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Resumen

En la primera parte de esta tesis, se derivan propiedades fundamentales de mo-
delos estelares relativistas en equilibrio (estacionarios axisimétricos asintéticamente
planos y libres de conveccién) con rotacién diferencial; en concreto, se demuestra que
para una gran clase de leyes de rotacién (compatible con las ecuaciones de campo y
fisicamente relevante) la distribucién de velocidad angular del fluido tiene signo, y
ademas la velocidad de arrastre rotacional y la densidad de momento angular tienen
el mismo signo.

En el limite de rotacion lenta, donde las ecuaciones de campo todavia no restrin-
gen el perfil de rotacién (a través de una ley de rotacién dada), se derivan condiciones
suficientes que garantizan la positividad de la densidad de momento angular.

Ademis, el “valor medio” (con respecto a una densidad intrinseca) de la velocidad
de arrastre se demuestra menor que el valor medio de la velocidad angular del
fluido (independientemente de la ley de rotacién, completamente en general); esta
desigualdad conduce a la positividad y una cota superior de la energia total de

rotacion.

En la segunda parte, se estudian varias propiedades (geométricas cinemdticas y
dindmicas) de dos soluciones exactas interiores, dadas por Wahlquist y por Kramer,
de las ecuaciones de campo de Einstein representando el campo gravitatorio interior
debido a un cuerpo de fluido perfecto axisimétrico y autogravitante en rotacion
estacionaria y rigida.

A pesar de las caracteristicas aparentemente no-newtonianas de la superficie
borde del fluido de la soluciéon de Kramer, se demuestra, mediante un analisis de-
tallado de las geodésicas 3-dimensionales espaciales (interiores), que si se dan las
propiedades newtonianas de convexidad.

Diferentes procedimientos ilustran los efectos ‘anti-intuitivos’ (desde un punto de
vista newtoniano) de la dindmica del movimiento circular en estas soluciones. Las
propiedades dindmicas sobre la superficie borde del fluido y la elipticidad “interior”

de esta superficie son analizadas variando la velocidad de rotacion de la fuente.






Abstract

In the first part of this thesis, some fundamental properties of general rela-
tivistic equilibrium stellar models (stationary axisymmetric asymptotically flat and
convection-free) with differential rotation are derived; namely, it is shown that for
a wide class of rotation laws (compatible with the field equations and physically
relevant) the distribution of angular velocity of the fluid has a sign, and also the
rate of rotational dragging and the angular momentum density have the same sign.

In the limit of slow rotation, where the field equations do not yet restrict the
rotation profile (through a given rotation law), sufficient conditions which guarantee
the positivity of the angular momentum density are deduced.

In addition, the “mean value” (with respect to an intrinsic density) of the drag-
ging rate is shown to be less than the mean value of the fluid angular velocity (in
full general, without having to restrict the rotation law); this inequality yields the

positivity and an upper bound of the total rotational energy.

In the second part, several properties (geometric kinematic and dynamic) of
two exact interior solutions, given by Wahlquist and by Kramer, of Einstein’s field
equations representing the interior gravitational field due to a self-gravitating ax-
isymmetric body of perfect fluid in stationary and rigid rotation are studied.

In spite of the seemingly non-Newtonian features of the bounding surface of the
Kramer solution for some rotation rates, it is shown, by means of a detailed analysis
of the three-dimensional spatial (interior) geodesics, that the standard Newtonian
convexity properties do hold.

Several procedures illustrate the ‘counter-intuitive’ (from a Newtonian point of
view) effects of the dynamics of circular motion in these solutions. Dynamic features
on the bounding surface together with the “interior” ellipticity of this surface are

analyzed varying the rotation rate of the source.






Pilsar de la Nebulosa del Cangrejo. En la regién central de la nebulosa (remanente de una explosién
supernova, observada por astrénomos chinos en el afio 1054) existe un piilsar, una estrella de
neutrones (que permanece de la estrella original) girando sobre su eje 30 veces por segundo. La
imagen, que combina datos 6pticos de Hubble (en rojo) e imégenes de rayos X de Chandra (en
azul), muestra gases nebulares alrededor del pilsar removidos por su campo magnético, particulas

de alta energia y radiacién emitidas por el pulsar.

“Der Wahrheit ist allezeit nur ein kurzes Siegesfest beschieden zwischen den beiden

langen Zeitraumen, wo sie als paradox und als trivial gering geschatzt wird.”

(“A la Verdad se le concede siempre s6lo un instante de triunfo, entre los dos

grandes intervalos de tiempo en que se la degrada a paradoja y a trivialidad.”)

Arthur Schopenhauer
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Capitulo 1

Introduccion

El estudio de estrellas en rotacién en el marco de la teoria de la relatividad general
es de gran interés astrofisico por varias razones, quizds la mas importante es la

existencia de pulsares, que son estrellas de neutrones en rotacion.

La rotacion diferencial es un estado intermedio en la evolucién de una estrella
hacia un estado final de equilibrio termodindmico en el que la rotacién tiende a ha-
cerse rigida, uniforme en todo el fluido estelar; es decir, la distribucién de velocidad
angular (el perfil de rotacién) del fluido, debido a la friccién de unas particulas del
fluido con otras, tiende a hacerse plana en el estado final de la vida de la estre-
lla. Segin se conoce actualmente, una estrella, después de haber quemado todo su
combustible nuclear, se aproxima a su configuracién final de equilibrio bien como
una estrella “comun” que contiene materia degenerada —esto es, una enana blan-
ca, una estrella de neutrones, o incluso una “estrella extrana” conteniendo materia
quark—, o bien, si tiene demasiada masa, puede acabar violentamente formando un
agujero negro; sobre estas configuraciones finales singulares de agujero negro, en la

actualidad muy conocidas, no hablaremos en el presente trabajo.

