido por dos subsistemas abiertos g (fase gaseosa tridimensional) y a (fase adsorbida bidimensional), para el subsistema o fase gaseosa, la variación de energía interna podrá expresarse, de acuerdo con el primer y segundo principios de la termodinámica, como:

$$dU^{g} = T dS^{g} - P dV^{g} + \sum_{i} \mu_{i}^{g} dn_{i}^{g}$$
 (2.1)

siendo U la energía interna, T la temperatura, S la entropía, P la presión, V el volumen, μ_i el potencial químico del componente i y n_iel número de moles del componente i.

Así mismo, la variación de energía libre de Gibbs será:

$$dG^{g} = -S^{g} dT + V^{g} dP + \sum_{i} \mu_{i}^{g} dn_{i}^{g}$$
(2.2)

Si consideramos la fase adsorbida como una disolución de n^s moles de adsorbato en n^a moles de adsorbente, la ecuación 2.1 referida a la fase adsorbida se expresaría:

$$dU = T dS - P dV + \mu^{a} dn^{a} + \mu^{s} dn^{s}$$
(2.3)

Para un adsorbente en ausencia de adsorbato podría escribirse:

$$dU_0^a = T dS_0^a - P dV_0^a + \mu_0^a dn_0^a$$
 (2.4)

Por diferencia entre las ecuaciones 2.2 y 2.3 se obtiene:

$$dU^{s} = T dS^{s} - P dV^{s} - \psi dn^{a} + \mu^{s} dn^{s}$$
(2.5)

Donde
$$U^{s} = U - U_{0}^{a}$$
; $V^{s} = V - V_{0}^{a}$; $S^{s} = S - S_{0}^{a}$; $\psi = \mu^{a} - \mu_{0}^{a}$ (2.6)

 ψ representa el cambio de energía interna por mol de adsorbente debido a la extensión del adsorbato sobre la superficie (o en el interior del volumen de microporos) del adsorbente. Para la adsorción en una superficie de 2 dimensiones se define, como se dijo anteriormente, el area superficial A, que, lógicamente, será proporcional a n^a. En cambio, para la adsorción en adsorbentes microporosos como las zeolitas, donde el area interfacial pierde su significado (ya que la adsorción se produce en cavidades que solo pueden contener un número determinado de moléculas), se sustituye por el concepto de recubrimiento superficial por el de llenado de microporos. En estos casos de adsorción "tridimensional", es el volumen de microporos ν el que es proporcional a n^a. Se podrá escribir por tanto:

$$\psi \, dn^{a} = \Pi \, dA = \phi \, d\nu \tag{2.7}$$

donde Π y ϕ son respectivamente, las presiones superficiales en la adsorción bidimensional o tridimensional. Definida de esta forma Π tiene el significado de diferencia de tensión superficial entre la superficie de un sólido adsorbente virgen, y la misma superficie que se encuentra recubierta de adsorbato.

De forma análoga a la fase gaseosa, la variación de energía libre de Gibbs de la fase adsorbida por unidad de masa de adsorbente puede expresarse por:

$$dG^{s} = -S^{s} dT + A d\pi + \sum_{i} \mu_{i}^{s} dn_{i}$$
 (2.8)

siendo n, el número de moles del componente i en la fase adsorbida.

Las condiciones de equilibrio del sistema cerrado fase adsorbidafase gaseosa serán:

$$T^{g} = T^{s}$$
 (2.9)

$$P = cte.$$
 (2.10)

$$\Pi = cte. \tag{2.11}$$

$$\boldsymbol{\mu}_{i}^{g} = \boldsymbol{\mu}_{i}^{s} \tag{2.12}$$

Teniendo en cuenta el significado de potencial químico como energía libre de Gibbs molar parcial, para cualquiera de las dos fases, se cumplirá:

$$G = \sum_{i} \overline{g}_{i} N_{i} = \sum_{i} \mu_{i} N_{i}$$
(2.13)

donde \overline{g}_i representa la energía libre de Gibbs molar parcial del componente i y N_i el número de moles del componente i en la fase considerada.

Para la fase adsorbida, la ecuación 2.13 expresada en forma diferencial será:

$$dG^{s} = \sum_{i} \mu_{i}^{s} dn_{i} + \sum_{i} n_{i}^{s} d\mu_{i}^{s}$$
(2.14)

Igualando las ecuaciones 2.14 y 2.8 se tiene:

$$S^{s} dT = A d\Pi + \sum_{i} n_{i} d\mu_{i}^{s} = 0$$
 (2.15)

Según la termodinámica clásica, si la presión no es muy elevada

puede suponerse comportamiento ideal de la fase gaseosa y su potencial químico vendrá expresado por:

$$\mu_{i}^{g} = \mu_{i}^{0g} + RT \ln (P_{i}/P_{i}^{0})$$
 (2.16)

donde μ_i^{0g} es el potencial químico standar de la fase gaseosa, esto es, el potencial químico a la presión de referencia p_i^0 . Derivando esta ecuación, se obtendrá para el caso general de adsorción de una mezcla de c componentes:

$$d\mu_i^g = RT dln (P y_i)$$
 (2.17)

donde y representa la fracción molar del componente i en la fase gaseosa. De la ecuación 2.15 particularizada al caso de temperatura constante, las condiciones de equilibrio y la ecuación 2.17 se obtiene:

$$(-A/RT) d\pi + n dln P + \sum_{i} n_{i} dln y_{i} = 0$$
 (2.18)

Para un componente puro, la integración de la ecuación 2.18 conduce a la expresión que permite el cálculo de la presión superficial de un componente puro a partir de sus datos de equilibrio de adsorción: cantidad adsorbida por unidad de masa de adsorbente (n) frente a la presión de equilibrio de la fase gaseosa (P).

Todas estas ecuaciones son válidas para adsorción en fase líquida, cambiando la presión de la fase gaseosa por la concentración en la fase líquida.

2.3.2. ISOTERMAS DE ADSORCION.

Existen tres formas fundamentales de representar el equilibrio de adsorción en función de las variables de las que depende el mismo:

- La concentración en el fluido (isobaras de adsorción).

- La concentración de adsorbato en el adsorbente (isosteras de adsorción). - La temperatura (isotermas de adsorción).

La última es con mucho la forma más utilizada para representar datos de equilibrio. Existe una clasificación dada por la I.U.P.A.C. de las isotermas de equilibrio de adsorción. Los diferentes tipos de isotermas se presentan en la figura 2.9.

Figura 2.9. Tipos de isotermas de adsorción.

En la mayor parte de los casos la isoterma, para un recubrimiento suficientemente bajo, se reduce a una forma lineal, la cual se denomina frecuentemente región de la ley de Henry.

La isoterma reversible del tipo I es cóncava hacia el eje de las presiones y la cantidad adsorbida se aproxima a un valor límite cuando p/p^0 tiende a la unidad. Las isotermas del tipo I se presentan en sólidos microporosos con superficies externas relativamente pequeñas (p.ej., carbones activados, tamices moleculares de zeolitas y ciertos óxidos porosos), y el límite de adsorción está determinada por el volumen accesible de microporos, más que por el área superficial interna.

La isoterma reversible del tipo *II* es la forma normal de isoterma que se obtiene con un adsorbente no poroso o macroporoso. La isoterma del tipo *II* representa una adsorción en monocapa-multicapa sin restricciones. Se admite frecuentemente que el punto B, el principio de la parte central, casi lineal, de la isoterma, señala el momento en que el recubrimiento de la monocapa está completo, indicando el comienzo de la adsorción en multicapa.

La isoterma reversible del tipo *III* es convexa hacia el eje de la presión en todo su curso y, por tanto, no presenta un punto B. Las isotermas de este tipo no son corrientes, pero hay un cierto número de sistemas (p.ej., nitrógeno sobre polietileno) que dan isotermas con una curvatura gradual y un punto B indiscernible. En tales casos, las interacciones adsorbato- adsorbato juegan un papel importante.

Rasgos característicos de la isoterma del tipo *IV* son su ciclo de histéresis, que se asocia con condensación capilar en mesoporos, y el límite de la cantidad adsorbida en un intervalo de presión relativa alta. La parte inicial de la isoterma del tipo *IV* se atribuye a adsorción en monocapa-multicapa, ya que sigue el mismo camino que la parte correspondiente de una isoterma del tipo *II* obtenida, con el adsorbible dado, sobre la misma área superficial del adsorbente en forma no porosa. Se encuentran isotermas del tipo *IV* en muchos adsorbentes mesoporosos industriales.

La isoterma del tipo V se obtiene con ciertos adsorbentes porosos con una distribución irregular de tamaño de poros, presenta también ciclo de histéresis y es muy poco frecuente.

La isoterma del tipo VI, donde la mejor o peor definición de los escalones depende del sistema y de la temperatura, representa la adsorción escalonada en multicapa sobre una superficie uniforme no porosa. La altura del escalón representa ahora la capacidad de la adsorción para cada capa absorbida y, en el caso más simple, permanece casi constante en dos o tres capas. Entre los mejores ejemplos de isotermas del tipo VI están las obtenidas con argón o criptón sobre negros de carbón grafitizados a la temperatura del nitrógeno líquido.

2.3.3. DESORCION.

El término adsorción puede también usarse para denominar el proceso en el que las moléculas de adsorbato se transfieren a la capa interfacial y se acumulan en ella. La palabra desorción denota el proceso opuesto, en el que la cantidad adsorbida disminuye. Adsorción y desorción se usan frecuentemente a modo de adjetivos para indicar la dirección desde la que se han alcanzado las cantidades adsorbidas determinadas experimentalmente, p ej., curva (o punto) de adsorción y curva (o punto) de desorción. Se produce histéresis de adsorción cuando las curvas de adsorción y desorción no coinciden.

En los procesos industriales de adsorción, la desorción presenta un papel principal. Así, cuando un adsorbente está agotado se puede regenerar permitiendo de esta manera su uso para un nueva operación y además se puede recuperar el adsorbato. Todos los procesos cíclicos de adsorción se basan en la reversibilidad del proceso, siendo esencial, por tanto, la desorción. Genéricamente, siempre es posible; pero únicamente permite la recuperación del adsorbato cuando ésta se lleva a cabo mediante métodos que no provoquen la destrucción del mismo. Esto sólo es posible en el caso de que la adsorción sea física.

Se han desarrollado diversas técnicas para conseguir la desorción de un adsorbato del sólido en el que está retenido. Estas técnicas se basan en las propiedades del fenómeno de la adsorción, como son la disminución de la cantidad adsorbida al disminuir la concentración en la fase fluida y al aumentar la temperatura. Así, las técnicas para lograr la desorción son:

- Aumento de la temperatura.
- Disminución de la presión total.
- Arrastre con un inerte.
- Desplazamiento con otro adsorbato.

a) <u>Histéresis</u> <u>de</u> <u>adsorción</u>.

Como ya se ha indicado, la histéresis de adsorción aparece cuando
la curva de desorción no coincide con la curva de adsorción.

La histéresis que aparece en la zona de multicapa de las isotermas de fisisorción se asocia generalmente con condensación capilar en estructuras mesoporosas.

Tales ciclos de histéresis pueden presentar una amplia variedad de formas. Dos tipos extremos se designan en la figura 2.10. como H1 Y H4. En el primero, las dos ramas son casi verticales y aproximadamente paralelas en un intervalo apreciable de cantidades adsorbidas, mientras que en el último son aproximadamente horizontales y paralelas en un amplio rango de p/p^0 . En ciertos aspectos, los tipos H2 y H3 pueden considerase intermedios entre los dos extremos.

Figura 2.10. Tipos de ciclos de histéresis de adsorción.

Un rasgo común a muchos ciclos de histéresis es que la zona pendiente de la rama de desorción que conduce al punto inferior de cierre del ciclo, se presenta, para un adsorbible dado, a una determinada temperatura, a una presión relativa casi independiente de la naturaleza del adsorbente poroso, pero que depende principalemente de la naturaleza del adsorbato (p. ej., para nitrógeno en su punto ebulición, a $p/p^0 = 0.42$, y para benceno a 25 ^oC, a $p/p^0 = 0.28$).

El fenómeno de la histéresis ha sido estudiado por diferentes autores (Ritter, 1991) si bien, la influencia de varios factores sobre este efecto no está completamente entendida. Las formas de los ciclos de histéresis se han identificado frecuentemente con estructras específicas de poro. Así, el Tipo H1 se asocia habitualmente con materiales porosos de los que se sabe por otros medios, que consisten en aglomerados o empaquetamientos compactos de esferas aproximadamente uniformes dispuestas de manera bastante regular y que, por tanto, tienen distribuciones es trechas de tamaños de poro.

Muchos adsorbentes porosos (p. ej., geles de óxidos inorgánicos y vidrios porosos) tienden a dar ciclos del tipo H2, pero en tales sistemas, la distibución de tamaños y formas de poro no están bien definidas. Ciertamente, el ciclo del tipo H2 es especialmente díficil de interpretar; en el pasado se atribuyó a una diferencia en el mecanismo de los procesos de condensación y evaporación que tienen lugar en poros con cuellos estrechos y cuerpos anchos, conocidos frecuentemente como poros en "cuello de botella", pero se reconoce que esta es una visión demasiado simplificada y que han de tenerse en cuenta los efectos de interconexión en la red de poros.

El ciclo del tipo H3, que no presenta una adsorción límite a p/p^{0} alta, se encuentra en agregados de partículas en forma de placas, que dan lugar a poros en forma de rendijas.

De modo similar, el ciclo del tipo H4 se asocia frecuentemente con poros estrechos en forma de rendijas, pero, en este caso, el carácter Tipo I de la isoterma indica la existencia de microporosidad.

En muchos sistemas, especialmente en los que contienen microporos, puede observarse histéresis a baja presión, indicada por líneas de trazos en la figura 2.6., que se extiende hasta las más bajas presiones alcanzables. La eliminación del material residual adsorbido sólo es posible, entonces, si el adsorbente se desgasifica a temperturas más altas. Este fenómeno puede asociarse con el hinchamiento de una estructura porosa no rígida o con la retención irreversible de moléculas en poros (o a través de entradas de poros) de aproximadamente la misma anchura de la molécula del adsorbato o, en algunos casos, con una interacción química irreversible del adsorbato con el adsorbente.

2.3.4. ADSORCION DE COMPONENTES PUROS.

Existen dos tipos de tratamiento, que inducen a tipos de modelos diferentes para las isotermas: los termodinámicos y los semiempíricos. Los modelos termodinámicos se basan como su nombre indica, en los desarrollos termodinámicos, mientras que los semiempíricos, a pesar de su base también termodinámica, son el resultado de un ajuste de datos experimentales a determinadas funciones.

a) Modelos termodinámicos.

i) Ley de Henry

Esta isoterma, si bien es sencilla, sólo es válida en la zona de muy bajas presiones, donde suele cumplirse la relación lineal entre n y P. Es muy utilizada para modelos de adsorción bastante simplificados.

$$\mathbf{n} = \mathbf{k} \mathbf{P} \tag{2.20}$$

11) Isoterma de Langmuir (Langmuir, 1918).

$$\theta = \frac{n}{n_{sat}} = \frac{k P}{1 \neq k P}$$
(2.21)

Las características fundamentales de esta isoterma son:

- Supone que la adsorción máxima corresponde a la monocapa saturada.

 No considera una distribución de energías sobre la superficie del sólido. - No tiene en cuenta los fenómenos de migración superfical de las móleculas del adsorbato en el interior de los poros del adsorbente.

- Es válida para reproducir las datos de equilibrio de algunos sistemas gas-sólido.

iii) Isoterma de Volmer (Sircar y Gupta, 1981)

$$k P = \frac{\theta}{1-\theta} \exp(\frac{\theta}{1-\theta})$$
 (2.22)

Aúnque más compleja, es válida en un intervalo de concentraciones mayor que en el caso de de la isoterma de Langmuir.

iv) Isoterma de Van der Waals (Ruthven, 1984)

$$k P = \left(\frac{\theta}{1-\theta}\right) \exp\left(\frac{\theta}{1-\theta}\right) \exp\left(-\frac{\alpha \cdot \theta}{R \cdot T}\right)$$
 (2.23)

Esta ecuación, que como puede observarse tiene ya tres parámetros $(K, \alpha, y = n_s)$ considera las interacciones entre las moléculas de los adsorbatos además de las existentes entre éstos y el adsorbente.

v) Isoterma del Virial (Ruthven, 1984).

Si se considera que el comportamiento de la superficie adsorbida obedece a una ecuación de estado de la forma del Virial, resulta la isoterma siguente:

$$\frac{k P}{n_{sat}} = \exp(2 k_{1} n_{sat} + 3/2 (n_{sat})^{2} + ...)$$
 (2.24)

Recientemente, se han propuesto algunas ecuaciones de isotermas de adsorción que, a diferencia de todas las que se han mencionado hasta ahora, tienen en cuenta la posible heterogeneidad estructural de los adsorbentes microporosos (Wojsz, 1986). Entre ellas cabe citar:

vi) Isoterma de Jaroniec (Jaroniec, Derylo, 1983)

$$\frac{\theta = \frac{n}{n_{sat}} = \left(\frac{(k P)^{a}}{\frac{1+(K P)^{a}}{\frac{1+(K P)^{a}}{\frac{1}{k}}}\right)^{b/a}}$$
(2.25)

Donde b y a son los parámetros de heterogeneidad y los demás parámetros tienen el mismo significado que en la ecuación de Langmuir

vii) Isoterma de Toth (Toth, 1981).

$$\theta = \frac{n}{n_{sat}} = \left(\frac{(k P)^{a}}{1 + (K P)^{a}} \right)^{1/a}$$
(2.26)

análoga, pero más simplificada que la anterior.

viii) Isoterma de Mathews y Weber (Sircar y Gupta, 1981)

$$\theta = \frac{n}{n_{sat}} = \frac{(k P)^{a}}{1 + (k P)^{a}}$$
(2.27)

b) <u>Modelos semiempíricos.</u>

i) Isoterma de Freundlich (Freundlich, 1926).

$$n = b P^{1/e}$$
 (2.28)

Supone que existen interacciones entre las moléculas de los adsorbatos (medidas por el parámetro 1/e) y que existe una distribución exponencial de energías de adsorción.

Es la primera isoterma que se aplicó con buenos resultados en sistemas sólido-líquido y es recomendable, por su sencillez, en modelos cinéticos. Para su aplicación a estos sistemas hay que sustituir la presión de la fase gaseosa por la concentración de la fase líquida.

ii) Isoterma de Prausnitz (Prausnitz, 1965).

Su expresión matemática podría considerarse como combinación de las isotermas de Freundlich y Langmuir.

$$\frac{1}{n} = \frac{1}{AP} + \frac{1}{BP^{\beta}}$$
(2.29)

El significado físico de sus tres parámetros es el siguiente:

- A, engloba las interacciones adsorbato-adsorbente a dilución infinita.

- B, representa las interacciones adsorbato-adsorbente y adsorbatoadsorbato a elevadas concentraciones.

- $1/\beta$, engloba las interacciones adsorbato-adsorbato en la superficie del adsorbente.

Es preciso hacer notar que la ecuación de Prausnitz en determinados casos particulares, se simplifica a otras citadas anteriormente. Así, para valores muy bajos de la concentración en la fase gaseosa, se cumple:

es decir, se transforma en la isoterma de Henry. En el otro extremo de la región de concentraciones se da:

$$\lim_{P \to \infty} n = B P^{\beta}$$
(2.31)

que es la isoterma de Freundlich. Por último, cuando el parámetro β se anula:

$$\lim_{\beta \to 0} n = \frac{A P}{1 + A P/B}$$
(2.32)

que es una de las formas de expresar la isoterma de adsorción de Langmuir. La isoterma de Prausnitz tiene una gran versatilidad, pues permite correlacionar satisfactoriamente isotermas de equilibrio experimentales de formas bastantes diferentes. Por esta razón ha sido una de las isotermas más utilizadas, tanto en sistemas gas-sólido como líquido-sólido.

iii) Isoterma de B.E.T.

Brunauer, Emmett y Teller (Brunauer, 1938) desarrollaron un modelo sencillo de isoterma de adsorción que se ha denominado por sus iniciales, isoterma B.E.T., y que permite calcular, para la adsorción en multicapa, la capacidad de adsorción de la monocapa y por tanto la superficie específica del adsorbente.

Las simplificaciones que hace este modelo son:

- Considera que cada molécula de la primera capa adsorbida proporciona un "punto de adsorción" para la segunda y las capas subsiguientes.

- Las moléculas de las últimas capas muestran un comportamiento similar al del líquido saturado.

La ecuación de la isoterma de B.E.T. es:

$$\theta = \frac{n}{n_{sat}} = \frac{b (P/P)}{(1 - P/P) (1 - P/P + b P/P)}$$
(2.33)

iv) Isoterma de Weber

La ecuación representativa de esta isoterma de adsorción es:

$$P = a_1 n (a_2 n^3 + a_4)$$
 (2.34)

Esta isoterma presenta la desventaja de utilizar más parámetros que los modelos anteriores, lo que, como es de suponer, disminuye la confianza con que pueden ser estimados para un determinado número de datos de equilibrio experimentales. Sin embargo, tiene la ventaja (en algunos casos) de que la presión está explícita en el primer miembro.

c) <u>Curva característica de equilibrio de adsorción.</u>

Myers y Sircar (1983) desarrolaron una curva de equilibrio de adsorción característica para cada adsorbente. Según estos autores, todo adsorbente heterogéneo presenta una cierta distribución de energías en su superficie, f(E), de forma que la adsorción en una zona del adsorbente de energía E viene dada por una isoterma local:

$$\boldsymbol{\theta} = \boldsymbol{\theta} \quad (\mathbf{P}, \mathbf{T}, \mathbf{E}) \tag{2.35}$$

donde E es la diferencia de energía que se produce al adsorberse un mol de adsorbato y θ la cantidad adsorbida reducida (cantidad adsorbida / cantidad adsorbida a saturación = n/ns).

La isoterma total de adsorción se obtendrá por integración de la ecuación 2.35 para toda la superficie del adsorbente:

$$\Theta (P,T) = \int_{\text{Emin}}^{\text{Emax}} \Theta (P,T,E) f(E) dE \qquad (2.36)$$

estando la función f normalizada de forma que:

$$\int_{\text{Emin}}^{\text{Emax}} f(E) \, dE = 1$$
 (2.37)

Integrando la ecuación 2.36 para diferentes tipos de isotermas locales, se obtienen resultados prácticamente idénticos, por lo que se llega a la conclusión de que la adsorción total es función únicamente de la distribución de energías propia de cada adsorbente.

Teniendo en cuenta que la energía libre de Gibbs de exceso viene dada por:

$$\Delta G^{e} = n \left(g - g^{0} \right) \tag{2.38}$$

De esta ecuación y la representativa de la energía libre de Gibbs se obtiene:

$$\Delta G^{e} = R T \int_{0}^{n} \ln P/P_{s} dn \qquad (2.39)$$

Si se extiende el límite de esta integral hasta la cantidad adsorbida a saturación ns, se obtiene la entalpía libre de inmersión ΔG^i cuyo significado físico es la variación de energía libre de Gibbs que se produce al introducir un gramo de adsorbente fresco en el adsorbato líquido.

$$\Delta G^{i} = R T \int_{0}^{ns} \ln P/P_{s} dn \qquad (2.40)$$

Si se integra la ecuación 2.36 se puede demostrar que el potencial de adsorción de Polanyi es función del tipo de adsorbato F'(T) y de la cantidad adsorbida F''(θ), lo que se puede expresar según la ecuación:

$$\ln P/P_{T} = F'(T) F''(\theta)$$
 (2.41)

Sustituyendo este valor en las ecuaciones 2.39 y 2.40, dividiendo ambas entre sí y derivando este cociente se obtiene la expresión de $F(\theta)$ que constituye uno de los parámetros de la curva característica.

$$F(\theta) = \frac{\operatorname{ns} R T \ln P/P}{\Delta G^{i}}$$
(2.42)

Representando F(θ) frente a la cantidad adsorbida a saturación n_s, se obtiene la curva característica de equilibrio de adsorción. La utilidad de esta curva consiste en la predicción de las isotermas de equilibrio de adsorción de cualquier adsorbato puro a cualquier temperatura sin más que conocer los parámetros n_s y ΔG^{i} que le corresponden. Hay que hacer notar que para el cálculo de ΔG^{i} se necesita al menos un punto experimental de la isoterma a predecir.

2.3.5. ADSORCION DE MEZCLAS DE GASES.

Son muy numerosos los modelos que se han desarrollado hasta la fecha para la correlación y predicción de los datos de equilibrio de adsorción de mezclas gaseosas. Para facilitar su estudio, al igual que en el caso de gases puros, se pueden clasificar en dos grupos:

- Modelos termodinámicos.

- Modelos semiempíricos.

a) Modelos termodinámicos

Los modelos termodinámicos no se basan en ninguna teoría o simplificación específica del fenómeno de la adsorción, sino en relaciones termodinámicas entre las dos fases que están en equilibrio.

Los de mayor importancia, desde el punto de vista de su aplicación a la correlación y predicción del equilibrio de adsorción de mezclas, son los que se basan en la termodinámica clásica. Estos modelos son:

-I.A.S. (Ideal Adsorbed Solution): Modelo de la solución adsorbida ideal (Myers y Prausnitz, 1965).

-H.I.A.S. (Heterogeneous Ideal Adsorbed Solution): Modelo de la solución adsorbida heterogénea ideal (Valenzuela, Myers, Talu y Zwiebel, 1988).

-R.A.S. (Real Adsorbed Solution): Modelo de la solución adsorbida real (Costa y col, 1982).

-S.P.D. (Spreading Presure Dependence): Modelo de la dependencia de la presión superficial (Talu y Zwiebel, 1986).

-V.S.M. (Vacancy Solution Model): Modelo del disolvente imaginario (Dubinin, 1977; Suwannayuen y Danner, 1980; Cochran, Kabel y Danner, 1985).

-S.T.M. (Statistic Thermodinamic Model): Modelo termodinámico estadístico (Ruthven y col., 1971 y 1972).

Myers y Prausnitz (1965), desarrollaron una teoría sobre el equilibrio de adsorción, aprovechando la relación existente entre éste y el equilibrio líquido-vapor.

El tratamiento termodinámico del equilibrio de adsorción de mezclas utilizados en muchos de estos modelos, hace las mismas consideraciones que el de componentes puros, pero introduce un coeficiente de actividad equivalente al que se utiliza en mezclas fluidas. De esta forma, la variación de entalpía libre molar de Gibbs (Δg^m) para una mezcla adsorbida viene dada para una determinada composición de la fase adsorbida (xi), presión superficial (II) y temperatura (I), por la siguiente ecuación:

$$\Delta g^{m}$$
 (T, II, x_{1}, \dots, x_{c}) = R T $\sum_{i} x_{i} \ln (\gamma_{i} x_{i})$ (2.43)

en donde γ_i representa el coeficiente de actividad del componente i en la fase adsorbida.

Así, la entalpía libre molar de Gibbs para la fase adsorbida será:

$$g^{s} = G^{s}/n = \sum_{i} x_{i} g_{i}^{Os} (T, \Pi) + R T \sum_{i} x_{i} \ln (\gamma_{i} x_{i})$$
 (2.44)

donde g_i^{Os} es la entalpía libre molar de Gibbs en estado puro y adsorbido.

Igualando esta ecuación con la correspondiente a la energía libre total de Gibbs (2.13) se tiene:

$$G^{s} = \sum_{i} \mu_{i}^{s} n_{i} = \sum_{i} x_{i} g_{i}^{0s} (T, \Pi) + R T \sum_{i} x_{i} \ln (\gamma_{i} x_{i})$$

$$\therefore \qquad \mu_{i}^{s} = g_{i}^{0s} (T, \Pi) + R T \ln (\gamma_{i} x_{i})$$

$$(2.45)$$

En un sistema cerrado constituido por un compuesto gaseoso puro y un sólido adsorbente, si se toma para ambas fases un estado de referencia consistente, se tendrá para la fase adsorbida:

$$g_{i}^{OS}(T, \Pi) = g_{i}^{*}(T) + R T \ln P_{i}^{O}(\Pi)$$
 (2.46)

donde g_i^{\bullet} (T) representa la entalpía libre molar de Gibbs del componente i en el estado de referencia que se ha establecido y P_i^0 (I) la presión que debería tener el componente i puro en la fase gaseosa, para que la cantidad adsorbida en equilibrio con ella, ejerciera la misma presión superficial, II, que la mezcla adsorbida, a una determinada temperatura.

y de acuerdo con la ecuación 2.45:

$$\mu_{i}^{s} = g_{i}^{*} (T) + R T \ln P_{i}^{0} (\Pi) + R T \ln (\gamma_{i} X_{i})$$
(2.47)

Análogamente, para la fase gaseosa, a partir de la ecuación 2.17:

$$\mu_{i}^{g} = g_{i}^{*} (T) + R T \ln (P y_{i})$$
 (2.48)

Igualando las ecuaciones 2.47 y 2.48 de acuerdo con las condiciones de equilibrio 2.9 a 2.12, se obtiene finalmente:

$$P Y_{i} = \gamma_{i} P_{i}^{0} (\Pi) x_{i}$$
 (2.49)

expresión equivalente a la ley de Raoult para el equilibrio líquido-vapor aplicada al equilibrio de adsorción. El término $P_i^0(\Pi)$ representa, como ya se indicó, la presión que debería tener el componente i puro en la fase gaseosa para que la cantidad adsorbida en equilibrio con ella , ejerciera la misma presión superficial que la mezcla adsorbida a una determinada temperatura.

La cantidad total adsorbida una vez alcanzado el equilibrio puede determinarse de la siguiente forma. Referida la ecuación 2.8 a un mol de mezcla adsorbida, para valores constantes de la temperatura y composición, se deduce de la misma:

$$\frac{\underline{A}}{n} = \left(\frac{\delta g^{q}}{\delta \Pi}\right)_{T, Xi}$$
(2.50)

De esta ecuación y de la 2.43 se obtiene:

$$\Delta \left(\frac{A}{n}\right)^{m} = R T \sum_{i} x_{i} \left(\frac{\delta \ln \gamma}{\delta \pi}\right)_{T, x_{i}}$$
(2.51)

que representa el incremento de area molar del adsorbente debido a la mezcla.

De esta forma, el area molar de adsorbente por mol de mezcla adsorbida será:

$$\frac{A}{n} = \sum_{i} x_{i} \frac{A}{n_{i}^{0}(\Pi)} + R T \sum_{i} x_{i} \left(\frac{\ln \gamma_{i}}{\Pi}\right) T, x_{i}$$
(2.52)

de donde la cantidad total de mezcla adsorbida quedará expresada por la ecuación:

$$\frac{1}{n} = \sum_{i} x_{i} \frac{A}{n_{i}^{0}(\Pi)} + \sum_{i} x_{i} \left(\frac{\delta \ln \gamma_{i}}{\delta(\Pi A/RT)} \right)_{T, x_{i}}$$
(2.53)

i) Teoria de la Solucion Adsorbida Ideal. (I.A.S.).

Este modelo se basa en aplicar la ley de Raoult modificada para la adsorción, ecuación 2.49. Considera que los coeficientes de actividad de la fase adsorbida son la unidad, por lo que dicha ecuación se simplifica a:

$$P y_{i} = P_{i}^{O} (\Pi) x_{i}$$
 (2.54)

El término $P_i^0(\Pi)$, cuyo significado físico se ha comentado en este mismo apartado, se calcula a partir de las curvas de presión superficial. de los componentes puros frente a la presión de la fase gaseosa, obtenidas con la ecuación 2.19.

Para bajos valores de la presión, el término n/p de la ecuación 2.19 tiende a infinito, lo que supone un escollo en el cálculo de la integral. Para evitar este problema se transforma dicha ecuacion, mediante un cambio de variable, con lo que se obtiene:

$$\frac{\Pi A}{R T} = \int_{0}^{n} \frac{d\ln p}{d\ln n} dn \qquad (2.55)$$

donde dln p/dln n tiende a la unidad cuando n tiende a cero.

Para realizar la predicción del equilibrio de un sistema de c componentes se dispone de las siguientes ecuaciones:

$$P y_i = P_i^0 (\Pi) x_i$$
 (2.56)

$$P_i^0(\Pi) = f_i(\Pi)$$
 (2.57)

$$\sum_{i} x_{i} = 1$$
 (2.58)

$$\sum_{i} y_{i} = 1$$
 (2.58)

Estas ecuaciones constituyen un sistema de c+2 ecuaciones y c+4 incognitas. Así, fijando dos de las variables podemos calcular las restantes.

El método de cálculo seguido para la predicción de la composición de la fase gaseosa y_1 en equilibrio con una fase adsorbida de composiciones x₁, a una presión determinada P, es el siguiente:

1) Se fijan la presión y las x.

2) Se supone un valor de MA/RT de mezcla.

3) Se determinan los valores de P_i^0 (II) mediante las curvas IIA/RT frente a presión de los componentes puros P_i .

4) Se calcula y, mediante la ecuación de Raoult, ecuación 2.56.

5) Si la suma de las fracciones molares $\sum y_i$ no es igual a la unidad se vuelve al paso segundo, suponiendo otro valor de MA/RT hasta conseguir que la suma de dichas fracciones sea igual a la unidad.

La cantidad adsorbida total se calcula con la ecuación 2.53.

ii) Teoria de la Solucion Adsorbida Heterogénea Ideal. (H.I.A.S.)

Este modelo, tiene en cuenta la heterogeneidad energética de la superficie del adsorbente y se caracteriza porque la distribución de energía apropiada se deriva de los datos experimentales de adsorción de los componentes puros, (Valenzuela, 1988; Moon, 1988; Sircar, 1991). La cantidad adsorbida de un gas puro adsorbido en un adsorbente heterogéneo a una presión y temperatura determinadas, viene dada por la siguiente ecuación:

$$N = \int_{0}^{\infty} n (T, P, \varepsilon) f(\varepsilon) d\varepsilon \qquad (2.59)$$

donde $f(\varepsilon)$ es la función de densidad de probabilidad para la distribución de energías de adsorción, y n es la adsorción específica si la superficie fuera homogénea y estuviera caracterizada por una energía ε .

La cantidad adsorbida individual del componente i adsorbido en una superficie heterogénea y que se encuentra en una mezcla de r componentes será:

$$N_{i} = \int_{\varepsilon_{1}} \int_{\varepsilon_{2}} \dots \int_{\varepsilon_{r}} n_{i}(T, P, \mathbf{y}, \varepsilon_{1}, \varepsilon_{2}, \dots \varepsilon_{r}) g(\varepsilon_{1}, \varepsilon_{2}, \dots \varepsilon_{r}) d\varepsilon_{1} d\varepsilon_{2} \dots d\varepsilon_{r}$$
(2.60)

donde $g(\varepsilon_1, \varepsilon_2, \ldots \varepsilon_r)$ es la función de densidad de probabilidad conjunta para la distribución de energías de adsorción e y, el vector de composición del gas $(y_1, y_2, \ldots y_r)$.

Para integrar la ecuación (2.60) se necesita una función que describa el comportamiento del adsorbato en una superficie homogénea. Ello se puede hacer de numerosas formas, si bien el modelo H.I.A.S. asume idealidad y utiliza la ecuación de Langmuir. Así, para calcular la composición de la fase adsorbida, se dispone del mismo sistema de ecuaciones que en el caso del modelo I.A.S. y se sigue la misma secuencia de cálculo para cada posición energética. La única diferencia consiste en que en este caso se fija la composición de la fase gaseosa y se calcula la de la fase adsorbida, al contrario del modelo I.A.S. Una vez determinada la composición de la fase adsorbida x, la cantidad adsorbida total se obtiene de la ecuación:

$$\frac{1}{n} = \sum_{i=1}^{r} \frac{x_{i}}{n_{i}^{0} (P_{i}^{0})}$$
(2.61)

Por lo tanto:

$$\mathbf{n}_{i} = \mathbf{n} \mathbf{x}_{i} \tag{2.62}$$

Una vez conocidos los valores de n_i para cada posición energética y definida la función de distribución de densidad de probabilidad $f(\varepsilon)$, la cantidad adsorbida a una presión y temperatura determinadas se realizarán mediante la integral (2.59).

iii) Teoria de la Solución Adsorbida Real. (R.A.S.).

El modelo R.A.S. es una variación mejorada del modelo I.A.S., en el que se considera que el coeficiente de actividad puede presentar un valor diferente a la unidad. Este coeficiente se introduce para tener en cuenta las posibles interacciones que alejarían de la idealidad el comportamiento de las mezclas. Este modelo ha sido básicamente desarrollado en este departamento de Ingeniería Química y utilizado extensamente en anteriores investigaciones (Costa, 1981; Cabra, 1983; Jimenez, 1989).

El modelo R.A.S. se basa en extrapolar ecuaciónes del equilibrio líquido-vapor, como la de Wilson, al caso de la adsorción, y por medio de ellas calcular los coeficientes de actividad. Dichos coeficientes de actividad, a temperatura y presión total constante, son función de la presión superficial, y de la composición de la fase adorbida, x_i (Myers y Prausnitz, 1956). Si se desprecia la dependencia de los coeficientes de actividad con la presión superficial frente a su dependencia con la composición (suposición bastante razonable para muchos sistemas reales, como se ha puesto de manifiesto en trabajos anteriores (Costa, 1981; Cabra, 1983; Costa, 1989), estos valores de γ , podrán ajustarse a ecuaciones de Wilson y UNIQUAC (Costa y col., 1981) similares a las que se utilizan para la correlación de los coeficientes de actividad de las mezclas líquidas reales en el equilibrio líquido-vapor.

La ecuación de Wilson para el coeficiente de actividad de un componente i de una mezcla de n componentes es:

$$\ln \gamma_{i} = 1 - \ln \left(\sum_{j} \times_{i} \Lambda_{ij}\right) - \sum_{k} \frac{\times_{k} \Lambda_{ki}}{\sum_{j} \times_{j} \Lambda_{kj}}$$
(2.63)

siendo Λ_{ij} los parámetros binarios características de cada pareja de componentes i, j, de la mezcla.

El modelo de la solución adsorbida real podrá ser utilizado para predecir el equilibrio de adsorción de mezclas multicomponentes (ternarias y superiores), una vez realizada la reproducción del equilibrio de los correspondientes sistemas binarios; esto es, una vez obtenidas las series de parámetros Λ_{ij} para cada una de las mezclas binarias posibles del sistema multicomponente. Esta característica hace especialmente atractivo y eficaz el método de predicción del modelo R.A.S.

La reproducción de los sistemas binarios se realiza según el siguiente esquema:

1) Se fija la presión de trabajo P y las fracciones molares x.

2) Se supone el valor de los parámetros $\Lambda_{i,i}$.

3) Se supone un valor de MA/RT de mezcla.

4) A partir de los datos anteriores se calculan los valores de las fracciones molares en la fase gaseosa y_i utilizando la ecuación de Wilson (2.63), las curvas de $\Pi A/RT$ frente a cada componente puro y la ley de Raoult (2.49).

5) Se comprueba que se cumple $\sum y_i = 1$. Si no es así, se vuelve al punto tres.

6) Se calcula el error en la reproducción. Si el error obtenido no supera a uno fijado con antelación se considera el resultado como válido; si no es así se vuelve al punto dos.

Una vez realizada la reproducción de todos los sistemas binarios que forman la mezcla multicomponente, la predicción de la composición de la fase gaseosa de una mezcla de c componentes se realiza segun la siguiente secuencia de cálculo:

1) Se fijan P y x_c

2) Se supone un valor de MA/RT de mezcla.

3) Se determinan los valores de $P_i^0(\Pi)$ mediante las curvas de $\Pi A/RT$ frente a presión total, de los componentes puros.

4) Se calcula γ_i mediante la ecuación de Wilson (2.63) con los valores de x_i y de Λ_{ij} obtenidos en la reproducción de los correspondientes sistemas binarios.

5) Con los valores de γ_i , x_i , P, $P_i^0(\Pi)$ se calcula la composición de la fase gaseosa mediante la ecuación de Raoult (2.49).

6) Se comprueba si se cumple $\sum y_i = 1$, si no es así se vuelve al paso 2 suponiendo otra presión superficial de mezcla, hasta que se consiga que el sumatorio sea igual a la unidad.

Al igual que en el modelo I.A.S. la cantidad adsorbida se calcula mediante la ecuación 2.53.

iv) Modelo de la Dependencia de la Presión Superficial (S.P.D.)

Este modelo, desarrollado recientemente por Talu y Zwiebel (1986) puede ser considerado, a efectos prácticos, como una modificación de la teoría de la Solución Adsorbida Real, pues se fundamenta en las mismas relaciones termodinámicas de equilibrio, definidas para adsorción por Myers y Prausnitz en 1965, que se han estudiado anteriormente. Sin embargo, la principal diferencia estriba en las relaciones que se proponen para evaluar los coeficientes de actividad de la fase adsorbida que aparecen en la ley de Raoult modificada.

Como se recordará, en el modelo de la Solución Adsorbida Real (R.A.S.) dichos coeficientes de actividad se ajustaban a ecuaciones (como la de Wilson) propias del equilibrio líquido-vapor, las cuales consideran que los coeficientes de actividad son función únicamente de la composición de la fase adsorbida, a temperatura y presión total constantes. Pero los sistemas de adsorción (en contraposición con los sistemas líquidos) están descritos con una variable intensiva adicional: la presión superficial, siendo por tanto, los coeficientes de actividad función de la temperatura, composición de la fase adsorbida y presión superficial de la misma.

De esta forma, los autores del modelo proponen unas expresiones para el cálculo de los coeficientes de actividad de la fase adsorbida (a temperatura constante) en función de la presión superficial y de la composición, denominadas ecuaciones S.P.D. (Spreading Pressure Dependent). Estas ecuaciones han sido desarrolladas a partir de un tratamiento teórico específico para la adsorción, adaptando el modelo cuasi-químico de Guggenheim (1952) para dos fluidos.

Antes de desarrollar las ecuaciones propias del modelo S.P.D., Talu y Zwiebel sugieren tres restricciones termodinámicas que se deben cumplir cuando se pretende definir un coeficiente de actividad para una fase adsorbida:

1) De acuerdo con la definición de estado de referencia, el coeficiente de actividad de un componente en la mezcla debe tender a la unidad cuando la composición de la mezcla tiende a la de dicho componente puro:

$$\lim_{x \to 1} \gamma_i = 1 \tag{2.64}$$

2) Para valores bajos de la superficie cubierta, dado que la presión superficial tiende a cero, el comportamiento de fase adsorbida debe aproximarse al de la solución ideal, y por tanto, el coeficiente de actividad para todos los componentes debe tender a la unidad (independientemente de la composición):

$$\lim_{\pi \to 0} \gamma_i = 1 \tag{2.65}$$

Esta propiedad de la fase adsorbida no tiene su análoga en las fases líquidas; pues para valores de la presión por debajo de la presión de vapor del componente menos volátil, la fase líquida deja de existir. En la adsorción, la fase adsorbida existe para cualquier valor de la presión superficial superior a cero, y la presión superficial es cero solo si la presión del gas es cero. Por tanto, las ecuaciones para los coeficientes de actividad similares a las de las mezclas líquidas no pueden considerar esta limitación, y debido a la ausencia de la influencia de la presión superficial, no podrán predecir con rigor el comportamiento ideal del sistema para valores bajos de la superficie cubierta. Debe indicarse, no obstante, que a pesar de este argumento teórico, en la practica suele ocurrir que la dependencia del coeficiente de actividad con la presión superficial es casi despreciable frente a su fuerte dependencia con la composición, lo que determina que los otros modelos que calculan γ_i con ecuaciones de los sistemas líquido-vapor sigan siendo válidos y útiles. Además, no es del todo evidente que deba cumplirse siempre la ecuación (2.65).

3) Los coeficientes de actividad determinados experimentalmente deben cumplir el test de consistencia termodinámica, basado en la relación de Gibbs Duhem, que podrá escribirse, para mezclas adsorbidas (Talu, 1986) y bajo condiciones isotermas como:

$$\sum_{i} x_{i} dln \gamma_{i} = \left(\frac{1}{n} - \sum_{i} \frac{x_{i}}{n_{i}^{0}}\right) d (\Pi A/RT) \qquad T=cte. \qquad (2.66)$$

Hay que hacer notar que la ecuación (2.65) se puede obtener fácilmente a partir de la expresión para el cálculo de la cantidad total adsorbida. Por otra parte, si los datos han sido obtenidos a presión superficial y temperatura constantes, la ecuación (2.66) quedará reducida a:

$$\sum \mathbf{x}_{i} \operatorname{dln} \boldsymbol{\gamma}_{i} = 0 \qquad \mathrm{T}, \mathrm{\Pi} = \mathrm{cte}. \qquad (2.67)$$

Esto fue señalado por Myers (1983), quien puso de manifiesto que en trabajos anteriores se había utilizado erróneamente la ecuación (2.67) para comprobar la consistencia termodinámica de datos de equilibrio isotermos e isobaros.

Con estas premisas, y basándose en la extensión llevada a cabo por Maurer y Prausnitz (1978) del modelo de Guggenheim para mezclas líquidas, los autores del modelo proponen la siguiente ecuación para el cálculo del coeficiente de actividad del componente m en una mezcla adsorbida de C componentes:

$$\ln \gamma_{\rm m} = - {\rm s}_{\rm m} \ln \left(\sum_{\rm j} \phi_{\rm j} \alpha_{\rm jm}\right) + {\rm s}_{\rm m} - {\rm s}_{\rm m} \sum_{\rm j} \frac{\phi_{\rm j} \alpha_{\rm jm}}{\sum_{\rm k} \phi_{\rm k} \alpha_{\rm kj}} \qquad (2.68)$$

donde s es un factor de forma (para las moléculas del componente m adsorbidas) con un significado geométrico y estadístico relacionado con el número de contactos externos entre las moléculas adsorbidas; ϕ_j y ϕ_k son fracciones molares, corregidas por dichos factores de forma según la expresión:

$$\phi_{j} = \frac{s_{j} \times j}{\sum_{j} s_{j} \times j}$$
(2.69)

y donde los parámetros $\alpha_{i,i}$ se pueden expresar mediante la ecuación:

$$\alpha_{ij} = \exp\left(-\frac{1}{2} z \frac{(e_i - e_j)}{-RT}\right)$$
(2.70)

siendo e y e potenciales de interacción lateral entre las moléculas ij jj adsorbidas y "z" el índice de coordinación de las mismas.

Los potenciales de interacción lateral entre moléculas de un mismo adsorbato, e , pueden calcularse a partir del calor isostérico de adsorción de los componentes puros, según la siguiente ecuación (Ross y Olivier, 1964):

$$e_{jj} = \frac{q_{j\Pi} - q_{j0}}{1/2 z s_{j}}$$
(2.71)

donde $q_{j\Pi}$ representa el calor isostérico de adsorción del componente j puro a la misma presión supeficial que la mezcla; el cual podrá calcularse, para cada adsorbato, a partir de datos de equilibrio experimentales a diferentes temperaturas, mediante la ecuación siguiente:

$$q_{j\Pi} = -R \left(\frac{\delta \ln P}{\delta 1/T}\right)_n \qquad (2.72)$$

El término q_{jo} de la ecuación (2.71), representa el calor isostérico de adsorción extrapolado a dilución infinita (para un grado de recubrimiento nulo).

Los potenciales de interacción de mezclas, e_{ij}, se pueden estimar mediante la siguiente ecuación:

$$e_{ij} = (e_{ii}, e_{jj})^{1/2} (1 - \beta_{ij})$$
(2.73)

Para moléculas esféricas de tamaño comparable y propiedades de adsorción similares, se cumple que $\beta_{ij} = 0$.

De este modo, con las ecuaciones (2.68) a (2.73) se pueden evaluar los coeficientes de actividad de cualquier mezcla adsorbida. Para una mezcla de C componentes se debe disponer de C factores de forma s_i y C(C-1) /2 parámetros de corrección de la interacción, B_{ii} .

El valor de estos C + C(C-1) /2 parámetros se puede determinar por dos métodos:

 a) Por estimación, a partir de propiedades moleculares de los componentes y la disposición de sus moléculas sobre la superficie del adsorbente (método predictivo)

b) Experimentalmente, a partir de datos de equilibrio de componentes puros y mezclas multicomponentes. En este caso el método de cálculo de los parámetros es similar al expuesto en el R.A.S., pero utilizando la ecuación 2.68 para el cálculo del coeficiente de actividad.

Para llevar a cabo la predicción del equilibrio de adsorción de un sistema multicomponente serán necesarios los siguientes datos experimentales:

 a) Isotermas de componentes puros, a varias temperaturas (a diferencia de los demás métodos ya comentados).

b) Valores de los parámetros s_i, s_j, β _{ij} obtenidos en la reproducción de los sistemas binarios.

Se sigue una secuencia de pasos de modo paralelo al indicado para el modelo R.A.S.:

1) Se fija la presión de trabajo P y la composición de la mezcla multicomponente adsorbida x_i para la que se desea realizar la predicción.

2) Se determinan las curvas $\Pi_i^0 - P_i^0$ de los C componentes puros mediante la ecuación (2.19), a partir de sus isotermas de equilibrio experimentales.

3) Se determinan las curvas de calor isostérico de adsorción q_i , frente a la cantidad adsorbida, n_i^0 , de cada componente, mediante la ecuación (2.72) a partir de las isotermas de equilibrio de cada adsorbato a diferentes temperaturas.

4) Se supone un valor de la presión superficial de la mezcla Π ; y con ella se determinan, mediante las curvas de presión superficial frente a presión de la fase gaseosa, los valores de los términos $P_i^0(\Pi)$ para cada adsorbato. A partir de éstos, mediante las isotermas de componentes puros, se calculan los valores de las cantidades adsorbidas n_i^0 que permitirán obtener el calor isostérico $q_{i\Pi}$.

5) Mediante las ecuaciones (2.68) a (2.73) y con los parámetros s_i, s_j, β_{ij} obtenidos en la reproducción de los sistemas binarios, será posible calcular los coeficientes de actividad γ_i para la mezcla de C componentes.

6) Se calcula la composición de la fase gaseosa y mediante la ecuación 2.49.

7) Se comprueba si se cumple $\sum y_i = 1$. Si no es así se vuelve al paso 4, hasta que se cumpla esta condición.

La cantidad total adsorbida se calcula igual que en los modelos I.A.S. y R.A.S.

v) Teroría del disolvente imaginario (Vacancy Solution Theory)

El concepto de disolvente imaginario (*Vacancy Solution*) fue propuesto inicialmente por Dubinin (1977). Considera la adsorción de un componente puro como la de una disolución de dos componentes, el que realmente se adsorbe y un disolvente imaginario que llena la zona del adsorbente no ocupada por el primero.Suwanayuen y Danner (1980 a) y posteriormente Cochran, Kabel y Danner (1985), basándose en la idea original de Dubinin y aplicando las relaciones termodinámicas expuestas en el apartado 2.3. a la hipótetica mezcla binaria, obtuvieron -al igualar los potenciales químicos de las fases gasesosa y adsorbida- una ecuación de estado de la que se deduce una expresión general para la isoterma de adsorción del componente puro:

$$P = \left(\frac{n_{i}^{\infty}}{b_{i}} \frac{\theta}{1-\theta}\right) \exp \left(-\int \frac{d\ln \gamma^{s}}{\theta}\right) \left(\lim_{\theta \to 0} \exp \left(\int \frac{d\ln \gamma^{s}}{\theta}\right)\right) (2.74)$$

donde los subíndices "1" y "v" se refieren, respectivamente, al adsorbato y el disolvente imaginario; representando:

- P = presión de equilibrio del adsorbato puro $n_{1}^{\infty} = \text{cantidad adsorbida a saturación}$ $b_{1} = \text{constante de la ecuación de Henry en el origen (pendiente de la isoterma para p = 0)}$ $\theta = \text{cantidad asorbida reducida } (\theta = n_{1} / n_{1}^{\infty})$
- γ_v^s = coeficiente de actividad del disolvente imaginario en la fase adsorbida

El coeficiente de actividad γ_v^s puede expresarse en función de la cantidad adsorbida reducida θ (que tendrá un significado de fracción molar del componente 1 en la mezcla binaria adsorbida: componente 1 - disolvente imaginario) por medio de ecuaciones similares a las empleadas para correlacionar coeficientes de actividad de mezclas líquidas. Así, en la versión del modelo desarrollado por Suwanayuen y Danner (1980 a) se utilizó la ecuación de Wilson, obteniéndose:

$$\ln \gamma_{\rm V}^{\rm s} = \ln \left((1-\theta) + \Lambda_{\rm v1}^{} \theta \right) - \theta \left(\frac{\Lambda_{\rm 1v}}{\theta + \Lambda_{\rm 1v}^{-} (1-\theta)} - \frac{\Lambda_{\rm v1}^{}}{(1-\theta) + \Lambda_{\rm v1}^{} \theta} \right) (2.75)$$

Mientras que en la versión del modelo desarrollado por Cochran y col. (1985), ésta fue sustituida por la ecuación de Flory-Huggins modificada:

$$\ln \gamma_{\mathbf{v}}^{\mathbf{s}} = \frac{\alpha_{1\mathbf{v}}}{1 + \alpha_{1\mathbf{v}}^{\mathbf{s}} \theta} - \ln \left(1 + \alpha_{1\mathbf{v}}^{\mathbf{s}} \theta\right) \qquad (2.76)$$

Sustituyendo las ecuaciones (2.75) y (2.76) en la (2.74) se obtienen dos isotermas de adsorción para componentes puros, que denominaremos DIW y DIF respectivamente:

- Isoterma DIW (Wilson):

(2.77)

- Isoterma DIF (Flory-Huggins):

$$p=\left(\begin{array}{cc}n_{1}^{\infty} \\ \theta\\ b\\ 1\end{array}\right) \exp\left(\begin{array}{c}\alpha_{1v}^{2} \\ \theta\\ 1v\end{array}\right) \qquad (2.78)$$

En el caso de comportamiento ideal de la fase adsorbida se cumple que $\Lambda_{iv} = \Lambda_{vi} = 1$ y $\alpha_{iv} = 0$, con lo que las ecuaciones (2.77) y (2.78) se transforman en la isoterma de Langmuir. Asímismo, Suwanayuen y Danner (1980 b) y Cochran y col. (1985) obtuvieron ecuaciones para la predicción del equilibrio de mezclas binarias a partir de los parámetros correspondientes a las isotermas de componentes puros (que pueden ser obtenidos por regresión no lineal de las isotermas experimentales a las ecuaciones (2.77) o (2.78). El tratamiento termodinámico de la mezcla binaria adsorbida, se realiza, según estos autores, como si fuera una mezcla ternaria, hipotética, de los componentes reales 1, 2 y del disolvente imaginario; lo cual conduce a las ecuaciones de distribución de los componentes reales entre las fases gaseosa (de composición y_i) y adsorbida (de composición x_i). Estas ecuaciones son, para cada una de las dos versiones del modelo:

- Modelo DIW:

$$y_{i}P = \gamma_{i}^{s} \times_{i} \frac{n_{m}}{n_{m}^{\infty}} \frac{i}{b_{i}} (\Lambda_{iv} \exp(\Lambda_{iv} - 1)) \exp((\frac{n_{i}^{\infty} - n_{m}^{\infty}}{n_{m}} - 1)\ln(\gamma_{v}^{s} \times_{v}^{s})) (2.79)$$

- Modelo DIF:

$$y_{i}P = \gamma_{i}^{s} \times_{i} \frac{n}{n_{m}^{\infty}} \frac{n}{b_{i}} \frac{\alpha}{1 + \alpha_{iv}} \frac{\exp \alpha}{1 + \alpha_{iv}} \exp \left(\left(\frac{n_{i}^{\infty} - n_{m}^{\infty}}{n_{m}} - 1\right)\ln(\gamma_{v}^{s} \times_{v}^{s})\right) \quad (2.80)$$

Ecuaciones en las que además de los parámetros correspondientes a los componentes puros (n_i, b_i y Λ_{iv} , Λ_{iv} ó α_{iv}) aparece la cantidad total adsorbida de mezcla, n_m, y la cantidad adsorbida de mezcla a saturación n_m[∞]. El valor de este último se puede estimar mediante la ecuación:

$$n_{m}^{\infty} = x_{1} n_{1}^{\infty} + x_{2} n_{2}^{\infty}$$
 (2.81)

Los coeficientes de actividad corrrespondientes a los componentes reales, γ_1^s , γ_2^s y al disolvente imaginario, γ_v^s , se podrán estimar mediante las siguientes ecuaciones:

a) Isoterma DIW:

$$\ln \gamma_{i}^{s} = 1 - \ln \left(\sum_{j=1}^{n} x_{j}^{s} \Lambda_{ij} \right) - \sum_{k=1}^{n} \left(\frac{x_{k}^{s} \Lambda_{ki}}{\sum_{j=1}^{n} x_{k}^{s} \Lambda_{jk}} \right)$$
(2.82)

b) Isoterma DIF:

$$\ln \gamma_{i}^{s} = -\ln \left(\sum_{j=1}^{n} \frac{x_{j}^{s}}{1+\alpha_{ij}}\right) + \left(1-\left(\sum_{j=1}^{n} \frac{x_{j}^{s}}{1+\alpha_{ij}}\right)^{-1}\right) \qquad (2.83)$$

En estas ecuaciones, los índices i, j, y k se refieren a los tres componentes: 1, 2 y disolvente imaginario. Los parámetros binarios Λ_{iv} , Λ_{vi} , α_{iv} , α_{vi} pueden ser calculados, como ya se ha indicado anteriormente, ajustando los datos experimentales de componentes puros a las ecuaciones (2.77) y (2.78). Los parámetros de interacción adsorbato-adsorbato Λ_{12} y Λ_{21} del modelo DIW se suponen iguales a la unidad en aquellos sistemas con adsorbatos similares, cuando esto no ocurre, han de ser determinados a partir de los datos de la propia mezcla mediante una ecuación análoga a la introducida por Wilson para las mezclas líquidas:

$$\Lambda_{ij} = \frac{n_{i}^{s,\infty}}{n_{j}^{s,\infty}} \exp\left(-\frac{\lambda_{ij} - \lambda_{ji}}{R T}\right)$$
(2.84)

Sin embargo, el cálculo de las energías de interacción λ_{ij} es complejo ya que requiere conocer los valores de las entalpías de desorción. No ocurre así con el modelo DIF, cuyo parámetro α_{ij} puede ser calculado fácilmente mediante la siguiente expresión:

$$\alpha_{12} = \frac{\alpha_{1v} + 1}{\alpha_{2v} + 1} - 1$$
 (2.85)

En todas estas ecuaciones, las fracciones molares en la hipotética mezcla ternaria adsorbida (los dos componentes reales más el disolvente imaginario) están relacionados con las fracciones molares reales de la mezcla binaria mediante las expresiones:

$$x_1^s = x_1^{\theta} \qquad x_2^s = x_2^{\theta} \qquad x_v^s = 1 - \theta$$
 (2.86)

La cantidad de mezcla adsorbida reducida (θ) tiene el significado de cantidad de mezcla adsorbida (n_m) dividida por la cantidad de mezcla adsorbida a saturación (n^{∞}):

$$\theta = \frac{n_{m}}{m_{m}}$$
(2.87)

El esquema de operaciones a seguir para realizar la predicción del equilibrio de adsorción de mezclas binarias mediante el modelo DIW, es el siguiente:

1) Se determinan los valores de los parámetros n_i^{∞} , b_i , Λ_{iv} , λ_{vi} para

ambos componentes 1 y 2 a partir de las isotermas experimentales de los componentes puros.

 Se fija la presión de trabajo P y la composición de la fase adsorbida real (x_i) para la que se desea predecir el equilibrio.

3) Se calcula la cantidad de mezcla adsorbida a saturación mediante la ecuación (2.81).

4) Se supone un valor arbitrario de la cantidad de mezcla adsorbida (n_).

5) Se calculan las fracciones molares de la hipotética mezcla ternaria adsorbida (x_1^s, x_2^s, x_v^s) mediante las ecuaciones (2.86).

6) Se determinan los valores de la hipotética mezcla ternaria adsorbida γ_1^s , γ_2^s , γ_v^s , mediante la ecuación (2.82) aplicada a cada componente.

7) Se calculan las fracciones molares en la fase gaseosa y e y mediante la ecuación (2.80).

8) Si la suma de dichas fracciones molares es igual a la unidad, el valor de n supuesto en el paso 4 es correcto. En caso contrario, se supone un nuevo valor hasta encontrar por sucesivos tanteos, el valor correcto.

De esta forma, los modelos del disolvente imaginario proporcionan una forma de predecir el equilibrio de adsorción de mezclas a partir de datos experimentales de componentes puros, del mismo modo que ocurría en el caso del modelo I.A.S. Sin embargo las limitaciones de ambas teorías son diferentes; y mientras que el I.A.S. no es capaz de predecir aceptablemente el equilibrio de aquellas mezclas adsorbidas cuyo comportamiento no puede considerarse ideal, en el caso de la teoría del disolvente imaginario, su aplicabilidad dependerá del grado con que se cumplan las suposiciones y principios atribuidos a la naturaleza de la fase adsorbida y a la precisión con que se pueden estimar los parámetros de los modelos DIW y DIF. vi) Modelo termodinámico estadístico (S.T.M.)

La característica principal que presentan las zeolitas (y en general aquellos adsorbentes que se agrupan bajo la denominación de tamices moleculares) es su regularidad estrucutral y la existencia de cavidades bien definidas en las que penetran y pueden quedar adsorbidas las moléculas de los gases. Estas circunstancias permitieron a Ruthven y col. (1971 y 1972) desarrollar un nuevo modelo de equilibrio para la adsorción en tamices moleculares, basándose en los principios de la termodinámica estadística. Sin embargo, la complejidad del tratamiento matemático obligó a realizar simplificaciones que limitan la validez del modelo cuando la concentración en la fase adsorbida es elevada.

- Se asume que las moléculas adsorbidas se encuentran en cavidades confinadas en el interior de cavidades particulares del tamiz molecular, pero no adsorbidas en lugares específicos dentro de dichas cavidades (es decir, se encuentran deslocalizadas y con total movilidad).
- Cuando dos moléculas ocupan una misma cavidad, la interacción molecular repulsiva se representa simplemente como una reducción en el volumen libre debido al tamaño de las moléculas (esto se tiene en cuenta mediante el parámetro β). Las interacciones atractivas son despreciadas, así como las interacciones entre moléculas de diferentes cavidades.
- La interacción entre una molécula adsorbida y el tamiz molecular es caracterizada por la constante de la ley de Henry definida como:

$$K_{i} = \lim_{p \to 0} \frac{c \text{ (moleculas/cavidad)}}{P \text{ (mm Hg)}}$$
(2.88)

En el caso de un componente puro, si se consideran M cavidades en el tamiz molecular y se asume que cada cavidad puede ser tratada como un subsistema capaz de contener m moléculas de adsorbato, la función de partición del sistema será:

56

$$F = \left(\sum_{s=0}^{m} q(s) \lambda^{s}\right)^{M} = Q^{M}$$
 (2.89)

En esta expresión, q(s) es la función de partición para una cavidad conteniendo s moléculas de adsorbato. El número medio de moléculas por cavidad vendrá dado por la ecuación:

$$Z(s) a^{s} = q(s) \lambda^{s}$$

$$c = \frac{n}{M} = \lambda \left(\frac{\partial \ln Q}{\partial \lambda}\right)_{T} = \frac{\sum_{s=0}^{m} s Z(s) a^{s}}{\sum_{s=0}^{m} Z(s) a^{s}}$$
(2.90)

En ella Z(0)=1 y Z(1)a = Z(1) P/kT = KP. Con el fin de obtener una expresión para las isotermas en términos de cantidades medibles, se puede emplear la siguiente aproximación para las integrales de configuración:

$$Z(s) = \frac{Z(1)^{s}}{s!} (1-s\beta/v)^{s} \exp\left(\frac{s\beta\varepsilon}{vkT}\right) \quad \text{siendo } 2 \le s \le v/\beta \qquad (2.91)$$

Físicamente esta aproximación implica dos cosas: por un lado, que el potencial de interacción adsorbato-adsorbente es independiente del número de moléculas de adsorbato presentes en una cavidad; y por otro, que la interacción adsorbato-adsorbato puede ser representada por la reducción en el volumen libre de la cavidad debido al espacio que ocupan las moléculas adsorbidas juntas, incluyendo un factor exponencial que corrige la variación que se produce en la energía potencial media debido a la atracción adsorbato-adsorbato.

De las ecuaciones anteriores se deriva la siguiente expresión para la isoterma de un componente puro:

$$C = \frac{(KP)^{2} (1-2 \beta/v)^{2} \exp\left(\frac{2\beta\varepsilon}{vkT}\right) + \dots + \frac{(KP)^{m}}{(m-1)!} (1-m \beta/v)^{m} \exp\left(\frac{m\beta\varepsilon}{vkT}\right)}{(1-m \beta/v)^{m} \exp\left(\frac{m\beta\varepsilon}{vkT}\right)}$$

$$(2.92)$$

donde c representa el número de moléculas adsorbidas por cada cavidad de zeolita y P la presión de equilibrio de la fase gaseosa. Aparecen dos tipos de parámetros:

 Estructurales: "ß" que representa el volumen molecular del adsorbato y "v" que es el volumen de una cavidad de zeolita.

- Ajustables: "K" que tiene el siginificado de constante de Henry y "m" que representa la capacidad a saturación, número entero que debe cumplir: $m \leq v/\beta$.

Estos últimos dos parámetros pueden ser obtenidos, para cada adsorbato, por regresión no lineal de su isoterma de equilibrio experimental a la ecuación (2.92).

Posteriormente, los mismos autores (Ruthven y col., 1973, 1976) realizaron la extensión del modelo, obteniendo ecuaciones que permiten la predicción del equilibrio de adsorción de mezclas a partir de los parámetros de las isotermas teóricas de los componentes puros. Para el caso de una mezcla binaria (componentes A y B) la función de partición queda:

$$F_{AB} = \left(\sum_{j=1}^{n} \sum_{j=1}^{n} q(i, j) \lambda_{A}^{i} \lambda_{B}^{j}\right)^{H} = Q_{AB} \qquad (2.93)$$

siendo q(i, j) la función de partición para una cavidad que contiene i_{j} moléculas de A y j moléculas de B, y llevando los sumatorios a todos aquellos valores de i y j que cumplen las condiciones:

$$i+j \ge 2$$
 $i\beta_{+}j\beta_{-} \le v$ (2.94)

Como Z(i,j) $a_A^i a_B^j = q(i,j) \lambda_A^i \lambda_B^j$, las concentraciones de A y B quedan:

$$c_{A} = \frac{n_{A}}{M} = \lambda_{A} \left(\frac{\partial \ln Q_{AB}}{\partial \lambda_{A}} \right)_{\lambda_{B},T} = \frac{\sum_{j i} \sum_{i} Z(i,j) a_{A}^{i} a_{B}^{j}}{\sum_{j i} \sum_{i} Z(i,j) a_{A}^{i} a_{B}^{j}}$$
(2.95)

$$c_{B} = \frac{n_{B}}{M} = \lambda_{B} \left(\frac{\partial \ln Q_{AB}}{\partial \lambda_{B}} \right)_{\lambda_{A},T} = \frac{\sum_{j i} \sum_{i} Z(i,j) a_{A}^{i} a_{B}^{j}}{\sum_{j i} Z(i,j) a_{A}^{i} a_{B}^{j}}$$
(2.96)

Las expresiones para las integrales de configuración para la mezcla binaria son ahora de la siguiente forma:

$$Z(0,0) = Z(0) = 1$$
 (2.97)

$$Z(1,0) P_{A}/kT = Z(1,0) a_{A} = K_{A}P_{A}$$
 (2.98)

$$Z(1,0) P_{B}/kT = Z(1,0) a_{B} = K_{B}P_{B}$$
 (2.99)

$$Z(i, j) = \frac{Z(1, 0)^{i} Z(0, 1)^{j}}{i! j!} (1 - i\beta_{A}/v - j\beta_{B}/v)^{i+j} \exp\left(\frac{-i\beta_{A}\epsilon_{A} + -j\beta_{B}\epsilon_{B}}{vkT}\right)$$
(2.100)

Despreciando el término exponencial del mismo modo que en el caso de componentes puros, se obtiene la expresión de la isoterma para el caso de una mezcla binaria de A y B:

$$c_{A} = \frac{K_{A}P_{A} + \sum_{i j} \frac{(K_{A}P_{A})^{i} (K_{B}P_{B})^{j} (1-i \beta_{A}/v-j \beta_{B}/v)^{i+j}}{(i-j)! j!}}{1 + K_{A}P_{A} + K_{B}P_{B} + \sum_{i j} \frac{(K_{A}P_{A})^{i} (K_{B}P_{B})^{j} (1-i \beta_{A}/v-j \beta_{B}/v)^{i+j}}{i! j!}}{i! j!}$$
(2.101)

Esta expresión, con otra similar para c_B, proporciona un método de predicción del equilibrio de mezcla a partir de los datos de componentes puros K_iy β_i . Si los términos K_AP_A y K_BP_B son suficientemente pequeños,

los términos de mayor orden pueden despreciarse. Bajo estas condiciones la ecuación anterior se reduce a la ecuación de Langmuir extendida.

Ruthven y Wong (1985) a fin de mejorar la predicción de sistemas multicomponentes en sistemas no ideales, han propuesto tomar las integrales de configuración como parámetros ajustables del modelo, de manera que sean estimadas mediante una comparación con los datos experimentales.

El número de integrales de configuración (m) suele ser bastante elevado (4-6 o mayor) en el caso de tamices moleculares caracterizados por cavidades de grandes dimensiones y al no disponer de suficiente información experimental, no es posible evaluar estos parámetros.

Para solventar este problema, los autores sugieren mantener el valor de m pequeño, considerando como subsistema la mitad de una cavidad, con lo que se reduce el número de integrales de configuración a considerar. Con estas premisas se llega a las siguientes isotermas del equilibrio de adsorción.

a) Componente puro:

$$N_{1} = \frac{K_{1}^{P+(K_{1}^{P})^{2}R_{11}}}{1+K_{1}^{P+(K_{1}^{P})^{2}R_{11}}/2}$$
(2.102)

b) Mezcla binaria

$$N_{1} = \frac{K_{1}^{P+(K_{1}^{P})^{2}R_{11}^{+}(K_{1}^{P})(K_{2}^{P})R_{12}^{}}{1+K_{1}^{P}R_{1}^{+}K_{2}^{P}R_{1}^{+}(K_{1}^{P})^{2}R_{11}^{+}(K_{2}^{P})^{2}R_{22}^{+}(K_{1}^{P})(K_{2}^{P})R_{12}^{}}$$
(2.103)

Los parámetros R representan la interacción binaria entre una molécula de tipo i y otra de tipo j.

Los parámetros de interacción R_{ii} se estiman a partir de los datos de los componentes puros, mientras que los coeficientes R_{ij} se calculan como la media geométrica de los parámetros individuales R_{ii} y R_{jj} . Esta aproximación es válida en el caso de mezclas ideales. En el caso de mezclas reales el cálculo de R_{ij} se realiza mediante la siguiente

60

ecuación:

$$R_{ij} = \left(R_{ii}R_{jj} \right)^{1/2} \left(1 - \delta_{ij} \right)$$
(2.104)

Para una mezcla de c componetes, la ecuación (2.103) puede ser generalizada de la siguiente forma:

$$N_{i} = \frac{K_{i}P_{i} \left(1 + \sum_{j=1}^{c} K_{j}P_{j}R_{ij}\right)}{1 + \sum_{k=1}^{c} K_{k}P_{k} \left(1 + 1/2 \sum_{j=1}^{c} K_{j}P_{j}R_{kj}\right)}$$
(2.105)

b) Modelos semiempíricos

Los modelos semiempíricos consiten en la extensión de algunas de las isotermas de adsorción de componentes puros para la obtención de expresiones analíticas sencillas (más o menos empíricas) que permitan la predicción del equilibrio de adsorción de mezclas.

Generalmente son modelos sencillos que consideran adsorción ideal, sin que se produzcan interacciones entre las distintas móleculas que se adsorben. Entre ellos cabe destacar:

i) Extensión del modelo de Langmuir

De forma similar a la isoterma de Langmuir par un componente puro, Markhan y Benton (1931) han extendido dicha ecuación para mezclas multicomponentes. Para el caso particular de una mezcla binaria toma la forma:

$$\theta = \frac{n_{i}}{n_{i}} = \frac{b_{i}P_{i}}{1 + \sum_{i}b_{i}P_{i}}$$
(2.106)

Para que esta ecuación tenga consistencia termodinámica, las cantidades adsorbidas a saturación de los adsorbatos habrán de ser las mismas. Sin embargo, estos mismos autores comprobaron que a pesar de esta inconsistencia termodinámica, estas ecuaciones tenían validez empírica incluso para algunos sistemas como 0,-CO y CO-CO, en gel de sílice, cuyas cantidades adsorbidas a saturación son muy diferentes.

ii) Extensión de la ecuación de Langmuir modificada.

Shay (1956) observó que los parámetros de energía de los gases puros b_i no podían tener en cuenta las interacciones producidas entre especies adsorbidas por lo que modificó la ecuación 2.84 introduciendo un parámetro de interacción μ_i .

$$\Theta = \frac{n_{i}}{n_{i}} = \frac{(b_{i}/\mu_{i}) P_{i}}{1 + \sum_{i} (b_{i}/\mu_{i}) P_{i}}$$
(2.107)

El valor de dicho parámetro depende de los adsorbatos y de la presión y temperatura del sistema y debe ser determinado a partir de los datos de equilibrio de adsorción de mezclas.

iii) Extensión de la ecuación de Freundlilch

Fue realizada por Fritz y Schlünder (1974) y su ecuación particularizada para una mezcla de dos componentes es de la forma:

$$p_{i} = \frac{a_{i} n_{i}}{n_{i} b_{i} + a_{j} n_{j} b_{i}}$$
(2.108)

En esta ecuación los parámetros $a_i y b_i$ se determinan a partir de las isotermas experimentales de componentes puros y los $b_{ij} y b_{ij}$ deben ser determinados a partir de las isotermas binarias.

iv) Extensión de la ecuación de Prausnitz

Para una mezcla de j componentes, Sips (1948) ha propuesto la siguiente ecuacion:

$$\theta = \frac{n_{i}}{n_{i}^{s}} = \frac{b_{i}p_{i}^{n_{i}}}{1 + \sum b_{i}p_{i}^{n_{i}}}$$
(2.109)

Esta ecuación no tiene un sólido fundamento termodinámico, si bien ha proporcionado resultados aceptables en algunos sistemas y ha sido extensamente utilizada para el diseño de equipos de adsorción (Maurer 1980).

2.4. APLICACIONES INDUSTRIALES DE LA ADSORCION

En los procesos industriales de adsorción se pueden diferenciar dos etapas: etapa de adsorción y etapa de desorción. En la mayoría de las instalaciones actuales estas etapas están claramente diferenciadas; de tal manera que el lecho se encuentra en un primer periodo en proceso de adsorción, separando los componentes de la mezcla alimento y en un segundo periodo en un proceso de desorción, para recuperar la capacidad del adsorbente. En los últimos años se están desarrollando procesos en los que la adsorción y la desorción se producen simultáneamente. Entre estos procesos cabe citar: P.S.A. (Pressure Swing Adsorption), SORBEX, MOLEX, etc. Estos y otros procesos serán explicados con más detalle en un apartado posterior.

Antes de enumerar los procesos industriales empleados en la actualidad, se va a comentar los diferentes tipos de desorción que se utilizan en dichos procesos.

Se pueden describir cuatro ciclos básicos y dos combinados:

-Ciclo por aumento de la temperatura.

-Ciclo por arrastre con un inerte.

-Ciclo de arrastre con otro adsorbato.

-Ciclo por reducción de la presión.

-Ciclos combinados.
i) Ciclo por aumento de la temperatura. "Temperature-Swing Cycle".

Este ciclo consiste en realizar la desorción del adsorbato mediante una elevación de la temperatura.

La recuperación del adsorbato suele ser superior a 1 kg por 100 kg de adsorbente y su límite superior suele estar próximo a los 10 kg por 100 kg de adsorbente.

El tiempo total del proceso de desorción oscila generalmente de unas pocas horas a un día. Esto hace que este tipo de desorción se utilice tan solo para recuperar pequeñas concentraciones de adsorbato de la alimentación. Sólo en estos caso el tiempo útil del proceso puede ser una fracción importante.

Este tipo de ciclo puede consumir una cantidad substancial de energía por unidad de adsorbato. Por ello, sólo si la concentración de adsorbato en la alimentación es pequeña, los costes de energía por unidad de alimentación pueden ser razonables.

ii) Ciclo por arrastre con un inerte. "Inert Purge Cycle".

En este tipo de ciclos se consigue la regeneración del adsorbente haciendo pasar por el lecho un agente inerte que arrastra al adsorbato.

Al producirse la desorción tiene lugar una disminución indeseable de la temperatura, porque reduce la capacidad de desorción. El tiempo de duración del ciclo es sólo de unos pocos minutos y casi siempre menor de 10 minutos. La recuperación de la capacidad del adsorbente puede ser total.

iii) Ciclo por desplazamiento con otro adsorbato. "Displacement-Purge Cycle".

En este tipo de ciclo se consigue la desorción haciendo pasar por el lecho un compuesto que es capaz de adsorberse y que a su vez actua como desorbente del otro; de forma que la desorción se produce tanto por el efecto desplazante, como por el efecto de arrastre del nuevo componente.

Así, el desorbente está presente en el adsorbente cuando comienza la etapa de adsorción y por ello contamina el producto no adsorbido. Por tanto, el desorbente debe ser separado posteriormente de las mezclas resultantes.

Durante los procesos de adsorción y desorción del adsorbato se produce simultaneamente la desorción y adsorción del desorbente, por lo que el calor neto generado es prácticamente nulo y el proceso isotermo. Esto hace que se pueda conseguir en este proceso grados de desorción mayores que en el proceso anterior.

Los tiempos usuales de duración de este ciclo son de unos pocos minutos.

iv) Ciclo por reducción de la presión. "Pressure-Swing Cycle".

Este ciclo se caracteriza porque la regeneración del adsorbente se consigue reduciendo la presión absoluta en el sistema en el que se encuentra.

El tiempo requerido para cargar, despresurizar, regenerar y represurizar un lecho es generalmente de unos pocos minutos y en ocasiones puede ser de unos pocos segundos.

Las recuperaciones de capacidad de adsorbente que se logran son, casi siempre, inferiores a 1 kg por 100 kg de adsorbente.

El corto tiempo que dura el ciclo hace que este proceso sea bastante atractivo para los procesos de separación de grandes cantidades de adsorbato.

v) Ciclos combinados.

En ocasiones se utiliza la combinación de varios mecanismos de desorción; así a menudo un "Temperature-Swing Cycle" es combinado con un "Inert-Purge Cycle" para facilitar la regeneración. La corriente de desorbente inerte puede ser una fracción de producto al que se le ha separado el adsorbato.

En los procesos de "Pressure-Swing", es bastante común usar una fracción del producto pobre en adsorbato como un gas para la desorción. La versión más simple de este proceso ha sido llamado "Heatless Fractionation" o, más comunmente "Pressure-Swing Adsorption" (P.S.A.).

Estos tipos de ciclos, podrían constituir una clasificación de los procesos. Existen otras formas de poder clasificar los procesos, como el tipo de adsorbente utilizado, adsorción en fase líquida o gaseosa etc. A continuación se van a exponer las principales aplicaciones industriales de la adsorción (Ruthven, 1984; Wankat, 1986; Yang, 1987)

A) PROCESOS DE SEPARACION DE GASES.

Dentro de los procesos de separación de gases el más utilizado es la separación de parafinas lineales. Todos ellos utilizan la zeolita 5A como adsorbente. Los procesos comerciales existentes y sus características principales son:

- ISOSIV. El alimento es un destilado C_{6} - C_{10} y la regeneración se realiza por P.S.A. con desorción a vacío. El proceso se realiza en fase gas.

- B.P. Regeneración por P.S.A. con desorción a vacío.

- T.S.F. El alimento puede ser C $_{6}$ -C $_{10}$ o queroseno y se regenera por desplazamiento con nafta ligera.

- ENSORB. Mismo alimento que el anterior y regeneración por desplazamiento con amoniaco.

- ELF-N-ISELF. Utiliza como alimento la nafta ligera.

Otro tipo de procesos muy importante es la separación de los componentes del aire. Se pueden destacar dos procesos fundamentales:

- Producción de O_2 con zeolita 5A o 13X y regeneración por P.S.A. (efecto del equilibrio)

- Producción de N₂ con zeolita 4A y regeneración por P.S.A. (efecto cinético).

B) PROCESOS DE SEPARACION DE LIQUIDOS.

Los principales procesos de separación de líquidos son:

- Separación de n-parafinas. Proceso MOLEX que utiliza una zeolita 5A utilizando queroseno como alimento.

- Separación de olefinas de parafinas. Proceso OLEX cuyo alimento es un destilado C.

- Separación de monosacáridos. Proceso SAREX. Se utiliza una zeolita Ca Y y como alimento jarabe de maiz.

- Separación de aromáticos. Hay dos procesos que utilizan como alimento hidrocarburos aromáticos C₈. Uno de ellos es el PAREX (zeolita Sr-BaX) y otro el EBEX (zeolita Sr-KX).

C) PROCESOS DE PURIFICACION DE GASES.

- Secado de gas natural. Zeolita 4A y regeneración por aumento de temperatura.

- Secado de aire. Zeolita 4A y regeneración por aumento de temperatura y disminución de presión.

- Secado de gas de craqueo. Zeolita 3A y regeneración por aumento de temperatura.

- Secado de gas ácido. Chabacita y regeneración por aumento de temperatura.

- Recuperación de CO₂ del aire. Zeolita 4A y regeneración por disminución de presión a vacío.

- Recuperación de SH, de gas ácido. Zeolita Ca A o chabacita Ca.

- Recuperación de CO₂ del aire. Zeolita 4A y regeneración por disminución de presión a vacío.

- Recuperación de SH_2 de gas ácido. Zeolita Ca A o chabacita Ca. Regeneración por aumento de temperatura.

- Recuperación de SO_x y NO_x y Kr⁸⁵ del aire. Se utiliza silicalita y se regenera por aumento de temperatura.

- Recuperación de I¹²⁹ del aire. Zeolita X Ag o mordenita Ag y regeneración por aumento de temperatura.

D) PROCESOS DE PURIFICACION DE LIQUIDOS.

Existen dos procesos fundamentales de separación de líquidos.

- Secado de disolventes orgánicos. Zeolita 3A y regeneración por aumento de temperatura.

- Concentración de alcoholes. El alimento son disoluciones acuosas diluidas procedentes de fermentaciones etc. Se utiliza una zeolita 3A o 4A y se regenera por aumento de temperatura.

- Eliminación de VOC del aire. Carbón activado y regeneración por aumento de temperatura (Ruhl, 1993).

2.5. OBJETO Y ALCANCE DE LA PRESENTE INVESTIGACION.

Como se ha puesto de manifiesto anteriormente, la adsorción se ha convertido en los últimos años en una operación de separación de gran importancia desde el punto de vista industrial. Ello es debido al desarrollo tanto del equipo y procesos utilizados como de nuevos adsorbentes.

Este hecho hace manifiesta la necesidad de disponer de datos de equilibrio y cinéticos, fundamentalmente a elevadas presiones (muy escasos hasta la fecha), así como de modelos para predecir esos datos, que permitan el diseño de los equipos industriales de adsorción.

Dentro de esta línea, en las investigaciones anteriores realizadas en este Departamento se han obtenido datos experimentales de adsorción, tanto de equilibrio como cinéticos, de hidrocarburos ligeros en diferentes adsorbentes como el carbón activado y las zeolitas 5A, 13X y Silicalita (Marrón, 1979; Domingo, 1981; Cabra, 1983; Jimenez, 1989). Así mismo se han desarrollado modelos teóricos para la correlación y predicción de dichos datos.

Aprovechando esta experiencia se consideró interesante continuar el estudio del equilibrio de adsorción, utilizando dos zeolitas tipo ZSM-5 de diferente relación SiO_2/AI_2O_3 , para comprobar la influencia de la composición química del adsorbente en el equilibrio de adsorción. Se añadió al estudio un nuevo tipo de adsorbente, el tamiz molecular de carbón 5A (CMS 5A), y se obtuvieron datos de equilibrio a elevadas presiones para poder contrastar la validez de los modelos en estas condiciones.

El programa de investigación planteado fué el siguiente:

-Puesta a punto de la instalación a presión atmosférica existente y del sistema de análisis; y diseño y puesta a punto de una nueva instalación para la obtención de datos de equilibrio a elevadas presiones.

-Obtención de las isotermas de adsorción de CO_2 , etileno, etano y propano en las dos zeolitas ZSM-5 (SiO_/Al_O_= 29 y 56) a presión atmosférica. Obtención de las isotermas de CO_2 , etileno y etano en CMS 5A y zeolita 5A a elevadas presiones, todas ellas a diferentes temperaturas.

-Ajuste de las isotermas experimentales a diferentes isotermas teóricas existentes en la bibliografía, (Langmuir, B.E.T., Prausnitz, Toth y UNILAN) y comparación de los resultados obtenidos.

-Obtención de la curva característica de equilibrio de adsorción para los cuatro adsorbentes.

-Estudio de la influencia de la composición química del adsorbente

en el equilibrio de adsorción de componentes puros.

-Obtención de las isotermas experimentales de los sistemas binarios de CO₂, etileno y propano en las dos zeolitas ZSM-5 y de los de CO₂, etileno y etano, en CMS 5A y zeolita 5A.

-Obtención de las isotermas experimentales de mezclas de los sistemas ternarios CO_2 -etileno-propano en zeolita ZSM-5 (SiO_/Al_2O_3=29) y CO_2 -etileno-etano en CMS 5A y zeolita 5A a 293 K.

-Desarrollo de los programas de cálculo para la aplicación de los modelos de la Solución Adsorbida Ideal (IAS), Solución Heterogénea Adsorbida Ideal (HIAS), Solución Adsorbida Real (RAS) y Dependencia de la Presión Superficial (SPD) a estos sistemas; realizando las modificaciones necesarias para la aplicación de los modelos a elevada presión.

-Aplicación de los modelos del Disolvente Imaginario (VSM) y Termodinámico Estadístico (STM) a los datos obtenidos en CMS 5A para contrastar los resultados obtenidos con estos modelos a elevadas presiones.

-Comparación de los resultados obtenidos con los diferentes modelos.

-Estudio de la influencia de la composición química del adsorbente en el equilibrio de adsorción de mezclas.

3. INSTALACION EXPERIMENTAL.

Para la realización de la presente investigación se dispuso de dos instalaciones experimentales; una instalación atmosférica para trabajar en un intervalo de presiones de O a 100 KPa., y una instalación a presión que puede trabajar de O a 5000 KPa.

3.1. INSTALACION ATMOSFERICA

En esta investigación se ha contado con una instalación volumétrica de características similares a las instalaciones del Departamento de Ingeniería Química de la Universidad Complutense de Madrid ya utilizadas en otras investigaciones (Marrón, 1979; Cabra, 1983; Jiménez, 1989; Costa, 1991). Dicha instalación se muestra en la figura 3.1.

Fundamentalmente, consiste en un circuíto cerrado de vidrio totalmente estanco, al que se han integrado los siguientes elementos:

<u>Columna de adsorción (1).</u>

Consta de un cilindro de vidrio Pyrex de 5.1 cm de diámetro interno

- 1. Lecho de adsorción.
- 2. Camisa termostática.
- 3. Termopar.
- 4. Compresor de gases.
- 5. Manómetro.
- 6. Bureta de gases.
- 7. Llave de tres vías.

- 8. Frasco trampa.
- 9. Rotámetro.
- 10. Cromatógrafo.
- 11. Integrador.
- 12. Registro de temperatura.
- 13. Gases.

Figura 3.1. Instalación experimental a presión atmosférica.

y 26 cm de altura. En la base se encuentra soldada una placa porosa de vidrio para el soporte del adsorbente, provocando una pérdida de carga muy pequeña.

La colummna se puede aislar del resto de la instalación por medio de dos llaves de teflón.

Camisa de termostatización (2)

La columna de adsorción se encuentra rodeada por una camisa de vidrio de 9 cm de diámetro y 25 cm de altura, a través de la cual pueden circular un líquido procedente de un baño termostatizado (agua), cuya temperatura se mide con un termómetro de mercurio.

<u>Termopar (3) y registro de temperaturas (12)</u>

En la instalación hay un termopar (3), marca Termocoax, modelo 2AB35, situado aproximadamente en el centro del lecho adsorbente. La entrada del termopar a la columna de vidrio queda sellada por una unión rígida roscada para alto vacío, con lo que se asegura la estanqueidad de la instalación.

Las medidas de temperatura de este termopar se visualizan por un registro de temperaturas (12), marca Hitachi, modelo 561 recorder. De esta manera se controla la temperatura del lecho.

<u>Compresor</u> <u>de</u> <u>gases</u> (4)

Se utiliza un compresor de membrana de la marca Compton, modelo 2D/416-2e, en el que las superficies y elementos internos en contacto con el gas son de acero inoxidable. El compresor cumple las condiciones de estanqueidad y de no interferir en la adsorción. La unión del compresor a la instalación se realiza mediante juntas tóricas de neopreno, para conservar la estanqueidad de la misma.

El compresor sirve para hacer circular los gases a través del lecho con lo que se acelera el alcance del equilibrio y para homogeneizar las mezclas de gases.

Manómetro (5)

El manómetro de mercurio esta conectado a la instalación y a la atmósfera. La finalidad de este manómetro es la de conocer en cada momento del experimento la presión aproximada en el interior de la instalación. La sección del manómetro es capilar para reducir al máximo las variaciones de volumen en la instalación.

Bureta de gases (6) y Llave de tres vías (7)

La bureta de gases consiste en un cilindro graduado de vidrio, con una camisa de refrigeración: a través de la bureta se introducen los gases en la instalación conocida la presión, la temperatura y el volumen. La conexión de la bureta de gases con la instalación y la entrada de gas desde las botellas se realiza mediante una llave de tres vías (7), descrita en anteriores trabajos (Jimenez 1989) con la que se consigue reducir el volumen muerto de la instalación en la carga.

Frasco trampa (8)

A continuación y en la parte superior del lecho hay un frasco trampa, relleno de esferas de vidrio, cuyo objetivo es retener las posibles partículas de adsorbente que pueden ser arrastradas por el gas para que de esta manera no pasen a la instalación, lo que sería causa de error en posteriores experimentos.

Rotámetro (9), Cromatógrafo de gases (10)

La instalación esta conectada a un cromatógrafo de gases marca Hewlet-Packart, modelo 5840 A con detector de conductividad térmica. El cromatógrafo está conectado a un integrador (11) de la misma marca y modelo. Con este cromatógrafo se analiza el gas de la instalación, para conocer la composición de la fase gaseosa. Así mismo se puede determinar con el cromatógrafo la presión de la fase gaseosa mediante calibrados. Los gases antes de llegar al cromatógrafo pasan por un rotámetro (9) cuya finalidad es índicar el caudal de gas al cromatógrafo.