La rotacion diferencial del Sol, estrella de mediana edad, es de decisiva impor-
tancia para muchos fenémenos observados en su superficie. En especial, la zona del
ecuador gira mucho mas rdpidamente que la zona de los polos. Teniendo en cuenta
que el periodo de rotacién del Sol, observado desde estrellas fijas, es de unos 27 dias
con 9 horas (valor medio, a £16° de latitud), y que las estrellas enanas (con una
masa del orden de la del Sol, pero casi cuatro veces mas pequenas que éste) tienen
un periodo de rotacién del orden de horas, nos parece casi inimaginable que en las

estrellas de neutrones (con masas de 1,4 a 2 — 3 masas solares, y radios de 10 — 20



km) el periodo de rotacién sea del orden de segundos, o incluso de milisegundos. La
estrella de neutrones actiia como un enorme imdn, con el eje del campo magnético
inclinado un dngulo con respecto al eje de rotacion, y, asi, emitiendo radiacién elec-
tromagnética desde los polos magnéticos. La fuente de energia del campo magnético
es la energia de rotacion de la estrella. Las estrellas de neutrones en rotaciéon muy
rapida y altamente magnetizadas son llamadas pulsares, debido a que cuando el rayo
de radio que éstas emiten (desde sus polos magnéticos) en su barrido (con la rotacién
de la estrella) apunta hacia la Tierra —a intervalos regulares, como un efecto faro—
detectamos “pulsos” radio, a intervalos tipicamente de 0,25 a 2 segundos; aunque
también se han detectado pilsares con periodos de pulsacién del orden de 1 a 10

milisegundos.

Simulaciones dindmicas de modelos estelares construidos numéricamente mues-
tran que es muy probable que estrellas de neutrones formadas recientemente en la
coalescencia de estrellas de neutrones binarias (o en colapsos supernova) estén rotan-
do diferenciablemente. Y, por la masa que se estima tienen las estrellas de neutrones
en binario, se podria concluir que su fusion lleva a un colapso inmediato formando
un agujero negro. Sin embargo, se sabe que tanto la presién térmica como la rotacién
—sobre todo la rotacién diferencial— pueden aumentar la masa maxima permitida;
en estrellas que estan rotando de forma diferencial el nicleo puede rotar mas rapido
que la envoltura, de forma que el nicleo soporta rotacién rapida antes de que la

masa “shedding” (o de desprendimiento) se alcance en el ecuador.

El espacio-tiempo de estrellas rotantes en equilibrio, esto es, en rotacién estacio-
naria, y con campos gravitatorios que se suponen muy fuertes, es descrito por las
ecuaciones de campo gravitatorio relativistas —ecuaciones de campo de Einstein—
estacionarias y axisimétricas para fluido perfecto (como fuente) en el interior, acota-
do, con un exterior vacio asintéticamente plano. Como es muy dificil resolver estas
ecuaciones de estructura estelar en rotacion —de hecho, por el momento todavia
no se ha encontrado de forma exacta ninguna solucién global (interior y exterior
pegados) y no degenerada—, se analizan las mismas ecuaciones para determinar
propiedades generales que cualquier solucién particular de las ecuaciones ha de po-

seer.



Por otra parte, debido a la alta complejidad de las ecuaciones, es comtin suponer
rotacion rigida en el modelo estelar con el fin de simplificar, no solamente para
la obtencion de soluciones, si no también en pruebas de existencia o busqueda de
propiedades generales. En un trabajo muy interesante [1] se han derivado cotas para
el radio ecuatorial y para una combinaciéon de masa, momento angular, volumen y
radio de un modelo estelar con rotacién rigida.

Sin embargo, como se supone que la gran mayoria de objetos compactos en el
universo tienen rotacién diferencial, nos parece interesante intentar obtener propie-
dades generales de estrellas que estdn rotando de forma estacionaria y diferencial
(como deciamos antes, intentando extraer de la teorfa —analizando las ecuaciones—
propiedades que las funciones potenciales o métricas que describen el modelo estelar
han de satisfacer). Este es precisamente el objetivo de la primera parte de esta di-
sertacién (Capitulo 2), donde derivaremos ciertas propiedades generales de modelos
relativistas estelares con rotacién diferencial. En la segunda parte (Capitulo 3) es-
tudiaremos con detalle propiedades de dos soluciones exactas interiores con rotacion

rigida.

Introduccién al Capitulo 2

Uno de los efectos relativistas mds intrigantes producidos por la rotacion de
una estrella es el efecto arrastre (o “dragging”) de campos inerciales. En la teoria
newtoniana la presencia de un cuerpo masivo no afecta a la determinacion de un
campo o sistema de referencia inercial. Sin embargo, en el marco de la teoria de
la relatividad general, un cuerpo masivo en rotacion tiende a arrastrar los campos
inerciales con él: consideremos una particula prueba en reposo (que no rota) con
respecto a observadores cercanos, y situada en el campo gravitatorio de una estrella
relativista en rotacion; un observador situado muy lejos de la estrella, esto es, en
el infinito espacial, y que no rota, veria sin embargo que la particula prueba u
observador inercial (localmente en reposo) estd rotando (sobre su propio eje) con
una velocidad angular llamada de arrastre cumulativo, o simplemente, velocidad de

arrastre. [2, 3]

Fisicamente se espera que este arrastre de los campos inerciales ocurra en la
misma direccién que la rotacién de la estrella. También, al menos en el caso de
rotacion rigida, o sea, cuando el fluido de la estrella gira como un todo (perfil de

rotacién plano), se espera que si la velocidad angular del fluido (constante) es positiva

3



—digamos, en la direcciéon de la coordenada axial ¢—, entonces la velocidad de

arrastre sea menor que la velocidad angular del fluido.

De hecho, Lindblom (1978) [4] e independientemente Hansen y Winicour [5]
parecen demostrar estos resultados; sin embargo, la prueba que dan no satisface
explicitamente los requerimientos correspondientes al aplicar el teorema de Hopf

(un principio de maximo) en lo concerniente a la regularidad y no divergencia.