Botellas de gases (13), (14)

Los adsorbatos (13) y el gas inerte (14) llegan a la instalación desde unas botellas a presión suministradas por las compañías S.E.O.. y Liquid Carbonic. Dichas botellas van provistas de manorreductores para controlar la entrada de los gases a la bureta.

Frasco Burbujeador (15)

Este frasco esta lleno de agua, y se utiliza simplemente para comprobar que hay circulación de gases.

3.2 INSTALACION A PRESION

La instalación destinada a la obtención de datos de equilibrio a elevadas presiones es también del tipo volumétrico similar a las utilizadas por otros autores (Kaul, 1987; Giacobbe, 1991). Básicamente consiste en un circuito cerrado de acero inoxidable de 1/4" de diámetro en el que se encuentran el lecho de adsorción, la bomba de recirculación y el sistema de análisis. El esquema de dicha instalación se presenta en la figura 3.2, y sus componentes básicos son los siguientes.

Lecho de adsorción (A)

Consiste en un cilindro de acero inoxidable de 1" de diámetro y 300 mm de altura. Va provisto de una camisa exterior del mismo material, de la misma longitud y 40 mm de diámetro, que sirve para hacer circular por ella el líquido procedente de un baño termostático para mantener constante la temperatura del lecho. Esta camisa va roscada al lecho de tal forma que puede extraerse para conectar el horno de regeneración.

Horno de regeneración (B)

Está constituido por un nucleo de calefacción de acero inoxidable de 23 mm de espesor y 1" de diámetro interno, en cuyo interior van alojadas seis resistencias eléctricas de 200 mm de longitud, 6,5 mm de diámetro y 350 W. Estas van conectadas en serie a un controlador de temperatura marca JUMO modelo MRO(S)-96/di,d4 que sirve para mantener el lecho a la temperatura de regeneración deseada.

- A) Lecho de adsorción
- B) Horno de regeneración
- C) Regulador de volumen
- D) Bomba de recirculación
- E) Transductores de presión

- F) Medida de la temperatura
- G) Cromatógrafo
- TC) Controlador de temperatura
- TIi) Termopares

Figura 3.2. Instalación experimetal a presión elevada.

Rodeando al nucleo de calefacción hay una carcasa de acero inoxidable de 120 mm de diámetro y 1,5 mm de espesor.Esta carcasa va dotada de un sistema de sujección y de un sistema de apertura para conectar y desconectar el horno al lecho de adsorción. El espacio comprendido entre el nucleo y la carcasa está relleno de aislante (lana de vidrio).

<u>Regulador de volumen (C)</u>

Este aparato es un regulador de volumen de la empresa VOLUMETRICS modelo VM-1. Sus especificaciones son las siguientes:

-Presión de trabajo 0-7000 KPa -Temperatura de trabajo 273-323 K.

El regulador permite realizar cambios de volumen conocidos con precisión en la instalación y tiene dos importantes funciones, medida con exactitud del volumen de la instalación y ajuste a la presión deseada en los puntos de equilibrio por cambio del volumen de la instalación, (ver apartado de procedimiento operativo 4.3).

Bomba de recirculación (D)

Se trata de una bomba de paletas Marca BREY Mod. TFK 5-M/H2.

Especificaciones:

- Presión de trabajo 0-5000 KPa.
- Temperatura de trabajo 273-353 K.

Sirve para hacer circular los gases a través del lecho y para homogeneizar las mezclas gaseosas.

<u>Transductores</u> <u>de presión (E)</u>

Marca GEOMETRICS SERIE PDM-5000. Se dispone de dos trasductores, uno para un intervalo de presiones de 0-500 KPa y otro de 0-5000 KPa. La precisión es del 0,5 % de la escala total. Este hecho es el que impone el uso de dos trasductores, ya que el error relativo del trasductor de 0-5000 KPa es muy elevado a bajas presiones.

<u>Medida de la temperatura (F)</u>

La temperatura se mide en tres puntos de la instalación:

```
-Interior del lecho (TI1)
-Salida del lecho (TI2)
-Circuito de introducción de gases (TI3)
```

Los aparatos de medida son sondas de temperatura Pt-100 con una vaina de acero inoxidable de 3 mm de diámetro y 500 mm (TI1) y 100 mm (TI2, TI3) de longitud. Estas sondas van conectadas directamente a la instalación por medio de una rosca y un bicono. El aparato de medida es un indicador marca JUMO y un conmutador de la misma marca.

La precisíon lograda en la medida de temperatura por medio de estos aparatos es de \pm 0.1 K.

<u>Sistema de análisis (G)</u>

Para el análisis de las mezclas gaseosas se dispone de un cromatógrafo de gases Hewlett-Packard Mod. 5840 A. La columna y condiciones de análisis están en función de las mezclas que se desee analizar, las condiciones de análisis están reflejadas en el apéndice (9.1.3).

4. MATERIALES Y PROCEDIMIENTO.

4.1 ADSORBENTES

En la presente investigación se han utilizado dos tipos de adsorbentes: zeolitas ZSM-5 y 5A, y tamiz molecular de carbón. En un principio, con la instalación atmosférica, se utilizaron zeolitas del tipo ZSM-5 con diferente relación SiO_2/Al_2O_3 , (29 y 56), con las que posteriormente se realizaron isotermas de componentes puros a presión elevada con el fin de poner a punto el nuevo equipo experimental. Con esta instalación de alta presión, se realizaron los estudios de adsorción, básicamente con zeolitas 5A y tamiz molecular de carbón.

Las zeolitas del tipo ZSM-5 utilizadas han sido sintetizadas en los laboratorios del departamento de Ingeniería Química de la Universidad Complutense de Madrid (Costa, 1987). Los tratamientos necesarios para su posterior utilización como adsorbentes, así como los datos obtenidos en su caracterización están descritos en el apartado 9.1.1.

Las partículas llevan un 30% de aglomerante, (bentonita), y un 70% de adsorbente. Son de geometría cilíndrica de un tamaño de (5x5 mm.), y una densidad de partícula de 0.88 g/cm³. El peso de adsorbente utilizado

en la instalación atmosférica tiene un valor comprendido entre 35 y 45 g., mientras que en la instalación a presión entre 15 y 20 g.

Para realizar el estudio de la adsorción a elevadas presiones se han utilizado dos adsorbentes. Uno de ellos es una zeolita comercial del tipo 5A suministrada por Union Carbide In. Co., que tenían un contenido aproximado del 20% de aglomerante inerte. La cantidad de adsorbente en todos los experimentos fue de 20.05 g., en forma de pastillas cilíndricas de 1.6 mm. de diámetro (1/16 de pulgada). Al tratarse de una zeolita comercial ya aglomerada, no se ha podido realizar una caracterización completa de este adsorbente.

El otro adsorbente es un tamiz molecular de carbón 5A suministrado por el fabricante. El adsorbente se presentaba en forma de pastillas cilíndricas de 4 mm de longitud y unos 2 mm de diámetro. La cantidad de adsorbente utilizada fue de 4.45 g. A continuación se presentan las propiedades más importantes del tamíz molecular según la caracterización facilitada por la Universidad de Tokio. (*)

- Densidad de partícula (g/cm ³):	0,90
- Densidad real (g/cm ³):	1,80
- Volumen de macroporos (cm ³ /g carbón):	0,38
- Volumen de microporos (cm ³ /g carbón):	0,18
- Volumen total de poros (cm³/g carbón)	: 0,56
- Porosidad de macroporos:	0,342
– Radio de macroporo (μ):	2,0
- Apertura de microporo (Å):	5

(*) Prof. M. Suzuki, Dept. Ingeniería Química, Universidad de Tokio.

4.2. GASES

Los gases utilizados fueron: etano, etileno, propano y dióxido de carbono. Se empleó helio como diluyente inerte de los anteriores y como gas portador para el cromotógrafo de gases.

Las compañías suministradoras, la denominación y la pureza de los gases están indicadas en la tabla 4.1

Gas	compañía	denominación	pureza %
CO ₂	S.E.O.	N35	99.95
etano	Liquid Carbonic	L35	99.95
etileno	Liquid Carbonic	L25	99. 5
propano	S.E.O.	N35	99.95
Helio	Liquid Carbonic	L48	99.995

Tabla 4.1.

4.3 PROCEDIMIENTO

<u>4.3.1 PREPARACION DE LA INSTALACION ATMOSFERICA:</u> Estanqueidad y regeneración

Antes de la realización de los experimentos había que comprobar en la instalación la estanqueidad. Para ello se hacía vacío en la instalación sin adsorbente, llegando a presiones de 0.013 KPa; se observaba la variación de la misma con el tiempo hasta llegar a un total de 24 horas. La misma operación se realizaba con presiones comprendidas entre 0-105 KPa. En todos los casos se comprobó una estanqueidad aceptable, inferior a 0.01 KPa/hora. A modo de ejemplo, se muestra en la Tabla 4.2 las variaciones de presión que se producían al cabo de 24 horas a tres presiones diferentes. Estas comprobaciones se repetían cada cierto tiempo, sin adsorbente en el lecho.

Tabla 4.2.

COMPROBACION DE ESTANQUEIDAD						
PRESION	INCREMENTO DE PRESION A 24 h					
0.013 KPa.	0.25 KPa.					
53.33 KPa.	0.13 KPa.					
93.33 KPa.	0.25 KPa.					

Para la realización de los diferentes experimentos, era necesario la regeneración del adsorbente. Para ello, se hacía vacío en la instalación, donde se encuentra el sólido, hasta presiones de 0.013 KPa. y se calentaba el mismo, mediante una resistencia enrollada al lecho, hasta una temperatura de 230-250 ^OC. Estas condiciones se mantenían durante un tiempo comprendido entre 12 y 14 horas. Con estas condiciones se aseguraba la total reproducibilidad de los experimentos.

4.3.2. EXPERIMENTOS DE ADSORCION A PRESION ATMOSFERICA.

El primer paso en un experimento de adsorción era introducir helio, que sirve como diluyente de los gases cuya adsorción se va a estudiar, y que permite una adecuada homogenización de los adsorbatos. Así, se introducía, al inicio de la isoterma, una cantidad aproximada de helio correspondiente a una presión de 13.33 KPa. en la instalación. Previamente se había comprobado el comportamiento inerte del helio respecto a la adsorción en las condiciones experimentales.

Las condiciones isotermas del lecho se aseguraban haciendo circular agua en circuito cerrado, procedente del baño termostatizado, a través de la camisa exterior al lecho. Así mismo, se mantenía constante la temperatura del laboratorio por medio de un acondionador de aire, con el fin de eliminar variaciónes apreciables de temperatura en el resto de la instalación.

Una vez incorporado el helio, se introducía en un volumen conocido de los adsorbatos mediante una bureta de gases graduada. Medidas adicionales de la temperatura ambiente (medida con un termómetro), la presión atmosférica (medida con un barómetro) permitían conocer mediante la ley de los gases ideales el número de moles de cada gas introducido.

A continuación se hacía circular la mezcla gaseosa en el circuito cerrado, a través del lecho adsorbente, de forma intermitente para evitar el aumento de la temperatura del sistema. Una vez trascurridos de 20 a 25 minutos se realizaba el primer análisis de la fase gaseosa por cromatografía de gases, haciendo circular el gas de la instalación a través del aparato. Los análisis se continuaban hasta que la composición del gas fuese constante. Era entonces cuando se consideraba alcanzado el equilibrio.

El análisis cromatográfico, a partir de las rectas de calibrado, permitía conocer las presiones parciales en la fase gaseosa en equilibrio con la fase adsorbida. A partir de este dato, y la temperatura y el volumen de la instalación, se podía calcular el número de moles de cada componente en la fase gaseosa en el equilibrio. Con éste y conociendo la cantidad de gas introducido de cada componente, se calculaba, mediante un sencillo balance de materia, la cantidad adsorbida en el equilibrio, tal y como se describe en el apartado 9.2.4. del apéndice.

Finalizado un punto de la isoterma, se obtenía el siguiente mediante la introducción de nuevas cantidades de gas a la instalación y procediendo de igual modo. De esta manera se obtenían puntos experimentales hasta llegar a un límite de presión de 106.66 KPa.

En las isotermas de mezclas, la relación molar de los gases introducidos se mantenía constante.

Para la obtención de las isotermas de desorción, una vez llegado al punto final de la isoterma de adsorción, se aislaba el lecho de adsorción y se hacía vacío el resto de la instalación cuyo volumen había sido determinado previamente. De este modo se conocía el número de moles que se habían sacado de la instalación. A continuación se ponía en contacto el lecho de adsorción con el resto de la instalación y se volvía a alcanzar el equilibrio al igual que se realizaba en las isotermas de adsorción.

De este modo, por un sencillo balance de materia se conocía el nuevo punto de equilibrio. Los diferentes puntos de la isoterma de desorción se obtenía repitiendo estas operaciones.

<u>4.3.3.</u> PREPARACION <u>DE LA INSTALACION A PRESION:</u> Estangueidad y regenera ción

Para comprobar la estanqueidad de la instalación se introducía helio a distintas presiones y se observaba la variación de presión al cabo de unas 24 horas. Estas variaciones de presión se corregían, en caso necesario, por efecto de la posible variación de la temperatura en ese periodo.

En la tabla 4.3. se presentan los resultados obtenidos. Se puede observar que los resultados son aceptables.

COMPROBACION DE ESTANQUEIDAD						
P _{inic} (KPa)	T _{inic} .(K)	P (KPa) final	T _{final} (K)			
85.7	295.5	87.1	296.0			
484.5	293.9	485.5	294.0			
2464.0	293.3	2464.0	293.4			
4490.0	294.2	4446.0	292.5			

Tabla 4.3.

Del mismo modo que en la instalación atmosférica, para regenerar el adsorbente entre dos isotermas, era necesario desgasificar la instalación y calentar el lecho a temperaturas del orden de 250°C. Esta temperatura se determinó en los experimentos previos, estudiando la reproducibilidad de los mismos.

Para obtener estas condiciones de regeneración, se realizaba vacío en la instalación por medio de una bomba rotatoria hasta presiones de 0.013 KPa. El lecho se calentaba mediante el horno y el controlador de temperatura descritos en el apartado de instalación experimental.

4.3.4. EXPERIMENTOS DE ADSORCION A PRESION ELEVADA.

i) Componentes puros.

Antes de comenzar la isoterma, se introducía helio como diluyente y para permitir la completa homogeneización de los adsorbatos. Previamente se había comprobado que la adsorción de He era despreciable frente a la cantidad adsorbida de los adsorbatos.

A continuación se aislaba el lecho con las válvulas 1 y 4 cerradas (Fig. 3.2.)y se introducía el adsorbato en la zona de carga que tenía un volumen y temperatura conocidos. Con estos datos y el de la presión existente en la zona de carga se podía calcular el número de moles introducidos.

Posteriormente se abrían las llaves y se ponía en marcha la bomba de circulación de gases para hacer pasar los adsorbatos a través del lecho. Cuando esto sucedía, se observaba un aumento brusco de la temperatura. Para mantener condiciones isotermas se hacía circular agua procedente de un baño termostatizado a través de la camisa que rodeaba el lecho.

Se consideraba alcanzado el equilibrio cuando la presión y la temperatura permanecían constantes. Con el volumen total de la instalación, la presión y la temperatura de la misma, por un sencillo balance de materia se calculaba la cantidad adsorbida.

ii) Isotermas de mezclas.

El procedimiento era similar al caso anterior. La introducción de los adsorbatos se realizaba de forma consecutiva en la zona de carga y posteriormente se abrían las válvulas 1 y 4 para hacer circular la mezcla a través del lecho de adsorción.

Para conocer la composición de la fase gaseosa y consecuentemente la de la fase adsorbida, se disponía de un cromatógrafo de gases en linea con la instalación.

Para realizar los análisis se aislaba una zona de la instalación con un volumen conocido $(2, 3 \text{ cm}^3)$ por medio de las llaves 1,2 y 3 (Fig. 3.2.)y se expandía a través de una conducción a la válvula automática de gases del cromatógrafo, realizandose el análisis. A continuación se hacía vacío para eliminar los restos del análisis y se volvía a repetir este procedimiento hasta que dos análisis consecutivos coincidían. En este momento se consideraba alcanzado el equilibrio y se podía calcular las presiones parciales de cada adsorbato en la fase gaseosa y posteriormente la cantidad adsorbida de cada uno de ellos mediante un balance de materia.

Las condiciones de análisis se describen en el apéndice 9.2.3.

5. RESULTADOS

A continuación se presentan los resultados obtenidos. Estos resultados se presentan en forma de isotermas experimentales, representando, presión de la fase gaseosa (KPa) frente a cantidad adsorbida (mol/Kg), al investigar el equilibrio de adsorción de:

a) componentes puros y mezclas gaseosas de etileno, etano, propano y dióxido de carbono en zeolitas ZSM-5 relación SiO_2/Al_2O_3 29 y 56 a presión atmosférica.

b) etileno, etano y dióxido de carbono, en zeolita 5A y tamiz molecular de carbón 5A a presión elevada.

5.1. ISOTERMAS DE COMPONENTES PUROS A PRESION ATMOSFERICA.

Se han determinado experimentalmente las isotermas de adsorción y desorción de los componentes puros CO2, etileno, propano y etano a 293 K. Así mismo se determinaron las isotermas de adsorción de los componentes puros CO2, etileno y propano a 281 y 308 K. Todas estas isotermas fueron obtenidas en un intervalo de presiones de O a 105 KPa.

Los resultados obtenidos se presentan en las tablas 5.1 a 5.7.

Isotermas de componentes puros en ZSM-5 (SiO_/Al_O_ = 29) a 281 K.						
	C0 ₂	Et	ileno	Pr	opano	
P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)	
1.08	1.1686	0.73	1.0676	2.60	1.4969	
6.57	1.5500	7.41	1.5205	7.66	1.5683	
17.16	1.7711	16.03	1.6977	17.44	1.6107	
30.18	1.9268	32.82	1.8486	34.23	1.6501	
51.69	2.0444	51.44	1.9438	55.12	1.6658	
81.63	2.1477	81.15	2.0353	83.20	1.6867	

TABLA 5.1.

TABLA 5.2.

_	со ⁵	Et	ileno	Pr	орапо
P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)
0.20	0.5653	2.79	0.9645	0.83	1.0119
2.09	0.9921	7.00	1.1401	3.71	1.2286
6.37	1.1663	12.75	1.2750	10.63	1.3339
18.57	1.4019	24.49	1.4450	19.21	1.3958
39. 79	1.6148	44.52	1.5883	42.51	1.4559
60. 45	1.7471	68.14	1.7407	64.10	1.5392
88.75	1.8686	90.63	1.8374	90.37	1.6052

87

Isotermas de componentes puros en ZSM-5 $(Si0_2/A1_20_3 = 29)$ a 293 K.							
C02		Et	ileno	Pr	орало		
P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)		
ADSORCION							
1.37	1.0048	0.18	0.7379	0.27	0.9642		
6.68	1.3193	3.46	1.1487	3.48	1.2982		
13.15	1.4740	8.56	1.3227	8.06	1.4903		
26.32	1.7321	14.06	1.4231	18.96	1.5559		
39.12	1.8592	41.60	1.7303	33.77	1.5871		
66.57	2.0194	53.63	1.8084	54.70	1.6105		
91.02	2.1141	69.87	1.8827	71. 5 1	1.6262		
		92.30	1.9902	88.06	1.6510		
		DES	ORCION				
47.08	1.9012	45.34	1.7603	35.06	1.5842		
26.93	1.7422	24.96	1.5589	17.92	1.5552		
17.45	1.5547	15.65	1.4628	10.67	1.4985		
12.30	1.4627	11.29	1.3752	6.69	1.4318		
8.45	1.4020	8.14	1.3120	4.00	1.2986		

TABLA 5.3.

Isotermas de componentes puros en ZSM-5 ($SiO_2/AI_2O_3 = 56$) a 281 K.							
CO2		Eti	Etileno		Propano		
P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)		
1.53	0.7682	1.32	0.7788	1.12	1.3650		
4.70	0.9904	4.83	1.0828	5.67	1.5537		
12.52	1.2812	12.40	1.3852	11.97	1.5983		
32.80	1.6326	31.79	1.6627	28.37	1.6514		
50.11	1.7557	56.22	1.7955	52.67	1.6906		
84.58	1.9024	82.19	1.8990	80.78	1.7102		

TABLA 5.4.

TABLA 5.5.

Isotermas de	componentes	puros	en ZSM-5	(Si0,/A1,0,	= 5	56)	a :	308	Κ.
--------------	-------------	-------	----------	-------------	-----	-----	-----	-----	----

	C0 ₂	Etileno		Pro	opano
P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)
2,92	0.5856	2.14	0.6130	2.05	1.0689
7.24	0.7581	5.87	0.8038	6.04	1.2473
14.80	0.9419	14.68	1.0534	13.50	1.3369
26.46	1.1168	26.69	1.2410	22.77	1.3795
47.69	1.3290	39.10	1.3787	44.36	1.4784
68.23	1.4632	61.55	1.5305	64.01	1.5357
92.33	1,6016	85.41	1.6814	87.24	1.5943

Isotermas de componentes puros en ZSM-5 (Si0/Al_0 = 56) a 293 K.							
CO ₂ Etileno		Pro	opano				
P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)		
ADSORCION							
1.20	0.6235	2.07	0.7265	0.18	0.9234		
8.29	1.0074	5.17	0.9362	7.63	1.4761		
18.10	1.2299	11.23	1.1650	16.16	1.5375		
32.18	1.4390	21.31	1.3820	29.18	1.5772		
52.28	1.5887	42.81	1.5865	53.44	1.6073		
72.91	1.7296	62.77	1.7331	74.40	1.6312		
94.94	1.8324	84.31	1.8382	91.20	1.6650		
		DESO	RCION				
49.16	1.5604	47.84	1.6384	36.68	1.5906		
27.88	1.3789	26.37	1.4398	18.72	1.5572		
18.39	1.2202	16.01	1.2685	10.59	1.4997		
12.46	1.1086	11.85	1.1666	6.85	1.4320		
8.6 8	1.0135	8.83	1.0706	5.06	1.3511		

.

TABLA 5.6.

.

Isotermas de etano en ZSM-5 $(Si0_2/A1_2_3) = 56 y 29)$ a 293 K.							
Si0 ₂ /A	$1_{2^{\circ}3}^{\circ} = 29$	Si0 ₂ /A	$1_{20_3} = 56$				
P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)				
ADSORCION							
1.43	0.7188	1.52	0. 4292				
7.51	1.1714	9.51	1.0669				
20.16	1.3673	27.55	1.3525				
37.17	1.4839	45.22	1.4584				
59.06	1.5601	65.39	1.5018				
85.72	1.6232	95.97	1.5571				
		DESORCION					
34.67	1. 4727	45.44	1.4633				
16.57	1.3222	25.30	1.3469				
9.33	1.2012	15.88	1.2083				
6.07	1.0593	11.48	1.1271				
4.01	0.9082	8.43	1.0421				

TABLA 5.7.

5.2. ISOTERMAS DE COMPONENTES PUROS A ALTA PRESION.

Se han determinado experimentalmente las isotermas de adsorción de los componentes puros CO2, etileno y etano en zeolita 5A y tamiz molecular de carbón 5A a las temperaturas de 293, 278 y 308 K . Todas estas isotermas fueron obtenidas en un intervalo de presiones de O a 1500 KPa en el caso del CMS 5A y de O a 3000 KPa para la zeolita 5A.

Los resultados obtenidos se presentan en las tablas 5.8. a 5.13.

Isotermas de componentes puros en CMS 5A a 278 K. **C**0ء Etileno Etano P(KPa) n(mol/Kg) P(KPa) n(mol/Kg) P(KPa) n(mol/Kg) 35.28 2.2293 28.42 2.4285 43.12 2.5170 78,40 70.56 64.68 2.7954 2.8935 2.6880 89.18 3.0819 110.74 3.0864 109.76 2.8858 3.4560 158.76 139.16 153.86 3.2601 3.0892 193.06 3.7586 204.82 3.4717 204.82 3.2358 294.00 4.2382 308.70 3.7943 309.68 3.5258 4.5932 406.70 4.0817 394.94 408.66 3.7861 4.3060 500.78 490.00 4.8412 507.64 4.0129 690.90 5.2551 706.58 4.6062 710.50 4.3316 883.96 5.5881 909.44 4.9025 902.58 4.5833 1100.54 5.8859 1098.58 5.0685 1127.00 4.8574 1295.56 6.0816 1295.56 5.2317 1307.32 5.0019 1533.70 6.1894 1491.56 5.3556 1498.42 5.1399

TABLA 5.8.

Isotermas de componentes puros en CMS 5A a 293 K.						
C0 ₂		Etileno		Ê	Etano	
P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)	
45.08	1.9141	36.26	2.2183	39.20	2.2104	
71.54	2.3210	80.36	2.6552	71.54	2.4554	
96.04	2.6256	109.76	2.8042	102.90	2.6031	
145.04	3.0266	158.76	2.9781	146.02	2.7383	
196.00	3.3240	212.66	3.1202	204.82	2.8720	
316.54	3.8172	318.50	3.3407	321.44	3.2016	
442.96	4.3048	444.92	3.6426	443.94	3. 4992	
606.62	4.6967	632.10	3.9968	614.46	3.7796	
766.36	4.9998	784.98	4.2594	774.20	3. 9844	
932.96	5.2265	943.74	4.4256	947.66	4.1522	
1210.30	5.5003	1209.32	4.7257	1227.94	4.3745	
1498.42	5.7507	1496.46	4.9280	1516.06.	4.4102	

TABLA 5.9.

Isotermas de componentes puros en CMS 5A a 308 K.					
C0 ₂		Etileno		E	tano
P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)
57.82	1.5844	48.02	1.9994	45.08	1.9760
90.16	1.9713	92.12	2.3410	72.52	2.1796
143.08	2.3925	142.10	2.5535	122.50	2.3795
196.00	2.6945	193.06	2.6945	192.08	2.5460
297.92	3.1238	2 9 7.92	2.8719	296.94	2.7807
449.82	3.6322	397.88	3.0817	398.86	2.9426
622.30	4.0937	497.84	3.2598	497.84	3.0872
790.86	4.4073	701.68	3.4963	793.80	3.3770
987.84	4.6915	908.46	3.6978	1004.50	3.5240
1185.80	4.9204	1110.34	3.9118	1197.56	3.6611
1387.68	5.1981	1337.70	4.1367	1394.54	3.8022
1585.64	5.3942	1550.36	4.3179	1618.96	3.8299

TABLA 5.10.

ŗ

Isotermas de componentes puros en zeolita 5A a 281 K.						
C0 ₂		Etileno		Etano		
P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)	
27.96	4.3693	42.08	3.0929	54.64	2.4578	
277.50	5.0175	237.48	3.5960	198.15	2.8156	
866.16	5.4028	569.92	3.8999	482.13	3.0692	
1418.42	5.5466	1028.99	4.1303	995.15	3.2783	
1937.34	5.7010	1632.27	4.3905	1827.96	3.4413	
2452.32	5.8030	2317.94	4.4770	2610.25	3.5042	
2944.75	5.8492	3055.59	4.5024	3051.67	3. 5204	

TABLA 5.11.

TABLA 5.12.

,

Isotermas de componentes puros en zeolita 5A a 308 K.						
C0 ₂		Etileno		E	tano	
P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)	
31.39	3.9095	180.79	3.0648	143.02	2.2868	
236.80	4,5418	406.99	3. 3735	307.13	2.6049	
582.28	4, 9635	713.72	3.6193	528.13	2.8131	
1074.71	5.1915	1023.70	3.8100	1049.99	3.0209	
1793.73	5.4236	1576.35	4.0836	1663.07	3.2074	
2524.52	5,6038	2538.65	4.3096	2683.23	3.2550	
3346.54	5.7061	3265.12	4.3256	3252.17	3.2708	

Isotermas de componentes puros en zeolita 5A a 293 K.					
co ₂		Etileno		Etano	
P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)	P(KPa)	n(mol/Kg)
0.88	3.0745	8.33	2.3772	22.25	1.6039
1.57	3.2599	19.99	2.6520	30.18	1.7868
10.29	3.8450	39.92	2.9089	47.33	2.0095
23.22	4.0846	69.97	3.0835	64.46	2.2036
46.84	4.2745	91.53	3.1642	81.42	2.3464
72.72	4.3748	104.37	3.2112	98.20	2.4199
102.31	4.5065	223.55	3. 4211	257.79	2.7714
222.57	4.7566	479.67	3.6822	527.74	2.9901
502.73	5.0167	987.80	3.9997	1077.06	3.2253
1053.03	5.3004	1612.65	4.2291	1787.25	3.3566
1622.95	5.5079	2215.92	4.4027	2448.40	3. 4211
2259.57	5.6279	2815.27	4.4296	2987.91	3. 4489
2990.36	5.7519	3428.35	4.4397	3467.59	3.4516
3485.24	5.7874				

TABLA 5.13.

5

5.3. ISOTERMAS DE MEZCLAS BINARIAS A PRESION ATMOSFERICA.

Se han obtenido las isotermas experimentales a 293 K de las mezclas binarias CO_2 -etileno, CO_2 -propano y etileno-propano en las dos zeolitas ZSM-5 (SiO_/Al_O_3 = 29 y 56). En las tablas 5.14 a 5.19. se presentan los resultados obtenidos en forma de isotermas individuales, cantidad adsorbida (mol/Kg) frente a presión parcial en la fase gaseosa (KPa) de cada uno de los componentes de la mezcla.

Cada isoterma de mezcla se corresponde a un valor de la relación volumétrica inicial V_1/V_2 con que se introducen cada uno de los adsorbatos al sistema.

TABLA 5.14.

Isotermas de adsorción de mezclas binarias CO_2 (1)						
etlleno (2) e	n zeolita 25	-5 (510/A1 0) 2 2 3	= 29) a 293 K			
$V_{1}/V_{2} = 1/8$						
P ₁ (KPa)	P ₂ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)			
0.81	3.44	0.1211	1.0251			
1.70	8.55	0.1387	1.2026			
2.94	16.22	0.1551	1.3819			
5.21	31.13	0.1706	1.5786			
8.40	54.11	0.1796	1.6979			
10.86	73.08	0.1857	1.7634			
$V_{1}/V_{2} = 1/4$						
Р ₁ (КРа)	P ₂ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)			
0.70	1.17	0.1902	0.7909			
2.96	7.07	0.2504	1.0908			
5.41	14.49	0.2821	1.2662			
8.42	23.98	0.3062	1.4189			
14.66	45.72	0.3228	1.5468			
20.04	67.11	0.3460	1.6455			
$V_1/V_2 = 1/2$						
P (KPa)	P ₂ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)			
1.94	1.79	0.3769	0.7919			
4.62	5.13	0.4304	0.9360			
8.36	10.47	0.4721	1.0606			
14.18	19.75	0.5346	1.2405			
23.90	36.42	0.5633	1.3521			
33.34	54.36	0.5941	1.4307			

$V_1/V_2 = 1/1$							
P_ (KPa)	P ₂ (KPa)	n_(mol/Kg)	n(mol/Kg)				
1.40	0.55	0.5218	0.5379				
5.83	3.00	0.6446	0.6980				
10.23	5.91	0.7000	0.7809				
18.42	12.16	0.8020	0.9260				
30.78	22.71	0.8629	1.0254				
49.84	49, 86	0. 9168	1.1318				
	$V_{1}/V_{2} = 2/1$						
P ₁ (KPa)	P ₂ (KPa)	n_(mo1/Kg)	n ₂ (mol/Kg)				
3.63	0.43	0.7975	0.4175				
8.37	2.09	0.9198	0.4986				
15.61	4.39	1.0143	0.5661				
27.39	8.83	1.1362	0.6641				
46.19	16.86	1.2253	0.7362				
69.55	26.48	1.2811	0.8067				
	$V_{1}/V_{2} = 4/1$						
P_ (KPa)	P_ (KPa)	n_(mol/Kg)	n_ (mol/Kg)				
1.84	0.15	0.8428	0.2166				
9.74	1.17	1.1341	0.3071				
19.02	2.66	1.2892	0.3626				
30.22	4.64	1.3953	0.4062				
48.94	8, 55	1.5035	0.4486				
73.07	14.32	1.6033	0.5040				
TABLA 5.15.

Isotermas d	le adsorción (de mezclas binar	ias CO ₂ (1)
propano (2) e	n zeolita ZS	M-5 (SiO ₂ /Al ₂ O ₃	= 29) a 293 K
ŀ <u></u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			······································
	V ₁ /	$V_2 = 1/8$	
P ₁ (KPa)	P ₂ (KPa)	n_(mol/Kg)	n ₂ (mol/Kg)
0.40	1.70	0.1314	1.0778
1.49	9.60	0.1628	1.3484
2.81	21.95	0.1746	1.4046
4.83	42.01	0.1894	1.4429
6.93	62.55	0.2010	1.4590
8.99	82.84	0.2213	1.4694
· ·	v ₁ ⁄	$V_2 = 1/4$	
P (KPa)	P ₂ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)
0.23	0.37	0.2040	0.8260
1.38	3.32	0.2522	1.0491
4.04	13.34	0.2938	1.2314
8.39	32.76	0.3317	1.3424
12.32	52.26	0.3586	1.3718
17.35	75.69	0.3773	1.3853
	V ₁ /	$v_2 = 1/2$	
P (KPa)	P(KPa)	n (mol/Kg)	n ₂ (mol/Kg)
0.87	0.72	0.3654	0.7472
3.53	3.97	0.4524	0.9605
9.45	14.29	0.5110	1.1107
15.45	27.45	0.5315	1.1282
21.44	40.85	0.5547	1.1476
30.34	62.54	0.5853	1.1428
l			

100

 $V_{1}/V_{2} = 1/1$ P₁ (KPa) P₂ (KPa) $n_1 (mol/Kg) n_2 (mol/Kg)$ 0.48 0.5667 0.5837 1.41 4.21 1.79 0.6394 0.6821 0.7333 12.59 7.48 0.8289 15.93 0.7910 0.9074 21.98 33.95 29.09 0.8374 0.9300 47.44 42.31 0.8562 0.9526 $V_{1}/V_{2} = 4/1$ $n_1 (mol/Kg)$ P₁ (KPa) P₂ (KPa) n₂ (mol/Kg) 0.96 0.08 0.8099 0.2050 3.75 0.41 0.9875 0.2535 0.83 0.3205 10.40 1.1570 32.31 4.09 1.3500 0.4114 59.13 9.26 0.5597 1.4243 78.63 12.72 0.5876 1.4416 $V_{1}/V_{2} = 8/1$ P_1 (KPa) P_2 (KPa) n_1 (mol/Kg) n_2 (mol/Kg) 0.05 0.1144 1.40 0.8977 7.37 0.24 1.2874 0.1741 1.4155 0.78 0.2087 20.03 36.55 1.711.5100 0.2406

83.44

4.02

5.46

1.6588

1.7104

0.2842

TABLA 5.15. (Cont.)

TABLA 5.16.

.

Isotermas de	e adsorción de	e mezclas binar:	ias etileno (1)
			3 - 27) a 295 K
an a	v ₁ ⁄1	/ ₂ = 1/8	······································
P (KPa)	P (KPa)	n_(mol/Kg)	n(mol/Kg)
0.11	2.20	0.1358	1.0624
0.53	11.27	0.1842	1.3270
1.17	24.05	0.2104	1.3756
2.40	44.01	0.2474	1.3906
3.70	65.14	0.2645	1.3911
5.28	85.74	0.2812	1.3954
	V ₁ /V	$V_{2} = 1/4$	
P ₁ (KPa)	P_ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)
0.07	0.45	0.2059	0.8203
1.21	9.12	0.3087	1.1501
2.89	22.42	0.3627	1.2277
4.88	36.29	0.3973	1.2458
7.16	49.77	0.4157	1.2418
11.62	75.33	0.4473	1.2569
	V ₁ /V	/ ₂ = 1/2	
P (KPa)	P_(KPa)	n (mol/Kg)	n (mo1/Kg)
0.52	1.23	0.4065	0.8099
1.93	6.90	0.4872	0.9415
5.89	17.05	0.5726	1.0367
11.14	31.25	0.6160	1.0489
16.87	45.11	0.6500	1.0670
23.87	63.20	0.6829	1.0677

1

	v ₁	$V_2 = 1/1$	
Р ₁ (КРа)	P ₂ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)
0.45	0.37	0.5422	0.5439
5.99	5.21	0.7125	0.7271
11.41	11.22	0.7836	0.7557
19.95	20.72	0.8577	0.7858
29.25	31.00	0. 8928	0.7991
42.61	45.55	0.9350	0.8074
	V ₁ /	$v_{2} = 2/1$	
P_ (KPa)	P ₂ (KPa)	n_(mol/Kg)	n ₂ (mol/Kg)
1.83	0.47	0.8005	0.4086
6.18	1.54	0.9283	0.4930
14.87	4.65	1.0037	0.5387
27.83	10.14	1.0828	0.5822
40.97	16.83	1.1447	0.5924
61.23	26.74	1.1883	0.6150
	V ₁ /	$v_2 = 4/1$	· ·
P_ (KPa)	P_ (KPa)	n_(mol/Kg)	n ₂ (mol/Kg)
0.95	0.11	0.8144	0.2060
7.74	0.64	1.1041	0.3001
17.85	2.01	1.2228	0.3442
30.65	3.48	1.2840	0.3855
50.78	8.14	1.3912	0.4023
71.56	12.50	1.4328	0.4244

TABLA 5.16. (Cont.)

TABLA 5.17.

Isotermas d etileno (2) e	le adsorción d en zeolita ZSI	de mezclas bina M-5 (SiO ₂ /Al ₂ O ₃	rias CO ₂ (1) = 56) a 293 K
	v ₁ /	V ₂ = 1/8	
P_ (KPa)	P ₂ (KPa)	n (mol/Kg)	n_ (mol/Kg)
0.90	3.82	0.0952	0.8063
1.60	8.05	0.1122	0. 9881
3.07	17. 35	0.1353	1.2174
5.29	31.43	0.1513	1.3962
8.66	54.16	0.1662	1.5649
11.07	73.48	0.1742	1.6599
	V _ /	$V_2 = 1/4$	
P (KPa)	P_ (KPa)	n_(mol/Kg)	n ₂ (mol/Kg)
0.67	1.12	0.1398	0.5813
2.07	4.55	0.1871	0.8030
3.80	49.31	0.2079	0.9868
7.77	22.11	0.2617	1.2169
14.45	45.76	0.2937	1.4041
19.95	66.78	0.3166	1.5134
	v ₁ /v	$V_{2} = 1/2$	
P (KPa)	P_(KPa)	n (mol/Kg)	n ₂ (mol/Kg)
2.23	2.06	0.2813	0.5923
4.39	4.87	0.3379	0.7349
8.88	11.12	0.4073	0.9150
15.14	20.90	0.4577	1.0626
21.38	31.94	0.4790	1.1613
33.34	52.92	0.4982	1.3267

	v _1	$V_2 = 1/1$	
P ₁ (KPa)	P ₂ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)
1.47	0. 58	0.3448	0.3555
4.85	2.40	0.4667	0.5220
9.44	5.40	0.5452	0.6557
20.28	13.39	0.6729	0.8092
31.11	22.99	0,7105	0.9265
49.20	38.88	0.7792	1.0457
	v _1/	$V_{2} = 2/1$	••••••••••••••••••••••••••••••••••••••
P ₁ (KPa)	P ₂ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)
3.61	0.45	0.5438	0.2928
8.18	2.11	0,6751	0.3948
15.64	4.40	0,8083	0.4829
27.05	9.01	0.9232	0.5632
46.47	16.97	1.0261	0.6708
67.61	25.74	1.0962	0.7351
	v_/	$V_2 = 4/1$	
Р ₁ (КРа)	P ₂ (KPa)	n_(mol/Kg)	n_ (mol/Kg)
2.45	0.23	0.5854	0.1556
9.78	1.18	0.8335	0.2351
18.90	2.65	1.0018	0.2984
28.75	4.41	1.1120	0.3426
50.35	8.51	1.2392	0.4126
78.82	14.50	1,3486	0.4768

TABLA 5.17. (Cont.)

TABLA 5.18.

Isotermas d	le adsorción	de mezclas binar	ias CO ₂ (1)
propano (2) e	en zeolita ZS	M-5 (SiO ₂ /Al ₂ O ₃	= 56) a 293 K
G			
	V,/	V = 1/8	
	1	2	
P (KPa)	P 2 (KPa)	n (mol/Kg)	$n_2 (mol/Kg)$
0.87	1.25	0.1206	1.1192
2.74	8.13	0.1194	1.3219
4.95	19.25	0.1095	1.4174
6.84	32.34	0.1070	1.4521
9.52	52.05	0.1079	1.5055
11.98	71.19	0.1148	1.5751
	v ₁ /	$V_2 = 1/4$	
P ₁ (KPa)	P ₂ (KPa)	n_(mol/Kg)	n ₂ (mol/Kg)
1.20	0.67	0.2109	0.9534
6.93	10.19	0.2055	1.2848
9.01	15.76	0.1986	1.3300
14.68	35.71	0.1941	1.3843
18.20	48.17	0.1985	1.4441
23.22	68.12	0.2114	1.5009
· · · · · · · · · · · · · · · · · · ·	v ₁ /	$V_{2} = 1/2$	
P ₁ (KPa)	P ₂ (KPa)	n_(mol/Kg)	n ₂ (mol/Kg)
1.75	0.17	0.3429	0.7725
5.65	2.22	0.3856	1.0099
14.00	10.25	0.3605	1.1883
21.73	22.32	0.3505	1.2569
28.92	35.22	0.3549	1.3048
35.72	46.98	0.3683	1.3788

	v ₁ /	$V_{2} = 1/1$	
P (KPa)	P ₂ (KPa)	n_(mol/Kg)	n ₂ (mol/Kg)
0.15	0.07	0.4801	0.4827
7.04	1.11	0.5872	0.7458
17.86	4.86	0.5903	0.9357
29.59	10.69	0.5687	1.0694
41.20	19.80	0.5514	1.1178
58.64	35.18	0.5718	1.1918
	. V ₁ /	$V_2 = 4/1$	
Р ₁ (Ķ Р а)	P (KPa)	n (mol/Kg)	n ₂ (mol/Kg)
<u>9.35</u>	0.18	0.9075	0.2837
13.65	0.35	0.9858	0.3275
30.33	1.16	1.1208	0.4494
51.42	2.49	1.1428	0.5596
80.80	5.71	1.1313	0.6668
	v ₁ ⁄	V ₂ = 2/1	***************
P_ (KPa)	P_(KPa)	n_(mol/Kg)	n ₂ (mol/Kg)
4.00	0.18	0.6623	0.3798
12.62	0.92	0.8188	0.5523
25.56	2.37	0.8566	0.7042
40.67	5.34	0.8409	0.8172
55.79	10.00	0.8196	0.8828
70.2 5	15.43	0.8218	0.9324

TABLA 5.19.

Isotermas de propano (2) e	adsorción de en zeolita ZS	mezclas binaria M-5 (SiO ₂ /Al ₂ O ₃	as etileno (1) = 56) a 293 K
	v ₁ ⁄	V ₂ = 1/8	
P ₁ (KPa)	P ₂ (KPa)	n_ (mol/Kg)	n ₂ (mol/Kg)
0.29	1.87	0.1380	1.1184
1.35	10.36	0.1583	1.2824
2.76	23.32	0.1702	1.3358
4.29	36.23	0.1784	1.3806
6.59	55.65	0.1904	1.4506
9.70	82.33	0.2050	1.5204
	v ₁ ⁄	$V_2 = 1/4$	
P ₁ (KPa)	P ₂ (KPa)	n_ (mol/Kg)	n ₂ (mol/Kg)
0.44	1.03	0.2332	0.9525
1.30	3.26	0.2601	1.0930
3.49	10.41	0.2751	1.1966
6.81	23.64	0.2846	1.2352
11.70	42.57	0.3004	. 1.3168
16.47	62.46	0.3197	1.3734
	v ₁ /	$v_2 = 1/2$	
P ₁ (KPa)	P ₂ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)
0.21	0.19	0.2887	0.5843
2.67	2.19	0.4190	0.9233
7.63	8.44	0.4335	1.0511
14.70	20.11	0.4410	1.1317
21.17	32.24	0.4635	1.1700
31.20	52.31	0. 4891	1.2488

TABLA 5.19. (Cont.)

$V_{1}/V_{2} = 1/1$			
P ₁ (KPa)	P ₂ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)
0.36	0.07	0.3801	0.3877
6.01	1.94	0.6195	0.7280
12.92	4.42	0.6301	0.8566
24.08	11.69	0.6240	0.9553
34. 57	21.38	0.6356	0.9892
48.70	33.34	0.6480	1.0572
	v ₁ /7	$V_2 = 2/1$	
P ₁ (KPa)	P ₂ (KPa)	n (mol/Kg)	n(mol/Kg)
3. 31	0.19	0.6931	0.3856
12.23	1.14	0.8448	0.5560
25.98	3.59	0.8685	0.6863
40.44	7.74	0.8721	0.7708
54.14	12.96	0.8961	0.8273
66.83	18.59	0.9475	0.8726
	v ₁ ⁄	$V_{2} = 4/1$	
Р ₁ (КРа)	P_ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)
0.86	0.02	0.5617	0.1453
12.81	0.43	1.0246	0.3298
24.56	1.07	1.1021	0.4107
38.17	2.11	1.1278	0.4739
58.96	4.49	1.1585	0.5619
80.03	7.86	1.1818	0.6184

5.4. ISOTERMAS DE MEZCLAS BINARIAS A ALTA PRESION

Se han obtenido las isotermas experimentales a 293 K de las mezclas binarias etano-etileno, etano- CO_2 y etileno- CO_2 en CMS 5A y zeolita 5A. En las tablas 5.20 a 5.25. se presentan los resultados obtenidos en forma de isotermas individuales, cantidad adsorbida (mol/Kg) frente a presión parcial en la fase gaseosa (KPa) de cada uno de los componentes de la mezcla.

Cada isoterma de mezcla se corresponde a un valor de la relación molar inicial n_1/n_2 con que se introducen cada uno de los adsorbatos al sistema.

TABLA 5.20.

Isotermas de adsorción de mezclas binarias CO₂ (1) etileno (2) en CMS 5A a 293 K

		n ₂ = 1/8	
P (KPa)	P(KPa)	n_(mol/Kg)	n_ (mol/Kg)
12.64	89.26	0.2452	2.4797
31.04	227.65	0.2995	2.9917
70.18	529.62	0.3771	3.6773
95.34	733.73	0.4133	3.9837
114.28	897.04	0.4373	4.1659
137.16	1098.53	0.4706	4.3810
165.27	1337.17	0.4876	4.4374
	n_1/1	$n_2 = 1/4$	
P (KPa)	P ₂ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)
22.59	65.64	0.4146	2.2603
58.48	200.30	0.4741	2.8886
130.83	492.19	0.5410	3.6204
166.69	634.71	0. 5839	3.8734
208.14	797.38	0.6200	4.0766
257.88	1012. 48	0.6705	4.3329
303.66	1237.75	0.7005	4. 4503
	n_1/1	$n_2 = 1/2$	
P_ (KPa)	P_(KPa)	n (mol/Kg)	n ₂ (mol/Kg)
32.92	46.60	0.6712	1.9816
94.22	146.76	0.7990	2.5725
205.22	353.95	0.9459	3.2581
289.52	512.47	1.0551	3.5321
371.92	678.70	1.1375	3.7237
453.59	835.01	1.2115	3.9005
533.05	994.31	1.2701	4.0443

TABLA 5.20. (Cont.)

•

.

$n_1/n_2 = 1/1$			
P ₁ (KPa)	P ₂ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)
31.57	47.56	0.6647	1.9624
92.26	143.69	0.8022	2.5828
179.03	356.98	0.9570	3. 2962
256.46	500.06	1.0653	3.5665
356.79	677.38	1.1733	3.8408
441.84	835.15	1.2355	3.9777
550.66	1031.69	1.3024	4.1468
	n_/	$n_2 = 2/1$	
P (KPa)	P ₂ (KPa)	n_(mol/Kg)	n ₂ (mol/Kg)
59.11	21.86	1.4429	1.1569
164.31	70.09	1.7482	1.6530
362.64	181.05	2.0449	2.2692
514.06	274.38	2.2833	2.5136
661.25	371.95	2.4540	2.6584
816.53	465.30	2.5648	2.7563
970.00	562.39	2.6571	2.8442
	n_/1	$n_2 = 4/1$	
P_ (KPa) 1	P_(KPa)	n_(mol/Kg)	n ₂ (mol/Kg)
72.40	13.89	1.8370	0.7394
186.05	45.93	2.2498	1.1797
418.90	120.92	2.6793	1.7420
604.08	181.46	2.9562	1.9139
791.75	247.29	3.1805	2.0420
961.75	310.41	3.3075	2.1057
1136.89	380.99	3. 4200	2.1682

,

TABLA 5.21.

Isotermas d	Isotermas de adsorción de mezclas binarias CO ₂ (1) Etano (2) en CMS 5A a 293 K				
	n_1/1	n ₂ = 1/8			
P (KPa)	P_ (KPa)	n_ (mol/Kg)	n ₂ (mol/Kg)		
6.69	75.93	0.3265	2.1853		
23.74	242.98	0.3813	2.7441		
54.83	528.52	0.4340	3.3401		
73.87	720.38	0.4613	3.6211		
98.82	963.71	0.4800	3.8441		
116.04	1145.29	0.4954	4.0084		
140.10	1399.48	0.5128	4.1493		
	n ₁ /1	$n_2 = 1/4$			
P_ (KPa)	P ₂ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)		
19.81	60.39	0.3458	2.1600		
59.99	196.38	0.4404	2.7276		
130.09	453.26	0.5462	3.3549		
178.20	631.82	0.6088	3. 5898		
231.35	829.91	0.6634	3.7892		
267.62	982.92	0.6951	3.9081		
313.08	1177.79	0.7219	4.0272		
	n ₁ /1	$n_2 = 1/2$			
P_ (KPa) 1	P ₂ (KPa)	n (mol/Kg)	n(mol/Kg)		
34.83	44.88	0.5632	1.9069		
101.27	162.45	0.6800	2.6209		
188.69	359.84	0.7397	3.1948		
269.06	522.29	0.8351	3. 4920		
362.02	712.23	0.9158	3.7329		
406.64	840.72	0.9594	3.8619		
484.27	1048.24	1.0098	4.0143		

TABLA 5.21. (Cont.)

$n_{1}/n_{2} = 1/1$						
Р (КРа)	P ₂ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)			
52.60	34.63	0.8362	1.5945			
91.78	113.09	0.9730	2.1759			
249.84	254.88	1.1459	2.9031			
362.71	397.68	1.2851	3.1925			
483.93	563.54	1.4071	3. 4283			
569,52	701.72	1.8440	3.5808			
657.41	846.95	1.5327	3.6806			
	n_1/1	$n_2 = 2/1$				
P (KPa)	P (KPa)	n (mol/Kg)	n ₂ (mol/Kg)			
63,09	19.82	1.2825	1.1147			
175.10	74.69	1.5139	1.8206			
352,77	189.95	1.7728	2.4281			
492.41	297.97	1.9717	2.7795			
620.38	411.87	2.0960	3.0161			
734.02	516.44	2.1959	3.1469			
867.45	646.43	2.2716	3.2287			
	n_/1	$n_2 = 4/1$				
P_ (KPa)	P ₂ (KPa)	n_(mol/Kg)	n_(mol/Kg)			
71.63	11.85	1.6652	0.7377			
196.15	45.12	2.0689	1.3283			
421.62	125.94	2.5211	1.8331			
603.44	193.71	2.7605	2.1427			
768, 59	261.69	2.9344	2.2592			
921,31	344.23	3.0364	2.3664			
1078.03	436.06	3.1227	2.4535			

TABLA 5.22.

Isotermas de adsorción de mezclas binarias **etileno (1)** Etano (2) en CMS 5A a 293 K

	···						
$n_{1}^{\prime}/n_{2}^{\prime} = 1/1$							
P_ (KPa)	P_(KPa)	n_ (mol/Kg)	n ₂ (mol/Kg)				
44.95	41.49	1.2180	1.4499				
149.31	145.18	1.4939	1.7467				
274.57	280.11	1.7100	1.9914				
389.44	410.24	1.8556	2.2136				
503.45	552.01	1.9728	2.4015				
608.16	677.60	2.0569	2.5242				
715.02	812.80	2.1010	2.5993				
	n_/	$n_2 = 1/4$					
P ₁ (KPa)	P_ (KPa)	n_(mol/Kg)	n ₂ (mol/Kg)				
14.95	65.41	0.3731	2.2001				
54.28	237.56	0.4835	2. 65 61				
103.34	455.26	0.5818	3.0776				
148.87	655.81	0.6437	3.3543				
192.76	854.86	0.6873	. 3. 5552				
238.92	1059.58	0.7273	3.7349				
283.64	1257.90	0.7501	3.8520				
	n_1/	$n_2 = 1/2$, , , , , , , , , , , , , , , , , , ,				
P_ (KPa)	P_(KPa)	n_(mol/Kg)	n ₂ (mol/Kg)				
29.91	56.53	0.7518	1.8496				
82.54	169.12	0.8931	2.2081				
184.05	403. 96	1.0779	2.6648				
250.42	552.20	1.1571	2.8747				
327.64	425.86	1.2346	3.0671				
402.84	896.64	1.2982	3.2251				
473.91	1059.79	1.3354	3.3175				

TABLA 5.22. (Cont.)

$n_1/n_2 = 2/1$					
P ₁ (KPa)	P ₂ (KPa)	n_(mol/Kg)	n(mol/Kg)		
53.63	26.53	1.6234	1.0077		
158.17	87.81	1.8721	1.2274		
348.06	211.52	2.2323	1.5449		
491.41	310.23	2.4173	1.7149		
634.86	412.76	2.5659	1.8580		
773.11	517.55	2.6888	1.9550		
912.76	623.88	2.7235	1.9885		
	n_1/1	$n_2 = 4/1$			
P ₁ (KPa)	P(KPa)	n_(mol/Kg)	n(mol/Kg)		
66.03	15.89	2.0283	0.6127		
193.77	59.85	2.3463	0.8286		
409.45	149.15	2.7229	1.1014		
586.08	214.58	2.9945	1.2053		
766.86	214.58	2.9945	1.2053		
943.47	347.19	3. 3621	1.3402		
1143.02	420.62	3.4416	1.3718		
	n_/1	$n_2 = 8/1$			
P (KPa)	P_ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)		
74.26	8.16	2.3208	0.3285		
218.10	27.78	2.7571	0.4193		
480.01	71.73	3.3274	0.5462		
697.03	114.41	3.6534	0.6447		
854.66	150.82	3.7766	0.7194		
1095.68	197.92	3.9618	0.7885		
1292.75	238.95	4.0863	0.8370		

TABLA 5.23

Isotermas de adsorción de mezclas binarias **etano (1) etileno (2)** en zeolita **5A** a **293** K

$n_{1}^{\prime}/n_{2}^{\prime} = 4/1$								
P_(KPa)	P ₂ (KPa)	n (mol/Kg)	n_(mol/Kg)					
383.77	8.23	1.8781	1.1030					
940.99	53.71	1.4882	1.8262					
1422.64	135.56	1.4178	2.0657					
1721.53	214.95	1.3748	2.1961					
2139.71	. 311.27	1.3286	2.2817					
2536.61	440.63	1.2709	2.3706					
	$n_1/n_2 = 2/1$							
P_ (KPa)	P ₂ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)					
377.96	16.98	1.3787	1.6823					
836.85	131.39	0.9529	2.4502					
1236.25	313.13	0.8100	2.8225					
1596.77	537.67	0.7721	2.9941					
1891.41	668.35	0.7094	3.0843					
2135.64	853.36	0.6011	3.2033					
	n ₁ /	$n_2 = 1/1$						
P (KPa)	P_ (KPa)	n_ (mol/Kg)	n ₂ (mol/Kg)					
410.23	166.01	0.4568	2.9077					
703.65	356.71	0. 4293	3.1783					
876.97	516.59	0. 4293	3.3035					
1233.06	803.38	0.4290	3.4713					
1409.15	1024.19	0.4167	3.5523					
1654.90	1336.06	0.3798	3.6186					

 $n_{1}/n_{2} = 1/2$ P_2 (KPa) n_1 (mol/Kg) n_2 (mol/Kg) P_1 (KPa) 220.98 107.32 0.4493 2.7529 499.75 406.75 0.2126 3.4409 3.7056 637.90 886.00 0.1950 1291.83 3.8738 814.19 0.1868 1656.01 0.1897 3.9337 1055.65 1083.53 1867.25 0.1864 3.9554 $n_{1}/n_{2} = 1/4$ $n_1 (mol/Kg) n_2 (mol/Kg)$ P₂ (KPa) P_1 (KPa) 277.19 0.2975 3.2029 209.87 676.04 3.6668 297.10 0.1608 370.77 1070.81 0.1283 3.8826 477.05 1453.55 0.1255 4.0581 636.00 1861.04 0.1234 4.1334 708.06 2315.24 4.1676 0.1156 $n_1/n_2 = 1/9$ P₁ (KPa) P_2 (KPa) $n_1 \pmod{Kg}$ $n_2 \pmod{Kg}$ 92.26 240.94 0.1050 3.3935 3.8531 137.60 810.06 0.0706 206.65 1290.70 0.0540 4.0964 266.50 1729.76 0.0428 4.2385 330.52 2150.84 0.0350 4.3383 388.84 2532.54 0.0307 4.3593

TABLA 5.23. (Cont.)

119

.

IABLA 5.2	.4.
-----------	-----

.

•

•

Isotermas de adsorcion de mezclas binarias etano (1) CO ₂ (2) en zeolita 5A a 293 K							
$n_1/n_2 = 1/8$							
P_1 (KPa) P_2 (KPa) n_1 (mol/Kg) n_2 (mol/Kg)							
45.44	40.80		0.2078		4.0766		
179.79	531.69		0.1096		4.8706		
230.91	904.91		0.1045		5.1216		
275.01	1215.57		0.1062		5.2062		
323.50	1655.12		0.1079		5.2860		
393.20	2081.30		0.1032		5.3280		
438.04	2515.68		0.0927		5.3580		
	n ₁ /1	n ₂ = 1	1/4				
P_ (KPa)	P_ (KPa)	n ₁	(mol/Kg)	n_2	(mol/Kg)		
163.20	44.56		0.3287		3.9738		
385.05	437.17		0.2078		4.6247		
515.89	910.01		0.1766		4.8678		
619.41	1281.79		0.1655		5.0052		
706.37	1699.53		0.1559		5.0393		
800.43	1978.85		0.1508		5.0481		
831.29	2116.55		0.1457		5.0595		
	n ₁ /n	n ₂ = 1	1/2				
P ₁ (KPa)	P ₂ (KPa)	n ₁	(mol/Kg)	n ₂	(mol/Kg)		
255.86	47.94		0.5830		3.6231		
476.55	295.69		0.2974		4.2778		
652.93	585.79		0.2428		4.5181		
818.75	859.01		0.2314		4.5890		
922.27	1169.05		0.2334		4.6292		
1080.65	1688.83		0.2407		4.6706		
1151.69	1860.83		0.2417		4.6907		

TABLA 5.24. (Cont.)

	$n_1/n_2 = 1/1$						
P (KPa)	P_ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)				
289.07	9.18	1.1987	2.7136				
613.38	63.43	0.4328	3.7487				
967.05	204.09	0.3961	4.0046				
1459.90	432.37	0.3664	4.2131				
1957.69	678.76	0.3466	4.2747				
2438.83	944.22	0.3434	4.2970				
2925.88	1156.17	0.3396	4.3129				
	n ₁ /	$n_2 = 2/1$					
P_ (KPa)	P ₂ (KPa)	n (mol/Kg)	n_(mol/Kg)				
294.05	3.87	1.9319	1.7215				
637.90	16.74	1.2698	2.6326				
938.23	48.63	0.7712	3.3201				
1290.78	149,82	0.5690	3.7315				
1631.29	305.19	0.5412	3.8587				
1926.53	485.25	0.5149	3.8862				
2309.54	664.76	0.4875	3.9445				
	n_/	$n_2 = 4/1$					
P_(KPa)	P_ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)				
325.66	3.62	2.3179	1.0443				
768.11	10.99	1.9174	1.7614				
1081.99	20.51	1.5969	2.2235				
1423.40	46.60	1.2340	2.7210				
1794.75	112.33	0.8185	3.233 5				
2185.16	234.46	0.6789	3. 4109				
2623.48	364.54	0.6044	3.5069				

TABLA 5.25.

Isotermas de adsorción de mezclas binarias **etileno (1)** CO₂ (2) en zeolita 5A a 293 K

$n_{1}^{\prime}/n_{2}^{\prime} = 1/8$						
P (KPa)	Р ₂ (КРа)	n_ (mol/Kg)	n (mol/Kg)			
12.66	199.41	0.5326	4.0986			
50.90	586.10	0.6369	4.3503			
84.07	1045.87	0.8050	4.4054			
145.27	1481.53	0.8749	4.5255			
194.70	1937.78	0.9678	4.5312			
253.73	2375.61	0.9944	4.5921			
324.09	2801.13	1.0241	4.6030			
	n_/1	n ₂ = 1/4				
P ₁ (KPa)	P(KPa)	n_(mol/Kg)	n ₂ (mol/Kg)			
12.83	97.22	0.7178	3.3466			
76.01	493.37	0.9580	3.7152			
174.61	869.09	1.0940	3.8563			
267.72	1234.62	1.2000	3.9194			
376.16	1578.94	1.3375	3.9283			
469.46	1975.64	1.4268	3.9372			
575.99	2319.91	1.4537	3.9704			
	n_/1	$n_2 = 1/2$				
P_(KPa)	P ₂ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)			
55.35	86.75	1.4147	2.5370			
199.85	373.45	1.5513	2.8185			
378.11	685.49	1.6545	3.0459			
530.05	990.91	1.7252	3.1758			
661.69	1221.87	1.7776	3.2438			
862.30	1601.42	1.8852	3.4103			
1052.49	1958.07	1.9150	3.4642			

TABLA 5.25. (Cont.)

$n_{1}/n_{2} = 1/1$						
P (KPa)	P ₂ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)			
50.55	28.83	1.7927	1.9344			
254.23	228.91	1.9429	2.1561			
533.83	449.11	2.0808	2.3370			
765.19	681.29	2.1514	2.5155			
1024.59	920.71	2.2021	2.6805			
1345.94	1272.62	2.2340	2.8204			
1540.38	1479.98	2.2610	2.9011			
	. n_/	$n_2 = 2/1$				
P (KPa)	P ₂ (KPa)	n_(mol/Kg)	n ₂ (mol/Kg)			
116.51	13.83	2.3881	1.2303			
420.23	113.87	2.5338	1.4439			
759.78	257.46	2.5587	1.7416			
1051.71	411.43	2.5656	1.9354			
1337.53	557.79	2.5951	2.0557			
1643.20	753.88	2.6065	2.1761			
2019.68	974.22	2.6106	2.2239			
	n_1/	$n_2 = 4/1$				
P_ (KPa)	P_ (KPa) 2	n_(mol/Kg)	n(mol/Kg)			
24.85	1.61	2.5565	0.5997			
383.20	28.40	2.9546	0.7996			
789.42	102.38	3.0378	1.0289			
1143.82	206.62	3.0536	1.2472			
1523.67	303.05	3.0747	1.4073			
1967.20	428.90	3.0937	1.5032			
2486.32	577.16	3.1047	1.5431			

5.5. ISOTERMAS DE ADSORCION DE MEZCLAS TERNARIAS A PRESION ATMOSFERICA

Se han obtenido las isotermas de adsorción de mezclas ternarias en zeolita ZSM-5 (SiO₂/Al₂₃ = 29) a 293 K. En la tabla 5.26 se presentan los resultados obtenidos, en forma de isotermas individuales de cada uno de los tres adsorbatos que constituyen el sistema ternario.

Isotermas de adsorción de mezclas ternarias CO ₂ (1) etileno (2) propano (3) en zeolita ZSM-5 (SiO ₂ /Al ₂ O ₃ = 29) a 293 K							
 		·····					
$V_{1}/V_{2}/V_{3} = 1/1/1$							
P ₁ (KPa)	P ₂ (KPa)	P ₃ (KPa)	n ₁ (mol/kg)	n_(mol/kg)	n ₃ (mol/kg)		
0.19	0.04	0.05	0.2554	0.2586	0.2584		
4.34	1.85	1.24	0.4177	0.4760	0.4899		
15.10	9.12	7.68	0.4469	0.5942	0.6293		
18.67	12.04	10.37	0.4507	0.6139	0.6540		
25.33	18.06	17.28	0.4637	0.6420	0.6601		
34.80	27.05	27.27	0.4848	0.6678	0.6618		
 		v ₁ / v ₂	$\sqrt{V_3} = 1/1/8$				
P ₁ (KPa)	P ₂ (KPa)	P ₃ (KPa)	n_(mol/kg)	n ₂ (mol/kg)	n ₃ (mol/kg)		
0.20	0.02	0.49	0.1035	0.1077	0.8528		
1.94	0.69	12.06	0.1405	0.1729	1.2116		
3.41	1.48	25.51	0.1530	0.2040	1.2676		
5.00	2.47	39.36	0.1572	0.2231	1.2698		
6.50	3.54	52.22	0.1601	0.2348	1.2733		
8.68	5.24	72.27	0.1673	0.2510	1.2848		
		v ₁ / v ₂	/V ₃ = 1/2/4				
P ₁ (KPa)	P ₂ (KPa)	P ₃ (KPa)	n ₁ (mol/kg)	n_(mol/kg)	n ₃ (mol/kg)		
0.55	0.32	0.64	0.1457	0.3084	0.6157		
2.53	2.19	5.28	0.1831	0. 4357	0.8487		
5.10	5.55	14.59	0.1963	0.5114	0.9322		
7.57	9. 58	24.11	0.2004	0.5396	0.9537		
9.93	13.79	33.97	0.2065	0.5639	0.9674		
13.02	19.56	47.58	0.2129	0.5810	0.9765		

TABLA 5.26 (Cont.)

$V_1 / V_2 / V_3 = 1/6/4$					
P ₁ (KPa)	P ₂ (KPa)	P ₃ (KPa)	n _i (mol/kg)	n_(mol/kg)	n ₃ (mol/kg)
0.38	0.82	0.26	0.0946	0.6001	0.4062
2.47	9.16	4.38	0.1128	0.8091	0.5785
5.10	22.94	14.04	0.1265	0.9554	0.6669
6.79	32.47	20.58	0.1293	0.9892	0.6850
8.43	41.85	27.07	0.1318	1.0137	0.6952
9.53	48.06	31.43	0.1333	1.0292	0.6996
		v ₁ /v ₂	$/V_{3} = 3/1/3$		
P ₁ (KPa)	P ₂ (KPa)	P ₃ (KPa)	n_(mol/kg)	n_(mol/kg)	n ₃ (mol/kg)
1.44	0.09	0.27	0.4618	0.1628	0.4878
8.57	1.12	3.99	0.5808	0.2351	0.6888
18.68	3.10	12.11	0.6379	0.2919	0.8021
28.76	5.55	22.60	0.6832	0.3334	0.8485
33,62	6.93	27.66	0.7043	0.3478	0.8597
40.48	8.83	34.14	0.7126	0.3597	0.8767

•

.

5.6. ISOTERMAS DE ADSORCION DE MEZCLAS TERNARIAS A PRESION ELEVADA

Se han obtenido las isotermas de adsorción de mezclas ternarias en CMS 5A y en zeolita 5A a 293 K. En la tabla 5.27 y 5.28 se presentan los resultados obtenidos, en forma de isotermas individuales de cada uno de los tres adsorbatos que constituyen el sistema ternario.

TABLA 5.27.

Isotermas de adsorción de mezclas ternarias CO₂ (1) etileno (2) etano (3) en CMS 5A a 293 K

	<u></u>	n ₁ /n ₂ /n	₃ = 1/1/1				
P ₁ (KPa)	P ₂ (KPa)	P ₃ (KPa)	n_(mol/Kg)	n_(mol/Kg)	n ₃ (mol/Kg)		
18.95	22.48	27.05	0.9384	0.8439	0.5948		
66.23	78.16	87.75	1.3305	1.1778	0.7456		
157.67	173.80	188.89	1.6435	1.5587	0.9278		
223.99	257.66	276.68	1.8401	1.7359	1.0260		
293.03	335.61	366.05	1.9399	1.8612	1.0720		
384.07	429.03	471.41	2.0491	2.0060	1.1289		
448.64	. 498. 86	546.98	2.1029	2.0804	1.1527		
•	$n_1/n_2/n_3 = 1/4/1$						
P ₁ (KPa)	P ₂ (KPa)	P ₃ (KPa)	n ₁ (mol/Kg)	n ₂ (mol/Kg)	n ₃ (mol/Kg)		
16.48	76.16	26.91	0.5497	1.8040	0.4063		
36.57	148.62	47.75	0.6433	2.1832	0.4225		
87.30	336.33	102.62	0.7637	2.6923	0.4581		
119.91	489.84	145.82	0.8131	3.0313	0.5047		
163.99	655.99	192.34	0.8279	3.2106	0.4845		
201.63	809.66	237.21	0.8716	3.4305	0.5649		
241.72	961.68	282.27	0.8760	3.5101	0.5929		
$n_1/n_2/n_3 = 1/2/3$							
P ₁ (KPa)	P ₂ (KPa)	P ₃ (KPa)	n_(mol/Kg)	n_(mol/Kg)	n ₃ (mol/Kg)		
36.32	25.77	15.52	1.3196	0.7760	0.2984		
116.05	81.14	48.68	1.7345	1.0210	0.3764		
235.01	164.46	97.38	2.0475	1.2121	0.4365		
385.08	269.72	157.60	2.3167	1.3663	0.4829		
432.33	296.94	173.29	2.3966	1.4139	0.4925		
560.01	384.64	224.47	2.5658	1.5177	0.5155		
708.39	499.16	286.94	2.6623	1.5993	0.5274		

TABLA 5.27. (Cont.)

	$n_1/n_2/n_3 = 1/1/4$						
	P ₁ (KPa)	P ₂ (KPa)	P ₃ (KPa)	n_(mol/Kg)	n ₂ (mol/Kg)	n ₃ (mol/Kg)	
	43.31	11.23	13.55	1.7068	0.3878	0.2884	
	146.09	40.64	45.52	2.2062	0.4816	0.3563	
1	327.41	97.53	102.28	2.7616	0.5689	0.4335	
	498.22	141.58	152.03	3.0686	0.5951	0.4673	
	638.71	178.31	190.40	3.2657	0. 5957	0.4826	
	772.8 9	216.65	227.60	3.4177	0.5804	0.4999	
	9 5 0.30	262.12	275.21	3.5384	0.5702	0.4923	
$n_1/n_2/n_3 = 4/1/1$							
	P ₁ (KPa)	P ₂ (KPa)	P ₃ (KPa)	$n_1(mol/Kg)$	n_(mo1/Kg)	n ₃ (mol/Kg)	
	8.33	9.90	56.82	0.5763	0.5069	1.2878	
	28.67	31.63	167.25	0.8203	0.7411	1.7597	
	73.03	76.76	383.31	1.0717	1.0289	2.2743	
	102.62	111.68	540.29	1.1926	1.1481	2.4854	
	131.64	151.43	706.71	1.2623	1.2419	2.6487	
	164.22	188.92	881.64	1.3308	1.3144	2.7867	
	198.16	226.25	1054.39	1.3892	1.3559	2.8799	

TABLA 5.28

Isotermas de adsorción de mezclas ternarias etano (1) etileno (2) CO_2 (3) en zeolíta 5A a 293 K

	n /n	$/n_{2} = 1/1/1$		·			
P (KPa)	1 2 P (KPa)	n (mol/Kg)	n (mol/Ky)	n (mol/Kø)			
2,	3,11,00	0.0005	2	····3			
15.71	10.00	0.3385	1.6602	1.7243			
148.34	110.64	0.2003	1.7856	2.3167			
404.84	332.10	0.1834	1.8770	2.5754			
666.39	619.22	0.1844	1.9481	2.7138			
830.98	759.69	0.1823	1.9634	2.7742			
970.36	900.85	0.1816	1.9673	2.8203			
$n_1/n_2/n_3 = 1/4/1$							
P ₂ (KPa)	P ₃ (KPa)	n ₁ (mol/Kg)	n ₂ (mol/Kg)	n ₃ (mol/Kg)			
111.40	1.12	0.2302	2.7803	0.8536			
450.43	18.78	0.1883	2.9334	1.3785			
945.68	128.82	0.1727	3.2095	1.5185			
1279.56	218.03	0.1114	3.3482	1.5914			
1615.97	327.98	0.0621	3.4687	1.6466			
1951.73	440.14	0.0328	3.5197	1.6781			
$n_1/n_2/n_3 = 1/3/3$							
P ₂ (KPa)	P ₃ (KPa)	n ₁ (mol/Kg)	n ₂ (mol/Kg)	n ₃ (mol/Kg)			
32.75	15.27	0.1120	2.0034	2.0203			
330.27	258.72	0.0732	2.1975	2.4600			
601.07	544.79	0.0623	2.3591	2.6511			
866.12	846.14	0.0533	2.4659	2.7832			
1063.99	1049.99	0.0382	2.5140	2.8436			
	P ₂ (KPa) 15.71 148.34 404.84 666.39 830.98 970.36 P ₂ (KPa) 111.40 450.43 945.68 1279.56 1615.97 1951.73 P ₂ (KPa) 32.75 330.27 601.07 866.12	$\frac{n_{1}^{\prime}n_{2}}{P_{2}^{\prime}(KPa)} = \frac{P_{3}^{\prime}(KPa)}{15.71} = \frac{10.00}{148.34} = \frac{110.64}{404.84} = \frac{332.10}{666.39} = \frac{619.22}{830.98} = \frac{759.69}{970.36} = \frac{900.85}{900.85} = \frac{n_{1}^{\prime}n_{2}}{P_{2}^{\prime}(KPa)} = \frac{P_{3}^{\prime}(KPa)}{111.40} = \frac{1.12}{18.03} = \frac{128.82}{1279.56} = \frac{118.03}{1615.97} = \frac{128.82}{327.98} = \frac{1279.56}{1951.73} = \frac{118.03}{440.14} = \frac{n_{1}^{\prime}n_{2}}{n_{1}^{\prime}n_{2}} = \frac{P_{2}^{\prime}(KPa)}{927.98} = \frac{P_{3}^{\prime}(KPa)}{1951.73} = \frac{15.27}{330.27} = \frac{15.27}{258.72} = \frac{1279.56}{10.07} = \frac{140.14}{14} = \frac{120.14}{14} = 120.$	$n_{1}/n_{2}/n_{3} = 1/1/1$ $P_{2}(KPa) P_{3}(KPa) n_{1}(mo1/Kg)$ 15.71 10.00 0.3385 148.34 110.64 0.2003 404.84 332.10 0.1834 666.39 619.22 0.1844 830.98 759.69 0.1823 970.36 900.85 0.1816 $n_{1}/n_{2}/n_{3} = 1/4/1$ $P_{2}(KPa) P_{3}(KPa) n_{1}(mo1/Kg)$ 111.40 1.12 0.2302 450.43 18.78 0.1883 945.68 128.82 0.1727 1279.56 218.03 0.1114 1615.97 327.98 0.0621 1951.73 440.14 0.0328 $n_{1}/n_{2}/n_{3} = 1/3/3$ $P_{2}(KPa) P_{3}(KPa) n_{1}(mo1/Kg)$ 32.75 15.27 0.1120 330.27 258.72 0.0732 601.07 544.79 0.0623 866.12 846.14 0.0533	$\frac{n_1/n_2/n_3 = 1/1/1}{P_2(KPa)} P_3(KPa) n_1(mo1/Kg) n_2(mo1/Kg)}$ 15.71 10.00 0.3385 1.6602 148.34 110.64 0.2003 1.7856 404.84 332.10 0.1834 1.8770 666.39 619.22 0.1844 1.9481 830.98 759.69 0.1823 1.9634 970.36 900.85 0.1816 1.9673 $\frac{n_1/n_2/n_3 = 1/4/1}{P_2(KPa)} P_3(KPa) n_1(mo1/Kg) n_2(mo1/Kg)$ 111.40 1.12 0.2302 2.7803 450.43 18.78 0.1883 2.9334 945.68 128.82 0.1727 3.2095 1279.56 218.03 0.1114 3.3482 1615.97 327.98 0.0621 3.4687 1951.73 440.14 0.0328 3.5197 $\frac{n_1/n_2/n_3 = 1/3/3}{P_2(KPa)} P_3(KPa) n_1(mo1/Kg) n_2(mo1/Kg)$ 32.75 15.27 0.1120 2.0034 330.27 258.72 0.0732 2.1975 601.07 544.79 0.0623 2.3591 866.12 846.14 0.0533 2.4659			

TABLA 5.28 (Cont.)

$n_1/n_2/n_3 = 1/1/4$						
P ₁ (KPa)	P ₂ (KPa)	P ₃ (KPa)	n (mol/Kg)	n ₂ (mol/Kg)	n ₃ (mol/Kg)	
85.00	7.42	41.83	0.2517	0.8237	3.2583	
235,60	113.63	461.23	0.1298	0.9656	3.8815	
326.40	212.02	812.02	0.1273	0.9770	4.1775	
421.75	299.64	1151.38	0.0965	0.9909	4.3817	
496.62	392.13	1459.33	0.0955	1.0031	4.4745	
567.39	485.27	1818.74	0.0901	1.0112	4.5443	
$n_1/n_2/n_3 = 1/2/4$						
P ₁ (KPa)	P ₂ (KPa)	P ₃ (KPa)	n ₁ (mol/Kg)	n_(mol/Kg)	n ₃ (mol/Kg)	
73.98	15.54	43.76	0.1905	1.3014	2.7892	
179.50	191.22	375.35	0.1104	1.4382	3.2343	
285.24	362.83	747.44	0.0656	1.5833	3.4894	
337.04	504.01	979.79	0.0583	1.6354	3. 598 1	
418.22	635.33	1231.81	0.0432	1.6817	3.6997	
538.38	817.86	1585.72	0.0331	1.7166	3.7695	

130

6. DISCUSION DE RESULTADOS.

6.1. EXPERIMENTOS PREVIOS.

Las dos instalaciones experimentales descritas en el apartado 3 (equipo de adsorción a presión atmosférica y a presión elevada, respectivamente), fueron puestas a punto para esta investigación, por lo que se consideró necesario comprobar la validez de los datos obtenidos en ellas. Para ello se realizaron en ambas instalaciones varios experimentos utilizando sistemas que habían sido estudiados en anteriores investigaciones (Jimenez, 1989). Así, se eligió como adsorbente la silicalita y como adsorbatos el CO₂, el etileno y el propano. En la figura 6.1. se muestran las isotermas de CO₂ en silicalita a 293 K, obtenidas en la investigación citada y en las dos instalaciones experimentales correspondientes a esta investigación. Se puede observar como las isotermas obteen las instalaciones de vidrio (presión atmosférica) son nidas prácticamente coincidentes mientras que la obtenida en la instalación de acero (presión elevada) queda ligeramente por encima, pero en un porcentaje no superior al 3%. Esta misma tendencia se mostró para los otros dos adsorbatos estudiados.

Otro aspecto a estudiar era la reproducibilidad de los experimentos

para comprobar la buena elección de las condiciones de regeneración y la corrección del método experimental. Así, se repitieron varios experimentos a lo largo de este trabajo. De esta forma se comprobó que los resultados obtenidos en un mismo experimento realizado en días diferentes eran muy semejantes y que las diferencias no superaban el seis por ciento en la cantidad adsorbida para una determinada presión, tal y como se puede observar en la figura 6.2, en la que se representan las isotermas de adsorción de CO₂ en zeolita ZSM-5 (SiO₂/Al₂O₃ = 56), obtenidas en diferentes días en la instalación de vidrio.

Tal y como se indicó en el apartado 4.1, la zeolita ZSM-5 se obtenía en nuestro propio departamento en forma de polvo, por lo que era necesario proceder a su aglomeración y empastillado. Para la aglomeración se escogió una arcilla, bentonita, que resultaba inerte desde el punto de vista de la adsorción. Para comprobar esta circunstancia se realizaron isotermas de equilibrio de adsorción de componentes puros en bentonita pura. En la figura 6.3. se muestran las isotermas de etileno en las dos zeolitas ZSM-5 aglomeradas y en la bentonita pura. Como se puede observar la capacidad de adsorción de la bentonita, resulta despreciable frente a la de la zeolita ZSM-5.

6.2. COMPONENTES PUROS.

6.2.1. ISOTERMAS DE ADSORCION DE COMPONENTES PUROS A PRESION ATMOSFERICA.

En las figuras 6.4 a 6.6 se representan las isotermas de adsorción y desorción a 293 K de los componentes puros, CO_2 , etileno, propano y etano en zeolita ZSM-5 de relación $SiO_2/Al_2O_3 = 29$ y 56 y las isotermas de adsorción a la misma temperatura en Silicalita obtenidas en una investigación anterior, (Jimenez, 1989) que se utilizaron en el estudio de la influencia de la relación SiO_2/Al_2O_3 del adsorbente.

En estas figuras se puede observar que todas las isotermas corresponden al tipo I de la clasificación dada en el apartado 2.3. Este hecho está en consonancia con los datos bibliográficos, que indican que los sólidos microporosos, como es el caso de las zeolitas, presentan isotermas de este tipo, (Sing 1985). Así mismo, se puede observar que dicha zeolita adsorbe a todos los compuestos con igual orden de magnitud, lo cual indica que dicha zeolita no actúa como "tamiz molecular" con ninguno de los cuatro adsorbatos.

En todos los casos, las isotermas de desorción coinciden con las de adsorción, existiendo ligeras diferencias atribuibles a errores experimentales. Este hecho y la total reproducibilidad de los experimentos corrobora que la adsorción que se da en los sistemas estudiados es de tipo físico.

El orden de adsorción de los diferentes compuestos, se puede explicar si consideramos las fuerzas que intervienen en el fenómeno de adsorción. Así, se pueden considerar tres tipos de fuerzas: fuerzas de atracción entre las moléculas del gas, que aumentan con la polarizabilidad de las mismas y que tiene un efecto negativo sobre la capacidad de adsorción; fuerzas de interacción entre el sólido y el gas, que aumentan con la polarizabilidad del gas y la carga del sólido; y las fuerzas entre las moléculas del gas y las adsorbidas, que aumentan con la polarizabilidad de gas. Tambien hay que tener en cuenta el peso molecular del adsorbato, que influye en la capacidad de adsorción de una forma importante.

Así, se puede observar que el propano es el compuesto que más se adsorbe a bajas presiones, si bien tiende rápidamente a alcanzar la saturación. Ello es debido a que este compuesto tiene una presión de saturación mucho más baja que el resto, por lo que para una misma presión en la fase gaseosa, su presión relativa es mayor y por lo tanto se encuentra más próximo a la saturación.

Comparando los hidrocarburos C_2 entre sí, se puede observar que en la silicalita sus isotermas de adsorción son prácticamente coincidentes y que a medida que disminuye la relación SiO_2/Al_2O_3 de la zeolita aumenta la cantidad adsorbida de etileno en relación con la del etano. Este hecho, que es debido a que la polarizabilidad de la molécula de etileno es mayor por la presencia del doble enlace, se explicará con más detalle al estudiar la influencia de la composición química del adsorbente.

En cuanto al CO₂, debido a su mayor peso molecular y a su mayor polarizabilidad, debería adsorberse más que el etileno y el etano en todos los casos. Sin embargo, en silicalita es el compuesto que menos se adsorbe en el intervalo de presiones estudiado y en ZSM-5 Si0/Al $_{2}$ O = 56 su isoterma de adsorción es muy similar a la de etileno. Este fenómeno se puede explicar teniendo en cuenta por un lado que en la silicalita, debido a su alta relación SiO_2/Al_2O_3 (119), no tiene una gran importancia el efecto de polarizabilidad de la molécula, por lo que hay que acudir a otros factores. Debido al mayor peso molecular, el CO, debería adsorberse más que los hidrocarburos C₂, pero si tenemos en cuenta la geometría lineal de la molécula del CO₂ (hibridación sp) y la rigidez que le confieren los enlaces π carbono oxígeno, se puede deducir la dificultad que tendrán las moléculas de CO₂ para alojarse en los canales en zig-zag que presentan estas zeolitas, como se vió en el apartado 2.2. Debido a estos impedimentos estéricos, que no presentan las moléculas de etileno y etano, más pequeñas que las de CO₂, se puede explicar la mayor capacidad de adsorción de éstos. A medida que disminuye la relación SiO_/Al_O_, cobra mayor importancia la polarizabilidad de las moléculas, por lo que aumenta la capacidad de adsorción del CO₂ respecto al resto de los adsorbatos.

A modo de ejemplo, en la figura 6.7. se muestran las isotermas de adsorción de etileno en $ZSM-5 SiO_2/AI_2O_3 = 29$ a las temperaturas de 281, 293 y 308 K. Se puede observar que la cantidad adsorbida aumenta al disminuir la temperatura. Este hecho era de esperar, ya que la adsorción física de gases es un fenómeno exotérmico. Las isotermas a las tres temperaturas del resto de los adsorbatos en los dos adsorbentes son similares a la figura 6.7.

6.2.2. ISOTERMAS DE ADSORCION DE COMPONENTES PUROS A PRESION ELEVADA.

En las figuras 6.8 y 6.9 se muestran las isotermas de adsorción de los componentes puros CO_2 , etileno y etano en CMS 5A y zeolita 5A a 293 K. Al igual que las isotermas en ZSM-5 a presión atmosférica, estas isotermas corresponden al tipo I, si bien cabe destacar que a presiónes elevadas todas las isotermas tienden a alcanzar la saturación, hecho que a veces no se podía observar a presión atmosférica, como es el caso del etileno y del etano.

En cuanto al orden de adsorción, se puede observar que en la zeolita 5A es el CO₂ el compuesto que más se adsorbe, debido a su mayor polarizabilidad y peso molecular. La baja relación SiO_2/Al_2O_3 , que en el caso de esta zeolita, es igual a la unidad, explica la mayor capacidad de adsorción del etileno respecto al etano por el mismo motivo que se expuso al hablar de la adsorción en zeolita ZSM-5.

En el caso del tamiz molecular de carbón, CMS 5A, el orden de adsorción es el mismo, si bien se puede observar que a bajas presiones se adsorbe algo más el etileno y el etano que el CO_2 y que la diferencia entre las capacidades de adsorción de los tres adsorbatos es menor que en la zeolita 5A. Este orden de adsorción se puede explicar teniendo en cuenta que a bajas presiones influyen más las características de la superficie de adsorción de los adsorbentes que los factores estructurales del mismo. Así, al ser la superficie de los carbones menos afín por sustancias polarizables que las zeolitas, se puede explicar la mayor adsorción del etano a bajas presiones al igual que se observó en silicalita. Tanto la capacidad de adsorción como el orden relativo de adsorción de los diferentes adsorbatos son similares a los obtenidos en otras investigaciones (Nakahara, 1974).

En las figuras 6.10 y 6.11 se muestran las isotermas de etano en CMS 5A y de CO₂ en zeolita 5A a las tres temperaturas de 278, 293 y 308 K. Se puede observar que el efecto de disminución de la cantidad adsorbida al aumentar la temperatura es similar al que ocurría a presión atmosférica.

6.2.3. CURVA DE ADSORCION CARACTERISTICA DE LOS ADSORBENTES.

A partir de las isotermas experimentales de los componentes puros a las tres temperaturas (281, 293 y 308 K), se ha obtenido la denominada "curva de equilibrio característica" de la adsorción de los cuatro adsorbentes: ZSM-5 (SiO_/Al_O_= 29 y 56), CMS 5A y zeolita 5A.

Dicha curva es la representación gráfica de la expresión (2.42):

$$F(\theta) = \frac{m R T \ln (P/P_s)}{\Delta G^i}$$

frente a la cantidad adsorbida reducida θ = n/m. El fundamento teórico de la curva característica se expuso en el apartado 2.3.3. Los
parámetros ΔG^{i} (entalpía libre de inmersión), m (capacidad de adsorción a saturación) y P_s (presión de saturación) que están calcula dos utilizando el método expuesto en el apéndice (9.3.1) se presentan en la tabla 6.1.

En las tablas 6.2 a 6.13 se presentan los resultados obtenidos en el cálculo de θ y F(θ), a partir de los parámetros de la tabla 6.1 y de las isotermas de componentes puros a diferentes temperaturas.

En las figuras 6.12 a 6.15 se representan las curvas características de equilibrio de adsorción de los cuatro adsorbentes. Se puede observar que en todos los casos los puntos se ajustan bastante bien a una única curva, característica de cada adsorbente e independiente del tipo de adsorbato y de la temperatura, como predecía el modelo teórico. Se puede observar tambien que, las curvas características correspondientes a los datos de equilibrio a altas presiones, tienen una forma más rectilínea. Esto se debe a que la mayor parte de los datos corresponden a la zona de la curva próxima a la saturación, $\theta=1$.

6.2.4. CALCULO DE LA PRESION SUPERFICIAL DE LOS COMPONENTES PUROS.

El cálculo de la presión superficial de los componentes puros, se realiza a partir de las isotermas de adsorción experimentales a 293 K. Dicha presión se halla por medio de la ecuación 2.19.

Esta ecuación es válida para valores bajos de la presión en la fase gaseosa, para los cuales se sigue cumpliendo la ecuación de los gases ideales. Cuando se trabaja a elevadas presiones algunos autores (Myers, 1987) propone la siguiente ecuación para el cálculo de la presión superficial de los componentes puros, teniendo en cuenta un comportamiento real del gas cuya ecuación de estado se puede representar mediante la ecuación del virial.

$$\frac{\Pi A}{R T} = \int_0^P \frac{n}{P} dP + \frac{B}{R T} \int_0^P n dP \qquad (6.1)$$

Para valores muy pequeños de la presión, el integrando n/P se hace muy elevado, haciendo imposible la extrapolación hasta P=O. En este caso se utiliza la ecuación (6.1) modificada para el cálculo de la presión superficial.

$$\frac{\Pi A}{\underline{R} \underline{T}} = \int_{0}^{P} \frac{n}{P} dP = \int_{0}^{n} \frac{d \ln P}{d \ln n}$$
(6.2)

El cálculo de estas integrales se puede hacer de dos formas. La primera de ellas, consiste en introducir una ecuación de ajuste de las isotermas, como las de Langmuir o Toth en la integral y realizar la integración de forma analítica. Así queda una expresión de la presión superficial en función de los parámetros de dicha ecuación. La segunda forma es realizar la integral de forma gráfica a partir de los datos experimentales de las isotermas de componentes puros.