Una acotacién de la velocidad de arrastre por la velocidad angular del fluido
en cada punto interior de éste —ya en el caso general de rotacién diferencial—
es interesante, pues determina la positividad de la densidad de momento angular
suponiendo que la ecuacién de estado (barotrépica) del fluido estelar satisface la

condicion de energia débil.

En el caso general de rotaciéon diferencial, sin embargo, tal relaciéon no se espera
en principio que sea tan simple; primero, porque diferentes partes del fluido podrian
girar en direcciones opuestas sobre el mismo eje, y, segundo, porque el perfil de rota-
ci6n (distribucién de velocidad angular) del fluido no se puede prescribir libremente,
sino que es determinado por las ecuaciones de campo gravitatorio, en concreto por
una condicién de integrabilidad de éstas, dada por la ecuacién de Euler, a través de

una ley de rotacion.

Hansen y Winicour (1977) [5] han intentado dar un resultado (en rotacién di-
ferencial), sin embargo, necesitan suponer que el fluido de la estrella ocupa todo el

espacio, hipétesis no fisica en un modelo estelar.

Asi pues, uno de los objetivos del presente trabajo es encontrar condiciones
generales y fisicamente razonables sobre la ley de rotacién (determinando el modelo
de rotacién diferencial) que garanticen la positividad de la densidad de momento
angular; por ejemplo, a través de la acotacién de la velocidad de arrastre por la

velocidad angular del fluido.

De forma més general (independientemente de la ley de rotacién), y como Thorne
conjetura [2], es de esperar que el “valor medio” [con respecto a una funcién densidad]
de la velocidad de arrastre sea menor que el valor medio de la velocidad angular del
fluido. Sin embargo, no conociamos en la literatura ninguna prueba de un resultado

en esta direccién, conformando esto otro propdsito del presente trabajo.
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Introduccién al Capitulo 3

El analisis de propiedades de una solucion particular de las ecuaciones de campo
de Einstein que representa el espacio-tiempo de una estrella relativista en rotacion
estacionaria —y, especialmente, la comparacién con resultados conocidos en el do-

minio newtoniano— puede mejorar nuestra intuiciéon dentro del régimen relativista.

Desafortunadamente no se ha encontrado hasta ahora ninguna solucién ezacta
en relatividad general representando el campo gravitatorio global (ambos exterior
e interior) generado por una masa de fluido perfecto, autogravitante, axisimétrico y
en rotacién estacionaria, con un interior no-vacio en el sentido topolégico. [Aunque
las condiciones de pegado para una superficie temporal estan bien establecidas, el
pegado interior-exterior de soluciones estacionarias y axisimétricas genéricas es un
problema que todavia no ha sido matemdticamente resuelto.] Debido a esta falta de
una solucién global exacta no-degenerada, el andlisis de propiedades de cualquier

resultado parcial nos parece interesante.

Existen en la literatura numerosos tratamientos basados en la integracién numéri-
ca de las ecuaciones de campo, o en esquemas de aproximacion validos para velo-
cidades de rotacién pequenas (en particular, aplicados al cdlculo de la forma de la
superficie del fluido, direccién del eje de rotacién local, y topologia de las figuras).
Encontramos asimismo algunos resultados exactos sobre la familia de soluciones (ex-
teriores) de Kerr que describe configuraciones de agujeros negros estacionarios (para
los que se analiza el significado de “fuerzas centrifugas”). Sin embargo, sorprenden-
temente, los resultados basados en las halladas soluciones exactas interiores (para

ambos casos, rotacion rigida y diferencial) que encontramos eran minimos.

Se conocen muy pocas soluciones interiores de fluido perfecto, en rotacion esta-
cionaria, axisimétricas, con un borde finito de presién nula (superficie del fluido),
satisfaciendo condiciones de energia positiva, y poseyendo no mas campos de Killing
que los dos asociados a las simetrias estacionaria y axial. (Para una revision, véase
p- €j. [6].) Entre estas soluciones hay una obtenida por Wahlquist [7], como un caso
especial de una familia més grande de soluciones, y otra obtenida por Kramer [8].
Hasta ahora, ninguna de estas dos soluciones ha sido pegada a una solucién exterior
de vacio para una configuracion en rotacién. Para la solucion de Wahlquist se ha

intentado demostrar que tal solucién exterior asintéticamente plana no existe [9],

5



aunque ésta no es ninguna prueba definitiva.

La solucion de Wahlquist se conoce desde 1968 y, sin embargo, nada se sabia
sobre sus propiedades fisicas. La solucion de Kramer puede ser obtenida como un
limite de esta soluciéon de Wahlquist en el parametro de rotacién.

En la segunda parte de esta disertaciéon se obtienen propiedades geométricas,
cinemdticas y dindmicas de estas dos soluciones exactas interiores (fluido perfecto)

de Wahlquist y de Kramer.



Capitulo 2

Estrellas relativistas en rotacion
diferencial: cotas en la velocidad
de arrastre y en la energia de

rotacion

Nos proponemos primeramente dar una prueba correcta y transparente de los re-
sultados previamente citados [4, 5]: en concreto, demostrar (en el caso general de
rotacién diferencial) que si la distribucién de velocidad angular de la estrella tiene
signo, digamos “positivo”, esto es, si todas las particulas del fluido giran en un mis-
mo sentido, entonces también la velocidad de arrastre es positiva; y demostrar que
en el caso de rotacion rigida con velocidad angular (constante) positiva, la densidad

de momento angular es positiva.

Por otra parte, lo que de verdad interesa es estudiar la positividad de la velocidad
de arrastre y de la densidad de momento angular, desde la ley de rotacién —en el
caso general de rotacién diferencial, donde el perfil de rotacién no se puede elegir
libremente sino que se obtiene junto con las funciones métricas como soluciones de

las ecuaciones de campo, una vez dada una ley de rotaciéon compatible.

Consideraremos una solucién de las ecuaciones de campo de Einstein estaciona-
rias y axisimétricas para fluido perfecto, con vacio en el exterior, donde la solucién
es asintoticamente plana, que representa el espacio-tiempo de una estrella relativista
en rotacion estacionaria. Si ademas suponemos que el movimiento del fluido este-

lar es puramente rotacional (o sea, libre de conveccién), entonces podemos elegir
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coordenadas adaptadas a las simetrias de forma que las (seis) ecuaciones de campo
se reducen a (c.f. [10]) cuatro ecuaciones elipticas y semilineales (en las respectivas
cuatro funciones potenciales, o funciones métricas) mas la ecuacién de Euler, que

aqui consideraremos para rotacion diferencial.

Especialmente la componente (t¢) es una ecuacién eliptica y lineal en el po-
tencial velocidad de arrastre. El tinico problema al escribir las ecuaciones en estas
coordenadas es la singularidad de coordenadas en el eje de rotacién; sin embargo,
haciendo uso de la simetria axial del problema, un levantamiento al espacio R"
plano (como herramienta puramente matematica, sin significado fisico) evita esta
singularidad de coordenadas, [10]. En particular, a la ecuacién en la velocidad de
arrastre corresponde n = 5. Asi dicha ecuaciéon se escribe de una forma regular y
con coeficientes medibles y acotados. Esto nos permite aplicar principios de méaximo
(minimo) a varias desigualdades diferenciales derivadas de esta ecuacién para sub-
(super-)soluciones generalizadas que, haciendo uso del pegado C! en la superficie
de la estrella (de las soluciones interior y exterior) y de la planitud asintética de
la métrica en el infinito espacial, nos lleva a las acotaciones que estabamos buscan-
do; encontramos asi una prueba clara y rigurosa de que (1) el arrastre ocurre en la
misma direccién que la rotacién de la estrella, de que (2) la densidad de momento
angular de un modelo estelar en rotacion rigida tiene el mismo signo que la velocidad
angular del fluido, y (3), en el caso general de rotacién diferencial, se demuestra que
para una clase de leyes de rotacién (muy general, compatible con las ecuaciones de
campo, y fisicamente relevante) la velocidad de arrastre tiene signo, y estd acotada
en cada punto interior por la velocidad angular del fluido (entonces con el mismo
signo), determinando asi el signo de la densidad de momento angular. Estas y otras
acotaciones (también en el exterior) constituyen gran parte (Sec. IV) de la prime-
ra de las publicaciones aqui transcritas, [11], a la que nos referiremos de ahora en

adelante como Publicacién 1.

Otro objetivo era encontrar una acotacién general, independiente de la ley de
rotacion, en forma de desigualdad de “valores medios” (de velocidad de arrastre y
velocidad angular del fluido). A tal efecto estudié primeramente el caso de rotacién
lenta vy diferencial, esto es, donde en un desarollo de las ecuaciones de campo de

Einstein en potencias del pardmetro de rotacién (o de velocidad angular del flui-
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do) se consideran las perturbaciones (que serian soluciones aproximadas, obtenidas
numéricamente) reteniendo sélo los términos de primer y segundo orden. Sin em-
bargo, dado que un desarrollo del potencial velocidad de arrastre en potencias del
parametro de velocidad angular sélo contiene potencias impares, al calcular efectos
a segundo orden en lo referente a la velocidad de arrastre (o cantidades lineales en
ella), basta con incluir las correcciones lineales (primer orden) en ésta. De hecho,
la dnica perturbacién de primer orden traida por la rotacion es el arrastre de los
campos inerciales; la estrella es todavia esférica, porque las funciones potenciales
que deforman la estrella son de segundo orden.

En este caso, esto es, a primer orden en la velocidad de arrastre, resulta que
las ecuaciones de campo todavia no restringen el perfil de rotacién (a través de
una ley de rotacién dada). En consecuencia, el resultado que obtenemos en el caso
general (Publicacién I, Prop. 3) previamente comentado, relativo en particular a
la positividad de la densidad de momento angular, no es aplicable al caso de rotacién
lenta. Sin embargo, la linealidad (en la velocidad angular del fluido) de la ecuacién
para el potencial de arrastre de una configuracién en rotacién lenta permite que
la positividad de la densidad de momento angular esté garantizada siempre que la
amplitud del perfil de rotaciéon esté acotada de un cierta forma. Este refinamiento
de las cotas obtenidas en la velocidad de arrastre en el limite de rotacién lenta
constituye la primera parte [propiedades (b) y (c) en Sec. V] de la segunda de las
publicaciones aqui transcritas, Publicacién II, con referencia [12].

Ademas, desde un punto de vista matematico, en este articulo se muestra como
pueden ser tratadas las singularidades de la subyacente ecuacién en derivadas par-

ciales que ocurren en el eje de rotacion.

En un resultado no publicado, que incluimos aqui tras Publicacién II, se estudia
el comportamiento cualitativo del potencial de arrastre —o distribucion de velocidad
angular de arrastre cumulativo— en funcién de la distribucién de velocidad angular

del fluido, para una configuracién con rotacién lenta y diferencial.

Sin embargo, como ya apuntdbamos previamente, el motivo de estudiar configu-
raciones de rotacion lenta era buscar una desigualdad de valores medios de velocidad
de arrastre y velocidad angular del fluido. En efecto, considerando los desarrollos de
ambas funciones en arménicos esféricos —en concreto, en el sistema ortogonal de

los polinomios de Jacobi, derivadas de los polinomios de Legendre—, los coeficientes



(de Jacobi) de primer orden (de variable radial ) de la velocidad de arrastre satis-
facen una ecuacién lineal [proveniente de la ecuacién (t¢) general] cuyo producto
por el coeficiente de la velocidad de arrastre, integrado (de r = 0 a r = 00) por par-
tes, y haciendo uso del comportamiento asintético de los coeficientes velocidad de
arrastre, lleva a una desigualdad integral. Con un sencillo cdlculo de algebra lineal,
esta ultima implicard una desigualdad entre dos integrales que se pueden ver como
valores medios (respecto a una funcién densidad) de la velocidad de arrastre y de la
velocidad angular del fluido. [Aunque la diferencia de estas integrales es a segundo
orden en el pardmetro de rotacién, su signo depende sélo de cantidades a primer

orden.]