En este trabajo se ha realizado el cálculo de las dos formas, llegándose a la conclusión, a la vista de los resultados obtenidos en la aplicación de los modelos, que es el método de la integración gráfica el que conduce a mejores resultados, ya que el ajuste a algunas de las ecuaciones teóricas no es del todo bueno y se comete más error al efectuar la integración.

En las figuras 6.16 a 6.19 se representan las presiones superficiales de los componentes puros en función de su presión en la fase gaseosa a 293 K para los cuatro adsorbentes estudiados. Hay que destacar que en el caso de las zeolitas ZSM-5, al tratarse de isotermas a presión atmosférica, el segundo término de la ecuación 6.1 es despreciable.

6.2.5. CALCULO DEL CALOR ISOSTERICO DE ADSORCION DE COMPONENTES PUROS.

A partir de las isotermas experimentales de los componentes puros a las tres temperaturas estudiadas, se ha calculado el calor isostérico de adsorción de dichos componentes mediante la ecuación 2.72, del modo en expuesto en el apéndice 9.3.2. Los valores del calor isostérico así obtenido se reflejan en las tablas 6.14 a 6.17.

Extrapolando hasta n = 0 se puede obtener para cada componente el parámetro q_{j0} de la ecuación (2.71), (calor isostérico a dilución infinita), parámetro necesario para la posterior aplicación del modelo S.P.D.

6.2.6. AJUSTE DE LAS ISOTERMAS EXPERIMENTALES DE COMPONENTES PUROS A ISOTERMAS TEORIÇAS.

De entre las numerosas isotermas teóricas que se han presentado en el capítulo 2.3.3. para la reproducción de los datos de equilibrio, se han escogido las de Langmuir, B.E.T, Praustnitz, Toth y UNILAN para su aplicación a los componentes puros a las tres temperaturas estudiadas en los cuatro adsorbentes objeto de esta investigación. Dichas ecuaciones son válidas para cualquier presión por debajo de la presión de saturación, por lo que no ha habido que introducir modificaciones para su aplicación a los datos de equilibrio a altas presiones.

La obtención de los parámetros de cada una de las ecuaciones se ha realizado mediante un método de regresión no lineal, basado en el algoritmo de Marquardt (Marquardt, 1963), que permitía determinar por tanteos el valor de los parámetros que proporcionaban un valor mínimo de la función de error: $\sum (n_i^{exp} - n_i^{rep})^2$, en el que n_i^{exp} representa el valor experimental de la cantidad adsorbida y n_i^{rep} el valor reproducido por el modelo.

Los resultados obtenidos se muestran en las tablas 6.18 a 6.21, donde además se muestra el error medio de ajuste definido como:

$$\varepsilon (\%) = \frac{\sum (n_i^{exp} - n_i^{rep})}{j} \times 100$$

siendo j el número de puntos experimentales de cada isoterma.

En estas tablas se puede observar que las isotermas que mejor ajustan son las de Prausnitz, Toth y Unilan. La isoterma que peor ajusta los datos experimentales es la de Langmuir, hecho que cabía esperar ya que ésta posee sólo dos parámetros de ajuste.

A modo de ejemplo, en las figuras 6.20 a 6.23 se muestran las isotermas experimentales de etileno, propano, CO_2 y etano en zeolita ZSM-5 $(SiO_2/Al_{2/3}^{O} = 56 \text{ y } 29)$, CMS 5A y zeolita 5A respectivamente, junto con los ajustes a las expresiones de Lamgmuir, B.E.T. y Prausnitz. En ellas se puede observar lo comentado anteriormente. <u>6.2.7. INFLUENCIA DE LA COMPOSICION QUIMICA DEL ADSORBENTE. ESTUDIO DE LA RELACION Si0₂/Al₂O₃.</u>

Uno de los aspectos más importantes de este trabajo consistió en el estudio de la influencia de la composición química del adsorbente en el equilibrio de adsorción de gases. Como se comentó en el apartado 6.2.1. se han utilizado para este estudio dos zeolitas tipo ZSM-5 de diferente relación SiO_2/AI_2O_3 y los datos obtenidos en silicalita en una investigación anterior (Jimenez, 1989). La silicalita tiene una estructura porosa igual que la zeolita ZSM-5, pero con una elevada relación SiO_2/AI_2O_3 . Este hecho hace que se pueda comparar la capacidad de adsorción de diferentes adsorbatos en función únicamente de la estructura química de la superficie del adsorbente.

La silicalita tenía una proporción de aglomerante del 30%, mientras que en la zeolita ZSM-5 dicha proporción era del 23%. Por ello, despues de haber comprobado, tal y como se describe en el apartado 6.1, que el aglomerante se comporta de forma inerte desde el punto de vista de la adsorción, se refirió la cantidad adsorbida al peso de adsorbente puro, sin aglomerante, para poder comparar los datos obtenidos en las diferentes zeolitas.

Se puede observar que al aumentar la relación ${\rm SiO}_2/{\rm Al}_{23}^0$ disminuye la capacidad de adsorción, sobre todo a presiones muy bajas. El compuesto más afectado es el CO₂, seguido del etileno, etano y por último el propano, en el que prácticamente no influye esa relación. Esta circunstancia se puede observar en las figuras 6.24 a 6.27, donde se ha representado la cantidad adsorbida frente a la relación ${\rm SiO}_2/{\rm Al}_{23}^0$ para los diferentes adsorbatos a cuatro presiones diferentes. Los tres puntos que resultan para cada adsorbato se han ajustado a una recta cuyas pendientes se reflejan en la tabla 6.22. Del valor de estas pendientes se puede observar cómo la variación de la relación ${\rm SiO}_2/{\rm Al}_{23}^0$ afecta en orden de mayor a menor intensidad: CO₂, etileno, etano y propano; y cómo al aumentar la presión, la relación ${\rm SiO}_2/{\rm Al}_{23}^0$ influye menos sobre la capacidad de adsorción. En las figuras 6.28 a 6.31 se representan las isotermas de cada uno de los adsorbatos en los tres adsorbentes estudiados, observándose lo comentado anteriormente.

Los resultados obtenidos pueden explicarse si se considera que la

variación de la relación SiO2/Al203 supone una variación en la cantidad de centros con carga de la superficie del sólido. Por tanto cuanto mayor sea la polarizabilidad de un componente, mayor será la influencia que sobre él ejerce la variación de cargas en la superficie de la zeolita. Todos los componentes estudiados son no polares pero el $\rm CO_2$, con dos dobles enlaces, es más polarizable que el etileno, con un doble enlace, que, a su vez, es más polarizable que el propano, sin ningún doble enlace. Finalmente, el etano, sin ningún doble enlace y con menor peso molecular que el propano, tampoco es un compuesto polarizable. Este argumento se ve corroborado por otros estudios, sobre simulación molecular de la adsorción de compuestos polares y no polares en zeolita (Karavias y Myers, 1991), en los que se ha puesto de manifiesto la notable influencia de las interacciones adsorbato-adsorbente en función del tipo de molécula. Así, en estos estudios con zeolita 13X, los autores han visto a partir de las distribuciones de energía en la superficie de la zeolita, que las cavidades de ésta son superficies relativamente homogéneas o muy heterogéneas, dependiendo de las características de la molécula adsorbida y que por tanto el CO₂ (por su momento cuadrupolar) interacciona más fuertemente que los hidrocarburos ligeros con el campo electrostático originado por los cationes de la zeolita, localizándose en posiciones de la cavidad estructural mucho más definidas (heterogeneidad superficial). En el otro extremo, el metano no muestra preferencia por ninguna posición, siendo sus interacciones mucho menores.

Aparentemente, el aumento de cargas en la superficie de la zeolita afecta más al etano que al propano. Esto se debe, a que en las presiones estudiadas el propano está prácticamente saturado y por ello el efecto de la relación SiO_2/Al_2O_3 es menor que sobre el etano, que se encuentra aún lejos de su presión de saturación, ya que, como se ha señalado anteriormente, el efecto de la relación SiO_2/Al_2O_3 sobre la capacidad de adsorción se atenúa a medida que el gas está más próximo a la saturación. Esto puede deberse a la pérdida de puntos activos a medida que aumenta la presión por recubrimiento de éstos por moléculas de adsorbato.

Para ver con más claridad el efecto de la relación SiO_2/Al_2O_3 se ha representando las isotermas de etano y etileno en los diferentes adsorbentes, es decir, las dos zeolitas ZSM-5 y la silicalita (figuras 6.31 a 6.33). En estas figuras se puede observar que la capacidad de adsorción de ambos gases es semejante en silicalita y que a medida que aumenta la carga en la superficie de la zeolita, por disminuir la relación SiO_2/Al_2O_3 , las isotermas de etileno, más polarizable, se alejan de las isotermas de etano, por adsorberse en mayor extensión.

En cuanto a la comparación entre la adsorción de componentes puros en zeolita 5A y CMS 5A, cabe destacar, como se comentó anteriormente, que la zeolita 5A debido a su baja relación SiO_2/Al_2O_3 adsorbe preferentemente compuestos polarizables como el CO_2 y el etileno frente a otros que no lo son. En cuanto al tamiz molecular de carbón, al tener la composición química propia de los carbones, es un adsorbente fundamentalmente hidrófobo, con lo que no adsorberá preferentemente moléculas polarizables; de ahí que el orden de adsorción se vea influido únicamente por factores estructurales y de peso molecular del adsorbato.

Parám	Parámetros de la curva característica de equilibrio					
Adsorbato	T(K)	P _s (KPa)	W _o (cm ³ /Kg)	m(mol/Kg)	ΔG ¹ (Kcal/Kg)	
		ZSM-5	(Si0 ₂ /A1 ₂ 0 ₃	= 29)		
CO	281	3780	111	2.7379	-10.609	
co	293	5583	128	3.0962	-10.974	
CO2	308	8260	123	2.8769	-10.777	
Etileno	281	4733	139	2.4229	-10.999	
Etileno	293	6431	146	2.5081	-11.178	
Etileno	308	8838	159	2.6826	-11.628	
Propano	281	570	137	1.7183	-9.492	
Propano	293	842	140	1.7226	-8.384	
Propano	308	1227	143	1.7322	-7.834	

TABLA 6.1.

Adsorbato	T(K)	P _s (KPa)	W _o (cm ³ /Kg)	m(mol/Kg)	∆G ⁱ (Kcal∕Kg)
		ZSM-5	(Si0 ₂ /Al ₂ 0 ₃	= 56)	
CO2	281	3780	110	2.7378	-8.766
CO	293	5583	120	2.9027	-8.995
CO	308	8260	145	2.2512	-8.146
Etileno	281	4733	140	2.4403	-8.934
Etileno	293	6431	151	2.6026	-9.006
Etileno	308	8838	167	2.8176	-9.088
Propano	281	570	141	1.7747	-8.487
Propano	293	842	141	1.7411	-9.024
Propano	308	1227	149	1.8049	-8.078

Parán	Parámetros de la curva característica de equilibrio					
Adsorbato	T(K)	P _s (KPa)	W ₀ (cm ³ /Kg)	m(mol/Kg)	ΔG ⁱ (Kcal/Kg)	
			Zeolita 5A			
co	278	3625	235	5.8574	-32.833	
co	293	5583	242	5.8539	-33.246	
CO2	308	8260	248	5.8126	-33.965	
Etileno	278	4569	260	4.5486	-23.180	
Etileno	293	6431	261	4.4838	-22.844	
Etileno	308	8838	266	4.4878	-22.162	
Etano	278	2763	216	3.4865	-14.897	
Etano	293	3809	219	3.4701	-14.525	
Etano	308	5144	219	3.4001	-13.778	

TABLA 6.1. (Cont.)

Adsorbato	T(K)	P _s (KPa)	W _o (cm ³ /Kg)	m(mol/Kg)	$\Delta G^{i}(Kcal/Kg)$
			CMS 5A		
CO,	278	3625	266	6.6301	-13.473
CO	293	5583	258	6.2409	-14.271
CO2	308	8260	251	5.8948	-14.761
Etileno	278	4569	333	5.8257	-14.450
Etileno	293	6431	332	5.7035	-14.118
Etileno	308	8838	321	5.4159	-13.415
Etano	278	2763	336	5.4360	-11.460
Etano	293	3809	294	4.6585	-12.601
Etano	308	5144	272	4.2230	-11.725

Curva de	equilibrio	característi	ica ZSM-5	(Si0/Al_0_ =	29) a 281 K
	C0 ₂	Eti	leno	Pr	орало
θ	F(0)	θ	F(0)	θ	F(0)
0.4268	1.1831	0.4406	1.0831	0.8711	0.5494
0.5661	0.9223	0.6275	0.7983	0.9127	0.4402
0.6469	0.7838	0.7007	0.7035	0.9374	0.3571
0.7037	0.7025	0.7630	0.6153	0.9603	0.2889
0.7467	0.6250	0.8023	0.5601	0.9694	0.2408
0.7844	0.5591	0.8400	0.5040	0.9816	0.1992

TABLA 6.2.

TABLA 6.3.

Curva	de	equilibrio	característica	ZSM-5	(SiO ₂ /Al	203 *	= 56) a	281 K	
						_			

ſī

CO ₂		Eti	leno	Propano		
θ	F(0)	θ	F(0)	θ	F(0)	
0.2806	1.3698	0. 3191	1.2535	0. 7691	0.7349	
0.3617	1.1745	0.4437	1.0553	0.8755	0.5437	
0.4679	1.0036	0.5676	0.9116	0.9006	0.4564	
0. 5963	0.8356	0.6813	0.7679	0.9305	0.3557	
0.6 413	0.7618	0.7358	0.6810	0.9526	0.2834	
0.6948	0.6705	0.7782	0.6231	0.9636	0.233 5	

Curva de	equilibrio	característi	.ca ZSM-5	$(\operatorname{SiO}_2/\operatorname{Al}_2O_3 = 2$	29) a 293 K
(00 ₂	leno	Pro	opano	
θ	F(0)	θ	F(0)	θ	F(0)
0.3245	1.3643	0.2942	1.3675	0.5597	0.9609
0. 4261	1.1051	0.4579	0.9829	0.7536	0.6565
0. 4760	0.9938	0.5273	0.8649	0.8651	0.5561
0.5594	0.8799	0.5674	0.8001	0.9032	0.4538
0.6004	0.8148	0.6898	0.6584	0.9213	0.3848
0.6522	0.7275	0.7210	0.6252	0.9379	0.3271
0.6828	0.6761	0.7506	0. 59 07	0.9440	0.2950
		0.7935	0.5543	0.9584	0.2701

TABLA 6.4.

.

TABLA 6.5

Curva	de	equilibrio	característi	.ca ZSM-5	(Si0 ₂ /Al ₂ 0 ₃ =	29) a 308 K
	(202	Eti	leno	Pr	opano
θ		F(0)	θ	F(0)	θ	F(θ)
0.196	54	1.7385	0.3595	1.1342	0.5883	0.9878
0.344	18	1.3527	0. 4250	1.0046	0.7092	0.7849
0. 405	56	1.1709	0.4753	0. 9148	0.7700	0.6427
0.487	72	0.9961	0.5387	0.7673	0.8057	0.5625
0.561	12	0.8716	0.5921	0.7444	0.8404	0.4551
0.607	72	0.8033	0.6489	0.6844	0.9001	0.3995
0.649	95	0.7406	0.6849	0.6453	0.9440	0.3531

1

<u>Curva de</u>	equilibri	o característi	ca ZSM-5	$(Si0/A1_0 = 5)$	5 <u>6) a 293</u> K
(CO ₂	Eti	leno	Pro	opano
θ	F(0)	θ	F(0)	θ	F(θ)
0.2148	1.5856	0.2791	1.3531	0.5303	0.9483
0.3470	1.2234	0.3597	1.1987	0.8477	0.5283
0. 4237	1.0767	0.4476	1.0683	0.8830	0.4423
0. 4957	0.9687	0.5310	0.9605	0.9058	0.3776
0.5473	0.8775	0.6095	0.8432	0.9231	0.3096
0. 5958	0.8150	0.6659	0.7788	0.9368	0.2725
0.6312	0. 7654	0.7062	0.7291	0.9562	0.2496

TABLA 6.6.

ſ

TABLA 6.7.

Curva de	equilibrio	característi	ca ZSM-5	(Si0 ₂ /Al ₂ 0 ₃ =	56) a 308 K			
	CO ₂ Etileno Propano							
θ	F(0)	θ	F(θ)	θ,	F(0)			
0.2601	1.3440	0.2175	1.5797	0. 5922	0.9539			
0.3367	1.1907	0.2852	1.3884	0. 691 0	0.7991			
0. 4183	1.0696	0.3738	1.2143	0.7407	0.7039			
0. 4960	0.9714	0.4404	1.1009	0.7643	0. 5995			
0.5903	0.8718	0.4893	1.0284	0.8191	0.4992			
0.6499	0.8112	0.5431	0.9424	0.8508	0. 4441			
0.7114	0.7600	0.5967	0.8802	0.8833	0.3974			

Cu	Curva de equilibrio característica CMS 5A a 278 K						
cc	2	Etil	eno	Eta	Etano		
θ	F(0)	θ	F(0)	θ	F(0)		
0.4169	1.1203	0.3362	1.2548	0.4834	1.0241		
0. 4967	0.8966	0.4216	1.0704	0.5163	0.9029		
0. 5289	0.8204	0.4648	1.0036	0.5543	0. 7941		
0.5596	0.7479	0.5213	0.8830	0.5934	0.7033		
0. 5925	0.6848	0.5669	0.7944	0.6215	0.6405		
0.6513	0.5943	0.6392	0.6804	0.6772	0.5388		
0.7006	0.5335	0.6928	0.6005	0.7273	0.4705		
0.7391	0.4846	0.7302	0.5421	0.7708	0.4204		
0.7907	0.4117	0.7926	0.4490	0.8320	0.3343		
0.8415	0.3560	0.8428	0.3822	0.8803	0.2754		
0.8700	0.3143	0.8877	0.3229	0.9331	0.2208		
0.8980	0.2780	0.9173	0.2787	0.9607	0.1842		
0.9193	0.2769	0.9335	0.2320	0.9873	0.1506		

TABLA 6.8.

Г

CC) ₂	Etil	eno	Etano	
θ	F(0)	θ	F(0)	θ	F(0)
0.3889	1.2136	0.2908	1.2889	0.4745	0.9816
0.4655	1.0271	0.3527	1.1656	0.5271	0.8526
0. 4917	0.9540	0.3990	1.0868	0.5588	0.7746
0.5221	0.8675	0. 4599	0.9765	0. 58 78	0.6995
0. 5471	0.7990	0.5051	0.8960	0.6165	0.6269
0.5857	0.7043	0. 5800	0.7678	0.6872	0.5303
0.6387	0.6260	0.6542	0.6779	0.7511	0.4610
0.7008	0.5437	0.7137	0.5938	0.8113	0.3913
0.7468	0.4929	0.7 595	0. 5312	0.8553	0.3417
0.7759	0. 4498	0.7941	0.4786	0.8913	0.2884
0.8286	0.3916	0.8358	0.4090	0.9390	0.2428
0.8640	0.3417	0.8738	0.3518	0.9467	0.1976

TABLA 6.9.

r

ຈ

Curva de equilibrio característica CMS 5A a 308 K								
CO2		Etil	eno	Eta	ano			
θ	F(0)	θ	F(0)	θ	F(0)			
0.3692	1.2840	0.2688	1.3349	0.4679	1.0405			
0.4322	1.1236	0.3344	1.2154	0.5161	0.9361			
0.4715	1.0169	0.4059	1.0912	0.5635	0.8209			
0.4975	0.9414	0.4571	1.0065	0.6029	0.7221			
0.5803	0.8346	0.5299	0.8938	0.6585	0.6264			
0.5690	0.7634	0.6162	0.7830	0.6968	0.5616			
0.6019	0.7082	0.6944	0.6957	0.7310	0.5129			
0.6456	0.6237	0.7477	0.6312	0.7997	0.4105			
0.6828	0. 5601	0.7959	0.5713	0.8345	0.3587			
0. 7223	0.5107	0.8347	0.5222	0.8669	0. 3201			
0.7638	0.4649	0.8818	0.4799	0.9003	0.2867			
0.7973	0. 4285	0.9151	0.4440	0.9169	0.2539			

TABLA 6.10.

.

.

Curva de equilibrio característica Zeolita 5A a 278 K									
CO ₂		Et	Etileno		ano				
θ	F(0)	θ	F(0)	θ	F(0)				
0.7447	0. 4777	0.6800	0.5063	0.7049	0.5057				
0.8566	0.2524	0.7906	0.3194	0.8076	0.3396				
0.9224	0.1406	0.8574	0.2248	0.8803	0.2250				
0.9469	0.0921	0.9080	0.1610	0.9403	0.1316				
0. 9733	0.0615	0.9652	0.1112	0.9870	0.0532				
0.9907	0.0384	0.9843	0.0733	1.0051	0.0073				
0.9986	0.0204	0.9898	0.0434						

TABLA 6.11.

.

ſ

TABLA 6.12.

Curva de equilibrio característica Zeolita 5A a 293 K									
CO2		Eti	Etileno		no				
θ	F(0)	θ	F(0)	θ	F(0)				
0.7277	0. 4938	0.6488	0.5788	0.6762	0.5332				
0.8125	0.3292	0.7630	0.3826	0.7986	0.3734				
0. 8570	0.2460	0.8212	0.2956	0.8617	0.2740				
0.9055	0.1704	0.8920	0.2134	0.9295	0.1751				
0.9409	0.1262	0.9432	0.1575	0.9673	0.1049				
0.9614	0.0924	0.9819	0.1213	0.9859	0.0613				
0.9826	0.0638	0.9879	0.0941	0.9939	0.0337				
0.9886	0.0481	0.9902	0.0716	0.9947	0.0130				

Curva de equilibrio característica Zeolita 5A a 308 K									
CO ₂		Eti	Etileno		ino				
θ	F(0)	θ	F(0)	θ	F(0)				
0.6730	0. 5817	0.6829	0.4804	0.6726	0.5395				
0.7814	0.3708	0.7517	0.3815	0.7661	0.4244				
0.8539	0.2768	0.8065	0.3108	0.8274	0.3427				
0.8931	0.2129	0.8490	0.2592	0.8885	0.2393				
0.9331	0.1594	0.9099	0.2129	0.9433	0.1700				
0.9641	0.1237	0.9603	0.1541	0.9573	0.0980				
0.9817	0.0943	0.9639	0.1100	0.9619	0.0690				

TABLA 6.13.

Æ

_

.

.

-7

ſř

Calor isostérico de adsorción en ZSM-5 $(Si0_2/A1_2_3 = 56)$								
CO ₂		Etileno		Propano				
q(Kcal/mol)	n(mol/Kg)	q(Kcal/mol)	n(mol/Kg)	q(Kcal/mol)	n(mol/Kg)			
9821	0.60	8414	1.00	17366	1.30			
9509	0.70	8010	1.20	17431	1.35			
9408	0.80	7648	1.30	17365	1.40			
9346	0.90	7190	1.40	17131	1.45			
8868	1.00	6636	1.50	16951	1.50			
8821	1.10	5982	1.60	15908	1.55			
7515	1.40	5238	1.70	15489	1.57			
5860	1.80	4399	1.80	14694	1.60			

TABLA 6.14.

TABLA 6.15.

Calor isostérico de adsorción en ZSM-5 (Si0_/Al_0 = 29)							
CO2		Etileno		Propano			
q(Kcal/mol)	n(mol/Kg)	q(Kcal/mol)	n(mol/Kg)	q(Kcal/mol)	n(mol/Kg)		
16383	0,80	12059	1.00	22000	0.70		
13398	1.00	11914	1.10	21286	0.80		
12374	1.10	11600	1.20	20367	0.90		
11494	1.20	11146	1.30	19195	1.00		
10069	1.40	10559	1.40	17699	1.10		
8915	1.60	987 9	1.50	15783	1.20		
7906	1.80	8169	1.70	13299	1.30		
7007	2.00	6066	1.90				

TABLA 6.16.

Calor isostérico de adsorción en CMS 5A								
CO ₂		Etile	no	Eta	ano			
q(Kcal/mol)	n(mol/Kg)	q(Kcal/mol)	n(mol/Kg)	q(Kcal/mol)	n(mol/Kg)			
7437	1.00	39693	0.50	39221	0.50			
7 4 17	1.20	31306	1.00	21191	1.00			
7350	1.50	22836	1.20	16952	1.20			
7281	1.70	14203	1.50	12352	1.50			
7140	2.00	11918	1.70	10217	1.70			
6810	2.50	9394	2.00	8209	2.00			
6651 ·	2.70	7175	2.50	7663	2.50			
6385	3.00	6918	3.00	6684	3.00			
5895	3.50	6667	3. 5 0	5967	3.50			

Calor isostérico de adsorción en Zeolita 5A								
CO2		Etileno		Etano				
q(Kcal/mol)	n(mol/Kg)	q(Kcal/mol)	n(mol/Kg)	q(Kcal/mol)	n(mol/Kg)			
10335	4.00	8979	3.00	7785	2.40			
9289	4.20	7899	3.20	7486	2.50			
8295	4.40	6906	3.40	7183	2.60			
7301	4.60	5992	3.60	6875	2.70			
6459	4.80	5095	3.80	6561	2.80			
5564	5.00	4264	4.00	6243	2.90			
4768	5.20	3454	4.20	5919	3.00			
4012	5.40	2693	4.40	5589	3.10			
3219	5.60	2327	4.50	5353	3.20			

TABLA 6.17.

isot	ermas teć	ricas en zeolita Z	SM-5 (Si0 ₂ /A1 ₂ 0 ₃ =	= 29)			
LANGMUIR							
Adsorbato	T(K)	m	K	ε(%)			
CO2	281	1.9968	1.0826	6.8			
CO2	293	1.8527	0.7162	9.6			
CO2	308	1.6668	0.7848	16.3			
Etileno	281	1.8791	1.5581	6.6			
Etileno	293	1.7895	0.6457	16.6			
Etileno	308	1.7075	0.3513	7.3			
Propano	281	1.6648	3. 1282	1.1			
Propano	293	1.5730	5. 1989	4.4			
Propano	308	1.4844	2. 2276	5.2			

TABLA 6.18.

Parámetros de ajuste de las isotermas de componentes puros a

PRAUSNITZ								
Adsorbato	T(K)	A	B	β	ε(%)			
CO2	281	13.0517	1.2628	0.1224	0.5			
CO2	293	5.6039E+7	0.9416	0.1816	1.1			
CO2	308	19.3407	0.8753	0.1695	1.3			
Etileno	281	1.9200E+6	1.1490	0.1338	1.5			
Étileno	293	1.1932E+7	0.9399	0.1638	1.0			
Etileno	308	6.0805E+5	0.7958	0.1850	0.4			
Propano	281	21.0709	1.4997	0.0269	0.1			
Propano	293	17.1674	1.2999	0.0552	1.7			
Propano	308	2.9146E+5	1.0395	0.0886	4.4			

B. E. T.									
Adsorbato	Τ(Κ)	m	b	Ps	ε(%)				
CO2	281	1.9741	4.306810E+3	3780	6.4				
CO2	293	1.9393	2.678508E+3	5583	9.7				
CO2	308	1.6949	4.683533E+3	8260	16.7				
Etileno	281	1.8627	7.790534E+3	4733	6.2				
Etileno	293	1.8425	2.584628E+3	6431	15.4				
Etileno	308	1.6916	3.248790E+3	8838	7.1				
Propano	281	1.5231	2.184289E+4	569	6.2				
Propano	293	1.4756	4.631125E+3	842	3.8				
Propano	308	1.4228	3.082587E+3	1227	3.4				

TABLA 6.18 (Cont.)

ТОТН						
Adsorbato	T(K)	m	b	t	ε(%)	
CO2	281	6.3698	0.2100	0.1115	0.3	
CO2	293	7.5312	0.3127	0.1273	1.7	
CO2	308	10.2300	0.2754	0.0964	1.6	
Etileno	281	4.9334	0.2042	0.1258	0.3	
Etileno	293	12.6425	0.2310	0.0798	2.7	
Etileno	308	16.1464	0.2907	0.0834	0.8	
Propano	281	1.8540	0.0654	0.2368	0.1	
Propano	293	1.8875	0.1511	0.2959	1.3	
Propano	308	2.1750	0.1384	0.1727	4.5	

•

UNILAN .						
Adsorbato	T(K)	m	S	с	ε(%)	
CO2	281	3.6794	8.0613	21.5254	0.7	
CO2	293	3.4784	6.3264	25.6708	2.7	
CO2	308	2.4726	5.7086	5.9489	3.9	
Etileno	281	3.3501	8.0926	14.3130	0.4	
Etileno	293	3.7079	6.6751	6.2079	5.3	
Etileno	308	3.2023	6.3229	41.3763	2.0	
Propano	281	1.6892	12.4939	1.294E-4	0.6	
Propano	293	1.6855	5.3598	0.1297	1.2	
Propano	308	2.2493	10.1421	2.2542	4.4	

isotermas teóricas en zeolita ZSM-5 ($SiO_2/Al_2O_3 = 56$) LANGMUIR Adsorbato T(K) Κ ε(%) m CO2 281 1.7741 0.2464 9.6 293 1.7788 CO2 1.1888 12.4 C02 308 1.5979 0.1253 8.7 Etileno 281 1.7860 0.4302 8.3 Etileno 293 1.7444 0.2509 7.9 308 Etileno 1.6091 0.1876 9.4 Propano 281 1.6717 3.8002 1.8 . 293 1.5922 7.4780 Propano 2.6 308 1.5069 1.0344 4.1 Propano

Parámetros de ajuste de las isotermas de componentes puros a isotermas teóricas en zeolita ZSM-5 (SiO_/Al_O_ = 56)

	PRAUSNITZ						
Adsorbato	T(K)	A	В	β	ε(%)		
CO2	281	5.9904E+8	0.7151	0.2265	2.2		
CO2	293	2.6221E+5	0.6032	0.2454	0.7		
CO2	308	1.1948E+7	0.4287	0.2915	0.3		
Etileno	281	4.3739E+8	0.7915	0.2045	3.2		
Etileno	293	1.9135	0.7555	0.2036	0.8		
Etileno	308	4.3760	0.5334	0.2590	0.7		
Propano	281	13.2077	1.5028	0.0199	0.2		
Propano	293	2.5260E+8	1.1538	0.0877	4.0		
Propano	308	2.9414E+6	1.0184	0.0997	1.1		

B. E. T.						
Adsorbato	Τ(Κ)	m	Ь	Ps	ε(%)	
CO2	281	1.8166	1.1813E+3	3780	6.4	
CO2	293	1.7499	1.0828E+3	5583	9.7	
CO2	308	1.5980	1.0037E+3	8260	8.7	
Etileno	281	1.8214	1.7290E+3	4733	8.1	
Etileno	293	1.7902	1.3876E+3	6431	7.6	
Etileno	308	1.6325	1.4469E+3	8838	8.9	
Propano	281	1.5600	4.3071E+3	570	2.0	
Propano	293	1.5033	7.4873E+3	842	1.0	
Propano	308	1.4262	1.1962E+3	1227	3.5	

TABLA 6.19 (Cont.)

тотн						
Adsorbato	T(K)	m	b	t	ε(%)	
CO2 CO2 CO2 CO2	281 293 308	7. 1074 52. 569 74. 593	0. 4453 0. 4030 0. 5298	0.1547 0.0750 0.0812	1.8 1.0 0.8	
Etileno Etileno Etileno	281 293 308	3.3941 47.785 4.1965	0. 5037 0. 3979 0. 7082	0.2585 0.0767 0.2355	1.0 1.1 2.2	
Propano Propano Propano	281 293 308	1.8248 1.8014 2.8180	0.1101 0.1421 0.1622	0.3499 0.3394 0.1420	0.3 0.4 0.9	

UNILAN						
Adsorbato	T(K)	m	S	С	ε(%)	
CO2	281	3. 1663	5.2364	29.0199	2.8	
CO2	293	2.5805	4.4030	17.0505	4.6	
CO2	308	3.0354	4.8034	80.8058	3.9	
Etileno	281	2.6899	4.7104	10.8925	1.2	
Etileno	293	3.1442	5.0030	37.9021	1.9	
Etileno	308	3.3605	5.4692	10.0086	3.5	
Propano	281	1.7333	7.3728	0.0148	0.4	
Propano	293	1.6759	5.3692	0.1028	0.6	
Propano	308	2.4321	9.1155	5.7148	0.9	

LANGMUIR							
Adsorbato $T(K)$ m K $\epsilon(%)$							
CO2	308	5.7962	0.0045	6.1			
CO2	293	5.8981	0.0076	6.0			
CO2	278	6.1793	0.0101	7.5			
Etileno	308	4.0855	0.0128	7.2			
Etileno	293	4.6311	0.0141	8.7			
Etileno	278	5.1473	0.0144	8.9			
Etano	308	3.6826	0.0168	7.4			
Etano	293	4.2620	0.0160	8.2			
Etano	278	4.9037	0.0135	8.9			

TABLA 6.20.

Parámetros de ajuste de las isotermas de componentes puros a isotermas teóricas en CMS 5A

PRAUSNITZ						
Adsorbato	T(K)	A	В	β	ε(%)	
CO2	308	0.084382	0.8004	0.2646	0.5	
CO2	293	0.120303	1.3040	0.2087	0.9	
CO2	278	0.292233	1.3280	0.2139	0.7	
Etileno	308	17142000	0.8846	0.2127	1.7	
Etileno	293	96020000	0.9793	0.2197	1.8	
Etileno	278	48778000	1.1389	0.2125	1.1	
Etano	308	35006000	0.9564	0.1888	0.7	
Etano	293	32306000	1.0058	0.2046	1.8	
Etano	278	48778000	1.1389	0.2125	1.6	

B. E. T.						
Adsorbato	T(K)	m	b	Ps	ε(%)	
CO2	308	4.2079	51.838	5886	2.5	
CO2	293	4.6792	81.660	6431	2.8	
CO2	278	4.8183	112.776	5781	3.2	
Etileno	308	3.0864	168.127	5088	1.8	
Etileno	293	3, 4689	175.191	4560	3.3	
Etileno	278	3, 8795	197.627	4795	4.4	
Etano	308	2,9318	227.538	6022	2.5	
Etano	293	3, 3653	191.786	5394	4.3	
Etano	278	3.6611	174.300	4690	3.3	

.

TABLA 6.20 (Cont.)

ТОТН						
Adsorbato	T(K)	m	Ъ	t	ε(%)	
CO2	308	20, 5093	0.0326	0.2428	0.5	
CO2	293	12.8132	0.0540	0.2989	0.6	
CO2	278	22,7079	1.0955	0.1804	0.6	
Etileno	308	87.7053	232738	0.0716	1.8	
Etileno	293	126.4800	270061	0.0692	1.9	
Etileno	278	111.0250	289445	0.0713	1.6	
Etano	308	38.5570	189303	0.0809	0.8	
Etano	293	70.2873	234021	0.0748	1.9	
Etano	278	128.4710	295496	0.0693	2.1	

UNILAN						
Adsorbato	T(K)	m	S	с	ε(%)	
CO2	308	31.491	12.096	0.02040	1.5	
CO2	293	26.346	11.044	0.13097	0.9	
CO5	278	27.087	12.032	0.09323	1.7	
Etileno	308	16.619	12.717	0.10599	2.5	
Etileno	293	18.034	12.013	0.22054	2.9	
Etileno	278	19.843	12.288	0.20033	2.8	
Etano	308	14.224	13.191	0.12808	1.6	
Etano	293	15.592	11.805	0.37482	2.6	
Etano	278	19.156	12.099	0.19774	2.9	

TA	BLA	6.	21	•

Parámetros de ajuste de las isotermas de componentes puros a isotermas teóricas en zeolita 5A

LANGMUIR						
Adsorbato	T(K)	m	K	ε(%)		
CO2	278	4.9968	1.0826	6.8		
CO2	293	5.5281	0.0638	4.0		
CO2	308	5.3527	0.0756	5.2		
Etileno	278	4.2969	0.0519	5.3		
Etileno	293	4.2303	0.0444	6.1		
Etileno	308	4.2990	0.1115	3.9		
Etano	278	3.4218	0.0376	4.1		
Etano	293	3.4137	0.0229	3.2		
Etano	308	3.2945	0.0140	2.3		

PRAUSNITZ						
Adsorbato	T(K)	A	В	β	ε(%)	
CO2	278	3.120E+7	3. 5268	0.0632	0.3	
CO2	293	1.745E+6	3.2208	0.0722	0.3	
CO2	308	6.507E+7	2.9224	0.0826	0.4	
Etileno	278	1.751E+5	2.1896	0.0916	0.7	
Etileno	293	2.345E+6	2.0089	0.0995	0.8	
Etileno	308	5.607E+4	1.6016	0.1249	0.8	
Etano	278	0.623100	1.9659	0.0738	0.5	
Etano	293	-1.799E+4	1.5860	0.0982	1.8	
Etano	308	1.535E+5	1.3526	1.1282	2.2	

161

		B. E. T.			
Adsorbato	T(K)	m	b	Ps	ε(%)
CO2	278	5.1751	4.2868E+3	2.2942E+4	1.1
CO2	293	5.0522	2.7463E+3	2.4289E+4	1.5
CO2	308	4.8609	2.5079E+3	2.0189E+4	1.9
Etileno	278	3.8956	1.6333E+3	1.9148E+4	2.3
Etileno	293	3.7742	1.4683E+3	1.9052E+4	2.8
Etileno	308	3.7937	4.4076E+2	2.1678E+4	1.8
Etano	278	3.1289	1.4607E+3	2.3644E+4	1.7
Etano	293	3.1609	1.0662E+3	3.2538E+4	1.6
Etano	308	3.1022	7.7873E+2	4.2829E+4	1.2

TABLA 6.21 (Cont.)

тотн					
Adsorbato	T(K)	m	b	t	ε(%)
CO2	278	9.6744	1.000E+9	0.1020	0.8
CO2	293	9.6745	1.002E+9	0.1021	0.8
CO2	308	12.4063	9.999E+8	0.0905	0.9
Etileno	278	11.6723	9.902E+8	0.0859	1.1
Etileno	293	9.6107	9.999E+5	0.1106	1.3
Etileno	308	14.3654	3.902E+5	0.0992	1.0
Etano	278	7.7373	2.972E+7	0.0997	0.5
Etano	293	4.2364	2.125403	0.3108	0.4
Etano	308	9.1621	1.217E+6	0.1010	1.8

UNILAN						
Adsorbato	T(K)	m	S	С	ε(%)	
C02	278	8.3709	13.1025	17.5928	0.6	
CO2	293	8.6988	12.0558	66.4472	0.7	
C02	308	8.8131	11.2747	13.2E+1	0.9	
Etileno	278	7.1676	10.3500	19.7E+1	1.2	
Etileno	293	6.8636	9.3772	9.3772	1.3	
Etileno	308	7.4882	8.0581	84.6E+1	1.1	
Etano	278	6.0493	11.2156	42.6E+1	0.5	
Etano	293	3.6740	4.6993	21.5370	0.3	
Etano	308	5.4833	8.5850	48.8E+1	1.7	

TABLA 6.22

Variación de la capacidad de adsorción con la relación ${\rm Si0}_2/{\rm Al}_2{\rm O}_3$ (zeolitas ZSM-5 y silicalita) Pendientes de las rectas de ajuste (Fig. 6.24 a 6.27)

	Presión (KPa)					
	6.6	13.3	53.3	80.0		
CO ₂	0.0104	0.0101	0.0087	0.0077		
Etileno	0.0067	0.0067	0.0063	0.0060		
Propano	0.0032	0.0028	0.0022	0.0020		
Etano	0.0042	0.0037	0.0025	0.0025		

Figura 6.1. Isotermas de adsorción de CO_2 en silicalita a 293 K. (\bigcirc instalación de vidrio antigüa. \blacksquare instalación de vidrio nueva. \triangle instalación de acero).

Figura 6.2. Isotermas de adsorción de CO_2 en zeolita ZSM-5 (SiO_/Al_O_2 = 56). Reproducibilidad de experimentos.

Figura 6.3. Isotermas de adsorción de CO₂ en zeolita ZSM-5 y bentonita: influencia del aglomerante. \bigcirc (SiO₂/Al₂O₃ = 29), \blacktriangle (SiO₂/Al₂O₃ = 56), \square Bentonita.

Figura 6.4. Isotermas de adsorción de componentes puros en zeolita ZSM-5 $(SIO_2/AI_2O_3 = 56)$ a 293 K. \Box CO_2 , \triangle etileno, \bigcirc propano, \Diamond etano. Los puntos negros corresponden a la isoterma de desorción.

Figura 6.5. Isotermas de adsorción de componentes puros en zeolita ZSM-5 $(SIO_2/AI_2O_3 = 29)$ a 293 K. \Box CO₂, \triangle etileno, O propano, \Diamond_1 etano. Los puntos negros corresponden a la isoterma de desorción.

Figura 6.6. Isotermas de adsorción de componentes puros en silicalita a 293 K. □ CO₂, ▲ etileno, O propano.

Figura 6.7. Isotermas de adsorción de etileno a diferentes temperaturas en zeolita ZSM-5 (Si0₂/Al₂0₃ = 56). O 281 K, \blacksquare 293 K, \triangle 308 K.

Figura 6.8. Isotermas de adsorción de componentes puros en CMS 5A a 293 K. \Box CO₂, \blacktriangle etileno, O etano.

Figura 6.9. Isotermas de adsorción de componentes puros en zeolita 5A a 293 K. \square CO₂, \blacktriangle etileno, \bigcirc etano.

Figura 6.10. Isotermas de adsorción de etano a diferentes temperaturas en CMS 5A. △ 278 K, ■ 293 K, O 308 K.

Figura 6.11. Isotermas de adsorción de CO $_2$ a diferentes temperaturas en zeolita 5A. \odot 278 K, \blacksquare 293 K, \bigtriangleup 308 K.

Figura 6.12. Curva característica de equilibrio de adsorción de zeolita ZSM-5 (Si0₂/Al₂0₃ = 29). \bigcirc CO₂ 281 K. \diamondsuit CO₂ 293 K. \bigstar CO₂ 308 K. \square etileno 281 K. \bigstar etileno 293 K. \bullet etileno 308 K. \triangle propano 281 K. \diamondsuit propano 293 K. \bigstar propano 308 K.

Figura 6.13. Curva característica de equilibrio de adsorción de zeolita ZSM-5 $(SiO_2/AI_2O_3 = 29)$. \bigcirc CO_2 281 K. \diamondsuit CO_2 293 K. \blacktriangle CO_2 308 K. \Box etileno 281 K. \bigstar etileno 293 K. \bullet etileno 308 K. \triangle propano 281 K. \diamondsuit propano 293 K. \blacksquare propano 308 K.

Figura 6.14. Curva característica de equilibrio de adsorción de MSC-5A.
◊ CO₂ 278 K. □ CO₂ 293 K. ▲ CO₂ 308 K. ● etileno 278 K.
★ etileno 293 K. ○ etileno 308 K. ■ etano 278 K. ◇ etano 293 K.
△ etano 308 K.

Figura 6.15. Curva característica de equilibrio de adsorción de zeolita 5A. \Box CO₂ 278 K. \diamond CO₂ 293 K. \triangle CO₂ 308 K. \blacktriangle etileno 278 K. \bigstar etileno 293 K. \bigcirc etileno 308 K. \Leftrightarrow etano 278 K. \bullet etano 293 K. \blacksquare etano 308 K.

Figura 6.16. Presiones superficiales de componentes puros en zeolita ZSM-5 $(Si0_2/Al_2O_3 = 29)$.---- CO_2 , ----- etileno, ----- propano.

Figura 6.17. Presiones superficiales de componentes puros en zeolita ZSM-5 $(Si0_2/Al_20_3 = 56)$. - - - C 0_2 , ----- etileno, - - - propano.

Figura 6.18. Presiones superficiales de componentes puros en CMS 5A. $---CO_2$, ----- etileno, ---- etano.

Figura 6.19. Presiones superficiales de componentes puros en zeolita 5A. ---- CO_2 , ----- etileno, ---- etano.

Figura 6.20. Ajustes de la isoterma de etileno a 293 K a isotermas teóricas en zeolita ZSM-5 $(SiO_2/AI_2O_3 = 56)$. ---- Langmuir. --- B.E.T. ---- Prausnitz.

Figura 6.21. Ajustes de la isoterma de propano a 293 K a isotermas teóricas en zeolita ZSM-5 (SiO₂/Al₂₃ = 29). ---- Langmuir. ---- B.E.T. ----- Prausnitz.

Figura 6.22. Ajustes de la isoterma de CO $_{\rm 2}$ a 293 K a isotermas teóricas en CMS 5A.

---- Langmuir. - - B.E.T. - Prausnitz.

Figura 6.23. Ajustes de la isoterma de etano a 293 K a isotermas teóricas en zeolita 5A.

---- Langmuir. - - B.E.T. ---- Prausnitz.

Figura 6.24. Isotermas de adsorción en zeolitas ZSM-5. Variación con la relación Si0_/Al_0_ a 6.6 KPa. \Box CO₂, \blacktriangle etileno, \odot propano, \diamondsuit etano.

Figura 6.25. Isotermas de adsorción en zeolitas ZSM-5. Variación con la relación Si0_/Al_0_a 13.3 KPa. \square CO_2, \blacktriangle etileno, \blacklozenge propano, \diamondsuit etano.

Figura 6.26. Isotermas de adsorción en zeolitas ZSM-5. Variación con la relación Si0₂/Al₂0₃ a 53.3 KPa. \Box CO₂, \blacktriangle etileno, \blacklozenge propano, \diamondsuit etano.

Figura 6.27. Isotermas de adsorción en zeolitas ZSM-5. Variación con la relación $Si0_2/Al_20_3$ a 80.0 KPa. \Box CO₂, \blacktriangle etileno, \oplus propano, \Diamond etano.

Figura 6.28. Isotermas de adsorción de CO_2 a 293 K. (\triangle ZSM-5 SiO₂/Al₂O₃ = 29, **E** ZSM-5 SiO₂/Al₂O₃ = 56, O Silicalita).

Figura 6.29. Isotermas de adsorción de etileno a 293 K. (\triangle ZSM-5 Si0₂/Al₂O₃ = 29, **E** ZSM-5 Si0₂/Al₂O₃ = 56, O Silicalita).

Figura 6.30. Isotermas de adsorción de propano a 293 K. (\triangle ZSM-5 Si0₂/Al₂0₃ = 29, \Box ZSM-5 Si0₂/Al₂0₃ = 56, \bigcirc Silicalita).

Figura 6.31. Isotermas de adsorción de etano a 293 K. (\triangle ZSM-5 SiO₂/Al₂O₃ = 29, **E** ZSM-5 SiO₂/Al₂O₃ = 56, **O** Silicalita).

Figura 6.32. Isotermas de adsorción de etileno y etano en Silicalita a 293 K. ▲ etileno, ◊ etano.

Figura 6.33. Isotermas de adsorción de etileno y etano en zeolita ZSM-5 $(SiO_2/AI_2O_3 = 56)$ a 293 K. \blacktriangle etileno, \diamondsuit etano.

Figura 6.34. Isotermas de adsorción de etileno y etano en zeolita ZSM-5 $(SiO_2/Al_2O_3 = 29)$ a 293 K. A etileno, \Diamond etano.

6.3. ISOTERMAS DE ADSORCION DE MEZCLAS BINARIAS EN ZEOLITAS ZSM-5 A PRE-SION ATMOSFERICA.

En las figuras 6.35 a 6.40 se representan las isotermas totales de los sistemas CO_2 -etileno, CO_2 -propano y etileno-propano en zeolita ZSM-5 de relación $SiO_2/Al_2O_3 = 29$ y 56 respectivamente, a 293 K. Así mismo, se representan a modo de referencia las isotermas correspondientes a los componentes puros que componen cada mezcla.

Se puede observar que en los sistemas CO₂-propano y etileno- propano en ambas zeolitas, existe un intervalo de presiones próximo a la zona de cruce de las isotermas de los componentes puros en los que la cantidad adsorbida de la mezcla binaria supera a las de los componentes puros. Este efecto de sobreadsorción, que ya fué observado en anteriores investigaciones (Jimenez, 1989), indica un comportamiento alejado de la idealidad de la mezcla. La explicación a este hecho se puede dar teniendo en cuenta que tanto el CO, como el etileno que son moléculas polarizables son muy diferentes del propano, desde el punto de vista de la adsorción. Así en su mezcla sobre la superficie del adsorbente, la presencia de otro adsorbato de naturaleza diferente puede modificar las fuerzas de atracción del adsorbente por cada uno de los gases. Estas interacciones adsorbato-adsorbato pueden ser las responsables de que se produzca una mayor adsorción de los adsorbatos cuando se encuentran mezclados sobre la superficie del adsorbente que cuando se adsorbe el componente puro.

En el sistema CO_2 -etileno, ambos adsorbatos son polarizables debido a la presencia de dobles enlaces en su estructura molecular y no se produce cruce entre las isotermas de los componentes puros por lo que no se observa efecto de sobreadsorción.

En las figuras 6.41 a 6.52 se muestran las isotermas individuales de cada uno de los adsorbatos que componen la mezcla para los tres sistemas binarios estudiados en ambas zeolitas. En todas estas isotermas se han incluido, junto con el haz de isotermas individuales de un componente en la mezcla, la isoterma del adsorbato puro.

En las figuras 6.49 y 6.51 correspondientes a las isotermas individuales de CO₂ y etileno en los sistemas CO₂-propano y etileno-propano en

zeolita ZSM-5 Si0₂/Al₂O₂ = 56, se puede observar que en las isotermas individuales de CO₂ y de etileno existe una presión a partir de la cual disminuye la cantidad adsorbida al aumentar la presión, hecho que no se produce en las isotermas individuales de propano en ninguno de los dos sistemas. Este hecho, que también ocurría en los mismos sistemas estudiados anteriormente en silicalita (Jimenez, 1989), revela un efecto de desplazamiento por parte de las moléculas de propano sobre las de CO₂ y etileno. De esta forma, se pone de manifiesto una mayor afinidad de la zeolita por las moléculas de propano. Esta mayor afinidad se puede justificar teniendo en cuenta las propiedades estructurales además de la naturaleza de los adsorbatos en cuanto a polarizabilidad, peso molecular y forma espacial de los adsorbentes, tal como se indicó al comentar los resultados de los componentes puros. En realidad, el término "desplazamiento", que corresponde más bien a un concepto dinámico - y por tanto al margen del equilibrio -, debiera sustituirse por el de "variación de la selectividad" de la adsorción. No obstante, por razón de brevedad y comodidad se mantendrá dicho término "desplazamiento".

Como ya se vió en el apartado de componentes puros, la zeolita ZSM- $5 SiO_2/AI_2O_3 = 56$ posee muy pocos centros ácidos, al tener pocos átomos de aluminio en su estructura, de ahí que no presente una afinidad especial por moléculas polarizables como el CO_2 o el etileno. Así adsorbe preferentemente el propano sobre el etileno debido a su mayor peso molecular. Para explicar la mayor capacidad de adsorción en la zeolita ZSM-5 $SiO_2/AI_2O_3 = 56$ del propano frente al CO_2 hay que acudir a factores estructurales, teniendo en cuenta que son válidos los argumentos referentes a impedimentos estéricos que presenta el CO_2 en su adsorción sobre zeolitas pentasil, que se adujeron en el apartado de componentes puros.

Por el contrario, en la zeolita ZSM-5 $SiO_2/Al_2O_3 = 29$, al existir un mayor número de centros ácidos en su estructura, presenta mayor afinidad que la ZSM-5 $SiO_2/Al_2O_3 = 56$ y la silicalita por compuestos polarizables como el CO₂ y el etileno, por lo que no se puede observar el efecto anteriormente comentado.

Estos dos efectos de "sobreadsorción" y de "desplazamiento", hacen prever un comportamiento no ideal de las mezclas CO₂-propano y etilenopropano. Esto se puede comprobar en los diagramas de equilibrio x-y. La obtención de estos diagramas se realiza a partir de las isotermas individuales de mezclas (tablas 5.14 a 5.19), por interpolación para una misma presión entre puntos experimentales de distinta composición inicial. Así se obtienen los diagramas isobáricos de equilibrio x (fracción molar de la fase adsorbida) frente a y (fracción molar de la fase gaseosa), siendo:

$$x_{i} = \frac{n_{i}}{n_{1} + n_{2}}$$
 (6.3) $y_{i} = \frac{P_{i}}{P_{1} + P_{2}}$ (6.4)

También se obtienen por interpolación para una misma presión los correspondiente valores de la cantidad adsorbida total de la mezcla binaria.

Estos datos isobáricos $x_i - y_i - n_T$ se han obtenido para las presiones de 6.6, 13.3, 53.3 y 80.0 KPa y se representan en las tres primeras columnas de las tablas 6.23 a 6.46.

En las figuras 6.53 a 6.58 se han representado a modo de ejemplo algunos de los diagramas isobáricos x-y para cada uno de los sistemas binarios estudiados en ambas zeolitas. Además de los puntos experimentales, se representa la predicción realizada por algunos modelos que se comentarán más adelante. Así mismo, en las figuras 6.59 y 6.60 se representan a modo de ejemplo dos diagramas isobáricos y-n.

La idealidad de una mezcla se puede comprobar gráficamente observando la simetría del diagrama x-y respecto a la diagonal secundaria. Así, cuanto más simétrica sea la curva, el comportamiento de la mezcla es más próximo a la idealidad y viceversa. Como se puede observar, la mezcla CO_2 -etileno (figuras 6.53 y 6.56) en ambas zeolitas presenta un comportamiento ideal, lo cual se atribuye a que ambas son moléculas polarizables y su comportamiento no será muy desigual en cuanto a las interacciones con la estructura química del adsorbente. La mezcla CO_2 -propano (figuras 6.54 y 6.57) presenta un azeótropo a 80 KPa para valores bajos de la fracción molar de CO_2 . Este azeótropo se va desplazando a valores más bajos de dicha fracción molar y hasta llega a desaparecer a 6.6 KPa. Esta misma mezcla en zeolita ZSM-5 $SiO_2/Al_2O_3 = 56$, presenta un comportamiento no ideal pero no presenta azeótropo. La mezcla etileno-propano, presenta un azeótropo en ambas zeolitas, más acusa-

do en la de más baja relación SiO_2/Al_2O_3 . La explicación a este comportamiento no ideal ya se hizo al comentar los efectos de sobreadsorción y desplazamiento.

Todos estos diagramas x-y muestran que el orden de preferencia de las zeolitas ZSM-5 por cada uno de los tres adsorbatos estudiados es, de mayor a menor, propano > etileno > CO_2 .

El hecho de que el azeótropo se desplace hacia valores más bajos de la fracción molar de CO₂, es debido a que todo el diagrama x-y presenta una ligera tendencia a acercarse a la diagonal, lo cual significa un ligero descenso de la selectividad de la zeolita al aumentar la presión. La explicación a este hecho se puede encontrar teniendo en cuenta que a medida que aumenta la presión, la influencia de la naturaleza química del adsorbente es menor al estar éste más ocupado por el adsorbato con lo que los factores que determinan la mayor o menor afinidad del adsorbente por determinado tipo de adsorbatos, como la presencia de centros ácidos en su estructura (átomos de Al), pierde importancia.

6.3.1. INFLUENCIA DE LA RELACION <u>Si02/A1203</u> EN LA ADSORCION DE MEZCLAS BINARIAS.

Para este estudio, se han utilizado los diagramas isobáricos x-y obtenidos en una investigación anterior (Jimenez, 1989), para las tres mezclas en silicalita, además de los correspondientes en zeolítas ZSM-5 $SiO_2/Al_2O_3 = 56$ y $SiO_2/Al_2O_3 = 29$.

En la figura 6.61 se representan los diagramas de equilibrio x-y a 293 K y 53.3 KPa. En cada diagrama x-y se representan los datos experimentales obtenidos para el sistema binario correspondiente en los tres adsorbentes. Se puede observar que en la mezcla CO_2 -etileno, el diagrama x-y prácticamente no varía para los tres adsorbentes. Sin embargo en los otros dos sistemas binarios, CO_2 -propano y etileno-propano, se observa la existencia de una gran variación en la selectividad relativa de los tres adsorbentes. Dicha selectividad relativa se define según la ecuación:

$$\alpha_{12} = \frac{x_1 y_2}{y_1 x_2}$$
(6.5)

En la figura 6.62 se representan los datos correspondientes a $x_1^{=}$ 0.25 a la presión de 53.3 KPa. Se puede observar que a medida que disminuye la relación Si0_/Al_0_ la selectividad relativa del CO_ y del etileno respecto al propano aumenta. Esto era de esperar, ya que si el CO_ y el etileno veían favorecida su adsorción como componentes puros al disminuir la relación Si0_/Al_0_, tal como se explicó en el apartado 6.2.7, es lógico que en las mezclas aumente su adsorción relativa respecto al propano al disminuir dicha relación. Esta variación de la selectividad es tan acusada, que en el caso de la mezcla etileno-propano se produce una inversión de la selectividad con la formación de un azeótropo (figura 6.61).

6.3.2. PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINARIAS EN ZEOLITAS ZSM-5 MEDIANTE LA TEORIA I.A.S.

En el apartado 2.3.4 se expuso el método de cálculo y las ecuaciones utilizadas en la predicción del equilibrio de adsorción de mezclas gaseosas mediante esta teoría. Con este método se ha realizado la predicción del equilibrio para los sistemas binarios CO_2 -etileno, CO_2 -propano y etileno-propano en zeolita ZSM-5 (SiO_2/Al_2O_3 = 29 y 56), a las presiones de 6.6, 13.3, 53.3 y 80.0 KPa.

Los resultados de la predicción, en forma de fracciones molares en la fase gaseosa y_i, para cada valor experimental de la fase adsorbida x_i, junto con los términos $P_i^0(\Pi)$ de la ley de Raoult (ecuación 2.54) y la cantidad adsorbida total, se presentan en las tablas 6.23 a 6.46.

En las figuras 6.53 a 6.58, se representa junto con los datos experimentales, la predicción realizada por el modelo. Se puede observar que los resultados son bastante satisfactorios para el sistema CO_2 -etileno en ambas zeolitas (figuras 6.53 y 6.56), debido al comportamiento ideal que presenta dicho sistema, lo cual se puede comprobar al ver la simetría que presenta el diagrama x-y respecto a la diagonal secundaria. En el caso de los otros dos sistemas, CO_2 -propano y etileno-propano (figuras 6.54, 6.55, 6.57 y 6.58) se puede observar que la predicción realizada por el modelo es menos satisfactoria ya que el comportamiento de estos sistemas es mucho más alejado de la idealidad y el modelo no es capaz de predecir este tipo de comportamiento. La predicción de la cantidad adsorbida total, se ha realizado mediante la ecuación 2.53, teniendo en cuenta que el segundo sumando del segundo miembro es igual a cero, ya que el coeficiente de actividad de la fase adsorbida, γ , es igual a la unidad. Los resultados obtenidos, que se presentan en las tablas 6.23 a 6.46, son bastante satisfactorios para todos los sistemas, con errores inferiores al 5% en la mayoría de los casos. A modo de ejemplo en las figuras 6.59 y 6.60 se representan los diagramas isobáricos de equilibrio y-n para los sistemas CO₂-etileno y etileno-propano en zeolitas ZSM-5 SiO₂/Al₂₀₃ = 29 y 56 respectivamente.

6.3.3. PREDICCION <u>DEL</u> <u>EQUILIBRIO</u> <u>DE</u> <u>ADSORCION</u> <u>DE</u> <u>MEZCLAS</u> <u>BINARIAS</u> <u>EN</u> <u>ZEOLITAS</u> <u>ZSM-5</u> <u>MEDIANTE LA</u> <u>TEORIA</u> <u>H. I. A. S.</u>

En el apartado 2.3.4. se expuso el método de aplicación del modelo propuesto por Valenzuela, Myers, Talu y Zwiebel (Valenzuela et al, 1988). A continuación se va a explicar con más detalle el método de aplicación de este modelo.

Como se vió en dicho apartado, para la aplicación del modelo son necesarios los siguientes parámetros: m, c_o, $\overline{\epsilon}$ y σ . Los tres primeros se obtienen por ajuste de las isotermas experimentales de adsorción de los componentes puros a la ecuación de Langmuir modificada:

$$n = \frac{m c_0 e^{\varepsilon/RT} P}{1 + c_0 e^{\varepsilon/RT} P}$$
(6.6)

Los valores de m y c₀ (parámetros de la ecuación), se obtienen para cada temperatura, y para obtener el dato del valor energético medio $\overline{\varepsilon}$ se realiza un ajuste de los datos obtenidos a las tres temperaturas estudiadas mediante la siguiente ecuación:

$$\ln c = \ln c_0 + \varepsilon / RT \tag{6.7}$$

De este modo se considera que el adsorbente tiene zonas con diferentes energías de adsorción. Estas energías vienen dadas, como se comentó en el apartado teórico por una función de distribución. La función de distribución utilizada en esta investigación es la siguiente:

$$f(\varepsilon) = \begin{pmatrix} k \\ j \end{pmatrix} u^{j} (1-u)^{(k-j)}$$
(6.8)

Siendo:

- k: número de posiciones energéticas consideradas.
- j: posición concreta considerada.
- u: parámetro que considera la forma de la distribución.

Este parámetro u tiene un valor entre 0 y 1. En el caso de la distribución Gaussiana tiene un valor de 0.5. Esta función de distribución tiene una desviación estandar σ , que es el otro parámetro que utiliza el modelo.

Con estos parámetros, el esquema de cálculo del modelo H.I.A.S. es el siguiente:

1) Se fijan P, y_i , $\overline{\epsilon}_i$, c_{0i} .

2) Se fijan los valores de k y de u.

3) Se calcula la desviación estandar σ de la función de distribución.

4) Se calcula el valor de ε para cada posición energética mediante la siguiente ecuación:

$$\varepsilon = \overline{\varepsilon} + \frac{(k - ju) \sigma}{(ju (1-u))^{1/2}}$$
(6.9)

5) Se supone un valor de la presión en la posición energética para calcular la presión superficial de mezcla, II, y poder aplicar el modelo I.A.S. a cada posición energética, tal y como se explicó en el apartado 2.3.4. 6) Con este valor de la presión se calcula la Π de mezcla a partir de la integración analítica de la ecuación de Langmuir.

$$\Pi = m \ln (1 + c_0 e^{\epsilon/RT} P)$$
(6.10)

7) Se calcula P_i^0 (II) mediante la ecuación:

$$P_i^0 (\Pi) = \left(\exp \frac{m}{c} - 1 \right) / c \qquad (6.11)$$

8) Se calculan x, mediante la ecuación de Raoult (2.54).

9) Si la suma de x_i no es igual a la unidad, se vuelve al paso 5 hasta que se cumple dicha condición.

10) Una vez que se conoce la cantidad adsorbida de cada componente para cada posición energética, la cantidad adsorbida total se calcula con la ecuación 2.61.

11) Se calcula la cantidad adsorbida para cada componente, n_i , mediante la ecuación 2.62.

12) Con los resultados de n_i para cada una de las posiciones energéticas, se calcula la cantidad adsorbida total de cada componente N_i integrando la ecuación 2.59.

13) Finalmente, la fracción molar de la fase adsorbida para la totalidad de la superficie del adsorbente se calcula mediante la siguiente ecuación:

$$x_{i} = \frac{N_{i}}{N_{i} + N_{j}}$$
 (6.12)

El modelo H.I.A.S. debería proporcionar unos resultados, como mínimo iguales a los del modelo I.A.S. Sin embargo, al aplicar este modelo calculando $P_i^0(\Pi)$ (paso 7) mediante la ecuación 6.11, se llegaba a mayores errores, ya que como se comentó en el caso de componentes puros, la presión superficial conduce a menores errores cuando se obtiene de modo gráfico. Por ello, el método de cálculo propuesto por los autores,

se modificó de tal modo que calculase $P_i^0(\Pi)$ a partir de las curvas $P_i^0(\Pi)$ -P obtenidas anteriormente.

Los resultados así obtenidos se presentan en las tablas 6.47 a 6.70, en las que se incluyen los valores de la predicción de la fracción molar de la fase adsorbida, x_1 y los valores de la predicción de la cantidad adsorbida total n, junto con los valores experimentales. Cabe destacar que no se incluyen los valores de $P_i^0(\Pi)$ ni de Π , a diferencia del resto de los modelos. Esto es debido a que existe un valor diferente de estos parámetros para cada posición energética.

Así mismo en las tablas 6.71 y 6.72 se presentan los parámetros utilizados en el modelo.

En las figuras 6.53 a 6.58 se pueden observar los resultados obtenidos en la predicción de los diagramas x-y de los tres sistemas en ambas zeolitas. Este modelo mejora la predicción realizada por el modelo I.A.S. en los sistemas que se alejan de la idealidad $(CO_2$ -propano y etileno-propano). Esto era de esperar, ya que el modelo introduce unos parámetros que tienen en cuenta la heterogeneidad energética del adsorbente, lo que constituye uno de los factores determinantes del comportamiento no ideal de las mezclas. La predicción que realiza del sistema CO_2 -etileno, es similar a la del modelo I.A.S. cuyo comportamiento, como ya se comentó anteriormente, es muy ideal.

En cuanto a la predicción de la cantidad adsorbida total, se obtienen unos resultados similares al modelo I.A.S.

6.3.4. REPRODUCCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINARIAS EN ZEOLITAS ZSM-5 MEDIANTE LA TEORIA R.A.S.

En el apartado 2.3.4. se expuso con todo detalle el método de reproducción del diagrama de equilibrio x-y mediante este modelo. En este caso, a diferencia de los dos modelos anteriormente tratados, se habla de reproducción, puesto que para obtener los datos de la fracción molar de la fase gaseosa y_i , es necesario disponer de datos de la propia mezcla binaria como son las fracciones molares de la fase adsorbida x_i .

De este modo se ha realizado la reproducción de los sistemas bina-

rios CO_2 -etileno, CO_2 -propano y etileno-propano en las dos zeolitas ZSM-5 (SiO_2/Al_2O_3 = 29 y 56). Los resultados obtenidos se presentan en las tablas 6.73 a 6.96 y a modo de ejemplo en las figuras 6.53 a 6.58 se representan los resultados de un modo gráfico, a una presión determinada para cada uno de los sistemas en cada zeolita.

Como se puede observar, el modelo R.A.S. mejora sensiblemente la predicción del diagrama x-y realizada por los modelos I.A.S. y H.I.A.S. en los sistemas CO_2 -propano y etileno-propano, cuyo comportamiento es bastante alejado de la idealidad. Este hecho es lógico ya que el modelo incluye un coeficiente de actividad en la ley de Raoult (Ecuación 2.49), para tener en cuenta la posible no idealidad de la mezcla. Los valores de este coeficiente de actividad, que se calculan mediante la ecuación de Wilson (2.63), se presenta en las tablas de resultados citadas. Por otro lado, los resultados obtenidos con el modelo R.A.S. para el sistema CO_2 -etileno, no mejoran los obtenidos con el I.A.S. y H.I.A.S., ya que este sistema binario presenta un comportamiento bastante ideal con lo que el coeficiente de actividad es muy próximo a la unidad y su inclusión en la ley de Raoult, no supone una mejora sustancial.

La reproducción de la cantidad adsorbida total, n, se realiza mediante la ecuación 2.53, teniendo en cuenta que el segundo sumando del segundo miembro ya no es igual a la unidad, como en los dos modelos anteriores. En este caso se requiere para cada punto de equilibrio, la determinación de las pendientes de las gráficas ln γ_i frente a NA/RT. Se ha comprobado que el error cometido al no introducir en la reproducción este segundo sumando, no supera en ningún caso el 5%, por lo que se ha prescindido de este cálculo debido a su excesiva laboriosidad. Los resultados obtenidos, que se presentan en las tablas 6.73 a 6.96, son similares a los obtenidos con los otros dos modelos.

Como se comentó en el apartado 2.3.4, el modelo R.A.S. determina la pareja de parámetros Λ_{12} y Λ_{21} de la ecuación de Wilson que dan lugar al mínimo error en la reproducción. Esto se realiza mediante un método de regresión basado en el algoritmo de Marquardt (Marquardt, 1963), utilizando un criterio de mínimos cuadrados que busca la pareja de parámetros que haga mínima la suma de los cuadrados de las diferencias entre las fracciones molares de la fase gaseosa experimentales y las reproducidas por el modelo. Los valores de los parámetros de la ecuación de Wilson

obtenidos para cada sistema en ambas zeolitas ZSM-5 se representan en las tablas 6.97 y 6.98.

A parte de obtener los parámetros de Wilson que conduzcan a un menor error, es importante conocer la exactitud y precisión de los mismos. Para ello se construyeron los llamados "mapas de error", en los que se representa el error obtenido en la reproducción mediante el modelo R.A.S., para diferentes parejas de parámetros, de modo que así se tiene una idea aproximada de cuáles son los mejores valores para la reproducción. La forma de realización de estos mapas se detalla en el apéndice 9.3.4. A partir de ellos, se han determinado las regiones de confianza conjunta de cada pareja de parámetros, del modo que se indica en el mismo apartado del apéndice.

En las figuras 6.63 y 6.64 se han representado dos mapas de error correspondientes a los sistemas CO_2 -etileno en zeolita ZSM-5 (SiO_2/Al_2O_3 = 29) a 13.3 KPa y etileno-propano en zeolita ZSM-5 (SiO_2/Al_2O_3 = 56) a 53.3 KPa. En ellos se han trazado "curvas de nivel" aproximadas, es decir, zonas en las que se obtiene un error igual o menor a uno determinado, así como el punto al que se llega en la reproducción con el modelo.

Se puede observar como se trata de dos tipos de mapas bien diferenciados, el primero $(CO_2$ -etileno) posee curvas de nivel cerradas que rodean una zona de mínimo error, mientras que el otro (etileno-propano) presenta curvas de nivel abiertas y por lo tanto tiene una mayor incertidumbre a la hora de determinar qué pareja de parámetros conduce a un menor error.

A modo de ejemplo, en las figuras 6.65 y 6.66 se muestran las regiones de confianza conjunta para un nivel de probabilidad del 95 y 99% para los sistemas CO_2 -propano en zeolita ZSM-5 (SiO_/Al_O_3 = 29) a 6.6 KPa y CO_2 -etileno en zeolita ZSM-5 (SiO_/Al_O_3 = 29) a 80.0 KPa. Se puede observar que ambas son cerradas, lo cual es el caso más común, indicando con ello que el cálculo de los parámetros de la ecuación de Wilson, Λ_{12} , Λ_{21} presenta un elevado grado de exactitud.

6.3.5. PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINARIAS EN ZEOLITAS ZSM-5 MEDIANTE LA TEORIA S.P.D. Como se vió en el apartado 2.3.4, el método de reproducción del equilibrio de adsorción de mezclas mediante el modelo S.P.D. es igual que el del modelo R.A.S., con la diferencia del cálculo del coeficiente de actividad. En el caso de este modelo, se hace mediante una ecuación desarrollada específicamente para el fenómeno de la adsorción y se basa en el estudio termodinámico y geométrico del sistema adsorbatoadsorbente, mientras que el modelo R.A.S. utilizaba la ecuación de Wilson desarrollada para el equilibrio líquido-vapor. La ecuación del modelo S.P.D. para el cálculo del coeficiente de actividad depende de la composición de la fase adsorbida y de la presión superficial de la mezcia.

Hay que reseñar que en las ecuaciones descritas por los autores del modelo (Talu y Zwiebel, 1986), ecuaciones 2.64 a 2.73, se ha realizado un cambio. Concretamente la ecuación 2.71 originalmente era:

$$e_{jj} = \frac{q_{j\Pi} - q_{j0}}{1/2 \ Z \ M \ s_{j}}$$

sin embargo se ha eliminado el número de Avogadro M, para que dicha ecuación resulte dimensionalmente homogénea, atribuyéndose su inclusión a una errata de la publicación.

Siguiendo el esquema descrito para el modelo R.A.S. introduciendo la ecuación 2.68 para el cálculo del coeficiente de actividad, se ha llevado a cabo la reproducción del equilibrio de adsorción para los tres sistemas CO_2 -etileno, CO_2 -propano y etileno-propano a las presiones de 6.6, 13.3, 53.3 y 80.0 KPa para las dos zeolitas ZSM-5 estudiadas.

Antes de realizar la reproducción se han obtenido al igual que en el modelo R.A.S los correspondientes mapas de error. En este caso, al disponer de tres parámetros s₁, s₂ y β_{12} , los mapas serán tridimensionales, es decir, se han hecho mapas bidimensionales de s₁ vs. s₂ para distintos valores del tercer parámetro β_{12} . En la figura 6.67 se muestran a modo de ejemplo las regiones de confianza para el sistema CO₂-propano en zeolita ZSM-5 (SiO₂/Al₂O₃ = 56) a 53.3 KPa. Para un nivel de probabilidad del 95 %.

Se puede observar que ahora las regiones son abiertas, hecho que

ocurre en todos los casos con este modelo, lo cual indica que se una mayor incertidumbre en la determinación de los parámetros del modelo S.P.D. Esto no afecta a la reproducción de los sistemas binarios pero como se verá posteriormente, tiene una gran importancia en la predicción de sistemas multicomponentes.

En las figuras 6.53 a 6.58 se representan los resultados obtenidos en la reproducción del equilibrio para todos los sistemas en ambas zeolitas (tablas 6.99 a 6.122), junto con los resultados de los otros modelos. Se puede observar que el modelo S.P.D. mejora los resultados obtenidos con los anteriores I.A.S. y H.I.A.S. en los dos sistemas no ideales (CO_-propano y etileno-propano, mientras que conduce a resultados similares en el caso del sistema CO₂-etileno (por ser el más ideal, como ya se dijo). Sin embargo, estos resultados no son mejores que los obtenidos con el modelo R.A.S. a pesar de que la ecuación S.P.D. contiene tres parámetros de ajuste y por lo tanto una mayor capacidad teórica de reproducción de datos experimentales. Resulta pues evidente, que la adición de un parámetro más no introduce una mejora apreciable y que el mayor fundamento termodinámico de la ecuación del S.P.D. para el cálculo del coeficiente de actividad no es siginificativo, puesto que la dependencia de dicho coeficiente de la presión superficial es, como se pudo ver en el apartado anterior, prácticamente despreciable. Además, como ya se ha comentado al observar los mapas de error, los parámetros obtenidos tienen una mayor incertidumbre que los del modelo R.A.S.

En la tabla 6.123 se presentan los parámetros obtenidos en la reproducción mediante el modelo S.P.D. Como se puede observar, se obtienen valores diferentes del parámetro s_j (factor de forma) para un mismo componente en mezclas diferentes. Para hacer la predicción del sistema ternario se requiere que el valor del factor de forma sea único para un mismo componente, independientemente de la mezcla en que se encuentre. Para salvar esta dificultad se ha realizado un ajuste global de los tres sistemas binarios a las presiones a las que se iba a realizar la predicción del sistema ternario (6.6 y 53.3 KPa). En la tabla 6.124 se presentan los parámteros obtenidos en este ajuste global. El error medio cometido en esta reproducción conjunta, es del 10% para la zeolita ZSM-5 $(SiO_2/Al_2O_3 = 29)$ y del 12% para la ZSM-5 $(SiO_2/Al_2O_3 = 56)$, y supera el error obtenido en el ajuste individual de cada sistema, como era de esperar. Sin embargo es necesario realizar la reproducción conjunta de los sistemas binarios, ya que es la única forma de realizar la predicción de los sistemas multicomponentes y la única que tiene sentido físico.

Como conclusión, se puede decir que el modelo S.P.D. en su forma de ajuste individual conduce a resultados similares al modelo R.A.S., si bien presenta una mayor complejidad de cálculo (y falta de significado físico) puesto que se necesita obtener el valor del calor isostérico de adsorción, para lo cual hay que obtener las isotermas de componentes puros a diferentes temperaturas. En cuanto al ajuste global conduce a resultados peores y sólo es util para la predicción de sistemas multicomponentes.

1	98	

	TABL	Α.	6.	23
--	------	----	----	----

Predic	Predicción del equilibrio de adsorción en ZSM-5 $(Si0_2/A1_20_3 = 29)$											
а б.	6 KPa en	la mezcla	a CO ₂ -etil	eno medi	ante la	teoría	I.A.S					
E	XPERIMENT	AL			I. A. S.							
×	У ₁	n	у ₁	Π A /RT	$P_{1}^{0}(\Pi)$	P ₂ ⁰ (∏)	n					
0.104	0.177	1.276	0.202	5.322	12.9	5.9	1.277					
0.189	0.313	1.282	0.340	5.209	11.9	5.4	1.278					
0,318	0. 495	1.286	0.512	5.049	10.7	4.7	1.279					
0, 483	0,672	1.296	0.682	4.865	9.4	4.0	1.285					
0.652	0.820	1.304	0.815	4.695	8.3	3.5	1.295					
0.791	0.905	1.316	0.900	4.567	7.5	3.1	1.306					

TABLA 6.24

Predicc: a 13.3	Predicción del equilibrio de adsorción en ZSM-5 $(SiO_2/AI_2O_3 = 29)$ a 13.3 KPa en la mezcla CO_2 -etileno mediante la teoría I.A.S.											
EXI	PERIMENT	AL.			I.A.S.	· · · · ·						
×1	y ₁	n	У ₁	ΠA/RT	P ⁰ ₁ (∏)	P ⁰ ₂ (∏)	n					
0.102	0.160	1.413	0.183	6.264	23.8	12.1	1.437					
0. 185	0.285	1.443	0.311	6.163	22.4	11.2	1.439					
0.312	0.457	1.454	0.478	6.016	20.4	10.1	1.443					
0.476	0.644	1.463	0.651	5.840	18.2	8.8	1.452					
0.645	0.792	1.474	0.792	5.673	16.3	7.8	1.465					
0.785	0.887	1.480	0.886	5.545	15.0	7.0	1.479					

TABLA 6.25

Predicc:	Predicción del equilibrio de adsorción en ZSM-5 $(Si0_2/A1_2_3 = 29)$ a 53.3 KPa en la mezcla CO -etileno mediante la teoría I.A.S.											
EXI	PERIMENT	AL			I.A.S.		- 1. A. D.					
×	У ₁	n	У1	∏A∕RT	$P_1^0(\Pi)$	P ⁰ ₂ (Π)	n					
0.096	0.136	1.827	0.146	8.434	81.3	50.3	1.811					
0.173	0.246	1.834	0.254	8.359	78.2	48.1	1.819					
0.295	0.400	1.845	0.407	8.242	73.5	44.8	1.832					
0.457	0.575	1.872	0.583	8.093	68.0	40.9	1.851					
0.626	0.741	1.892	0.738	7.945	62.8	37.3	1.875					
0.770	0.855	1.930	0.851	7.825	58.9	34.6	1.897					

TABLA 6.26

Predicci	ión del (equilibri	o de adsor	ción en	ZSM-5	(SiO ₂ /A	$1_{2}0_{3} = 29)$
a 80.0) KPa en	la mezcla	a CO ₂ -etil	eno med	iante l	a teorí	a I.A.S.
EXI	PERIMENT	AL			I.A.S.		
×	У ₁	n	У1	∏A∕RT	P ⁰ ₁ (Π)	P ⁰ ₂ (Π)	n
0.095	0.130	1.942	0.138	9.147	116.4	76.1	1.937
0.173	0.233	1.954	0.243	9.023	1 12. 5	73.2	1.948
0.293	0.384	1.972	0.391	8.971	106.7	68.9	1.963
0.450	0.564	1.983	0. 561	8.837	99.8	63.7	1.986
0.620	0.725	1.993	0.721	8.696	93.0	58.7	2.014
0.769	0.844	2.053	0.842	8.578	87.5	54.8	2.040

TABLA 6.27

Predicción del equilibrio de adsorción en ZSM-5 $(SiO_2/Al_2O_3 = 29)$ a 6.6 KPa en la mezcla COpropano mediante la teoría I.A.S.											
E	EXPERIMENT	ΓAL.	<u> </u>	I. A. S.							
×	У1	n	y ₁	∏A∕RT	P ₁ ⁰ (Π)	P ₂ ⁰ (Π)	n				
0.108	0.154	1.448	0.362	6.157	22.3	4.7	1.408				
0.193	0.281	1.436	0.540	5.875	18.6	3.8	1.397				
0.322	0.424	1.408	0.712	5.516	14.7	2.8	1.380				
0.483	0.697	1.395	0.838	5.157	11.5	2.0	1.362				
0.790	0.905	1.362	0.957	4.653	8.0	1.3	1.339				
0.882	2 0.969	1.344	0.978	4.533	7.4	1.2	1.334				

TABLA 6.28

Predicc: a 13.3	Predicción del equilibrio de adsorción en ZSM-5 $(SiO_2/AI_2O_3 = 29)$ a 13.3 KPa en la mezcla CO_2 -propano mediante la teoría I.A.S.											
EXI	PERIMENT	AL			I. A. S.							
× 1	У ₁	n	У1	∏A∕RT	P ⁰ ₁ (Π)	P ⁰ ₂ (Π)	n					
0.109	0.128	1.543	0.324	7.116	39.6	10.1	1.501					
0.192	0.247	1.534	0.494	6.867	34.3	8.3	1.503					
0.316	0.438	1.524	0.669	6.538	28.2	6.4	1.504					
0.473	0.652	1.492	0.807	6.187	22.7	4.8	1.504					
0.780	0.928	1.532	0.948	5.657	16.2	3.1	1.504					
0.876	0.967	1.544	0.974	5.523	14.8	2.8	1.505					

TABLA 6.29

Predicción del equilibrio de adsorción en ZSM-5 $(Si0_2/Al_20_3 = 29)$											
a 53.3 KPa en la mezcla CO ₂ -propano mediante la teoría I.A.S.											
EXI	PERIMENT	AL.			I.A.S.						
× ₁	У ₁	n	У ₁	∏A∕RT	P ⁰ ₁ (∏)	P ⁰ ₂ (Π)	n				
0.115	0.101	1.640	0.252	9.152	116.7	45.0	1.677				
0.204	0.196	1.699	0.408	8.970	106.6	39.6	1.725				
0.325	0.347	1.709	0.577	8.731	94.6	33.4	1.792				
0.469	0.550	1.754	0.726	8.462	82.4	27. 5	1.870				
0.760	0.869	1.878	0.913	7.980	64.0	19.3	1.967				
0.858	0.946	1.854	0.954	7.836	59.2	17.4	1.950				

TABLA 6.30

Predicci a 80.0	Predicción del equilibrio de adsorción en ZSM-5 $(SiO_2/AI_2O_3 = 29)$ a 80.0 KPa en la mezcla CO_2 -propano mediante la teoría I.A.S.											
EXP	PERIMENT	AL			I.A.S.	<u> </u>						
×	У ₁	n	У1	∏A∕RT	P ⁰ ₁ (∏)	$P_2^0(\Pi)$	n					
0.129	0.099	1.663	0.252	9.672	156.1	68.7	1.722					
0.211	0.187	1.674	0.385	9.616	146.0	62.3	1.771					
0.331	0.335	1.723	0.548	9.41 1	132.4	54.0	1.848					
0.476	0.529	1.785	0.701	9.170	117.7	45.6	1.944					
0.751	0.863	1.941	0.895	8.744	95.3	33.7	2.082					
0.851	0.939	2.014	0.943	8.602	88.6	30.5	2.091					

TABLA 6.31

Predicc	Predicción del equilibrio de adsorción en ZSM-5 $(Si0_2/Al_20_3 = 29)$											
a 6.6 K	Pa en la	mezcla e	tileno-pro	opano me	diante	la teor:	ía I.A.S.					
EX	PERIMENT	AL		I.A.S.								
×	У ₁	n	У ₁	∏A∕RT	Ρ ⁰ ₁ (Π)	Ρ ⁰ ₂ (Π)	n					
0.117	0.046	1.392	0.234	6.397	13.3	5.7	1.409					
0.207	0.119	1.321	0.378	6.271	12.1	5.2	1.398					
0.339	0.281	1.383	0.548	6.101	10.7	4.5	1.380					
0.496	0.549	1.394	0.702	5.922	9.4	3.9	1.358					
0.655	0.801	1.325	0.821	5.761	8.3	3.4	1.334					
0.801	0.925	1.330	0.907	5.628	7.5	3.1	1.312					

TABLA 6.32

a	Predicc: 13.3 Kl	ión del e Pa en la	equilibri mezcla e	o de adsor tileno-pro	ción en pano me	ZSM-5 diante	(SiO ₂ /A) la teor:	1 ₂ 0 ₃ = 29) (a I.A.S.
-	EXI							
	×	У ₁	n	У ₁	∏A∕RT	P ⁰ ₁ (Π)	P ⁰ ₂ (Π)	n
	0.124	0.045	1.525	0.231	7.307	24.8	11.6	1.496
	0.213	0.115	1.500	0.368	7.191	23.0	10.7	1.494
	0.346	0.267	1.514	0.536	7.029	20.6	9.4	1.488
	0. 496	0. 528	1.487	0.686	6.860	18.4	8.3	1.479
	0.647	0.791	1.505	0.791	6.703	16.5	7.3	1.468
	0.780	0.904	1.502	0.890	6.582	15.2	6.6	1.457

TABLA 6.33

a	Predicción del equilibrio de adsorción en ZSM-5 $(Si0_2/Al_20_3 = 29)$ a 53.3 Kpa en la mezcla etileno-propano mediante la teoría I.A.S.										
 	EXI	PERIMENT	а А.L.	<u></u>	·	I.A.S.	<u> </u>				
	×	У ₁	n	У	ΠA/RT	P ⁰ ₁ (Π)	P ⁰ ₂ (Π)	n			
	0.154	0.053	1.647	0.233	9.251	80.7	48.3	1.654			
	0.2 5 0	0.123	1.650	0.360	9.164	76.8	45.4	1.674			
	0.375	0.270	1.672	0.507	9.052	72.1	42.0	1.700			
	0.507	0.486	1.684	0.642	8.936	67.5	38.7	1.725			
	0.636	0.720	1.712	0.756	8.825	63.3	35.7	1.747			
	0.756	0.868	1.725	0.848	8.725	59.8	33.3	1.767			

TABLA 6.34

ſ	Predicción del equilibrio de adsorción en ZSM-5 $(Si0_2/A1_0 = 29)$										
а	a 80.0 Kpa en la mezcla etileno-propano mediante la teoría I.A.S.										
	EXI	PERIMENT	AL.			I.A.S.					
	×1	У ₁	n	y ₁	ΠA/RT	P ⁰ ₁ (Π)	P ₂ ⁰ (∏)	n			
	0.163	0.056	1.659	0.230	9.859	112.6	73.6	1.697			
	0.264	0.134	1.673	0.357	9.783	108.2	69.8	1.726			
	0.384	0.273	1.734	0.494	9.692	103.0	65.6	1.761			
	0.514	0.484	1.799	0.627	9.593	97.6	61.3	1.797			
	0.640	0.703	1.843	0.741	9.499	92.6	5 7.4	1.832			
	0.748	0.849	1.883	0.829	9.417	88.6	54.3	1.861			

TABLA 6.35

Predi	Predicción del equilibrio de adsorción en ZSM-5 (Si0 ₂ /Al ₂ 0 ₃ = 56)											
a 6	a 6.6 KPa en la mezcla CO ₂ -etileno mediante la teoría I.A.S											
	EXPERIMENT	ſAL			I.A.S.		n 1.008 0.997 0.985 0.972 0.963 0.960					
×	У1	n	У1	∏a∕rt	$P_{1}^{0}(\Pi)$	P ⁰ ₂ (∏)	n					
0.10	2 0.181	1.003	0.182	2.487	11.8	6.07	1.008					
0.18	6 0.317	0.994	0.311	2.416	11.1	5.64	0.997					
0.30	4 0.487	0.980	0.467	2.324	10.2	5.11	0.985					
0.47	2 0.669	0.963	0.647	2,203	9.1	4.47	0.972					
0.63	7 0.814	0.954	0.785	2.094	8.2	3.94	0.963					
0.78	1 0.900	0.946	0.884	2.008	7.5	3.56	0.960					

TABLA 6.36

Predicci a 13.3	Predicción del equilibrio de adsorción en ZSM-5 $(Si0_2/Al_20 \approx 56)$ a 13.3 KPa en la mezcla CO ₂ -etileno mediante la teoría I.A.S										
EXF	PERIMENT	۸L	<u></u> <u></u>		I. A. S.						
x ₁	У ₁	n	У1	ΠA/RT	$P_{1}^{0}(\Pi)$	$P_{2}^{0}(\Pi)$	n				
0.095	0.165	1.200	0.158	3,240	22.2	12.4	1.207				
0.176	0.290	1.191	0.278	3, 172	21.0	11.6	1.197				
0.303	0.456	1.175	0.442	3.070	19.4	10.6	1.183				
0.459	0.642	1.160	0.611	2.955	17.7	9.6	1.169				
0.631	0.790	1.149	0.762	2,838	16.1	8.6	1.157				
0.774	0.884	1.137	0.867	2.748	14.9	7.8	1.151				

TABLA 6.37

Predicc	Predicción del equilibrio de adsorción en ZSM-5 $(Si0_2/A1_20_3 = 56)$										
a 53.3 KPa en la mezcla CO ₂ -etileno mediante la teoría I.A.S											
EX	EXPERIMENTAL				I.A.S.						
x ₁	У ₁	n	У ₁	ΠA/RT	Ρ ⁰ ₁ (Π)	$P_{2}^{0}(\Pi)$	n				
0.091	0.140	1.659	0.133	5.145	78.1	50.8	1.662				
0.165	0.247	1.650	0.234	5.086	75.5	48.9	1.655				
0.292	0.401	1.640	0.391	4. 986	71.3	45.8	1.644				
0.434	0.575	1.630	0.545	4.879	66.9	42.7	1.634				
0.613	0.742	1.614	0.715	4.754	62.1	39.3	1.622				
0.751	0.859	1.600	0.827	4.660	58.7	36.9	1.613				

TABLA 6.38

Predicc a 80.0	Predicción del equilibrio de adsorción en ZSM-5 $(Si0_2/A1_20_3 = 56)$ a 80.0 KPa en la mezcla $C0_2$ -etileno mediante la teoría I.A.S									
EXI	PERIMENT	AL			I.A.S.		Al ₂ O ₃ = 56) a I.A.S n 1.816 1.810 1.803 1.793 1.785 1.776			
×	У ₁	n	У ₁	∏A∕RT	P ⁰ ₁ (∏)	P ⁰ ₂ (Π)	n			
0.087	0.132	1.810	0.123	5.820	112.9	76.7	1.816			
0.163	0.234	1.806	0.223	5.762	109.5	74.2	1.810			
0.275	0.386	1.797	0.360	5.678	104.8	70.6	1.803			
0.432	0.569	1.786	0.532	5.563	98.5	65.8	1.793			
0.584	0.731	1.777	0.679	5.457	93.0	61.7	1.785			
0.750	0.849	1.768	0.819	5.344	87.4	57.6	1.776			

.

,

TABLA 6,39

Pr€	Predicción del equilibrio de adsorción en ZSM-5 $(Si0_2/Al_20_3 = 56)$											
a	a 6.6 KPa en la mezcla CO ₂ -propano mediante la teoría I.A.S											
	EXI	PERIMENT	AL		I.A.S.							
	× ₁	У ₁	n	У1	ΠA/RT	$P_1^0(\Pi)$	Ρ <mark>0</mark> (Π)	n				
0.	087	0.295	1.370	0.560	4.164	42.9	3.2	1.416				
0,	159	0.618	1.331	0.720	3.652	30.2	2.2	1.375				
0.	284	0.740	1.341	0.842	3.090	19.7	1.4	1.307				
o.	447	0.855	1.263	0.913	2.641	13.6	1.0	1.220				
0.	624	0.949	1.199	0.955	2.320	10.2	0.8	1.132				
0.	771	0: 985	1.182	0.976	2.121	8.4	0.6	1.063				

TABLA 6.40

Predicci a 13.3	Predicción del equilibrio de adsorción en ZSM-5 $(SiO_2/AI_2O_3 = 56)$ a 13.3 KPa en la mezcla CO_2 -propano mediante la teoría I.A.S										
EXF	PERIMENT	AL.	<u> </u>		I.A.S.						
x	У ₁	n	У ₁	ΠA/RT	Ρ <mark>0</mark> (Π)	P ⁰ ₂ (∏)	n				
0.077	0.242	1.469	0.501	5.330	86.7	7.2	1.494				
0.143	0.442	1.450	0.681	4.789	63.5	4.9	1.473				
0.257	0.660	1.459	0.823	4.156	42.6	3.1	1.433				
0.419	0.824	1.424	0.907	3. 590	28.8	2.1	1.373				
0.597	0.932	1.375	0.953	3.184	21.2	1.5	1.303				
0.751	0.976	1.293	0.976	2.926	17.3	1.2	1.242				

.

•

.

TABLA 6.41

Predicc	Predicción del equilibrio de adsorción en ZSM-5 $(Si0_2/Al_20_3 = 56)$									
а 53.3 KPa en la mezcla CO ₂ -propano mediante la teoría I.A.S										
EXI	EXPERIMENTAL				I.A.S.					
×	У ₁	n	У1	ΠA/RT	P ⁰ ₁ (∏)	Ρ <mark>2</mark> (Π)	n			
0.067	0.157	1.600	0.360	7.820	286.5	36.5	1.627			
0.121	0.288	1.597	0.541	7.391	238.5	27.8	1.633			
0.215	0.469	1.623	0.725	6.766	179.9	18.6	1.642			
0.333	0.695	1.653	0.842	6.168	134.8	12.6	1.648			
0. 493	0.868	1.666	0.918	5.578	99.3	8.5	1.649			
0.672	0.954	1.698	0.962	5.104	76.3	6.1	1.641			

TABLA 6.42

Predicción del equilibrio de adsorción en ZSM-5 (Si0 ₂ /Al ₂ 0 ₃ = 56)										
a 80.0 KPa en la mezcla CO ₂ -propano mediante la teoría I.A.S										
EXI	PERIMENT	AL		ano mediante la teoría I.A.S I.A.S. $\Pi A/RT P_1^0(\Pi) P_2^0(\Pi) n$ 8.574 384.1 58.4 1.663 8 137 326 3 44 5 1.678						
x ₁	y ₁	n	У1	ΠA/RT	P ⁰ ₁ (Π)	$P_{2}^{0}(\Pi)$	n			
0.066	0.144	1.672	0.317	8.574	384.1	58.4	1.663			
0.126	0.279	1.677	0.514	8.137	326.3	44.5	1.678			
0.211	0.439	1.733	0.687	7.594	260.4	31.6	1.696			
0.325	0.641	1.730	0.816	7.004	200.8	21.7	1.718			
0.471	0.826	1.741	0.901	6.426	153.1	14.9	1.740			
0.636	0.936	1.774	0.950	5.930	119.5	10.7	1.757			

.
TABLA 6.43

Predicc	ión del e	equilibri	o de adsor	ción en	ZSM-5	(Si0 ₂ /A	$1_{2}0_{3} = 56)$
a 6.6 KI	Pa en la	mezcla e	tileno-pro	opano me	diante	la teor:	ía I.A.S.
EXI	PERIMENT	AL			I.A.S.		
×1	У ₁	n	У	ΠA/RT	P ⁰ ₁ (Π)	$P_{2}^{0}(\Pi)$	n
0.776	0.974	1.143	0.961	2.795	8.2	1.1	1.124
0.629	0.936	1.251	0.924	2.977	9.8	1.3	1.192
0.466	0.762	1.327	0.869	3.242	12.4	1.6	1.270
0.308	0.527	1.375	0.777	3.602	16.8	2.1	1.342
0.190	0.275	1.386	0.653	3, 996	22.9	2.8	1.394
0.110	0.119	1.395	0.550	4.512	33.3	3.3	1.421

TABLA 6.44

a	Predicci 13.3 KH	ión del e Pa en la	equilibri mezcla e	o de adsor tileno-pro	ción en pano me	ZSM-5 diante	(SiO ₂ /A la teor	1 ₂₃ = 56) ía I.A.S.
	EXPERIMENTAL			<u> </u>		I.A.S.		<u></u>
	×	У	n	У ₁	ĨĨA∕RT	$P_1^0(\Pi)$	$P_2^0(\Pi)$	n
	0.110	0.110	1.483	0.494	5.406	59.8	7.5	1.500
	0.187	0.253	1.471	0.649	4.998	46.2	5.7	1.494
	0.295	0.488	1.454	0.772	4.578	34.9	4.2	1.475
	0.434	0.751	1.433	0.861	4.189	26.4	3.2	1.425
	0.604	0.915	1.400	0.923	3.844	20.3	2.5	1.351
	0.756	0.967	1.343	0.961	3.611	16.9	2.1	1.293

6 F

TABLA 6.45

	Predicc	ión <mark>del</mark> (equilibri	o de adsor	ción en	ZSM-5	(Si0 ₂ /A	$1_{20_{3}}^{0} = 56)$
a	53.3 K	Pa en la	mezcla e	tileno-pro	pano me	diante	la teor	ía I.A.S.
	EX	PERIMENT	AL		.,, <u>,</u>	I.A.S.		·
	×1	У ₁	n	У1	∏A∕RT	$P_1^0(\Pi)$	P ⁰ ₂ (∏)	n
	0.683	0.937	1.671	0.943	5.750	73.6	9.5	1.685
	0.526	0.830	1.663	0.892	6.105	90.4	12.1	1.682
	0.390	0.617	1.616	0.821	6.496	112.2	15.6	1.673
	0.280	0.383	1.623	0.727	6.895	138.5	20.2	1.662
	0.185	0.215	1.617	0.595	7.316	171.4	26.5	1.649
	0.115	0.105	1.618	0.443	7.688	205.4	33.6	1.638

TABLA 6.46

	Predicci	ión del e	equilibri	o de adsor	ción en	ZSM-5	(SiO ₂ /A	$1_{2}0_{3} = 56)$
a	a 80.0 KPa en la mezcla etileno-propano mediante la teoría I.A.S.							ía I.A.S.
	EXPERIMENTAL					I.A.S.		
	×	У	n	У ₁	∏A∕RT	$P_1^0(\Pi)$	$P_{2}^{0}(\Pi)$	n
	0.118	0.105	1.679	0.421	8.402	285.5	52.5	1.679
	0.186	0.209	1.701	0.568	8.059	244.3	42.4	1.697
	0.281	0.372	1.715	0.707	7.645	201.1	32.7	1.720
	0.382	0.594	1.695	0.800	7.270	167.5	25.7	1.742
	0.520	0.787	1.751	0.881	6.852	135.5	19.7	1.768
	0.660	0.917	1.768	0.934	6.512	113.1	15.8	1.790

= a

TABLA 6.47

Predicción del equilibrio de adsorción en ZSM-5 $(Si0_2/A1_20_3 = 29)$								
a 6.6 KPa en	a 6.6 KPa en la mezcla CO ₂ - etileno mediante la teoría H.I.A.S.							
EXPERIMENTAL			Н.І.	A. S.				
× ₁	У	n	×1	n				
0.104	0.177	1.276	0.100	1.281				
0.189	0.313	1.282	0.176	1.284				
0.318	0. 495	1.286	0.308	1.280				
0.483	0.672	1.296	0.474	1.287				
0.652	0.820	1.304	0.660	1.298				
0. 791	0.905	1.316	0.799	1.308				

TABLA 6.48

Pre a 1	Predicción del equilibrio de adsorción en ZSM-5 $(Si0_2/A1_20_3 = 29)$ a 13.3 KPa en la mezcla CO ₂ - etileno mediante la teoría H.I.A.S.							
	EΣ	PERIMENTAL		н. І.	A.S.			
	×1	y ₁	n	× ₁	n			
	0.102	0.160	1.413	0.090	1.440			
	0.185	0.2 85	1.443	0.177	1.442			
	0.312	0. 457	1.454	0.305	1.444			
	0,476	0.644	1.463	0.468	1.455			
	0.645	0.792	1.474	0.645	1.467			
	0.785	0.887	1.480	0.787	1.481			

~

TABLA 6.49

Predicci	Predicción del equilibrio de adsorción en ZSM-5 (SiO ₂ /Al ₂ O ₃ = 29)						
a 53.3 Ki	a 53.3 KPa en la mezcla CO ₂ - etileno mediante la teoría H.I.A.S.						
	EXPERIM	ENTAL	H.	I.A.S.			
×	1 У	1 n	×1	n			
0.0	96 0.1	36 1.827	0.089	1.813			
0.1	73 0.2	46 1.834	0.169	1.822			
0.29	95 0.4	00 1.845	0.291	1.835			
0.4	57 0.5	75 1.872	0.450	1.852			
0.62	26 0.7	41 1.892	0.630	1.877			
0.7	70 0.8	55 1.930	0.776	1.900			

TABLA 6.50

F	Predicción del equilibrio de adsorción en ZSM-5 (Si0 ₂ /Al ₂ 0 = 29)							
a	a 80.0 KPa en la mezcla CO $_2$ etileno mediante la teoría H.I.A.S.							
	EXPERIMENTAL			Н. І.	A.S.			
	×	У ₁	n	× ₁	n			
	0.095	0.130	1.942	0.089	1.940			
	0.173	0.233	1.954	0.167	1.951			
	0.293	0.384	1.972	0.289	1.966			
	0.450	0.564	1.983	0.452	1.989			
	0.620	0.725	1.993	0.625	2.013			
	0.769	0.844	2,053	0.772	2.044			

TABLA 6.51

Predicción de	el equilibr	rio de adsor	ción en ZSM-5 (Si	$0_2/A1_20_3 = 2$	29)
a 6.6 KPa en	la mezcla	a CO ₂ - propa	no mediante la te	eoría H.I.A.	S.
EXPERIMENTAL			н. 1.	A. S.	
×	У1	n	x	n	
0.108	0.154	1.448	0.069	1.413	
0.193	0.281	1.436	0.135	1.401	
0.322	0.424	1.408	0.224	1.385	
0.483	0.697	1,395	0.427	1.364	
0.790	0.905	1.362	0.664	1.342	
0.882	0.969	1.344	0.839	1.337	

TABLA 6.52

P	Predicción del equilibrio de adsorción en ZSM-5 $(Si0_2/A1_0 = 29)$						
а 	a 13.3 KPa en la mezcla CU - propano mediante la teoria H.I.A.S.						
	EXPERIMENTAL			Н. І.	A.S.		
	×	У ₁	n	× ₁	n		
Í	0.109	0.128	1.543	0.058	1.505		
	0.192	0.247	1.534	0.110	1.506		
	0.316	0.438	1.524	0.216	1.507		
	0.473	0.652	1.492	0.383	1.509		
	0. 780	0. 928	1.532	0.769	1.508		
	0.876	0.967	1.544	0.860	1.506		

TABLA 6.53

Predicción del equilibrio de adsorción en ZSM-5 $(Si0_2/Al_20_3 = 29)$							
a 53.3 KPa e	a 53.3 KPa en la mezcla CO ₂ - propano mediante la teoría H.I.A.S.						
EXPERIMENTAL			Н. І.	A.S.			
×	У ₁	n	×1	n			
0.115	0.101	1.640	0.053	1.679			
0.204	0.196	1.699	0.107	1.727			
0.325	0.347	1.709	0.197	1.794			
0.469	0.550	1.754	0.333	1.872			
0.760	0.869	1.878	0.733	1.969			
0.858	0.946	1.854	0.838	1.952			

TABLA 6.54

Predicción del equilibrio de adsorción en ZSM-5 (Si0 /Al $_2$ = 29) a 80.0 KPa en la mercla CO - propano mediante la teoría H I A S							
EX	(PERIMENTAL	H. I. A. S.					
×	У1	n	×	n			
0.129	0.099	1.663	0.057	1.725	_		
0.211	0.187	1.674	0.106	1.774			
0. 331	0.335	1.723	0.208	1.851			
0. 476	0.529	1.785	0.366	1,947			
0.751	0.863	1.941	0.730	2.087			
0.851	0.939	2.014	0.842	2.093			

TABLA 6.55

Predicción del equilibrio de adsorción en ZSM-5 (Si0 ₂ /Al ₂ 0 ₃ = 29) 6.6 KPa en la mezcla etileno-propano mediante la teoría H.I.A.S.						
EXPERIMENTAL			H. I. A. S.			
×1	У ₁	n	×	n		
0.117	0.046	1.392	0.029	1.413		
0.207	0.119	1.321	0.06 6	1.401		
0.339	0.281	1.383	0.154	1.385		
0.496	0.549	1.394	0.360	1.362		
0.655	0.801	1.325	0.645	1.335		
0.801	0.925	1.330	0.825	1.314		

TABLA 6.56

P 13	Predicción del equilibrio de adsorción en ZSM-5 (SiO ₂ /Al ₂ O ₃ = 29) 13.3 KPa en la mezcla etileno-propano mediante la teoría H.I.A.S.						
	EXPERIMENTAL			H. I.	H. I. A. S.		
	×	У ₁	n	× ₁	n		
	0.124	0.045	1.525	0,030	1.500	}	
	0.213	0.115	1.500	0.068	1.497		
	0.346	0.267	1.514	0.166	1.490		
	0.496	0.528	1.487	0.362	1.483		
	0.647	0.791	1.505	0.637	1.469		
	0.780	0.904	1.502	0.805	1.461		

_ _ _

......

TABLA 6.57

	Predicción del equilibrio de adsorción en ZSM-5 (SiO ₂ /Al ₀ = 29)						
5	3.3 KPa en la	a mezcla e	tileno-propar	no mediante la te	eoría H.I.A.S		
	EXPERIMENTAL			Н. І.	A.S.		
	×	У ₁	n	×1	n		
	0.154	0.053	1.647	0.043	1.657		
	0.250	0.123	1.650	0.088	1.677		
	0.375	0.270	1.672	0.199	1.702		
	0. 507	0.486	1.684	0.378	1.729		
	0.636	0.720	1.712	0.614	1.751		
	0.756	0.868	1.725	0.785	1.770		

TABLA 6.58

8	Predicción del equilibrio de adsorción en ZSM-5 $(Si0_2/A1_20_3 = 29)$ 80.0 KPa en la mezcla etileno-propano mediante la teoría H.I.A.S.						
EXPERIMENTAL		H. I. A. S.					
	× ₁	У ₁	n	×	n		
	0.163	0.056	1.659	0.041	1.701		
	0.264	0.134	1.673	0.104	1.727		
	0.384	0.273	1.734	0.216	1.764		
	0.514	0.484	1.799	0.395	1.799		
	0.640	0.703	1,843	0.626	1.835		
	0.748	0.849	1.883	0.774	1.866		

Predicción del equilibrio de adsorción en ZSM-5 (Si0 $_2$ /Al $_2$ 0 = 56)							
a 6.6 K P	a 6.6 KPa en la mezcla CO ₂ - etileno mediante la teoría H.I.A.S.						
	EXPERIMENTAL			H. I.A.	S		
×	1	У ₁	n	×	n		
0.1	02 0.	181 1	. 003	0.102	1.008		
0.1	86 0.	317 0	. 994	0.190	0.999		
0.3	04 0.	487 0	. 980	0.317	0.996		
0.4	72 0.	669 0	, 963	0.486	0, 984		
0.6	37 [.] 0.	814 0	. 954	0.657	0.973		
0.7	81 0.	900 0	. 946	0.799	0.969		

TABLA 6.59

5

TABLA 6.60

F	Predicción del equilibrio de adsorción en ZSM-5 (SiO ₂ /Al ₂ O ₃ = 56) a 13.3 KPa en la mezcla CO - etileno mediante la teoría H.I.A.S.						
	EXPERIMENTAL			H. I.	H. I. A. S.		
	×	У ₁	n	× ₁	n		
	0.095	0.165	1.200	0.099	1.205		
	0.176	0.290	1.191	0.184	1.199		
	0.303	0.456	1.175	0.313	1.184		
	0.459	0.642	1.160	0.472	1.170		
	0.631	0.790	1.149	0.657	1.160		
	0.774	0.884	1.137	0.791	1.147		

TABLA	6.	61
	•••	~~

•

.

נ	Predicción del equilibrio de adsorción en ZSM-5 (Si0 ₂ /Al ₂ 0 ₃ = 56)						
	a 53.3 KPa er	h la mezcla	a CO ₂ - etile	eno mediante la te	eoría H.I.A.S.		
	EXPERIMENTAL			Н. І.	A.S.		
	× ₁	У	n	×1	n		
	0.091	0.140	1.659	0.096	1.664		
	0.165	0.247	1.650	0.175	1.657		
	0.292	0.401	1.640	0.301	1.645		
	0.434	0.575	1.630	0.453	1.634		
	0.613	0.742	1.614	0.625	1.625		
	0.751	0.859	1.600	0.772	1.615		

TABLA 6.62

Predicción del equilibrio de adsorción en ZSM-5 (SiO ₂ /Al ₂ O ₃ = 56) a 80 0 KPa en la mercla CO - etileno mediante la teoría H LA S						
EXPERIMENTAL			н.	H. I. A. S.		
x ₁	У ₁	n	×1	n		
0.087	7 0.132	1.810	0.094	1.818		
0.16:	0.234	1.806	0.171	1.811		
0.275	5 0.386	1.797	0.287	1.806		
0.432	0.569	1.786	0.458	1.795		
0.584	1 0.731	1.777	0.623	1.788		
0.750	0.849	1.768	0.767	1.777		

Pre	Predicción del equilibrio de adsorción en ZSM-5 (Si0 ₂ /Al ₂ 0 ₃ = 56)						
a 6	a 6.6 KPa en la mezcla CO ₂ - propano mediante la teoría H.I.A.S.						
	EXPERIMENTAL			Н. І.	A. S.		
	×	У ₁	n	×1	n		
	0.087	0.295	1.370	0.052	1.419	_	
	0.159	0.618	1.331	0.137	1.377		
	0.284	0.740	1.341	0.223	1.310		
	0.447	0.855	1.263	0.375	1.225		
	0.624	0.949	1.199	0.594	1.134		
[0.771	0.985	1.182	0.844	1.065		

TABLA 6.63

<u>_</u>

TABLA 6.64

Predicción del equilibrio de adsorción en ZSM-5 (SiO ₂ /Al ₀ = 56)						
a 13.3 KPa	en la mezcl	a CO ₂ - propa	no mediante la te	oría H.I.A.	S.	
EXPERIMENTAL			H.I.	H. I. A. S.		
×	У ₁	n	× ₁	n		
0.077	0.242	1.469	0.058	1.496		
0.143	0.442	1.450	0.093	1.476		
0.257	0.660	1.459	0.163	1.430		
0.419	0.824	1.424	0.309	1.375		
0.597	0.932	1.375	0.562	1.310	ł	
0.751	0.976	1.293	0.752	1.258		

Predicción del equilibrio de adsorción en ZSM-5 $(Si0_2/A1_20_3 = 56)$					
a 53.3 KPa e	en la mezcl	a CO ₂ - propa	ano mediante la te	eoría H.I.A	. S.
EXPERIMENTAL			H. I. A. S.		
×	У1	n	×	n	
0.067	0.157	1.600	0.045	1.629	
0. 121	0.288	1.597	0.070	1,636	
0.215	0.469	1.623	0.127	1.643	
0.333	0.695	1.653	0.264	1.649	1
0. 493	0.868	1.666	0.434	1.652	
0.672	0.954	1.698	0.629	1.640	

TABLA 6.65

TABLA 6.66

Predicción de	el equilibr	rio de adsorc	ión en ZSM-5 (Si	$0_2/A1_20_3 = 56$					
EXPERIMENTAL H. I. A. S.									
×	y ₁	n	× ₁	n					
0.066	0.144	1,672	0.037	1.663					
0.126	0.279	1.677	0.073	1,679					
0.211	0.439	1,733	0.134	1,697					
0. 325	0.641	1.730	0.233	1.719					
0.471	0.826	1.741	0.397	1.742					
0.636	0.936	1.774	0.615	1.758					

E	XPER I MENTAL	_	H. I.	A.S.
×	У ₁	n	×	n
0.776	0.974	1.143	0.813	1.127
0.629	0.936	1.251	0.649	1.195
0.466	0.762	1.327	0.359	1.273
0.308	0.527	1.375	0.161	1.345
0.190	0.275	1.386	0.075	1.395
0.110	0.119	1.395	0.026	1.423

TABLA 6.67

ſŕ

TABLA 6.68

P 13	redicción de .3 KPa en la	el equilib: a mezcla e	rio de adsoro tileno-propar	ción en ZSM-5 (Si no mediante la te	$10_2/A1_20_3 = 56$ eoría H.I.A.S.
	ΕΣ	PERIMENTA		Н. І.	A. S.
	×1	У1	n	×1	n
	0.110	0.110	1.483	0.026	1.505
	0.187	0.253	1.471	0.082	1.496
	0.295	0.488	1.454	0.163	1.477
	0.434	0.751	1.433	0.361	1.427
	0.604	0.915	1.400	0.594	1.350
	0.756	0.967	1.343	0.769	1.296

E	XPER IMENTAL	L	H. I.	A.S.
×	У ₁	n	×	п
0.683	0.937	1.671	0.664	1.687
0.526	0.830	1.663	0.464	1.685
0.390	0.617	1.616	0.269	1.678
0.280	0.383	1.623	0.189	1.665
0.185	0.215	1.617	0.069	1.653
0.115	0.105	1.618	0.022	1.639

TABLA 6.69

ĥ

TABLA 6.70

F 80	Predicción de D.O KPa en la	el equilib a mezcla e	rio de adsoro tileno-propa	ción en ZSM-5 (Si no mediante la te	.0 ₂ /Al ₂ 0 ₃ = 56) eoría H.I.A.S.					
	EXPERIMENTAL H. I. A. S.									
	×	У ₁	n	× 1	n					
	0.118	0.105	1.679	0.025	1.702					
	0.186	0.209	1.701	0.071	1.705					
	0.281	0.372	1.715	0.192	1.725					
	0.382	0.594	1.695	0.285	1.744					
	0.520	0.787	1.751	0.474	1.770					
	0.660	0.917	1.768	0.654	1.792					

TABLA 6.71

Parámetros del modelo HIAS zeolita ZSM-5 $(Si0_2/Al_2_3 = 29)$								
Componente	C ₀ (KPa ⁻¹)	m (mol/Kg)	ε (J/mol)					
CO2	3.8115 10 -3	1.8527	8267					
Etileno	8.8854 10 ⁻⁹	1.7894	39486					
Propano	1.9178 10 -8	1.5729	42393					

TABLA 6.72

Parámetros	del modelo HIAS	zeolita ZSM-5 (Si	$0_2/A1_20_3 = 56)$
Componente	C _o (KPa ⁻¹)	m (mol/Kg)	ε (J∕mol)
CO ₂	1.0362 10 -5	1.7788	23865
Etileno	3.8062 10 ⁻⁵	1.7444	21464
Propano	7.6110 10 ^{~7}	1.5922	37130

•

Repr	Reproducción del equilibrio de adsorción de mezclas CO ₂ -etileno en								
zeoli	zeolita ZSM-5 (Si0 /Al 0 = 29) a 6.6 KPa mediante la teoría R.A.S.								
EX	PERIMEN	TAL				R. A. S.			
×	У ₁	n	У ₁	ΠA/RT	Ρ <mark>0</mark> (Π)	P ⁰ ₂ (∏)	γ ₁	γ ₂	n
0.104	0.177	1.276	0.180	5.359	13.2	6.1	0.867	0.999	1.285
0.189	0.313	1.282	0.312	5.266	12.4	5.6	0.883	0.996	1.287
0.318	0.495	1.286	0.489	5.123	11.2	5.0	0.908	0.986	1.291
0.483	0.672	1.296	0.674	4.938	9.9	4.3	0. 939	0.964	1.297
0.652	0.820	1.304	0.820	4.750	8.6	3.7	0.967	0.926	1.305
0.791	0.905	1.316	0.909	4.600	7.7	3.2	0.986	0.880	1.312

TABLA 6.73

<u>л</u> =

TABLA 6.74

Reproducción del equilibrio de adsorción de mezclas CO_2 -etileno en zeolita ZSM-5 (SiO_/Al_O_ = 29) a 13.3 KPa mediante la teoría R.A.S.									
 EXPERIMENTAL R. A. S.									
× ₁	У ₁	n	У1	Π A /RT	$P_{1}^{0}(\Pi)$	P ₂ ⁰ (∏)	У ₁	γ ₂	n
0.102	0.160	1.412	0.166	6.293	24.2	12.3	0.896	0.998	1.432
0. 185	0.285	1.443	0.2 9 3	6.207	23.0	11.6	0.917	0.994	1.446
0.312	0.457	1.454	0.466	6.066	21.0	10.5	0.944	0.985	1.452
0.476	0.644	1.463	0.651	5.887	18.8	9.1	0.969	0.968	1.461
0.645	0. 7 9 2	1.474	0. 7 9 8	5.705	16.7	8.0	0.987	0.946	1.471
0.785	0.887	1.480	0.892	5.563	15.2	7.1	0.995	0.926	1.483

Repr	Reproducción del equilibrio de adsorción de mezclas CO ₂ -etileno en								
zeoli	zeolita ZSM-5 (Si0 ₂ /Al ₂ 0 ₃ = 29) a 53.3 KPa mediante la teoría R.A.S.								.A.S.
EXPERIMENTAL R.A.S.									
×	У1	n	У ₁	ΠA/RT	Ρ <mark>0</mark> (Π)	P ⁰ ₂ (∏)	Ŷ	У ₂	n
0.096	0.136	1.827	0.139	8.451	82.0	50.8	0.939	0.999	1.814
0.173	0.246	1.834	0.244	8.383	79.2	48.8	0.950	0.997	1.823
0.295	0.400	1. 8 45	0.399	8.273	74.8	45.7	0.965	0.993	1.838
0. 457	0. 575	1.872	0.581	8. 125	69.2	41.7	0.980	0. 983	1.857
0.626	0.741	1.892	0.742	7.973	63.8	38.0	0.991	0.970	1.879
0.770	0.855	1.930	0.855	7.840	59.4	35.0	0.997	0.958	1.900

TABLA 6.76

Repr	Reproducción del equilibrio de adsorción de mezclas CO ₂ -etileno en								
zeoli	zeolita ZSM-5 (SiO $_2$ /Al $_2$) = 29) a 80.0 KPa mediante la teoría R.A.S.								
EX	PERIMEN	TAL				R. A. S.			
×	У ₁	n	У1	ΠA/RT	$P_{1}^{0}(\Pi)$	$P_2^0(\Pi)$	У ₁	γ ₂	n
0.095	0.130	1.942	0.133	9. 160	117.2	76.7	0. 955	1.000	1.940
0.173	0.233	1.954	0.236	9.096	113.5	73, 9	0.962	0.998	1.951
0.293	0.384	1.972	0.385	8.996	108.1	69.9	0.973	0.995	1.967
0.450	0.564	1.983	0.560	8.863	101.1	64.7	0.984	0.988	1.991
0.620	0.725	1.993	0.724	8.719	94.0	59.5	0.993	0.979	2.018
0.769	0.844	2.053	0.845	8, 590	88.1	55.3	0. 997	0, 968	2.042

Repr	Reproducción del equilibrio de adsorción de mezclas CO ₂ -propano en											
zeoli	ta ZSM-	5 (SiO ₂	/A1 ₂ 0 ₃ =	29) a	6.6 KPa	median	te la t	eoría R	.A.S.			
EX	(PER IMEN	TAL				R. A. S.						
x ₁	$x_1 y_1 n y_1 \pi A/RT P_1^0(\pi) P_2^0(\pi) \gamma_1 \gamma_2 n$											
0.108	0.154	1.448	0.156	6.516	27.8	6.3	0, 343	0.995	1.445			
0.193	0.281	1.436	0.288	6.445	26.6	5.9	0.373	0.981	1.459			
0.322	0.478	1.408	0.478	6.285	24.1	5.2	0.424	0.938	1.475			
0.483	0.697	1.395	0.697	5 . 977	19.9	4.1	0.509	0.827	1.478			
0.790	0.905	1.362	0.905	5.031	10.5	1.8	0.779	0.355	1.402			
0.882	0.882 0.968 1.344 0.968 4.707 8.4 1.4 0.894 0.175 1.364											

TABLA 6.77

TABLA 6.78

- -	Reproducción del equilibrio de adsorción de mezclas CO ₂ -propano en											
	zeoli	ta ZSM-	5 (SiO ₂ /	$(A1_{2}0_{3} =$	29) a 1	3.3 KPa	median	te la t	eoría R	. A. S.		
	EX	PERIMEN	TAL				R.A.S.					
	×	$x_{1} y_{1} n y_{1} \Pi A / RT P_{1}^{0}(\Pi) P_{2}^{0}(\Pi) \gamma_{1} \gamma_{2} n$										
	0.1 09	0.128	1.543	0.133	7.449	47.9	13.0	0.340	0.995	1.531		
	0.1 92	0.247	1.534	0.246	7.410	46.8	12.6	0.365	0.982	1.555		
	0.316	0.438	1.524	0.432	7.313	44.3	11.7	0.411	0.943	1.568		
	0.473	0.652	1.492	0.671	7.082	38.8	9.8	0.486	0.843	1.518		
	0.780	0. 928	1.532	0.970	6.158	22.3	4.7	0.742	0.375	1.566		
	0.876	0.876 0.967 1.544 0.994 5.770 17.4 3.4 0.868 0.173 1.548										

TABLA 6.79

Repr	Reproducción del equilibrio de adsorción de mezclas CO ₂ -propano en										
zeoli	ta ZSM-	-5 (SiO ₂ /	/A1 ₂ 0 ₃ =	29) a 5	3.3 KPa	median	te la t	eoría R	. A. S.		
EX	PERIMEN	ITAL				R.A.S.					
x ₁	$x_1 y_1 n y_1 \Pi A/RT P_1^0(\Pi) P_2^0(\Pi) \gamma_1 \gamma_2 n$										
0.115	0.101	1.640	0.101	9.422	133.0	54.4	0.355	0.994	1.660		
0.204	0.196	1.699	0.196	9.434	133.7	54.9	0.382	0.980	1.690		
0.325	0.347	1.709	0.348	9.430	133.5	54.7	0.427	0.941	1.731		
0.469	0.550	1.754	0. 56 2	9.348	128.7	51.7	0.497	0.851	1.777		
0.760	0.869	1.854	0.938	8.645	90.5	31.4	0.727	0.432	1.867		
0.858	0.946	1.878	0.986	8.211	72.4	22.9	0.846	0.222	1.896		

TABLA 6.80

Repr	Reproducción del equilibrio de adsorción de mezclas CO ₂ -propano en										
zeoli	ta ZSM -	5 (SiO ₂ /	/A1 ₂ 0 ₃ =	29) a 8	0.0 KPa	median	te la t	eoría R	A. S.		
EX	PERIMEN	TAL				R. A. S.					
X ₁	$x_{1} y_{1} n y_{1} \Pi A / RT P_{1}^{0}(\Pi) P_{2}^{0}(\Pi) y_{1} y_{2} n$										
0. 129	0.099	1.663	0.104	10.033	177.4	82.8	0.363	0.993	1.705		
0.211	0.187	1.674	0.185	10.063	179.8	84.5	0.389	0.979	1.741		
0.331	0.335	1.723	0.326	10.082	181.4	85.6	0.435	0.939	1.794		
0.476	0.529	1.785	0.537	10.047	178.5	83.6	0.506	0.846	1.857		
0.751	0.863	1.941	0.912	9.465	135.8	56.1	0.721	0.454	1.976		
0.851	0.934	2.014	0.981	9.027	109.8	41.2	0.840	0.241	2.020		

Reproducción del equilibrio de adsorción de mezclas etileno-propano en													
zeolita ZSM-5 (Si0/Al_0 = 29) a 6.6.KPa mediante la teoría R.A.S.													
EX	EXPERIMENTAL R. A. S.												
$x_1 y_1 n y_1 \Pi A/RT P_1^0(\Pi) P_2^0(\Pi) \gamma_1 \gamma_2 n$													
0.117	0.046	1.392	0.053	6.688	16.6	7.2	0.182	0. 9 87	1.405				
0.207	0.119	1.321	0.116	6.775	17.4	7.7	0.214	0.957	1.382				
0.339	0.281	1.383	0.263	6.895	18.8	8.5	0.274	0.871	1.388				
0.496	0. 549	1.394	0.538	6.934	19.4	8.7	0.373	0.696	1.395				
0.655	0.801	1.325	0.836	6.686	16.3	7.2	0.520	0.438	1.320				

TABLA 6.81

TABLA 6.82

 $0.\ 801 \quad 0.\ 925 \quad 1.\ 330 \qquad 0.\ 975 \quad 6.\ 168 \qquad 11.\ 3 \qquad 4.\ 8 \quad 0.\ 717 \quad 0.\ 180 \quad 1.\ 345$

Reprod	Reproducción del equilibrio de adsorción de mezclas etileno-propano en										
zeoli	ta ZSM-	5 (SiO ₂	$/A1_{2}0_{3} =$	29) a 1	3.3 KPa	median	te la t	eoría R	. A. S.		
EX	PERIMEN	TAL				R. A. S.					
×1	У ₁	n	У ₁	∏A∕ RT	P ⁰ ₁ (Π)	P ₂ ⁰ (Π)	γ ₁	γ ₂	n		
0.124	0.045	1.525	0.068	7.572	14.6	7.1	0.249	0.992	1.497		
0.213	0.115	1.500	0.135	7.643	15.4	7.5	0.274	0.972	1.499		
0.346	0.267	1.514	0.275	7.740	16.4	8.1	0.322	0.912	1.505		
0.496	0.528	1.487	0.504	7.793	17.0	8.4	0.398	0.779	1.486		
0.647	0.7 9 1	1.505	0.777	7.660	15.6	7.6	0.513	0.551	1.483		
0.780	0.904	1.502	0.947	7.271	12.1	5.7	0.666	0.281	1.476		

Reprod zeoli	eproducción del equilibrio de adsorción de mezclas etileno-propano en zeolita ZSM-5 (SiO ₂ /Al ₂ O ₃ = 29) a 53.3 KPa mediante la teoría R.A.S.											
EX	PERIMEN	TAL				R. A. S.						
x ₁	У1	n	У1	ΠA/RT	P ⁰ ₁ (Π)	$P_{2}^{0}(\Pi)$	γ ₁	8 ₂	n			
0.154	0.053	1.647	0.072	9.547	95.1	59.4	0.262	0.984	1.654			
0.250	0.123	1.650	0.140	9.656	101.0	64.0	0.296	0.953	1.662			
0.375	0.270	1.672	0.271	9.801	109.2	70.7	0,353	0.879	1.665			
0.507	0.486	1.684	0.476	9.906	115.5	76.0	0.433	0.746	1.697			
0.636	0.720	1.712	0.724	9.852	112.2	73.2	0.541	0.552	1.703			
0.756	0.868	1.725	0.868	9.539	94.7	59.0	0.678	0.325	1.721			

TABLA 6.83

63

TABLA 6.84

Reprod	Reproducción del equilibrio de adsorción de mezclas etileno-propano en zeolita ZSM-5 (SiO ₂ /Al ₂ O ₃ = 29) a 80.0 KPa mediante la teoría R.A.S.										
EX	PERIMEN	TAL			<u></u>	R. A. S.	- <u></u>	<u>.</u>			
×	У1	n	У1	ΠΑ/RT	P ⁰ ₁ (Π)	$P_{2}^{0}(\Pi)$	γ ₁	^{ع 5}	n		
0.163	0.056	1.659	0.076	10.150	131.5	89.7	0.285	0.984	1.685		
0.264	0.134	1.673	0.148	10.270	139.9	97.2	0.321	0.952	1.701		
0.384	0.273	1.734	0.271	10.414	150.8	107.1	0.375	0.883	1.722		
0.514	0.484	1.799	0.467	10.535	160.5	116.2	0.452	0.756	1.793		
0.640	0.703	1.843	0.706	10.516	158.9	114.6	0.555	0.569	1.853		
0.784	0.849	1.883	0.928	10.148	131.4	89.6	0.721	0.291	1.878		

TABLA 6.85

Repr	Reproducción del equilibrio de adsorción de mezclas CO ₂ -etileno en										
zeoli	ta ZSM-	5 (SiO ₂	/A1 ₂ 0 ₃ =	56) a	6.6 KPa	median	te la t	eoría R	. A. S.		
EX	PERIMEN	TAL				R. A. S.					
x ₁	$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
0.102	0.181	1.003	0.181	2.490	11.9	6.0	0.990	0.998	1.009		
0.186	0.317	0.994	0.315	2.416	11.1	5.6	1.013	0.995	1.012		
0.304	0.487	0.985	0.482	2.313	10.1	5.0	1.044	0.985	1.004		
0.472	0.669	0.972	0.675	2.164	8.8	4.2	1.083	0.962	0.987		
0.637	0.814	0. 963	0.814	2.027	7.6	3.6	1.107	0.937	0.971		
0.781	0.900	0.960	0.899	1.928	6.9	3.2	1.102	0.952	0. 9 59		

TABLA 6.86

	Reproducción del equilibrio de adsorción de mezclas COetileno en											
	zeoli	ta ZSM-	5 (SiO ₂ /	$/A1_{2}0_{3} =$	56) a 1	3.3 KPa	median	te la t	eoría R	.A.S.		
	EX	PERIMEN	TAL				R. A. S.					
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
С	. 0 95	0.165	1.200	0.161	3.238	22.2	12.3	1.016	0.999	1.206		
c	. 176	0.290	1.191	0.286	3.164	20.9	11.6	1.033	0.996	1.195		
c	. 303	0.456	1.175	0.459	3.047	19.1	10.4	1.057	0.989	1.177		
C	. 459	0.642	1.160	0.635	2.910	17.0	9.2	1.079	0.977	1.158		
c	0.631	0.790	1.149	0.784	2.771	15.2	8.0	1.088	0.969	1.141		
c	0.774 0.884 1.137 0.875 2.678 14.0 7.3 1.072 1.006 1.133											

TABLA 6.87

Repr	Reproducción del equilibrio de adsorción de mezclas CO ₂ -etileno en											
zeoli	ta ZSM-	5 (SiO ₂	$/A1_{2}^{0}_{3} =$	56) a 5	3.3 KPa	median	te la t	eoría R	. A. S.			
EX	PERIMEN	TAL				R. A. S.						
×	У ₁	n	y ₁	ΠA/RT	$P_1^0(\Pi)$	P ₂ ⁰ (Π)	У ₁	7 ₂	n			
0.091	0.140	1.659	0.135	5.145	78.1	50.8	1.012	0. 999	1.661			
0.165	0.247	1.650	0.240	5.078	7 5 .2	48.7	1.030	0.996	1.652			
0. 2 9 2	0.401	1.640	0.408	4.961	70.2	45.1	1.060	0.988	1.636			
0.434	0.575	1.629	0.575	4.824	64.8	41.2	1.089	0.973	1.617			
0.613	0.742	1.615	0.746	4.652	58.4	36.7	1.110	0.954	1.592			
0.751	0.859	1.600	0.847	4.539	54.5	33. 9	1.104	0.968	1.578			

TABLA 6.88

Re zec	producci lita ZSM	ón del e 1-5 (SiO ₂	quilibric /Al_0 =	de ads 56) a 8	orción 0.0 KPa	de mezc median	las CO ₂ te la t	-etilen eoría R	o en A.S.				
	EXPERIMENTAL R. A. S.												
	$x_{1} y_{1} n y_{1} \Pi A/RT P_{1}^{0}(\Pi) P_{2}^{0}(\Pi) \gamma_{1} \gamma_{2} n$												
0.08	0.132	1.811	0.133	5.803	111.9	76	1.095	0.999	1.812				
0. 16	3 0.234	1.806	0.243	5.723	107.3	72.5	1.110	0.997	1.802				
0.27	5 0.386	1.797	0.392	5.605	100.8	67.6	1.130	0.992	1.786				
0.43	0. 56 9	1.786	0.573	5.441	92.2	61.2	1.151	0.983	1.765				
0.63	0.814	1.777	0.754	5.230	82.0	55.4	1.154	0.982	1.742				
0.75	0 0.849	1.768	0.837	5.156	78.6	51.2	1.135	1.022	1.731				

TABLA 6.89

Repr	Reproducción del equilibrio de adsorción de mezclas CO ₂ -propano en												
zeoli	ta ZSM-	5 (SiO ₂ /	/A1 ₂ 0 ₃ =	56) a	6.6 K Pa	median	te la t	eoría R	. A. S.				
EXPERIMENTAL R.A.S.													
x ₁	У ₁	n	y ₁	ΠA/RT	P ⁰ ₁ (Π)	P ₂ ⁰ (Π)	γ ₁	γ ₂	n				
0.087	0.295	1.370	0.357	4.707	60.4	4.7	0.453	0.997	1.458				
0.159	0.618	1.332	0.546	4.340	48.0	3.6	0.476	0.990	1.441				
0.284	0.740	1.341	0.745	3.795	33.4	2.4	0.524	0.963	1.399				
0.447	0.855	1.263	0.881	3.219	21.8	1.6	0.601	0.889	1.321				
0.624	0.949	1.199	0.956	2.701	14.3	1.0	0.711	0.727	1.210				
0.771	0.985	1.182	0.986	2.328	10.2	0.8	0.829	0.504	1.112				

TABLA 6.90

Repr	Reproducción del equilibrio de adsorción de mezclas CO ₂ -propano en													
zeoli	zeolita ZSM-5 (Si0 ₂ /Al ₂ 0 ₃ = 56) a 13.3 KPa mediante la teoría R.A.S.													
EX	EXPERIMENTAL R.A.S.													
×	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
0.077	0.242	1.469	0.253	5.934	119.7	10.8	0.366	0. 998	1.531					
0.1 43	0.442	1.451	0.429	5.654	103.5	8.9	0.386	0.991	1.536					
0.257	0.660	1.459	0.651	5.168	79.2	6.4	0.427	0.966	1.531					
0.419	0.824	1.424	0.841	4.508	53.4	4.0	0.500	0.889	1.496					
0.597	0.932	1.375	0.945	3.834	34.3	2.5	0.615	0.713	1.417					
0.751	0.751 0.976 1.293 0.986 3.287 23.0 1.6 0.759 0.454 1.316													

TABLA 6.91

Reproducción del equilibrio de adsorción de mezclas CO ₂ -propano en														
zeoli	zeolita ZSM-5 (Si0/Al_0 = 56) a 53.3 KPa mediante la teoría R.A.S.													
EX	PERIMEN	TAL		R. A. S.										
×	У ₁	n	У ₁	ĨĨ A∕ RT	$P_1^0(\Pi)$	$P_{2}^{0}(\Pi)$	r ₁	8 ₂	n					
0.067	0.157	1.600	0.159	8.282	345.5	48.1	0.366	0.998	1.649					
0.121	0.288	1.597	0.282	8.113	323.2	43.9	0.384	0.993	1.674					
0.215	0.469	1.623	0.481	7.801	284.2	36.1	0.420	0.975	1.713					
0.333	0.695	1.653	0.687	7.332	232.5	26.8	0.473	0.932	1.750					
0. 493	0.868	1.666	0.869	6.598	166.2	16.7	0.565	0.820	1.771					
0.672	0.954	1.698	0.965	5.742	108.4	9.5	0.706	0.595	1.744					

TABLA 6.92

	Reproducción del equilibrio de adsorción de mezclas CO_2 -propano en zeolita ZSM-5 (SiO (A) O = 56) a 80 O KPa mediante la teoría R A S													
	$\frac{2}{2} \frac{2}{3} \frac{2}$													
	EXPERIMENTAL R. A. S.													
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
(0.066	0.144	1.672	0.141	18.953	434.2	73.7	0.394	0.998	1.681				
1	D. 126	0.279	1.678	0.269	18.805	414.6	67.3	0.412	0.994	1.714				
	D. 211	0.439	1.733	0.443	18.551	381.0	57.6	0.441	0.980	1.758				
	0.325	0.641	1.730	0.644	18.137	326.3	44.5	0.486	0.945	1.810				
	D. 4 71	0.826	1.741	0.828	7.516	251.8	30.1	0.558	0.861	1.858				
	0.636	0.936	1.774	0.942	6.734	177.3	18.2	0.668	0.685	1.873				

TABLA 6.93

Reproc	Reproducción del equilibrio de adsorción de mezclas etileno-propano en zeolita ZSM-5 (Si0 $_2$ /Al $_2$ 0 = 56) a 6.6.KPa mediante la teoría R.A.S.												
EX	EXPERIMENTAL R.A.S.												
×	У ₁	n	y ₁	ΠA/RT	$P_{1}^{0}(\Pi)$	$P_{2}^{0}(\Pi)$	γ ₁	8 ₂	n				
0.110	0.119	1.395	0.135	5.199	55.1	6.6	0.149	0.982	1.488				
0.190	0.275	1.386	0.268	5.148	50.9	6.3	0. 18 5	0.945	1.497				
0.308	0.527	1.375	0.513	4.934	44.3	5.5	0.250	0.854	1.495				
0.466	0.762	1.327	0.795	4.410	31.0	3.8	0.366	0.669	1.444				
0.629	0.936	1.251	0.944	3.744	18.8	2.3	0.531	0.424	1.334				
0.776	0.974	[.] 1.143	0.990	3.174	11.7	1.5	0.726	0. 199	1.206				

TABLA 6.94

R	Reproducción del equilibrio de adsorción de mezclas etileno-propano en													
	zeoli	ta ZSM-	5 (SiO ₂	$/A1_{23} =$	56) a 1	3.3 KPa	median	te la t	eoría R	. A. S.				
	EXPERIMENTAL R. A. S.													
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$													
0	. 110	0.110	1.483	0.125	6.256	98.4	13.3	0.154	0.981	1.554				
0	. 187	0.253	1.471	0.255	6.203	95.5	12. 9	0.190	0.945	1.597				
0	. 2 95	0.488	1.454	0. 480	6.016	85.9	11.4	0.252	0.864	1.658				
o	. 434	0.751	1.433	0.750	5.539	64.9	8.3	0.355	0.710	1.670				
0	. 604	0. 915	1.401	0.932	4.758	39.4	4.8	0.521	0.465	1.553				
0	0.756 0.967 1.343 0.987 4.076 24.3 3.0 0.716 0.234 1.403													

TABLA 6.95

Reprod zeoli	Reproducción del equilibrio de adsorción de mezclas etileno-propano en zeolita ZSM-5 (Si0_/Al_0 = 56) a 53.3 KPa mediante la teoría R.A.S.													
EX	PERIMEN	TAL				R. A. S.								
×	$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
0.115	0.105	1.618	0.118	8.445	290.9	53.9	0.189	0.985	1.679					
0.185	0.215	1.617	0.219	8.426	288.4	53.3	0.219	0. 9 59	1.719					
0.280	0.383	1.62 4	0.388	8.328	276.1	50.2	0.267	0.902	1.769					
0.390	0.617	1.616	0.606	8.074	246.1	42.8	0.336	0.803	1.818					
0. 526	0.830	1.663	0.832	7.516	189.0	30.1	0.446	0.631	1.847					
0.683	0.937	1.671	0.960	6.652	122.0	17.3	0.614	0.383	1.822					

TABLA 6.96

R	Reproducción del equilibrio de adsorción de mezclas etileno-propano en zeolita ZSM-5 (SiO ₂ /Al ₂ O ₃ = 56) a 80.0 KPa mediante la teoría R.A.S.													
	EXPERIMENTAL R. A. S.													
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
c	. 118	0.105	1.679	0.121	19.102	385	80.7	0.213	0.987	1.716				
c	. 186	0.209	1.701	0.213	19.086	382.6	79.9	0.240	0.966	1.759				
c	. 281	0.372	1.715	0.371	19.012	371.5	76.4	0.284	0.918	1.818				
d). 382	0.594	1.695	0.560	18.824	343.5	68.1	0.341	0.837	1.877				
c	. 520	0.787	1.751	0.796	18.332	276.6	50.3	0.442	0.674	1.932				
c	. 660	0.917	1.708	0.939	17.590	195.9	31.6	0.581	0.453	1.941				

TABLA 6.97

-

Modelo R.A.S.: Valores de los parámetros de la ecuación de Wilson, zeolita ZSM-5 (SiO /Al O = 29)											
		2	23	,							
	P = 6	6 KPa	P = 1	3.3 KPa							
	۸ _{і j}	Λ j i	Λ _{ij}	۸ ј і							
CO ₂ -etileno	1.9365	0.5051	0.8004	1.3674							
COpropano	5.7855	0.3992	6.8201	0.2463							
Etileno-propano	6.6994	1.0029	7.8937	0.4494							
	P = 53	3.3 KPa	P= 80	.0 KPa							
	۸ і ј	Λ _{ji}	Λ _{ij}	۸ ј i							
CO ₂ -etileno	0.8599	1.2313	0.5479	1.1653							
CO ₂ -propano	7. 4592	0.1165	7.1020	0.1529							
Etileno-propano	6.4716	0.6554	6.5288	0.5526							

= 5

TABLA 6.98

,

Modelo R.A.S.: Valores de los parámetros de la ecuación de Wilson, zeolita ZSM-5 $(Si_2 0_A 1_2 0_3)=56)$											
	P = 6.	6 KPa	P = 1:	3.3 KPa							
	۸ _{і j}	۸ јі	Λ _{ij}	۸							
CO ₂ -etileno 2.7968 0.0105 2.5422 0.0710											
CO _g -propano .	5.3779	0.1693	7.8720	0.0008							
Etileno~propano	5.3992	1.5362	5.0392	1.5839							
	P = 53	3.3 KPa	P= 80	.0 KPa							
	Λ _{ij}	۸ ј і	Λ _{ij}	۸ ј i							
CO ₂ -etileno	2.6845	0.0237	2.5000	0.0100							
COpropano	4.6920	0.5162	6.1474	0.1623							
Etileno-propano	5.2981	1.2492	5.6224	1.0209							

	Reproducción del equilibrio de adsorción de mezclas CO ₂ - etileno en zeolita ZSM-5 (SiO ₂ /Al ₀ = 29) mediante la teoría S.P.D. a 6.6 KPa													
E	XPER I MEN'	ΓAL					S. P. D.							
x ₁	y ₁	n	y ₁	Π A ∕RT	Ρ <mark>0</mark> (Π)	P ⁰ ₂ (∏)	q ₁	q ₂	γ ₁	y ²	n			
0.104	0.177	1.276	0.179	5.36	13.27	6.12	9518	11192	0.865	0. 997	1.275			
0. 189	0.313	1.282	0.313	5.27	12. 49	5.69	9609	11293	0.882	0. 991	1.278			
0.318	0. 495	1.286	0.492	5.13	11.34	5.10	9754	11451	0.909	0.973	1.283			
0.483	0.672	1.296	0.682	4.95	9.98	4.39	9953	11664	0.943	0.934	1.288			
0.652	0.820	1.304	0.829	4.76	8.72	3.74	10167	11889	0.972	0.876	1.296			
0. 791	0. 905	1.316	0.916	4.61	7.80	3.29	10345	12072	0. 989	0.817	1.303			

TABLA 6.99

	Reproducción del equilibrio de adsorción de mezclas CO_2^- etileno en zeolita ZSM-5 (SiO_/Al_O_ = 29) mediante la teoría S.P.D. a 13.3 KPa												
EΣ	KPER IMEN?	FAL					S. P. D.						
×	У ₁	n	У ₁	∏A∕RT	Ρ <mark>0</mark> (Π)	Ρ <mark>0</mark> (Π)	q	q ₂	У ₁	x ₂	n		
0.102	0.160	1.412	0.162	6.30	24.41	12.45	8291	10170	0.868	0.998	1.424		
0. 185	0.285	1.443	0.286	6.22	23.25	11.77	8370	10252	0.887	0. 992	1.433		
0.312	0. 457	1.454	0.460	6.10	21.47	10.73	8506	10386	0.915	0. 976	1.446		
0.476	0.644	1.463	0.651	5.92	19.23	9.42	8707	10571	0.948	0.944	1.460		
0.645	0.792	1.474	0.804	5.73	17.03	8.18	8946	10774	0. 975	0.897	1.469		
0.785	0.887	1.480	0.899	5.58	15.41	7.28	9159	10943	0.991	0.851	1.475		

TABLA	6.	1	0	0
-------	----	---	---	---

-

6. DISCUSION DE RESULTADOS

237

	Reproducción del equilibrio de adsorción de mezclas CO ₂ - etileno en zeolita ZSM-5 (SiO ₂ /Al ₂ O ₃ = 29) mediante la teoría S.P.D. a 53.3 KPa												
E	EXPERIMENTAL S. P. D.												
×	У ₁	n	У ₁	TIA/RT	Ρ <mark>0</mark> (Π)	P ⁰ ₂ (∏)	q ₁	ď	¥ ₁	8 ₂	n		
0. 096	0.136	1.827	0.141	8.45	81.77	50.56	6902	7833	0.960	0.999	1.817		
0.173	0.246	1.834	0.246	8.38	79.09	48.70	6929	7897	0.956	0.998	1.820		
0.295	0.400	1.845	0.400	8.28	75.09	45.92	6973	7996	0.958	0. 991	1.835		
0.457	0. 575	1.872	0.575	8.15	70.02	42.36	7034	8131	0.967	0.971	1.859		
0.626	0.741	1.892	0.741	8.00	64.79	38.71	7103	8281	0.981	0.935	1.886		
0.770	0.855	1.930	0.855	7.87	60.26	35.60	7171	8421	0.991	0.888	1.911		

TABLA 6.101

6. DISCUSION DE RESULTADOS

	Reproducción del equilibrio de adsorción de mezclas CO ₂ - etileno en zeolita ZSM-5 (SiO ₂ /Al ₂ O ₃ = 29) mediante la teoría S.P.D. a 80.0 KPa													
EXPERIMENTAL S. P. D.														
×	У1	n	y ₁	∏A∕RT	Ρ <mark>0</mark> (Π)	P <mark>0</mark> (∏)	q ₁	q ²	۶ ₁	y ²	n			
0.095	0.130	1.942	0.135	9.16	116.96	76.53	6632	7155	0.971	1.000	1.944			
0.173	0.233	1.954	0.237	9.09	113.39	73.88	6654	7213	0.967	0. 998	1.958			
0.293	0.384	1.972	0.384	9.00	108.50	70.20	6685	7296	0.966	0.993	1.965			
0.450	0.564	1.983	0.559	8.88	102.15	65.50	6729	7410	0.972	0.977	1.985			
0.620	0.725	1.993	0.727	8.75	95.38	60.50	6781	7540	0.983	0.947	2.009			
0.769	0.844	2.053	0.852	8.62	89.32	56.10	6831	7665	0.992	0.905	2.033			

TABLA 6.102

	Reproducción del equilibrio de adsorción de mezclas CO ₂ - propano en zeolita ZSM-5 (SiO ₂ /Al ₂ O ₃ = 29) mediante la teoría S.P.D. a 6.6 KPa												
EXPERIMENTAL S.P.D.													
x	y ₁	n	y ₁	∏A∕RT	Р <mark>0</mark> (П)	$P_{2}^{0}(\Pi)$	q ₁	q ₂	¥ ₁	¥2	n		
0.108	0.154	1.448	0.152	6.52	27.92	6.37	8083	20163	0.336	0.995	1.459		
0.193	0.281	1.436	0.276	6.47	27.02	6.09	8132	20240	0.352	0.981	1.474		
0.322	0,478	1.408	0.469	6.36	25.23	5.60	8237	20391	0. 385	0.933	1.493		
0.483	0.697	1.395	0.708	6.14	22.14	4.72	8453	20685	0.441	0.797	1.503		
0.790	0.905	1.362	0.985	5.19	11.84	2.16	9690	22021	0.702	0.205	1.401		
0.882	0.968	1.344	0.999	4.80	9.02	1.55	10113	22565	0.838	0.046	1.360		

TABLA 6.103

	Re	producció ZSM	n del equi -5 (SiO ₂ /1	ilibrio d Al ₂ 0 ₃ = 2	le adsorci 9) median	ón de mez te la tec	clas CO pría S.P	₂ - propan .D. a 13,	o en zeol 3 KPa	ita	
EX	XPER IMEN'	TAL					S. P. D				
× ₁	У ₁	n	У ₁	∏A∕RT	Ρ ⁰ ₁ (Π)	Ρ <mark>⁰</mark> (Π)	q ₁	q ⁵	7 ₁	x ⁵	n
0. 109	0.128	1.543	0.130	7.45	48.00	13.06	7400	19271	0.331	0.995	1.560
0. 192	0.247	1.534	0.241	7.42	47.12	12.74	7420	19285	0.355	0.983	1.586
0.316	0.438	1.524	0.423	7.33	44.75	11.89	7477	19324	0.399	0.945	1.622
0.473	0.652	1.492	0.666	7.10	39.24	9, 96	7629	19424	0.478	0.847	1.657
0.780	0.928	1.532	0.969	6.58	29.00	6.68	8027	20080	0.571	0.284	1.680
0.876	0.967	1.544	0.997	6.25	23.62	5.13	8344	20541	0.642	0.054	1.648

TABLA	6.	1	04
-------	----	---	----

6. DISCUSION DE RESULTADOS

	Reproducción del equilibrio de adsorción de mezclas CO ₂ - propano en zeolita ZSM-5 (SiO ₂ /Al ₂ O ₃ = 29) mediante la teoría S.P.D. a 53.3 KPa												
E	(PERIMEN'	TAL					S.P.D.						
×	У ₁	n	y ₁	∏A∕RT	Р <mark>0</mark> (П)	Р <mark>0</mark> (П)	q1	q ₂	У ₁	y ²	n		
0.115	0.101	1.640	0.100	9.42	133.04	54.46	6545	18462	0.350	0.994	1.667		
0.204	0. 196	1.699	0.194	9.44	134.04	55.05	6540	18456	0.379	0.980	1.711		
0.325	0.347	1.709	0.346	9.43	133.78	54.90	6541	18457	0.424	0.940	1.772		
0. 469	0. 550	1.754	0.559	9.37	129.73	52.34	6561	18484	0.490	0.846	1.847		
0.760	0.869	1.878	0.941	8.74	95.00	33.62	6784	18737	0.695	0.387	1.963		
0.858	0.946	1.854	0.989	8.28	75.09	24.17	6973	18924	0.818	0. 162	1.969		

TABLA	6.	1	05
-------	----	---	----

•
	Re	producció ZSM	n del equi -5 (SiO ₂ //	$\frac{11}{20} = 2$	le adsorci 29) median	ón de mez te la teo	clás CO ría S.P.	2- propan D. a 80.0	o en zeoli O KPa	ita	
E	XPER IMEN	ΓAL					S.P.D.				
×	y _i	n	y ₁	∏A∕RT	Ρ <mark>0</mark> (Π)	Ρ <mark>0</mark> (Π)	9 ₁	ď	γ ₁	8 ₂	n
0. 129	0.099	1.663	0.104	10.03	177.46	82.88	6365	18222	0.362	0. 993	1.705
0.211	0.187	1.674	0.184	10.06	179.57	84.32	6358	18212	0.389	0.979	1.749
0.331	0.335	1.723	0.327	10.08	181.34	85.56	6352	18203	0.435	0.940	1.817
0.476	0.529	1.785	0.535	10.05	178.75	83.76	6361	18216	0.503	0.848	1.902
0.751	0.863	1.941	0.920	9.57	143.17	60.53	6497	18401	0.684	0.423	2.045
0.851	0.934	2.014	0.984	9.15	116.51	44.97	6635	18571	0.794	0. 181	2.071

TABLA (6.1	1()6
---------	-----	----	----

	Rej	producció ZSM	n del equi -5 (SiO ₂ //	librio d $1_{2}^{0}_{3} = 2$	e adsorci 9) median	ón de mez te la tec	zclas et: oría S.P	ileno-pro .D. a 6.6	pano en ze KPa	eolita	
ΕX	KPER IMEN	ΓAL.					S.P.D	•			
×	y ₁	n	y ₁	¶a∕rt	Ρ ⁰ ₁ (Π)	Р <mark>0</mark> (П)	ď	q ₂	y ₁	y ₂	n
0. 117	0.046	1.392	0.056	6.68	16.29	7.21	9739	19946	0.196	0.989	1.453
0.207	0,119	1.321	0.120	6.77	17.27	7.70	9639	19827	0.224	0.960	1.468
0.339	0.281	1.383	0.275	6.87	18.50	8.33	9523	19524	0.292	0.878	1.497
0.496	0, 549	1.394	0.553	6.88	18.73	8.44	9503	19516	0.397	0.698	1.499
0.655	0,801	1.325	0.848	6.59	15.29	6.72	9874	20071	0.564	0.436	1.441
0.801	0.925	1.330	0.974	6.05	10.41	4.40	10429	20810	0.779	0.194	1.361

-

TABLA (6.1	.07
---------	-----	-----

6. DISCUSION DE RESULTADOS

	Reproducción del equilibrio de adsorción de mezclas etileno-propano en zeolita ZSM-5 (SiO ₂ /Al ₀ = 29) mediante la teoría S.P.D. a 13.3 KPa										
ΕX	(PERIMEN)	TAL					S. P. D.				
×	y ₁	n	y ₁	∏A ∕RT	P ⁰ ₁ (Π)	Ρ <mark>0</mark> (Π)	۹ ₁	q ²	¥ ₁	۶ ع	n
0.124	0.045	1.525	0.060	7.59	29.87	14.49	8716	19213	0.216	0.988	1.542
0.213	0.115	1.500	0.122	7.68	31.63	15.49	8619	19175	0.241	0.959	1.557
0.346	0.267	1.514	0.263	7.82	34.66	17.26	8467	19114	0.292	0.871	1.584
0.496	0.528	1.487	0.523	7.89	36.21	18.18	8393	19085	0.388	0.693	1.611
0.647	0.791	1.505	0.822	7.59	29.80	14.45	8720	19215	0.568	0.465	1.592
0.780	0.904	1.502	0.955	7.04	20.87	9.56	9320	19447	0.782	0.282	1.523

TABLA 6.108

	Reproducción del equilibrio de adsorción de mezclas etileno-propano en zeolita ZSM-5 (SiO_/Al_O_ = 29) mediante la teoría S.P.D. a 53.3 KPa 2 2 3											
EΣ	KPER IMEN	ΓAL					S. P. D.				<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
x ₁	У ₁	n	У ₁	∏A∕RT	Ρ <mark>0</mark> (Π)	P ⁰ ₂ (∏)	q ₁	9 ₂	¥ ₁	8 ₂	n	
0. 154	0.053	1.647	0.073	9.55	95.14	59.39	6803	18412	0.265	0.984	1.670	
0.250	0.123	1.650	0.139	9.66	101.42	64.39	6701	18366	0.292	0.951	1.710	
0.375	0.270	1.672	0.265	9.83	111.06	72.27	6556	18300	0.339	0.867	1.769	
0. 507	0.486	1.684	0.475	9.97	119.68	79.53	6437	18245	0.418	0.714	1.837	
0.636	0.720	1.712	0.741	9.88	113.02	74.42	6520	18283	0.547	0.510	1.883	
0.756	0.868	1.725	0.919	9.43	89.38	54.90	6904	18457	0.725	0.321	1.874	

IABLA 6.109	A 6.109
-------------	---------

6

DISCUSION DE RESULTADOS

	Reproducción del equilibrio de adsorción de mezclas etileno-propano en zeolita ZSM-5 (Si0 ₂ /Al ₂ 0 = 29) mediante la teoría S.P.D. a 80.0 KPa											
EΣ	(PER IMEN)	TAL.					S.P.D.					
×	У ₁	n	y ₁	∏A∕RT	P ⁰ ₁ (∏)	P ⁰ ₂ (∏)	q	q ₂	٦ ₁	¥2	n	
0.163	0.056	1.659	0.077	10.15	131.49	89.72	6289	18176	0.289	0. 983	1.710	
0.264	0.134	1.673	0.148	10.28	140.61	97.77	6184	18127	0.318	0.947	1.759	
0.384	0.273	1.734	0.269	10. 45	153.35	109.40	6048	18062	0.365	0.867	1.827	
0.514	0.484	1.799	0.472	10.60	165.16	121.07	5928	18004	0.443	0.717	1.906	
0.640	0.703	1.843	0.728	10.54	160.47	116.16	5978	18028	0.567	0.519	1.967	
0.784	0.849	1.883	0.935	10.02	122.99	82.33	6394	18225	0.775	0. 292	1.974	

TABLA 6.110

	Reproducción del equilibrio de adsorción de mezclas CO ₂ - etileno en zeolita ZSM-5 (SiO ₂ /Al ₂ O ₃ = 56) mediante la teoría S.P.D. a 6.6 KPa											
E	XPERIMEN	ΓAL					S. P. D.				· · · · · · · · · · · · · · · · · · ·	
x	у	n	у	ΠA∕RT	Ρ ⁰ ₁ (Π)	P ⁰ ₂ (11)	q	۹ ₂	З ₁	8 ₂	n	
0. 102	0.181	1.003	0. 198	2.46	11.61	5.92	7944	3703	1.114	1.006	1.001	
0.186	0.317	0.994	0.314	2.41	11.06	5.60	7986	3845	1.017	1.004	0.995	
0.304	0.487	0.980	0.466	2.34	10.42	5.21	8042	4027	0.980	0.982	0. 989	
0.472	0.669	0.963	0.659	2.25	9.53	4.69	8129	4295	0.977	0.918	0.982	
0.637	0.814	0.954	0.813	2.14	8.64	4.19	8230	4589	0. 98 6	0.821	0.976	
0.781	0.900	0.946	0.912	2.04	7.82	3.72	8338	4881	0.994	0.712	0.966	

TAI	BLA	6.	1	1	1

	Reproducción del equilibrio de adsorción de mezclas CO_2^- etileno en zeolita ZSM-5 (SiO_/Al_O_ = 56) mediante la teoría S.P.D. a 13.3 KPa											
Eک	(PERIMEN)	TAL.					S. P. D.					
×	y ₁	n	y ₁	∏A∕RT	P ⁰ ₁ (Π)	Ρ <mark>0</mark> (Π)	q	d ⁵	γ ₁	۶ ع	n	
0.095	0.165	1.200	0.128	3.30	23.35	13.12	7476	1825	0.771	0.978	1.223	
0.176	0.290	1.191	0.271	3.20	21.59	12.01	7516	2007	0.949	0.983	1.206	
0.303	0. 456	1.175	0.440	3.04	18.91	10.33	7590	2336	1.023	1.038	1.175	
0.459	0.642	1.160	0.590	2.89	16.79	9.02	7664	2651	1.020	1.121	1.153	
0.631	0.790	1.149	0.730	2.78	15.30	8.12	7727	2907	1.008	1.205	1.142	
0.774	0.884	1.137	0.838	2.71	14.39	7.57	7772	3080	1.003	1.267	1.140	

	TABLA	6.	112	
--	-------	----	-----	--

	Rej	producció ZSM	n del equ: -5 (SiO ₂ //	$\frac{1}{2} \frac{1}{3} = 5$	e adsorci 6) median	ón de mez te la teo	clas CO ₂ ría S.P.I	- etilen). a 53.	o en zeol: 3 KPa	ita	
E	XPERIMEN	ΓAL					S. P. D.				
×	У ₁	n	y ₁	∏A∕RT	P ⁰ ₁ (Π)	P ⁰ ₂ (∏)	q ₁	q ₂	¥ ₁	¥2	n
0.091	0.140	1.659	0.134	5.15	78.40	51.01	7151	6991	1.002	0.996	1.664
0. 165	0.247	1.650	0.235	5.10	76.15	49.37	7155	7009	0.995	0.990	1.659
0.292	0.401	1.640	0.394	5.02	72.55	4 6.77	7161	7039	0.992	0.976	1.652
0.434	0.575	1.630	0.555	4.92	68.70	43.99	7169	7073	0.993	0.954	1.645
0.613	0.742	1.614	0.731	4.80	63.78	40.49	7181	7118	0.996	0.918	1.635
0.751	0.859	1.600	0.844	4.70	60.01	37.81	7191	7155	0.998	0.884	1.626

TABLA	6.	1	1	3
-------	----	---	---	---

		<u> </u>	<u></u>								
	Rei	producció	n del equi	librio d	le adsorci	ón de mez	clas CO	- etilen	o en zeoli	ita	
	:	704	_5 (SiO //	u o - 4	56) modian	to la too	2 rín C P	n <u>, , , , , , , , , , , , , , , , , , ,</u>	ר א ם.		
	:	ZOM	-5 (510 / 2	23		te la teu	11a D.F.	D. a ou.	JVLG		
						<u></u>	<u>.</u>				
EX	KPER IMEN	ſAL					S. P. D.				
x	У.	n	У,	∏A∕RT	Р ⁰ (П)	P ⁰ (Π)	٩.	q	γ.	r	n
1	- 1		1		1	2	1	2	1		
0 097	0 122	1 910	0 107	5 88	116 20	79 25	7111	6738	0.844	0 988	1 922
0.087	0.152	1.010	0.107	9.00	110.20	19.23	****	0136	0.044	0.966	1.025
0.163	0.234	1.806	0.212	5.83	113.59	77.29	7113	6753	0.916	0.974	1.821
0.275	0.386	1.797	0.361	5.76	109.19	73.91	7116	6779	0.960	0.955	1.815
0. 432	0.569	1.786	0.545	5.64	102.51	68.87	7122	6820	0.984	0.930	1.804
0.584	0.731	1.777	0.699	5. <u>5</u> 2	96.26	64.17	7128	6861	0.994	0.906	1.794
0.750	0.849	1.768	0.838	5.39	89.49	59.15	7135	6907	0.998	0.881	1.781
L											

TABLA 6.114

_	Rej	producció ZSM	n del equi -5 (SiO ₂ /A	llibrio d $Al_2O_3 = 5$	e adsorci 6) median	ón de mez te la teo	clas CO _z ría S.P.	- propano D. a 6.6	en zeol: KPa	ita	
]	EXPERIMEN	FAL.					S. P. D.				
x ₁	y ₁	n	У ₁	∏A ∕RT	P ⁰ ₁ (∏)	Ρ <mark>0</mark> (Π)	9 ₁	q ₂	У ₁	¥2	n
0. 087	0.295	1.370	0.335	4.76	62. 4 6	4.88	7184	17461	0.411	0.994	1.460
0.159	0.618	1.331	0.564	4.30	46.76	3.52	7240	18026	0.505	0. 981	1.436
0.284	0.740	1.341	0.792	3.53	27.66	2.04	7400	19150	0.672	0.952	1.367
0.447	0,855	1.263	0. 908	2.85	16.21	1.21	7688	20499	0.835	0.913	1.256
0.624	0.949	1.199	0.957	2.39	10.89	0.85	8001	21688	0.939	0.876	1.143
0.771	0.985	1.182	0.980	2.14	8,64	0.69	8230	22474	0.981	0.852	1.063

•

TABLA	6.	1	1	5
-------	----	---	---	---

.

	Rej	producció ZSM	n del equ -5 (SiO ₂ //	ilibrio (Al ₂₀₃ = :	de adsorci 56) median	ón de mez ite la tec	cclas CO ₂ oría S.P.	2- propand D. a 13.3	o en zeol 8 KPa	ita	
E	KPER I MEN'	TAL					S. P. D.	·	<u> </u>		
×	У	n	y ₁	∏A ∕RT	Р <mark>0</mark> (П)	P <mark>2</mark> (∏)	q	d ⁵	Ø ₁	¥2	n
0.077	0.242	1. 4 69	0.264	5.91	118.44	10.65	7109	16294	0.386	0. 998	1.529
0.143	0.442	1.450	0.433	5.64	102.83	8.89	7121	16545	0.393	0.991	1.534
0.257	0.660	1.459	0.644	5.21	81.13	6.65	71 47	16973	0.411	0.965	1.534
0.419	0.824	1.424	0.831	4.63	57.55	4.45	7198	17617	0.459	0.872	1.513
0.597	0.932	1.375	0.944	3.98	37.96	2.81	7291	18455	0.556	0.648	1.449
0.751	0.976	1.293	0.988	3.39	24.99	1.84	7444	19386	0.701	0.340	1.345

TABLA 6.116

	Rep	producción ZSM	n del equi -5 (SiO ₂ //	librio c $1_{20_3}^{0} = 5$	le adsorci 56) median	ón de mez ite la teo	clas CO ₂ pría S.P.	- propano D. a 53.3	en zeol: KPa	ita	
E	XPER IMEN	ΓAL					S. P. D.				
×	y ₁	n	У ₁	∏A∕RT	Ρ <mark>0</mark> (Π)	P ⁰ ₂ (∏)	q ₁	d ⁵	У ₁	γ ₂	n
0.067	0.157	1.600	0.170	8.25	341.73	47.53	7067	14433	0.395	0.998	1.646
0. 121	0.288	1.597	0.292	8.09	319. 56	43.16	7068	14545	0.403	0.994	1.670
0.215	0. 469	1.623	0.481	7.80	284.16	36.09	7070	14754	0.420	0.979	1.670
0.333	0.695	1.653	0.671	7.41	240.09	28.12	7074	15051	0.448	0.936	1.749
0. 493	0.868	1.666	0.854	6.80	182.57	19.02	7084	15532	0.506	0.810	1.784
0.672	0.954	1.698	0.963	5.99	123.18	11.20	7107	16224	0.620	0.526	1.775

	TABL	Α.	6.	1	1	7	
--	------	----	----	---	---	---	--

	Rep	producción 2SM-	n del equi -5 (SiO ₂ /A	$\frac{11}{20} = 5$	le adsorci 56) median	ón de mez te la teo	clas CO ₂ ría S.P.	- propano D. a 80.0	en zeol: KPa	ita	
EΣ	(PER IMEN)	ΓAL					S. P. D.				
×	У ₁	n	У ₁	ΠA∕RT	Ρ <mark>0</mark> (Π)	Ρ <mark>2</mark> (Π)	q	ď	У ₁	y ²	n
0.066	0.144	1.672	0.149	8.94	432.03	73.02	7064	13946	0.417	0.999	1.678
0.126	0.279	1.677	0.277	8.79	411.90	66.51	7064	14051	0.426	0.994	1.710
0.211	0.439	1.733	0.444	8.55	380.43	57.46	7065	14216	0.442	0. 981	1.752
0.325	0.641	1.730	0.635	8.19	332.96	45.98	7067	14471	0.469	0.943	1.805
0.471	0.826	1.741	0.817	7.65	266.90	32.87	7072	14864	0. 5 20	0.843	1.860
0.636	0.936	1.774	0.941	6.92	193.39	20.62	7082	15431	0.612	0.616	1.885

TABLA	6.	1	1	8
-------	----	---	---	---

	Rej	producción ZSM-	n del equi -5 (SiO ₂ //	ilibrio d Al ₂₀₃ = 5	e adsorci 6) median	ón de mez te la teo	clas eti oría S.P.	leno-prop D. a 6.6	ano en ze KPa	eolita	
E	KPER IMEN	TAL					S. P. D.				
x ₁	y _i	n	У ₁	TIA/RT	₽ ⁰ ₁ (Π)	P ⁰ ₂ (∏)	9 ₁	d ⁵	γ ₁	x ⁵	n
0.776	0.974	1.143	0.960	2.70	7.51	1.09	3094	20849	1.096	1.095	0.644
0.629	0.936	1.251	0.927	2.93	9.36	1.29	2565	20316	1.050	1.011	0.754
0.466	0.762	1.327	0.677	4.66	36.81	4.53	7169	17583	0.263	0.890	1.138
0.308	0. 5 27	1.375	0.478	4.85	41.89	5.18	7099	17364	0.247	0.969	1.249
0.190	0.275	1.386	0.315	4.98	45.72	5.68	7051	17215	0.242	0. 991	1.332
0.110	0.119	1.395	0.193	5.07	48.58	6.05	7018	17117	0.241	0.998	1.389

TABLA 6	. 1	1	9
---------	-----	---	---

	Reproducción del equilibrio de adsorción de mezclas etileno-propano en zeolita ZSM-5 (SiO ₂ /Al ₂ O ₃ = 56) mediante la teoría S.P.D. a 13.3 KPa														
EX	KPER IMEN	ſAL		S. P. D.											
×	y ₁	n	y ₁	ΠA∕RT	P ⁰ ₁ (∏)	P ⁰ ₂ (∏)	9 ₁	q ₂	У ₁	7 ₂	n				
0.110	0.110	1.483	0.193	6.11	90.53	12.12	6659	16118	0.258	0. 997	1.544				
0. 187	0.253	1.471	0.312	6.01	85.84	11.39	6691	16202	0.259	0.991	1.561				
0.295	0.488	1.454	0.464	5.88	79.61	10.45	6735	16320	0.263	0.971	1.582				
0.434	0.751	1.433	0.644	5.70	71.48	9.24	6798	16491	0.276	0.909	1.603				
0,604	.0.915	1.400	0.841	5.40	59.66	7.56	6902	16781	0.311	0.709	1.609				
0.756	0.967	1.343	0.968	4.93	44.23	5.48	7070	17272	0.386	0.310	1.565				

	Reproducción del equilibrio de adsorción de mezclas etileno-propano en zeolita ZSM-5 (SiO ₂ /Al ₂ O ₃ = 56) mediante la teoría S.P.D. a 53.3 KPa														
ΕX	(PER IMEN	Γ Α L		S. P. D.											
×	У ₁	л	У ₁	TTA/RT	P ⁰ (∏)	Ρ <mark>ο</mark> (Π)	9 ₁	ď	¥ ₁	γ ₂	n				
0.115	0.105	1.671	0.173	8.32	275.13	49.95	5952	14376	0.292	0.997	1.672				
0. 185	0.215	1.663	0.276	8.27	268.42	47.76	5969	14428	0.297	0.992	1.708				
0.280	0.383	1.616	0.406	8.15	255.21	45.04	6002	14495	0.303	0.977	1.755				
0.390	0.617	1.623	0.555	8.02	240.31	41.51	6042	14590	0.316	0.940	1.812				
0. 526	0.830	1.617	0.730	7.81	217.45	36.27	6108	14748	0.340	0.839	1.876				
0.683	0.937	1.618	0.907	7.38	179.07	27.65	6235	15072	0.395	0. 563	1.926				

TABLA (6.	1	2	1
---------	----	---	---	---

	Reproducción del equilibrio de adsorción de mezclas etileno-propano en zeolita ZSM-5 (SiO ₂ /Al ₂ O ₃ = 56) mediante la teoría S.P.D. a 80.0 KPa														
EΣ	(PER IMEN)	TAL		S.P.D.											
×	У	n	У ₁	∏A∕RT	Ρ <mark>0</mark> (Π)	Ρ <mark>0</mark> (Π)	q ₁	d ⁵	<i>у</i> ₁	y ²	n				
0.118	0.105	1.679	0.162	9.01	371.10	76.31	5748	13897	0.296	0.996	1.711				
0.186	0.209	1.701	0.255	8.96	363.81	74.07	5762	13930	0.301	0. 989	1.751				
0.281	0.372	1.715	0.386	8.88	352.16	70.62	5784	13984	0.312	0.969	1.809				
0.382	0.594	1.695	0.525	8.78	336.99	66.36	5815	14053	0.326	0.926	1.871				
0.520	0.787	1.751	0.718	8.59	309.38	58.85	5873	14189	0.356	0.804	1.956				
0.660	0.917	1.768	0.891	8.23	264.66	47.14	5978	14443	0.408	0.540	2.024				

INDLA U.IZZ	TAI	BL	A.	6		1	2	2
-------------	-----	----	----	---	--	---	---	---

TABLA 6.123

Valores de los parámetros del modelo S.P.D. (Ajuste individual)													
		ZSM-5 (SiO ₂ /Al ₂	0 ₃ = 29)	$ZSM-5 (Si0_2/Al_20_3 = 5$								
	P(KPa)	s i	Sj	β _{ij}	s i	Sj	β _{ij}						
CO ₂ -etileno	6.6	138.56	99.91	-0.010	1 48.55	30.79	-0.010						
Let.	13.3	110.24	80.48	-0.010	130.73	18.19	-0.022						
	53.3	90.04	70.21	-0.010	10.68	1.01	-0.013						
	80.0	100.13	80.45	-0.010	86.45	10.00	-0.010						
CO ₂ -propano	6.6	29.90	109.00	-0.512	77.40	106.93	-0.009						
-	13.3	94.55	97.56	-0.170	50.69	129.65	-0.011						
	53.3	1.02	1.04	-0.162	20.26	49.00	-0.009						
	80.0	0.94	0.96	-0.158	20.10	48.84	-0.010						
Etileno-prop.	6.6	41.13	89.19	-0.006	10.59	120.02	-0.010						
	13.3	20.38	39,67	-0.006	9.70	102.96	-0.019						
	53.3	47.50	111.17	-0.051	10.44	103.31	-0.013						
	80.0	41.19	94.64	-0.056	10.06	78.54	-0.083						

Figura 6.37. Isotermas de adsorción totales de la mezcla etileno-propano en zeolita ZSM-5 (Si0₂/Al₂⁰ = 29) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : \triangle 1/8, \Box 1/4, \diamond 1/2, \Rightarrow 1/1, O 2/1, \Diamond 4/1.

Isotermas de adsorción totales de la mezcla CO_-etileno en Figura 6.38.

Figura 6.35. Isotermas de adsorción totales de la mezcla CO_2 -etileno en zeolita ZSM-5 (SiO_/Al_O_3 = 29) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : \triangle 1/8, \bigoplus 1/4, \bigoplus 1/2, \oiint 1/1, \bigcirc 2/1, \diamondsuit 4/1.

Figura 6.36. Isotermas de adsorción totales de la mezcla CO_2 -propano en zeolita ZSM-5 (SiO_2/Al_2O_3 = 29) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : \triangle 1/8, \Box 1/4, \Leftrightarrow 1/2, \Rightarrow 1/1, \bigcirc 2/1, \Diamond 4/1.

Figura 6.37. Isotermas de adsorción totales de la mezcla etileno-propano en zeolita ZSM-5 (SiO₂/Al₂₃ = 29) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : \triangle 1/8, \Box 1/4, \diamondsuit 1/2, \bigstar 1/1, \bigcirc 2/1, \Diamond 4/1.

Figura 6.38. Isotermas de adsorción totales de la mezcla CO_2 -etileno en zeolita ZSM-5 (SiO_/Al_0_ = 56) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : $\Delta 1/8$, $\Box 1/4$, $\Rightarrow 1/2$, $\Rightarrow 1/1$, $\circ 2/1$, $\Diamond 4/1$.

Figura 6.39. Isotermas de adsorción totales de la mezcla CO_2 -propano en zeolita ZSM-5 (SiO_/Al_O_ = 56) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : \triangle 1/8, \Box 1/4, \blacklozenge 1/2, \bigstar 1/1, \bigcirc 2/1, \diamondsuit 4/1.

Figura 6.40. Isotermas de adsorción totales de la mezcla etileno-propano en zeolita ZSM-5 (SiO₂/Al₂O₃ = 56) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : \triangle 1/8, \Box 1/4, \blacklozenge 1/2, \bigstar 1/1, \bigcirc 2/1, 4/1.

Figura 6.41. Isotermas de adsorción individuales de CO₂ en la mezcla CO₂-etileno en zeolita ZSM-5 (SiO₂/Al₂O₃ = 29) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : \triangle 1/8, \Box 1/4, \diamond 1/2, \Rightarrow 1/1, \bigcirc 2/1,

Figura 6.42. Isotermas de adsorción individuales de **etileno** en la mezcla CO_2 -etileno en zeolita ZSM-5 (SiO_2/Al_0 = 29) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : $\Delta 1/8$, $\Box 1/4$, $\phi 1/2$, $\Rightarrow 1/1$, O 2/1, $\Diamond 4/1$.

Figura 6.43. Isotermas de adsorción individuales de CO₂ en la mezcla CO₂-propano en zeolita ZSM-5 (SiO₂/Al₂O₃ = 29) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : $\triangle 1/8$, $\Box 1/4$, $\diamond 1/2$, $\Rightarrow 1/1$, O 2/1, $\Diamond 4/1$.

Figura 6.44. Isotermas de adsorción individuales de **propano** en la mezcla CO_2 -propano en zeolita ZSM-5 (SiO_2/Al_2O_3 = 29) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : $\triangle 1/8$, $\Box 1/4$, $\Diamond 1/2$, $\Rightarrow 1/1$, O 2/1, $\Diamond 4/1$.

etileno-propano en zeolita ZSM-5 (Si0/Al $_{23}^{\circ}$ = 29) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : \triangle 1/8, \Box 1/4, \diamond 1/2, \Rightarrow 1/1, O 2/1, \diamond 4/1.

Figura 6.46. Isotermas de adsorción individuales de **propano** en la mezcla **etileno-propano** en zeolita ZSM-5 (SiO_/Al_0_ = 29) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : $\Delta 1/8$, $\Box 1/4$, $\phi 1/2$, $\Rightarrow 1/1$, O 2/1, $\phi 4/1$.

Figura 6.48. Isotermas de adsorción individuales de **etileno** en la mezcla CO_2 -etileno en zeolita ZSM-5 (SiO_2/Al_2O_3 = 56) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : $\Delta 1/8$, $\Box 1/4$, $\odot 1/2$, $\Rightarrow 1/1$, O 2/1, $\Diamond 4/1$.

volumétricas iniciales V_1/V_2 : $\triangle 1/8$, $\Box 1/4$, $\diamond 1/2$, $\Rightarrow 1/1$, O 2/1, $\diamond 4/1$.

Figura 6.51. Isotermas de adsorción individuales de **etileno** en la mezcla **etileno-propano** en zeolita ZSM-5 (Si0/Al_0 = 56) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : \triangle 1/8, \Box 1/4, \Diamond 1/2, \Rightarrow 1/1, O 2/1, \Diamond 4/1.

Figura 6.52. Isotermas de adsorción individuales de **propano** en la mezcla **etileno-propano** en zeolita ZSM-5 (SiO₂/Al₂O₃ = 56) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : \triangle 1/8, \Box 1/4, \Diamond 1/2, \Rightarrow 1/1, O 2/1, \Diamond 4/1.

Figura 6.55. Diagrama isobárico de equilibrio x-y del sistema etileno-propano en zeolita ZSM-5 $(Si0_2/A1_20_3 = 29)$ a 80.0 KPa. (----I.A.S.; ----H.I.A.S.; ----R.A.S.; ----S.P.D.).

Figura 6.57. Diagrama isobárico de equilibrio x-y del sistema CO_2 -propano en zeolita ZSM-5 (SiO_/Al_O_3 = 56) a 13.3 KPa. (-----I.A.S.;-----H.I.A.S.;-----R.A.S.;-----S.P.D.).

Figura 6.58. Diagrama isobárico de equilibrio x-y del sistema etileno-propano en zeolita ZSM-5 (SiO₂/Al₂O₃ = 56) a 13.3 KPa. (______I.A.S.;_____H.I.A.S.;_____R.A.S.;_____S.P.D.).

Figura 6.59. Diagrama isobárico de equilibrio y-n del sistema CO_2 -etileno en zeolita ZSM-5 (SiO₂/Al₂O₃ = 29) a 13.3 KPa. (______ I.A.S.; - - - R.A.S.).

Figura 6.60. Diagrama isobárico de equilibrio y-n del sistema etileno-propano en zeolita ZSM-5 $(Si0_2/A1_20_3 = 56)$ a 80.0 KPa. (----- I.A.S.; ---- R.A.S.).

Figura 6.61. Diagramas isobáricos de equilibrio x-y de los sistemas binarios a 53.3 KPa. O ZSM-5 $(SiO_2/AI_2O_3 = 29)$, \triangle ZSM-5 $(SiO_2/AI_2O_3 = 56)$, \Box Silicalita. a) CO_2 -etileno. b) CO_2 -propano. c) etileno-propano.

Figura 6.62. Variación de la selectividad relativa α_{12} con la relación SiO₂/Al₂O₃. \Box CO₂-etileno, \bigcirc CO₂-propano, \triangle etileno, -propano.

								^	112							
		1.0		1.2		1.4		1.6		1.8	_	2.0		2.2		2.4
<u>م</u>	0.0	1.8	1.8	2.0	2.0	2.0	2.2	2.2	2.2	2.2	2.2	2.3	2.3	2.3	2.4	2.4
	1	1.9	1.8	2.0	2.0	2.2	2.1	2.2	2.2	2.3	2.3	2.3	2.3	2.3	2.4	2.4
	0.2	2.0	1.9	2.1	2.3	2.4	2.4	2.4	2.5	2.5	2.5	2.5	2.5	2.5	2.4	2.4
	ł	2.2	2.0	2.2	2.4	2.3	2.5	2.5	2,5	2.6	2.6	2.6	2.0	2.0	2.5	2.4
	0.4	2.3	2.0	2.2	2.4	2.5	2.5	2.5	12.6	2.6	2.7	2.7	2.6	2.6	2.5	2.4
		2.3	2.1	2.3	(2.5	2.5	2.5	2.5	(2.6	(2.7	2.7	2.7	2.6	2.6⁄	2.5	2.4
	0.6	2.2	2.1	2.3	25	2.5	2.5	2.5	2.6	2.6	2.6	2.6	2.6	_5.2	2.5	2.4
	1	2.0	2.1	2.3	2.3	2.5	2.5	2.5	2,5	2.5	2.5	2.5	2.5	2.5	2.5/	2.4
	0.8	2.0	2.1	2.2	2.3	2.4	2.4	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.4	2.4
		2.0	2.1	2.1	2.2	2.3	2.3	2.5	2.3	2.3	2.3	2.3	2.3	2.3	2.2	2.2
	1.0	2.2	2.2	2.2	2.2	2.3	2.3	2.2	2.2	2.2	2.2	2.3	2.1	2.0	2.2	2.0
		2.2	2.2	2.3	2.3	2.3	2.3	2.2	2.2	2.2	2.2	2.2	2.1	2.0	1.9	1.8
	1.2	2.2	2.2	2.3	2.3	2.3	2.3	2.2	2.2	2.2	2.2	2.1	2.0	2.0	1.9	1.8

Figura 6.63. Mapa de error obtenido en la reproducción del equilibrio del sistema CO_2 -etileno a 13.3 KPa en zeolita ZSM-5 (SiO_/Al_O_2 ≈ 29), mediante el modelo R.A.S.