Ademads, esta desigualdad conduce a la positividad de la asi llamada energia total
de rotacion [13] —diferencia en masa-energia total entre una estrella relativista en
rotacién lenta y diferencial, y una no-rotante con el mismo nimero de bariones y
la misma distribuciéon de entropia— y a una cota superior de ésta, proporcionando
asi una prueba alternativa (y mucho mdés simple) a la dada por Hartle en [13] de

estas cotas [propiedad (d) en Sec. V de Publicacién II].

Lo interesante es que esta nueva prueba se puede generalizar al caso de rotacion
diferencial fuera del limite de rotacién lenta, como muestra la segunda parte del
primer articulo, Sec. V de Publicacién I: la ecuacién para la velocidad de arrastre
[componente (t @)] se puede escribir en forma de divergencia; luego, tras multiplicarla
por la velocidad de arrastre, aplicar el teorema de Gauss, y utilizar el comporta-
miento asintético de las funciones métricas, obtenemos la desigualdad integral que
buscabamos. El resto es leer ésta de una forma adecuada. Por una parte nos lleva
a que el valor medio (con respecto a una densidad intrinseca) de la velocidad de
arrastre es menor que el valor medio de la velocidad angular del fluido [sin ningu-
na restriccién que concierna a la ley de rotacién, es decir, completamente general],
confirmando asi lo conjeturado por Thorne [2]. Y por otra parte implica asi mismo
la positividad y una cota superior de la energia total de rotacién (con frecuencia
objeto de andlisis en tratamientos numéricos), generalizando asi el resultado dado
por Hartle [13] en el limite de rotacién lenta (y diferencial) a un régimen de rotacién

general diferencial.
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Abstract

For general relativistic equilibrium stellar models (stationary axisymmetric
asymptotically flat and convection-free) with differential rotation, it is shown
that for a wide class of rotation laws the distribution of angular velocity of
the fluid has a sign, say “positive”, and then both the dragging rate and the
angular momentum density are positive. In addition, the “mean value” (with
respect to an intrinsic density) of the dragging rate is shown to be less than
the mean value of the fluid angular velocity (in full general, without having
to restrict the rotation law, nor the uniformity in sign of the fluid angular
velocity); this inequality yields the positivity and an upper bound of the total
rotational energy.

PACS numbers: 04.40.Dg, 97.10.Kc, 02.30.Jr

I. INTRODUCTION

One of the most interesting of the relativistic effects produced by the rotation of
a star is the dragging of inertial frames (also called Lense-Thirring effect).! This
has been classically described in terms of its local effects on gyroscopes and parti-
cles. However, its cumulative effects on the motion of particles give a much simpler
description: a locally non-rotating test particle, that is dragged along in the gravita-

tional field of the star, has an angular velocity, as seen from a non-rotating observer
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at spatial infinity, which is named angular velocity of cumulative dragging, or rate
of rotational dragging, shortly called dragging rate.>3 It is physically expected that,
for isolated rotating stars in thermodynamic equilibrium, this dragging rate A has
the same sign (rotation sense) as the fluid angular velocity €2, if this one has a “uni-
form” sign throughout the fluid (in the general differentially rotating case). Indeed,
Lindblom* and, independently, Hansen and Winicour (1977)% seem to establish this
result, however, without explicitly fulfilling the corresponding requirements when
applying the Hopf theorem (a maximum principle) to an elliptic operator in a cer-
tain domain, concerning the boundedness of its coefficients on the boundary of the
domain, specifically on the axis of rotation, and the C! (and not C?) regularity of

the metric functions across the surface of the star.

Also, (assuming in the description above that the test particle does not collide
with the star’s matter if it goes through the star) one is tempted to conjecture, in
principle in the rigidly rotating case with {2 = const. = {2, > 0, that the dragging
rate is bounded above by the fluid angular velocity, A < 2,. And Hansen and
Winicour (1975)° offer some proof of this (although with the same objection as

above).

In the general differentially rotating case, however, an analogous relation should
not be expected to be so simple; first, because different portions of the star’s interior
could have opposite rotational motion about the same axis (assuming a convection-
free fluid), and, second (even if the fluid angular velocity has a sign), because, due to
the integrability condition of the equation of motion, the distribution of fluid angular
velocity, Q-profile, cannot be freely prescribed; instead, it is derived (together with
the potential functions, integrating the field equations) once an appropriate rotation
law is given. Most of the literature concerning numerical works on differentially
rotating neutron stars make generally the ansatz for a certain rotation law which
yields A < . Nevertheless, for a more general law such a relation is not so obvious.
Hansen and Winicour (1977)% have made some attempts to give a result, however
they needed the unphysical assumption that the star’s matter occupies the whole

space.

One of the aims of this work is precisely to find general and physically reasonable
assumptions on the rotation law of a differentially rotating stellar model, so that

the dragging rate is (at each interior point) less than the fluid angular velocity, and,
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hence, the angular momentum density is positive (vanishing on the axis) provided
the weak energy condition is satisfied. For that matter we consider the time-angle
field equation’s component, which is elliptic and linear in the dragging potential A
in coordinates adapted to the symmetries. The approach with the metric in these
coordinates is attractive because the field equations become semilinear elliptic. Spe-
cially, they reduce to four (coupled) elliptic equations for the four metric functions.
One has however to control the coordinate singularities of the equations on the axis
of rotation, but these can be treated mathematically using the axial symmetry of the
physical problem.® So handled, the elliptic equation in A writes in a “regular” form
and has bounded coefficients; this allows us to apply a maximum principle to several
differential inequalities, which, using the C'-matching on the star’s surface and the
asymptotic flatness of the metric, will lead to the mentioned and other interesting

inequalities.