								\wedge	12							
		4.4		4.6		4.8		5.0		5.2		5.4		5.6		5.8
	0.6	1.0	1.2	1.2	1.3	1.4	1.6	1.7	1.8	1.9	1.9	1.9	1.9	2.0	2.0	2.0
		1.2	1.4	1.5	1.5	1.6	1.7	17	1.8	1.9	1.9	-2.0	2.0	2.0	2.0	2.0
	0.8	1.3	1.4	1.5	1.7	-1.8-	1.8	1.9	1.9	2.0	2.0	2.0	2.0	2.1	2.1	2.1
		1.6	1.2	-1.8	1.8	1.9	1.9	1,9-	2.0	2.0	2.0	2.0	2.1	2.1	2.1	2.0
٨	1.0	1.8	1.8	1.9	1.9	1.9	-2.0	2.0	2.0	2.1	2.1	2.1	2.1	2.0	2.0	2.0
/\21		1.9	20	-2.0	2.0	2.0	2.0	2.0	2.0	2.1	2,1	2.1	2.0	2.0	2.0	1.9
	1.2	2.0	2.0	2.0	2.0	2.0	2,0	2.0	2.1	2.1	20	2.0	20	1.9	1.9	1.9
		2.0	2.0	2.0	2.0	2.0	2,1	2.1	2.0	2.0	2.0	1.9	1.9	1.9	1.9	1.9
	1.4	2.0	2.0	2.0	2.0	2.0	2.1	2.0	2.0	2.9	1.9	1.9	1.9	1.9	1.8	1.8
		2.0	2.0	2.0	2.0	2.1	2.0	2.0	2.0	1.9	1.9	1.9	1.9	1.9	1.8	1.8
	1.6	2.0	2.0	2.0	2.1	2.1	2.0	2.0	1.9	1.9	1.9	1.9	1.9	1.8	1.1	17
		2.0	2.0	2.1	2.0	2.0	2.9	1.9	1.8	1.8	1.8	1.9	1.8	1.7	1.6	1.6
	1.8	2.1	2.1	2.0	2.0	2.0	2.0	1.9	1.8	1.9	1.9	1.9	1.8	1.7	1.6	1.5

Figura 6.64. Mapa de error obtenido en la reproducción del equilibrio del sistema etileno-propano a 53.3 KPa en zeolita ZSM-5 $(SiO_2/AI_2O_3 = 56)$, mediante el modelo R.A.S.

Figura 6.65. Regiones de confianza de los parámetros Λ_{12} y Λ_{21} obtenidos en la reproducción del equilibrio del sistema etileno-propano en zeolita ZSM-5 (SiO₂/Al₂O₃ = 56) a 6.6 KPa, mediante el modelo R.A.S.

Figura 6.66. Regiones de confianza de los parámetros Λ_{12} y Λ_{21} obtenidos en la reproducción del equilibrio del sistema CO₂-etileno en zeolita ZSM-5 (SiO₂/Al₂O₃ = 29) a 80.0 KPa, mediante el modelo R.A.S.

Figura 6.67. Regiones de confianza de los parámetros s₁, s₂ y β_{12} obtenidos en la reproducción del equilibrio del sistema CO₂-propano en zeolita ZSM-5 (SiO₂/Al₂O₃ = 56) a 53.3 KPa, mediante el modelo S.P.D.

6.4. ISOTERMAS DE ADSORCION DE MEZCLAS BINARIAS EN TAMIZ MOLECULAR DE CARBON 5A Y ZEOLITA 5A A PRESIONES ELEVADAS.

En las figuras 6.68 a 6.79 se han representado las isotermas individuales de adsorción de las mezclas binarias CO₂-etileno, CO₂-etano y etileno-etano en CMS 5A y los sistemas etano-etileno, etano-CO $_2$ y etileno-CO_gen zeolita 5A obtenidas a la temperatura de 293 K, correspondientes a los datos de las tablas 5.20 a 5.25. El distinto orden en la nomenclatura de los sistemas se debe a que generalmente se pone en primer lugar y se toma como componente 1, el compuesto que menos se adsorbe en la mezcla. Cada isoterma individual, corresponde a una relación entre los moles introducidos inicialmente de cada adsorbato n₁/n₂. Esto supone una variación respecto a las isotermas a baja presión, puesto que en aguellas se hablaba de relación volumétrica inicial. En este caso se calculan los moles iniciales introducidos a partir de medidas de presión y por lo tanto es más correcto hablar de moles, sin embargo en el caso de la instalación a presión atmosférica, la introducción del adsorbato se hacía por medio de una bureta de gases por lo que se podía hablar de volúmenes introducidos. A modo de referencia se han introducido también las isotermas correpondientes a los componentes puros.

Se puede observar que, en el caso de las isotermas individuales de etano en sus mezclas con etileno y CO₂ en zeolita 5A (figuras 6.74 y 6.76), se produce el mismo efecto de desplazamiento que se comentó para los sistemas CO_-propano y etileno-propano en zeolita ZSM-5 SiO_/Al_O_ = 56 (apartado 6.3). La explicación a este hecho es clara, si se tiene en cuenta que tanto el CO, como el etileno son moléculas polarizables debido **a sus dobles enlaces. Así, una zeolita** con una baja relación SiO_/Al_O_ como la 5A, en que dicha relación es igual a la unidad, adsorberá preferentemente este tipo de moléculas frente a otras mucho menos polarizables como las de etano. Además, en este caso el efecto de desplazamiento es más acusado que en el caso de los sistemas a presión atmosférica debido al mayor grado de ocupación de la zeolita y por lo tanto a la mayor "competitividad" de los gases por los lugares de adsorción.. En el CMS 5A no se produce este efecto, ya que la estructura química de un carbón no favorece la adsorción de moléculas polarizables como en el caso de las zeolitas.

En las figuras 6.80 a 6.85 se han representado las isotermas tota-

les de mezclas para los tres sistemas en ambos adsorbentes. Se puede observar que en todos los casos el haz de isotermas de mezcla se halla dentro de las isotermas de componentes puros que se han representado como referencia, circunstancia que como se ha podido comprobar anteriormente no ocurre.

A partir de las isotermas experimentales de mezclas binarias se han obtenido, del mismo modo que se comentó en la ZSM-5, los diagramas isobáricos x-y-n a las presiones de 100, 500, 1000 y 1500 KPa para el CMS 5A y a las presiones de 500, 1000, 2000 y 3000 KPa para la zeolita 5A.

Los datos correspondientes a estos diagramas, se presentan en las columnas 1 a 3 de las tablas 6.126 a 6.149. A modo de ejemplo, en las figuras 6.86 a 6.91 se representan los diagramas correspondientes a los tres sistemas binarios en cada uno de los dos adsorbentes. Así mismo y a modo de ejemplo, en las figuras 6.92 y 6.93 se representan los diagramas isobáricos y-n de los sistemas CO_-etileno en CMS 5A a 1500 KPa y etanoetileno en zeolita 5A a 500 KPa. Como se puede observar, en el caso del CMS 5A los tres diagramas x-y son bastante próximos a la diagonal. Esto quiere decir que el tamíz molecular de carbón no muestra una gran selectividad por ninguno de los tres adsorbatos. Así mismo, se puede observar que los sistemas CO₂-etileno y CO₂-etano se alejan ligeramente de la idealidad en la zona de baja concentración de CO, mientras que la mezcla etileno-etano presenta un comportamiento muy ideal. Los datos obtenidos estan en consonancia con los obtenidos en carbón activado en anteriores investigaciones (Marrón, 1979; Costa, 1981), y en trabajos publicados por otros autores (Nakahara, 1981, 1982, 1984). Esto quiere decir que la estructura química de los carbones no favorece la adsorción de compuestos polarizables, como lo hace la estructura química de las zeolitas. Así, en el caso de los tamices moleculares de carbón, podemos decir que los factores fundamentales a la hora de predecir la posible separación de este tipo de gases son, la estructura porosa del tamiz y el tamaño de las moléculas del gas.

En cuanto a la zeolita 5A, se puede observar que las mezclas etanoetileno y etano- CO_2 presentan un comportamiento próximo a la idealidad mientras que la mezcla etileno- CO_2 se aleja bastante de la misma, formando incluso un azeótropo (figura 6.91). La forma de estos diagramas coincide con la de los diagramas obtenidos por otros autores en anteriores investigaciones a presión atmosférica (Cabra, 1983). En cuanto a la selectividad del adsorbente, se pueden sacar las mismas conclusiones que al hablar de componentes puros. La zeolita 5A presenta una mayor afinidad por los compuestos polarizables como el etileno y el CO_2 , frente a otros que no lo son, como el etano. Este hecho es fácilmente observable viendo la separación de los diagramas x-y correspondientes a estas mezclas de la diagonal principal (figuras 6.89 y 6.90). Sin embargo, en el caso de la mezcla etileno- CO_2 (figura 6.91), no se muestra una elevada selectividad y el comportamiento de la mezcla se aleja de la idealidad, como ya se ha indicado.

Otro aspecto importante a comentar es la variación de los diagramas x-y al aumentar la presión. La tendencia de todos los diagramas al aumentar la presión es a acercarse ligeramente a la diagonal. Esto significa que los adsorbentes pierden selectividad a medida que aumenta la presión, lo cual es lógico, ya que los adsorbentes se van saturando a medida que aumenta la presión en la fase gaseosa, con lo cual la influencia de su estructura química es menor.

6.4.1. MODIFICACIONES REALIZADAS A LOS MODELOS PARA SU APLICACION A PRE-SION ELEVADA.

La aplicación de los modelos teóricos a los datos experimentales de presión elevada, requiere una serie de modificaciones en los mismos. En primer lugar, no se deben utilizar presiones sino fugacidades. Debido a ésto, los términos de presión P y $P_i^0(\Pi)$ de la ley de Raoult tienen que ser corregidos por los correspondientes coeficientes de fugacidad (Myers, 1987), con lo que la ecuación 2.54 pasa a ser:

$$P \phi_i y_i = P_i^0 (\Pi) \phi_i^0 x_i$$
 (6.13)

donde ϕ es el coeficiente de fugacidad del componente i a la presión, temperatura y composición de la mezcla y ϕ_i^0 es el coeficiente de fugacidad del componente i puro a la presión de referencia $P_i^0(\Pi)$.

El cálculo de los coeficientes de fugacidad se puede realizar mediante la ecuación de estado del virial truncada despues del segundo coeficiente (Myers, 1987). Así, las ecuaciones utilizadas para el cálculo de dichos coeficientes son:

$$\ln \phi_{i} = \frac{P}{RT} \left(2 \sum_{j} y_{i} B_{ij} - B_{m} \right)$$
(6.14)

$$\ln \phi_{i}^{o} = \frac{B_{i1} P_{i}^{o} (\Pi)}{RT}$$
(6.15)

donde B es el coeficiente de la ecuación de estado del virial y los subíndices i,j, indican el número del componente y m representa la mezcla.

El coeficiente del virial de mezcla se calcula mediante la siguiente ecuación:

$$B_{m} = \sum_{i} \sum_{j} y_{i} y_{j} B_{ij}$$
(6.16)

Todas estas modificaciones en los modelos fueron incluidas únicamente para su aplicación a los datos en CMS 5A y zeolita 5A a presión elevada, ya que a presión atmosférica los coeficientes de fugacidad son prácticamente iguales a la unidad.

6.4.2. PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINARIAS EN CMS 5A Y ZEOLITA 5A A ELEVADAS PRESIONES MEDIANTE LA TEORIA I.A.S.

La aplicación del modelo I.A.S. a datos de equilibrio a altas presiones lleva consigo, como se ha indicado, el cálculo de coeficientes de fugacidad lo cual requiere la inclusión de su cálculo en el método expuesto en el apartado 2.3.4. Con ello, la aplicación del modelo se queda del modo siguiente:

1) Se fijan la presión P y los valores de x, e y, experimentales.

2) Se supone un valor de MA/RT de mezcla.

3) Se determinan los valores de $P_i^0(\Pi)$ mediante las curvas $\Pi A/RT$ frente a la presión de los componentes puros P_i .

4) Se calcula el valor de ϕ_i con los valores de y_i experimentales y

 ϕ_i^0 , mediante las ecuaciones 6.14 y 6.15 respectivamente.

5) Se calcula y_i predichos mediante la ecuación de Raoult modificada para alta presión 6.13.

6) Si el valor de y_i calculado y el utilizado para el cálculo de los coeficientes de fugacidad no coinciden, se vuelve al paso 4 sustituyendo los valores de y_i experimentales por los calculados, hasta que se cumpla esta condición.

7) Si la suma de las fracciones molares $\sum y_i$ calculadas no es igual a la unidad, se vuelve al paso 2 con otro valor de MA/RT.

Se puede observar que este esquema de cálculo lleva consigo una iteración más, lo cual aumenta considerablemente el tiempo de utilización de ordenador para la aplicación del programa.

Se ha realizado la predicción del equilibrio siguiendo este método para los sistemas binarios CO_2 -etileno, CO_2 -etano y etileno-etano en CMS 5A a las presiones de 100, 500, 1000 y 1500 KPa y para los sistemas etano-etileno, etano- CO_2 y etileno- CO_2 en zeolita 5A a 500, 1000, 2000 y 3000 KPa. Los valores de x-y-n experimentales y los de y₁, $P_i^0(\Pi)$, ϕ_i , ϕ_i^0 , $\Pi A/RT$ obtenidos en la predicción se presentan en las tablas 6.125 a. 6.148

En las figuras 6.86 a 6.91 se muestran los resultados obtenidos en la predicción mediante el modelo I.A.S. junto con otros modelos. Como se puede observar el modelo I.A.S. conduce a resultados bastante satisfactorios en los sistemas etileno-etano en CMS 5A, y en los sistemas etano- CO_2 y etano-etileno en zeolita 5A, todos ellos próximos a un comportamiento bastante ideal. En los sistemas que presentan un comportamiento más alejado de la idealidad, como son el CO_2 -etileno y CO_2 -etano en CMS 5A y etileno- CO_2 en zeolita 5A, el modelo no predice satisfactoriamente los datos de equilibrio. Esta misma tendencia ya se presentaba a presión atmosférica (apartado 6.3).

En cuanto a la predicción de la cantidad adsorbida total el modelo I.A.S. conduce a unos resultados satisfactorios (figuras 6.92 y 6.93).

<u>6.4.3.</u> <u>PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINARIAS EN CMS</u> 5A Y ZEOLITA 5A A ELEVADAS PRESIONES MEDIANTE LA TEORIA H.I.A.S.

En las tablas 6.149 a 6.172 se presentan los resultados obtenidos en la predicción del equilibrio de adsorción de los tres sistemas estudiados en CMS 5A y zeolita 5A mediante el modelo H.I.A.S. Dicha predicción se ha realizado mediante el mismo esquema explicado en el apartado 6.3.3. para presión atmosférica, con la única modificación de la introducción de los coeficientes de fugacidad en la ley de Raoult (ecuación 6.13). En este caso, a diferencia del modelo I.A.S., no es necesaria una iteración adicional ya que en el paso 1 se fija el valor de y₁ para el que se va a realizar la predicción y con el que se calcularán los coeficientes de fugacidad. Estos coeficientes no se presentan en las tablas de resultados, puesto que hay un valor para cada posición energética. Los valores de los parámetros utilizados se presentan en las tablas 6.174 y 6.175.

En las figuras 6.86 a 6.91 se representan los resultados obtenidos en la predicción con este modelo. Como se puede observar, los peores resultados se obtienen en la predicción de los sistemas CO_2 -etileno y CO_2 -etano en CMS 5A y del sistema etileno- CO_2 en zeolita 5A, al igual que sucedía con el modelo I.A.S., debido al comportamiento alejado de la idealidad que presenta este modelo. Comparado con el I.A.S., este modelo mejora su predicción en la mayoría de los casos, al igual que ocurría a presión atmosférica, debido a que el H.I.A.S. tiene en cuenta la heterogeneidad de la superficie del adsorbente mediante la inclusión de varios parámetros en el modelo.

En cuanto a la predicción de la cantidad adsorbida total, los resultados son muy similares a los obtenidos con el modelo I.A.S.

6.4.4. REPRODUCCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINARIAS EN CMS 5A Y ZEOLITA 5A A ELEVADAS PRESIONES MEDIANTE LA TEORIA R.A.S.

Se ha realizado la reproducción de los tres sistemas binarios en CMS 5A y zeolita 5A a las presiones de 100, 500, 1000 y 1500 KPa para el primer adsorbente y 500, 1000, 2000 y 3000 KPa para la zeolita 5A. Los resultados obtenidos se presentan en las tablas 6.175 a 6.198. El esquema de reproducción es similar al descrito en el apartado 6.3.4, si bien al igual que se expuso al comentar la aplicación del modelo I.A.S., es necesario añadir algun paso para la aplicación de este modelo a presiones elevadas. El esquema aplicado es el siguiente:

1) Se fijan la presión P y los valores de x_i e y_i experimentales.

2) Se supone un valor inicial de los parámetros $\Lambda_{i,i}$.

3) Se supone un valor de MA/RT de mezcla.

4) Se calcula el valor de los coeficientes de actividad mediante la ecuación de Wilson (2.63).

5) Se determinan los valores de $P_i^0(\Pi)$ mediante las curvas $\Pi A/RT$ frente a la presión de los componentes puros P_i .

6) Se calcula el valor de ϕ_i con los valores de y_i experimentales y el de ϕ_i^0 , mediante las ecuaciones 6.14 y 6.15 respectivamente.

7) Se calculan los valores de y_i predichos mediante la ecuación de Raoult modificada para alta presión 6.13.

8) Si el valor de y_i calculado y el utilizado para el cálculo de los coeficientes de fugacidad no coinciden, se vuelve al paso 6 sustituyendo los valores de y_i experimentales por los calculados, hasta que se cumpla esta condición.

9) Si la suma de las fracciones molares $\sum y_i$ calculadas no es igual a la unidad, se vuelve al paso 3 con otro valor de NA/RT.

10) Se calcula el error obtenido en la reproducción. Si este error supera un error mínimo fijado de antemano, se vuelve al paso 2 suponiendo otros valores de $\Lambda_{i,i}$.

Como se puede observar, este esquema de cálculo lleva consigo numerosas iteraciones lo cual unido, como ya se comentó en el apartado 6.3.4, al algoritmo de Marquardt para hallar los parámetros óptimos, hace que el tiempo empleado en la reproducción a presión elevada aumente considerablemente respecto al empleado a presión atmosférica.

En las tablas 6.199 y 6.200 se presentan los valores de los parámetros obtenidos en la reproducción y que serán utilizados en la predicción de los sistemas ternarios.

Para la aplicación de este modelo a presión elevada se realizó una modificación importante en el programa de cálculo. Como se comentó en el apartado 6.3.4, antes de realizar la predicción propiamente dicha, se obtenían los "mapas de error" de cada sistema para determinar el grado de confianza de los parámetros y sus valores iniciales óptimos. El programa de reproducción a presión elevada se modificó de tal forma que se obtenían los mapas y a continuación el propio programa buscaba los valores iniciales óptimos, lo cual disminuía considerablemente el tiempo de cálculo empleado. Tambien se realizó el estudio de las regiones de confianza de los parámetros, no encontrándose diferencia respecto a los resultados obtenidos a presión atmosférica.

En las figuras 6.86 a 6.91 se representan los resultados obtenidos en la reproducción del equilibrio de mezclas. Como se puede observar, en el caso del CMS 5A el modelo R.A.S. proporciona unos resultados similares a los modelos I.A.S. y H.I.A.S. para el sistema etileno-etano y mejora ligeramente a estos modelos en los otros dos sistemas que se alejan más del comportamiento ideal.

Sin embargo, en el caso de la zeolita 5A, el modelo R.A.S. conduce a mejores resultados que los modelos I.A.S. y H.I.A.S. por razones que se comentarán más adelante.

Se realizó la reproducción de la cantidad adsorbida total mediante la ecuación 2.53. Los resultados obtenidos son similares a los obtenidos con los otros modelos. Hay que tener en cuenta que al igual que ocurría a presión atmosférica, el segundo término de la ecuación 2.53 fue despreciado.

6.4.5. REPRODUCCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINARIAS EN CMS 5A Y ZEOLITA 5A A ELEVADAS PRESIONES MEDIANTE LA TEORIA S.P.D.

Se ha realizado la reproducción del equilibrio de adsorción de los

sistemas CO_2 -etileno, CO_2 -etano y etileno-etano en CMS 5A a las presiones de 100, 500, 1000 y 1500 KPa y en zeolita 5A a las presiones de 500, 1000, 2000 y 3000 KPa, mediante el modelo S.P.D. Los resultados obtenidos se presentan en las tablas 6.201 a 6.224.

El esquema de cálculo ya fue expuesto en el apartado 2.3.4. de la introducción teórica y 6.3.5. de la discusión de resultados. La única modificación que hay que realizar para la aplicación del modelo a elevadas presiones es la introducción de los coeficientes de fugacidad en la ecuación de Raoult (ecuación 6.13), lo cual lleva consigo una iteración más como se vió en los apartados correspondientes a la aplicación de los modelos I.A.S. y R.A.S. a presiones elevadas. Con este esquema se han obtenido los parámetros que se presentan en las tablas 6.225 y 6.226.

Sigue siendo válido el estudio de los mapas de error que se comentó en el apartado 6.3.5. así como la realización de un ajuste global de todos los sistemas binarios para determinar los parámetros a utilizar en la predicción de los sistemas ternarios que se presentan en las tablas 6.227 y 6.228.

En las figuras 6.86 a 6.91 se representan los resultados obtenidos en la reproducción mediante el modelo S.P.D. junto con los valores experimentales y los resultados de los restantes modelos. Como se puede observar, el modelo S.P.D. reproduce los datos experimentales de una forma similar al modelo R.A.S. y mejora las predicciones realizadas por los modelos I.A.S. y H.I.A.S., sobre todo en los sistemas que presentan un comportamiento alejado de la idealidad, debido a la introducción del coeficiente de actividad en la ley de Raoult. Estos resultados son similares a los obtenidos a presión atmosférica.

Tambien se ha realizado la reproducción de la cantidad adsorbida total. Los resultados, que se presentan en las tablas 6.201 a 6.224, son similares a los obtenidos con los restantes modelos.

6.4.6. PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINARIAS EN CMS 5A A ELEVADAS PRESIONES MEDIANTE LA TEORIA DEL DISOLVENTE IMAGINARIO (V.S.M.)

Este modelo ya fue aplicado en anteriores investigaciones realiza-

das en este departamento (Cabra, 1983, Jimenez 1989), si bien daba unos resultados peores que los modelos termodinámicos anteriormente estudiados. Sin embargo, se ha creido conveniente aplicarlos a datos a presiones elevadas para ver si presentan la misma tendencia que a presión atmosférica. Así, se ha aplicado este modelo a los sistemas CO_2 -etileno, CO_2 -etano y etileno-etano en CMS 5A a las presiones de 100, 500, 1000 y 1500 KPa.

Como se expuso en el apartado 2.3.4. de la introducción, esta teoría considera la adsorción de un componente puro como la de dos componentes: el que realmente se adsorbe y un disolvente imaginario que llena la zona de adsorbente no ocupada por el primero.

La predicción de los datos de equilibrio con este modelo se realiza a partir del ajuste de las isotermas de componentes puros, del que se obtienen unos parámetros que se utilizan en la predicción de los sistemas binarios. El ajuste de los componentes puros se realiza, como ya se comentó en el apartado teórico a dos ecuaciones, DIW (ecuación 2.77) que toma como base el coeficiente de actividad calculado mediante la ecuación de wilson (2.75) y DIF (ecuación 2.78) que calcula el coeficiente de actividad mediante la ecuación de Flory-Huggins (2.76). En la tabla 6.229 se presentan los resultados obtenidos en dichos ajustes.

A partir de los valores de estos párámetros y mediante las ecuaciones 2.79 y 2.80, se ha llevado a cabo la predicción del equilibrio de adsorción de los sistemas binarios en CMS 5A. Los resultados en la predicción de la fracción molar de la fase gaseosa y, y de la cantidad adsorbida total n, se presentan en las tablas 6.230 a 6.241 junto con los correspondientes valores experimentales. En las figuras 6.94 a 6.96 se representan a modo de ejemplo los resultados obtenidos en la predicción con ambas ecuaciones DIW y DIF mediante el modelo del disolvente imaginario para los sistemas CO₂-etileno a 500 KPa, CO₂-etano a 100 KPa y etileno-etano a 1000 KPa. Puede observarse que los resultados obtenidos son peores que los obtenidos con los modelos I.A.S., H.I.A.S., R.A.S. y S.P.D. No es posible determinar cual de las dos ecuaciones proporciona mejores resultados, puesto que la DIW mejora la DIF en las mezclas CO_-etileno y CO_-etano, mientras que en la mezcla etileno-etano el resultado es peor. La explicación a estos resultados coincide con la que se dio en anteriores trabajos a presión atmosférica. Es lógico que este modelo sea peor que los modelos R.A.S. y S.P.D. que realizan una reproducción de los datos binarios. En cuanto a los otros dos modelos (I.A.S. y H.I.A.S.) la diferencia radica en que el error que se comete en el ajuste de componentes puros es apreciable y se arrastra a la predicción de mezclas binarias.

6.4.7. PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS BINARIAS EN CMS 5A A ELEVADAS PRESIONES CON EL MODELO TERMODINAMICO ESTADISTICO (S.T.M.)

El fundamento teórico de este modelo se describió en el apartado 2.3.4. Este modelo está basado en la aplicación de los principios de la termodinámica estadística a la adsorción en las cavidades que forman la red cristalina de las zeolitas. Si bien el tamiz molecular de carbón no pertenece a este tipo de adsorbentes, se ha considerado interesante la aplicabilidad de este modelo a un adsorbente de tipo no zeolítico y a presiones elevadas para poder contrastar los resultados.

Existen en bibliografía distintas versiones de este modelo. En este trabajo se han considerado las tres más importantes:

 a) Modelo clásico (I): es el primero que se desarrolló, válido para sistemas ideales. Utiliza la ecuación 2.92 para componentes puros y la 2.101 para mezclas binarias.

 b) Modelo generalizado (II): se ha desarrollado como una ampliación del modelo clásico a sistemas no ideales. Utiliza la ecuación 2.102 para componentes puros y la 2.103 para mezclas binarias.

c) Modelo más reciente (III): surge al introducir algunas simplificaciones al modelo II, es el último que se ha desarrollado. Utiliza la ecuación 2.105 para la reproducción de mezclas binarias y predicción de multicomponentes.

Los modelos I y II precisan de los datos de equilibrio experimentales de componentes puros, al igual que ocurre con el modelo del disolvente imaginario. Del ajuste de estos datos a las ecuaciones teóricas se obtienen los parámetros necesarios para la predicción del equilibrio de adsorción de mezclas multicomponentes. La versión generalizada (II) es incapaz de reproducir los datos de equilibrio experimentales obtenidos en este trabajo, por lo tanto sólo se han aplicado los modelos I y III. En este último caso, se ha optado por realizar un ajuste global de todas las meclas a cada una de las presiones estudiadas, ya que se plantea el mismo problema que surgía con el modelo S.P.D.: si se lleva a cabo un ajuste individual se obtienen 7 parámetros para cada mezcla y despues hay que elegir únicamente 7 para predecir mezclas multicompoentes a una determinada presión.

El modelo clásico (I), presenta un inconveniente a la hora de ser aplicado a un tamiz molecular de carbón, tal y como se ha explicado en el apartado teórico: es necesario conocer el valor del parámetro estructural ν . Este dato, correspondiente al volumen de una cavidad de adsorbente, es facilmente determinable en las zeolitas, debido a su red cristalina regular que forma cavidades perfectamente definidas. Sin embargo, el tamíz molecular de carbón no presenta poros bien definidos por lo que resulta extremadamente complicada la estimación de este parámetro.

Para poder salvar este inconveniente, se ha optado por agrupar los valores de ν y β en un sólo parámetro ajustable. Esto lleva consigo cierto error, ya que si se desconoce el volumen de una cavidad de tamiz, no se pueden transformar los datos de n de mol/g a molec/cavidad con lo que el término que aparece en el denominador de la ecuación 2.92 no es correcto. En la tabla 6.242 se presentan los resultados obtenidos en el ajuste mediante este modelo.

En la tabla 6.243 se presentan los valores obtenidos en el ajuste realizado para aplicar el modelo III. En todos estos ajustes se ha aplicado el algoritmo de Marquardt anteriormente citado.

En las tablas 6.244 a 6.255 se presentan los resultados obtenidos en la predicción realizada con las versiones I y III de este modelo. En las figuras 6.94 a 6.96 se representan estos resultados de forma gráfica para algunas presiones. Como se puede observar, los resultados obtenidos mediante el modelo I sólo son buenos en el sistema etileno-etano que presenta un comportamiento ideal. En los otros dos sistemas los resultados no son tan satisfactorios. El modelo III proporciona unos resultados bastante buenos, lo cual es lógico ya que dispone de 7 parámetros ajustables. En cuanto a la predicción de la cantidad adsorbida total, los resultados obtenidos tienen un gran error. En el caso del modelo III el número total de moles que predice es siempre igual a 2 ya que asume que todas las moléculas tienen el mismo tamaño, lo cual no es cierto en este caso.

En resumen, se puede decir que para la aplicación de este modelo a un adsorbente no zeolítico hay que hacer una serie de suposiciones que hacen que los resultados conduzcan a errores elevados, por lo que el modelo no resulta aconsejable.

TABLA 6.125

Predicció	Predicción del equilibrio de adsorción en CMS 5A a 100 KPa en						
la	s mezclas	CO ₂ -etile	no mediar	nte la teo	oría I.A.S	5	
	EXPERIMEN	TAL		-	I.A.S.		
>	x ₁ y ₁	n	· · · · ·	y ₁	n		
0.0	090 0.124	2.717		0.186	2.73	0	
0.1	.54 0.254	2.723		0.295	2.74	o l	
0.2	.51 0.411	2.754		0.431	2.72	4	
0.0	.581 0.581	2.734		0.591	2.73	7	
0.5	5 3 0.728	2.658		0.727	2.71	6	
0.7	10 0.837	2.620		0.837	2.69	8	
∏A∕RT	P ⁰ ₁ (∏)	P ₂ ⁰ (Π)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	φ ₁	\$ \$	
12.289	208.8	89.3	0.989	0.995	0.995	0.992	
11.984	192.5	83.3	0. 990	0. 9 95	0. 995	0.992	
11.586	172.5	75.9	0.991	0.995	0.995	0.992	
11.094	149.7	67.5	0.992	0.995	0.995	0.992	
10.672	131.7	60.9	0.993	0.995	0. 995	0.992	
10.328	117.9	56.2	0.994	0.995	0.995	0.992	

TABLA 6.126

Predicción (del equil	ibrio de	adsorció	n en CMS	5A a 500	KPa en
las me	ezclas CO	2-etilend	mediant	e la teor	ía I.A.S	•
E	XPERIMENT	AL		I	. A. S.	
x ₁	y ₁	n	<u></u>	У ₁	n	
0.093	0.118	3.882		0.178	3. 57	4
0.129	0.212	3.969		0.240	3.77	1
0.224	0.369	4.153		0.384	3.80	6
0.333	0.518	4.212		0.522	3.86	5
0.471	0.668	4.312		0.665	3.95	1
0.605	0.777	4.324		0.775	4.06	0
ΠA/RT	P ⁰ ₁ (Π)	P ₂ ⁰ (Π)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$	\$\phi_2
19.547	985.8	45 1.2	0.949	0.964	0.975	0.961
19.367	953.3	434.1	0.950	0.966	0.975	0.961
18.914	875.5	393.6	0.954	0.969	0.975	0.961
18.422	797.1	353.7	0.958	0.972	0.974	0.961
17.852	713.8	312.3	0.962	0.975	0.974	0.962
17.344	645.9	279.3	0.966	0.978	0.974	0.962

٠

TABLA 6.127

Predicción del equilibrio de adsorción en CMS 5A a 1000 KPA en							
las mezclas CO ₂ -etileno mediante la teoría I.A.S.							
E	XPERIMENT	AL]	[.A.S.		
x ₁	У1	n	· · ··	y ₁	n		
0.095	0.113	4.598		0.163	4.487	7	
0.132	0.207	4.701		0.221	4.491	L	
0.234	0.354	4.834		0.367	4.537	7	
0.345	0.499	5.021		0.504	4.598	3	
0.480	0.640	5.126		0.645	4.680)	
0.609	0.762	5.173		0.758	4.778	3	
ΠA/RT	P ⁰ ₁ (Π)	P ⁰ ₂ (∏)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	¢_1	¢_2	
22.906	1793.8	920.0	0.909	0.929	0.951	0.923	
22.750	1746.4	890.6	0.911	0.931	0.950	0.923	
22.328	1623.8	815.3	0.917	0.937	0.950	0.924	
21.883	1502.5	742.5	0.923	0.942	0.949	0.924	
21.367	1371.9	665.8	0.929	0.948	0.949	0.925	
20.898	1261.8	602.7	0.935	0.953	0.948	0.926	

TABLA 6.128

Predicción del equilibrio de adsorción en CMS 5A A 1500 KPA en								
las mezclas CO ₂ -etileno mediante la teoría I.A.S.								
E	XPER IMEN'	ΓAL		I	. A. S.			
x ₁	У ₁	n		У1	n			
0.099	0.110	4.926		0.156	4.95	4		
0.136	0.198	5.144		0.211	4.97	4		
0.239	0.349	5.302		0.351	5.01	3		
0.347	0.480	5.364		0.483	5.04	3		
0.483	0.633	5.487		0.626	5.12	6		
0.612	0.749	5.580		0.742	5.21	7		
ΠA/RT	P ⁰ ₁ (∏)	P ₂ ⁰ (Π)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$	¢2		
24.922	2510.9	1392.0	0.874	0.895	0.928	0.887		
24.789	2457.2	1355.0	0.877	0.897	0.927	0.887		
24.406	2307.2	1253.6	0.884	0.904	0.926	0.887		
24.023	2165.9	1159.1	0.891	0.911	0. 925	0.888		
23.547	1999.8	1050.8	0.899	0.919	0.924	0.889		
23.102	1854.6	958.2	0.906	0.926	0.923	0.891		

TABLA 6.129

Predicción d	Predicción del equilibrio de adsorción en CMS 5A a 100 KPA en						
las m	las mezclas CO ₂ -etano mediante la teoría I.A.S.						
EX	PERIMENT	AL		I	. A. S.		
×	У ₁	n		у	n		
0.082	0.128	2.596		0.210	2. 59	2	
0. 139	0.246	2.575		0.323	2. 5 8	3	
0.227	0.435	2.515		0.463	2.60	9	
0.343	0.602	2.427		0.603	2. 5 8	5	
0.534	0.760	2.406		0.763	2.60	4	
0.692	0.857	2.417		0.860	2.62	3	
ĨIA/RT	Ρ ⁰ ₁ (Π)	P ₂ ⁰ (Π)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$	\$\$P_2	
13.109	256.8	86.0	0.986	0.993	0.995	0.992	
12.734	234.0	78.5	0.987	0.993	0,995	0.992	
12.219	204.9	69.2	0.989	0.994	0. 995	0.992	
11.664	176.3	60.4	0.991	0.995	0. 9 95	0.992	
10.945	143.2	50.5	0.992	0.996	0.995	0.992	
10. 492	124.4	45.3	0.993	0.996	0.995	0.992	

TABLA 6.130

Predicci	Predicción del equilibrio de adsorción en CMS 5A a 500 KPA en						
1	as mezclas	CO ₂ -etano	mediante	e la teor:	ía I.A.S.		
	EXPERIMEN	ITAL			I.A.S.		
	x ₁ y ₁	n		у ₁	n		
0.	095 0.115	5 3.581		0.200	3.61	3	
0.	140 0.225	5 3.774		0.282	3.604	4	
0.	187 0.345	5 3.913		0.360	3.600	ן כ	
0.	283 0.495	5 4.191		0.497	3.642	2	
0.	423 0.652	4.183		0.654	3.71	в	
0.	558 0.772	2 4.306		0.770	3.83	9	
ΠA/RT	P ⁰ ₁ (Π)	$\mathbb{P}_{2}^{0}(\Pi)$	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$ _1	\$\$	
20.086	1088.9	439.5	0.943	0.965	0. 975	0.961	
19.828	1038.4	414.5	0.946	0.967	0.975	0.961	
19.563	988.6	390.1	0.948	0.969	0.975	0.961	
19.047	897.7	346.7	0, 953	0.973	0.974	0.961	
18.344	785.2	295.0	0.959	0.977	0.974	0.962	
17.734	697.6	256.2	0.963	0.980	0.974	0.962	

TABLA 6.131

Predicción d	el equili	brio de	adsorción	en CMS 5	A a 1000	KPA en
las	mezclas C	0 ₂ -etano	mediante	la teorí	a I.A.S.	
E	XPERIMENT	'AL		I	. A. S.	
x	У1	n		У1	n	
0.093	0.111	4.273		0.170	4.23	9
0.149	0.218	4.398		0.262	4.27	5
0.197	0.337	4.580		0.335	4.29	3
0.291	0.462	4.774		0.463	4.35	4
0.410	0.601	5.069		0.600	4.45	3
0.565	0.746	5.180		0.743	4 . 61	7
ΠA/RT	Ρ ⁰ ₁ (Π)	P ₂ ⁰ (Π)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$\$	¢_2
23.328	1927.3	909.0	0.902	0.930	0.951	0.923
23.063	1842.3	857.2	0.906	0.934	0.951	0.923
22.844	1774.7	816.7	0.910	0.937	0.951	0.924
22.422	1650.4	743.7	0.916	0.942	0.949	0.924
21.891	1504.6	660.5	0.923	0.948	0.949	0.925
21.234	1339.9	570.0	0.931	0.955	0. 948	0.926

TABLA 6.132

Predicción de	el equil:	ibrio de	adsorción	en CMS 5	A a 1500 K	PA en
las r	mezclas (CO ₂ -etano	mediante	la teorí	a I.A.S.	
EX	KPER IMEN	ΓAL		I	. A. S.	
×	У ₁	n		У ₁	n	
0.091	0.110	4.662		0.151	4. 521	
0.152	0.210	4.752		0.244	4. 593	
0.201	0.316	5.022		0.314	4.650	
0.294	0.437	5.212		0.436	4.733	Į
0.413	0. 5 73	5.494		0.573	4.837	ļ
0.560	0.712	5.571		0.715	4.986	
ΠA/RT	P ⁰ ₁ (Π)	P ⁰ ₂ (Π)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$\$1	\$\$
25.281	2661.6	1389.6	0.867	0.895	0.928 0	. 887
25.039	2559.2	1319.2	0.872	0.900	0.927 0	. 887
24.844	2479.2	1264.9	0.876	0.904	0.926 0	. 888
24.469	2331.6	1166.4	0.883	0.911	0.925 0	. 888
24.008	2160.3	1055.1	0.891	0.919	0.924 0	. 889
23. 438	1963.3	931.2	0.900	0.928	0.924 0	. 890

TABLA 6.133

Predicción del equilibrio de adsorción en CMS 5A a 100 KPA en								
las mezclas etileno-etano mediante la teoría I.A.S.								
ΕX	EXPERIMENTAL			I	. A. S.			
×1	У ₁	n		У ₁	n			
0.147	0.186	2.657		0.177	2.607			
0.289	0.344	2.649		0.337	2.632			
0.460	0.519	2.697		0.516	2.663			
0.615	0.668	2.651		0.667	2.683			
0.767	0.805	2.659		0.806	2.653			
0.874	0.900	2.712		0.897	2.715			
∏A∕RT	$P_1^0(\Pi)$	P ⁰ ₂ (Π)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	φ ₁ φ ₂			
13.586	120.5	96.5	0.993	0.992	0.994 0.992			
13. 445	116.2	93.2	0.993	0.993	0.994 0.992			
13.273	112.2	89.4	0.993	0.993	0.994 0.992	:		
13.125	108.4	86.3	0.993	0.993	0.994 0.992			
12.984	105.0	83.5	0.994	0.993	0.994 0.992			
12.883	102.6	81.4	0.994	0.993	0.994 0.992			

TABLA 6.134

•

Predicción del equilibrio de adsorción en CMS 5A a 500 KPA en								
las mezclas etileno-etano mediante la teoria I.A.S.								
EX	EXPERIMENTAL				. A. S.			
× 1	У1	n		У ₁	n	· · · · · ·		
0.160	0.185	3.598		0.178	3.61	2		
0.288	0.313	3.607		0.316	3.62	8		
0.462	0.497	3.635		0.495	3.65	8		
0.593	0.623	3.668		0.626	3.67	5		
0.712	0.733	3.858		0.739	3.69	1		
0.860	0.873	3.781		0.876	3.72	1 .		
∏A ∕RT	P ⁰ ₁ (∏)	P ⁰ ₂ (Π)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$\$_1\$	¢_2		
20.555	560.1	488.9	0.967	0.962	0.971	0.961		
20.469	55 0. 0	479.4	0.967	0.962	0.971	0.961		
20.359	537.2	467.7	0.968	0.963	0.971	0.961		
20.281	528.3	459.4	0.969	0.964	0.970	0.961		
20.203	519.5	451.4	0.969	0.964	0.970	0.961		
20.109	509.2	441.8	0.970	0.965	0.970	0.962		

٠

TABLA 6.135

Predicción del equilibrio de adsorción en CMS 5A a 1000 KPA en								
las mezclas etileno-etano mediante la teoría I.A.S.								
E	EXPERIMENTAL				. A. S.			
×1	y ₁	n		У ₁	n			
0.162	0.184	4.199		0.174	4.245			
0.287	0.311	4.249		0.305	4.279			
0.451	0.477	4.351		0.474	4.325			
0.580	0.606	4.402		0.602	4.361			
0.714	0.732	4.423		0.732	4.400			
0.839	0.850	4.548		0.851	4.437			
ΠA/RT	Ρ ⁰ ₁ (Π)	P ⁰ ₂ (Π)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	φ ₁	\$\$		
23.688	1081.7	983.7	0.937	0.924	0.943 0	. 923		
23.633	1069.6	972.0	0.938	0.925	0.943 0.	. 923		
23.563	1054.2	957.1	0.938	0.926	0.942 0.	. 924		
23. 500	1040.7	944.0	0.939	0.927	0.942 0.	924		
23.438	1027.3	931.2	0.940	0.928	0.942 0	. 924		
23.383	1015.8	920.0	0.941	0.929	0.942 0	. 925		

-

TABLA 6.136

Predi	Predicción del equilibrio de adsorción en CMS 5A a 1500 KPA en								
	las mezclas etileno-etano mediante la teoría I.A.S.								
	EXPERIMENTAL				I	. A. S.			
	×	у ₁	n		y ₁	n			
	0.163	0.184	4. 587		0.172	4.485			
	0.287	0.309	4.640		0.300	4.548	1		
	0.447	0.468	4.701		0.462	4.631			
	0.578	0.594	4.719		0.594	4.699	t J		
	0.715	0.731	4.813		0.728	4.770			
	0.830	0.844	4.914		0.839	4.829			
ΠA.	/RT	Р ⁰ (П)	P ⁰ ₂ (Π)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$	¢2		
25.	586	1590.9	1483.0	0.909	0.888	0.916	0.887		
25.	547	1578.5	1470.7	0.909	0. 889	0.915	0.887		
25.	484	1558.9	1451.3	0.910	0.890	0.914	0.887		
25.	445	1546.8	1439.2	0.911	0.891	0.914	0.888		
25.	391	1529.9	1422.5	0.912	0.892	0.914	0.888		
25.	352	1517.9	1410.7	0.913	0.893	0.914	0.889		

TABLA 6.137

Predicciór	Predicción del equilibrio de adsorción en zeolita 5A a 500 KPA							
en las	en las mezclas etano-etileno mediante la teoría I.A.S.							
	EXPERIMENT	AL		I	. A. S.			
×	y ₁	n		y ₁	n			
0.0	0.226	3.671		0.199	3.66	9		
0.0	0.431	3. 532		0.365	3. 5 9	6		
0.0	0.588	3.410		0.499	3. 5 2	4		
0.1	.29 0.725	3.314		0.632	3.43	5		
0.4	29 0.942	3.157		0.910	3.12	4		
0.6	0.973	3.105		0.957	3.03	7		
ΠA/RT	Ρ ⁰ ₁ (Π)	P ⁰ ₂ (∏)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$ _1	¢_2		
18.813	5497.0	409.1	0.644	0.976	0.961	0.970		
17.992	4610.4	333.0	0.691	0.980	0.961	0.970		
17.172	3832.4	270.4	0.736	0.983	0.961	0.971		
16.133	2994.8	207.0	0.787	0.988	0.961	0.971		
12. 391	1115.1	75.5	0.915	0.995	0.961	0.971		
11.266	807.5	54.6	0.937	0.997	0.961	0.971		

TABLA 6.138

Predicció	n del equili	brio de a	adsorción	en zeoli	ta 5A a 1	1000 KPA
en la	s mezclas et	ano-etil	eno media	nte la te	oría I.A.	. S.
	EXPERIMENT	`AL		I	. A. S.	
	x ₁ y ₁	n		У ₁	n	
0.	017 0.143	3.935	<u>, </u>	0.083	3.974	4
0.0	033 0.305	3.862		0.160	3.944	4
0.0	056 0.441	3.754		0.265	3.900	c
) o.	124 0.673	3. 599		0.527	3.759	9
0.1	238 0.866	3.427		0.766	3. 5 60	o l
0.4	449 0.945	3.318		0.911	3.352	2
∏A∕RT	Ρ ⁰ ₁ (Π)	P ⁰ ₂ (∏)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	<i>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </i>	\$\$
22.164	10269.8	929.1	0.440	0.946	0.925	0,942
21.852	9748.4	862.0	0.458	0.949	0.925	0.942
21.375	8981.7	768.5	0.487	0.955	0.925	0.942
19.813	6731.0	524.5	0.584	0.969	0.924	0.942
17.508	4138.2	294.5	0.718	0.982	0.923	0.943
14.977	2241.8	152.9	0.836	0.991	0.923	0.943

,

TABLA 6.139

Predicción	Predicción del equilibrio de adsorción en zeolita 5A a 2000 KPA								
en las	en las mezclas etano-etileno mediante la teoría I.A.S.								
	EXPERIMEN	TAL	· · · · ·	I	. A. S.				
×	У	n		У ₁	n				
0.00	0.138	4.283		0.026	4.27	3			
0.00	0.277	4.197		0.078	4.25	3			
0.04	0,402	4.036		0.125	4.23	5			
0.11	0.606	3, 897		0.293	4.16	2			
0.21	.8 0.825	3.420		0.582	3.99	1			
0.38	33 0.928	3. 585		0.842	3.71	9			
∏A∕RT	P ⁰ ₁ (Π)	P ⁰ ₂ (∏)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$\$_1\$\$	\$\$_2			
25.383	16413.6	1962.7	0.269	0.888	0.856	0.886			
25.211	16043.6	1888.3	0.277	0.892	0.856	0.886			
25.047	15730.2	1819.6	0.284	0.896	0.855	0.886			
24.328	14267.8	1544.3	0.319	0.911	0.854	0.887			
22.500	10833.3	1006.6	0.420	0.941	0.853	0.888			
19.328	6113.4	465.2	0.613	0.972	0.852	0.889			

TABLA 6.140

Predicc: en	Predicción del equilibrio de adsorción en zeolita 5A a 3000 KPA en las mezclas etano-etileno mediante la teoría I.A.S.							
	EXPE	RIMEN	ΓAL		<u> </u>	I.A.S.		
	×	У ₁	n		У1	n		
(D. 001	0.133	4.410		0.015	4.44	8	
(0.027	0.235	4.281		0.046	4.43	6	
(0.045	0.367	4.153		0.077	4.42	4	
[] (D. 095	0.553	4.021		0.164	4.38	8	
(D. 1 5 8	0.714	3.822		0.280	4.33	6	
	0.299	0.852	3.655		0.571	4.16	9	
∏A∕R'	Г Р <mark>о</mark>	(Π)	P ⁰ ₂ (∏)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$\$	¢2	
27.28	9 203	29.3	2978.0	0.198	0.836	0.792	0.835	
27.21	1 201	17.9	2929.0	0.200	0.838	0.792	0.835	
27.13	3 199	96.9	2880.6	0.203	0.841	0.791	0.835	
26.87	5 194	49.5	2725.6	0.211	0.848	0.790	0.835	
26.45	3 185	87.1	2487.5	0.226	0.861	0.789	0.835	
24.750	0 151	22.2	1700.9	0.298	0.903	0.788	0.837	

TABLA 6.141

Pre	edicción	del equili	brio de a	dsorción	ı en zeoli	ita 5A a	500 KPA
	en la	as mezclas	etano-CO ₂	mediant	e la teor	ía I.A.S	•
		EXPERIMENT	AL		1	[.A.S.	
	×	y ₁	n		У ₁	n	
	0.02	26 0.304	4.805		0.246	4.91	5
	0.04	49 0.594	4.702		0.447	3.55	7
	0.08	0.742	4.415		0.660	3.412	2
	0.14	1 6 0.927	4.123		0.842	3.208	в
	0.39	99 0.984	3.814		0. 9 69	2.920	o
	0.60	0.988	3.501		0.988	2.85	6
	ΠA∕ŘT	P ⁰ ₁ (Π)	P ⁰ ₂ (∏)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$ _1	φ ₂
2	22.563	10557.7	384.3	0.416	0.980	0.962	0.974
2	21.414	9043.4	287.6	0.485	0.985	0.961	0.974
1	19.641	6504.7	182.0	0.594	0.990	0.961	0.974
1	17.063	3736.7	91.1	0.742	0.995	0.961	0.975
1	12.922	1293.7	26.0	0.902	0.999	0.961	0.976
]]	11.422	845.1	14.8	0.935	0.999	0.961	0.976

TABLA 6.142

F	Predicción	del equili	brio de a	dsorción	en zeoli	ta 5A a	1000 KPA
	en la	as mezclas	etano-CO ₂	mediant	e la teor	ía I.A.S	•
		EXPERIMENT	`AL		I	. A. S.	
[× 1	y ₁	n		У1	n	
	0,00	0,213	5.113		0.078	3.97	9
	0.03	0.428	4.893		0.173	3.94	7
	0.05	5 3 0. 56 4	4.698		0.2 5 2	3. 91	7
	0.09	98 0.785	4.413		0.485	3.80	4
	0.18	0.948	4.121		0.822	3.49	6
	0.40	0. 985	3. 785		0.960	3.18	8
	ΠA/RT	P ⁰ ₁ (Π)	P ₂ ⁰ (Π)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$ _1	¢_2
	26.188	18050.2	934.3	0,236	0.951	0.927	0.948
	25.797	17211.0	850.8	0.252	0.956	0.926	0.948
	25.438	16503.2	780.1	0.267	0.959	0.925	0.948
	24.063	13737.9	557.8	0.333	0.971	0.924	0.949
	20.203	7256.6	210.9	0.556	0.989	0.923	0.951
	15.719	2704.6	62.3	0.805	0.997	0.923	0. 952

TABLA 6.144

•

Pred	icción	del equil	ibrio de a	adsorción	en zeoli	ta 5A a 2	2000 KPA
	en l	as mezclas	etano-CO ₂	, mediant	e la teor	ía I.A.S	•
		EXPERIMEN	TAL		I	. A. S.	
	x	1 y ₁	n		У ₁	n	
	0.0	02 0.163	5.398		0.042	4.272	2
	0.0	31 0.319	5.183		0.063	4.26	5
	0.0	48 0.447	4.852		0.098	4.25	3
	0.0	75 0.650	4.627		0.155	4.24	1
	0.1	23 0.835	4.379		0.262	4.20	7
	0.1	86 0.933	4.063		0.420	4.14	1.
П	¶∕RT	P ⁰ ₁ (∏)	P ₂ ⁰ (Π)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$ _1	¢ ₂
29.	359	24460.1	1952.4	0.141	0.901	0.860	0.899
29.	297	24280.9	1925.1	0.143	0.902	0.860	0.899
29.	203	24309.4	1884.9	0.145	0.904	0.859	0.899
29.	016	23801.3	1806.7	0.149	0.908	0.858	0.899
28.	625	22985.6	1653.1	0.159	0.915	0.857	0.899
27.	844	21456.7	1380.7	0.180	0.929	0.855	0.900

TABLA 6.144

•

-

Predicción del equilibrio de adsorción en zeolita 5A a 3000 KPA en las mezclas etano-CO ₂ mediante la teoría I.A.S.									
	EXPERIMEN	TAL	····· ····	I	. A. S.	<u></u>			
× ₁	У	n	····-	У ₁	n				
0.00	0.148	5.452		0.026	4.44	9			
0.02	28 0.279	5.210		0.034	4.44	7			
0.04	19 0.375	4. 928		0.060	4.44	2			
0.07	73 0.605	4.663		0.090	4.43	5			
0.11	0.776	4.439		0.137	4.42	5			
0.14	17 0.8 78	4.123		0.184	4.41	4			
ΠA/RT	P ⁰ ₁ (Π)	P ⁰ ₂ (Π)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$\$	\$\$			
31.297	28422.5	2983.0	0.103	0.853	0.798	0.852			
31.289	28447.4	2978.0	0.103	0.853	0,798	0.852			
31.258	28514.8	2958.3	0.104	0.853	0.797	0.852			
31.219	28363.2	2933.8	0.104	0.855	0.797	0.852			
31.156	28242.5	2895.0	0. 105	0.857	0.796	0.852			
31.078	27915.2	2847.0	0.107	0.859	0.795	0.852			

٠

Predicción del equilibrio de adsorción en zeolita 5A a 500 KPA							
en las	mezclas e	tileno-CO) median	te la tec	oría I.A.	S.	
E	XPERIMENT	AL.		I	.A.S.		
×1	У1	n		У ₁	n		
0.126	0.075	4.901	····	0.268	3.71	8	
0.205	0.130	4.616		0.398	3.70	7	
0.355	0.350	4.323		0.589	3.69	7	
0.473	0.526	4.107		0.702	3.69	5	
0.639	0.793	3.972		0.825	3.70	1	
0.787	0.923	3.828		0.908	3.71	3	
∏A∕RT	Ρ <mark>0</mark> (Π)	P ⁰ ₂ (∏)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$	\$\$	
22.891	1104.3	417.2	0.936	0.978	0.971	0.973	
22.477	1001.0	376.1	0.941	0.980	0.971	0.973	
21.781	847.6	315.6	0.950	0.983	0.971	0.974	
21.297	754.1	279.0	0.956	0.985	0.970	0.974	
20.695	651.5	239.2	0.961	0.987	0.970	0.974	
20.219	579.6	211.7	0.966	0.989	0.970	0.974	

TABLA 6.145

TABLA 6.146

Predicción en la	Predicción del equilibrio de adsorción en zeolita 5A a 1000 KPA en las mezclas etileno-CO mediante la teoría I.A.S.								
	EXPERIMENT	TAL	2	I	. A. S.				
×	, У ₁	n		У1	n]			
0.14	49 0.077	5.148		0.291	3.98	1			
0.22	20 0.166	4.942		0.401	3.97	2			
0.3	48 0.352	4.698		0.565	3.96	4			
0.4	71 0.542	4.434		0.687	3.96	1			
0.59	95 0.747	4.296		0.786	3.96	3			
0.7	13 0.87 8	4.113		0.863	3.97	1			
ΠA/RT	P ⁰ ₁ (Π)	P ⁰ ₂ (∏)	$\phi_1^0(\Pi)$	$\phi_{2}^{0}(\Pi)$	\$\$\$	\$\$			
25.672	2093.8	825.6	0.881	0.957	0.942	0.948			
25.313	1931.9	756.9	0.890	0.960	0.942	0.948			
24.727	1691.8	656.4	0.903	0.965	0.941	0.949			
24.211	1503.2	578.5	0.913	0.970	0.941	0.949			
23.742	1348.5	515.5	0.921	0.973	0.941	0.949			
23. 336	1226.4	466.1	0.929	0.975	0.941	0.949			
TABLA 6.147

Predicción del equilibrio de adsorción en zeolita 5A a 2000 KPA							
en	en las mezclas etileno-CO ₂ mediante la teoría I.A.S.						
	EXPER	RIMENTAL			I.A	S.	
	×_1	У1	n		У	n	· · · · · · · · · · · · · · · · · · ·
0.	.166 0). 090	5.442		0.291	4.261	
0.	. 262 0	0.193	5.273		0.429	4.257	
0.	. 359 0). 350	5.111		0.548	4.252	
0.	450 0). 525	4.893		0.644	4.249	
0.	. 555 0	0.701	4.665		0.738	4.249	
0.	.676 0). 827	4.503		0.828	4.253	
ΠA/RT	P ⁰ 1	(∏) P	0 ² (∏)	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	φ ₁	\$\$
28.672	396	57.2 16	70.9	0.787	0.915	0.888	0.899
28.219	361	17.1 15	05.9	0.804	0.923	0.888	0.899
27.789	330	08.8 13	63.3	0.819	0.930	0.887	0.899
27.406	305	52.9 12	46.8	0.831	0.936	0.887	0.900
26.984	279	90.4 11	29.0	0.845	0.941	0.887	0.900
26.531	253	30.2 10	14.1	0.859	0.947	0.887	0.900

TABLA 6.148

Predio	Predicción del equilibrio de adsorción en zeolita 5A a 3000 KPA						
	en las mezclas etileno-CO ₂ mediante la teoría I.A.S.						
	E	XPER IMEN'	TAL			I.A.S.	
	×	У1	n		У ₁	n]
	0.181	0.101	5.615		0.291	5.46	8
	0.268	0.200	5.437		0.412	2. 4.43	8
	0.357	0.348	5.370		0.521	4.43	з
	0.438	0.510	5.158		0.610	4.43	1
	0.540	0.675	4.841		0.707	4.42	8
	0.669	0.813	4.629		0.810	4.43	0
ΠA	/RT	Ρ <mark>0</mark> (Π)	P ⁰ ₂ (Π)	φ ⁰ ₁ (Π) $\phi_{2}^{0}(\Pi)$	\$\$\$_1\$\$	¢2
30. 9	531	5697.4	2530.2	0.70	9 0.873	0.837	0.852
30.	156	5310.4	2331.0	0.72	6 0.882	0.837	0.853
29.7	766	4924.2	2138.1	0.74	3 0.892	0.836	0.853
29.4	422	4605.7	1980.0	0.75	8 0.900	0.835	0.854
28.9	992	4230.8	1797.2	0.77	5 0.908	0.835	0.855
28.	484	3819.2	1600.7	0.79	4 0.918	0.835	0.856

TABLA 6.149

[Predicción del equilibrio de adsorción en CMS 5A A 100 KPA						
	de la mezcla CO ₂ - etileno mediante la teoría H.I.A.S .						
	ΕX	PERIMENTAL	L	Н. І	. A. S.		
	×	У ₁	n	×1	n		
	0.090	0.124	2.717	0.067	2.752		
	0.154	0.254	2.733	0.139	2.762		
	0.251	0.411	2.754	0.235	2.735		
	0.396	0.581	2.732	0.385	2.746		
	0.553	0.728	2.658	0.554	2.730		
	0.710.	0.837	2.620	0.711	2.710		

TABLA 6.150

Predicción del equilibrio de adsorción en CMS 5A a 500 KPa de							
en la r	en la mezcla CO ₂ - etileno mediante la teoría H.I.A.S.						
EXPERIMENTAL H. I. A. S.							
×	y ₁	n	×1	n			
0.093	0.118	3.882	0.070	3.772			
0. 129	0.212	3.969	0.122	3. 781			
0.224	0.369	4.153	0.213	3.819			
0.333	0.518	4.212	0.329	3.870			
0.471	0.668	4.312	0.474	3.968			
0.605	0.777	4.324	0.606	4.151			

TABLA 6.151

e.

Predicción del equilibrio de adsorción en CMS 5A a 1000 KPa de						
la mezo	cla CO ₂ - e	tileno media	nte la teoría H.I	. A. S.		
EΣ	EXPERIMENTAL H. I. A. S.					
×	У ₁	n	×1	n		
0.095	0.113	4.598	0.075	4.501		
0.132	0.207	4.701	0.121	4.513		
0.234	0.354	4.834	0.224	4.556		
0.345	0.499	5.021	0.340	4.609		
0.480	0.640	5.126	0.473	4.700		
0.609	0.762	5.173	0.613	4.791		

TABLA 6.152

Predicción del equilibrio de adsorción en CMS 5A a 1500 KPa de							
la mezo	la mezcla CO - etileno mediante la teoría H.I.A.S.						
EXPERIMENTAL H. I. A. S.							
×	У ₁	n	. × ₁	n			
0.099	0.110	4.926	0.078	4.963			
0.136	0.198	5.144	0.127	4.998			
0.239	0.349	5.302	0.236	5.113			
0.347	0.480	5.364	0.344	5.142			
0.483	0.633	5.487	0.489	5.226			
0.612	0.749	5.580	0.616	5.237			

Predicción del equilibrio de adsorción en CMS 5A a 100 KPa de la mezcla CO ₂ - etano mediante la teoría H.I.A.S.						
EXPERIMENTAL H. I. A. S.						
×	У ₁	n	× ₁	n		
0.082	0.128	2.596	0.057	2.601		
0.139	0.246	2.575	0.124	2.592		
0.227	0.435	2.515	0.207	2.621		
0.343	0.602	2.427	0.343	2.595		
0.534	0.760	2.406	0.529	2.612		
0.692	0.857	2.417	0.687	2.634		

TABLA 6.154

F	Predicción del equilibrio de adsorción en CMS 5A a 500 KPa de la mezcla CO ₂ - etano mediante la teoría H.I.A.S.						
	EXPERIMENTAL H. I. A. S.						
	× ₁	У ₁	n	× ₁	n		
	0.095	0.115	3, 581	0.062	3.620		
	0.140	0.225	3.774	0.118	3.621		
	0.187	0.345	3.913	0.178	3.611		
	0.283	0.495	4.191	0.282	3.622		
	0.423	0.652	4.183	0.421	3.730		
	0.558	0.772	4.306	0.561	3.964		

TABLA 6.155

Predicción d	lel equili	brio de ads	orción en CMS 5A	a 1000 KPa de
la mez	$cla CO_2 - c_2$	etano media	nte la teoría H.I	. A. S.
EXPERIMENTAL H. I. A. S.				
x ₁	У1	n	×	n
0.093	0.111	4,273	0.069	4.251
0.149	0.218	4. 398	0.132	4.296
0.197	0.337	4,580	0.199	4.310
0.291	0.462	4,774	0.290	4.382
0.410	0.601	5.069	0.411	4.541
0.565	0.746	5.180	0.568	4.661

TABLA 6.156

Pr	Predicción del equilibrio de adsorción en CMS 5A a 1500 KPa de							
	la mezcla CO ₂ - etano mediante la teoría H.I.A.S.							
	EXPERIMENTAL H. I. A. S.							
	×	У ₁	n	× ₁	n			
	0.091	0.110	4,662	0.075	4.572			
	0.152	0.210	4.752	0.134	4.611			
	0.201	0.316	5.022	0.202	4.692			
	0.294	0.437	5,212	0.295	4.764			
	0.413	0.573	5,494	0.413	4.852			
	0.560	0.712	5.571	0.557	5.001			

Predicción del equilibrio de adsorción en CMS 5A a 100 KPa de la mezcla etileno-etano mediante la teoría H.I.A.S.						
EXPERIMENTAL H. I. A. S.						
× ₁	У ₁	n	×1	n		
0.147	0.186	2.657	0.155	2.632		
0.289	0.344	2.649	0.296	2.652		
0.460	0.519	2.697	0.463	2.682		
0.615	0.668	2.651	0.616	2.690		
0.767	0.805	2.659	0.767	2.671		
0.874	0.900	2.712	0.877	2.734		

TABLA 6.157

TABLA 6.158

Predicción del equilibrio de adsorción en CMS 5A a 500 KPa de la mezcla etileno-etano mediante la teoría H.I.A.S.					
EXPERIMENTAL H. I. A. S.					
x ₁	y ₁	n	×	n	
D. 160	0. 185	3. 598	0.166	3.643	
0.288	0.313	3.607	0.285	3.658	
0.462	0.497	3.635	0.463	3.672	
0.593	0.623	3.668	0.591	3.694	
0.712	0.733	3.858	0.706	3.713	
0.860	0.873	3.781	0.857	3.742	

TABLA 6.159

Predicción de	el equilib	rio de adsor	ción en CMS 5A a	1000 KPa de		
la mezo	la mezcla etileno-etano mediante la teoría H.I.A.S.					
EXPERIMENTAL			Н. І.	A.S.		
×	У ₁	n	× ₁	n		
0.162	0.184	4.199	0.171	4.281		
0.287	0.311	4.249	0.292	4.296		
0.451	0.477	4.351	0.455	4.355		
0.580	0.606	4.402	0.584	4.396		
0.714	0.732	4.423	0.713	4.437		
0.839	0.850	4.548	0.838	4. 459		

TABLA 6.160

Predicción del equilibrio de adsorción en CMS 5A a 1500 KPa de la mezcla etileno-etano mediante la teoría H.I.A.S.					
EXPERIMENTAL H. I. A. S.					
x ₁	У1	n	×	n	
0.163	0.184	4.587	0.175	4.508	
0.287	0.309	4.640	0.296	4.576	
0.447	0.468	4.701	0.452	4.651	
0. 578	0.594	4.719	0.578	4.711	
0.715	0.731	4.813	0.718	4.790	
0.830	0.844	4.914	0.835	4.854	

Predicción del equilibrio de adsorción en zeolita 5A a 500 KPa en la mezcla etano-etileno mediante la teoría H.I.A.S.					
EXPERIMENTAL H. I. A. S.					
×	У ₁	n	×1	n	
0.027	0.226	3.671	0.031	1.413	
0.055	0.431	3.532	0.068	1.401	
0.085	0.588	3.410	0.102	1.385	
0.129	0.725	3.314	0.156	1.364	
0. 429	0.942	3.157	0.508	1.342	
0.607	0.973	3. 105	0.697	1.337	

TABLA 6.161

TABLA 6.162

Pre	Predicción del equilibrio de adsorción en zeolita 5A a 1000 KPa					
EXPERIMENTAL H. I. A.					A.S.	
	×	У1	n	× 1	n	_
]	0.017	0.143	3.935	0.029	1.505	
	0.033	0.305	3.862	0.055	1.506	
	0.056	0.441	3.754	0.078	1.507	
	0.124	0.673	3.599	0.150	1.509	
	0.238	0.866	3.427	0.301	1.508	
	0.449	0.945	3.318	0.516	1.506	

TABLA 6.163

Predicc en	Predicción del equilibrio de adsorción en zeolita 5A a 2000 KPa en la mezcla etano-etileno mediante la teoría H.I.A.S.					
EXPERIMENTAL H. I. A. S.					. S.	
	×	У ₁	n	×	n	
0.	001	0.138	4.283	0.042	1.679	
0.	003	0.277	4.197	0.083	1.727	
0.	048	0.402	4.036	0.108	1.794	
0.	110	0.606	3.897	0.177	1.872	
0.	218	0.825	3. 420	0.322	1.969	
0.	383	0. 928	3. 585	0.512	1.952	

TABLA 6.164

Predicción de	el equilib	rio de adsoro	ción en zeolita 5	A a 3000 KPa
en la me	ezcla etano	o-etileno med	liante la teoría	H. I. A. S.
EXPERIMENTAL H. I. A. S.				
×	У ₁	n	× ₁	n
0.009	0.133	4.410	0.051	1.725
0.027	0.235	4.281	0.090	1.774
0.045	0.367	4.153	0.143	1.851
0.095	0.553	4.021	0.238	1.947
0.158	0.714	3,822	0.314	2.087
0.299	0.852	3.655	0.413	2.093

Pre	edicción de	el equilib	rio de adsor	ción en zeolita 5	A a 500 KPa	
	en la mezcla etano-CO ₂ mediante la teoría H.I.A.S.					
EXPERIMENTAL			H. I.	A.S.		
	×1	У ₁	n	× ₁	n	
	0.026	0.304	4.805	0.030	1.281	
	0.049	0.594	4.702	0.061	1.284	
	0.082	0.742	4.415	0.092	1.280	
	0.146	0.927	4.123	0,227	1.287	
	0.399	0.984	3.814	0.503	1.298	
[[0.601	0.988	3. 501	0.602	1.308	

TABLA 6.165

TABLA 6.166

Predicción d	el equilibu	rio de adso	rción en zeolita 5	5A a 1000 K	Pa	
en la	en la mezcla etano-CO ₂ mediante la teoría H.I.A.S.					
EXPERIMENTAL			Н. І.	A.S.		
×	У	n	× 1	n		
0.007	0.213	5.113	0.034	1.440		
0.037	0.428	4.893	0.066	1.442		
0.053	0.564	4.698	0.083	1.444		
0.098	0.785	4.413	0.150	1.455		
0.187	0.948	4.121	0.301	1.467		
0.407	0.985	3.785	0.548	1.481		

TABLA 6.167

Predicción del equilibrio de adsorción en zeolita 5A a 2000 KPa						
en la	en la mezcla etano-CO ₂ mediante la teoría H.I.A.S.					
EXPERIMENTAL			H. I.	A. S.		
× 1	У ₁	n	×1	n		
0.002	0.163	5.398	0.050	1.813		
0.031	0.319	5.183	0.082	1.822		
0.048	0.447	4.852	0.123	1.835		
0.075	0.650	4.627	0.187	1.852		
0.123	0.835	4.379	0.258	1.877		
0. 186	0.933	4.063	0.355	1.900		

TABLA 6.168

Predicción del equilibrio de adsorción en zeolita 5A a 3000 KPa					
en la mezcla etano-CO ₂ mediante la teoría H.I.A.S.					
EΣ	KPER IMENTA	Н. І.	A.S.		
×	У ₁	n	×1	n	
0.002	0.148	5.452	0.054	1.940	
0.028	0.279	5.210	0.086	1.951	
0.049	0.375	4.928	0.125	1.966	
0.073	0.605	4.663	0.201	1.989	
0. 110	0.776	4.439	0.261	2.013	
0.147	0.878	4.123	0.357	2.044	

TABLA 6.169

Predicción del equilibrio de adsorción en zeolita 5A a 500 KPa en la mezcla etileno-CO mediante la teoría H L A S					
EXPERIMENTAL H. I. A. S.					
×	У ₁	n	×	n	
0.126	0.075	4.901	0.061	1.413	
0.205	0.130	4.616	0.116	1.401	
0.355	0.350	4.323	0.254	1.385	
0. 473	0.526	4.107	0. 367	1.362	
0.639	0.793	3.972	0.611	1.335	
0.787	0.923	3.828	0.857	1.314	

TABLA 6.170

Pre	Predicción del equilibrio de adsorción en zeolita 5A a 1000 KPa en la mezcla etileno-CO ₂ mediante la teoría H.I.A.S.								
EXPERIMENTAL				H. I. A. S.					
	×	У	n	× ₁	n				
	0.149	0.077	5.148	0.075	1.500				
	0.220	0.166	4.942	0.149	1.497				
	0.348	0.352	4.698	0.286	1.490				
	0.471	0.542	4.434	0.378	1.483				
	0.595	0.747	4.296	0.583	1.469				
	0.713	0.878	4.113	0.730	1.461				

TABLA 6.171

Pr	Predicción del equilibrio de adsorción en zeolita 5A a 2000 KPa en la mezcla etileno-CO ₂ mediante la teoría H.I.A.S.								
	EXPERIMENTAL			H. I. A. S.					
	×	y ₁	n	×	n				
	0.166	0.090	5.442	0.087	1.657				
	0.262	0.193	5.273	0.165	1.677				
	0.359	0.350	5.111	0.265	1.702				
	0. 45 0	0. 525	4.893	0.369	1.729				
	0.555	0.701	4.665	0.512	1.751				
	0.676	0.827	4.503	0.675	1.770				

TABLA 6.172

Predic	Predicción del equilibrio de adsorción en zeolita 5A a 3000 KPa en la mezcla etileno-CO mediante la teoría H.I.A.S.								
	EXP	ERIMENTAL	2	H. I. A. S.					
	× ₁	У ₁	n	` x ₁	n				
C). 163	0.056	5.615	0.099	1.701				
c). 264	0.134	5.437	0.171	1.727				
с). 384	0.273	5.370	0.261	1.764				
с с	. 514	0.484	5.158	0.358	1.799				
, c	. 640	0.703	4.841	0.495	1.835				
[C). 748	0.849	4. 629	0.673	1.866				

Parámetros modelo HIAS adsorción en CMS 5A									
Componente	C _o (KPa ⁻¹)	m (mol/Kg)	ε (J/mol)	σ(J/mol)					
CO2	3.5281 10 -6	5.5836	19004	1756					
Etileno	1.12 45 10 ⁻⁸	4.3747	32456	1956					
Etano	1.3457 10 -7	4.2275	25435	1934					

TABLA 6.173

TABLA 6.174

Par	ámetros modelo	HIAS adsorció	on en zeolita	5A
Componente	$C_{o}(KPa^{-1})$	m (mol/Kg)	ε (J∕mol)	σ(J∕mol)
coz	1.0771 10 -3	5.5280	10692	1194
Etileno	1.0717 10 ⁻⁸	4.2303	36072	1230
Etano	1.0577 10 -6	3.4136	23340	1225

TABLA 6.175

Repro	oducción	del equil	ibrio de ad	lsorción	de mezclas	CO ₂ -etile	no en
	C	IMS 5A a 1	.00 KPa medi	ante la	teoría R.A.	S.	
E	KPER I MEN I	`AL			R. A. S.		
×	У ₁	n	y ₁	∏A∕RT	Ρ ⁰ ₁ (Π)	P ⁰ ₂ (Π)	n
0.090	0.124	2.717	0.147	12.508	220.8	194.1	2.770
0.154	0.254	2.723	0.253	12.289	208.8	89 .3	2.767
0.251	0.411	2.754	0.402	11.930	189.6	82.2	2.784
0.396	0.581	2.732	0. 5 88	11.391	163.3	72.4	2.769
0.553	0.728	2.658	0.741	10.875	140.2	64.1	2.755
0.710	0.837	2.620	0.855	10.445	122.7	57.8	2.715
	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	¢_1	¢_2	
	0.747	0.995	0.988	0.992	0.995	0.992	
	0. 792	0.987	0.988	0.993	0.995	0.992	
	0.849	0.970	0.989	0.993	0.994	0.992	
	0.912	0.938	0.991	0.994	0.994	0.992	
	0.958	0.898	0.992	0.994	0.994	0.992	ĺ
	0. 984	0.857	0.993	0.995	0.994	0.992	

,

•

TABLA 6.176

Repro	oducción	del equil	ibrio de ad	sorción	de mezclas	CO ₂ -etile	no en
	C	MS 5A a 5	00 KPa medi	ante la	teoría R.A.	S.	
E	XPER IMENT	AL.	<u> </u>		R. A. S.		
×	У1	n	У ₁	ΠA/RT	P ₁ ⁰ (Π)	P ₂ ⁰ (Π)	n
0.093	0.118	3.882	0.148	19.734	1019.0	469.8	4.415
0.129	0.212	3.969	0.206	19.609	997.3	457.3	4.407
0.224	0.369	4.153	0.354	19.234	929.9	421.7	4.382
0.333	0.518	4.212	0.507	18.758	849.9	380.3	4.352
0.471	0.668	4.312	0.667	18.141	755.1	332.7	4.329
0.605	0.77 7	4.324	0.786	17. 54 7	672.4	292.2	4.331
	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$\$	¢_2	
	0.804	0,996	0.947	0.963	0.975	0.961	
	0.824	0.993	0.948	0. 964	0.975	0.961	
	0.871	0.982	0.951	0.966	0.974	0.961	
1	0.912	0.964	0.956	0.970	0.974	0.961	
	0.950	0.938	0.960	0.974	0.973	0.962	
	0.975	0.911	0.965	0.977	0.973	0.962	

1

TABLA 6.177

Re	Reproducción del equilibrio de adsorción de mezclas CO ₂ -etileno en									
	CN	1S 5A a 10	000 KPa med	iante la	teoría R.A	. S.				
	EXPERIMENT	[AL			R. A. S.					
× 1	У ₁	n	У1	IIA/RT	P ⁰ ₁ (Π)	Ρ <mark>2</mark> (Π)	n			
0.09	5 0.113	4.598	0.139	23.063	1842.3	950.5	4.526			
0.13	2 0.207	4.701	0.194	22. 953	1808.3	929.1	4.549			
0.23	4 0.354	4.834	0.342	22.609	1704.7	864.8	4.595			
0.34	5 0.499	5.021	0.491	22.180	1582.5	790.4	4,656			
0.48	0 0.640	5.126	0.645	21.625	1436.0	703.2	4.738			
0.60	9 0.762	5.173	0.772	20.984	1316.9	613.9	4,812			
	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	¢ _1	¢ ₂	F			
	0.835	0.997	0.906	0.927	0.951	0.923				
	0.852	0.994	0. 908	0.928	0.951	0.923]			
	0.893	0.984	0.913	0.933	0.950	0.923				
	0.928	0.969	0.919	0.938	0.949	0.924	,			
	0. 959	0.947	0.926	0.945	0.949	0.925				
	0.979	0.924	0.932	0.952	0.948	0.925				

Repro	oducción CM	del equil IS 5A a 15	ibrio de ad 00 KPa medi	sorción ante la	de mezclas teoría R.A.	CO ₂ -etile S.	no en
EX	KPER IMENT	`AL			R. A. S.		
	У1	n	У ₁	ΠA/RT	P ₁ ⁰ (Π)	$P_2^0(\Pi)$	n
0.099	0.110	4. 926	0, 139	25.047	2562.4	1427.6	4. 985
0.136	0.198	5.144	0.191	24.953	2523.8	1400.8	4. 996
0.239	0.349	5.302	0.333	24.633	2395.2	1312.7	5.060
0.347	0.480	5.364	0.472	24.266	2254.7	1218.0	5.104
0.483	0.633	5.487	0.626	23.766	2074.7	1099.3	5,166
0.612	0.749	5.580	0.749	23, 273	1909.6	993.0	5.248
	γ ₁	¥2	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$\$1	φ ₂	
	0.875	0.998	0.872	0.892	0.928	0.887	
	0.888	0.996	0.874	0.894	0.928	0.887	
	0.919	0.988	0.880	0.900	0.926	0.888	
	0.944	0.977	0.886	0.907	0.925	0.888]
	0.968	0.960	0.895	0.915	0.924	0.890	
	0, 983	0.942	0.903	0.923	0.923	0.891	

TABLA 6.178

TABLA 6.179

Rep	Reproducción del equilibrio de adsorción de mezclas CO ₂ -etano en 2									
	CMS 5A a 100 KPa mediante la teoría R.A.S.									
E	XPERIMENT	`AL			R. A. S.					
x ₁	y ₁	n	y ₁	∏A∕RT	P ⁰ ₁ (Π)	P ₂ ⁰ (Π)	n			
0.082	0.128	2.596	0.147	13. 453	279.0	93.4	2.626			
0.139	0.246	2.575	0.255	13.195	262.2	87.8	2.864			
0.227	0.435	2.515	0.414	12.750	234.9	78.8	2.673			
0.343	0.602	2.427	0.587	12.133	200.2	67.8	2.696			
0.534	0.760	2.406	0,780	11.227	155.7	54.3	2.667			
0.692	0.857	2.417	0.881	10.641	130.4	46.9	2.665			
	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$ _1	¢_2				
	0.648	0.993	0.985	0.992	0.995	0.992				
	0.706	0.983	0.986	0.993	0.994	0.992				
	0.782	0.961	0.987	0.994	0. 994	0.992				
	0. 859	0.926	0.989	0.995	0.994	0.992				
	0.941	0.864	0.992	0.996	0. 994	0.992				
	0. 978	0.814	0.993	0.996	0.994	0.992				

TABLA 6.180

Rep	Reproducción del equilibrio de adsorción de mezclas CO ₂ -etano en CMS 5A a 500 KPa mediante la teoría R.A.S.									
 E	XPERIMENT	`AL			R. A. S.					
X ₁	У ₁	n	У ₁	ITA/RT	P ⁰ ₁ (Π)	P ₂ ⁰ (Π)	n			
0.095	0.115	3.581	0.157	20.352	1143.0	466.9	3.642			
0.140	0.225	3.774	0.234	20.172	1106.2	448.2	Э. 681			
0.187	0.345	3.913	0.314	19.969	1065.7	428.0	3.696			
0.283	0.495	4.191	0.466	19.492	975.8	383.9	3.735			
0.423	0.652	4.183	0.648	18.734	846.1	322.7	3. 798			
0.558	0.772	4.306	0.779	18.016	737.0	273.5	3.888			
	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$	¢2				
	0.749	0.995	0.941	0.963	0.975	0.961				
,	0.782	0.989	0.943	0.965	0.975	0.961				
	0.813	0.981	0.945	0.966	0.975	0.961				
	0.866	0.963	0.949	0.970	0.974	0.961	ſ			
	0.923	0.930	0.956	0.974	0.974	0.962				
	0.960	0.896	0.961	0.978	0.974	0.962				

TABLA 6.181

Rep	Reproducción del equilibrio de adsorción de mezclas CO ₂ -etano en CMS 5A a 1000 KPa mediante la teoría R.A.S.									
E	XPERIMENT	AL			R. A. S.					
×	У ₁	n	y ₁	ΠA/RT	P ⁰ ₁ (Π)	P ⁰ ₂ (∏)	n			
0.093	0.111	4.273	0.145	23.484	1978.9	940.8	4.299			
0.149	0.218	4.398	0.233	23. 289	1914.6	901 .2	4.305			
0.197	0.337	4.580	0.306	23.109	1857.1	866.2	4.342			
0.291	0.462	4.774	0.442	22.719	1737.1	794.4	4.402			
0.410	0.601	5.069	0.593	22.180	1582.5	704.6	4.497			
0. 565	0.746	5.180	0.749	21.453	1393.0	598.7	4.643			
	γ ₁	°2	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	<i>\$</i>	φ ₂				
	0.833	0.997	0.899	0.927	0.951	0.923				
	0. 859	0.993	0.903	0.930	0.951	0.923				
	0.879	0.988	0.906	0.933	0.950	0.924	2			
	0.912	0.976	0.911	0.938	0.949	0.924				
	0.944	0.958	0.919	0.945	0.949	0.925	[
	0.973	0.932	0.928	0,953	0.948	0.926				

TABLA 6.182

Repi	roducción CM	del equil IS 5A a 150	ibrio de a O KPa medi	dsorción ante la i	de mezclas teoría R.A.	CO ₂ -etano S.	en
EX	KPER I MENT	'AL			R. A. S.		
×	У ₁	n	У ₁	ΠA/RT	Ρ ⁰ ₁ (Π)	P ₂ ⁰ (Π)	n
0.091	0.110	4.662	0.135	23.391	2708.6	1422.5	4.541
0.152	0.210	4.752	0.225	25.188	2621.5	1362.0	4.614
0.201	0.316	5.022	0.295	25.031	2555.9	1317.0	4.672
0.294	0.437	5.212	0.422	24.688	2416.8	1223.0	4.791
0.620	0.72 5	1.993	0.568	24.219	2237.3	1104.8	4.863
0.769	0.844.	2.053	0.718	23.609	2021.1	967.0	4.999
	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$	¢_2	
	0.883	0.998	0.865	0.892	0.928	0.887	
	0.902	0.995	0.869	0.897	0.927	0.887	
	0.916	0.992	0.872	0.900	0.926	0.887	
	0. 9 38	0.984	0.878	0.907	0. 925	0.888	
	0.960	0.972	0.887	0.915	0.924	0.889	
	0.979	0.954	0.897	0.925	0.923	0.890	

n -

TABLA 6.183

Repro	Reproducción del equilibrio de adsorción de mezclas etileno-etano en										
	C	MS 5A a 1	100 KPa medi	ante la	teoría R.A.	S.					
E	XPER IMENT	AL			R. A. S.		<u>.</u>				
×	У	n	У ₁	ΠA/RT	Ρ ⁰ ₁ (Π)	P ₂ ⁰ (Π)	n				
0.147	0.186	2.657	0.182	13.563	119.8	95.9	2.607				
0.289	0.344	2.649	0.343	13.398	115.5	92.2	2.632				
0.460	0.519	2.697	0.520	13.219	110.8	88.3	2.663				
0.615	0.668	2.651	0.668	13.070	107.1	85.2	2.683				
0.767	0.805	2.659	0.802	12.938	103.9	82.5	2.697				
0.874	0.900	2.712	0.894	12.859	102.0	80.9	2.715				
	У ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$	\$\$					
	1.032	1.000	0.993	0.992	0.994	0.992					
	1.028	1.001	0.993	0.992	0.994	0.992					
	1.021	1.006	0.993	0.992	0.994	0.992					
	1.013	1.014	0.994	0. 993	0.994	0. 99 2	{				
	1.006	1.031	0.994	0.993	0.994	0.992					
	1.002	1.051	0.994	0.993	0.993	0.992					

Repro	Reproducción del equilibrio de adsorción de mezclas etileno-etano en									
	C	MS 5A a 5	00 KPa medi	ante la	teoría R.A.	S.				
E	EXPERIMENTAL				R. A. S.					
×	y ₁	n	y ₁	∏A∕RT	Р <mark>0</mark> (П)	$P_{2}^{0}(\Pi)$	n			
0.160	0.185	3.598	0.183	20.516	555.5	484.6	3.602			
0.288	0.313	3.607	0.318	20.422	544.5	474.4	3.626			
0.462	0.497	3.635	0.494	20.320	532.8	463.6	3.654			
0.593	0.623	3.668	0.622	20.242	523.9	455.4	3.675			
0.712	0.733	3.858	0.735	20.172	516.1	448.2	3, 688			
0.860	0.873	3.781	0.873	20.094	507.5	440.2	3.711			
	· 7 ₁	۶ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$_1\$	¢2				
	1.031	1.003	0.967	0.962	0.971	0.961				
	1.016	1.007	0.968	0.963	0.971	0.961				
	1.006	1.013	0.969	0.963	0.971	0.961				
	1.002	1.017	0.969	0.964	0.970	0.961				
	1.001	1.020	0.969	0.965	0.970	0.961				
	1.000	1.022	0.970	0.965	0.970	0.962				

15 - 2

TABLA 6.185

Repro	Reproducción del equilibrio de adsorción de mezclas etileno-etano en										
	CM	IS 5A a 10	00 KPa medi	ante la	teoría R.A.	S.					
E	EXPERIMENTAL				R.A.S.						
×	У1	n	У ₁	ΠA/RT	P ⁰ ₁ (Π)	P ⁰ ₂ (∏)	n				
0.162	0.184	4.199	0.178	23.672	1078.2	980.3	4.235				
0.287	0.311	4.249	0.311	23. 594	1061.0	963.7	4.269				
0.451	0.477	4.351	0.479	23.500	1040.7	944.0	4.315				
0.580	0.606	4.402	0.605	23.430	1025.7	929.6	4.351				
0.714	0.732	4.423	0.731	23.367	1012.5	916.8	4.384				
0.839	0.850	4.548	0.847	23.328	1004.3	909.0	4.419				
	γ ₁	۶ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$_1\$	\$\$					
	1.028	1.000	0.937	0.925	0.943	0.923					
	1.028	1.000	0.938	0.926	0.942	0.923					
	1.024	1.002	0.939	0.927	0.942	0.924					
	1.020	1.007	0.940	0.928	0.942	0.924					
	1.013	1.020	0.941	0.929	0.942	0.924	1				
	1.005	1.046	0.941	0.930	0.942	0.925					

TABLA 6.186

Reproc	Reproducción del equilibrio de adsorción de mezclas etileno-etano en									
	CM	S 5A a 15	00 KPa medi	ante la	teoría R.A.	S.				
ΕX	KPERIMENT	AL			R. A. S.	·				
×	У ₁	n	y ₁	∏A∕RT	P ⁰ ₁ (Π)	P ⁰ ₂ (∏)	n			
0.163	0.184	4.587	0.176	25.563	1583.5	1475.6	4.513			
0.287	0.309	4.640	0.306	25.500	1563.8	1456.1	4.577			
0.447	0.468	4.701	0.468	25.422	1539.5	1532.0	4.660			
0.578	0.594	4.719	0.596	25.359	1520.3	1413.0	4.722			
0.715	0.731	4.813	0.727	25.320	1508.4	1401.3	4.793			
0.830	0.844	4.914	0.835	25.297	1501.3	1394.3	4.843			
	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$_1\$	¢ ₂				
	1.030	1.000	0.909	0.888	0.916	0.887				
	1.029	1.001	0.910	0.890	0.915	0.887				
	1.024	1.003	0.911	0.892	0.914	0.887				
	1.018	1.009	0.912	0.893	0.914	0.888				
	1.011	1.023	0.913	0.894	0.914	0.888				
	1.005	1.044	0.913	0.894	0.914	0.889				

Repr	Reproducción del equilibrio de adsorción de mezclas etano-CO $_2$ en									
	zeol	ita 5A a	500 KPa me	ediante la	a teoría R.	A. S.				
E	XPERIMENT	AL			R. A. S.					
x ₁	У ₁	n	У ₁	ΠA/RT	Р <mark>0</mark> (П)	P ⁰ ₂ (Π)	n			
0.026	0.304	4.805	0.337	22.047	10059.3	337.5	4.870			
0.049	0.594	4.702	0.571	20.406	7538.0	222.1	3. 469			
0.082	0.742	4.415	0.756	18.367	5002.1	129.9	3. 301			
0.146	0.927	4.123	0.881	16.004	2901.9	67.6	3.113			
0.399	0.984	3.814	0.971	12.539	1162.6	22.6	2.879			
0.601	0.988	3.501	0.987	11.273	809.4	13.8	2.838			
	γ ₁	7 ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$ _1	¢_2				
	1.386	1.000	0.447	0.982	0.962	0.974				
	1.358	1.001	0.547	0.988	0.961	0.974				
	1.322	1,003	0.670	0.993	0.961	0.975				
	1.261	1.009	0.793	0.996	0.961	0,976				
	1.103	1.059	0.911	0.999	0.961	0.976				
	1.039	1.124	0.937	0.999	0.961	0.976				

TABLA 6.187

٠

-

TABLA 6.188

Repro	Reproducción del equilibrio de adsorción de mezclas etano-CO ₂ en zeolita 5A a 1000 KPa mediante la teoría R.A.S.										
EX	XPERIMENT	AL		. <u></u>	R. A. S.	· ·					
×	у ₁	n	У ₁	ΠA/RT	P ⁰ ₁ (Π)	P ⁰ ₂ (Π)	n				
0.017	0.213	5.113	0.197	25.586	16849.5	808.6	5.196				
0.037	0.428	4.893	0.417	24.297	14207.1	590.9	3.811				
0.053	0.564	4.698	0.573	23.063	11848.0	435.5	3.705				
0.098	0.785	4.413	0.812	19.953	6916.1	197.4	3.449				
0.187	0.948	4.121	0.916	17.219	3874.0	95.2	3.237				
0.407	0.985	3. 785	0.965	14.828	2157.6	47.8	3.107				
	γ ₁	<i>ү</i> 2	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	¢ ₁	¢_2					
	2.445	1.001	0.260	0.957	0.926	0.948					
	2.287	1.002	0.321	0.969	0.924	0.949					
	2.177	1.005	0.387	0.977	0.923	0.950					
	1.924	1.015	0.575	0.989	0.923	0.951					
	1.591	1.047	0.733	0. 995	0.923	0.952					
	1.206	1.172	0.841	0.997	0.923 ·	0.953					

Repr	Reproducción del equilibrio de adsorción de mezclas etano-CO $_2$ en									
	zeol	ita 5A a	2000 KPa me	ediante la	a teoría R.	. A. S.				
E	XPERIMENT	`AL			R.A.S.					
×	У ₁	n	У ₁	∏A∕RT	P ⁰ ₁ (Π)	P ⁰ ₂ (∏)	n			
0.002	0.163	5.398	0.165	28.680	23075.8	1673.8	4.209			
0.031	0.319	5.183	0.259	28.164	22044.6	1487.0	4.162			
0.048	0.447	4.852	0.412	27.172	20065.3	1180.0	4.073			
0.075	0.650	4.627	0.680	24.625	14866.5	640.3	3.849			
0.123	0.835	4.379	0.897	20.156	7192.0	208.3	3. 471			
0.186	0.933	4.063	0.945	18.031	4650.3	118.7	3. 308			
	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$\$_1\$	¢_2				
	3. 895	1.001	0.158	0.914	0.858	0.898				
	3.792	1.001	0.171	0.924	0.857	0.899				
	3.641	1.003	0.201	0.939	0.855	0.900				
	3.420	1.007	0.304	0.966	0.853	0.903				
	3.07 5	1.019	0.562	0.989	0.852	0.906				
]	2.700	1.043	0.689	0.994	0.852	0.907				

TABLA 6.189

TABLA 6,190

Repr	Reproducción del equilibrio de adsorción de mezclas etano-CO $_2$ en									
	zeol	ita 5A a	3000 KPa me	ediante l	a teoría R.	A. S.				
E	XPER IMENT	`AL			R. A. S.					
x ₁	y ₁	n	У ₁	IIA/RT	$P_1^0(\Pi)$	P ₂ ⁰ (Π)	n			
0.021	0.148	5.452	0.167	30.438	26659.9	2479.0	4.371			
0.028	0.279	5.210	0.227	30.109	25992.6	2306.9	4.340			
0.049	0.375	4.928	0.388	29.016	23811.3	1806.7	4.240			
0.073	0.605	4.663	0.597	27.156	19993.6	1175.7	4.075			
0.110	0.776	4.439	0.876	22.250	10418.3	355.3	3.649			
0.147	0.878	4.123	0.926	20.250	7321.2	213.4	3. 487			
	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	¢ 1	¢_2				
	6.027	1.001	0.118	0.876	0.79 5	0.852				
	5.831	1.002	0.125	0.884	0.794	0.852				
	5.303	1.006	0.149	0.908	0.791	0.854				
	4.793	1.012	0.202	0,939	0.789	0.857				
	4.154	1.027	0.435	0.981	0.787	0.862				
	3.649	1.047	0.557	0.987	0.787	0.863				

Repro	ducción d	lel equili	brio de ads	sorción de	e mezclas e	etano-etile	eno en
	zeol	ita 5A a	500 KPa me	ediante la	a teoría R.	A. S.	
EXPERIMENTAL					R. A. S.		
× ₁	У ₁	n	У ₁	ΠA/RT	P ⁰ ₁ (Π)	$P_{2}^{0}(\Pi)$	n
0.027	0.226	1.448	0.259	18.492	5141.0	377.5	3.640
0.055	0.431	1.436	0.452	17.391	4029.5	285.9	3. 543
0.085	0.588	1.408	0.589	16.383	3181.8	220.7	3.455
0.129	0.725	1.395	0.711	15.219	2385.1	162.9	3, 355
0.429	0.942	1.362	0.930	11.539	874.3	59.0	3.048
0.607	0.973	1.344	0.961	10.594	662.6	44.6	2.977
	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$	¢ ₂	
	1.356	1.000	0.663	0.977	0.961	0.970	
	1.353	1.000	0.724	0.982	0.961	0.970	
	1.350	1.000	0.775	0.986	0.961	0.971	
	1.344	1.001	0.826	0.990	0.961	0.971	
	1.277	1.024	0.932	0.996	0.961	0.971	
<u> </u>	1.210	1.088	0.948	0.997	0.961	0.971	

c ==

TABLA 6.192

Repro	Reproducción del equilibrio de adsorción de mezclas etano-etileno en										
	zeolita 5A a 1000 KPa mediante la teoría R.A.S.										
E	XPERIMENT	AL.			R. A. S.						
X ₁	У ₁	n	У ₁	ΠA/RT	P ⁰ ₁ (Π)	P ⁰ ₂ (Π)	n				
0.017	0.143	3. 935	0.147	21.844	9735.6	860.4	3.944				
0.033	0.305	3.862	0.275	21.203	8716.2	737.1	3.885				
0.056	0.441	3.754	0.433	20.250	7321.2	584.1	3.798				
0.124	0.673	3.599	0.708	17.813	4430.9	318.1	3.583				
0.238	0.860	3.427	0.857	15.484	2550.7	174.7	3.384				
0.449	0.945	3.318	0.933	13.547	1535.9	104.1	3.228				
	Ø ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$	¢ ₂					
	1.788	1.000	0.459	0.949	0.925	0.941					
	1.774	1.000	0.498	0.956	0.924	0.942					
	1.755	1.001	0.557	0.965	0.924	0.942					
	1.697	1.004	0.701	0.981	0.923	0.943					
	1.598	1.018	0.815	0.989	0.923	0.943					
	1.413	1.088	0.884	0.994	0.923	0.943]				

Repro	ducción d	el equili	brio de ads	sorción de	e mezclas e	etano-etile	eno en	
	zeol	ita 5A a	2000 KPa me	diante la	a teoría R.	A. S.		
EXPERIMENTAL			R. A. S.					
×	y ₁	n	У ₁	IIA/RT	P ⁰ ₁ (Π)	$P_2^0(\Pi)$	n	
0.010	0.138	4.283	0.085	25.070	15768.9	1829.2	4.244	
0.030	0.277	4.197	0.246	24.219	14039.4	1505.9	4.162	
0.048	0.402	4.036	0.378	23. 406	12483.1	1246.8	4.085	
0.110	0.606	3.897	0.679	20.719	7986.8	655.2	3.839	
0.218	0.825	3.420	0.837	18.250	4877.3	355.3	3.624	
0.383	0.928	3.585	0.900	16.789	3505.0	245.1	3.504	
	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$ _1	¢2		
	3.254	1.000	0.283	0.896	0.855	0.886		
	3.072	1.001	0.325	0.913	0.854	0.887		
	2.923	1.003	0.368	0.928	0.854	0.887		
	2.497	1.017	0.528	0.961	0.852	0.888		
	1.982	1.064	0.677	0.979	0.852	0.889		
	1.513	1.194	0.755	0.985	0.852	0.890		

TABLA 6.193

1

TABLA 6.194

Reproducción del equilibrio de adsorción de mezclas etano-etileno en									
zeolita 5A a 3000 KPa mediante la teoría R.A.S.									
EXPERIMENTAL				R. A. S.					
×	У1	n	У ₁	∏A∕RŤ	P ⁰ ₁ (Π)	P ⁰ ₂ (Π)	n		
0.009	0.133	4.410	0.084	26.875	19447.8	2725.6	4.410		
0.027	0.235	4.281	0.232	26.016	17688.2	2259.8	4.327		
0.045	0.367	4.153	0.355	25.203	16046.8	1884.9	4.250		
0.095	0.553	4.021	0.589	23.219	1213 5 .9	1193.1	4.064		
0.158	0.714	3.822	0.725	21.563	9280.1	804.1	3.913		
0.299	0.852	3.655	0.832	19.813	6731.0	524.5	3. 759		
	γ ₁	9 ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	¢ 1	¢2			
	5.407	1.000	0.211	0.848	0.791	0.835			
	4.729	1.003	0.243	0.873	0.790	0.835			
	4.195	1.007	0.277	0.893	0.789	0.835			
	3.186	1.028	0.379	0.931	0.787	0.837			
	2. 454	1.067	0.476	0.9 5 3	0.787	0.838			
	1.671	1.192	0.584	0.969	0.787	0.839			

Reproducción del equilibrio de adsorción de mezclas etileno-CO ₂ en								
zeolita 5A a 500 KPA mediante la teoría R.A.S.								
EXPERIMENTAL			R. A. S.					
×	y ₁	n	y ₁	Π A /RT	P ⁰ ₁ (Π)	P ⁰ ₂ (Π)	n	
0.126	0.075	4.901	0.090	23.828	1375.75	5 26.5	3.803	
0.205	0.130	4.616	0.162	23.945	1413.68	541.9	3.841	
0.355	0.350	4.323	0.344	24.086	1460.44	561.0	3.907	
0.473	0.526	4.107	0. 5 29	24.016	1436.88	551.4	3.943	
0.639	0.793	3.972	0.802	23.352	1230.93	467.9	3.944	
0.787	0.923	3.828	0, 9 5 8	21.984	890.01	332.3	3.874	
	γ ₁	۶ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$\$_1\$	¢_2		
	0.272	0.992	0.920	0.972	0.971	0.974		
	0.296	0.975	0.918	0.971	0.971	0.974		
	0.352	0.910	0.916	0.970	0.971	0.974		
	0.412	0.813	0.917	0.971	0.970	0.974		
	0.533	0 <i>.</i> 583	0.928	0.975	0.970	0.974		
	0.700	0.287	0.948	0.982	0.970	0.975		

TABLA 6.195
TABLA 6.196

Repro	Reproducción del equilibrio de adsorción de mezclas etileno-CO ₂ en zeolita 5A a 1000 KPA mediante la teoría R.A.S.									
E	EXPERIMENTAL R.A.S.									
× ₁	У ₁	n	У	ΠA/RT	P ⁰ ₁ (Π)	P ⁰ ₂ (Π)	n			
0.149	0.077	5.148	0.111	26.719	2635.2	1060.2	4.077			
0.220	0.166	4.942	0.181	26.820	2693.7	1086.1	4.113			
0.348	0.352	4.698	0.338	26.938	2762.5	1116.6	4.169			
0.471	0.542	4.434	0.528	26.859	2716.5	1096.2	4.206			
0. 595	0.747	4.296	0.734	26.406	2462.2	984.4	4.211			
0.713	0.878	4.113	0.893	25.500	2015.0	792.0	4.171			
	ŷ	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$\$_1\$	φ ₂				
	0.313	0.988	0.853	0.945	0.943	0.948				
	0.338	0.971	0.850	0.944	0.943	0.948				
	0.391	0.915	0.847	0.942	0.942	0.948				
	0. 458	0.819	0.849	0.943	0.942	0.948				
	0. 54 7	0.667	0.862	0.949	0.942	0.949				
	0.661	0.464	0.886	0.959	0.942	0.950				

TABLA 6.197

Repro	Reproducción del equilibrio de adsorción de mezclas etileno-CO ₂ en								
	zeol	ita 5A a	2000 KPA me	diante l	a teoria R.	A.S.			
E	EXPERIMENTAL R.A.S.								
×	У ₁	n	У ₁	ΠA/RT	Ρ ⁰ ₁ (Π)	P ⁰ ₂ (∏)	n		
0.166	0.090	5.442	0.109	29. 945	5100.0	2225.0	4.558		
0.262	0.193	5.273	0.211	30.195	5349.3	2350.9	4.439		
0.359	0.350	5.111	0.349	30.328	5481.8	2420.5	4.485		
0.450	0.525	4.893	0.506	30.242	5396.1	2375.4	4.509		
0.555	0.701	4.665	0.694	29.750	4909.3	2130.6	4.503		
0.676	0.827 [.]	4.503	0.868	28.656	3954.8	1664.9	4. 449		
	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$	¢_2			
	0.311	0.972	0.735	0.888	0.889	0.899			
	0.370	0.927	0.725	0.882	0.889	0.899			
	0.439	0.858	0.719	0.878	0.888	0.899			
	0. 512	0.772	0.722	0.881	0.887	0.900			
	0.607	0. 649	0.744	0.892	0.887	0.900			
·	0.731	0.482	0.788	0.915	0.886	0.902			

TABLA 6.198

Reproducción del equilibrio de adsorción de mezclas etileno-CO $_2$ en								
	zeolita 5A a 3000 KPA mediante la teoría R.A.S.							
E	EXPERIMENTAL R.A.S.							
×	У1	n	У ₁	ΠA/RT	P ⁰ ₁ (IJ)	P ⁰ ₂ (Π)	n	
0.181	0.101	5.615	0.184	31.969	7374.6	3435.0	4. 572	
0.268	0.200	5.437	0.214	32.258	7750.5	3646.4	4.626	
0.357	0.348	5.370	0.340	32.438	7987.9	3782.8	4.672	
0.438	0.510	5.158	0.478	32.391	7926.0	3746.9	4.645	
0.540	0.675	4.841	0.661	31.906	7295.8	3390.6	4.688	
0.669	0.813	4.629	0.852	30.641	5814.2	2591.0	4.624	
	` 𝒜 ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$_1	¢_2		
	0.348	0.961	0.641	0.832	0.839	0.852		
	0.413	0.915	0.627	0.823	0.838	0.852		
	0.485	0.850	0.618	0.817	0.837	0.852		
	0.557	0.776	0.620	0.819	0.836	0.853		
	0.653	0.666	0.644	0.834	0.835	0.854		
	0.779	0.508	0.704	0.871	0.834	0.855		

TABLA 6.199

Modelo RAS para la reproducción del equilibrio de mezclas a elevada presión. Valores de los parámetros de la ecuación de Wilson en CMS 5A

	P = 10	00 KPa	P = 50	00 Kpa
	Δ, j	۸ ј і	Λ _{ij}	۸ јі
CO ₂ -etileno	0.5797	1.9397	0.5031	1.9830
COetano	0.3950	2.5241	0. 4554	2.1900
Etileno~etano	1.5251	0.5434	0.5626	1.5130
	P = 10	000 KPa	P= 150	00 KPa
	۸ і ј	۸ ј і	Λ _{ij}	۸ _{ј i}
CO ₂ -etileno	0.5377	1.8639	0.5794	1.7260
CO ₂ -etano	0.5284	1.8835	0.5905	1.6899
Etileno-etano	1.7167	0.4348	1.6437	0.4730

TABLA 6.200

Modelo RAS para la reproducción del equilibrio de mezclas a elevada presión. Valores de los parámetros de la ecuación de Wilson en zeolita 5A

	P = 5(00 KPa	P = 1000 KPa		
	Λ _{і j}	Λ _{ji}	۸ _{. i}	۸	
Etano-etileno .	1.8643	0.0705	1.3514	0.1098	
Etano-CO ₂	0.6275	1.1161	0.3293	1.1553	
Etileno-CO ₂	7.3601	0.4257	6.1278	0.4917	
	P = 20	000 KPa	P= 300	DO KPa	
	۸ _{і j}	۸ ј і	۸ _{. j}	Λ _{ji}	
Etano-etileno	0.4630	0, 5606	0, 1975	0,8609	
Etano-CO2	0.5647	1.6204	0.3244	0.2258	
Etileno-CO ₂	3. 5285	1.2175	2.7681	1. 4293	

TABLA	6.	201

Rep	roducción	del equili	lbrio de a	dsorción	de mezclas	CO ₂ -etil	eno en
	С	MS 5A a 10	0 KPa med	iante la	teoría S.P	. D.	
	EXPERIMENT	AL			S. P. D.		
×	У1	n	У ₁	ΠA∕RT	P ⁰ ₁ (Π)	P ₂ ⁰ (Π)	n
0.090	0.124	2.717	0.150	12.476	218.7	93.3	2.780
0.154	0.254	2.723	0.252	12.234	205.8	88.3	2.789
0.251	0.411	2.754	0.396	11.859	185.7	80.7	2.791
0.396	0.581	2.732	0.579	11.231	156.1	69.7	2.768
0. 553	0.728	2.658	0.731	10.595	128.5	59.8	2.712
0.710	0.837	2.620	0.844	10.063	107.9	52.7	2.638
q	1 q ₂	γ ₁	y ⁵	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$	\$
58	68 7344	0.771	1.000	0.988	0.994	0.995	0.994
59	33 7398	0.801	1.000	0.989	0.995	0.995	0.994
60	43 7494	0.852	1.000	0.990	0. 995	0.995	0.994
62	27 7665	0.939	0.999	0.992	0.996	0.995	0.994
64	29 7872	1.031	1.001	0.993	0.996	0.995	0.994
66	09 8066	1.102	1.102	0.994	0.997	0.995	0.994

TABLA 6.202

Repro	ducción	del equili	brio de a	dsorción (de mezclas	CO ₂ -etile	eno en
	C	MS 5A a 50	0 KPa med	iante la	teoría S.P	. D.	
EX	EXPERIMENTAL S. P. D.						
×	У ₁	n	У1	TIA/RT	P ⁰ ₁ (∏)	$P_{2}^{0}(\Pi)$	n
0.093	0.118	3.882	0.150	19.704	1013.6	466.7	3.826
0.129	0.212	3.969	0.208	19.567	988.7	452.8	3.840
0.224	0.369	4.153	0.357	19.133	911.1	412.0	3.868
0.333	0.518	4.212	0.514	18.528	811.6	360.9	3.884
0.471	0.668	4.312	0.671	17.751	699.8	305.5	3.915
0.605	0.777	4.324	0.781	17.175	624.2	269.1	3. 989
9 ₁	q ₂	<i>у</i> ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	¢ ₁	\$\$
4087	6322	0.821	1.000	0.947	0.972	0.974	0.970
4119	6335	0.839	1.000	0.948	0.973	0.974	0.970
4221	6378	0.895	1.000	0.952	0.975	0.974	0.970
4364	6445	0.967	1.000	0.957	0.978	0.974	0.971
4545	6544	1.029	1.001	0.963	0,972	0.974	0.971
4682	6631	1.041	1.007	0,967	0.974	0.974	0.971

.

TABLA 6.203

Repr	oducción	del equili	brio de a	dsorción c	de mezclas	CO ₂ -etile	eno en
	CM:	S 5A a 100	0 KPa med	iante la t	teoría S.P 	. D.	
Ē	XPERIMENT.	AL			S.P.D.		
×	У ₁	n	У ₁	ΠA∕RT	P ⁰ ₁ (Π)	P ⁰ ₂ (Π)	n
0.095	0.113	4.598	0.140	23.053	1837.5	947.4	4.543
0.132	0.207	4.701	0.195	22.912	1796.3	921.6	4.561
0.234	0.354	4.834	0.346	22.489	1668.4	842.5	4. 599
0.345	0. 499	5.021	0.499	21.940	1517.1	751.1	4.631
0. 480	0.640	5.126	0.646	21.349	1366.3	662.6	4.700
0.609	0.762	5.173	0.7 5 6	20.973	1277.9	611.9	4.825
q ₁	q ₂	Ø ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$	\$\$
330	4 6120	0.842	1.000	0.906	0.944	0.949	0.941
333	5 6125	0.862	1.000	0.908	0.946	0.949	0.942
343	6 6142	0.921	1.000	0.915	0.950	0. 949	0.942
356	4 6168	0.982	1.000	0.922	0.956	0.948	0.942
370	3 6201	1.005	1.000	0.930	0.961	0.948	0.942
379	0 6224	0.986	0.996	0.934	0.964	0.948	0.943

1

TABLA 6.204

Repro	ducción (del equili	orio de ac	dsorción de	e mezclas	CO ₂ -etile	eno en	
	CMS 5A a 1500 KPa mediante la teoría S.P.D.							
EX	PER IMENT.	AL		ç	5. P. D.			
×	У ₁	n	У ₁	ΠA/RT	P ⁰ ₁ (Π)	$P_{2}^{0}(\Pi)$	n	
0.099	0.110	4.926	0.142	25.027	2549.5	1418.6	5.013	
0.136	0.198	5.144	0.195	24.918	2504.6	1387.6	5.035	
0.239	0. 349	5.302	0.336	2 4. 55 3	2361.7	1290.0	5.089	
0.347	0.480	5.364	0.476	24.096	2191.4	1176.0	5.137	
0.483	0.633	5.487	0.632	23. 456	1968.5	1030.7	5.194	
0.612	0.749	5.580	0.755	22.785	1755.9	896.4	5.2 5 1	
q ₁	9 ₂	8 ₁	γ ₂	φ ⁰ ₁ (Π)	$\phi_2^0(\Pi)$	\$\$\$	\$	
2841	6065	0.900	1.000	0.873	0.918	0.925	0.914	
2867	6067	0.909	1.000	0.875	0.920	0.925	0.914	
2952	6075	0.939	1.000	0.881	0. 925	0. 9 24	0.914	
3058	6086	0.976	1.000	0.889	0.932	0.924	0.914	
3209	6106	1.024	1.001	0.900	0.940	0.923	0.915	
3366	6130	1.068	1.009	0.910	0.947	0.923	0.915	

- 36	2
	-

Re	Reproducción del equilibrio de adsorción de mezclas CO ₂ -etano en CMS 5A a 100 KPa mediante la teoría S.P.D.								
]	EXPERIMENT	AL			S.P.D.				
X ₁	У ₁	n	У ₁	ΠA/RT	P ⁰ ₁ (Π)	P ₂ ⁰ (Π)	n		
0.082	0.128	2.596	0.152	13.413	276.0	92.4	2.627		
0.139	0.246	2.575	0.257	13.123	257.3	86.2	2.644		
0.227	0.435	2.515	0.417	12. 5 60	224.0	75.4	2.655		
0.343	0.602	2.427	0,604	11.642	175.2	60.0	2.624		
0.534	0.760	2.406	0,760	11.016	146.1	51.4	2.661		
0.692	0.857	2.417	0.857	10.834	138.2	49.1	2.739		
P.	1 q ₂	γ ₁	7 ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$\$\$	\$\$		
56	14 7283	0.676	1.000	0.985	0.993	0.995	0.992		
569	91 7333	0.724	1.000	0.986	0.993	0. 995	0.992		
584	42 7437	0.826	1.000	0.988	0.994	0.995	0.992		
610	05 7638	1.008	1.000	0.991	0.994	0. 995	0.992		
629	96 7796	0.976	1.000	0. 9 92	0.995	0.995	0.992		
635	54 7847	0.898	0.934	0.993	0.996	0.995	0. 992		

TABLA 6.205

£1=2

.

TABLA 6.206

	Reproducción del equilibrio de adsorción de mezclas CO_2 -etano en										
		C1	MS 5A a 500) KPa med	iante la te	eoría S.P.	. D.				
	EXI	PERIMENT	4L	S. P. D.							
	× ₁	У	n	У ₁	ΠA∕RT	$P_1^0(\Pi)$	P ₂ ⁰ (Π)	n			
0	. 095	0.115	3. 581	0.161	20.312	1135.0	462.8	3.676			
0	. 140	0.225	3.774	0.238	20.108	1092.1	441.1	3.695			
0	. 187	0.345	3.913	0.621	19.834	1038.5	414.5	3.705			
0	. 283	0. 495	4.191	0.489	19.132	911.1	353.0	3.697			
0	. 423	0.652	4.183	0.660	18.254	771.2	288.7	3.721			
0	. 558	0.772	4.306	0.761	17.956	727.6	269.4	3.881			
	q	q ₂	γ ₁	γ ₂	$\phi_{1}^{0}(\Pi)$	$\phi_2^0(\Pi)$	\$\$	\$\$			
	3944	6425	0.771	1.000	0.941	0.964	0.975	0.961			
	3993	6438	0.805	1.000	0.943	0.965	0.975	0.961			
	4057	6458	0.851	1.000	0.946	0.967	0.974	0.962			
	4221	6518	0.970	1.000	0.952	0.972	0.974	0.961			
	4427	6618	1.026	1.002	0.960	0.977	0.974	0.962			
	4498	6661	0.949	0.949	0.962	0.979	0.974	0.962			

TABLA 6.207

Repr	Reproducción del equilibrio de adsorción de mezclas CO ₂ -etano en									
	CM	S 5A a 100	0 KPa med	iante la t	eoría S.P	. D.				
EX	PERIMENT	AL		:	S. P. D.					
× ₁	y ₁	n	У ₁	∏A∕RT	$P_1^0(\Pi)$	P ⁰ ₂ (∏)	n			
0.093	0.111	4.273	0.143	23.484	1978.9	940.8	4.250			
0.149	0.218	4.398	0.232	23.265	1904.6	895.1	4.294			
0. 197	0.337	4.580	0.310	23.022	1827.7	848.5	4.325			
0.291	0.462	4.774	0.460	22.443	1654.9	746.3	4.368			
0.410	0.601	5.069	0.609	21.776	1472.0	642.3	4. 439			
0.565	0. 74 6 [.]	5.180	0.740	21.343	1364.4	583.2	4.637			
q ₁	q ₂	γ ₁	7 ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	¢_1	\$\$			
3201	6303	0.824	1.000	0.900	0.927	0.952	0.923			
3254	6309	0.862	1.000	0.903	0.931	0.951	0.923			
3311	6314	0.902	1.000	0.907	0.934	0.951	0.923			
3447	6330	0.991	1.000	0.915	0.942	0.949	0.924			
3604	6353	1.036	1.002	0.924	0.950	0.949	0.925			
3704	6371	0.979	0.998	0.930	0.954	0.948	0.926			

TABLA 6.208

	Reproducción del equilibrio de adsorción de mezclas CO ₂ -etano en CMS 5A a 1500 KPa mediante la teoría S.P.D.									
	EXPERIMENTAL S. P. D.									
	×	У ₁	n	У1	∏A∕RT	P ⁰ ₁ (Π)	P ⁰ ₂ (∏)	n		
0	091	0.110	4.662	0.131	25.412	2715.5	1427.3	4.567		
0	152	0.210	4.752	0.222	25.198	2621.5	1362.0	4.629		
0	201	0.316	5.022	0.296	24.976	2530.2	1299.5	4.673		
0	294	0.437	5.212	0.435	24.488	2337.6	1170.4	4.748		
0	620	0.72 5	1.993	0.577	23.955	2140.7	1042.6	4.868		
0	769	0.844	2.053	0.708	23.63 9	2026.4	970.4	5.097		
	q ₁	· q ₂	7 ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$	¢_2		
	2750	6272	0.854	1.000	0.865	0.892	0.928	0.887		
	2801	6275	0.891	1.000	0.869	0.897	0.927	0.887		
	2852	6278	0.927	1.000	0.873	0. 901	0.926	0.887		
	2966	6285	0.966	1.000	0.883	0.911	0. 925	0.888		
	3091	6294	1.014	1.001	0.892	0.920	0.924	0.889		
	3168	6300	0.963	0.991	0.897	0.925	0.924	0.890		

TABLA 6.209

	Reproducción del equilibrio de adsorción de mezclas etileno-etano en CMS 5A a 100 KPa mediante la teoría S.P.D.										
	EXPERIMENTAL S. P. D.										
	×	У ₁	n	У ₁	ΠA/RT	P ₁ ⁰ (Π)	P ₂ ⁰ (11)	n			
	0.147	0.186	2.657	0.181	13.553	119.6	95.8	2.610			
	0.289	0.344	2.649	0.341	13.412	115.7	92.4	2.632			
	0.460	0.519	2.697	0.517	13.235	111.2	88.6	2.660			
	0.615	0.668	2.651	0.666	13.090	107.7	85.7	2.687			
	0.767	0.805	2.659	0.803	12.968	104.5	83.0	2.715			
1	0.874	0.900	2.712	0.896	12.888	102.4	81.2	2.736			
	q	q ₂	Ŷ	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	φ ₁	\$\$			
	7127	7258	1.032	1.001	0.993	0.993	0.994	0.992			
	7153	7283	1.021	1.004	0.993	0. 993	0.994	0.992			
	7186	7313	1.011	1.009	0.993	0.993	0.994	0.992			
	7213	7337	1.005	1.015	0.993	0.993	0.994	0. 992			
	7239	7361	1.002	1.022	0.994	0.993	0.994	0.992			
	7257	7378	1.001	1.028	0.994	0.993	0.994	0.992			

TABLA 6.210

	Reprod	ucción de	el equili	brio de ad	sorción de	mezclas	etileno-et	tano en		
:		C	MS 5A a 5	00 KPa med	iante la t	eoría S.P	. D.			
-	EXPERIMENTAL S. P. D.									
	×	У ₁	n	y ₁	∏A∕RT	P ₁ ⁰ (Π)	P ⁰ ₂ (∏)	n		
	0.160	0.185	3.598	0.183	20.516	555.5	484.6	3.637		
	0.288	0.313	3.607	0.318	20.422	544.5	474.4	3.654		
	0.462	0.497	3.635	0.495	20.320	532.8	463.6	3.668		
	0.593	0.623	3.668	0.622	20.242	524.0	455.5	3.706		
	0.712	0.733	3. 858	0.735	20.172	516.1	448.3	3.727		
	0.860	0.873	3.781	0.873	20.094	507.6	440.3	3.755		
	q1	q ₂	З ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$	\$		
	6256	6412	1.032	1.003	0.967	0.962	0.971	0.961		
	6263	6418	1.017	1.006	0.968	0.963	0.971	0.961		
	6270	6424	1.007	1.012	0.968	0.963	0.971	0.961		
	6276	6429	1.003	1.016	0.969	0.964	0.970	0.961		
	6282	6434	1.001	1.018	0.969	0.965	0. 970	0.961		
	6288	6439	1.000	1.021	0.970	0.965	0.970	0.962		

TABLA 6.211

	Reproducción del equilibrio de adsorción de mezclas etileno-etano en										
		CM	5 5A a 100	0 KPa med	iante la t	eoría S.P	. D.				
	EX	PERIMENT	AL		5	S.P.D.					
	×	У ₁	n	У ₁	∏A∕RT	Ρ ⁰ ₁ (Π)	P ⁰ ₂ (Π)	n			
), 162	0.184	4.199	0.179	23.662	1076.6	9 78 .7	4.210			
0). 287	0.311	4.249	0.311	23.594	1059.3	962.0	4.246			
(0. 451	0.477	4.351	0.478	23.490	1039.0	942.4	4.294			
	0.580	0.606	4.402	0.605	23.432	1025.7	929.6	4.334			
(0.714	0.732	4.423	0.731	23.372	1012.5	916.9	4.376			
0	0.839	0.850	4.548	0.847	23.329	1004.4	909.1	4.420			
	٩ ₁	. d ⁵	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	¢_1	φ ₂			
	6099	6300	1.030	1.000	0.937	0.925	0.943	0.923			
	6101	6301	1.027	1.001	0.938	0.926	0.943	0.923			
	6104	6303	1.023	1.004	0.939	0.927	0.942	0.924			
	6106	6305	1.018	1.009	0.940	0.928	0.942	0.924			
	6108	6306	1.012	1.021	0.941	0.929	0.942	0.924			
	6110	6307	1.006	1.046	0.941	0.930	0.942	0.925			

TABLA 6.212

R	eprodu	ucción d CM	el equilib 5 5A a 1500	rio de ad O KPa med	sorción de iante la te	mezclas eoría S.P	etileno-et .D.	ano en
	EXI	PERIMENT	AL			S. P. D.		
	×1	y ₁	n	У1	ΠA/RT	P ⁰ ₁ (∏)	P ⁰ ₂ (Π)	n
0.	163	0.184	4.587	0.176	25.562	1583.5	1475.7	4.536
o. :	287	0.309	4.640	0.306	25.501	1563.8	1 456 .1	4.590
0.	447	0.468	4.701	0.469	25.423	1539.5	1432.0	4.662
0.	578	0. 594	4.719	0.598	25.361	1520.3	1413.0	4.722
0.	715	0.731	4.813	0.729	25.318	1506.1	1399.0	4.790
0.	830	0.844	4.914	0.836	25.285	1496.7	1389.7	4.849
	q ₁	q ₂	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$	\$\$
	6054	6270	1.028	1.000	0.909	0.889	0.916	0.887
	6056	6271	1.027	1.000	0.910	0.890	0.915	0.887
•	6057	6272	1.025	1.002	0.911	0.892	0.914	0.888
	6058	6273	1.022	1.005	0.912	0.893	0.914	0.888
	6059	6273	1.016	1.017	0.913	0.894	0.914	0.889
	6059	6274	1.009	1.042	0.914	0.894	0.914	0,889

TABLA 6.213

Repro	Reproducción del equilibrio de adsorción de mezclas etano-CO ₂ en zeolita 5A a 500 KPa mediante la teoría S.P.D.									
EX	EXPERIMENTAL S.P.D.									
×	У1	n	У1	ΠA/RT	P ⁰ ₁ (Π)	P ⁰ ₂ (∏)	n			
0.026	0.304	4.805	0.349	21.976	9941.0	331.1	4.863			
0.049	0.594	4.702	0.581	20.312	7407.4	216.9	3.461			
0.082	0.742	4.415	0.754	18.417	5045.5	131.4	3. 304			
0.146	0.927	4.123	0.873	16.269	3087.3	72.8	3.136			
0.399	0.984	3.814	0.968	12.993	1319.2	26.6	2.926			
0.601	0.988	3.501	0. 996	10.665	675.5	10.0	3.248			
q ₁	9 ₂	γ ₁	8 ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	φ ₁	\$\phi_2			
2983	5764	1.441	1.000	0.451	0.982	0.962	0.974			
3327	12832	1.391	1.000	0. 55 3	0.988	0.961	0.974			
3762	13626	1.311	1.001	0.668	0.993	0.961	0.975			
4300	15384	1.192	1.001	0.781	0.996	0.961	0.976			
5178	1 74 03	0.982	0.998	0.900	0.999	0.961	0.976			
2167	18614	1.239	1.130	0.947	0, 999	0.961	0.976			

1

TABLA 6.214

Repr	oducción	del equil	ibrio de a	dsorción d	le mezclas	etano-CO ₂	en
	zeol	ita 5A a	1000 KPa m	ediante la	teoría S	5. P. D.	
E	XPERIMENT	AL			S. P. D.		
x ₁	У ₁	n	У ₁	TA/RT	P ⁰ ₁ (Π)	P ₂ ⁰ (Π)	n
0.017	0.213	5.113	0.179	25.686	17126.4	827.2	3.933
0.037	0.428	4.893	0.397	24.453	14521.2	614.0	3. 825
0.053	0.564	4.698	0.559	23.222	12173.4	452.8	3.719
0.098	0.785	4.413	0.811	20.033	7019.9	201.6	3. 452
0.187	0.948	4.121	0.921	17.158	3811.7	93.4	3. 231
0.407	0. 985	3.785	0.972	14.576	2015.8	44.3	3.084
q_1	۹ ₂	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$	¢_2
2334	4 9835	2.237	1.000	0.254	0. 95 7	0.926	0.948
2528	8 10744	2.183	1.000	0.313	0.968	0.925	0.949
274	5 11212	2.122	1.001	0.378	0.976	0.924	0.949
3389	9 12788	1.908	1.002	0.570	0.989	0.923	0.951
4072	2 14326	1.618	1.007	0.737	0.995	0.923	0.952
474	3 16003	1.285	1.032	0.851	0.998	0.923	0.953

Repro	ducción	del equili	brio de ac	lsorción d	e mezclas	etano-CO	en 2				
	zeol	ita 5A a 2	.000 KPa me	ediante la	teoría S	. P. D.	-				
EX	EXPERIMENTAL S. P. D.										
×	У ₁	n	У ₁	ΠA/RT	P ⁰ ₁ (Π)	P ⁰ ₂ (Π)	n				
0.002	0.163	5.398	0. 181	28.589	22935.4	1641.3	5.457				
0.031	0.319	5.183	0.283	28.024	21796.3	1436.9	4.149				
0.048	0.447	4.852	0.441	26.953	19585.4	1120.7	4.053				
0.075	0.650	4.627	0.664	24.844	15372.1	675.5	3.868				
0.123	0.835	4.379	0.844	21.889	9799.8	323. 9	3. 6 21				
0.186	0.933	4.063	0.912	19.941	6895.6	196.7	3.473				
q ₁	ď	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	<i>\ \phi</i> _1	\$\$				
1961	4236	4. 229	1.000	0.160	0.916	0.858	0.899				
2027	9624	4.091	1.000	0.175	0.926	0.857	0.899				
2158	9817	3.847	1.001	0.209	0.942	0.854	0.900				
2463	10532	3.361	1.003	0.292	0.965	0.853	0.903				
3000	11820	2.617	1,006	0.456	0.983	0.852	0.905				
3409	13022	2.104	1.013	0.576	0.989	0.852	0.906				

TABLA 6.215

<u>_</u>

TABLA 6,216

Repro	Reproducción del equilibrio de adsorción de mezclas etano-CO $_2$ en										
	zeolita 5A a 3000 KPa mediante la teoría S.P.D.										
EXI	EXPERIMENTAL S. P. D.										
×	У ₁	n	У ₁	ΠA/RT	Ρ ⁰ ₁ (Π)	P ⁰ ₂ (∏)	n				
0.021	0.148	5.452	0.176	29.849	25800.3	1932.0	5.519				
0.028	0.279	5.210	0.232	29.778	25796.1	2244.2	4. 329				
0.049	0.375	4.928	0.407	29.005	23561.4	1750.0	4.228				
0.073	0.605	4.663	0.594	27.386	20131.4	1193.1	4.080				
0.110	0.776	4.439	0.784	25.341	11712.4	645.3	3.860				
0.147	0.878	4.123	0.861	21.664	8642.3	427.1	3.723				
q ₁	q ₂	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$_1	\$\$_2				
1811	3834	6.229	1.000	0.127	0.902	0.795	0.852				
1811	8511	6.277	1.001	0.127	0.887	0.794	0.853				
1930	9220	5.491	1.002	0.152	0.911	0.791	0.854				
2124	9748	4.785	1.004	0.200	0. 938	0.789	0.856				
2494	10941	3.720	1.008	0.392	0.966	0.787	0.860				
2789	11435	3.013	1.013	0.501	0.977	0.787	0.862				

TABLA 6.217

Reprod	Reproducción del equilibrio de adsorción de mezclas etano-etileno en									
	zeol	ita 5A a	500 KPa m	ediante la	teoría S	.P.D.				
EX	PERIMENT.	AL		1	S. P. D.					
×	У ₁	n	У ₁	ΠA ∕RT	Ρ <mark>0</mark> (Π)	$P_2^0(\Pi)$	n			
0.027	0.226	1.448	0.245	18.572	5227.9	385.1	3.647			
0.055	0.431	1.436	0.437	17.501	4130.9	2 94 .0	3.553			
0.085	0.588	1.408	0.579	16.483	3260.4	226.7	3.464			
0.129	0.725	1.395	0.706	15.277	2413.7	165.0	3.359			
0.429	0.942	1.362	0. 928	11.519	866.4	58.6	3.045			
0.607	0.973.	1.344	0.959	10.612	665.8	44.9	2.978			
	q ₂	У ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(1)$	¢ 1	\$\$			
3723	5770	1.268	1.000	0.658	0.977	0.961	0.970			
3589	6208	1.286	1.000	0.719	0.982	0.961	0.970			
4241	6632	1.303	1.001	0.770	0.986	0. 961	0.971			
4561	7153	1.322	1.002	0.824	0.990	0.961	0.971			
5589	8889	1.286	1.040	0.933	0.996	0.961	0.971			
5839	9351	1.203	1.129	0.948	0.998	0.961	0.971			

TABLA 6.218

Repr	Reproducción del equilibrio de adsorción de mezclas etano-etileno en							
	zeol	ita 5A a 1	000 KPa m	ediante la	teoría S	.P.D.		
	EXPERIMENT	AL.			S. P. D.			
×	У1	n	У1	∏A∕RT	$P_1^0(\Pi)$	P ⁰ ₂ (∏)	n	
0.017	0.143	3.935	0.147	21.844	9735.6	860.4	3.944	
0.033	0.305	3.862	0.275	21.204	8716.2	737.2	3.885	
0.056	0.441	3.754	0.435	20.251	7321.3	584.1	3. 799	
0.124	0.673	3. 599	0.713	17.733	4454.5	312.0	3. 576	
0.238	0.860	3.427	0.863	15.345	2461.9	168.4	3.372	
0.449	0.945	3.318	0.937	13.398	1472.0	99.7	3.217	
q	1 q ₂	y ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$	\$\$	
30	08 4475	1.786	1.000	0.459	0.949	0.92 5	0.942	
31	38 4723	1.775	1.000	0.498	0.957	0.924	0.942	
33	40 5097	1.762	1.001	0.557	0.965	0.924	0.942	
39	6112	1.728	1.004	0.706	0.981	0.923	0.942	
45	40 7120	1.656	1.016	0.821	0.990	0.923	0.943	
50	68 7989	1.472	1.089	0.889	0.994	0.923	0.943	

375

Reproducción del equilibrio de adsorción de mezclas etano-etileno en										
	zeolita 5A a 2000 KPa mediante la teoría S.P.D.									
EX	PERIMENT	AL		·····	S. P. D.					
×	У ₁	n	У ₁	ΠA/RT	P ⁰ ₁ (Π)	P ₂ ⁰ (Π)	n			
0.010	0.138	4.283	0.086	25.065	15752.4	1826.0	4.243			
0.030	0.277	4.197	0.251	24.198	14036.2	1495.1	4.159			
0.048	0.402	4.036	0.384	23.360	12412.4	1233.2	4.081			
0.110	0.606	3.897	0.671	20.833	8149.5	673.0	3.849			
0.218	0.825	3.420	0.826	18.581	5236.6	385.9	3.652			
0.383	0. 928	3.585	0.897	17.112	3777.5	266.1	3.532			
q ₁	9 ₂	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	φ ₁	\$\$			
2428	3276	3.304	1.000	0.283	0.896	0.855	0.887			
2574	3593	3. 129	1.000	0.325	0.914	0.854	0.887			
2720	3900	2.968	1.003	0.370	0.928	0.854	0.888			
3216	4869	2.451	1.013	0.521	0.960	0.853	0.888			
3721	5767	1.875	1.049	0.658	0.977	0.852	0.889			
4082	6370	1.429	1.144	0.739	0.984	0.852	0.890			

TABLA 6.219

TABLA 6.220

Reprod	Reproducción del equilibrio de adsorción de mezclas etano-etileno en								
zeolita 5A a 3000 KPa mediante la teoría S.P.D.									
EX	PERIMENT	AL			S.P.D.				
×	У ₁	n	У1	IIA/RT	Ρ ⁰ ₁ (Π)	$P_2^0(\Pi)$	n		
0.009	0.133	4.410	0.083	26.882	19505.4	2730.3	4.411		
0.027	0.235	4.281	0.238	25.977	17632.4	2236.5	4.323		
0.045	0.367	4.153	0.372	25.062	15769.1	1826.0	4.370		
0.095	0. 553	4.021	0.591	23.172	12062.3	1180.0	4.059		
0.158	0.714	3.822	0.693	22.022	10022.3	896.7	3.952		
0.299	0.852	3.655	0.782	20.788	8079.6	665.3	3.841		
q1	9 ₂	γ ₁	9 ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	¢ 1	¢_2		
2167	2642	5.344	1.000	0.210	0.848	0.791	0.835		
2292	2956	4.857	1.003	0.244	0.874	0.790	0.835		
2428	3276	4.379	1.009	0.283	0.896	0.789	0.835		
2754	3970	3.198	1.034	0.381	0.931	0.788	0.836		
2974	4408	2.304	1.082	0.448	0.947	0.787	0.838		
3226	4887	1.459	1.223	0.524	0.961	0.787	0.839		

TABLA 6.221

Rep	Reproducción del equilibrio de adsorción de mezclas etileno-CO ₂ en zeolita 5A a 500 KPA mediante la teoría S.P.D.								
	EXPERIMENT	'AL	<u></u>		S.P.D.		<u> </u>		
× ₁	У1	n	У ₁	ΠA/RT	$P_1^0(\Pi)$	P ₂ ⁰ (Π)	n		
0.126	0.075	4.901	0.086	20.982	699.0	257.7	4.673		
0.205	0.130	4.616	0.124	21.103	719.2	2 65 .6	4.597		
0.355	0.350	4.323	0.350	21.399	771.4	285.9	4.467		
0.473	0.526	4.107	0. 5 26	21.235	742.8	274.8	4.338		
0.639	0.793	3.972	0. 79 3	20.734	657.7	241.7	4.140		
0.787	0.923	3.828	0. 923	20.256	584.2	213.5	4.969		
q	1 · 92	٦ م	y ⁵	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	¢_1	\$\$		
48	6358	0.497	2.001	0.959	0.986	0.971	0.974		
47	62 6313	0.427	2.046	0.958	0.986	0.971	0.974		
46	50 6202	0.654	1.738	0.955	0.985	0.971	0.974		
47	10 6262	0.809	1.497	0.956	0.985	0.971	0.974		
49	06 6454	0.934	1.254	0.961	0.987	0.970	0.974		
50	97 6641	0.983	1.105	0.965	0.989	0.970	0.974		

TABLA 6.222

Repro	Reproducción del equilibrio de adsorción de mezclas etileno-CO ₂ en								
	zeolita SA a 1000 KPA mediante la teoria S.P.D.								
EX	EXPERIMENTAL S. P. D.								
× ₁	У1	n	У ₁	ΠA/RT	$P_1^0(\Pi)$	P ⁰ ₂ (Π)	n		
0.149	0.077	5.148	0.121	26.664	2599.8	1044.7	5.157		
0.220	0.166	4.942	0.1 9 0	26.732	2644.2	1064.2	5.090		
0.348	0.352	4.698	0.340	26.832	2698.2	1088.1	4.971		
0.471	0.542	4.434	0.526	26.737	2644.2	1064.2	4.846		
0.595	0.7 47	4.296	0.739	26.112	2307.0	917.0	4.675		
0.713	0.878	4.113	0.898	24.789	1713.1	665.3	4.449		
q ₁	q ₂	γ ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	φ ₁	φ ₂		
2719	4279	0.344	0.992	0.855	0.946	0.943	0.948		
2693	4252	0.361	0.979	0.853	0.945	0.943	0.948		
2661	4219	0.402	0.933	0.850	0.943	0.942	0.948		
2693	4252	0.466	0.846	0.853	0.9 45	0.942	0.949		
2907	4471	0.582	0.702	0.870	0.952	0.942	0.949		
3377	4945	0.767	0. 525	0.902	0.955	0.942	0.950		

.

	Reproducción del equilibrio de adsorción de mezclas etileno-CO ₂ en							
		zeol	ita 5A a 2	2000 KPA me	ediante la	teoría S.	. P. D.	
	EXPERIMENTAL S. P. D.							
	×1	У1	n	У ₁	ΠA/RT	$P_1^0(\Pi)$	P ⁰ ₂ (∏)	n
0	. 166	0.090	5.442	0.099	29.055	4277.1	1819.6	5.439
0	. 262	0.193	5.273	0.196	28.712	3998.5	1685.9	5.341
0	. 359	0.350	5.111	0.332	28.324	3696.3	1541.6	5.246
0	. 450	0.525	4.893	0.502	27.911	3396.2	1403.5	5.160
0	. 555	0.701	4.665	0.723	29.696	4850.5	2101.1	5.036
0	. 676	0.827	4.503	0.885	28.390	3747.0	1566.7	4.814
	٩ ₁	9 ₂	ð ₁	γ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	Ø ₁	¢2
	1653	3160	0.786	0.990	0.773	0.907	0.890	0.899
	1653	3160	0.828	0.975	0.786	0.914	0.890	0.899
	1653	3160	0.866	0.953	0.800	0.921	0.888	0.899
	1653	3160	0.899	0.927	0.815	0.928	0.887	0.900
	1747	3260	0.638	0.595	0.747	0.894	0.887	0.901
	2148	3686	0.776	0. 441	0.798	0.920	0.886	0.902

TABLA 6.223

TABLA 6.224

Rep	Reproducción del equilibrio de adsorción de mezclas etileno-CO $_2$ en							
	zeol	ita 5A a 3	3000 KPA m	ediante la	teoría S	. P. D.		
	EXPERIMENT.	AL			S.P.D.			
×	У ₁	n	У1	ΠA/RT	$P_1^0(\Pi)$	$P_2^0(II)$	n	
0.181	0.101	5.615	0.129	30.129	5423.0	2323.3	5.423	
0.268	0.200	5.437	0.225	30.066	5342.5	2299.6	5.335	
0.357	0.348	5.370	0.347	30.011	5235.6	2256.5	5.248	
0.438	0.510	5.158	0.477	29.955	5107.8	2228.9	5.171	
0.540	0.675	4.841	0.660	29.480	4655.5	2004.5	5.077	
0.669	0.813	4.629	0.857	29.576	4741.4	2046.9	4. 925	
q	1 ^q 2	γ ₁	۶ ₂	$\phi_1^0(\Pi)$	$\phi_2^0(\Pi)$	\$\$_1	\$\$2	
16	53 3160	1.000	1.000	0.721	0.883	0.839	0.852	
16	53 3160	1.000	1.000	0.725	0.884	0.838	0.852	
16	53 3160	1.000	1.000	0.729	0.886	0.837	0.853	
16	53 3160	0,903	0.937	0.735	0.888	0.836	0.853	
16	53 3160	0.933	0.905	0.755	0.898	0.835	0.854	
17	82 3298	0.900	0.605	0.751	0.896	0.835	0.854	

Valores de los parámetros del modelo S.P.D. (Ajuste individual)							
			CMS 5A				
	P(KPa)	s _i	S j	β _{ij}			
CO ₂ -etileno	100	4.46	176.05	-0.052			
-	500	0.35	5.23	-0.003			
	1000	0.18	2.24	-0.000			
	1500	21.30	369.81	-0.027			
CO ₃ -etano	100	0.07	1.80	-0.004			
2	500	0.07	1.08	-0.003			
	1000	0.10	1.40	-0.002			
	1500	0.09	1.10	-0.001			
Etileno-etano	100	1388.12	1210.29	-0.007			
	500	1201.95	718.50	-0.051			
	1000	708.63	1749.18	-0.088			
	1500	481.77	1273.41	-0.106			

TABLA 6.225

Valores de lo	s parámetros d	el modelo S.	P.D. (Aj	uste indiv	vidual)
		z	eolita 5	A	
	P(KPa)	s _i	S j	ß _{ij}	
Etano-etileno	500	147.30	522.83	-0.034	
	1000	36.69	105.67	-0.025	
	2000	33.89	45.59	-0.065	
	3000	33.28	30.29	-0.177	
Etano-CO2	500	47.75	198.94	-0.008	
-	1000	37.00	148.75	-0.017	
	2000	45.60	147.79	-0.035	
	3000	36.46	110.47	-0.045	
Etileno-CO ₂	500	166.52	32.90	-0.767	
-	1000	28.10	119.51	-0.258	
	2000	66.14	88.54	-0.015	
	3000	110.27	·102.78	-0.011	

TABLA 6.227

Valores de	los parámetros del	modelo S	.P.D. (a	juste global)			
	CMS 5A						
	P(KPa)	s i	S j	β _{ij}			
CO ₂ -etileno	100	42.97	2394.8	-0.103			
CO ₂ -etano	100	42.97	2303.9	-0.080			
Etileno-etano	1000	1388.9 2394.8	1307.1 2303.9	-0.994 -0.003			
	1000	1915.8	1307.1	-0.030			

TABLA 6.228

Valores de 1	los parámetros de	l modelo S.	P.D. (a	juste global)			
		zeolita 5A					
	P(KPa)	Si	sj	β _{ij}			
Ftano-etileno	1000	37.42	90, 35	-0.041			
	3000	41.11	89.97	-0.039			
Etano-CO ₂	1000	37.42	84.07	-0.062			
	3000	41.11	86.02	-0.067			
Etileno-CO ₂	1000 3000	90.35 89.97	84.07 86.02	-0.060 -0.059			

TABLA 6.229

Parámetros de ajuste de los modelos D.I.W. y D.I.F.

Modelo	Parámetro	C0 ₂	Etileno	Etano
D.I.F.	n [∞] (mol/Kg)	6.8087	6.3188	5.0412
	b (mol/Kg KPa)	0.3129	188.75	338.79
	α _{i v}	3. 4937	10.604	10.600
	n [∞] _i (mol/Kg)	7.3350	12.909	5.4502
	b (mol/Kg KPa)	0.4285	7. 599 7	254.42
D.I.W.	٨	0.5488	1.8179	0.6816
	Λ _{vi}	4.0496	7.7520	9.3997

TABLA 6.230

Predicción del equilibrio de adsorción en CMS 5A a 100 KPa en la mezcla CO ₂ -etileno mediante la teoría V.S.M.							
EXPERIMENTAL		D. 1	[.W.	D. I.F.			
x	У ₁	n	У ₁	n	У ₁	n	
0,090	0.124	2.717	0.216	2.515	0.151	2.424	
0, 154	0.254	2.723	0.339	2.492	0.259	2.439	
0.251	0.411	2.754	0.489	2.467	0.417	2.457	
0.396	0.581	2.734	0.654	2.449	0.628	2.470	
0.553	0.728	2.658	0.780	2.453	0.803	2.474	
0.710	0.837	2.620	0.873	2.483	0.917	2.482	

TABLA 6.231

Predicción del equilibrio de adsorción en CMS 5A a 500 KPa en la mezcla CO ₂ -etileno mediante la teoría V.S.M.							
EXPERIMENTAL			D. 1	D.I.W.		D. I. F.	
× 1	У	n	У ₁	n	У ₁	n	
0.093	0.118	3.882	0.158	3.829	0.103	3.908	
0.129	0.212	3.969	0.213	3.838	0.144	3.936	
0.224	0.369	4.153	0.342	3.868	0.259	4.011	
0.333	0.518	4.212	0.469	3.914	0.397	4.092	
0.471	0.668	4.312	0.604	3.991	0.571	4.186	
0.605	0.777	4.324	0.715	4.085	0.728	4.269	

TABLA 6.232

Predicción del equilibrio de adsorción en CMS 5A a 1000 KPA en la mezcla CO ₂ -etileno mediante la teoría V.S.M.							
EXPERIMENTAL			D. I. W.		D. I. F.		
×	У	n	y ₁	n	У ₁	n	
0.095	0.113	4. 598	0.139	4.543	0.092	4.616	
0.132	0.207	4.701	0.189	4.564	0.130	4.649	
0.234	0.354	4.834	0.314	4.628	0.242	4.737	
0.345	0.499	5.021	0.434	4.710	0.373	4.830	
0.480	0.640	5.126	0.563	4.825	0.538	4.938	
0.609	0.762	5.173	0.675	4.948	0.692	5.034	

TABLA 6.233

Predicción del equilibrio de adsorción en CMS 5A A 1500 KPA en la mezcla CO -etileno mediante la teoría V.S.M.							
EXPERIMENTAL			D. 1	[.W.	Ď. I. F.		
×	У1	n	У ₁	n	У ₁	n	
0.099	0.110	4.926	0.133	5.007	0.090	4.999	
0.136	0.198	5.144	0.179	5.034	0.127	5.031	
0.239	0.349	5.302	0.298	5.117	0.235	5.119	
0.347	0.480	5.364	0.411	5.214	0.358	5.210	
0.483	0.633	5.487	0.539	5.348	0.522	5.320	
0.612	0.749	5.580	0.655	5.482	0.677	5.417	
TABLA 6.234

Predico	Predicción del equilibrio de adsorción en CMS 5A a 100 KPA en							
	la mezcla CO ₂ -etano mediante la teoría V.S.M.							
EXPERIMENTAL D.I.W. D.I.F.						[.F.		
×1	У1	n	У 1	n	У ₁	n		
0.082	0.128	2.596	0.149	2.479	0.106	2.489		
0.139	0.246	2.575	0.256	2.485	0.189	2.515		
0.227	0. 435	2.515	0. 418	2.486	0.332	2.546		
0.343	0.602	2.427	0.608	2.473	0.525	2.566		
0.534	0.760	2.406	0.829	2.443	0.791	2.546		
0.692	0,857	2.417	0.928	2.441	0.921	2.513		

TABLA 6.235

Predico	Predicción del equilibrio de adsorción en CMS 5A a 500 KPA en la mezcla CO ₂ -etano mediante la teoría V.S.M.							
EXI	EXPERIMENTAL D. I. W. D. I. F.							
X ₁	У1	n	У ₁	n	У1	n		
0.095	0.115	3.581	0.115	3.718	0.084	3.813		
0.140	0.225	3.774	0.174	3.752	0.130	3.861		
0.187	0.345	3.913	0.239	3.787	0.184	3.910		
0.283	0.495	4.191	0.374	3.854	0.306	4.007		
0,423	0.652	4.183	0.564	3.942	0.502	4.133		
0.558	0.772	4.306	0.723	4.024	0.687	4.231		

.

TABLA 6.236

•

.

Predicc	Predicción del equilibrio de adsorción en CMS 5A a 1000 KPA en la mezcla CO ₂ -etano mediante la teoría V.S.M.							
EXI	EXPERIMENTAL D. I. W. D. I. F.							
×	У ₁	n	У ₁	n	У ₁	n		
0.093	0.111	4.273	0.096	4.269	0.069	4.310		
0.149	0.218	4.398	0.160	4.329	0.120	4.382		
0.197	0.337	4.580	0.218	4. 379	0.169	4.444		
0.291	0.462	4.774	0.338	4.476	0.278	4.564		
0.410	0.601	5.069	0.492	4. 595	0.434	4.710		
0. 565	0.746	5.180	0.677	4.748	0.647	4.882		

TABLA 6.237

Predicción del equilibrio de adsorción en CMS 5A a 1500 KPA en la mezcla CO -etano mediante la teoría V.S.M.							
EXPERIMENTAL D. I. W. D. I. F.							
×	У ₁	n	У ₁	n	У 1	n	
0.091	0.110	4.662	0.085	4.560	0.062	4.539	
0. 152	0.210	4.752	0.149	4.634	0.112	4.625	
0.201	0.316	5.022	0.205	4.694	0.159	4.694	
0.294	0.437	5.212	0.317	4.806	0.260	4.824	
0. 413	0.573	5.494	0. 466	4.948	0.411	4. 987	
0. 560	0.712	5.571	0.642	5.124	0.613	5.178	

1

Predicción del equilibrio de adsorción en CMS 5A a 100 KPA en la mezcla etileno-etano mediante la teoría V.S.M. **EXPERIMENTAL** D.I.W. D. I. F. n \mathbf{x}_{1} У₁ У, n У₁ n 2.446 0.147 0.186 2.657 0.069 2.575 0.145 0.289 0.344 2.649 0.247 2.673 0.292 2.445 0.460 0.519 2.697 0.552 2.702 0.471 2.439 0.615 0.668 2.651 0.782 2.659 0.632 2.431 0.767 0.805 2.659 0.914 2.602 0.783 2.419 0.874 0.900 2.712 0.966 2.573 0.886 2.410

TABLA 6.238

TABLA 6.239

Predico	Predicción del equilibrio de adsorción en CMS 5A a 500 KPA en la mezcla etileno-etano mediante la teoría V.S.M.							
EXI	EXPERIMENTAL D. I. W. D. I. F.							
×	У ₁	n	У ₁	n	У1	n		
0.160	0.185	3. 598	0.075	3.842	0.154	3.756		
0.288	0.313	3.607	0.226	3.971	0.285	3.785		
0. 462	0. 497	3.635	0.519	4.026	0.468	3.814		
0. 593	0.623	3.668	0.720	3.986	0.606	3.827		
0.712	0.733	3.858	0.852	3. 925	0.727	3.835		
0.860	0.873	3. 781	0.950	3.854	0.872	3.837		

Predicción del equilibrio de adsorción en CMS 5A a 1000 KPA en							
la mezcla etileno-etano mediante la teoría V.S.M.							
 EXPERIMENTAL D. I. W. D. I. F.							
×	У	n	У ₁	n	У ₁	n	
0.162	0.184	4.199	0.072	4.467	0.149	4.276	
0.287	0.311	4.249	0.215	4.640	0.274	4.335	
0.451	0.477	4.351	0.488	4.730	0.447	4.401	
0.580	0.606	4.402	0.691	4.703	0.583	4.444	
0.714	0.732	4.423	0.845	4.631	0.723	4.481	
0.839	0.850	4.548	0.936	4.560	0.848	4.508	

TABLA 6.240

TABLA 6.241

Predicc:	Predicción del equilibrio de adsorción en CMS 5A a 1500 KPA en la mezcla etileno-etano mediante la teoría V.S.M.							
EXPERIMENTAL D. I. W. D. I. F.								
×	У ₁	n	У ₁	n	У1	n		
0.163	0.184	4.587	0.068	4.829	0.144	4. 525		
0.287	0.309	4.640	0.208	5.044	0.266	4.602		
0. 447	0.468	4.701	0.473	5.169	0.433	4.693		
0.578	0.594	4.719	0.682	5.156	0.573	4. 758		
0.715	0.731	4.813	0.842	5.084	0.718	4.818		
0.830	0.844	4.914	0.928	5.015	0.836	4.861		

TABLA 6.242

Parámetros de ajuste del modelo S.T.M. (método I)

Parámetro	CO2	Etileno	Etano
m	8	6	6
β (Å ³ /molécula)	0.0000889	0.0001121	0.0001121
K (moléc/cav.KPa)	8.3583	6.8361	6.8361

TABLA 6.243

Parámetros de ajuste del modelo S.T.M. (método III)

P(KPa)	Parámetro	C0 ₂	Etileno	Etano
	α,	1.0000	1.1649	1.5719
100	Q	1.0000	3.2858	2. 95 20
	δ _{ij}	-0.1069	-0.1205	0.0263
	α,	1.0000	1.3356	1.3684
500	Q	1.0000	2.9101	3.6446
	δ	-0.2790	-0.3532	0.0330
	α,	1.0000	1.1682	1.3134
1000	Q	1.0000	2.8922	2.8616
	δ _{ij}	-0.2518	-0.2916	0.0379
	α,	1.0000	1.0727	1.1588
1500	Q,	1.0000	2.8815	2.9200
	δ	-0.2272	-0.2653	0.0341

TABLA 6.244

Predico	Predicción del equilibrio de adsorción en CMS 5A a 100 KPa en la mezcla CO ₂ -etileno mediante la teoría S.T.M.							
EXI	PERIMENT	AL	Méto	odo I	Método	s III		
x	У ₁	n	У ₁	n	У ₁	n		
0.090	0.124	2.717	0.101	0.010	0.068	2		
0.154	0.254	2.723	0.213	0.010	0.148	2		
0.251	0.411	2.754	0.356	0.010	0.258	2		
0.396	0.581	2.734	0.524	0.009	0.401	2		
0.553	0.728	2.658	0.679	0.009	0.556	2		
0.710	0. 837	2.620	0.803	0.009	0.699	2		

TABLA 6.245

Predico	Predicción del equilibrio de adsorción en CMS 5A a 500 KPa en la mezcla CO ₂ -etileno mediante la teoría S.T.M.							
EXI	PERIMENT	AL.	Méto	odo I	Método	S III		
x ₁	У1	n	У ₁	n	У ₁	n		
0.093	0.118	3.882	0.096	0.053	0.068	2		
0.129	0.212	3.969	0.176	0.052	0.125	2		
0.224	0.369	4.153	0.317	0.050	0.229	2		
0.333	0. 518	4.212	0.461	0.048	0.340	2		
0.471	0.668	4.312	0.615	0.047	0.473	2		
0.605	0.777	4.324	0.735	0.046	0.592	2		

TABLA 6.246

Predicci	Predicción del equilibrio de adsorción en CMS 5A a 1000 KPA en							
	la mezcia CU-etileno mediante la teoria 5.1.M.							
EXI	PERIMENTA	4 , L.	Meto		Método 	,		
× 1	У ₁	n	У ₁	n	У 1	n		
0.095	0.113	4.598	0.092	0.104	0.072	2		
0.132	0.207	4.701	0.172	0.102	0.135	2		
0.234	0.354	4.834	0.304	0.099	0.238	2		
0.345	0.499	5.021	0.442	0.096	0.351	2		
0.480	0.640	5.126	0.586	0.093	0.475	2		
0.609	0.762	5.173	0.718	0.090	0.605	2		

TABLA 6.247

Predicc	Predicción del equilibrio de adsorción en CMS 5A A 1500 KPA en la mezcla CO ₂ -etileno mediante la teoría S.T.M.										
EX	EXPERIMENTAL			odo I	Método	, III					
x ₁	У1	n	y ₁	n	У	n					
0.099	0.110	4.926	0.089	0.152	0.075	2					
0.136	0.198	5.144	0.164	0.149	0.137	2					
0.239	0.349	5.302	0.299	0.145	0.248	2					
0.347	0.480	5.364	0.424	0.141	0.351	2					
0.483	0.633	5.487	0.579	0.137	0.488	2					
0.612	0.749	5.580	0.704	0.133	0.609	2					

Predic	Predicción del equilibrio de adsorción en CMS 5A a 100 KPA en										
	la mezcla CO ₂ -etano mediante la teoría S.T.M.										
EX	EXPERIMENTAL			odo I	Método	o III					
x 1	У ₁	n	y ₁	n	У1	n					
0.082	0.128	2.596	0.104	0.010	0.0 5 7	2					
0.139	0.246	2. 575	0.206	0.010	0.117	2					
0.227	0.435	2.515	0.379	0.010	0.233	2					
0.343	0.602	2.427	0.545	0.009	0.366	2					
0.534	0.760	2.406	0.715	0.009	0.537	2					
0.692	0.857	2.417	0.826	0.009	0.680	2					

TABLA 6.248

TABLA 6.249

Predicción del equilibrio de adsorción en CMS 5A a 500 KPA en la mezcla CO ₂ -etano mediante la teoría S.T.M.										
EXPERIMENTAL			Méto	Método I		o III				
×	y ₁	n	У1	n	У ₁	n				
0.095	0.115	3.581	0.094	0.053	0.061	2				
0.140	0.225	3.774	0.187	0.052	0.124	2				
0.187	0.345	3.913	0.295	0.050	0.198	2				
0.283	0.495	4.191	0.438	0.049	0.301	2				
0.423	0.652	4.183	0.598	0.047	0.429	2				
0.558	0.772	4.306	0.729	0.046	0.555	2				

TABLA 6.250

6 -

Predicci	ión del	equilibr	io de adsorción en CMS 5	A a 1000 1	KPA en					
	la mezcla CO ₂ -etano mediante la teoría S.T.M.									
EXPERIMENTAL			Método I	Método	o III					
× 1	У ₁	n	y ₁ n	У ₁	n					
0.093	0.111	4.273	0.090 0.103	0.066	2					
0.149	0.218	4.398	0.182 0.101	0.133	2					
0.197	0.337	4.580	0.288 0.099	0.212	2					
0.291	0.462	4.774	0.406 0.096	0.302	2					
0.410	0.601	5.069	0.545 0.093	0.416	2					
0.565	0.746	5.180	0.701 0.090	0.561	2					

TABLA 6.251

Predicción del equilibrio de adsorción en CMS 5A a 1500 KPA en la mezcla CO ₂ -etano mediante la teoría S.T.M.									
EXPERIMENTAL			Méto	do I	Método) III			
x	У ₁	n	У ₁	n	У ₁	n			
0.091	0.110	4.662	0.089	0.151	0.071	2			
0.152	0.210	4.752	0.175	0.148	0.138	2			
0.201	0.316	5.022	0,269	0.146	0.213	2			
0.294	0.437	5.212	0,383	0.142	0.303	2			
0.413	0.573	5.494	0.517	0.138	0.415	2			
0.560	0.712	5.571	0.664	0.134	0.549	2			

TABLA 6.252

Predicción del equilibrio de adsorción en CMS 5A a 100 KPA en									
EXI	EXPERIMENTAL			ao 1	Metodo	·			
×_1	У ₁	n	У ₁	n	У 1	n			
0.147	0.186	2.657	0.186	0.011	0.1 49	2			
0.289	0.344	2.649	0.344	0.011	0.288	2			
0.460	0.519	2.697	0.519	0.011	0.457	2			
0.615	0.668	2.651	0.668	0.011	0.613	2			
0.767	0.805	2.659	0.805	0.011	0.766	2			
0.874	0.900	2.712	0.900	0.011	0.878	2			

TABLA 6.253

P	Predicción del equilibrio de adsorción en CMS 5A a 500 KPA en la mezcla etileno-etano mediante la teoría S.T.M.									
	EXPERIMENTAL			Méto	odo I	Método) III			
	×1	У1	n	y ₁	n	y ₁	n			
0	. 160	0.185	3. 598	0.185	0.054	0.162	2			
0	. 288	0.313	3.607	0.313	0.054	0.281	2			
0	. 462	0. 497	3.635	0.497	0.054	0.462	2			
0	. 593	0.623	3,668	0.623	0.054	0.592	2			
0	. 712	0.733	3.858	0.733	0.054	0.708	2			
0	. 860	0.873	3.781	0.873	0.054	0.860	2			

Predicción del equilibrio de adsorción en CMS 5A a 1000 KPA en la mezcla etileno-etano mediante la teoría S.T.M.											
EXPERIMENTAL			Méto	odo I	Método	o III					
×	У1	n	У ₁	n	У ₁	n					
0.162	0.184	4.199	0.184	0.106	0.164	2					
0.287	0.311	4.249	0.311	0.106	0.284	2					
0.451	0.477	4.351	0.477	0.106	0.448	2					
0.580	0.606	4.402	0.606	0.106	0.580	2					
0.714	0.732	4.423	0.732	0.106	0.713	2					
0.839	0.850	4.548	0.850	0.106	0.839	2					

TABLA 6.254

TABLA 6.255

Predicci	Predicción del equilibrio de adsorción en CMS 5A a 1500 KPA en la mezcla etileno-etano mediante la teoría S.T.M.									
	la mezc	la etiler	10-etano median	ite la te	DF1a 5.1.M.					
EXPERIMENTAL			Méto	odo I	Método III					
× 1	У ₁	n	У ₁	n	У ₁	n				
0.163	0.184	4.587	0.184	0.154	0.168	2				
0.287	0.309	4.640	0.309	0.155	0.288	2				
0.447	0.468	4.701	0.469	0.155	0.446	2				
0.578	0.594	4.719	0.595	0.155	0.575	2				
0.715	0.731	4.813	0.731	0.155	0.717	2				
0.830	0.844	4.914	0.844	0.155	0.836	2				

Figura 6.68. Isotermas de adsorción individuales de CO_2 en la mezcla CO_2 -etileno en CMS 5A a 293 K. Relaciones molares iniciales n_1/n_2 : $\Delta 1/8$, $\Box 1/4$, $\Rightarrow 1/2$, $\Rightarrow 1/1$, O 2/1, $\Diamond 4/1$.

Figura 6.69. Isotermas de adsorción individuales de **etileno** en la mezcla **CO₂-etileno** en **CMS 5A** a 293 K. Relaciones molares iniciales n_1/n_2 : $\Delta 1/8$, $\Box 1/4$, $\Leftrightarrow 1/2$, $\Rightarrow 1/1$, O 2/1, $\Diamond 4/1$.

Figura 6.70. Isotermas de adsorción individuales de CO_2 en la mezcla CO_2 -etano en CMS 5A a 293 K. Relaciones molares iniciales n_1/n_2 : $\Delta 1/8$, $\Box 1/4$, $\Rightarrow 1/2$, $\Rightarrow 1/1$, O 2/1, $\Diamond 4/1$.

Figura 6.71. Isotermas de adsorción individuales de **etano** en la mezcla CO_2 -etano en CMS 5A a 293 K. Relaciones molares iniciales n_1/n_2 : $\Delta 1/8$, $\Box 1/4$, $\Rightarrow 1/2$, $\Rightarrow 1/1$, O 2/1, $\Diamond 4/1$.

Figura 6.72. Isotermas de adsorción individuales de **etileno** en la mezcla **etileno-etano** en **CMS 5A** a 293 K. Relaciones molares iniciales n_1/n_2 : 01/8, \Rightarrow 1/4, \Diamond 1/2, \Rightarrow 1/1, \Box 2/1, \triangle 4/1.

Figura 6.73. Isotermas de adsorción individuales de **etano** en la mezcla **etileno-etano** en **CMS 5A** a 293 K. Relaciones volumétricas iniciales n_1/n_2 : 01/8, racciones 1/4, racciones 1/2, racciones 4/1.

Figura 6.74. Isotermas de adsorción individuales de etano en la mezcla etano-etileno en zeolita 5A a 293 K. Relaciones molares iniciales n_1/n_2 : $\circ 1/8$, $\Box 1/4$, $\circ 1/2$, $\triangle 1/1$, $\Rightarrow 2/1$, + 4/1.

Figura 6.75. Isotermas de adsorción individuales de etileno en la mezcla etano-etileno en zeolita 5A a 293 K. Relaciones molares iniciales n_1/n_2 : \circ 1/8, \Box 1/4, \circ 1/2, \triangle 1/1, \Rightarrow 2/1, + 4/1.

Figura 6.76. Isotermas de adsorción individuales de **etano** en la mezcla **etano-CO**₂ en **zeolita 5A** a 293 K. Relaciones molares iniciales n_1/n_2 : 0.1/8, 0.1/4, 0.1/2, 0.1/1, 2.1/1, 4.1/1.

Figura 6.77. Isotermas de adsorción individuales de CO_2 en la mezcla etano- CO_2 en zeolita 5A a 293 K. Relaciones molares iniciales n_1/n_2 : $\sqrt{1/8}$, $\Delta 1/4$, $\Box 1/2$, O 1/1, $\Rightarrow 2/1$, + 4/1.

Figura 6.78. Isotermas de adsorción individuales de **etileno** en la mezcla **etileno-CO** en **zeolita 5A** a 293 K. Relaciones molares iniciales n_1/n_2 : $\sqrt{1/8}$, $\Delta 1/4$, $\Box 1/2$, O 1/1, $\Rightarrow 2/1$, + 4/1.

Figura 6.79. Isotermas de adsorción individuales de CO₂ en la mezcla etileno-CO₂ en zeolita 5A a 293 K. Relaciones molares iniciales n_1/n_2 : \Diamond 1/8, \triangle 1/4, \Box 1/2, \bigcirc 1/1, \Rightarrow 2/1, + 4/1.

Figura 6.80. Isotermas de adsorción totales de la mezcla CO_2 -etileno en CMS 5A a 293 K. Relaciones molares iniciales n_1/n_2 : \triangle 1/8, \Box 1/4, \Diamond 1/2, \Rightarrow 1/1, O 2/1, \Diamond 4/1.

CMS 5A a 293 K. Relaciones molares iniciales n_1/n_2 : $\triangle 1/8$, $\Box 1/4$, $\Rightarrow 1/2$, $\Rightarrow 1/1$, $\bigcirc 2/1$, $\diamondsuit 4/1$.

Figura 6.82. Isotermas de adsorción totales de la mezcla etileno-etano en CMS 5A a 293 K. Relaciones molares iniciales n_1/n_2 : $\triangle 1/8$, $\Box 1/4$, $\Rightarrow 1/2$, $\Rightarrow 1/1$, $\bigcirc 2/1$, $\diamondsuit 4/1$.

Figura 6.83. Isotermas de adsorción totales de la mezcla **etano-etileno** en **zeolita 5A** a 293 K. Relaciones molares iniciales n_1/n_2 : \Diamond 1/8, \Box 1/4, O 1/2, \triangle 1/1, \doteqdot 2/1, + 4/1.

Figura 6.84. Isotermas de adsorción totales de la mezcla etano-CO₂ en zeolita 5A a 293 K. Relaciones molares iniciales n_1/n_2 : \Diamond 1/8, \triangle 1/4, \Box 1/2, O 1/1, \Rightarrow 2/1, + 4/1.

Figura 6.85. Isotermas de adsorción totales de la mezcla etileno-CO₂ en zeolita 5A a 293 K. Relaciones molares iniciales n_1/n_2 : § 1/8, Δ 1/4, \Box 1/2, O 1/1, \Leftrightarrow 2/1, + 4/1.

Figura 6.86. Diagrama isobárico de equilibrio x-y del sistema CO_2 -etileno en CMS 5A a 100 KPa.

Figura 6.88. Diagrama isobárico de equilibrio x-y del sistema etileno-etano en CMS 5A a 500 KPa.

(-----I, A, S, ;-----H, I, A, S, ; ----R, A, S, ; -----S, P, D,).

Figura 6.89. Diagrama isobárico de equilibrio x-y del sistema etano-etileno en zeolita 5A a 1000 KPa. (_____I.A.S.; -----H.I.A.S.; _---R.A.S.; ____S.P.D.).

Figura 6.90. Diagrama isobárico de equilibrio x-y del sistema etano-CO₂ en zeolita 5A a 1000 KPa.

 $(\longrightarrow I. A. S. ; - - - - H. I. A. S. ; - - - R. A. S. ; - - S. P. D.).$

Figura 6.91. Diagrama isobárico de equilibrio x-y del sistema etileno-CO₂ en zeolita 5A a 1000 KPa. (______I.A.S.;-----H.I.A.S.;----R.A.S.;_---S.P.D.).

Figura 6.92. Diagrama isobárico de equilibrio x-y del sistema CO₂-etileno en CMS 5A a 1500 KPa. (------I.A.S.; ----R.A.S.).

Figura 6.93. Diagrama isobárico de equilibrio y-n del sistema etano-etileno en zeolíta 5A a 500 KPa. (------I.A.S.; ----R.A.S.).

Figura 6.94. Diagrama isobárico de equilibrio x-y del sistema CO₂-etileno en CMS 5A a 500 KPa.

Figura 6.95. Diagrama isobárico de equilibrio x-y del sistema CO₂-etano en CMS 5A a 100 KPa. (------ D. I. F.; ----- S. T. M. (I); ----- S. T. M. (III)).

Figura 6.96. Diagrama isobárico de equilibrio x-y del sistema etileno-etano en CMS 5A a 1000 KPa.

(----D. I.W.; ----D.I.F.; ----S.T.M. (II); ----S.T.M. (III)).

6.5. MEZCLAS TERNARIAS.

<u>6.5.1.</u> ISOTERMAS DE ADSORCION DE MEZCLAS TERNARIAS EN ZEOLITA ZSM-5 Si0/A10 = 29.

En las figuras 6.98 a 6.100 se han representado las isotermas de equilibrio individuales de cada uno de los adsorbatos que componen la mezcla CO_2 -etileno-propano, en zeolita ZSM-5 (SiO_/AIO_2 = 29) a presiones inferiores a la atmosférica. A modo de referencia se incluye la isoterma correspondiente al componente puro. Se puede observar que las isotermas de CO_2 y de propano tienden a alcanzar rápidamente la saturación si bien no se producen los efectos de desplazamiento que se observaron al estudiar el equilibrio de adsorción de mezclas binarias. En las isotermas de etileno, sin embargo, no se observa esta tendencia.

En la figura 6.97 se han representado las isotermas totales de la mezcla ternaria, junto con las correspondientes a los tres componentes puros. Se puede observar que todas las isotermas de mezcla se encuentran comprendidas dentro de las correspondientes a los componentes puros. Estos hechos indican un comportamiento de la mezcla no demasiado alejado de la idealidad.

Al igual que se realizó con las isotermas binarias, se han obtenido los diagramas x-y, por interpolación entre puntos experimentales de distinta composición inicial. Estos datos, que se presentan en las tablas 6.256 a 6.259, han sido obtenidos para las presiones de 6.6, 13.3, 53.3 y 80.0 KPa. En la figura 6.101 se representa el diagrama ternario de composición en la fase gaseosa de los tres componentes de la mezcla, a 53.3 KPa. En este gráfico se incluyen tanto los datos experimentales como los resultados obtenidos en la predicción con varios modelos. Como se observa, cada vértice corresponde a un adsorbato puro y cada punto interior corresponde a un valor de la composición de la fase gaseosa y₁, y₂, y₃ del correspondiente sistema ternario.

6.4.2. PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS TERNARIAS MEDIANTE LAS TEORIAS I.A.S., H.I.A.S., R.A.S. Y.S.P.D.

Siguiendo el método de cálculo expuesto en el apartado 2.3.5 se ha realizado la predicción del equilibrio de adsorción del sistema ternario

 CO_2 -etileno-propano en zeolita ZSM-5 (SiO_2/Al_2O_3 = 29) a las presiones de 6.6, 13.3, 53.3 y 80.0 KPa, mediante el modelo I.A.S. Los resultados obtenidos en la predicción tanto de la fracción molar de la fase gaseosa y_i, como de la cantidad total adsorbida se presentan en las tablas 6.256 a 6.259.

En el apartado 6.3 de la discusión de resultados se presenta el esquema de cálculo correspondiente a la predicción del equilibrio de adsorción mediante el modelo H.I.A.S. Como se puede observar, sólo es necesario disponer de los parámetros m, c_0 , ε y σ , que se obtienen a partir de los componentes puros y que ya fueron utilizados en la predicción de las mezclas binarias. Según este esquema se ha realizado la predicción del sistema ternario a las cuatro presiones estudiadas. Los resultados de esta predicción se presentan en las tablas 6.260 a 6.263.

Se ha realizado la predicción del equilibrio de adsorción del sistema ternario mediante el modelo R.A.S. siguiendo el esquema de predicción expuesto en el apartado 2.3.4. Cabe destacar que es necesario disponer de los valores de la ecuación de Wilson obtenidos en la reproducción de las mezclas binarias, para realizar el cálculo de los coeficientes de actividad del sistema ternario. Los resultados obtenidos se presentan en las tablas 6.264 a 6.267.

Finalmente se ha realizado la predicción del sistema ternario a las presiones de 6.6 y 53.3 KPa mediante el modelo S.P.D. siguiendo el esquema de cálculo expuesto en el apartado 2.3.4. Como ya se explicó en el apartado 6.3 de la discusión de resultados, para realizar la predicción del equilibrio mediante este modelo se necesitan los siguientes parámetros: s_1 , s_2 , s_3 , β_{12} , β_{23} , β_{13} . Los parámetros que hay que utilizar, no son los obtenidos en el ajuste individual de cada mezcla sino en el ajuste global de los tres sistemas binarios (tabla 6.124), por las razones que ya han sido explicadas. Los resultados obtenidos se presentan en las tablas 6.268 y 6.269.

La predicción de la cantidad adsorbida total mediante los modelos I.A.S., R.A.S. y S.P.D. se realizó, al igual que en el caso de las mezclas binarias, mediante la ecuación 2.53.

A fin de poder comparar de forma global los resultados obtenidos en

la predicción con estos modelos, se ha calculado la desviación típica σ_y para cada uno de los cuatro modelos estudiados. Los resultados se presentan en la tabla 6.310 Así mismo, en la figura 6.101 se ha representado en el diagrama triangular de fracciones molares de la fase gaseosa, tanto los puntos experimentales como las predicciones de los modelos.

Hay que explicar que para observar mejor de forma gráfica los resultados de los modelos en el diagrama triangular, se ha realizado la predicción de las curvas de composición variable y_i , que tienen como parámetro común la relación de fracciones molares de la fase adsorbida x_1/x_2 correspondiente al punto experimental considerado. Así se obtiene una curva que, si el modelo conduce a buenos resultados, tiene que pasar por el punto experimental.

De la tabla de los errores, así como del diagrama triangular se pueden sacar las siguientes conclusiones:

- El modelo H.I.A.S. mejora la predicción realizada por el modelo I.A.S., lo cual era de esperar ya que considera la heterogeneidad del adsorbente mediante la introducción de unos parámetros que hacen más flexible el modelo y tienen en cuenta las posibles desviaciones del comportamiento ideal debido a la estructura energética del adsorbente.

- El modelo R.A.S. mejora los resultados obtenidos con los modelos H.I.A.S. y I.A.S.. Este hecho concuerda con la explicación que se dió al estudiar las mezclas binarias, de que al introducir un coeficiente de actividad en la ley de Raoult, que tiene en cuenta las desviaciones del comportamiento ideal, se mejoran los resultados del modelo.

- El modelo S.P.D. mejora las predicciones realizadas por el I.A.S. y el H.I.A.S., si bien conduce a peores resultados que el modelo R.A.S. En teoría, el modelo S.P.D. debería proporcionar mejores resultados que el modelo R.A.S., ya que se basa en el mismo esquema de cálculo con la diferencia de que la ecuación que se utiliza para el cálculo del coeficiente de actividad de la fase adsorbida es supuestamente más correcta, ya que éste depende no sólo de la fracción molar de la misma sino de la presión superficial.

Para explicar estas diferencias en los resultados obtenidos hay que

tener en cuenta varios factores. En primer lugar, la magnitud de la dependencia de los coeficientes de actividad con la presión superficial en la práctica es despreciable, como se ha puesto de manifiesto en esta investigación y en otras anteriores (Cabra, 1983). Por otro lado, este modelo (S.P.D.) tiene un procedimiento de cálculo mucho más complejo, ya que necesita de isotermas a diferentes temperaturas para el cálculo del calor isostérico de adsorción, cálculo que lleva consigo un error considerable al realizarse de forma gráfica. Otro factor importante a tener en cuenta es que en la predicción del sistema ternario no se utilizan, como se ha comentado anteriormente, los valores de los parámetros que realizan un mejor ajuste de los sistemas binarios, sino que hay que acudir a los obtenidos en el ajuste global de las tres mezclas. Esto lleva consigo un aumento del error en la predicción del sistema ternario que no se produce en el modelo R.A.S.. Por último, tambien hay que tener en cuenta que las regiones de confianza de los parámetros del modelo S.P.D. eran muy abiertas, como se vió en el apartado 6.3, lo cual implica una mayor incertidumbre en los parámetros obtenidos con este modelo. Todo esto hace que la predicción realizada mediante el modelo S.P.D., si bien debería mejorar la realizada mediante el modelo R.A.S., no lo hace debido a la mayor complejidad de cálculo y limitaciones expuestas.

6.5.3. ISOTERMAS DE ADSORCION DE MEZCLAS TERNARIAS EN CMS 5A Y ZEOLITA 5A A ELEVADAS PRESIONES.

En las figuras 6.103 a 6.105 se han representado las isotermas individuales de cada uno de los componentes del sistema ternario CO_2 -etileno-etano en CMS 5A. A modo de referencia se incluye la isoterma correspondiente al componente puro. Así mismo, en la figura 6.102 se representan las isotermas de adsorción totales, correspondientes al mismo sistema. Como se puede observar, no se producen los efectos de desplazamiento ni de sobreadsorción observados en otros adsorbentes y ya comentados.

En las figuras 6.108 a 6.110 se han representado las isotermas individuales de cada uno de los componentes del sistema etano-etileno- CO_2 en zeolita 5A. Como se puede observar, las isotermas individuales de etano (figura 6.108) muestran un claro efecto de desplazamiento producido sobre este componente en su mezcla con el CO_2 y el etileno, al igual que ocurría en las mezclas binarias. Este efecto es aún más claro que en los sistemas binarios debido a que existe una mayor saturación del adsorbente y por lo tanto una mayor competitividad por el mismo. En la figura 6.107 se muestran las isotermas totales del sistema ternario, no observándose ningun efecto de sobreadsorción.

6.5.4. PREDICCION DEL EQUILIBRIO DE ADSORCION DE MEZCLAS TERNARIAS A ELEVADAS PRESIONES.

Realizando las modificaciones comentadas en el apartado 6.4.1 y siguiendo los esquemas de cálculo expuestos para cada modelo, se ha realizado la predicción del equilibrio de adsorción del sistema ternario CO_2 -etileno-etano en CMS 5A mediante las teorías I.A.S., H.I.A.S., R.A.S., V.S.M. y S.T.M. a las presiones de 100, 500, 1000 y 1500 KPa y mediante el modelo S.P.D. a 100 y 1000 KPa. Así mismo, se han realizado las predicciones correspondientes al sistema ternario etano-etileno- CO_2 en zeolita 5A mediante los modelos I.A.S., H.I.A.S. y R.A.S a las presiones de 500, 1000, 2000 y 3000 KPa, y mediante el modelo S.P.D. a las presiones de 1000 y 3000 KPa. La razón de realizar la predicción con el modelo S.P.D. solamente a dos presiones es la gran complejidad de cálculo que conlleva este método.

En las figuras 6.106 y 6.111 se muestran los diagramas de equilibrio triangulares y_1 , y_2 , y_3 del sistema ternario a las presiones de 500 KPa en el caso del CMS 5A y de 3000 KPa en el caso de la zeolita 5A. En estos diagramas se representan, junto a los puntos experimentales, las predicciones realizadas por los modelos I.A.S., H.I.A.S. y R.A.S. No se incluye el modelo S.P.D. puesto que da resultados similares al R.A.S. Tampoco se incluyen el V.S.M. ni el S.T.M. puesto que dan peores resultados que el I.A.S.

Como se puede observar, se sigue la misma tendencia que a presión atmosférica. El modelo R.A.S. mejora al H.I.A.S y éste a su vez al I.A.S.. Cabe destacar que en el caso de la zeolita 5A, el error es algo mayor y las diferencias entre los diferentes modelos son más pequeñas. Estas diferencias se comentarán en el apartado siguiente.

Por último hay que decir que la predicción de la cantidad adsorbida es similar con todos los modelos.

TABLA 6.256

c =

.