More generally, as was conjectured by Thorne? (p. 245), the mean value of A is
expected to be less than the mean value of (2. However, to my knowledge, there is in
the literature no explicit and so general result in this direction. The other purpose
of the present work is then to derive a “general” inequality on “mean values” with
respect to a density function. In addition, related to this question is the concept
of total rotational energy of the star. Hartle” has given bounds for this rotational

energy in the slow rotation limit, which we aim here to generalize.

The paper is organized as follows. After reviewing in Sec. II the model for a
relativistic star which is rotating differentially, Sec. III is devoted to handle the
concerned field equation, elliptic and linear in the dragging potential, with special
attention to the regularity and boundedness properties of the involved functions,
as a preparation allowing us to apply the maximum principles (reviewed in the
Appendixes) in Sec. IV, where inequalities concerning mainly the positivity of the
dragging rate and of the angular momentum density are derived. In Sec. V a gen-
eral “mean values inequality” is derived in full general; and the positivity and upper
bound of the total rotational energy is established in the general differentially ro-

tating case. Finally, in Sec. VI the relevant results are briefly summarized.
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II. MODEL FOR A DIFFERENTIALLY ROTATING RELATIVISTIC
STAR

The spacetime of an isolated rotating star in thermodynamic equilibrium within gen-
eral relativity theory is generally represented by an asymptotically flat stationary ax-
isymmetric 4-dimensional Lorentzian manifold (M, g), with metric g = g,sdz*dz”

satisfying Einstein’s equations,
1
Gag = Rag - §Rga5 =87 Tag y (1)

for the energy-momentum tensor of a perfect fluid, Tos = (¢ + p) uats + P gop, With
4-velocity u®, energy density ¢, and pressure p. Signature of g is here considered to
be (— + ++). Since the star is isolated, the matter (perfect fluid) is confined in a
compact region in the space (interior), with vacuum, T,s = 0, on the outside.

We denote the two (commuting) global time and axial Killing vector fields® by
& = 0, and m = 0, respectively, where z° = ¢ labels the space-like hypersurfaces
which are invariant under time translations, and 2! = ¢ is the axial-angle coordinate
around the axis of rotation, given by n = 0; (¢,¢) € Rx[0,27]. The metric
components will then only depend on the two remaining spatial coordinates, g, =
Gop(z?, 23).

We shall assume that the fluid motion is purely azimuthal (non-convective),
i.e. the fluid 4-velocity is contained in the 2-surface spanned by the two Killing

fields, (as 1-forms)
uANEAN =0 (circularity condition). (2)

In that case it can be seen® that the 2-surface elements orthogonal to the 2-dimensional
group orbits of the Killing fields are surface forming (the same holds in the vacuum
region); and, consequently, the metric may be written in a form which is explicitly
symmetric under the change (¢,¢) — (—t, —¢). In the 2-surfaces orthogonal to the
orbits we can always introduce isotropic coordinates (2, z%) = (p, z) without loss of

generality, so that the metric can always be reduced to the standard form?®!°

g = gapda®da’ = —e?Vdt* + eV [p**P(dp — Adt)” + ¥ (dp® + d2*)] ., (3)

where the metric functions K, U, B, and A depend only on the (p, z)-coordinates of

the “meridian plane”. Here p and z are cylindrical coordinates at the asymptotically
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flat infinity, and, using the remaining freedom of conformal transformations in the
meridian plane, we choose these coordinates such that p = 0 represents the axis of
rotation and (p, z) € Rf X R (denoting RS := {x € R|x > 0}). The metric functions

peB U, and A can be written as invariant combinations of the Killing fields in the

form
pe’? = —det((gu)pw=ts) = —9(&,€) g(n,m) + g(€,m)?
2V — :02@23
~ gn,m) (4)
4 - _9&mn)
g(n,m)’

and they can be interpreted physically as follows: pe? represents a sort of distance
from the rotation axis (and, hence, B is, to some extent, a measure how far is p
from being that distance); U is a generalization of the gravitational potential; and
A is the angular velocity of cumulative dragging, or dragging rate. The remaining

metric function is K, the conformal factor in the meridian plane.

Throughout the following we shall denote the closure and the boundary of a set

X by X and 0X, respectively. We fix the notions

I = interior of the star := {(p,2z) € Rf x R | p(p,2) >0} CRf xR

exterior of the star := (Rf x R) \ I C Rj x R (5)

S = star’s surface:= INE =9I C R xR,

I and E open in the induced topology in Ry x R C R?; that means, although part
of the axis (p = 0) is in I (and part in E), the only points of the axis which are in
O0I = S (and in OF = S U {oo}) are the poles, if they exist. The set I C Rj x R
is supposed to be bounded and connected. Concerning the regularity of S = 01,
we assume it satisfies an exterior sphere condition everywhere (cf. Definition in

Appendix A).

Within our star model, the matching conditions (from the interior and the ex-
terior solutions) require that the pressure vanishes identically on the star’s surface,

p=0on S. In the exterior (T,s = 0) we extend definitions such that e = p = 0 on
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E. Furthermore, € and p satisfy a barotropic equation of state in the interior,
e=¢(p) inl. (6)

We assume the pressure p to be continuous with respect to the coordinates, and also

p — €(p) a continuous function,
peC'RfxR),  prre(p) € CORY), (7)
satisfying the weak energy condition,'
e+p>0 (in Rf xR). (8)

[Notice, by the definition of the interior, (5), if € > 0 in 7, as it is generally assumed,
we shall have even ¢ +p > 0 in I, and, hence, condition (8) follows. In addition,
since the equation of state is defined only in the interior, (6), requirement (7) does
not guarantee the continuity of € across the star’s surface (where p = 0), namely, if

e(p=0) > 0, then a jump discontinuity of & across the star’s surface occurs.]