Predicción del equilibrio de adsorción a 6.6 KPa de la mezcla								
CO2(1)-etiler	no(2)-pro	pano(3)	en zeolita	ZSM-5 (S	510 ₂ /A1 ₂ () ₂ = 29)	
		r	nediante	la teoria l	.A.S.			
	EXE	PERIMENT	AL.		I.A.S	5.		
Comp	×	У _i	n	У _i	∏A∕RT	Р <mark>0</mark> (П)	n	
1	0.094	0.183	·	0.298		158.6		
2	0. 106	0.040	1.258	0.167	6.071	79.0	1.277	
3	0.800	0.777		0.534		33.4		
1 ;	0.128	0.280		0.334		130.4	<u> </u>	
2	0.288	0.217	1.344	0.362	5.765	62.9	1.281	
3	0.584	0.503		0.304	<u></u>	16.7		
1 ;	0.303	0. 590	<u> </u>	0.577		95.2		
2	0. 343	0.243	1.375	0.299	5.293	43.5	1.285	
3	0.354	0.167		0.125		17.6		
1 ;	0.079	0.196		0.192		121.5		
2	0.542	0.561	1.354	0.627	5.657	57.9	1.281	
3	0.379	0.243	<u> </u>	0.181		23.8		
	0, 399	0.704	, ,,	0.726		91.0		
2	0.150	0.069	1.352	0.124	5.226	41.3	1.290	
3	0.451	0.227		0.150		16.7		

-

TABLA 6.257

Predicción del equilibrio de adsorción a 13.3 KPa de la mezcla									
CO ₂ (1)-etile	no(2)-pro	opano(3)	en zeolita	ZSM-5 (SiO ₂ /Al ₂) ₂ = 29)		
		I	nediante	la teoria l	. A. S.				
	EXI	PERIMENT	AL		Ι.Α.	S.			
Comp	×	У _i	n	У	∏A∕RT	P ⁰ _i (Π)	n		
1	0.092	0.137		0.261		283.3			
2	0.112	0.046	1.372	0.174	7.031	155.3	1.348		
3	0.796	0.817		0.566		71.0			
	0.123	0.238	<u></u>	0.293		238.3			
2	0.300	0.220	1.442	0.381	6.736	127.0	1.368		
3	0.577	0.542		0.326		56.5			
	0.287	0.549		0.527		183.5			
2	0.349	0.268	1.483	0.327	6.304	93.7	1.391		
3	0.364	0.183		0.146		40.3			
	0.076	0.161		0.169		222.4			
2	0.540	0.558	1.477	0.633	6.620	117.2	1.380		
3	0.384	0.281		0.198		51.6			
1	0.387	0.628		0.684	<u> </u>	176.9	·		
2	0.156	0.082	1.479	0.140	6.245	89.7	1.391		
3	0.457	0.290		0.176		38.4			

•

TABLA 6.258

Pred	Predicción del equilibrio de adsorción a 53.3 KPa de la mezcla									
C0_(1	l)-etile	no(2)-pro	opano(3) e	en zeolita	ZSM-5 (9	Si0_/A1_0	$2_{3} = 29$			
_			mediante	la teoria	I.A.S.		-			
,	EXI	PERIMENT	AL		I.A.S	5.				
Comp	×	У _i	n	У _i	ΠA/RT	Ρ <mark>0</mark> (Π)	n			
	0.095	0.106		0.200		840.6				
2	0.138	0.054	1.516	0.189	9.069	546.6	1.501			
3	0.767	0.840		0.612		319.0				
1	0.118	0.176		0.223		756.5				
2	0.327	0.238	1.638	0.396	8.857	484.1	1.548			
3	0.555	0.586		0.381		274.6				
	0.261	0.428		0.424		649.8				
2	0.361	0.296	1.667	0.367	8.557	406.3	1.616			
3	0.378	0.276		0.209		221.5				
1	0.072	0.116		0.130		721.0]			
2	0.547	0.543	1.651	0.626	8.761	457.8	1.596			
3	0.381	0.341		0.244		256.4				
1	0.368	0.509		0.582		632.7	l			
2	0.179	0.096	1.674	0.176	8.505	393.9	1.606			
3	0.453	0.395		0.242		213.3				

TABLA 6.259

Predicción del equilibrio de adsorción a 80.0 KPa de la mezcla												
$CO_2(1)$ -etileno(2)-propano(3) en zeolita ZSM-5 ($SiO_2/Al_2O_3 = 29$)												
mediante la teoria I.A.S.												
	EXPERIMENTAL				I. A. S.							
Comp	×	У	n	У	ΠA/RT	P ⁰ _i (Π)	n					
	0.097	0.102		0.185		1141.2	·					
2	0.146	0.060	1.626	0.189	9.703	777.4	1.550					
3	0.757	0.838		0.626		496.3]					
	0.127	0.162		0,221		1042.1						
2	0.332	0.244	1.728	0.387	9.512	700.0	1.618					
3	0.541	0.594		0.392		434.9						
	0.263	0.398		0.404		922.2						
2	0. 368	0.302	1.763	0.372	9.255	606.9	1.688					
3	0.369	0.300		0.224		363.5]					
	0.071	0.108		0.119		1008.7						
2	0.551	0.541	1.740	0.619	9.444	675.3	1.664					
3	0.378	0.351		0.261		414.9						
	0.366	0.487		0.552		904.6						
2	0.184	0.105	1.749	0.182	9.218	594.7	1.674					
3	0.450	0.408		0.266	<u></u>	354.4						

TABLA 6.260

Predic	ción del	equilibri	o de adso	orción a	6.6 KPa de 1	la mezcla					
$CO_2(1)$ -etileno(2)-propano(3) en zeolita ZSM-5 ($SiO_2/Al_2O_3 = 29$)											
mediante la teoria H.I.A.S.											
EXPERIMENTAL					H. I. A. S.						
Comp	×i	У	n		×	n					
	0.094	0.183			0.071						
2	0.106	0.040	1.258		0.012	1.488					
3	0.800	0.777			0.917						
	0.128	0.280			0.136						
2	0.288	0.217	1.344		0.082	1.479					
3	0.584	0.503			0.782						
1 :	0.303	0.590			0.430						
2	0.343	0.243	1.375		0.139	1.454					
3	0.354	0.167			0.431						
	0.079	0.196			0.133						
2	0.542	0.561	1.354		0.299	1.447					
3	0.379	0.243			0.569						
1	0.399	0.704			0.456						
2	0.150	0.069	1.352		0.035	1.471					
3	0.451	0.227			0.509						
TABLA 6.261

Predic	ción del	equilibri	o de adso	orción a 13.3 KPa d	e la mezcla
CO ₂ (1)	-etileno(2)-propan	o(3) en 2	zeolita ZSM-5 (SiO ₂ ,	$/A1_{20_{3}} = 29)$
	<u></u>	medi	ante la (teoria H.I.A.S.	
	EXPER	IMENTAL]	H.I.A.S.	
Comp	×	У _i	n	×i	a
1	0.092	0.137		0.05	6
2	0.112	0.046	1.372	0.01	5 1.533
3	0.796	0.817	···•	0.92	9
	0.123	0.238		0.11	9
2	0.300	0.220	1.442	0.08	4 1.540
3	0. 577	0.542	<u></u>	0.79	7 .
1 ;	0.287	0.549		0.40	2
2	0.349	0.268	1.483	0.15	1 1.556
3	0.364	0.183		0.44	7
1	0.076	0.161		0.10	8
2	0.540	0.558	1.477	0.28	8 1.537
3	0.384	0.281		0.60	4
1 ;	0.387	0,628		0.38	9
2	0.156	0.082	1.479	0.03	9 1.562
3	0.457	0.290		0.57	2

TABLA 6.262

6

Predicción del equilibrio de adsorción a 53.3 KPa de la mezcla											
$CO_2(1)$ -etileno(2)-propano(3) en zeolita ZSM-5 (SiO_2/Al_2O_3 = 29)											
	mediante la teoria H.I.A.S.										
EXPERIMENTAL H. I. A. S.											
Comp	×	×	n	× _i	n						
	0.095	0.106		0.051							
2	0.138	0.054	1.516	0.019	1.574						
3	0.767	0.840	*	0.930							
	0.118	0.176	<u></u>	0.099							
2	0.327	0.238	1.638	0.098	1.596						
3	0.555	0.586		0.803							
1	0.261	0.428		0.306]						
2	0.361	0.296	1.667	0.156	1.644						
3	0.378	0.276		0. 538							
	0.072	0.116		0.082] [
2	0.547	0.543	1.651	0.282	1.617						
3	0.381	0.341		0.636							
1	0.368	0.509		0.318							
2	0.179	0.096	1.674	0.044	1.632						
3	0. 453	0.395		0.638							

TABLA 6.263

Predic	ción del	equilibri	o de ads	orción a 80.0 KPa de	la mezcla			
CO ₂ (1)	-etileno(2)-propan	o(3) en	zeolita <mark>ZSM-5</mark> (SiO ₂ /A	$1_{2_{3}}^{0} = 29)$			
		medi	ante la	teoria H.I.A.S.				
EXPERIMENTAL H. I. A. S								
Comp	×	У _i	n	×i	n			
1	0.097	0.102		0.052				
2	0.146	0.060	1.626	0.022	1.579			
3	0.757	0.838		0.926				
	0.127	0.162		0.095]			
2	0.332	0.244	1.728	0.104	1.603			
3	0.541	0.594		0.801				
	0.263	0.398	<u> </u>	0.288]			
2	0.368	0.302	1.763	0.159	1.652			
3	0.369	0.300		0.554				
	0.071	0.108		0.078				
2	0.551	0.541	1.740	0.286	1.628			
3	0.378	0.351		0.636				
1	0.366	0.487		0.312	······			
2	0.184	0.105	1.749	0.049	1.641			
3	0. 450	0.408	·	0.639]			

TABLA 6.264

Predi	Predicción del equilibrio de adsorción a 6.6. KPa de la mezcla									
CO ₂ (1)-etile	no(2)-p	ropano(3)	en zeol	ita ZSM	I-5 (SiC	/A1_0	= 29)		
			mediante	la teor	ia R.A.	S				
,	EX	PERIMEN	TAL			R.A.S.		<u> </u>		
Comp	У _i	У _i	n	У _і	∏A∕RT	P ⁰ _i (∏)	γ _i	n		
	0.094	0.183		0.158		220.4	0.382			
2	0.106	0.040	1.258	0.049	6.605	115.9	0. 199	1.317		
3	0.800	0.777		0.793		50.9	0.971			
	0.128	0.280		0.282	•	226.7	0.487]		
2	0.288	0.217	1.344	0.20 5	6.652	119.8	0.297	1.360		
3	0.584	0.503		0.513		52.9	0.829	<u> </u>		
	0.303	0.590		0.626		159.8	0.646]		
2	0.343	0.243	1.375	0.246	6.083	79.7	0.449	1.372		
3	0.354	0.167		0.129		33.7	0.541			
	0.079	0.196		0.216		218.7	0.625]		
2	0.542	0.561	1.354	0.585	6.592	114.9	0.469	1.379		
3	0.379	0.243		0.199		50. 5	0.521			
	0.399	0.704		0.705		156.8	0.564			
2	0.150	0.069	1.352	0.079	6.053	78.0	0.336	1.375		
3	0.451	0.227		0.216		32.9	0.728			

3

TABLA 6.265

Prediccio	ón del (equilit	orio de	adsorci	ón a 13	.3 KPa	de la m	ezcla
CO ₂ (1)-e	tileno(2)-prop	oano(3)	en zeol	ita ZSM	-5 (SiO	0_1A_0	= 29)
		me	diante	la teor	ia R.A.	s.		
	EXPER	IMENTAI				R. A. S.		
Comp :	×,	y _i	n	У _i	∏A∕RT	P ⁰ _i (∏)	γ _i	n
	0.092 0.	137		0.128	•	375.5	0.372]
2 0.	112 0.	046 1.	372	0.065	7.528	215.4	0.268	1.383
3 0.	796 0.	817		0.807		103.7	0.977	
	123 0.3	238		0.223		388.0	0.468]
2 0.3	300 0.2	220 1.	442	0.236	7.587	223.8	0.351	1.442
3 0.	577 0.	542		0.541		108.5	0.864	
	287 0.	549		0.539		307.1	0.611	
2 0.	349 0.3	268 1.	483	0.286	7.171	170.6	0.480	1.482
3 0.3	364 0.	183		0.176		79.1	0.610	
	076 0.	161		0.175		383.8	0.599	
2 0.1	540 0.3	558 1.	477	0.572	7.567	220.9	0.479	1.477
3 0.:	384 0.2	281		0.253		106.8	0.617	
	387 0.	628	•••	0.626		302.3	0.387	
2 0.	156 0.	082 1.	479	0.105	7.144	167.5	0. 156	1.479
3 0.4	1 57 0.1	290		0.269		77.5	0.457	

ĮL,

TABLA 6.266

Predi	cción d	el equi	librio (de adsorci	ón a 53	3.3 KPa	de la m	ezcla
CO_(1)-etile	no(2)-p	ropano(:	3) en zeol	ita ZSN	1-5 (SiC	/A1_0	= 29)
			median	te la teor	ia R.A.	S.		
	EX	PERIMEN	TAL			R.A.S.		
Comp	×	У _i	n	У _i	∏A/RT	P ⁰ _i (∏)	γ _i	n
	0.095	0.106		0.099		1063.4	0.394	
2	0.138	0.054	1.516	0.069	9.554	716.7	0.280	1.535
3	0.767	0.840		0.831		447.8	0.968	
	0.118	0.176		0.166		1158.2	0.486	
2	0.327	0.238	1.638	0.245	9.735	790.6	0.379	1.630
3	0.555	0.586		0.588		507.2	0.836	
	0.261	0.428		0.417		1062.0	0.601]
2	0.361	0.296	1.667	0.319	9.552	715.7	0. 493	1.713
3	0.378	0.276		0.264		447.0	0.626]
	0.072	0.116		0.127		1187.1	0.596	
2	0.547	0.543	1.651	0.575	9.787	813.3	0.517	1.696
3	0.381	0.341		0.298		525.7	0.595	
1	0.368	0.509		0.513		1019.5	0.547]
2	0.179	0.096	1.674	0.126	9.466	682.6	0.412	1.696
3	0.453	0.395		0.361		421.2	0.757]

TABLA 6.267

Predi	.cción d	el equi	librio de	adsorc	ión a 80	0.0 KPa	de la m	ezcla
CO ₂ (1)-etile	no(2)-p	ropano(3)	en zeo	lita ZSN	1- 5 (SiO	2/A1_0	= 29)
	· • <u></u>		mediante	la teor	ia R.A.	<u>S.</u>		
	EX	PERIMEN	TAL			R. A. S.		<u> </u>
Comp	×	У _і	n	У _i	ΠA/RT	$P_i^0(\Pi)$	γ _i	n
	0.097	0.102		0.092		1419.5	0.401	
2	0.146	0.060	1.626	0.074	10.174	998.4	0.305	1.583
3	0.757	0.838		0.834		683.8	0.966	
	0.127	0.162		0.163		1554.5	0.496]]
2	0.332	0.244	1.728	0.248	10.373	1107.7	0.405	1.692
3	0.541	0.594		0.589		782.2	0.835	
	0.263	0.398		0.393		1469.2	0.610]
2	0.368	0.302	1.763	0.329	10.249	1038.8	0.516	1.787
3	0.369	0.300		0.278		719.8	0.628	
	0.071	0.108		0.114		1617.5	0.597]
2	0.551	0.541	1.740	0.566	10.462	1159.6	0.531	1.763
3	0.378	0.351	···· ·····	0.320		830.0	0.612	
1 ;	0.366	0.487		0.478		1417.1	0.553]
2	0.184	0.105	1.749	0.133	10.170	996.5	0.436	1.763
3	0.450	0.408		0.389		682.1	0.760	

TABLA 6.268

Predi	cción d	el equi	librio de	adsorci	óna 6	.6 KPa	de la m	ezcla
CO ₂ (1)-etile	no(2)-p	ropano(3)	en zeol	ita ZSM	-5 (SiO	2/A1_0	= 29)
			mediante	el mode	lo S.P.	D		
	EX	PERIMEN	TAL			S.P.D.		
Comp	У _i	У _i	n	У _i	ΠA/RT	$P_i^0(\Pi)$	γ _i	n
	0.094	0.183		0.129		31.15	0.294	
2	0.106	0.040	1.258	0.047	6.703	16. 54	0.180	1.483
3	0.800	0.777		0.823		7.33	0.935	
	0.128	0.280	· · · · ·	0.315		30.86	0.532	
2	0.288	0.217	1.344	0.233	6.688	16.37	0.329	1.492
3	0.584	0.503		0. 45 2		7.25	0.712	
	0.303	0.590		0.637		18.79	0.745	
2	0.343	0.243	1.375	0.284	5.887	9.18	0.601	1.410
3	0.354	0.167		0.080		3.84	0.391	
	0.079	0.196		0.249		25.98	0.810]
2	0. 542	0.561	1.354	0.618	6.402	13.40	0.567	1.433
3	0.379	0.243		0.134		5.80	0.406	
1 ;	0.399	0.704		0.741		20.15	0.614]
2	0.150	0.069	1.352	0.108	5.996	9.97	0.481	1.454
3	0.451	0.227		0.152		4.19	0.535	

TABLA 6.269

Predi	cción d	el equi	librio de	adsorci	ón a 53	3.3 KPa	de la m	ezcla
CO ₂ (1)-etile	no(2)-p	ropano(3)	en zeol	ita ZSN	1-5 (SiC	/A1_0	= 29)
			mediante	el mode	10 S.P.	D		·
	EX	PERIMEN	TAL			S. P. D.	···· •	
Comp	×	У _i	n	У _i	IIA/RT	P ⁰ ₁ (∏)	¥ _i	n
1	0.095	0.106		0.099		149.38	0.370	
2	0.138	0.054	1.516	0.056	9.664	101.42	0.214	1.718
3	0.767	0.840		0.845		64.39	0.912	
	0.118	0.176	<u></u>	0.235		161.61	0.656	1
2	0.327	0.238	1.638	0.259	9.832	111.06	0.380	1.945
3	0.555	0.586	<u> </u>	0.506		72.27	0.672	
	0.261	0.428		0.510		124.89	0.834	
2	0. 361	0.296	1.667	0.334	9.285	82.29	0.599	1.856
3	0.378	0.276	<u> </u>	0.1 5 6		49.49	0.444	
	0.072	0.116		0.195	· · · <u></u> · · ·	149.08	0.967	
2	0.547	0. 543	1.651	0.616	9.660	101.19	0.594	1.862
3	0.381	0.341		0.189		64.22	0.412	
	0.368	0.509		0.611		127.33	0.696	
2	0.179	0.096	1.674	0.142	9.324	84.13	0.504	1.853
3	0. 453	0.395		0.246		50.86	0.570	

..

435

Pred	licción d	del equi	librio de	adsorción	a 100	KPa de la	a mezcla
C0 ₂ (1)-etile	eno(2)-e	tano(3) en	CMS 5A m	ediante	la teoria	a I.A.S.
	EXI	PERIMENT	AL		Ι.Α.	<u>S.</u>	
Comp	×	У _i	n	У	TIA/RT	$P_i^0(\Pi)$	n
1	0.119	0.190	<u> </u>	0.276		233.1	
2	0.162	0.161	2.530	0.160	12.718	98.8	2.618
3	0.719	0.649		0.565		78.3	
	0.127	0.236		0.262		207.5	
2	0.668	0.633	2.681	0.594	12.265	88.9	2.697
3	0.205	0. 1 [`] 32	<u> </u>	0.144		70.0	
	0.128	0.195		0.282		22.2	
2	0.323	0.320	2.520	0.306	12.531	94.6	2.642
3	0.549	0.486		0.412		74.8	
	0.242	0.390	·····	0.452		187.7	
2	0.351	0.331	2.5720	0.286	11.890	81.5	2.645
3	0.407	0.279		0.262		64.0	
	0.529	0.761		0.735		139.2] [
2	0.221	0.127	2.553	0.141	10.851	63.8	2.654
3	0.250	0.112		0.123		49.4	

TABLA 6.270

TABLA 6.271

Pred	icción d	del equi	librio de	adsorción	a 500	KPa de la	mezcla
C0 ₂ (1)-etile	eno(2)-et	tano(3) e	n CMS 5A me	ediante	la teoria	I.A.S.
	EXI	PERIMENT	AL		Ι.Α.	S.	
Comp	×	У _i	n	У _i	∏A/RT	Ρ ⁰ _i (Π)	n
1	0.116	0.164		0.235		104.8	1
2	0.152	0.184	3.711	0.147	19.875	484.3	3.622
3	0.733	0.653		0.618		418.9	
	0.121	0.173		0.231		982.9	
2	0.685	0.643	3.917	0.618	19. 531	449.8	3.726
3	0.195	0.184		0.151		387.4	
1	0.145	0.175		0.282		997.3	
2	0.315	0.338	3.697	0.289	19.609	457.3	3.654
3	0.539	0.487		0.429		394.4	
1	0.312	0.334		0.516		842.4	
2	0.334	0.336	4.098	0.254	18.710	376.6	3.743
3	0.353	0.330		0.230		320.9	
	0.595	0,657		0.783		663.1	}
2	0.197	0.174	4.296	0.115	17.476	287.8	3.962
3	0.208	0. 169		0.103		241.3	

TABLA 6.272

Pred	licción c	iel equi	librio de	adsorción	a 1000	KPa de la	mezcla
C0 ₂ (1)-etile	eno(2)-e	tano(3) en	CMS 5A m	ediante	la teoria	I.A.S.
	EXF	PERIMENT	AL		Ι.Α.	S.	
Comp	×i	У _і	n	У _і	∏A∕RT	Ρ ⁰ _i (Π)	n
1	0.085	0.164	• • • • • • • • • • • • • • • • • • • •	0.155		1917	
2	0.137	0.174	4.335	0.137	23.296	997.9	4.277
3	0.777	0.662		0.708		902.8	
1 :	0.110	0.169		0.189		1801	
2	0.708	0.653	4.555	0.658	22.929	924.6	4.444
3	0.182	0.178		0.154		832.5	
1	0.166	0.168		0.282		1777	
2	0.306	0.32 5	4.421	0.280	22.851	909.7	4.358
3	0.529	0.508		0.439		818.2]
1 ;	0.343	0.329	-	0.514		1546	1
2	0.321	0.339	4.893	0.250	22.046	768.6	4.490
3	0.336	0.332		0.235		684.1	
1	0.645	0.652		0.795		1250	
2	0.175	0.173	5.170	0.107	20.843	595.8	4.750
3	0.180	0.175		0.098		521.9	

438

Pred	licción d	del equil	librio de	adsorción	a 1500	KPa de 1	a mezcla					
CO ₂ (1)-etile	eno(2)-et	tano(3) en	CMS 5A m	ediante	la teori	a I.A.S.					
	EXPERIMENTAL I.A.S.											
Comp	×	У _і	n	У _і	∏A∕RT	$P_i^0(\Pi)$	n					
1	0.063	0.165		0.105		2692]					
2	0.124	0.174	4.601	0.125	25.351	1518	4.616					
3	0.813	0.661		0.770		1411						
	0.119	0.172		0.188		2511]					
2	0.706	0.649	4.978	0.659	24.921	1392	4.902					
3	0.175	0.179		0.153		1286] [
1 ;	0.173	0.177	·	0.271		2479						
2	0.306	0.325	4.790	0.281	24.843	1370	4.811					
3	0.521	0.498	<u></u>	0.448		1265]					
1	0.356	0.328		0.502		2200						
2	0.322	0.334	5.339	0.258	24.117	1182	4.906					
_3	0.322	0.338		0.239		1081						
	0.669	0.650		0.797		1818]					
2	0.162	0.176	5.638	0.104	22.984	935.2	5.196					
3	0.169	0.174		0.099		842.6]					

TABLA 6.274

Ρ	гес	dice	ción del	equilibr	io de ads	sorción a	100 KPa	a de la	mezcla
С	02	(1)	-etileno	(2)-etanc)(3) en CN	15 5A med	lante la	teoria	H. I. A. S.
			EXPE	RIMENTAL				H. I	A.S
C	omp	p	×	У _i	n			× _i	n
	1	:	0.119	0.190			0.	092	
	2	-	0.162	0.161	2.530		0.	155	2.649
	3	:	0.719	0.649			0.	753	
	1	;	0.127	0.236	·····	. , <u></u>	0.	110	
	2		0.668	0.633	2.682		0.	690	2.733
	3	:	0.205	0.132			0.	199	
	1	:	0.128	0.195			0.	102	
	2		0.323	0.320	2.520		0.	317	2.243
	3		0.549	0.486			0.	420	
	1	:	0.242	0.390		· ·····	0.	220	
	2		0.351	0.331	2. 572		0.	387	2.669
	3	:	0.407	0.279	<u>_</u>		0.	394	
	1	;	0.529	0.761	- • • •	<u> </u>	0.	545]
	2		0.221	0.127	2.553		0.	205	2.680
	3	;	0.250	0.113			0.	250	

,

TABLA 6.275

Predic	ción del	equilibri	o de adsor	ción a 500	KPa	de la	mezcla
CO ₂ (1)	-etileno(2)-etano(3) en CMS	5A mediante	la	teoria	H.I.A.S.
	EXPER	IMENTAL			_	H. I. A	A. S.
Comp	×	У	n			×	n
	0.116	0.164			0.	087	
2	0.152	0.184	3.712		0.	170	3.658
3	0.733	0.653	<u></u>		0.	742	
	0.121	0.173			0.	102	
2	0.685	0.643	3.917		0.	678	3.750
3	0.195	0.184			0.	220	
1	0.145	0.175			0.	099]
2	0.315	0.338	3.697		0.	331	3.681
3	0.539	0.487			0.	570	
1 ,	0.312	0.334			0.	196]
2	0.334	0.336	4.098		0.	359	3.769
3	0.353	0.330			0.	445	
	0.595	0.657			0.	468)
2	0.197	0.174	4.297		0.	231	3.991
3	0.208	0.169	<u> </u>		0.	301]

TABLA 6.276

Predic	ción del	equilibri	o de adsor	ción a 1000	KPa de l	a mezcla
CO ₂ (1)	-etileno(2)-etano(3) en CMS	5A mediante	la teori	a H. I. A. S.
,	EXPER	IMENTAL			H. I	. A. S.
Comp	×	×	n		×	n
1	0.085	0.164		······································	0.089	
2	0.137	0.174	4.335		0.175	4.300
3	0.777	0.662			0.736	
1 :	0.110	0.169		<u> </u>	0.094	
2	0.708	0.653	4.556		0.688	4.471
3	0.182	0.178			0.218	
1 :	0.166	0.168		<u></u>	0.092	·····
2	0.306	0. 32 5	4.421		0.320	4.388
3	0.529	0.508			0.588	
	0.343	0.329	· · · · · · · · · · · · · · · · · · ·	······································	0.190	
2	0.321	0.339	4.894		0.377	4.519
3	0.336	0.332			0.433	
	0.645	0.652			0.455	[[
2	0.175	0.173	5.170		0.253	4.782
3	0.180	0.175			0.292	

TABLA 6.277

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Predic	Predicción del equilibrio de adsorción a 1500 KPa de la mezcla										
EXPERIMENTALH. I. A. S.Comp x_i y_i n x_i n10.0630.1650.09720.1240.1744.6010.1754.64630.8130.6610.72810.1190.1720.10420.7060.6494.9780.6684.92830.1750.1790.22810.1730.1770.11520.3060.3254.7110.3264.84130.5210.4980.55910.3560.3280.21320.3220.3345.3390.3574.93630.3220.3380.430110.6690.6500.47020.1620.1765.6380.2525.22230.1690.1740.278	CO ₂ (1)	-etileno(2)-etano(3) en CMS	5A mediante la teoria H	.I.A.S.						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		EXPER	IMENTAL		H. I. A. 1	5.						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Comp	×	У _i	n	×	n						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.063	0.165		0.097]						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	0.124	0.174	4.601	0.175 4	. 646						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	0.813	0.661	<u></u>	0.728							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.119	0.172		0.104							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	0.706	0.649	4.978	0.668 4	. 928						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	0.175	0.179		0.228]						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.173	0.177		0.115							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	0.306	0.325	4.711	0.326 4	. 841						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	0.521	0.498	· · · · · · · · · · · · · · · · · · ·	0.559							
2 0.322 0.334 5.339 0.357 4.936 3 0.322 0.338 0.430 1 0.669 0.650 0.470 2 0.162 0.176 5.638 0.252 5.222 3 0.169 0.174 0.278 0.278	1	0.356	0.328	.	0.213	l						
3 0.322 0.338 0.430 1 0.669 0.650 0.470 2 0.162 0.176 5.638 0.252 5.222 3 0.169 0.174 0.278 0.278	2	0.322	0.334	5.339	0.357 4	. 936						
1 0.669 0.650 0.470 2 0.162 0.176 5.638 0.252 5.222 3 0.169 0.174 0.278	3	0.322	0.338		0.430							
2 0.162 0.176 5.638 0.252 5.222 3 0.169 0.174 0.278		0.669	0.650	- <u>,</u> .	0.470]						
3 0.169 0.174 0.278	2	0.162	0.176	5.638	0.252 5	. 222						
	3	0.169	0.174		0.278							

TABLA 6.278

Prec	dicción (del equi	librio de	e adsord	ción a	100 KPa	de la	mezcla
2	(1)-etiite						Leoria	п. н. б.
	EXI	PERIMENT	<u>AL.</u>			R. A. S.		
Comp	У _i	У _і	n	У _i	ΠA∕RT	P ⁰ _i (∏)	γ _i	n
1	0.119	0.190		0.207		258.7	0.677	
2	0.162	0.161	2.530	0.176	13.141	108.8	1.001	2.666
3	0.719	0.649		0.617		86.7	0.988	
1	0.127	0.236		0.205		226.3	0.717	
2	0.668	0.633	2.681	0.644	12.602	96.2	1.002	2.745
3	0.205	0.132		0.151		76.1	0.973	
1	0.128	0.195	<u> </u>	0.214		246.7	0.685]
2	0.323	0.320	2.520	0.338	12.945	104.1	1.004	2.694
3	0.549	0.486		0.448		82.7	0.985	
1	0.242	0.390	<u> </u>	0.410		213.1	0.801	
2	0.351	0.331	2.572	0.312	12.367	91.0	0.977	2.704
3	0.407	0.279		0.277		71.8	0.946	
1	0.529	0.761		0.753		150.4	0.948	
2	0.221	0.127	2.553	0.135	11.109	67.8	0.897	2.706
3	0.250	0.112		0.112		52.8	0.849	

TABLA 6.279

Pred	icción	del equ	ilibrio	de adsord	ción a	500 KPa	de la	mezcla
C0 ₂ (1)-etil	eno(2)-	etano(3)	en CMS S	5A media	ante la	teoria	R. A. S.
 	EX	PERIMEN	TAL			R. A. S.		
Comp	×	У _i	n	У _i	∏A∕RT	P ⁰ _i (∏)	γ ₁	n
1	0.116	0.164		0.188	-	1103	0.759	
2	0.152	0.184	3.712	0.159	20.156	514.4	1.018	3.681
_3	0.733	0.653		0.654		446.7	0.994	
1 :	0.121	0.173		0.192	w	1027	0.798	
2	0.685	0.643	3.917	0.649	19.773	473.8	0.998	3.774
3	0. 195	0.184		0.160		409.4	0.996	
1	0.145	0.175		0.234		1057	0.786	
2	0.315	0.338	3.697	0.310	19.922	489.2	1.006	3.722
_3	0.539	0.487		0.456		423.4	0.991	
1 ;	0.312	0.334		0.492		907.0	0.887	
2	0.334	0.336	4.098	0.269	19.102	409.9	0.977	3.8174
_3	0.353	0.330	·	0.239		351.1	0.953	
1	0.595	0.657		0.794		694.5	0.970	
2	0.197	0.174	4.297	0.111	17.711	302.8	0.917	4.006
_3	0.208	0.169		0.096		254.9	0.882]

TABLA 6.280

Prec	licción	del equ	ilibrio	de adsord	ción a 1	1000 KPa	de la	mezcla
C0 ₂ (1)-etil	eno(2)~	etano(3)	en CMS 5	5A media	ante la	teoria	R. A. S.
	EX	PERIMEN	TAL			R. A. S.		
Comp	×	У _i	n	y _i	∏A∕RT	$P_i^0(\Pi)$	γ ₁	n
1	0.085	0.164	······	0.129		1969.0	0.809]
2	0.137	0.174	4.335	0.142	23.453	1031.0	1.008	4.309
3	0.777	0.662		0.729		934.4	1.000	
1 .	0.110	0.169		0.155		1857.0	0.800]
2	0.708	0.653	4.556	0.684	23.109	959.8	1.005	4.481
3	0.182	0.178		0. 161		866,2	1.009	
1	0.166	0.168		0.247		1857.0	0.841	
2	0.306	0.325	4.421	0.293	23.109	959.8	0.997	4.411
3	0.529	0.508		0.460		866.2	0.995	
	0.343	0.329		0.499	·	1637.0	0.921	
2	0.321	0.339	4.894	0.258	22.375	823.4	0.966	4.551
3	0.336	0.332		0.243		736.0	0.966	
	0.645	0.652	<u></u>	0.801		1280	0.984	l
2	0.175	0.173	5.170	0.100	20.978	613.1	0.909	4.783
3	0.180	0.175		0.100		538.0	0.909]

TABLA 6.281

٠

Pred	icción	del equ	ilibrio	de adsord	ción a :	1500 KPa	de la	mezcla
C0 ₂ (1)-etil	eno(2)-	etano(3)	en CMS 5	5A media	ante la	teoria	R. A. S.
	EX	PERIMEN	TAL			R. A. S.		
Comp	×	У _i	n	y _i	∏A∕RT	$P_i^0(\Pi)$	γ _i	n
1	0.063	0.165		0.091		2722.0	0.855]
2	0.124	0.174	4.602	0. 12 9	25.422	1540.0	1.018	4.577
3	0.813	0.661		0.780		1432.0	1.001	
	0.119	0.172		0.163		2562.0	0.851]
2	0.706	0.649	4.978	0.677	25.047	1428.0	1.004	4.910
3	0.175	0.179		0.160		1322.0	1.017]
	0.173	0.177		0.246		2556.0	0.883	· · · · · · · · · · · · · · · · · · ·
2	0.306	0.325	4.791	0.292	25.031	1423.0	1.002	4.785
3	0.521	0.498		0.463		1317.0	1.000	
	0.356	0.328		0.491		2290.0	0.942	l
2	0.322	0.334	5.339	0.264	24.359	1242.0	0.975	4.970
3	0.322	0.338		0.246		1139.0	0.980	
	0.669	0.650		0.806		1862.0	0.989	1
2	0.162	0.176	5.638	0.099	23.125	962.9	0.927	5.236
3	0.169	0.147		0.095		869.2	0.935	

446

1

TABLA 6.282

Pre	dicción	del equ	ilibrio	de adsord	ción a	100 KPa	de la	mezcla				
C0 ₂	(1)-etil	eno(2)-	etano(3)	en CMS 5	5A media	ante la	teoria	S.P.D.				
	EXPERIMENTAL S.P.D.											
Comp	у у	У	n	У	∏A∕RT	$P_i^0(\Pi)$	$\overline{\gamma_{i}}$	n				
1	0.119	0.190		0.223		1902.0	0.760					
2	0.162	0.161	2.530	0.172	23.250	988.5	1.015	2.665				
3	0.719	0.649	. <u> </u>	0.605	·····	893.5	1.003					
1	0.127	0.236		0.217		1803.0	0.784					
2	0.668	0.633	2.682	0.626	22.937	926.1	0.999	2.734				
3	0.205	0.132		0.157		833.9	1.028					
1	0.128	0.195		0.232		1835.0	0.771	<u> </u>				
2	0.323	0.320	2.520	0.326	23.039	945.9	1.006	2.689				
3	0.549	0.486		0.442		852.9	1.009					
1	0.242	0.390		0.410	····	1764.0	0.841					
2	0.351	0.331	2.572	0.305	22.807	901.2	0.997	2.699				
3	0.407	0.279		0.285		810.1	1.017					
1	0.529	0.761		0.740		1632.0	1.038					
2	0.221	0.127	2.553	0.135	22.356	820.0	0.979	2.627				
3	0.250	0.112		0.126		732.8	1.031					
۱ <u> </u>			<u> </u>					J				

TABLA 6.283

Predi	cción d	el equi	librio d	de adsorc	ión a 10	000 KPa	de la m	nezcla			
C0 ₂ (CO ₂ (1)-etileno(2)-etano(3) en CMS 5A mediante la teoria S.P.D.										
	EXPERIMENTAL S. P. D.										
Comp	×	У _i	n	У _i	∏A∕RT	P ⁰ _i (∏)	γ _i	n			
	0.085	0.164		0.160		1902.0	1.068				
2	0.137	0.174	4.335	0.1 46	23.250	988.2	1.109	4.268			
3	0.777	0.662		0.695		893.5	0.992				
	0.110	0.169		0.182		1803.0	0.996				
2	0.708	0.653	4.556	0.671	22.937	926.1	1.020	4.444			
3	0.182	0.178		0.147		833.9	0.962				
	0.166	0.168		0.246		1835.0	0.872				
2	0.306	0.325	4.421	0.321	23.039	945.9	1.120	4.401			
3	0.529	0.508		0.433		852.9	0.949				
1	0.343	0.329		0.446		1764.0	0.780				
2	0.321	0. 339	4.894	0.335	22.607	901.2	1.153	4.633			
3	0.336	0.332		0.220		810.1	0.797				
1 ;	0.645	0.652	· · · ·	0.828		1632.0	0.815				
2	0.175	0.173	5.170	0.124	22.356	820.0	0.856	5.046			
3	0.180	0.175		0.048		732.8	0.363				

és s

•

TABLA 6.284

EXPERIMENTAL D. I. W. D. I. F.									
Comp	×	У _i	n	У _i	n	У	n		
1	0.119	0.190		0.316	<u> </u>	0.170			
2	0.162	0.161	2.530	0.087	2.549	0.159	2.50		
3	0.719	0.649		0.597		0.671			
1	0.127	0.236	· · ·	0.342		0.208			
2	0.668	0.633	2.682	0.603	2.509	0.625	2.45		
3	0.205	0.132	·· ··· ·······························	0.055		0.167			
1 :	0.128	0.195		0.390		0.193			
2	0.323	0.320	2.520	0.259	2.568	0.315	2.49		
3	0.549	0.486		0.352		0.492			
1	0.242	0.390	·	0.595		0.384	<u></u>		
2	0.351	0.331	2.572	0.247	2.479	0.307	2.51		
3	0.407	0.279	<u></u>	0.158	·· <u></u>	0.309			
1	0.529	0.761		0.843		0.785			
2	0.221	0.127	2.553	0.107	2.410	0.115	2.51		
3	0.250	0.112		0.050		0.100			

TABLA 6.285

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Predic	Predicción del equilibrio de adsorción a 500 KPa de la mezcla											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CO ₂ (1)	$CO_2(1)$ -etileno(2)-etano(3) en CMS 5A mediante la teoria V.S.M.											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EXPERIMENTAL D. I. W. D. I. F.												
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Comp	×	У	n	У	n	У _i	n					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.116	0.164		0.206		0.111	}					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	0.152	0.184	3.712	0.080	3.890	0.153	3.873					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	0.733	0.653		0.714		0.735]					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.121	0.173	_	0.235		0.132						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	0.685	0.643	3.917	0.692	3.884	0.693	3.934					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	0.195	0.184		0.074		0.175]					
2 0.315 0.338 3.697 0.268 3.976 0.325 3.931 3 0.539 0.487 0.428 0.524 1 0.312 0.334 0.542 0.365 2 0.334 0.336 4.098 0.275 3.966 0.330 4.077 3 0.353 0.330 0.183 0.306 1 0.595 0.657 0.782 0.727 2 0.197 0.174 4.297 0.141 4.071 0.148 4.263		0.145	0.175		0.304		0.151]					
3 0.539 0.487 0.428 0.524 1 0.312 0.334 0.542 0.365 2 0.334 0.336 4.098 0.275 3.966 0.330 4.077 3 0.353 0.330 0.183 0.306 1 0.595 0.657 0.782 0.727 2 0.197 0.174 4.297 0.141 4.071 0.148 4.263	2	0.315	0.338	3.697	0.268	3.976	0.325	3.931					
1 0.312 0.334 0.542 0.365 2 0.334 0.336 4.098 0.275 3.966 0.330 4.077 3 0.353 0.330 0.183 0.306 1 0.595 0.657 0.782 0.727 2 0.197 0.174 4.297 0.141 4.071 0.148 4.263	3	0.539	0.487		0.428		0.524						
2 0.334 0.336 4.098 0.275 3.966 0.330 4.077 3 0.353 0.330 0.183 0.306 1 0.595 0.657 0.782 0.727 2 0.197 0.174 4.297 0.141 4.071 0.148 4.263		0.312	0.334		0.542		0.365						
3 0.353 0.330 0.183 0.306 1 0.595 0.657 0.782 0.727 2 0.197 0.174 4.297 0.141 4.071 0.148 4.263	2	0.334	0.336	4.098	0.275	3.966	0.330	4.077					
1 0.595 0.657 0.782 0.727 2 0.197 0.174 4.297 0.141 4.071 0.148 4.263	3	0.353	0.330		0.183		0.306						
2 0.197 0.174 4.297 0.141 4.071 0.148 4.263		0.595	0.657		0.782		0.727						
	2	0.197	0.174	4.297	0.141	4.071	0.148	4.263					
<u>3</u> 0.208 0.169 0.078 0.125	_3	0.208	0.169	<u></u>	0.078		0.125]					

TABLA 6.286

Predic	Predicción del equilibrio de adsorción a 1000 KPa de la mezcla										
2(1)	2 2										
	EXPERIMENTAL D. I. W. D. I. F.										
Comp	× _i	У _i	n	У _i	n	У	n n				
	0.085	0.164		0.127	·	0.068					
2	0.137	0.174	4.335	0.062	4.502	0.132	4.371				
3	0.777	0.662		0.811		0.800					
	0.110	0.169		0.185		0.105					
2	0.708	0.653	4.556	0.741	4.614	0.724	4. 598				
3	0.182	0.178	<u></u>	0.075		0.171					
	0.166	0.168		0.297		0.154					
2	0.306	0.325	4.421	0.260	4.712	0.314	4.543				
3	0.529	0.508		0.444		0.533					
	0.343	0.329		0.523		0.365]				
2	0.321	0.339	4.894	0.281	4.768	0.326	4.752				
3	0.336	0.332		0.196		0.309					
	0.645	0.652		0.776	, · · · · · · · · · ·	0.743	······]				
2	0.175	0.173	5.170	0.141	4.953	.0, 139	5.016				
3	0.180	0.175		0.083	<u></u>	0.118					

TABLA 6.287

Predic	Predicción del equilibrio de adsorción a 1500 KPa de la mezcla											
CO ₂ (1)	CO ₂ (1)-etileno(2)~etano(3) en CMS 5A mediante la teoria V.S.M.											
EXPERIMENTAL D. I. W. D. I. F.												
Comp	×	У _i	n	У _i	n	У _i	n					
	0.063	0.165	······································	0.083	·····	0.044	1					
2	0.124	0.174	4.602	0.047	4.817	0.114	4.585					
3	0.813	0.661		0.870		0.842						
	0.119	0.172	· ··	0.183		0.108						
2	0.706	0.649	4.978	0.742	5.088	0.723	4.959					
3	0.175	0.179		0.075		0.169						
	0.173	0.177		0.288		0.151						
2	0.306	0.325	4.791	0.260	5.162	0.311	4.844					
3	0.521	0.498		0.452		0.539						
	0.356	0.328	<u> </u>	0.510		0.362						
2	0.322	0.334	5.339	0.290	5.263	0.329	5.089					
3	0.322	0.338	····	0.200		0.309						
1	0.669	0.650		0.776		0.751						
2	0.162	0.176	5.638	0.136	5.166	0.132	5.386					
3	0.169	0.174		0.088		0.118						

TABLA 6.288

Predic	ción del	equilibri	o de adsord	ción a	100 KPa de	e la mezcla					
CO ₂ (1)	-etileno(2)-etano(3) en CMS 5	5A media	nte la tec	oria S.T.M.					
	EXPERIMENTAL S. T. M.										
Comp	×i	У _i	n		×	n					
	0.119	0.190			0.091						
2	0.162	0.161	2.530		0.145	2.000					
3	0.719	0.649			0.763	3					
1	0.127	0.236	<u> </u>		0.132						
2	0.668	0.633	2.682		0.688	2.000					
3	0.205	0.132			0.181						
1	0.128	0.195			0.098	}					
2	0.323	0.320	2.520		0.305	2.000					
3	0.549	0.486			0.597	·]					
1	0.242	0.390			0.224	<u> </u>					
2	0.351	0.331	2.572		0.373	2.000					
3	0.407	0.279			0.403	<u> </u>					
	0.529	0.761			0.568						
2	0.221	0.127	2.553		0.202	2.000					
3	0.250	0.112		- , - .	0.230)					

TABLA 6.289

Predic	ción del	equilibri	o d <mark>e</mark> adsorc	ción a 500 KPa de la mezcla	ι							
CO ₂ (1)	CO ₂ (1)-etileno(2)-etano(3) en CMS 5A mediante la teoria S.T.M.											
	EXPERIMENTAL S. T. M.											
Comp	×i	У	n	x _i n								
	0.116	0.164		0.091								
2	0.152	0.184	3.712	0.176 2.000								
3	0.733	0.653		0.734								
	0.121	0.173		0. 101	_							
2	0.685	0.643	3.917	0.679 2.000								
3	0.195	0.184		0, 221								
	0.145	0.175		0.099]							
2	· 0.315	0.338	3.697	0.337 2.000								
3	0.539	0.487	. 	0.564]							
	0.312	0.334		0.200								
2	0.334	0.336	4.098	0.373 2.000								
3	0.353	0.330		0. 427								
	0.595	0.657		0.450								
2	0.197	0.174	4,297	0.256 2.000								
3	0.208	0.169		0.295								

TABLA 6.290

Predic	ción del	equilibri	o de adsor	rción a 1000	KPa de l	a mezcla					
CO ₂ (1)	-etileno(2)-etano(3) en CMS	5A mediante	la teori	a S.T.M.					
,	EXPERIMENTAL S. T. M.										
Comp	×	У _i	n		×	n					
1	0.085	0.164			0.101						
2	0.137	0.174	4.335		0.168	2.000					
3	0.777	0.662			0.731						
	0.110	0.169	·····		0.109						
2	0.708	0.653	4.556		0.685	2.000					
3	0.182	0.178			0.206						
	0.166	0.168			0.105						
2	0.306	0.325	4.421		0.323	2.000					
3	0.529	0.508			0.572						
	0.343	0.329			0.216						
2	0.321	0.339	4.894		0.373	2.000					
3	0.336	0.332			0.412						
	0.645	0.652			0.477						
2	0.175	0.173	5.170		0.243	2.000					
<u> </u>	0.180	0.175			0.280						

TABLA 6.291

Predic	Predicción del equilibrio de adsorción a 1500 KPa de la mezcla											
CO ₂ (1)	-etileno(2)-etano(3) en CMS	6A mediante la teoria S.T.M.								
	EXPER	IMENTAL		S. T. M.								
Comp	×	У _i	n	x _i n								
	0.063	0.165		0.110								
2	0.124	0.174	4.602	0.170 2.000								
3	0.813	0.661	·····	0.720								
1 :	0.119	0.172		0.118								
2	0.706	0.649	4.978	0.681 2.000								
3	0.175	0.179		0.201								
1 .	0.173	0.177		0. 120								
2	0.306	0. 32 5	4.791	0.327 2.000								
3	0.521	0.498		0.553								
	0.356	0.328		0.229								
2	0.322	0.334	5.339	0.366 2.000								
3	0.322	0.338		0.406								
1	0.669	0.650		0.497								
2	0.162	0.176	5.638	0.241 2.000								
3	0.169	0.174		0.263								

TABLA 6.292

Predi	Predicción del equilibrio de adsorción a 500 KPa de la mezcla										
etano($etano(1)-etileno(2)-CO_2(3)$ en zeolita 5A mediante la teoria I.A.S.										
	EXI	PERIMENT	AL		Ι.Α.	S.					
Comp	×	У _i	n	У _i	∏A∕RT	Ρ <mark>0</mark> (Π)	n				
	0.054	0.658		0.422	,	6162.0					
2	0.421	0.195	4.123	0.396	19.367	469.8	3. 522				
3	0.525	0.147		0.181		169.4					
	0.470	0.330		0.351		5626.0]				
2	0.662	0.219	4.401	0.559	18.922	420.4	3. 567				
3	0.291	0. 45 1		0.090		150.7]				
	0.002	0.398		0.174		7762.0]				
2	0. 4 70	0.112	4.543	0.588	20. 5 62	630.7	3.634				
3	0.510	0.490		0.238		231.4					
	0.036	0.375		0.322	<u> </u>	8464.0]				
2	0.193	0.357	4.750	0.270	21.039	708.4	3. 585				
3	0.771	0.268	<u> </u>	0.408		261.3					
	0.003	0.336		0.265		8126.0]				
2	0.303	0.647	4.661	0.402	20.812	670.4	3.601				
3	0.667	0.017		0.333		246.7					

TABLA 6.293

Predi	Predicción del equilibrio de adsorción a 1000 KPa de la mezcla										
etano($etano(1)-etileno(2)-CO_2(3)$ en zeolita 5A mediante la teoria I.A.S.										
	EXF	PERIMENT	AL		Ι.Α.	S.					
Comp	×	У	n	У _i	∏A∕RT	Р <mark>0</mark> (П)	n				
1	0.043	0.505		0.214		12670.0					
2	0. 408	0.275	3.885	0.512	23.508	1277.0	3.885				
3	0.549	0.220	· · · · ·	0.274		486.5					
	0.037	0.216		0.183		11220.0					
2	0.654	0.257	3.902	0.690	22.711	10 58 .0	3.902				
3	0.309	0.527		0.127	<u></u>	398.8					
	0.014	0.269	····	0.069		13510.0					
2	0.465	0.151	3.938	0.641	23.945	1414.0	3.938				
3	0.521	0.580		0.290		542.0					
	0.025	0.236		0.121		15560.0	— —				
2	0.190	0.415	3.935	0.324	24.969	1788.0	3.935				
3	0.785	0.349	<u>.</u>	0.555		696.4					
	0.018	0.255		0.088	·····	14720.0					
2	0.305	0.690	3.936	0.477	24.555	1627.0	3.936				
3	0.677	0.055	· · · · · · · · · · · · · · · · · · ·	0.434		629.5					

= 71

•

TABLA 6.294

Pred	Predicción del equilibrio de adsorción a 2000 KPa de la mezcla										
etanc	etano(1)-etileno(2)-CO ₂ (3) en zeolita 5A mediante la teoria I.A.S.										
, <u> </u>	EXI	PERIMENT	AL.		Ι.Α.	S					
Comp	x x	У	n	У _i	∏A∕RT	Ρ <mark>0</mark> (Π)	n				
1	0.038	0.402		0.089		20190.0					
2	0.403	0.314	4.803	0.561	27.250	2953.0	4.221				
3	0.559	0.284		0.349		1202.0					
1	0.021	0.185		0.052		18380.0					
2	0.663	0.273	5.103	0.787	26.359	2437.0	4.235				
3	0.316	0.542		0.161		973.5					
	0.010	0.223		0.023		20190.0					
2	0.465	0.161	5.256	0.483	27.250	2953.0	4.241				
3	0.525	0.616		0.494		1202.0					
1	0.010	0.179		0.039		21570.0					
2	0.309	0.417	5.504	0.307	27.930	3407.0	4.247				
3	0.681	0.404		0.654		1409.0					
1	. 0.018	0.209		0.335		22680.0					
2	0.180	0.675	5.352	0.270	28.477	3813.0	4.253				
3	0.802	0.116		0.395		1598.0]				

1

TABLA 6.295

$\begin{array}{c ccccccccccc} etano(1)-etileno(2)-CO_{2}(3) en zeolita 5A mediante la teoria I.A.S.\\ \hline \hline EXPERIMENTAL & I.A.S.\\ \hline \hline Comp & x_{i} & y_{i} & n & y_{i} & \Pi A/RT & P_{i}^{0}(\Pi) & n \\ \hline 1 & 0.036 & 0.374 & 0.052 & 24620.0 \\ 2 & 0.396 & 0.326 & 4.969 & 0.552 & 29.437 & 4620.0 & 4.416 \\ \hline 3 & 0.568 & 0.300 & 0.395 & 1987.0 \\ \hline \end{array}$
EXPERIMENTAL I.A.S. Comp x_i y_i n y_i $\Pi A/RT$ $P_i^0(\Pi)$ n 1 0.036 0.374 0.052 24620.0 24620.0 24620.0 24620.0 4.416 3 0.568 0.300 0.395 1987.0 1987.0
Comp x_i y_i n y_i $\Pi A/RT$ $P_i^0(\Pi)$ n10.0360.3740.05224620.020.3960.3264.9690.55229.4374620.04.41630.5680.3000.3951987.0
1 0.036 0.374 0.052 24620.0 2 0.396 0.326 4.969 0.552 29.437 4620.0 4.416 3 0.568 0.300 0.395 1987.0
2 0.396 0.326 4.969 0.552 29.437 4620.0 4.416 3 0.568 0.300 0.395 1987.0
3 0.568 0.300 0.395 1987.0
1 0.006 0.172 0.009 22600.0
2 0.673 0.271 5.231 0.809 28.437 3783.0 4.428
3 0.321 0.557 0.181 1584.0
1 0.004 0.197 0.006 24310.0
2 0.465 0.169 5.457 0.635 29.281 4480.0 4.427
3 0.531 0.634 0.359 1918.0
1 0.016 0.166 0.021 26780.0
2 0.179 0.421 5.672 0.287 30.500 5664.0 4.437
3 0.805 0.413 0.692 2513.0
1 0.006 0.200 0.008 25640.0
2 0.311 0.655 5.523 0.464 29.937 5092.0 4.432
3 0.683 0.145 0.527 2221.0

TABLA 6.296

Predicción del equilibrio de adsorción a 500 KPa de la mezcla						
etano(1)-etileno(2)-CO ₂ (3) en zeolita 5A mediante la teoria H.I.A.S.						
EXPERIMENTAL				H. I. A. S.		
Comp	×	У _i	n	×i	n	
	0.054	0.658		0.096]	
2	0.421	0.195	4.123	0.289	4.401	
3	0.525	0.147		0.615		
	0.470	0.330		0.036		
2	0.662	0.219	4.401	0.149	4.955	
3	0.291	0.451		0.815		
1	0.002	0. 398		0.044]	
2	0.470	0.112	4.543	0.076	5.044	
3	0.510	0.490		0.880		
	0.036	0.375		0.044		
2	0.193	0.357	4.750	0.313	4.646	
3	0.771	0.268		0.643		
1	0.003	0.336		0.048		
2	0.303	0.647	4.661	0.885	3.869	
3	0.667	0.017		0.067		
TABLA 6.297

Predi	cción del	equilibr	io de adsor	ción a 1000 KPa de	la mezcla
etano(1)	-etileno(2)-CO ₂ (3)	en zeolita	a 5A mediante la teo	ria H.I.A.S.
	EXPER	H. I	H. I. A. S.		
Comp	× i	У	n	×i	n
1	0.043	0.505		0.102	
2	0.408	0.275	3.885	0.288	4.654
3	0.549	0.220		0.610	
	0.037	0.216		0.044	
2	0.654	0.257	3. 902	0.157	5.046
3	0.309	0.527		0.799	
1	0.014	0.269	····	0.055	
2	0.465	0.151	3.938	0.091	5.116
3	0.521	0.580		0.854	
	0.025	0.236		0.047	
2	0.190	0.415	3.935	0.300	4.817
3	0.785	0.349		0.653	
	0.018	0.255		0.052	
2	0.305	0.690	3.936	0.775	4.187
3	0.677	0.055	<u></u>	.0.173	

.

TABLA 6.298

	Predicción del equilibrio de adsorción a 2000 KPa de la mezcla								
etanc	etano(1)-etileno(2)-CO ₂ (3) en zeolita 5A mediante la teoria H.I.A.S.								
, <u></u>	EXPERIMENTAL H. I. A. S.								
Con	np	×	×	n	×i	n			
1	:	0.038	0.402		0.154				
2		0.403	0.314	4.803	0.266	4.645			
3		0.559	0.284	<u> </u>	0.580				
1	:	0.021	0.185		0.072				
2		0.663	0.273	5.103	0.171	4.996			
3	:	0.316	0.542		0.757				
		0.010	0.223	·····	0.088				
2		0.465	0.161	5.256	0.099	5.058			
3	:	0.525	0.616		0.813				
1		0.010	0.179		0.069				
2		0.309	0.417	5.504	0.282	4.846			
3	:	0.681	0.404		0.649]			
1		0.018	0.209		0.079]			
2		0.180	0.675	5.352	0.628	4.385			
3		0.802	0.116		0.293]			

•

TABLA 6.299

Predi	Predicción del equilibrio de adsorción a 3000 KPa de la mezcla								
etano(1)	tano(1)-etileno(2)-CO ₂ (3) en zeolita 5A mediante la teoria H.I.A.S.								
	EXPER	IMENTAL	Н. І	. A. S.					
Comp	×	У _i	n	× _i	n				
	0.036	0.374		0.206					
2	0.396	0.326	4.969	0.264	4.546				
3	0.568	0.300		0.530					
	0.006	0.172		0.097					
2	0.673	0.271	5.231	0.176	4.937				
3	0.321	0.557		0.727					
1	0.004	0.197	····	0.111					
2	0.465	0.169	5.457	0.109	4.991				
3	0.531	0.634	····	0.780					
	0.016	0.166		0.093					
2	0.179	0.421	5.672	0.289	4.795				
3	0.805	0.413		0.618					
1	0.006	0.200	•••• <u>••••••</u> ••••••••••••••••••••••••••	0.109	······································				
2	0.311	0.655	5.523	0.566	4.912				
3	0.683	0.145		0.639	j				
L									

TABLA 6.300

Pred	icción	del equ	ilibrio	de adsord	ción a	500 KPa	de la	mezcla	
etano($etano(1)-etileno(2)-CO_2(3)$ en zeolita 5A mediante la teoria R.A.S.								
	EX	R. A. S.							
Comp	У	У _i	n	У,	∏A∕RT	P ⁰ (∏)	γ _i	n	
	0.054	0.658	· · · · · · · · · · · · · · · · · · ·	0.502		8885.0	1.025		
2	0.421	0.195	4.123	0.247	21.312	757.0	0.393	3.696	
3	0.525	0.147		0.250	·····	280.2	0.844		
	0.047	0.330		0.434		7920.0	1.052]	
2	0.662	0.219	4.401	0.502	20.672	647.8	0. 591	3.724	
3	0.291	0.451		0.065		237.9	0.472		
	0.020	0.398		0.192	· 1	2020.0	1.003		
2	0.471	0.112	4.543	0.440	23.156	1176.0	0.415	3.869	
3	0.510	0.490		0.368		445.8	0.807		
	0.036	0.375		0.381	1	0140.0	1.129	l	
2	0.193	0.357	4.750	0.099	22.086	911.9	0.287	3.679	
3	0.771	0.268	<u></u>	0.520		340.9	0.982		
1 ;	0.030	0.336		0.301	1	1130.0	0.564		
2	0.303	0.647	4.661	0.202	22.664	1047.0	0.336	1.767	
3	0.667	0.017	. <u></u>	0.496		394.3	0.728		

.

TABLA 6.301

Predicción del equilibrio de adsorción a 1000 KPa de la mezcla									
etano(1)-etileno(2)-CO ₂ (3) en zeolita 5A mediante la teoria R.A.S.									
EXPERIMENTAL F									
×	У _i	n	У	$\Pi A / RT P_i^0(\Pi)$	γ _i	n			
0.043	0.505		0.304	16430.0	1.483				
. 408	0.275	4.503	0.324	25.398 1970.0	0.428	4.056			
. 549	0.220		0.372	772.9	0.867				
0.037	0.216		0.267	14560.0	1.467]			
). 654	0.257	4.751	0.631	24.477 1598.0	0.626	4.063			
0.309	0.527		0.102	617.5	0.524				
0.014	0.269	<u> </u>	0.094	18540.0	1.475				
). 465	0.151	4.892	0,482	26.437 2479.0	0.457	4. 167			
). 521	0.580		0.424	991.8	0.820	J			
0. 025	0.236		0.206	17350.0	1.761				
), 190	0.415	5.094	0.124	25.852 2179.0	0.321	4.016			
. 785	0.349		0.670	862.1	0.984				
0.018	0.255		0.131	18350.0	1.597	<u> </u>			
. 305	0.690	4.927	0.251	26.344 2429.0	0.371	4. 101			
. 677_	0.055		0,617	969.9	0.940]			
	-etil EX x _i 0.043 0.045 0.037 0.045 0.00	-etileno(2)- EXPERIMEN x ₁ y ₁ 0.043 0.505 0.408 0.275 0.549 0.220 0.037 0.216 0.654 0.257 0.309 0.527 0.014 0.269 0.465 0.151 0.521 0.580 0.025 0.236 0.190 0.415 0.785 0.349 0.018 0.255 0.305 0.690 0.677 0.055	$\begin{array}{c} \text{EXPERIMENTAL} \\ \hline \text{EXPERIMENTAL} \\ \hline \textbf{x}_{i} & \textbf{y}_{i} & \textbf{n} \\ \hline \textbf{0.043} & \textbf{0.505} \\ \hline \textbf{0.043} & \textbf{0.505} \\ \hline \textbf{0.043} & \textbf{0.275} & \textbf{4.503} \\ \hline \textbf{0.654} & \textbf{0.220} \\ \hline \textbf{0.037} & \textbf{0.216} \\ \hline \textbf{0.654} & \textbf{0.257} & \textbf{4.751} \\ \hline \textbf{0.309} & \textbf{0.527} \\ \hline \textbf{0.014} & \textbf{0.269} \\ \hline \textbf{0.465} & \textbf{0.151} & \textbf{4.892} \\ \hline \textbf{0.521} & \textbf{0.580} \\ \hline \textbf{0.025} & \textbf{0.236} \\ \hline \textbf{0.190} & \textbf{0.415} & \textbf{5.094} \\ \hline \textbf{0.785} & \textbf{0.349} \\ \hline \textbf{0.018} & \textbf{0.255} \\ \hline \textbf{0.305} & \textbf{0.690} & \textbf{4.927} \\ \hline \textbf{0.677} & \textbf{0.055} \\ \hline \end{array}$	Image: construct of the second def equilibrio def adsort $experimental$ x_i y_i n y_1 0.043 0.505 0.304 0.043 0.505 0.304 0.043 0.505 0.304 0.408 0.275 4.503 0.324 0.408 0.275 4.503 0.324 0.549 0.220 0.372 0.037 0.216 0.267 0.037 0.216 0.267 0.039 0.527 0.102 0.014 0.269 0.094 0.014 0.269 0.482 0.521 0.580 0.424 0.025 0.236 0.206 0.190 0.415 5.094 0.124 0.785 0.349 0.670 0.018 0.255 0.131 0.305 0.690 4.927 0.251	Colom del equilibrio de adsorcion a 1000 kieetileno(2)-CO23nyIA/RT P_1^0 (II)0.0430.5050.30416430.00.0430.5050.30416430.00.0430.5050.30416430.00.0430.2754.5030.32425.3980.0430.2550.30416430.00.0430.2754.5030.32425.3980.0370.2200.372772.90.0370.2160.26714560.00.6540.2574.7510.63124.4770.3090.5270.102617.50.0140.2690.09418540.00.2510.5800.424991.80.0250.2360.20617350.00.1900.4155.0940.12425.8520.13118350.00.3050.6904.9270.2510.3050.6904.9270.25126.3440.6770.0550.617969.9	Clock der equiffibrio der adsortron a 1000 kra der faEXPERIMENTALR.A.S. x_i y_i n y_i $\Pi A/RT$ $P_i^0(\Pi)$ γ_i 0.0430.5050.30416430.01.4830.0430.5050.30416430.01.4830.0430.2754.5030.32425.3981970.00.4280.5490.2200.372772.90.8670.0370.2160.26714560.01.4670.6540.2574.7510.63124.4771598.00.6260.3090.5270.102617.50.5240.0140.2690.09418540.01.4750.4650.1514.8920.48226.4372479.00.4570.5210.5800.424991.80.8200.0250.2360.20617350.01.7610.1900.4155.0940.12425.8522179.00.3210.7850.3490.670862.10.9840.0180.2550.13118350.01.5970.3050.6904.9270.25126.3442429.00.3710.6770.0550.617969.90.940			

٠

TABLA 6.302

Pred	Predicción del equilibrio de adsorción a 2000 KPa de la mezcla									
etano(etano(1)-etileno(2)-CO ₂ (3) en zeolita 5A mediante la teoria R.A.S.									
,	EX	PERIMEN	TAL	F	R. A. S.					
Comp	×	У _i	n	У _і	IIA/RT	Ρ ⁰ _i (Π)	γ _i	n		
1	0.038	0.402		0.327	22	2220.0	3.917			
2	0.403	0.314	4.803	0.323	28.250 3	3641.0	0.487	4 . 3 12		
3	0.559	0.284		0.349	1	1517.0	0.805			
	0.021	0.185		0.194	20	0700.0	3.998			
2	0.663	0.273	5.103	0.706	27.500 3	3114.0	0.731	4.340		
3	0.316	0.542	······································	0.100	1	1274.0	0.482			
	0.010	0.223		0.083	25	5190.0	4.226			
2	0.465	0.161	5.256	0.504	29.719 4	1880.0	0.529	4.467		
3	0. 525	0.616		0.413	2	2116.0	0.751			
	0.010	0.179		0.081	25	5480.0	4.195	l		
2	0.309	0.417	5.504	0.261	29.859 5	5014.0	0.404	4.424		
3	0.681	0.404		0.658	2	2183.0	0.894			
	0.018	0.209		0.148	24	1240.0	4.044]		
2	0.180	0.675	5.352	0.111	29.250 4	1453.0	0.322	4.323		
3	0.802	0.116		0.740	1	905.0	0.965			
1										

TABLA 6.303

Pred	Predicción del equilibrio de adsorción a 3000 KPa de la mezcla									
etano	etano(1)-etileno(2)-CO ₂ (3) en zeolita 5A mediante la teoria R.A.S.									
	EX	PERIMEN	R. A. S.							
Comp	×i	У _і	n	У _i	$\Pi A / RT P_i^0(\Pi)$	¥ ₁	n			
1	0.036	0.374		0.297	26270.0	6.083				
2	0.396	0.326	4.969	0.330	30.250 5404.0	0.535	4.488			
3	0.568	0.300		0.374	2379.0	0.804				
	0.006	0.172		0.058	26050.0	7.123	l			
2	0.673	0.271	5.231	0.813	30.141 5295.0	0.786	4.581			
3	0.321	0.557		0.129	2323.0	0.498				
1	0.004	0.197		0.034	29950.0	7.350]			
2	0.465	0.169	5.457	0.516	32.062 7493.0	0.583	4.675			
3	0.531	0.634		0.450	3502.0	0.747				
	0.016	0.166	· · · · · · · · · · · · · · · · · · ·	0.129	28270.0	6.537				
2	0.179	0.421	5.672	0. 109	31.234 6477.0	0.350	4. 503			
_3	0.805	0.413		0.761	2944.0	0.961				
	0.006	0.200		0.049	29950.0	7.118]			
2	0.311	0.655	5.523	0.265	32.062 7493.0	0.449	4.622			
	0.683	0.145		0.686	3502.0	0.884				

•

TABLA 6.304

.

Predi	.cción d	el equi	librio de	adsorci	ión a 10	000 KPa	de la m	nezcla
co	(1)-eti	leno(2)	-etano(3)	en zeol	lita ZSM	M-5 (Si)_/A1_0	= 29)
	, 		mediante	el mode	elo S.P.	. D.		
	EX	PERIMEN	TAL			S.P.D.		
Comp	У _i	У _i	n	У _і	Π A /RT	P ⁰ _i (∏)	γ _i	n
1	0.043	0.726		0.528		3773.0	4.135]
2	0.408	0.145	1.000	0.354	17.104	265.8	3. 129	3.976
3	0. 549	0.129		0.117		92.2	2.214	
	0.037	0.453		0.483		4364.0	3.999]
2	0.654	0.471	1.000	0.298	17.744	312.8	1.398	3. 455
3	0.30 9	0.076		0.219		109.8	6.170	
1	0.014	0.421		0.233		5601.0	4.499	
2	0.465	0.382	1.000	0. 54 8	18.901	418.2	2.726	3.482
3	0.521	0.197		0.219		149.8	2.677]
	0.025	0.621		0.368		3424.0	5.380	
2	0.190	0.072	1.000	0.550	16.690	238.9	11.567	3.822
3	0.785	0.307		0.082		82.2	1.205	
1	0.018	0.542		0.287		4418.0	4.927	
2	0.30 5	0.151	1.000	0.590	17.799	317.1	5.858	3.329
3	0.677	0.307		0.123		111.5	1.567	

,

TABLA 6.305

Predi	cción d	el equi	librio de	adsorci	lón a 30	000 KPa	de la m	ezcla
CO2	(1)-eti	leno(2)	-etano(3)	en zeol	lita ZSM	1-5 (Sid)_/A1_0	= 29)
	<u></u>		mediante	el mode	elo S.P.	D.		
	EXPERIMENTAL					S.P.D.		······
Comp	×	У _і	n	У _i	ΠA/RT	Ρ <mark>0</mark> (Π)	γ _i	n
	0.036	0.374	····	0.283	· · · · · · · · · · · · · · · · · · ·	9714.0	4.684	[]
2	0.396	0.326	1.000	0.553	21.830	857.7	4.302	3.726
3	0.568	0.300		0.164		319.5	2.366	
	0.006	0.172		0.044		12430.0	4.626	
2	0.673	0.271	1.000	0.550	23.377	1238.0	1.523	3.961
3	0.321	0.557		0.506		471.0	8.774	
	0.004	0.197	· · · ·	0.031		12170.0	4.919	
2	0.465	0.169	1.000	0.692	23.237	1198.0	3. 389	3.870
3	0.531	0.634		0.277		454.8	3.013	
	0.016	0.166	<u></u>	0.149		7335.0	6.383	;
2	0.179	0.421	1.000	0.772	20.260	585.6	19.129	3. 504
3	0.805	0.413		0.077		214.0	1.197	
	0.006	0.200		0.041		9778.0	5.562	
2	0.311	0.655	1.000	0.809	21.869	865.8	7.952	3. 691
3	0.683	0.145		0.139		322.8	1.665	

Figura 6.98. Isotermas de adsorción individuales de CO_2 en la mezcla ternaria CO_2 -etileno-propano en zeolita ZSM-5 (SiO_2/Al_2O_3 = 29) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : \Rightarrow 1/1/1, \Rightarrow 1/1/8, \Diamond 1/2/4, \Box 1/6/4, O 3/1/3.

Figura 6.99. Isotermas de adsorción individuales de **etileno** en la mezcla ternaria CO_2 -etileno-propano en zeolita ZSM-5 (SiO_2/Al_0_3 = 29) a 293 K. Relaciones volumétricas iniciales V_1/V_2 : \Rightarrow 1/1/1, \Rightarrow 1/1/8, \Diamond 1/2/4, \Box 1/6/4, O 3/1/3.

Figura 6.101. Diagrama de equilibrio del sistema ternario CO_2 -etileno-propano en zeolita ZSM-5 (SiO_2/Al_2O_3 = 29) a 293 K. (---I.A.S.; ----H.I.A.S.; ----R.A.S.)

Figura 6.102. Isotermas de adsorción totales de la mezcla ternaria CO_-etileno-etano en CMS 5A a 293 K. Relaciones molares iniciales n_1/n_2 : $\neq 1/1/1$, $\Box 1/1/4$, $\Diamond 1/2/3$, $\Rightarrow 1/4/1$, $\triangle 4/1/1$.

Figura 6.103. Isotermas de adsorción individuales de CO_2 en la mezcla ternaria CO_2 -etileno-etano en CMS 5A a 293 K. Relaciones molares iniciales n_1/n_2 : # 1/1/1, \square 1/1/4, \Diamond 1/2/3, • 1/4/1, \triangle 4/1/1.

Figura 6.104. Isotermas de adsorción individuales de **etileno** en la mezcla ternaria **CO₂-etileno-etano** en **CMS 5A** a 293 K. Relaciones molares iniciales n_1/n_2 : # 1/1/1, \square 1/1/4, \Diamond 1/2/3, \spadesuit 1/4/1, \triangle 4/1/1.

Figura 6.105. Isotermas de adsorción individuales de **etano** en la mezcla ternaria **CO₂-etileno-etano** en **CMS 5A** a 293 K. Relaciones molares iniciales n_1/n_2 : # 1/1/1, \Box 1/1/4, \Diamond 1/2/3, \Rightarrow 1/4/1, \triangle 4/1/1.

Figura 6.106. Diagrama de equilibrio del sistema ternario CO_-etileno-etano en CMS 5A a 293 K. (______ I.A.S.; ----- H.I.A.S.; ----R.A.S.)

Figura 6.107. Isotermas de adsorción totales de la mezcla ternaria etano-etileno-CO₂ en zeolita 5A a 293 K. Relaciones molares iniciales n_1/n_2 : $\triangle 1/1/1$, $\blacklozenge 1/1/4$, $\bigstar 1/3/3$, $\Box 1/4/1$, $\diamondsuit 1/4/2$.

Figura 6.108. Isotermas de adsorción individuales de **etano** en la mezcla ternaria **etano-etileno-CO**₂ en **zeolita 5A** a 293 K. Relaciones molares iniciales n_1/n_2 : $\triangle 1/1/1$, $\blacklozenge 1/1/4$, $\bigstar 1/3/3$, $\Box 1/4/1$, $\diamondsuit 1/4/2$.

Figura 6.110. Isotermas de adsorción individuales de CO_2 en la mezcla ternaria etano-etileno- CO_2 en zeolita 5A a 293 K. Relaciones molares iniciales n_1/n_2 : $\triangle 1/1/1$, $\blacklozenge 1/1/4$, $\bigstar 1/3/3$, $\square 1/4/1$, $\diamondsuit 1/4/2$.

Figura 6.111. Diagrama de equilibrio del sistema ternario etano-etileno-CO₂ en zeolita 5A a 293 K. (----I.A.S.; ----H.I.A.S.; ------R.A.S.)

6.6 COMPARACION DE LOS RESULTADOS OBTENIDOS CON LOS DIFERENTES MODELOS.

6.6.1 MEZCLAS BINARIAS.

En las tablas 6.306 a 6.309 se presentan los errores obtenidos en la reproducción y predicción del equilibrio de adsorción de los sistemas binarios en los diferentes adsorbentes objeto de esta investigación. El error utilizado es la desviación típica media definida como:

$$\frac{\sigma_{\mathbf{y}} = \left(\frac{\mathbf{y}_{\mathbf{i}}^{\mathsf{exp}} - \mathbf{y}_{\mathbf{i}}^{\mathsf{rep}}}{\mathsf{N}-1}\right)^{1/2}}{\mathsf{N}-1}$$
(6.17)

Siendo N el número de puntos experimentales.

Observando estos errores se puede ver, como ya se comentó en la discusión de resultados, que los errores cometidos por los modelos son de mayor a menor: I.A.S. > H.I.A.S. > S.P.D. \simeq R.A.S. Es decir, que los modelos R.A.S. y S.P.D. que introducen un coeficiente de actividad en la ley de Raoult, proporcionan mejores resultados que el resto, sobre todo en sistemas que presentan un comportamiento alejado de la idealidad. El modelo H.I.A.S. proporciona unos resultados mejores que el I.A.S. ya que introduce una serie de parámetros que tienen en cuenta la heterogeneidad energética de la superficie del adsorbente. Todo esto se cumple igualmente para bajas y altas presiones.

En cuanto a los modelos V.S.M. y S.T.M. en las diferentes versiones aplicadas en el CMS 5A, podemos observar que todos conducen a resultados peores incluso que el modelo I.A.S. excepto el Modelo Termodinámico Estadístico generalizado que proporciona unos resultados más satisfactorios que los modelos I.A.S. y H.I.A.S., ya que reproduce el equilibrio y emplea 7 parámetros de ajuste.

Hay que destacar que en el caso de los modelos S.T.M. y H.I.A.S. el cálculo de la desviación típica media se realiza con la fracción molar de la fase adsorbida en vez de la fase gaseosa, lo que puede llevar a algunas diferencias en dicha desviación.

Comparando los resultados obtenidos con los modelos a baja y a alta

presión, cabe comentar que no existen grandes diferencias en las predicciones y reproducciones realizadas en CMS 5A y en las zeolitas ZSM-5. Sin embargo en el caso de la zeolita 5A los errores son mayores con prácticamente todos los modelos. La explicación a este hecho es sencilla, si se tiene en cuenta que existe una gran diferencia, entre las capacidades de adsorción y presiones superficiales de los distintos componentes. Además esta zeolita presenta una gran selectividad hacia el etileno y el CO₂ lo cual hace que los diagramas x-y de sus mezclas con etano sean muy alejados de la diagonal. La influencia de estos hechos se refleja en la ecuación de Raoult (6.13), al haber gran diferencia entre las presiones superficiales de los componentes puros para un mismo valor de dicha presión: los valores de $P_{i}^{0}(\Pi)$ que se obtienen son muy diferentes. En las tablas de los resultados de los diferentes modelos, se puede observar como el valor de $P_{4}^{0}(\Pi)$ que se obtiene para el etano supera con creces la presión de saturación, con lo que deja de tener sentido desde el punto de vista termodinámico, además en el cálculo del coeficiente de fugacidad de la fase adsorbida mediante la ecuación 6.15 se obtienen valores muy bajos para el etano lo cual empeora los resultados de la predicción.

Según esto, para poder aplicar los modelos a la zeolita 5A hubo que extrapolar las gráficas de presion superficial frente a presión de la fase gaseosa para poder obtener valores de N por encima de la presión de saturación, lo cual carece de sentido como se comentó anteriormente, pero era necesario para poder aplicar los modelos. Este hecho como es lógico, influye negativamente en los resultados de los modelos.

Por último, comparando los resultados obtenidos por un mismo modelo en un mismo sistema a diferentes presiones, no se observan diferencias a destacar salvo en el caso de la zeolita 5A. En este caso, para algunos modelos en determinados sistemas, se observa una clara tendencia a aumentar el error al aumentar la presión. Se trata, como se comentó anteriormente, de los sistemas en los que interviene el etano y se nota de una forma muy acusada en el modelo I.A.S. Esto es debido a que el modelo I.A.S. no tiene parámetros de ajuste y depende únicamente de las curvas de presión superficial que son las que originaban el problema. Sin embargo, en el resto de los modelos los parámetros de ajuste hacen que la influencia de los términos $P_i^0(\Pi)$ y ϕ_i^0 sea compensada por el coeficiente de actividad en el caso de los modelos R.A.S. y S.P.D. o por otros parámetros en el modelo H.I.A.S.

En cuanto a la predicción de la cantidad adsorbida total, no existen grandes diferencias entre los diferentes modelos a diferencia de lo que ocurre con el diagrama x-y. En el caso de la zeolita 5A, los errores en la predicción vuelven a ser mayores, como ocurría tambien con la predicción del diagrama x-y.

6.6.2 MEZCLAS TERNARIAS.

En la tabla 6.310 se presentan los resultados obtenidos en la predicción del equilibrio de adsorción de los sistemas ternarios estudiados en los diferentes adsorbentes.

Como se puede observar, los errores cometidos son superiores a los obtenidos para las mezclas binarias, lo cual era de esperar. Al igual que ocurría en las mezclas binarias, se observa una gran diferencia entre los errores obtenidos en zeolita ZSM-5 y CMS 5A y los obtenidos en zeolita 5A. Estos hechos son lógicos ya que se dan las mismas circunstancias que en las mezclas binarias e influyen los errores obtenidos en las mismas.

Por último, cabe destacar que no existe una gran diferencia entre los diferentes modelos como ocurría en las mezclas binarias. Esto es debido a que en el caso de las mezclas binarias los programas buscaban los parámetros de ajuste óptimos y luego éstos son posteriormente utilizados en la predicción de las ternarias. Como se pudo ver anteriormente en los mapas de error, existe una gran incertidumbre en el cálculo de esos parámetros y variando los mismos se producen grandes variaciones en la predicción de mezclas multicomponentes, por lo que en este caso no se puede asegurar cuales son los parámetros que conducirían a un menor error.

TABLA 6.306

Desviación típica media en la reproducción del equilibrio de mezclas binarias zeolita ZSM-5 $SiO_2/Al_2O_3 = 29$

Mezcla	P(KPa)	I.A.S.	H.I.A.S.	R.A.S.	S.P.D.
CO ₂ -etileno	6.6	0.0189	0.1647	0.0036	0.0088
E.a	13.3	0.0184	0.1430	0.0076	0.0084
	53.3	0.0078	0.1041	0.0032	0.0022
	80.0	0.0070	0.0925	0.0027	0.0052
	Total	0. 0521	0.5042	0.0172	0.0246
CO ₂ -propano	6.6	0.2078	0.2080	0.0033	0.0390
L	13.3	0.1883	0.1908	0.0241	0.0247
	53.3	0.1753	0.1483	0.0361	0.0377
	80.0	0.1665	0.1250	0.0310	0.0343
	Total	0.7379	0.6722	0.0945	0.1357
Etileno-propa	no 6.6	0.1989	0.1336	0.0291	0.0309
	13.3	0.1981	0.1214	Ö. 0269	0.0278
	53.3	0.1848	0.0851	0.0124	0.0277
	80.0	0.1739	0.0691	0.0378	0.0420
	Total	0.7557	0.4094	0.1061	0.1283

TABLA 6.307

Desviación típica media en la reproducción del equilibrio de mezclas binarias zeolita ZSM-5 $SiO_2/Al_2O_3 = 56$

Mezcla	P(KPa)	I. A .S.	H.I.A.S.	R.A.S.	S.P.D.
CO ₂ -etileno	6.6	0.0201	0.0583	0.0036	0.0140
L	13.3	0.0220	0.0708	0.0064	0.0456
	53.3	0.0244	0.0646	0.0075	0.0139
	80.0	0.0342	0.0692	0.0278	0.0263
	Total	0.1007	0.2629	0.0453	0.0999
CO ₂ -propano	6.6	0.1375	0.0149	0.0442	0.0450
2	13.3	0.1778	0.0162	0.0136	0.0152
	53.3	0.1974	0.0154	0.0086	0.0154
	80.0	0.1914	0.0234	0.0059	0.0063
	Total	0.7041	0.0699	0.0723	0.0818
Etileno-propa	no 6.6	0.2839	0.1049	0.0195	0.0583
	13.3	0.2818	0.0905	0.0140	0.0747
	53.3	0.2907	0.0992	0.0131	0.0687
	80.0	0.2802	0.0909	0.0200	0.0561
	Total	1.1366	0. 3855	0.0666	0.2578

TABLA 6.308

Desviación típica media en la reproducción del equilibrio de mezclas binarias CMS 5A

Mezcla	P(KPa)	I.A.S.	H.I. A.S .	R.A.S.	S.P.D.
COetileno	100	0.0348	0.0149	0.0152	0.0141
L	500	0.0305	0.0121	0.0165	0.0158
	1000	0.0241	0.0121	0.0153	0.0142
	1500	0.0219	0.0108	0.0158	0.0159
	Total	0.1113	0.0499	0.0629	0.0599
CO ₂ -etano	100	0.0516	0.0162	0.0205	0.0142
L	500	0.0464	0.0182	0.0272	0.0247
	1000	0.0329	0.0131	0.0235	0.0204
	1500	0.0238	0.0107	0.0178	0.0142
	Total	0.1548	0.0582	0.0889	0.0736
Etileno-etano	100	0.0055	0.0049	0.0038	0.0037
	500	0.0045	0.0045	0.0029	0.0029
	1000	0.0057	0.0053	0.0031	0.0029
	1500	0.0078	0.0075	0.0060	0.0058
	Total	0.0235	0.0223	0.0157	0.0152

TABLA 6.308 (Cont.)

Desviación típica media en la reproducción del equilibrio de mezclas binarias CMS 5A

Mezcla	P(KPa)	D.I.F.	D.I.W.	S.T.M.(1)	S.T.M.(2)
CO ₂ -etileno	100	0.0549	0.0788	0.1055	0.0117
	500	0.0932	0.0504	0.1138	0.0132
	1000	0.0998	0.0638	0.0884	0.0111
	1500	0.1007	0.0720	0.0751	0.0118
	Total	0.3485	0.2650	0.3827	0.0478
CO ₂ -etano	100	0.0712	0.0463	0.1549	0.0194
L	500	0.1426	0.0879	0.1400	0.0194
	1000	0.1491	0.0996	0.1091	0.0166
	1500	0.1440	0.0972	0.0835	0.0135
	Total	0.5068	0.3310	0.4875	0.0689
Etileno-etano	100	0.0415	0.1032	0.0509	0.0026
	500	0.0240	0.0998	0.0284	0.0036
	1000	0.0286	0.0994	0.0243	0.0021
	1500	0.0326	0.1008	0.0209	0.0040
	Total	0.1266	0.4031	0.1246	0.0123

TABLA 6.309

Desviación típica media en la reproducción del equilibrio de mezclas binarias zeolita 5A

Mezcla	P(KPa)	I. A. S.	H.I.A.S.	R. A. S.	S.P.D.
Etano-etileno	500	0.0675	0.0558	0.0202	0.0156
	1000	0.1317	0.0453	0.0217	0.0231
	2000	0.2421	0.0887	0.0460	0.0423
	3000	0.3323	0.1206	0.0296	0.0430
	Total	0.7736	0.3104	0.1175	0.1240
Etano-CO	500	0.0884	0.0594	0.0286	0.0334
2	1000	0.2392	0.0864	0.0231	0.0272
	2000	0.4561	0.1170	0.0442	0.0220
	3000	0.5157	0.1368	0.0569	0.0298
	Total	1.2994	0.3996	0.1528	0.1124
Etileno-CO ₂	500	0.1995	0.0879	0.0229	0.0207
	1000	0.1838	0.0683	0.0208	0.0258
	2000	0.1743	0.0811	0.0236	0.0316
	3000	0.1562	0.0822	0.0256	0.0305
	Total	0.7138	0.3195	0.0929	0.0906

TABLA 6.310

Desviación típica media en la predicción del equilibrio de mezclas ternarias

ADSORBENTE	P(KPa)	I. A. S.	H.I.A.S.	R. A. S.	S.P.D.
ZSM-5	6.6	0.1116	0.1948	0.0226	0.0584
(Si0 ₂ /Al ₂ 0 ₃ =29)	13.3	0.1220	0.1977	0.0162	-
	53.3	0.1224	0.1885	0.0213	0.0896
	80.0	0.1230	0.1710	0.0185	-
zeolita 5A	500	0.2506	0.2550	0.2674	-
	1000	0.2850	0.3009	0.3007	0.2438
	2000	0.3208	0.2883	0.3142	-
	3000	0.3031	0.2570	0.3128	0.2449
CMS 5A	100	0.0513	0.0432	0.0206	0.0258
	500	0.0859	0.0623	0.0722	-
	1000	0.0872	0.0864	0.0820	0.0805
	1500	0.0887	0.0901	0.0869	-
	P(KPa)	D.I.F.	D.I.W.	S.T.M.(1)	
CMS 5A	100	0.0199	0.1123	0.0275	
	500	0.0431	0.1045	0.0639	
	1000	0.0625	0.1082	0.0745	
j)	1 5 00	0.0758	0.1145	0.0794	

6.7. COMPARACION DE LOS RESULTADOS OBTENIDOS EN DIFERENTES ADSORBENTES.

En la presente investigación se han utilizado cinco adsorbentes (silicalita, zeolitas ZSM-5 de relación $SiO_2/AI_{2/3}^{O}$ 56 y 29, tamiz molecular de carbón 5A y zeolita 5A.). Es interesante comparar los datos obtenidos en este trabajo con los de anteriores investigaciones utilizando similares adsorbentes a fin de conocer mejor, la influencia del adsorbente en el equilibrio de adsorción. Los trabajos anteriores se realizaron básicamente con hidrocarburos ligeros de hasta tres átomos de carbono y CO_2 , todos en fase gaseosa, y los adsorbentes siguientes: carbón activado (Marrón, 1979), zeolita 13X (Cabra, 1983; Jimenez, 1989), zeolita 5A (Cabra, 1983) y silicalita (Jimenez, 1989).

La comparación de los resultados del presenta trabajo con los de las anteriores investigaciones, permite deducir algunos datos interesantes respecto de la influencia del adsorbente, que se exponen a continuación.

Tanto el carbón activado como el tamiz molecular de carbón son adsorbentes que no presentan afinidad por adsorbatos polarizables. Debido a ésto, el comportamiento de la fase adsorbida binaria no se separa de la idealidad, y la mayor selectividad hacia un determinado adsorbato se deriva preferentemente del mayor peso molecular de éste.

Sin embargo, en el caso de las zeolitas, ocurre lo contrario: la preferencia de la adsorción es por los compuestos polares y polarizables, como las olefinas y el CO_2 (ambos con dobles enlaces). Así, mientras que el propileno se adsorbe preferentemente sobre el propano en la zeolita 5A, el etano lo hace sobre el etileno en carbón activo. Además, con las zeolitas, sí aparecen fuertes desviaciones de la idealidad, con presencia de "azeótropos" (etileno-propano en 5A y 13X; etileno-CO_ en 5A; propano-CO_ en 13; etc.)

Comparando las zeolitas entre sí, se puede observar cómo a medida que aumenta la relación ${\rm SiO}_2/{\rm Al}_{23}^{O}$, es decir, a medida que disminuye el número de centros ácidos de la misma, disminuye su selectividad hacia compuestos polarizables con dobles enlaces. Según este razonamiento las zeolitas con baja relación ${\rm SiO}_2/{\rm Al}_{23}^{O}$ como la 13X o la 5A adsorben preferentemente los compuestos polarizables de las mezclas. Este es el caso

de adsorbatos como el CO_2 o el etileno que se adsorben prioritariamente en las mezclas binarias o ternarias.

Sin embargo en el caso de las zeolitas ZSM-5 y silicalita, al poseer mucho menor número de centros ácidos en su estructura la selectividad puede llegar a invertirse, teniendo más influencia otros factores como la geometría, peso molecular y presión de saturación del adsorbato. Así, el propano, al tener un peso molecular mayor que el etileno se adsorbe preferentemente sobre éste en ZSM-5 y silicalita al contrario que sucedía en las otras zeolitas de menor relación SiO_2/Al_0O_3 . En cuanto al CO_2 , debido a los impedimentos estéricos que ya se comentaron en el apartado 6.2, es el componente que menos se adsorbe en ZSM-5 y silicalita ta en sus mezclas con etileno o propano, cuando era el preferente en esas mismas mezclas con la zeolita 13X y 5A.

Un caso curioso a estudiar es la mezcla $\rm CO_2$ -etileno. Se trata de dos compuestos con dobles enlaces por lo que ambos ven favorecida su adsorción en zeolitas de baja relación $\rm SiO_2/Al_2O_3$. Por otro lado el $\rm CO_2$ posee un peso molecular mayor que el del etileno, por lo que parece que debería adsorberse preferentemente sobre éste en las mezclas. Esto ocurre claramente en la zeolita 13X; sin embargo, en las zeolitas ZSM-5 y silicalita se adsorbe preferentemente el etileno debido una vez más a los impedimentos estéricos que presenta la molécula de $\rm CO_2$ debido a su rigidez. Además, en la zeolita 5A la adsorción de ambos adsorbatos es similar, con la formación de un azeótropo, ya que posiblemente se compensan, el efecto de mayor peso molecular del $\rm CO_2$ con sus impedimentos estéricos, que en este caso son algo menores que en las zeolitas ZSM-5 y silicalita.

En cualquier caso, quedaría por explicar más en detalle y en términos de interacción molecular, la aparición de fuertes desviaciones de la idealidad (azeótropos, efecto de "sobreadsorción", etc.) en algunas mezclas adsorbidas en determinadas zeolitas, pues ello no se produce de forma sistemática o predecible. Con los medios disponibles en esta investigación, ello resulta inabordable, pues se requeriría la utilización de sofisticadas técnnicas de simulación molecular de la adsorción en las cavidades de las zeolitas, todavía no disponibles.

Como conclusión se puede decir que en el caso de hidrocarburos

ligeros, la separación mediante adsorbentes de composición química como la del carbón no es aconsejable salvo en el caso de que exista una gran diferencia entre el tamaño de las moléculas de los adsorbatos. En este caso es aconsejable el uso de zeolitas de baja relación SiO_2/Al_2O_3 sobre todo cuando existen diferencias en la polarizabilidad de los adsorbatos.