From the circularity condition (2) on the fluid 4-velocity (in I), this is of the
form
¢ do
' _u
u=u(&+n), where Q=—=—
(& +Qn) il
is the angular velocity of the fluid measured by a distant observer in an asymptoti-
cally flat spacetime, and the fact that the 4-velocity u is a unit time-like vector field

determines the normalization factor u’, such that g(u,u) = —1, i.e.
(ut)—Q — €2U _ p2€2(B—U)(Q _ A)Z = N, (9)

from where N = (u') 2 > 0 in I. Indeed, we do not allow that the velocity of light

is approached somewhere, and, hence, even
N > const. >0 inI. (10)

We consider a star rotating differentially with a distribution of angular velocity

(rotation profile) Q = Q(p, z), a continuously differentiable function,
QecC'(I). (11)

However, the Q-profile of the fluid cannot be freely chosen, this shows up in the

following. The integrability conditions of the field equations (1), that is, the equation
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of hydrostatic equilibrium T 3 = 0 (from G*? .3 = 0) (where ‘" denotes covariant
derivative), particularly, its part orthogonal to the fluid 4-velocity u, reduces to the
Euler equation,

dp=—(e+p)a, (12)

where a is the 4-acceleration of the fluid, a = V,u. Specifically,
1
a=dV +ulugsdQ, nglnN, (13)

utug = p?eXB-U)(Q1— A)N~!. But the integrability condition of Eq. (12) taking into
account (6) is da = 0; following then, from (13), d(u'u,) A dQ2 = 0. The special case
where Q) = coust. is called rigid rotation (or uniform rotation). In general we shall

have (2 # const., following then,
utug = F(Q), (14)

for some function F, rotation law. By specifying the function F(2) a specific model
of differential rotation is obtained. [Note, since in the Newtonian limit u'ugs — p*(,
Eq. (14) expresses the general relativistic generalization of the Newtonian “rotation

on cylinders” theorem, Q = G(p?)].

Further requirements on our stellar model are:

a. the metric functions are (at least) two times continuously differentiable in
the interior and in the exterior of the star, and continuously differentiable

everywhere (cf. Note in Sec. III B),
K,UB,A € C*(I)nC*(E)NC*(R{ x R); (15)
b. in order that the metric functions are symmetric with respect to the z-axis
(p = 0) (“axisymmetric solutions”), and, hence, the metric (3), defined on M

excluding the axis, can be extended to an at least C'' axisymmetric tensor field

in the whole spacetime M, we assume that
as p — 0, J,K, 0,U, 0,B, 0,A—0, (16)
and, for completeness, also d,¢, 9,p — 0;
c. finally, by the asymptotic flatness requirement, denoting D := (0,, 0,),

as R:= (p*+ 2)Y? 5 00, K,U,B,A—0 and DK, DU, DB, DA—O0.
(17)
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Notice, from C' regularity, in (15), and asymptotic flatness, (17), it follows, in

particular, that the metric functions and their derivatives are bounded,'?

K1, UL, |BI,[A] < oo and |IDK|, DU, DB, IPA|| <o in Ry xR. (18)

III. THE ELLIPTIC EQUATION FOR THE DRAGGING RATE

A. The time-angle field equation component

The (t¢) component of Einstein’s equation (1) in these coordinates takes the form®

OppA + 0,, A+ %apA + (3DB — 4DU , DA) = —* - (2 — A), (19)
2K

with 2= 167r%(5 +p) [>0, by (8)and (10)], (20)

where (., .) denotes the Euclidean scalar product. Since, from condition (16), v(p, z) =
v(—p,z) for v =K,U, B, A, i.e. we are considering only axisymmetric solutions of
the field equations, and since only “axisymmetric operations” appear in these equa-
tions, we consider the following transformation (in the spirit of Ref. 6) in order
to avoid the coordinate singularity (of Eq. (19)) on the axis of symmetry (z-axis,
i.e. p = 0). To this end we use the 5-lift of each function v = v(p,z) (on R®), for
the metric functions v = K, U, B, A and also for v = ,¢,p, where the n-lift of

v:Rf x R — R on flat R*, axisymmetric around the x,-axis, is defined as follows

v such that 9(z) = 0(21,...,2,) =v(p= (224 +2,2 )", 2=1,),

(21)

and, for every function ¥ : R* — R, the meridional cut (in direction x1) of v,
D such that v(p, z) :==9(p,0,...,0,2). (22)

For axisymmetric functions, both operations are isomorphisms and inverse to each
other; but the relevant properties of n-lift and meridional cut are that (a) they leave
the regularity conditions and the norms invariant, (b) they commute with “axisym-
metric operations”, in particular, with all operations in Eq. (19), like multiplication

and scalar product, yielding especially (for n = 5)

(Dv,Dw) = (Vd, V), denoting V := (0y,...,05) (0i = Op;y Oij = 0y,04, ),
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and, remarkably, (c) they transform the operator 0,, + 0., + ”7728,, (n > 2) into

the flat n-dimensional Laplacian, and vice versa; having for n = 5

5
3
Oppv + Oczv + ~ 0y = D 0t =: Ab.

i=1
Hence, with the 5-lift, Eq. (19) writes in the form

AA+ (3VB —4VU, VA) = —%. (Q - A4), (23)

¥? defined like 2, (20), but with 5-lifted functions (on R?).

B. Regularity and boundedness of the metric functions

Let us see how conditions (15)-(18) transmit through the 5-lift. First, from condi-
tions (15) and (16) it follows

R,0,B,A € C\(R®), (24)

because (for v = K,U,B,A) v € C*(Rf x R) and 9,y — 0 as p — 0 imply
v e CY(R%).