7. CONCLUSIONES

Las conclusiones más importantes de la presente investigación son las siguientes:

1- Se han obtenido las isotermas de adsorción y desorción de los componentes puros CO_2 , etileno, propano y etano en zeolitas ZSM-5, de relación molar $SiO_2/AI_2O_3 = 29$ y 56, así como las isotermas de adsorción de CO_2 , etileno y etano en tamiz molecular de carbón 5A (CMS 5A) y zeolita 5A comercial a presiones elevadas. Todas las isotermas obtenidas corresponden al tipo I de la clasificación de la IUPAC, no observandose diferencias a este respecto entre las isotermas a presión atmosférica y a presión elevada.

2- Las isotermas de adsorción coinciden prácticamente con las de desorción, y la cantidad adsorbida para una determinada presión disminuye al aumentar la temperatura. Estos hechos corroboran la suposición de que la adsorción de gases en estos adsorbentes es de tipo físico.

3- Se ha comprobado la gran influencia que tiene la composición química del adsorbente en el equilibrio de adsorción de componentes puros. En la zeolita ZSM-5, una disminución de la relación SiO_2/Al_2O_3 favorece la adsorción de compuestos polarizables frente a los que no lo son. En el CMS 5A, al tener una composición química típica de un carbón, y no existir centros ácidos no existe preferencia por las moléculas polarizables.

4- Se ha realizado un ajuste de las isotermas de equilibrio de componentes puros a todas las temperaturas estudiadas a diferentes ecuaciones de la bibliografía, obteniéndose los mejores resultados con las ecuaciones de Prausnitz, Toth y Unilan. Así mismo, se han obtenido las denominadas curvas características de equilibrio de adsorción de los cuatro adsorbentes observándose un buen ajuste.

5- En las isotermas de adsorción de mezclas binarias y ternarias, se han observado en algunos casos efectos de desplazamiento de un adsorbato por otro, a causa de la mayor selectividad del adsorbente hacia uno de ellos. Este efecto es particularmente importante en el caso de la zeolita 5A, en la que el etano es fuertemente desplazado por el etileno y el CO₂, lo que se atribuye a la presencia de dobles enlaces y a la mayor polarizabilidad de estas moléculas.

6- Se han observado efectos de "sobreadsorción" en los sistemas CO₂-propano y etileno-propano en zeolitas ZSM-5, siendo la cantidad adsorbida de la mezcla superior a la del componente puro que más se adsorbe. Este efecto, encontrado en anteriores investigaciones, junto con el indicado en el punto anterior, revela la existencia de fuerzas de interacción adsorbato-adsorbato y adsorbato-adsorbente que provocan comportamientos fuertemente no ideales, facilmente visualizables en los diagramas de equilibrio x-y.

7- Se ha comprobado la gran influencia que la relación SiO_2/Al_2O_3 del adsorbente ejerce en el equilibrio de adsorción de mezclas binarias. Se ha observado una disminución de la selectividad del adsorbente respecto a los componentes más polarizables de la mezcla al aumentar dicha relación, lo que se explica teniendo en cuenta que el adsorbente pierde afinidad por los compuestos polarizables.

8- Se ha realizado la predicción y reproducción del equilibrio de los sistemas binarios y ternarios mediante los modelos de la Solución Adsor bida Ideal (I.A.S.), Solución Heterogénea Adsorbida Ideal (H.I.A.S.), Solución Adsorbida Real (R.A.S.) y Dependencia de la Presión Superficial (S.P.D.) en los cuatro adsorbentes estudiados. Así mismo, se ha realiza do la predicción del equilibrio mediante los modelos del Disolvente Ima ginario (V.S.M.) y Termodinámico Estadístico (S.T.M.), en sus diferentes versiones para el CMS 5A. Estos modelos, anteriormente utilizados para presiones inferiores a la atmosférica, pueden aplicarse también a pre siones elevadas, introduciendo las modificaciones necesarias (coeficientes de fugacidad). A pesar de ello no todos los modelos pueden reproducir o predecir el equilibrio de adsorción de mezclas de forma adecuada, debido a sus limitaciones de partida.

9- La preferencia en los modelos para la predicción del diagrama de equilibrio isobárico x-y es máxima para los modelos R.A.S. y S.P.D. y decrece claramente para los modelos H.I.A.S. y I.A.S. Las diferencias entre estos modelos son aún más acusadas en los sistemas que se alejan de la idealidad. los modelos V.S.M. y S.T.M. conducen a peores resultados que incluso el I.A.S., excepto el modelo termodinámico estadístico generalizado (STM-2) que iguala la reproducción realizada por el modelo R.A.S. La predicción de la cantidad adsorbida es muy similar en todos los modelos, excepto el termodinámico estadístico generalizado que no puede aplicarse a adsorbentes que no tengan estructura cristalina zeolítica.

9- Los resultados obtenidos en la predicción de los datos de equilibrio . a presión elevada son peores que los obtenidos a presión atmosférica, sobre todo en los casos en que existe una acusada selectividad del adsorbente por alguno de los adsorbatos.

10- Se ha realizado una comparación de los resultados obtenidos en diferentes adsorbentes, viendo que en el caso del carbón activado y el tamiz molecular de carbón sólo existe separación en función del peso molecular del adsorbato. En cambio en el caso de las zeolitas, se produce una separación de los adsorbatos en función no sólo del peso molecular, sino de la polarizabilidad de los mismos.

8 RECOMENDACIONES

1- Ampliar el estudio experimental del equilibrio de adsorción a elevadas presiones a otros adsorbatos y adsorbentes para poder llegar a unas conclusiones más generales sobre el comportamiento de la adsorción en estas condiciones. Particular interés tendría profundizar en los sistemas que presentan comportamiento no ideal.

2- Profundizar en el estudio teórico de los modelos de adsorción para mejorar su aplicación a elevadas presiones. Particularmente recomendable resulta el desarrollo de modelos de simulación molecular que permitan descender al detalle de las interacciones moleculares entre los adsorbatos y la estructura del adsorbente, y su distribución en las cavidades de las zeolitas.

3- Desarrollar una instalación que permita la obtención de datos cinéticos a elevadas presiones que junto a los datos de equilibrio permitan el diseño de los equipos industriales de adsorción a distintas presiones y temperaturas.

9. APENDICES.

9.1. CARACTERISTICAS DE LOS ADSORBENTES.

9.1.1. ZEOLITA ZSM-5

Como se comentó en el apartado 3, las zeolitas ZSM-5 utilizadas en esta investigación fueron sintetizadas en el propio Departamento de Ingeniería Quimica de la Universidad Complutense de Madrid (Costa, 1987), mediante un método que emplea silicato sódico neutro (27% en peso de SiO_2 , 8% en peso de Na_2O) y sulfato de aluminio $(Al_2(SO_4)_3 18H_2O)$ como fuente de silicio y aluminio respectivamente, y etanol comercial como promotor. Dichas zeolitas se obtuvieron en forma de polvo y para su utilización en esta investigación fue necesario proceder a su aglomeración y empastillado.

Para la aglomeración se eligió una arcilla, bentonita, que como se indicó en el apartado 6.1 no influye en la capacidad de adsorción de la zeolita de manera apreciable y tras una serie de experimentos previos se fijó su porcentaje en el 23%, que era el valor mínimo que proporcionaba a las pastillas la consistencia necesaria para que no se produjera su desmoronamiento en la instalación. La aglomeración de cada una de las zeolitas supuso los siguientes pasos:

- Disolución de la bentonita en suficiente cantidad de agua, facilitando este proceso mediante calefacción y agitación. Esta operación se realizó en el plazo de 1 a 2 horas.

- Lavado de la zeolita ZSM-5 con agua destilada, seguido de filtración y calcinado durante 16 h a 550⁰C, para eliminar de esta forma el promotor.

- Mezcla de la zeolita con la solución de bentonita, manteniendo la agitación hasta homogenización.

- Filtración de la mezcla resultante por medio de un embudo Buchner.

- Extrusión de la pasta formada para dar la forma y el tamaño deseado a las partícula.

- Secado de las pastillas obtenidas.

Así se consiguieron unas partículas cilíndricas con unas dimensiones aproximadas de 5 mm de diámetro y 3-6 mm de altura.

Otro aspecto muy importante era la caracterización de estas zeolitas, para lo que se realizaron dos tipos de análsis.

i) Análisis químico.

- Determinación del % de silicio.

La determinación de la cantidad de silicio en la zeolita se realizó mediante un método gravimétrico, que se basa en la diferencia de peso de la muestra antes de ser tratada con ácido fluorhídrico. Este ácido reacciona con el silicio formándose tetrafluoruro de silicio que se desprende en forma de humos blancos. - Determinación del % de aluminio.

El análisis cuantitativo de la cantidad de aluminio presente en la zeolita se realizó mediante espectroscopía de absorción atómica. El aparato utilizado fue un "Instrumentation Laboratory AA/AE espectrophotometer Mod. 357". Las condiciones de los análsis fueron:

- Intensidad: 8 mA.

- Longitud de onda: 309.3 nm.
- Anchura de rendija: 320 nm.
- Llama: óxido de nitrógeno-acetileno. Rica en fuel.

La preparación de las muestras se realizaba diluyendo las zeolitas en ácido fluorhidrico hasta que la concentración final en aluminio fuese menor de 50 ppm para poder analizar dentro del intervalo de respuesta lineal.

De este modo se obtuvieron los valores de las relaciones $Si0_2/Al_20_3$ de las zeolitas ZSM-5 utilizadas en esta investigación.

ii) Análisis físico.

- Difracción de rayos X.

Uno de los parámetros importantes de una zeolita, es su grado de cristalinidad. Para su determinación se utilizó un difractómetro de polvo "Siemens Kristaloflex D500", provisto de contador de centelleo y cristal analizador de FNa. La radiación utilizada fué la CuK α con filtro de Ni. El difractómetro estaba conectado a un microordenador DACO-MP V2.1 con salida gráfica de resultados a través de una impresora "Letterwriter 100".

De acuerdo con las características de las muestras a analizar, se fijaron los siguientes parámetros:

- Voltaje: 40 KV.
- Intensidad: 20 mA.
- Rendijas: 1°, 1°, 1°, 0.15°.
- Tamaño del paso: 0.1 grados de 20.
- Tiempo de contaje por paso: 1s.
- Sensibilidad: 4×10^3 imp/s.
- Velocidad del goniómetro: 2°/min.
- Velocidad del registro: 1cm/min.

La cristalinidad de las dos zeolitas ZSM-5 estudiadas, determinada según se ha expuesto, era del 99%. En las figuras 9.1 y 9.2 se muestran los difractogramas de rayos X de ambas zeolitas.

- Microscopía electrónica de barrido.

Para obtener una mayor información sobre las zeolitas, se realizaron microfotografías de las mismas, mediante un microscopio electrónico de barrido Phillips modelo SEM-505. En todos los casos se trabajó con una tensión aceleradora de 25 KV. Dado el carácter aislante del material, y para hacer factible la absorción electrónica, las muestras se metalizaron con polvo de oro.

En las figuras 9.3 y 9.4 se muestran las microfotografías de las zeolitas.

Distribución de tamaños de partícula.

La distribución de los tamaños de partícula de las zeolitas se determinó con un granulómetro de laser CILAS Mod. 715, en el laboratorio de la factoría de Portland Valderribas. Previamente al análisis, las muestras en suspensión fueron sometidas a un tratamiento con ultrasonidos para poder asegurar la disgregación hasta el tamaño de partícula.

En las figuras 9.5 y 9.6 se representan la distribución de tamaños de partícula de ambas zeolitas en la forma de porcentaje en peso de zeolita en cada intervalo frente al tamaño de los mismos en micras.

9.2. DETALLE DEL PROCEDIMIENTO.

9.2.1. CALCULO DEL PESO Y VOLUMEN DE LOS LECHOS DE ADSORBENTE.

Antes de la realización de los experimentos de adsorción, era necesario conocer el peso exacto del adsorbente. Para ello se realizaron las siguientes operaciones:

- Regeneración del adsorbente en un mufla a 250° C, durante 12 horas.

- Desgasificación del mismo en caliente, realizando vació, en el interior del recipiente en que se se pesará posteriormente.

- Pesada del recipiente con su contenido.

- Repetición de las operaciones anteriores con el recipiente vacío y determinación del peso de adsorbente por diferencia entre las dos pesadas efectuadas.

Para determinar el volumen ocupado por el lecho adsorbente, se midió la altura y el diámetro del mismo. De este modo el volumen real, V, ocupado por el adsorbente será:

$$V = V_1(1-\alpha) \tag{9.1}$$

siendo V, el volumen del lecho y α la porosidad del mismo.

En la tabla 9.1. figuran entre otros, los datos necesarios para el cálculo del volumen real del adsorbente mediante la ecuación 9.1. Los resultados obtenidos para los cuatro adsorbentes estudiados se han recogido en la última fila de dicha tabla.

9.2.2. CALCULO DEL VOLUMEN DE LA INSTALACION

i) Instalación atmosférica. (Fig. 3.1)

Para el cálculo de la cantidad de moles de un componente que hay en la instalación se utiliza la ecuación de los gases ideales:

$$n = p V/RT$$
(9.2)

de tal manera que es necesario conocer P_i , que se calcula a partir del análisis que proporciona el cromatógrafo de gases, y el volumen de la instalación. Por lo tanto un experimento previo a la realización de las

isotermas es el cálculo de éste.

.

TABLA 9.1

Parámetros del lecho adsorbente

	2SM-5 (Si0 ₂ /Al ₂ 0 ₃ = 29)	ZSM-5 (Si0 ₂ /Al ₂ 0 ₃ = 56)
Altura lecho (cm)	4.5	4.2
Diámetro lecho (cm)	5.1	5.1
Vol. teórico lecho (cm ³)	91.93	85.79
Densidad partícula (gr/cm ³)	0.88	0.88
Porosidad del lecho	0.3	0.3
Vol. real adsorbente (cm ³)	64.35	60.06
	CMS 5A	zeolita 5A
Altura lecho (cm)	2.47	8.08
Diámetro lecho (cm)	2.66	2.66
Vol. teórico lecho (cm ³)	13.72	44.90
Densidad partícula (gr/cm ³)	0.9	0.9
Porosidad del lecho	0.3	0.3
Vol. real adsorbente (cm ³)	9.62	31.42

Para el cálculo del volumen de la instalación se hace vacío en ésta hasta una presión, aproximada, de 0.1 torr. Posteriormente, se introduce unas cantidades de helio conocidas hasta alcanzar diferentes presiones, que se miden mediante un manómetro. Con estos valores (moles de helio introducido frente a la presión correspondiente de la instalación) se calculan volumenes de instalación, uno por cada punto, y de todos ellos se calcula una media que se tomará como el volumen de la instalación. Para el cálculo de cada uno de los volumenes se utiliza la ecuación de los gases ideales, se mide la temperatura y se tiene en cuenta la presión inicial de la instalación. Así, la ecuación resultante es:

$$V = V_{i} \frac{p_{a}}{p_{f}^{--}p_{i}}$$
(9.3)

donde:

- V Volumen de la instalación.
- V_i Volumen de helio introducido.
- p Presión a la que se introduce el helio

p Presión inicial de la instalación. (0.1 torr).

p_r Presión después de introducir el helio.

Este procedimiento se repitió varias veces, obteniendose un valor de V = $2605 \stackrel{+}{-} 21 \text{ cm}^3$.

De la misma forma, se calculó el volumen de una parte de la instalación que no incluía al lecho, el volumen de instalación que se vacía en la isoterma de desorción. Este dato es necesario en los cálculos de los puntos de desorción. El resultado obtenido fue en este caso de V = $1480 \stackrel{+}{-} 15 \text{ cm}^3$.

ii) Instalación a presión. (Fig. 3.2)

En este caso, el cálculo del volumen de la instalación se realiza mediante balances de materia en la misma. Para conocer con precisión el volumen total y el de la zona de carga se utiliza el "Regulador de volumen" descrito en el apartado 3.

Como se explicó en el citado apartado, el regulador de volumen permite variar el volumen de la instalación de una forma conocida. El volumen del aparato es de 209 cm³, y tiene un indicador que refleja las variaciones de volumen que se realizan. El volumen total de la instalación será por tanto el volumen libre de la misma (V_{inst}) más el que aporta el regulador (V_{n}).

Si se mantiene constante la temperatura y se altera el volumen del regulador, se producirá un cambio en la presión. Llamando 1 a las condiciones iniciales y 2 a las finales se tendrá:

$$\begin{array}{c} P_{1}(V_{R1}+V_{inst}) = nRT \\ P_{2}(V_{R2}+V_{inst}) = nRT \end{array} \right) P_{1}(V_{R1}+V_{inst}) = P_{2}(V_{R2}+V_{inst}) \Rightarrow V_{inst} = \frac{P_{2}V_{R2}-P_{1}V_{1}}{P_{1}-P_{2}} \\ \end{array}$$

De esta manera, realizando varios cambios de volumen en la instalación llena de helio, se puede calcular de forma bastante exacta el volumen de la instalación y de la zona de carga. Los valores fueron los . siguientes:

Volumen de la instalación: 298 ± 2 cm³.
Volumen de la zona de carga: 165 ± 2 cm³.

9.2.3. ANALISIS Y CALIBRADO CROMATOGRAFICO.

El análisis de las mezclas gaseosas de los adsorbatos se llevó a cabo en un cromatógrafo de gases de las características que se indican en el capítulo 3. Las condiciones de operación del mismo fueron escogidas de forma que los análisis tuviesen el menor tiempo de duración posible sin que se solapasen los picos. Así, las condiciones de operación escogidas para todos los experimentos fueron:

Columna: Porapak Q 80/100 mallas; diámetro, 1/8 pulgada; longitud, 2 metros.

Gas portador: Helio L-48 (pureza 99,998 %).

Temperatura del horno: 90°C.

Temperatura de la válvula de inyección de muestras: 90⁰C

Temperatura del detector: 150°C

Estas condiciones fueron las mismas para la instalación a presión atmosférica que para la de presión elevada, Con estas condiciones se hicieron calibrados para los diferentes gases en los que se relacionaban las unidades de area dadas por el integrador con la presión parcial del gas en la instalación. Los datos que se obtenían en el calibrado se ajustaban a tres rectas y eran éstas, las que se utilizaban en los cálculos posteriores. A modo de ejemplo, se muestra en la figura 9.7 el calibrado del CO₂.

9.2.4. CALCULO COMPLETO DE UN EXPERIMENTO

i) Presión atmosférica.

A modo de ejemplo se ha elegido un punto de equilibrio de la isoterma de adsorción de CO₂en ZSM-5 (SiO₂/Al₂O₂= 29) a 293 K.

Los datos experimentales de partida son los siguientes:

```
Presión atmosférica; P_a710.3 torrTemperatura ambiente; T_a293 KVolumen de gas introducido a P_a, T_a; V_13.0966 dm<sup>3</sup>Los datos correspondientes a la instalación son:Volumen real de la instalación; V_r2.5500 dm<sup>3</sup>Peso de adsorbente; W0.05648 kg
```

Con la ecuación de los gases ideales se calcula el número de moles introducidos en la instalación:

$$N_{i} = \frac{P_{a} V_{i}}{R T} = \frac{710.3 \times 3.0966}{760 \times 0.082 \times 293} = 0.120457 \text{ mol}$$

Mediante la medida del cromatógrafo y haciendo uso del calibrado se obtiene la presión del CO₂ en la instalación. Así, la presión resultante es de $P_i = 197.44$ torr.

Utilizando la ecuación de los gases ideales se puede calcular el número de moles que hay en interior de la instalación cuando se ha alcanzado el equilibrio.

$$N_{e} = \frac{Pe V}{R^{-} T} = \frac{197.44 \times 2.55}{760 \times 0.082 \times 293} = 0.02757 \text{mol}$$

De un simple balance de materia se puede calcular la cantidad de gas adsorbida por unidad de adsorbente.

$$n = \frac{0.120457 - 0.02757}{0.05648} = 1.6427 \text{ mol/kg}$$

ii) Presión elevada.

En cada experimento, una vez alcanzado el equilibrio, se procedía al análisis cromatográfico de la fase gaseosa (presiones parciales de cada adsorbato) y mediante un balance de materia individual para cada uno de los componentes se determinaba su cantidad adsorbida.

A modo de ejemplo, se ha elegido un punto de equilibrio de la isoterma de adsorción de CO₂ a 293 K en CMS 5A.

Los datos necesarios son:

a) Datos obtenidos en el punto anterior.

N° de moles totales de gas introducidos: $n_i = 0.020338395$. N° de moles en la fase gaseosa en el equilibrio: $n_{eq} = 0.009955848$

b) Datos experimentales de partida:

Presión de la instalación al introducir helio: $P = 0.095 \text{ Kg/cm}^2$ Temperatura al introducir el gas: $T_i = 21 \,^{\circ}\text{C}$.Presión de la zona de carga al introducir el gas: $P_i = 1.454 \text{ Kg/cm}^2$.Presión de la instalación en el equilibrio: $P_e = 1.143 \text{ Kg/cm}^2$.Temperatura en el equilibrio: $T_e = 20.5 \,^{\circ}\text{C}$.2° coeficiente del virial del CO2 a 293 K:B = -0.13008.

- Cálculo del número total de moles del adsorbato en la instalación.

En primer lugar se calcula el coeficiente de compresibilidad (Z) al introducir el gas, aplicando la ecuación del virial:

 $Z = 1 + \frac{BP}{RT} = 1 + \frac{(-0.13008)(1.454/1.0332)}{0.082 (273.15+21)} = 0.9924106$

Volumen en la zona decarga = 165.96 cm³

La presión en la zona de carga se define como la diferencia de presiones entre la medida y la presión de vacío.

Presión zona de carga: $P_i - P_v = 1.454 - 0.095 = 1.359 \text{ Kg/cm}^2$

Para hallar el número de moles en la zona de carga, se aplica la ecuación de los gases reales P V = n Z R T

N° moles zona carga = $n_c = \frac{(1.359/1.0332) \ 0.16596}{0.082 \ (273.15+20.5)} = 0.00911936$

En el punto anterior, una vez alcanzado el equilibrio, había en la fase gaseosa 0.009955848 moles en los 297.98 cm³ de la instalación por lo que haciendo un reparto proporcional se obtiene:

 $n_{c0} = 0.009955848$ (165.96/297.98) = 0.0055449 moles.

Por consiguiente, el numero de moles introducido es:

 $n_{i0} = 0.00911936 - 0.0055449 = 0.00357446$ moles

Sumando a los anteriores, los moles totales introducidos son:

 $n_1 = 0.2033839 + 0.00357446 = 0.0239128$ moles.

- Cálculo del número de moles del adsorbato al alcanzar el equilibrio.

$$Z_{2} = 1 + \frac{BP}{RT} = 1 + \frac{(-0.13008)(1.143/1.0332)}{0.082 (273.15+20.5)} = 0.9940240$$

N° moles = n_e = $\frac{((1.143-0.095)/1.0332) 0.16596}{0.082 (273.15+20.5)} = 0.0126277$ moles

Los moles adsorbidos son por lo tanto:

$$n_{ad} = n_{i} - n_{e} = 0.01128518$$
 moles

Refiriendo la cantidad adsorbida al Kg de adsorbente queda:

n = (0.01128518/4.277) 1000 = 2.6386 mol/Kg

9.3. DETALLES DE CALCULO EN LA APLICACION DE LOS MODELOS DE ADSORCION.

9.3.1 CALCULO DE PARAMETROS DE LA CURVA CARACTERISTICA DE EQUILIBRIO.

Como se indicó en el apartado (2.3.3) los parámetros necesarios para el cálculo de la curva de equilibrio característica del adsorbente son:

i) Presiones de saturación.

La estimación de las presiones de saturación P_s , a la temperatura de adsorción, se hizo mediante la ecuación de Riedl:

$$\ln P_{s} = A + (B/T) + C \ln T + D T^{c}$$
(9.4)

siendo A, B, C, D constantes que se estiman como se indica en la bibliografía (Reid, Praustnitz y Sherwood, 1977). Las presiones de saturación de los adsorbatos obtenidas para las distintas temperaturas se representan en la tabla 6.1

ii) Capacidad de adsorción a saturación.

La capacidad de adsorción a saturación de cada adsorbato en cada adsorbente se ha determinado mediante la regla de Gurvitsch:

$$n_{s} = \frac{W_{o}}{V_{m}}$$
(9.5)

El volumen de poros del adsorbente, W_o, se ha estimado por extrapo lación para $\varepsilon = 0$ del volumen adsorbido W = n Vm, frente a ε^2 = (R T ln (P/P_s))². En la figura 9.8 se ha representado, a modo de ejemplo, la gráfica de W frente a ε^2 para los datos de adsorción de propano en zeolita ZSM-5 SiO₂/Al₂O₃ = 29 a 301 K, de ella se obtiene, por extrapolación el correspondiente valor de W_o.

El volumen molar del adsorbato, Vm, se ha calculado por el método propuesto por Dubinin y col. (1966), que consiste en la interpolación lineal entre el volumen del líquido saturado Vb a la temperatura de ebullición Tb, y el covolumen de Van der Waals, b, a la temperatura crítica Tc. Los valores Vb, Tb, b, Tc están tomados de la bibliografía y los obtenidos de Vm se representan en la tabla 9.2.

iii) Entalpía libre de inmersión ΔG^1 .

La entalpía libre de inmersión, se ha calculado para cada uno de los adsorbatos, a partir de la isoterma de equilibrio experimental de cada uno de los adsorbatos, por integración gráfica de la ecuación:

$$\Delta G^{i} = R T \int_{0}^{n} \ln \frac{P}{P} dn \qquad (9.6)$$

Los valores de ΔG^i así obtenidos se representan en la tabla 6.1. Para aumentar la exactitud de los resultados y minimizar en lo posible los errores cometidos, se ha optado por una integración gráfica mediante programas de ordenador, repitiendo los cálculos ajustando la función a integrar a polinomios de tercer grado en varios tramos y realizando una integración analítica. Ambos métodos han proporcionado datos muy similares. A modo de ejemplo se representa en la figura 9.9 los datos correspondientes a la integración gráfica llevada a cabo para el cálculo de la entalpía libre de inmersión de CO₂ en CMS 5A a 308 K.

TABLA 9.2

Valores de los	parámetros V _b , T _b ,	b, Tc y Vm de los	adsorbatos
puros			
Adsorbato/T(K)	Vb(cm ³ /mol)/Tb(K)	b(cm ³ /mol)/Tc(K)	Vm(cm ³ /mol)
Etileno/281			5 7.23
Etileno/293	49.5/169.3	57.47/282.4	58.21
Etileno/308			59.27
Propano/281			79.51
Propano/293	74.5/231.1	89.03/369.8	80.98
Propano/308			82.55
C0 ₂ /281			4 0.19
CO ₂ /293	33.28/194.7	42.26/304.1	41.34
C0 ₂ /308			42.58
Etano/281			61.90
Etano/293	53.72/184.6	64.19/305.4	63.11
Etano/308			64.41

9.3.2 CALCULO DEL CALOR ISOSTERICO DE ADSORCION

El calor isotérico de adsorción de un componente puro se determina a partir de las isotermas experimentales a distintas temperaturas a partir de la ecuación:

$$q = -R \left[\frac{\partial \ln P}{\partial (1/T)} \right]_{n}$$
(9.7)

Para su cálculo, se sigue el siguiente método: se parte de las isotermas experimentales de los componentes puros a las distintas temperaturas. A continuación se toman parejas de valores P, T haciendo la cantidad adsorbida n constante, uno para cada temperatura a la que se tiene la isoterma.

Para cada n se calcula q₁ mediante la ecuación (9.7), siendo la derivada la pendiente de las rectas al representar ln P frente a (1/T) con n constante. En la figura 9.10 se representa, a modo de ejemplo, esta gráfica para la adsorción de etileno en zeolita ZSM-5 SiO₂/Al₂O₂ = 29.

De este modo se podrá disponer de una serie de valores del calor isostérico de adsorción (q), frente a la cantidad adsorbida (n). A modo de ejemplo, en la figura 9.11 se representan estos valores obtenidos para la adsorción de etileno en zeolita 5A. Estos puntos se pueden ajustar a una ecuación empírica para la mejor aplicación del modelo S.P.D.

La ecuación utilizada en anteriores investigaciones (Jiménez, 1989) es la siguiente:

$$q_i = q_i^o + a_i \exp(-b_i n_i)$$
 (9.8)

donde q_i es el calor isostérico de adsorción del componente i cuando se han adsorbido n_i moles de dicho componente y q_i^0 , a_i^0 , b_i^0 los tres parámetros de ajuste de la curva $q_i - n_i^0$ de dicho componente.

9.3.3 CALCULO DE LA PRESION SUPERFICIAL.

Para el cálculo de la presión superficial de los componentes puros, se parten de sus isotermas experimentales a 293 K. En cada punto, se halla el valor del cociente NA/RT mediante la integración numérica o gráfica de la ecuación:

$$\Pi A / RT = \int_{0}^{n} n / P \, dP + B / RT \int_{0}^{p} n \, dP \qquad (9.9)$$

El segundo término del segundo miembro incluye la influencia de las presiones elevadas en el cálculo de la presión superficial. En la figura 9.12 se ha representado a modo de ejemplo la gráfica de n/P frente a P utilizada para el cálculo de la presión superficial de CO₂ en CMS 5A. En ella se puede observar, como era de esperar, que para valores muy pequeños de la presión el integrando n/P tiende a infinito, lo cual im posibilita la integración. Para salvar este inconveniente se recurre al

cambio de variable que se comentó en el apartado de la introducción teórica:

$$\Pi A/RT = \int_0^n (d \ln P/d \ln n) dn \qquad (9.10)$$

De esta manera, el integrando tiende a la unidad para valores pequeños de la cantidad adsorbida (n), como se puede observar en las figuras 9.13 y 9.14 para los datos experimentales de CO₂ en CMS 5A.

Se han probado diferentes métodos de integración (gráficos, analíticos y numéricos), y a la vista de los resultados que proporcionan se ha optado por la integración numérica.

9.3.4. CALCULO DE REGIONES DE CONFIANZA DE LOS PARAMETROS DE REGRESION.

En general, cuando se pretende obtener el valor de los parámetros de un modelo que mejor se ajustan a los datos experimentales, se suele seguir un criterio de mínimos cuadrados que consiste en la minimización de una función objetivo $S(\theta)$.

En la reproducción del equilibrio de adsorción de los sistemas binarios, el criterio de mínimos cuadrados tiene la siguiente función objetivo:

$$S(\theta) = \sum_{i=1}^{n} (Y_{i}^{\exp} - Y_{i}^{rep})^{2}$$
(9.11)

donde:

 $Y_{_{+}}^{exp}$: valores experimentales de la variable dependiente.

 Y_i^{rep} : valores de la misma variable depediente pero calculados por el modelo a partir de los valores expementales de la variable independiente X_i, y los valores de los parámetros θ .

θ : series de parámetros del modelo.

En este caso, dicha función objetivo no es lineal en los

parámetros, por lo que la minimización de la misma es un proceso iterativo que requiere una estrategia de optimización eficiente para obtener aquella serie de parámetros (Λ_{12} , Λ_{21} del modelo S.A.R.; y β_{12} , s_1 , s_2 del modelo S.P.D.) que proporcionen un valor mínimo de S(θ).

El algoritmo utilizado en la reproducción de los diagramas isobáricos binarios, está basado en un procedimiento Newton-Gauss restringido, desarrollado por Leveberg (1944) y Marquardt (1963). Una vez determinada la serie de parámetros que hacen $S(\theta) = S_{min}$, será de gran importancia la determinación de la región de confianza conjunta exacta de los mismos para un nivel de probabilidad seleccionado.

En el caso no lineal, una región de confianza conjunta exacta puede obtenerse a partir de aquellas combinaciones de los valores de los parámetros que producen un valor constante de la función objetivo definida por Draper y col., (1966).

$$S(\theta) = S_{\min} \left(1 + \frac{p}{n-p} F(p, n-p, 1-\alpha) \right)$$
(9.12)

siendo:

p: números de parámetros.

n: número de puntos experimentales.

F (p, n-p, 1- α): punto p, n-p de la función de distribución para un nivel de probabilidad 1- α seleccionado.

 S_{min} : valor de la expresión (9.11) con los parámetros obtenidos de la regresión de los puntos experimentales.

La construcción de estas regiones de confianza en el espacio de parámetros que separa las estimaciones aceptables de aquellos que no lo son, para el nivel de probabilidad, implica encontrar un número suficiente grande de parámetros que satisfagan:

$$\sum_{i=1}^{n} (Y_{i}^{exp} - Y_{i}^{rep}) = S_{min} \left(1 + \frac{p}{n-p} F(p, n-p, 1-\alpha) \right)$$
(9.13)

i=1

Los valores de la distribución F se obtienen de la bibliografía (Pearson, 1954).

A continuación se detalla la forma de obtención de estas regiones de confianza para los dos modelos de reproducción:

i) Modelo S.A.R.

En el modelo S.A.R. se trata de obtener dentro del plano $\Lambda_{12}^{-}\Lambda_{21}^{-}$ (parámetros de la ecuaciones de Wilson) el valor geométrico de esos puntos cuyos valores de Λ_{12}^{-} , Λ_{21}^{-} cumplan la condición de la ecuación (9.12).

Para ello se determinan "planos de error" (uno para cada sistema binario) confeccionados realizando un barrido discontinuo para interva-los constantes de valores $\Lambda_{12}^{}$, $\Lambda_{21}^{}$.

Ello se calcula mediante un programa de cálculo que para cada pareja de parámetros generados, determina el error al que conduciría una reproducción mediante el modelo S.A.R. según la ecuación (9.11). El valor numérico que aparecía en el programa de salida para cada nodo del plano. de error era el logaritmo decimal cambiado de signo de la ecuación (9.11).

$$-\log S(\Lambda_{12}, \Lambda_{21}) = \sum_{i=1}^{n} (Y_{i}^{exp} - Y_{i}^{rep})^{2}$$
(9.14)

Dentro de este plano se puede trazar la región de confianza conjunta de los parámetros del ajuste encontrando los puntos que satisfagan la ecuación (9.13).

ii) Modelo S.P.D.

En este caso el espacio de parámetros es tridimensional, ya que hay tres parámetros ajustables: s_1 , s_2 , β_{12} . Las regiones de confianza conjunta de los parámetros serán, por tanto, superficies definidas como el lugar geométrico de los puntos del espacio de parámetros cuyas coordenadas cumplen la condición (9.12).

En este caso se determinaron "planos de error" del mismo modo que se realizó para el modelo S.A.R., confeccionados mediante una búsqueda en grilla de combinaciones de parámetros (s_1, s_2) a valores fijos de β_{12} .

Para cada "plano de error" (un valor de β_{12}), habrá una curva de nivel que satisfaga la ecuación (9.12) y constituirá una curva de confianza. Superponiendo dichas curvas obtenidas en el ajuste de los datos de equilibrio de un sistema binario determinado, constituirán la región de confianza conjunta de los parámetros obtenidos en dicha reproducción.

9.3.5. CALCULO DE LOS COEFICIENTES DE FUGACIDAD.

Para el cálculo de los coeficientes de fugacidad de la ecuación de Raoult modificada para altas presiones se han utilizado las siguientes expresiones.

$$\ln \phi_{i} = \left(2 \sum_{j} y_{i} B_{ij} - B_{m}\right) P/RT \qquad (9.15)$$

$$\ln \phi_{i}^{0}(\Pi) = B_{ij} P_{i}^{0}(\Pi)/RT \qquad (9.16)$$

donde B_{ii} es el coeficiente del virial del componente puro y B_m viene dado por la siguiente expresión:

$$B_{m} = \sum_{i} \sum_{j} y_{i} y_{j} B_{ij}$$
(9.17)

Los coeficientes del virial utilizados se han obtenido de la bibliografía (Reid, 1977) y se presentan en la tabla 9.3.

Tabla 9.3

 Coeficientes del virial a 293 K

 CO_2 -130.08 cm³/mol

 Etileno
 -146.70 cm³/mol

 Etano
 -194.82 cm³/mol

 CO_2 -etileno
 -135.75 cm³/mol

 CO_2 -etileno
 -156.12 cm³/mol

 Etileno-etano
 -167.86 cm³/mol

9.3.6. PROGRAMA DE CALCULO PARA LA REPRODUCCION DEL EQUILIBRIO DE MEZCLAS BINARIAS MEDIANTE EL MODELO S.P.D.

A continuación se presenta, a modo de ejemplo, un listado del programa de cálculo eleborado en lenguaje Fortran, utilizado para la reproducción del equilibrio de adsorción con el modelo S.P.D. .

~	PROGRAM MARK1
	******* PROGRAMA PARA EFECTUAR REGRESIONES NO LINEALES MEDIANTE LA ***** ******************************
	 CARACTERISTICAS MOS IMPORTANTES NUMERO MAXIMO DE PARAMETROS = 50 NUMERO MAXIMO DE VARIABLES INDEPENDIENTES = 6 NUMERO MAXIMO DE ECUACIONES = 50 NUMERO MAXIMO DE PUNTOS A AJUSTAR = 80 SE MODIFICA CON LA DIMENSION DE P EN SUBRUTIN. MARQUAR) =
с с с	ADAPTADO POR JAVIER PAU GAMARRA (1992)
	COMMON/VARIA1/X(6,100),YE(100),N,K,NX,NOPTIM,NELEC,CE COMMON/VARIA2/Y(100),Z(100) COMMON/PARAM1/B(50),ERROR COMMON/PARAM2/BMIN(50),BMAX(50),BIN(50) COMMON/PARAM2/BMIN(50),BMAX(50),BIN(50) COMMON/MATRIZ/C(51,51),E(51),XX(50) COMMON/PIS/PI(4,200),PIM(200) COMMON/CES/CC(4,200),PREO(200,2) COMMON/CES/CC(4,200),PREO(200,2) COMMON/GAMMA/GAM(200,2) COMMON/GAMMA/GAM(200,2) COMMON/CTES/NN(4),CT,VNMOLO(200,2) COMMON/CTES/NN(4),CT,VNMOLO(200,2) COMMON/PRAU1/AI(4),BI(4),EI(4),AF(4),BF(4),EF(4),PLIM(4) COMMON/QAD/Q0(4),A0(4),B0(4),QADS(200,2) COMMON/VIR/B11,B22,B12,D COMMON/MODO/TIPO,METODO COMMON/FALLO/VAL DOUBLE PRECISION C,E
С 5	CALL LECTOR
с 10	IF (NOPTIM.EQ.O) THEN DO 10 I=1,N YE(I)=1.
с 20	ELSE DO 20 I=1,N YE(I)=Y(I) Y(I)=1. ENDIE
C	IF (NELEC. EQ. 1) THEN
7	ERIN=100.0 DO 7 J=1,K BIN(J)=BMIN(J) BINT1=B(1) BINT2=B(2)

516

```
BINT3=B(3)
 920 DO 921 J=1.K
 921 B(J)=BIN(J)
      WRITE (*,9) B(1), B(2), B(3)
   9 FORMAT (1H+, F8. 3, 2X, F8. 3, 2X, F8. 5)
      CALL MARQUAR (ERIN, ERM)
      IF (VAL. EQ. 2.) THEN
         VAL=0.
        GOTO 930
      ENDIF
      IF (ERM.GT.ERIN) GOTO 930
      W1 = BIN(1)
      W_{2}=BIN(2)
      W3=BIN(3)
      ERIN=ERM
С
 930
      IF (BIN(3).GT.BMAX(3)) GOTO 940
      BIN(3)=BIN(3)+BINT3
      GOTO 920
С
 940
      IF (BIN(2).GT.BMAX(2)) GOTO 945
      BIN(2)=BIN(2)+BINT2
      BIN(3) = BMIN(3)
      GOTO 920
С
 945
      IF (BIN(1).GT.BMAX(1)) GOTO 950
      BIN(1)=BIN(1)+BINT1
      BIN(2)=BMIN(2)
      BIN(3)=BMIN(3)
      GOTO 920
С
 950
      VAL=1.
      B(1) = W1
      B(2) = W2
      B(3)=W3
      CALL MARQUAR (ERIN, ERM)
 100
      STOP
      END
С
      SUBROUTINE LECTOR
Ċ
      COMMON/VARIA1/X(6,100), YE(100), N, K, NX, NOPTIM, NELEC, CE
      COMMON/VARIA2/Y(100), Z(100)
      COMMON/PARAM1/B(50), ERROR
      COMMON/PARAM2/BMIN(50), BMAX(50), BIN(50)
      COMMON/PIS/PI(4,200), PIM(200)
      COMMON/CES/CC(4,200), PREO(200,2)
      COMMON/GAMMA/GAM(200, 2)
      COMMON/CTES/NN(4), CT, VNMOLO(200, 2)
      COMMON/PRAU1/AI(4), BI(4), EI(4), AF(4), BF(4), EF(4), PLIM(4)
      COMMON/QAD/QO(4), AO(4), BO(4), QADS(200, 2)
      COMMON/VIR/B11, B22, B12, D
      COMMON/FALLO/VAL
      CHARACTER TITULO*80
С
      READ(1,10,END=100) TITULO
  10 FORMAT(A70)
      WRITE(2,*) '
                      Modelo: S.P.D.'
      WRITE(2,11) TITULO
```

```
FORMAT('
  11
                   Mezcla: '.A40)
С
С
      LECTURA DE PRESIONES SUPERFICIALES
      CALL PRESUP
С
      READ(1, *) N, K, NX, CT
      WRITE(2, 12) CT
  12 FORMAT('
                 Presión: ', F5.0,' KPa',///)
C ---
                                COMPROBACION DE LOS DATOS INTRODUCIDOS
C
      READ (1,*) B11, B22, B12, D
С
      IF (NX.NE.O) THEN
         DO 30 I=1, N
  30
         READ(1, *) (X(J, I), J=1, NX), Y(I)
      ELSE
С ---
                                   SE RESUELVE UN SISTEMA DE ECUACIONES,
С ----
                                   LOS TERMINOS INDEPENDIENTES SON CERO
         DO 60 I=1, N
         Y(I)=0.
  60
      ENDIF
      DO 70 J=1,K
  70 READ(1,*) BMIN(J), BMAX(J)
      DO 80 J=1,K
      READ(1, *) B(J)
  80
C ---
                                 SI NOPTIM ES 1 SE AJUSTAN LOS ERRORES MEDIOS
C ----
                                 Z=Z PREDICHO/Z EXPERIMENTAL
      NOPTIM=0
      NELEC=0
      READ(1, *, END=1000) NELEC
      READ(1, *, END=1000) NOPTIM
      WRITE(2,*)'
                                 ++++ SE AJUSTAN LOS ERRORES MEDIOS ++++'
1000 WRITE(2,500)(J, J=1, K)
 500
     FORMAT(//30X, 'ALGORITMO DE MARQUARDT', //14X, 50('=')//, 40X,
     1 'PARAMETROS'/2X, 'ITERACION', 5X, 'SCUAD', 8(12X, 11))
      WRITE(2, *)
 100
     RETURN
      END
С
      SUBROUTINE MARQUAR (ERIN, ERM)
С
      COMMON/VARIA1/X(6,100), YE(100), N, K, NX, NOPTIM, NELEC, CE
      COMMON/VARIA2/Y(100), Z(100)
      COMMON/PARAM1/B(50), ERROR
      COMMON/PARAM2/BMIN(50), BMAX(50), BIN(50)
      COMMON/PIS/PI(4,200), PIM(200)
      COMMON/CES/CC(4, 200), PREO(200, 2)
      COMMON/GAMMA/GAM(200,2)
      COMMON/CTES/NN(4), CT, VNMOLO(200, 2)
      COMMON/PRAU1/AI(4), BI(4), EI(4), AF(4), BF(4), EF(4), PLIM(4)
      COMMON/QAD/QO(4), AO(4), BO(4), QADS(200, 2)
      COMMON/VIR/B11, B22, B12, D
      COMMON/ANGLE/G(51), DELTA(50)
      COMMON/LAMBDA/FLA, FLAO, FLAMIN, FLAMAX, FNU, FK
      COMMON/FALLO/VAL
      DOUBLE PRECISION P(80, 51), A(51, 51), AC(51, 51)
      DOUBLE PRECISION PHI(100), PH, G, GC(51)
      DIMENSION ZD(100), BN(50)
      REAL DERO
```

C C ---INICIALIZACION DE VARIABLES DERO=1.0E-3 TAU=1.0E20 EPS=1.0E-5 FNU=10. PH=0. DO IFINAL=0 ICON=0 FLAO=0.01 FLAMIN=1.0E-4 FLAMAX=1.0E4 FLA=FLAO ERROR=0.01 C ----CALCULO DEL COEFICIENTE TAU OUE ES C ---0.001 VECES EL PARAMETRO MAS PEQUENO DO 5 J=1,K 5 TAU = AMIN1(TAU, ABS(B(J)))TAU=0.001*TAU С ~ - - -ITER ES EL NUMERO DE ITERACIONES ITER=0 C ~---CALCULO DE LA FUNCION OBJETO, PHI CON LOS C ----VALORES INICIALES DE LOS PARAMETROS CALL FUNC (B,Z) IF (VAL. EQ. 2.) RETURN DO 10 I=1, N 10 PH=PH+(Y(I)-Z(I))**2 PHI(ITER)=PH JB=0 DO 15 J=1.K IF (BMIN(J). EQ. BMAX(J)) JB=JB+1 15 CONTINUE IF (JB.EQ.K) THEN C ----TODOS LOS BMIN=BMAX =>SE DETIENE LA EJECUCION IFINAL=1 ICON=0 ENDIF CALL SALIDA (ITER, PH, B, IFINAL, ICON, ERIN, ERM) C ---FINAL LOGICO DEL PROGRAMA SUANDO TODOS LOS C ~--VALORES MAXIMOS DE LOS PARAMETROS SON IGUALES C ---A LOS MINIMOS Y NO SE PUEDE ITERAR IF (IFINAL.EQ.1) THEN RETURN ENDIF PH=0. D0 C ---COMIENZAN LOS TANTEOS DEL MARQUARDT 200 ITER=ITER+1 DO 35 J=1,K BN(J)=B(J)35 NOTEXT=1 FK=1. C ----CALCULO DE LA DERIVADA DE LA FUNCION C ----RESPECTO A LOS PARAMETROS PARA CALCULAR EL С ---JACOBIANO QUE SE ALMACENA EN LA MATRIZ P DO 20 J=1,K DER=DERO C ----SI BMIN(J)=BMAX(J) TOMA EL VALOR DE DERO IF (BMIN(J). NE. BMAX(J)) THEN 25 CONTINUE

```
IF (B(J)*(1.+DER).GT.BMAX(J)) THEN
             DER=-DER
             IF (B(J)*(1.+DER).LT.BMIN(J)) THEN
                DER=DER/2.
                GOTO 25
С ---
                               SE REPITE EL PROCESO PARA VER SI EL NUEVO VALOR
С ---
                               DE B ESTA DENTRO DE LOS LIMITES ESTABLECIDOS
             ENDIF
         ENDIF
      ENDIF
      IF (B(J).NE.O.) THEN
         BN(J)=B(J)*(1.+DER)
      ELSE
         BN(J)=DER
      ENDIF
      CALL FUNC (BN, ZD)
      IF (VAL. EQ. 2.) RETURN
      BN(J)=B(J)
      IF (B(J), NE.O.) THEN
         DENOM=B(J)*DER
      ELSE
         DENOM=DER
      ENDIF
      DO 30 I=1, N
  30 P(I, J) = (ZD(I) - Z(I)) / DENOM
  20 CONTINUE
C ---
                              CALCULO DE LA MATRIZ A: (K X K ) Y DEL VECTOR G
      DO 40 I=1,K
      DO 40 J=1.K
      A(I, J) = 0.D0
      DO 40 II=1.N
      A(I,J)=A(I,J)+P(II,I)*P(II,J)
  40
      DO 51 J=1,K
      G(J) = 0.D0
      DO 50 I=1, N
  50 G(J)=G(J)+(Y(I)-Z(I))*P(I,J)
      IF (ABS(G(J)).LT.1E-19) THEN
        VAL=2.
        WRITE (*,*) 'G NO VALIDO'
С
        RETURN
      ENDIF
  51
      CONTINUE
C ----
                             ESCALADO DE LA MATRIZ A Y DEL VECTOR G
      DO 52 J=1,K
      IF (A(J, J), EQ, O) THEN
        ERM=10000.
        GOTO 333
      ENDIF
  52
      CONTINUE
      DO 60 I=1,K
      DO 70 J=1,K
      AC(I, J) = A(I, J) / (DSQRT(A(I, I)) * DSQRT(A(J, J)))
  70
      GC(I)=G(I)/DSQRT(A(I,I))
  60
                             CALCULO DEL FACTOR LAMBDA (FLA) SEGUN EL ORDEN
C ---
С ---
                             DE MAGNITUD DE LOS ELEMENTOS DE LA DIAGONAL
C ----
                             DE LA MATRIZ A
C ----
                             SOLO SE CALCULA EN LA PRIMERA ITERACION
C ----
                             SE ELIGE FLA DE MODO QUE SEA UN 1% DE LA MEDIA
С ---
                             DE LOS ELEMENTOS ED LA DIAGONAL
```

С ---SE APLICA EL TEXT 1 A LAS NUEVAS ITERACIONES C ----FLA(IT)=FLA(IT-1)/FNU FLA=FLAO/FNU IF (FLA.LT.FLAMIN) FLA=FLAMIN C ---CALCULO DE LOS TERMINOS DE LA DIAGONAL DE LA C ---MATRIZ AC AC(I, I)=AC(I, I)+LAMBDA 90 DO 100 J=1.K AC(J, J)=1.DO+FLA100 CONTINUE С ---RESOLUCION DEL SISTEMA DE ECUACIONES POR EL C ----METODO DE GAUSS-JORDAN UTILIZANDO LA TECNICA С _ _ _ DEL MAXIMO PIVOTE CALL GAUJO (AC, DELTA, GC) C ---LAS VARIACIONES DE LOS PARAMETROS SE ELMACENAN C ---EN EL VECTOR DELTA DO 110 J=1.K 110 DELTA(J)=DELTA(J)/DSQRT(A(J,J)) С ---COMPROBACION DE QUE EL ANGULO GAMMA ES MENOR DE С ---90. SINO, SE AUMENTA EL FACTOR LAMBDA CALL ANGULO (K, GAMMA) IF (VAL. EQ. 2.) GOTO 333 IF (GAMMA.GT. 90. AND. FLA. LT. FLAMAX) THEN FLA=AMIN1(FLA*FNU, FLAMAX) GOTO 90 ENDIF C ---CALCULO DE LOS NUEVOS PARAMETROS 115 DO 120 J=1,K BN(J)=B(J)+DELTA(J)*FK120 BN(J) = AMAX1(BMIN(J), AMIN1(BN(J), BMAX(J)))C ---CALCULO DE LA NUEVA FUNCION OBJETO : PHI CALL FUNC (BN, Z) IF (VAL. EQ. 2.) RETURN PH=0.DO DO 130 I=1, N PH=PH+(Y(I)-Z(I))**2130 PHI(ITER)=PH C ---COMPROBACION DE QUE LA NUEVA FUNCION ES MENOR C ----QUE LA DE LA ITERACION ANTERIOR CALL TEST (K, ITER, ICON, PHI, NOTEXT, *90, *115, *180) IF (VAL. EQ. 2.) GOTO 333 C ---COMPROBACION DE QUE SE HA ALCANZADO LA CONVERGENCIA IER=0 DO 140 J=1,K EP = ABS(DELTA(J))/(TAU + ABS(BN(J)))IF (EP.GT.EPS) IER=IER+1 140 CONTINUE IERB=0 DO 150 J=1.K IF (B(J), EQ, 0) THEN DEN=1.0E-36 ELSE DEN=B(J)ENDIF ER=ABS((BN(J)-B(J))/DEN)IF (ER.GT.ERROR/100.) IERB=IERB+1 150 CONTINUE DO 160 J=1,K 160 B(J)=BN(J)IF (IER. EQ. O. OR. IERB. EQ. 0) THEN

с	-	EL ALGORITMO HA CONVERGIDO
	ICON=0 IF (FLA FO FLAMAX) ICON=	3
	ELSE	-5
с	-	NO SE HA ALCANZADO LA CONVERGENCIA
	IF (ITER.LE.98) THEN FLAO=FLA	
-	CALL SALIDA (ITER, PH,	B, IFINAL, ICON, ERIN, ERM)
C	- COTO 200	SE INICIA UN NUEVO TANTEO
	FNDIF	
	ICON=1	
	ENDIF	
180	IFINAL=1	
222	CALL SALIDA (ITER, PH, B, IFIN	(AL, ICON, ERIN, ERM)
333	FND	
С		
	SUBROUTINE TEST (K, ITER, ICC	N, PHI, NOTEXT, *, *, *)
	COMMON/ANGLE/G(51), DELTA(50	
	COMMON/LAMBUA/FLA, FLAU, FLAM	IIN, FLAMAX, FNU, FK
С	CONTINUE ALLOS VAL	
	DOUBLE PRECISION PHI(100), G	· ·
	IF (PHI(ITER).GT.PHI(ITER-1)) THEN
С		NO HA DISMINUIDO LA FUNCION OBJETO
C	IF (NOTEXT, EQ. I) THEN	SE ADIICA EL TEST NO 2 ELA(IT)-ELA(IT-1)
C	FLA=FLAO	SE AFEICA EL IEST NO 2 FLA(II)-FLA(II-I)
	NOTEXT=NOTEXT+1	
	RETURN 1	
C	ELSE	
C		SE APLICA EL TEST NO 3 FLA(IT)=FLA(IT-I)*FNU
	IF (FLA.LE.FLAMAX) RE	TURN1
С		SE APLICA EL TEST NO 3 MODIFICADO
	CALL ANGULO (K, GAMMA)	
	IF (VAL.EQ.2.) GOTO 3	
C	IF (GAMMA, GI, 45, UK, FK	EL ALCORITMO NO CONVERCE
C	ICON=2	LE REGORTINO NO CONVENSE
	RETURN 3	
	ELSE	
C	FY-FY (2)	NO SE AUMENTA LAMBDA Y SE DISMINUYE FK
	FK=FK/2. RETURN 2	
	ENDIF	
	ENDIF	
С		SE CONTINUA CON OTRA ITERACION
24		
34	FND	
С		
	SUBROUTINE ANGULO (K, GAMMA)	
	COMMON/ANGLE/G(51), DELTA(50)
	COMMON/FALLO/VAL	
с	DODRE LECTOION C	CALCULO DEL ANGULO GAMMA
-	PI=3.141592654	

.

522

٠

523

```
RNUM=0.
      DMOD=0.
      GMOD=0.
      DO 10 J=1.K
      RNUM=RNUM+DELTA(J)*G(J)
      DMOD=DMOD+DELTA(J)**2
      GMOD=GMOD+G(J)**2
  10 CONTINUE
      DMOD=SQRT(DMOD)
      GMOD=SORT(GMOD)
      IF (DMOD. EQ. 0. OR. GMOD. EQ. 0. ) THEN
         COSGAM=0.
     ELSF
         COSGAM=RNUM/(DMOD*GMOD)
      ENDIF
      IF (ABS(COSGAM-1.).LT.0.00001) THEN
       VAL=2.
       GOTO 11
      ENDIF
      GAMMA=ACOS(COSGAM)
      GAMMA=GAMMA*180./PI
  11 RETURN
      END
С
      SUBROUTINE SALIDA (ITER, PH, B, IFINAL, ICON, ERIN, ERM)
С
      COMMON/VARIA1/X(6,100), YE(100), N, K, NX, NOPTIM, NELEC, CE
      COMMON/VARIA2/Y(100), Z(100)
      COMMON/PARAM2/BMIN(50), BMAX(50), BIN(50)
      COMMON/PIS/PI(4,200), PIM(200)
      COMMON/CES/CC(4,200), PREO(200,2)
      COMMON/GAMMA/GAM(200,2)
      COMMON/CTES/NN(4), CT, VNMOLO(200, 2)
      COMMON/PRAU1/AI(4), BI(4), EI(4), AF(4), BF(4), EF(4), PLIM(4)
      COMMON/QAD/QO(4), AO(4), BO(4), QADS(200, 2)
     COMMON/VIR/B11, B22, B12, D
     COMMON/FALLO/VAL
     DIMENSION ER(101), B(50)
     DOUBLE PRECISION PH
С
С
  DEFINICION DE LOS FORMATOS A UTILIZAR
С
   ___
С
   SCUAD=PH
      IF (VAL.EQ.0) GOTO 321
     WRITE(2,200) ITER, PH, (B(J), J=1, K)
200 FORMAT(5X, I2, 6X, 1PE10. 3, 1X, 8(4X, 1PE10. 3)/8(4X, 1PE10. 3))
C ----
                              SI IFINAL = 1 SE DEVUELVE EL CONTROL
 321 IF (IFINAL.EQ.O) RETURN
     ERT=0.
     IF (VAL.EQ.0) GOTO 322
     WRITE(2, *)
     IF (ICON. EQ. 1) THEN
                                                           *****
        WRITE(2,*)' *****
                            NO CONVERGE EN 100 ITERCIONES
     ELSE IF ( ICON. EQ. 2) THEN
        WRITE(2,*)' ***** EL ALGORITMO NO FUNCIONA *****'
     ELSE IF (ICON. EQ. 3) THEN
        WRITE(2,*)'** EL ALGORITMO CONVERGE CON UN FACTOR LAMBDA ALTO'
     ENDIF
```

300	WRITE(2,300) FORMAT(//28X,'***** RESULTADO DEL AJUSTE *****'//) DO 10 I=1 K
10 100	WRITE(2,100)J,B(J) FORMAT(25X,'###### $B(',I2,') = ',1PE12.5,' #######')$
	ERT=0. G1F=EXP(1-ALOG(B(1))-B(2)) G2F=EXP(1-ALOG(B(2))-B(1)) WRITE (2,114) G1F,G2F
114	FORMAT (//,22X,'G1 INFINITO = ',F7.3,/,22X,'G2 INFINITO = ', 1 1F7.3)
121	WRITE (2,121) FORMAT(///,'CASO NO.',7X,'X',9X,'Y OBS',7X,'Y REP',5X,'ERROR', 1 4X,'GAM1',4X,'GAM2',4X,'PIM') WRITE (2 122)
122	FORMAT $(8('-'), 3(3X, 9('-')), 3(3X, 5('-')), 3X, 5('-'))$
322	DO 20 I=1, N ER(I)= $(Z(I)-Y(I))/Y(I)*100$.
С	IF (VAL. EQ. 0.) GUIU 323
130 323 20	WRITE (2,130) 1,X(1,1),Y(1),Z(1),ER(1),GAM(1,1),GAM(1,2),PIM(1) FORMAT(3X, I2,5X,3(1PE10.3,2X),OPF6.1,2(3X,F5.3),3X,F5.2) ERT=ERT+ABS(ER(I)) CONTINUE
С	IF (VAL.EQ.0.) GOTO 324
131	WRITE (2,131) FORMAT(///,'CASO NO.',3X,'PREO1',3X,'PREO2',5X,'VNMOLO1',6X, 1'VNMOLO2',7X,'QADS1',8X,'QADS2')
132	FORMAT $(8('-'), 2(3X, 5('-')), 4(4X, 9('-')))$
	WRITE (2,133) M, PREO(M, 1), PREO(M, 2), VNMOLO(M, 1), VNMOLO(M, 2), 10ADS(M, 1), OADS(M, 2)
133 144 C	FORMAT (3X, I2, 3X, 2(2X, F7.1), 6X, F5.3, 8X, F5.3, 7X, F6.0, 7X, F6.0) CONTINUE
324	ERR=ERT/N ERM=PH
	IF (VAL.EQ.0.) GOTO 325 WRITE(2,700) ERR GOTO 333
325	IF (ERM. LT. ERIN) THEN WRITE (*,*) ''
	WRITE (*,*) BIN(1),BIN(2),BIN(3),ERM WRITE (*,*) B(1),B(2),B(3),ERR WRITE (*,*) ''
	WRITE (3,*) '' WRITE (3,*) BIN(1), BIN(2), BIN(3), ERM WRITE (3,*) B(1), B(2), B(3), ERR
700 333	ENDIF FORMAT(//25X,' ###### ERROR MEDIO = ',F11.6,' ######') RETURN END
С	SUBROUTINE VECTOR COMMON/VARIA1/X(6,100),YE(100),N,K,NX,NOPTIM,NELEC,CE COMMON/MATRIZ/C(51,51),E(51),XX(50)

.

DOUBLE PRECISION C.E. C WRITE(6,*)' ***** SOLUCION DEL SISTEMA *****' DO 5 I=1, N WRITE(6,200)(C(I,J),J=1,N),E(I) 5 200 FORMAT (10X, G11. 4, 4X, T25, G11. 4, 4X, T40, G11. 4, 4X, T55, G11. 4, 4X, T70, 1 G11.4) DO 10 J=1, N WRITE(6,100)J,XX(J) 10 100 FORMAT(25X, '****** X(', I2, ') = ', 1PE11.4RETURN END С SUBROUTINE GAUJO (CL, XX, EL) Ċ COMMON/VARIA1/X(6,100), YE(100), N, K, NX, NOPTIM, NELEC, CE DOUBLE PRECISION CL(51,51), EL(51) DOUBLE PRECISION C(51,51), E(51), PIVOT, DET DIMENSION JPIV(50), IPIV(50), XX(50) С С ---LA MATRIZ DE LOS COEFICIENTES Y EL VECTOR DE C ----LOS TERMINOS INDEPENDIENTES SE ALMACENAN EN С ---LAS VARIABLES C Y E PARA EFECTUAR LA REDUCCION C ---DE LOS MISMOS SIN ALTERAR LOS VALORES SUMINIS-C ----TRADOS POR EL PROGRAMA DE LLAMADA : CL Y EL DO 5 I=1,K DO 15 J=1,K 15 C(I,J)=CL(I,J)E(I) = EL(I)5 CONTINUE PIVOT=0.DO DET=1.DOC ----CALCULO DEL MAXIMO COEFICIENTE QUE SE ALMACENA С ---EN LA VARIABLE PIVOT, OCUPA LA POSICION (IFIL, JCOL) DO 10 KK≈1,K DO 20 I≈1,K DO 20 J=1.K C ----SE SIGUEN BUSCANDO LOS SIGUIENTES ELEMENTOS С ----PIVOTANTES EXCLUYENDO LAS FILAS Y COLUMNAS С ---DONDE YA SE ENCONTRARON LOS ANTERIORES DO 25 JJ=1,KK-1 IF (J.EQ.JPIV(JJ).OR.I.EQ.IPIV(JJ)) GOTO 20 25 IF (DABS(C(I,J)).GT.DABS(PIVOT)) THEN PIVOT=C(I, J)IFIL≈I JCOL=J ENDIF 20 CONTINUE IPIV(KK)=IFIL JPIV(KK)=JCOL с ---NORMALIZACION DE LA FILA CON MAYOR COEFICIENTE DO 30 J=1,K 30 C(IFIL, J)=C(IFIL, J)/PIVOT C(IFIL, JCOL)=1.DOE(IFIL)≈E(IFIL)/PIVOT C ---REDUCCION DE LAS FILAS DE LA MATRIZ DO 40 I≈1,K IF (I.EQ.IFIL) GOTO 40 CIFJC=C(I, JCOL)

```
DO 50 J=1.K
  50
       C(I, J)=C(I, J)-CIFJC*C(IFIL, J)
       C(I, JCOL) = 0.D0
       E(I)=E(I)-CIFJC*E(IFIL)
  40
       CONTINUE
С ----
                                   EL VALOR ABSOLUTO DEL DETEMINANTE DE LA MA-
                                   TRIZ DE LOS COEFICIENTES SE ALMACENA EN DET
С ---
       DET=DET*PIVOT
       PIVOT=0.D0
  10 CONTINUE
С ---
                                  LA SOLUCION DEL SISTEMA SE ALMACENA EN XX
      DO 60 I=1.K
      XX(JPIV(I)) = E(IPIV(I))
  60
      CONTINUE
      RETURN
      END
С
      SUBROUTINE FUNC (B,Z)
С
      COMMON/VARIA1/X(6,100), YE(100), N, K, NX, NOPTIM, NELEC, CE
      COMMON/PIS/PI(4,200), PIM(200)
      COMMON/CES/CC(4,200), PREO(200,2)
      COMMON/GAMMA/GAM(200,2)
      COMMON/CTES/NN(4), CT, VNMOLO(200, 2)
      COMMON/PRAU1/AI(4), BI(4), EI(4), AF(4), BF(4), EF(4), PLIM(4)
      COMMON/QAD/QO(4), AO(4), BO(4), QADS(200, 2)
      COMMON/VIR/B11, B22, B12, D
      COMMON/FALLO/VAL
      DIMENSION B(50), Z(100)
С
      DO 10 I=1,6
      XXX=X(1, I)
      CALL REPRO (I, B, XXX, Y1)
      IF (VAL. EQ. 2.) RETURN
      Z(I)=Y1/YE(I)
   10 CONTINUE
      RETURN
      END
С
      SUBROUTINE G (I, B, X1, C10, C20, G1, G2)
      COMMON/CTES/NN(4), CT, VNMOLO(200, 2)
      COMMON/PRAU1/AI(4), BI(4), EI(4), AF(4), BF(4), EF(4), PLIM(4)
      COMMON/QAD/QO(4), AO(4), BO(4), QADS(200, 2)
      COMMON/FALLO/VAL
      DIMENSION B(10)
      X2 = 1 - X1
      VM=6.023E23
      Z=4.
      T=293.
      R=1.987
С
С
      *** CORRECCION DEL ARTICULO ORIGINAL ***
С
      VM=1.
С
С
      * CALCULO DE N ECUACION DE PRAUSNITZ *
С
      PLIM1=PLIM(1)
      PLIM2=PLIM(2)
```

```
A1I=AI(1)
A2I=AI(2)
A1F = AF(1)
A2F=AF(2)
B1I=BI(1)
B2I=BI(2)
B1F=BF(1)
B2F=BF(2)
E1I = EI(1)
E2I=EI(2)
E1F=EF(1)
E2F=EF(2)
010=00(1)
020=00(2)
A10 = A0(1)
A20=A0(2)
B10=B0(1)
B20=B0(2)
IF (C10 . LE. PLIM1) THEN
VN10=1/(1/(A1I*C10)+1/(B1I*C10**E1I))
ELSE
VN10=1/(1/(A1F*C10)+1/(B1F*C10**E1F))
END IF
IF (C20 . LE. PLIM2) THEN
VN20=1/(1/(A2I*C20)+1/(B2I*C20**E2I))
ELSE
VN20=1/(1/(A2F*C20)+1/(B2F*C20**E2F))
END IF
VNMOLO(I,1)=VN10
VNMOLO(I,2)=VN20
CALCULO DEL CALOR ISOSTERICO DE ADSORCION
01=010*(EXP(-A10*VN10)-1)
Q2=Q20*(EXP(-A20*VN20)+1)
01=A10*(1-EXP(-B10*VN10))
Q2=A20*(1-EXP(-B20*VN20))
QADS(I, 1) = A10 - Q1 + Q10
QADS(I, 2) = A20 - Q2 + Q20
E11=01/(0.5*Z*VM*B(1))
E22=Q2/(0.5*Z*VM*B(2))
E12=(1-B(3))*SQRT(E11*E22)
E21=E12
ZXC1=(-0.5*Z*(E12-E22)/(R*T))
IF (ZXC1.GT.80) THEN
  VAL=2.
  RETURN
ENDIF
ALF12=EXP(ZXC1)
ZXC2=(-0.5*Z*(E21-E11)/(R*T))
IF (ZXC2.GT.80) THEN
  VAL=2.
  RETURN
ENDIF
ALF21=EXP(ZXC2)
FI1=B(1)*X1/(B(1)*X1+B(2)*X2)
FI2=B(2)*X2/(B(1)*X1+B(2)*X2)
T1=1-ALOG(F11+F12*ALF21)
T2=-FI1/(FI1+FI2*ALF21)-FI2*ALF12/(FI1*ALF12+FI2)
G1 = EXP(B(1) * (T1 + T2))
T3=1-ALOG(FI2+FI1*ALF12)
```

С

С

С

```
T4=-FI2/(FI2+FI1*ALF12)-FI1*ALF21/(FI2*ALF21+FI1)
      G2=EXP(B(2)*(T3+T4))
      RETURN
      END
      SUBROUTINE REPRO (I, B, X1, Y1)
      COMMON/PIS/PI(4,200), PIM(200)
      COMMON/CES/CC(4,200), PREO(200,2)
      COMMON/GAMMA/GAM(200,2)
      COMMON/CTES/NN(4), CT, VNMOLO(200, 2)
      COMMON/PRAU1/AI(4), BI(4), EI(4), AF(4), BF(4), EF(4), PLIM(4)
      COMMON/QAD/QO(4), AO(4), BO(4), QADS(200, 2)
      COMMON/VIR/B11, B22, B12, D
      COMMON/FALLO/VAL
      DIMENSION B(10)
С
С
      METODO DE LA MITAD
      PIA1=10.
      CONTA=0.
      CALL PPI(PIA1, C10, C20)
      CALL G(I, B, X1, C10, C20, G1, G2)
      IF (VAL.EQ.2.) RETURN
      YA=0.01
      NC=1
  101 W1=EXP(B11*C10/2435.07)
      Z11=((CT/2435.07)*(B11+((1-YA)**2)*D))
      IF (Z11.GT.75.) THEN
        VAL=2.
        RETURN
      ENDIF
      Z1=EXP(Z11)
      Y1=G1*X1*C10*W1/(CT*Z1)
      IF (ABS(YA-Y1).GT.0.01) THEN
      YA=Y1
      NC=NC+1
      IF (NC.GT.200) THEN
        VAL=2.
        RETURN
      ENDIF
      GOTO 101
      ELSE
      END IF
      YB=0.01
      NC=1
  201 W2=EXP(B22*C20/2435.07)
      Z22=((CT/2435.07)*(B22+((1-YB)**2)*D))
      IF (222.GT.75.) THEN
        VAL=2.
        RETURN
      ENDIF
      Z2=EXP(Z22)
      Y2=G2*(1-X1)*C20*W2/(CT*Z2)
      IF (ABS(YB-Y2).GT.0.01) THEN
      YB=Y2
      NC=NC+1
      IF (NC.GT.200) THEN
        VAL=2.
        RETURN
      ENDIF
```

GOTO 201 ELSE END IF F=1-Y1-Y2 F1=F10 PIA2=PIA1+1. IF (PIA2.GT. 30.) THEN RETURN END IF CALL PPI(PIA2, C10, C20) CALL G(I, B, X1, C10, C20, G1, G2) IF (VAL.EQ.2.) RETURN YA=0.01 NC=1102 W1=EXP(B11*C10/2435.07) Z11=((CT/2435.07)*(B11+((1-YA)**2)*D))IF (Z11.GT.75.) THEN VAL=2. RETURN ENDIF Z1=EXP(Z11)Y1=G1*X1*C10*W1/(CT*Z1) IF (ABS(YA-Y1).GT.0.01) THEN YA=Y1 NC=NC+1 IF (NC.GT.200) THEN VAL=2. RETURN ENDIF GOTO 102 ELSE END IF YB=0.01 NC=1 202 W2=EXP(B22*C20/2435.07) Z22=((CT/2435.07)*(B22+((1-YB)**2)*D)) IF (Z22.GT.75.) THEN VAL=2. RETURN ENDIF Z2=EXP(Z22)Y2=G2*(1-X1)*C20*W2/(CT*Z2) IF (ABS(YB-Y2).GT.0.01) THEN YB=Y2 NC=NC+1 IF (NC.GT.200) THEN VAL=2. RETURN ENDIF GOTO 202 ELSE END IF F=1-Y1-Y2 F2=F IF ((F1*F2).GT.O.) THEN PIA1=PIA2 F1=F2 CONTA=CONTA+1 GOTO 10

```
ELSE
    END IF
20 PIMED=(PIA1+PIA2)/2
    CALL PPI(PIMED.C10,C20)
    CALL G(I, B, X1, C10, C20, G1, G2)
    IF (VAL.EQ.2.) RETURN
    YA=0.01
    NC=1
103 W1=EXP(B11*C10/2435.07)
    Z11=((CT/2435.07)*(B11+((1-YA)**2)*D))
    IF (Z11.GT.75.) THEN
      VAL=2.
      RETURN
    ENDIF
    Z1 = EXP(Z11)
    Y1=G1*X1*C10*W1/(CT*Z1)
    IF (ABS(YA-Y1).GT.0.01) THEN
    YA=Y1
    NC=NC+1
    IF (NC.GT.200) THEN
      VAL=2.
      RETURN
    ENDIF
    GOTO 103
    ELSE ·
    END IF
    YB=0.01
    NC=1
203 W2=EXP(B22*C20/2435.07)
    Z22=((CT/2435.07)*(B22+((1-YB)**2)*D))
    IF (Z22.GT.75.) THEN
      VAL=2.
      RETURN
    ENDIF
    Z2=EXP(Z22)
    Y2=G2*(1-X1)*C20*W2/(CT*Z2)
    IF (ABS(YB-Y2), GT. 0.01) THEN
    YB=Y2
    NC=NC+1
    IF (NC.GT.200) THEN
      VAL=2.
      RETURN
    ENDIF
    GOTO 203
    ELSE
    END IF
    F=1-Y1-Y2
    FMED=F
    IF ((F1*FMED).GT.O.) THEN
    PIA1=PIMED
    F1=FMED
    ELSE
    PIA2=PIMED
    F2=FMED
    END IF
    CONTA=CONTA+1
    IF (ABS(FMED) .LT. 0.001) GO TO 40
    IF ( CONTA.GE.200.) THEN
    RETURN
```

.

.

.

	30	ELSE GO TO 20 END LE
	40	GAM(I, 1) = G1
		GAM(I,2)=G2
		PBFO(I = 1) = C10
		PREO(1,2)=C20
		RETURN
r		END
-		SUBROUTINE PPI(PIS, C10, C20)
		COMMON/PIS/PI(4,200), PIM(200)
		COMMON/CES/CC(4,200), PRE0(200,2) COMMON/CAMMA/CAM(200,2)
		COMMON/CTES/NN(4), CT, VNMOLO(200, 2)
		COMMON/PRAU1/AI(4), BI(4), EI(4), AF(4), BF(4), EF(4), PLIM(4)
		DIMENSION PI1(200), PI2(200), CC1(200), CC2(200)
		NN1=NN(1) NN2=NN(2)
		DO 5 J=1, NN1
	_	PI1(J)=PI(1, J)
	Э	DO = 6 J = 1 NN2
		PI2(J)=PI(2, J)
	6	CC2(J)=CC(2, J)
	10	II=2
	40	IF (II. EQ. NNI) GO IO 20 IF (PIS.GT.PI1(II)) GO TO 10
	20	C10=CC1(II-1)+(CC1(II)-CC1(II-1))*(PIS-PI1(II-1))/(PI1
		1(II)-PI1(II-1))
	10	GU IU 30 II=II+1
		GO TO 40
	30	II=2
	80	IF (II.EQ.NNZ) GO TO 60 IF (PIS CT PI2(II)) CO TO 50
	60	C20=CC2(II-1)+(CC2(II)-CC2(II-1))*(PIS-PI2(II-1))/(PI2
		1(II)-PI2(II-1))
	50	GO TO 70
	50	GO TO 80
	70	RETURN
c		END
C		SUBROUTINE PRESUP
		COMMON/PIS/PI(4,200),PIM(200)
		COMMON/CES/CC(4, 200), PREO(200, 2)
		COMMON/PRAU1/AI(4), EI(4), EI(4), AF(4), BF(4), EF(4), PLIM(4)
		COMMON/QAD/Q0(4), A0(4), B0(4), QADS(200, 2)
C		
		DU SU J=1,2 RFAD (1 *) NN(J)
		DO 10 $I=1, NN(J)$
	10	READ (1, *) CC(J, I), PI(J, I)
	10	CUNTINUE READ (1 *) AT(1) RT(1) FT(1) AF(1) RF(1) FF(1) DITM(1)
		READ $(1, *)$ AO(J), BO(J), QO(J)

۰.

50 CONTINUE

С

.

RETURN END ۱.

Figura 9.1. Difractograma de Rayos X de la zeolita ZSM-5 (SiO₂/Al₂O₃ = 56).

Figura 9.2. Difractograma de Rayos X de la zeolita ZSM-5 (SiO₂/Al₂₃ = 29).

Figura 9.3. Microfotografía de la zeolita ZSM-5 $(Si0_2/A1_2_3) = 56$.

Figura 9.4. Microfotografía de la zeolita ZSM-5 $(Si0_2/Al_2_3 = 29)$.

Figura 9.5. Distribución del tamaño de partícula de la zeolita ZSM-5 $(SiO_2/Al_2O_3 = 56)$.

Figura 9.6. Distribución del tamaño de partícula de la zeolita ZSM-5 $(SiO_2/AI_2O_3 = 29)$.

Figura 9.7. Recta de calibrado del CO₂.

Figura 9.8. Estimación de W_0 . Datos de propano en zeolita ZSM-5 $(SiO_2/Al_2O_3 = 29)$ A 301 k.

Figura 9.10. Cálculo del calor isostérico de adsorción de etileno en zeolita ZSM-5 (SiO₂/Al₂O₃ = 56).

Figura 9.11. Calor isostérico de adsorción de etileno en zeolita 5A. Δ puntos calculados. — curva de ajuste (ec. 9.8).

Figura 9.12. Cálculo de la presión superficial de CO₂ en CMS 5A. Gráfica P - n/P.

Figura 9.13. Cálculo de la presión superficial de CO₂ en CMS 5A. Gráfica ln n - ln P.

Figura 9.14. Cálculo de la presión superficial de CO $_{\rm 2}$ en CMS 5A. Gráfica n - dln P/dln n.

10. NOMENCLATURA.

- a : fase adsorbida bidimensional.
- A : area de adsorción por unidad de masa del adsorbente (m^2/Kg) .
- b : constante de Henry (mol/Kg.KPa).
- B : coeficiente del virial.
- c : número de moléculas adsorbidas por cavidad de zeolita en el origen.
- e : potenciales de interacción lateral entre moléculas adsorbidas (J/mol).
- E : diferencia de energía que se produce al adsorberse un mol de adsorbato (J/mol).
- f : fugacidad (KPa).
- F : energía libre de Helmholtz de una fase (J/Kg).
- g : fase gaseosa tridimensional.
- \bar{g} : energía libre de Gibbs molar parcial (J/mol).
- g : entalpía libre molar de Gibbs en el estado de referencia (J/mol).
- G : energía libre de Gibbs de una fase (J/Kg).
- H : entalpía de una fase. (J/Kg).
- H : entalpía molar parcial (J/mol).
- k : constantes.
- m : cantidad adsorbida a saturación.
- M : número de Avogadro.
- n : número de moles adsorbidos (mol/Kg).

- N : número de moles de una fase (mol).
- p : presión parcial (KPa).
- P : presión total (KPa).
- q : calor isostérico de adsorción (cal/mol).
- R : constante de los gases (J/mol K); parámetro modelo S.T.M.
- s : factores de forma de las moléculas en el modelo S.P.D.
- S : entropía de una fase (J/Kg).
- T : temperatura (K).
- U : energía interna (J/mol).
- V : volumen (m^3) .
- V : volumen molar del adsorbato (m^3/mol).
- W : volumen adsorbido (m³/Kg).
- W_{a} : volumen de poros de un adsorbente microporoso (m^{3}/Kg).
- x : fracción molar de la fase adsorbida.
- y : fracción molar de la fase gaseosa.
- z : índice de coordinación de las moléculas sobre la superficie adsorbente.

Letras griegas.

- α : selectividad relativa; porosidad del adsorbente; parámetro de la ecuación de Flory-Huggins.
- β : parámetro de corrección de interacción, modelo S.P.D.
- γ : coeficiente de actividad.
- ε : potencial de adsorción (J/mol).
- θ : cantidad adsorbida reducida.
- A : parámetro de la ecuación de Wilson.
- v: volumen de microporos (m³/Kg).
- μ : potencial químico.
- Π : presión superficial.
- σ : desviación típica media.
- ϕ : coeficiente de fugacidad; parámetro modelo S.P.D.
- ψ : potencial superficial (N.m).

Subíndices.

- c : propiedad crítica.
- i : componente i.
- s : propiedad a saturación.

- v : disolvente imaginario.
- 1 : componente 1.

Superíndices.

- a : fase adsorbida.
- exp : valores experimentales de una variable.
- g : fase gaseosa.
- i : propiedad de inmersión.
- 0 : componente puro.
- pred: valores predichos de una variable.
- rep : valores reproducidos de una variable.
- ∞ : propiedad a saturación.

11. BIBLIOGRAFIA.

- BAKSH, M.S.; KIKKINIDES, E.S.; YANG, R.T.; Ind. Eng. Chem. Res., 31, 2181 (1992).
- BRUNAUER, S.; EMMETT, P.H. y TELLER, E.J.; J.Am. Chem. Soc., 60, 309 (1938).
- CABRA, L.; "Equilibrio de adsorción de mezclas gaseosas de hidrocarburos ligeros en zeolitas 5A y 13X" Tesis doctoral; Univ. Complutense Madrid (1983).
- CHIANG, A.S.T.; HWONG, J.Y.; LEE T.Y. y CHENG T.W.; Ind. Eng. Chem. Res., 27, 81 (1988).
- COCHRAN, T.W.; KABEL, R.L. y DANNER, R.P.; AICHE J., 31(2), 262 (1985)
- COSTA, E.; SOTELO, J.L.; CALLEJA, G. y MARRON, C.; AICHE J., 27, 5 (1981).

- COSTA, E,; CALLEJA, G. y CABRA, L.; Rev. Real Acad. CC. Ex. Fis. y Nat., 76 (4), 909 (1982).
- COSTA, E.; UGUINA, M.A.; DE LUCAS, A. y BLANES, J.; J. Catal. 107, 317 (1987).
- COSTA, E.; CALLEJA, G.; MARRON, C.; JIMENEZ, A.; PAU, J.; J. Chem. Eng. Data, 34, 156 (1989).
- COSTA, E.; CALLEJA, G.; JIMENEZ, A.; PAU, J.; J. Chem. Eng. Data, 36,218 (1991).
- DANNER, R.P.; CHOI, E.C.; Ind. Eng. Chem. Fundam. 17, 248 (1978).
- DAVIS, W.H.; HARPOR, J.I. y WEATHESH, E.R.; Petroleum Refiner, 31, 109 (1952).
- DOMINGO, F.; "Adsorción de hidrocarburos ligeros y sus mezclas: Determinación de los coeficientes de difusión" Tesis doctoral; Univ. Complutense Madrid (1983).
- DRAPER, N.; SMITH, H.; "Applied regression Analysis.", Wiley, New York (1966).
- DUBININ, M.M. y TIMOFEYEV, D.P.; Comp. Rend. Acad. Sci. URSS (1947).
- DUBININ, M.M.; "New Results in investigation of Equilibria and Kinetics of Adsorption of Gases on Zeolites" IV Inter. Conf. on Mol. Sieves. Univ. Chicago (April, 1977).
- EVERETT, D.H.; Trans. Faraday Soc. 46, 453, 942 y 957 (1950).
- FAUST, D.S.; ALY, O.K.; "Adsorption Processes for water treatment". Butterworths, Boston (1987).
- FREUNDLICH, H.; Colloid and Capillary Chemistry. Londres, Methuen (1926).

- FRITZ y SCHLÜNDER.; Chem. Eng. Sci., 29, 1279 (1974).
- GIACOBBE, F.W.; Rev. Sci. Instrum., 62(9), 2186 (1991).
- GIBBS, J.W.; "Collected Works." Yale Univ. Press. (1928).
- GUGGENHEIN, E.A.; "Mixtures". Claredon Press. Oxford, U.K. (1952).
- GURVITSCH, L.J.; Phys. Chem. Soc. Russ., 47, 805 (1905).
- HACK, J.L. y JOHANSA, T.; Hydroc. Proc. 57 (1), 175 (1978).
- HALLBOROW, K.A.; LOUGHLIN, K.F.; Am. Chem. Soc. Symp. Ser. 40, 379, (1977)
- HENSON, T.L. y KAREL, R.L.; AICHE J., 12, 607 (1966).
- HILL, T.L.; Chem. Phys. 17, 507 (1949).
- HILL, T.L.; Chem. Phys. 18, 246 (1950).
- HILL, T.L.; "Introduction to Statistical Thermodinamics." Addison Wesley (1960).
- JARONIEC, M.; DERYLO, A.; MARCEWSKI, A.; Monatshefte Fur Chemie, 114, 393 (1983).
- JIMENEZ, A.; "Determinación y predicción del Equilibrio de Adsorción de Mezclas gaseosas en Zeolitas sintéticas" Tesis doctortal Univ. Complutense Madrid (1989).
- JONES, R.L.; KELLER, G.E.; WELB, R.C.; US. Patent 4, 194, 892, (mar.25, 1980).
- KARAVIAS, F.; MYERS, A.L.; Molecular Simulation, 8, 23 (1991).

- KAUL, B.K.; Ind. Eng. Chem. Res., 26, 928 (1987).
- KAYSER, J.C. y KNEEBEL, A.S.; Chem. Eng. Sci. 44(1), 1 (1989).
- KIDNAY, A. J. y MYERS, A.L.; AICHE J. 12, 981 (1966).
- KISELEV, A.V.; Adv. Chem., 102, 97 (1971).
- LANGMUIR, I.; J. Amer. Chem. Soc., 40, 1361 (1918).
- LEVENBERG, K.Q.; Appl. Math., 2, 164 (1944).
- MARKHAM, E.C. y BENTON, A.F.; J. Am. Chem. Soc., 53, 497 (1931)
- MARQUARDT, D.; Soc. Ind. Appl. Math. J., 11, 431 (1963)
- MARRON, C. "Adsorción de mezclas gaseosas multicomponentes: Determinación experimental y predicción teórica de sus datos de equilibrio", Tesis doctoral, Univ. Complutense Madrid (1979).
- MAURER, G.; PRAUSNITZ, J.M.; Fluid Phase Equilibria, 2, 91, (1978).
- MOON, H.; TIEN, C.; Chem. Eng. Sci., 43(11), 2967 (1988).
- MYERS, A.L. y PRAUSNITZ, J.M.; AICHE J., 11, 121 (1965).
- MYERS, A.L.; MINDA, C. y OU, D.Y.; AICHE J., 28, 97 (1982).
- MYERS, A.L.; SIRCAR, S.; Adv. Chem. Ser., 202, 63 (1983).
- MYERS, A.L.; "Molecular Thermodinamics of Adsorption of gas and Liquid Mixtures". Proc. 2nd Int. Conf. Fundamentals of Adsorption. Engineering Found. New York (1987).
- NAKAHARA, T.; HIRATA, M.; OMORI, T.; J. Chem. Eng. Data., 19, 310 (1974).

- NAKAHARA, T.; HIRATA, M.; KOMATSU, S.; J. Chem. Eng. Data., 26, 161 (1981).
- NAKAHARA, T.; HIRATA, M.; MORI, H.; J. Chem. Eng. Data., 27, 317 (1982).
- NAKAHARA, T.; HIRATA, M.; OGURA, T.; J. Chem. Eng. Data., 29, 202 (1984).
- PEARSON, E.S.; WARTLEY, H.O.; "Biometrika tables for statisticians", Cambridge Univ. Press. New York (1954).
- PEEL, R.G. y BENEDEK, A.; Journal WPCF, 55 (9), 1168 (1983).
- POLANYI, M.; Verh. Dtsch. Phys. Ges., 16 1012 (1914).
- REID, R.C.; PRAUSNITZ, I.M.; SHERWOOD, T.K.; "The properties of gases and liquids.", Mc. Graw-Hill. New York (1977).
- RITTER, J.A.; YANG, R.T.; Chem. Eng. Sci., 46(2), 563 (1991).
- ROSS, A.; SHARMAN, G.H. y DUNCAN, S.; Zeolites 7, 438, (1987).
- ROSS, S.; OLIVER, J.P.; "On Physical Adsorption" J. Wiley New York (1964)
- ROTA, R.; GAMBA, G.; PALUDETTO, R.; CARRA, S.; MORBIDELLI, M.; Ind. Eng. Chem. Res., 27, 848 (1988).
- ROUSSEAU, R.W.; "Handbook of Separation Process Technology" John Wiley and Sons. New York (1987).
- RUHL, M.J.; Chem. Eng. Prog., 7, 37 (1993).
- RUTHVEN, D.M.; Nature Phys. Sci., 232, 70 (1971).
- RUTHVEN, D.M. y LOUGHLIN, K.F.; J. Chem. Scoc. Faraday Trans., 68, 696

(1972)

- RUTHVEN, D.M.; AIChE J., 22, 753 (1976).
- RUTHVEN, D.M. "Principles of Adsorption and Adsorption Procesess", John Wiley, New York (1984)
- RUTHVEN, D.M.; WONG, F.; Ind. Eng. Chem. Fundam., 24, 27 (1985).
- SHAY, G.; FEJES, P.; SZATHANARY, J.; Acta Chim. Acad. Sci. Hung., 12, 299 (1957).
- SING, K.S.W.; EVERETTT, D.H.; HAUL, R.A.W. y MOSCOU, L.; Pure and Applied Chem., 57 (4), 603 (1985)
- SIPS, R.; J. Chem. Phys. 16, 490 (1948).
- SIRCAR, S. y MYERS, A.L.; Chem. Eng. Sci., 28, 489 (1973).
- SIRCAR, S.; GUPTA, R.; AIChE J., 27(50), 800 (1981).
- SIRCAR, S.; Ind. Eng. Chem. Res., 30, 1032 (1991).
- SUWANAYUEN, S. y DANNER, R.P.; AICHE J., 26, 68 (1980).
- SUWANAYUEN, S. y DANNER, R.P.; AICHE J., 26, 76 (1980).
- SYMONIAK, M.F.; Hidro. Proc., 59 (9), 110, (1980).
- TALU, O. y MYERS, A.L.; AICHE J., 34, 1887 (1988).
- TALU, O. y ZWIBEL, I.; AICHE J., 32, 1263 (1986).
- TOTH, J.; J. Coll. Int. Sci., 1 (1981).
- VAN NESS, H.C.; Ind. Eng. Chem. Fund., 8. 464 (1969).

- VALENZUELA, D.P.; MYERS, A.L. TALU, O. y ZWIEBEL, I.; AICHE J. 34(3), 397 (1988).
- WANKAT, P.C.; Ind. Eng. Chem. Res., 26, 1579 (1986).

.

- WOJSZ, R.; ROZWADOWSKY, P.H.; AIChE Symp. Ser., 67, 75 (1971).
- YANG, R.T.; BAKSH, M.S.; AIChE J., 37(5), 679 (1991).
- YORITOMI, K.; KAZUKA, T. y MORIYA, M.; US. Patent 4, 267, 054, (May 12, 1981)