Note: In fact, as seen in Ref. 6, with the use of these mathematical tools (n-lift
and meridional cut, for different numbers n), the elliptic system of field equations
(1) may be regarded as a set of Poisson-like equations, where the nonlinearities
(quadratic terms in the first derivatives of the metric functions) are contained in the
inhomogeneous terms on the right hand side. Making the weak requirement that
the metric functions and their derivatives are essentially bounded, v, Vo € L*,
since also &, p € L™ [by condition (7) and & = = 0 in the exterior], and Q € L®
[by (11)], we have that the right hand side is essentially bounded. Then, by the
regularity of Poisson’s integral,!® (at least) o € C1® for some o < 1; in particular,

o € C', i.e. (24). This justifies requirements (15) and (16) in Sec. IL.

Combining (15) and (16) we obtain also that the 5-lifted metric functions are

class C? in the interior and in the exterior of the star (in R®). That is, denoting

T:={(z1,...,25) R |((z 2 +---+22)2 z5) €[} R (25)
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and, analogously, £ and S, from E and S [cf. (5)], respectively, we have for v =
K,U,B,A,

7€ C*T)NC*(E)NCHRY). (26)
The asymptotic flatness condition (17) implies, through the 5-lift, that

as R=|lz|=(z1 °+...42)* 500, ©—0 and V5—0; (27)

but & € C(R%), that is, o € C°(R®) and Vi € [CO(R5)]’, yielding, together with

conditions (27), their respective boundedness,

5| < oo and ||V3| < oo inR. (28)

C. Notation convention and roundup

We have seen in Sec. III A that Eq. (23) is equivalent to Eq. (19) through the 5-
lift and the meridional cut, (21) and (22) for n = 5. Furthermore, the 5-lift leaves

regularity and boundedness properties invariant; see Sec. 111 B.

Convention: For simplicity in the notation, we omit throughout the following the
symbols ‘7’ for all 5-lifted functions we use. [Once it has been seen how regularity
and boundedness properties transmit from the functions defined on RS x R to the
lifted ones (on R®), and since they are equivalent in terms of positivity, and no
explicit reference to the first ones will appear throughout the following section, this

notation convention seems appropriate.]

Accordingly, we write Eq. (23) in the form

29
LyA = —*-(Q-A), (29)
(30)
with  LoA:= AA+ (3VB — 4VU, VA),
2K 31
¢2::167r%(6+p) >0 (=01iné), (31
and N := eV — p?XB-U)(Q — A)? > const. >0 inZ,

where K, U, B, A : R> — R, axisymmetric around the zs-axis. [Notice, Eq. (29) is so

defined in the whole spacetime, interior (fluid) and exterior (vacuum), ZU & = R®,
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but in the exterior 1> = 0 (¢ = p = 0) and the vacuum field equation is recovered,

LyA=0in &.] Also, we have (26)-(28), i.e. (with the notation convention)

K,U B, A e C*T)NnC*E)NCHR?), (32)

as R=|z|| = (1 2+ ...+ 25°)/? = o0, K, UB, A—=0, (33)
VK, VU, VB, VA — 0, (34)

[Kl, U], [Bl, [A] < o0 (35)
and  |[VK]|, VU], [VBI, [VA| <oo inR®. (36)

Equation (29), i.e.
LA:=LoA—9? A= —42-Q, (37)

writes then

with  a;; = const. =4d;; (=1ifi=j, and = 0 otherwise),
b = 30,B—40U (Vi,j€{l,...,5}), and (38)
c = =" (£0),
g = cQ,

(where repeated indices indicate summation from 1 to 5). The flat 5-dimensional
Laplacian A, in (30), (a;; = 6;;), and hence L, is obviously strictly and uniformly
elliptic everywhere. The coefficients b; are measurable and bounded functions ev-
erywhere, because B and U are C', (32), and have bounded derivatives, (36). On
the other hand, for the coefficient ¢ [cf. (31)], since (i) the metric functions are
continuous, (32), and bounded, (35); (ii) p is continuous everywhere, (7), and has
compact support; (iii) ¢ is continuous in the (closed) interior Z, from (7); (iv) Q is
in particular continuous (in Z), (11), and, hence, measurable; and (v) N > const.
> 0 (also in Z), (10); it follows that ¢ = —4? is measurable and bounded in the
interior Z, and, since ¢> = 0 (¢ = p = 0) in the exterior £, and the boundary (the
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star’s surface) 0Z = S is a set of measure zero, we have that the coefficient c is
measurable and bounded everywhere. This will allow us in the following section
to apply maximum principles in the classical and in the generalized sense to the

operator L (and Lg); see Appendixes A and B.

IV. BOUNDS ON THE DRAGGING RATE

A. Positivity of the dragging rate

Proposition 1
If the distribution of angular velocity of the fluid is non-negative (and non-trivial),

then the dragging rate is positive everywhere.

2>0, Q#0 = A>0.

Proof. Consider the domain G defined by a ball in R® centered at the origin z = 0

and of arbitrarily large radius o,
G :=B,(00) CR. (39)

Since A is continuously differentiable in R®, cf. (32), so is in particular in G; but
A and VA continuous in R® implies that they are 2-integrable (are in L?) in G;
consequently,

A e WH(G)nCHG). (40)

Hence, the strictly elliptic linear partial differential equation (in A) with measur-
able and bounded coefficients, (37), is satisfied in a generalized sense in G; see
Appendix B. Remarkably, whenever Q2 > 0, Eq. (37) yields the differential inequal-
ity

LA<LO inQG, (41)

i.e. A is a generalized supersolution relative to the operator L and the domain G.
We pay now special attention to the behavior of A on the boundary: since the radius
of the ball G, o, is arbitrary, we can make it sufficiently large (¢ — oo) such that,
by the asymptotic flatness condition on A [cf. (33)], A is arbitrarily small on 0G,

lim Al,;=0. (42)

og—00
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We first observe that A # const. [because, by (42) and A € C°(R®), would be A =
const. = 0, which yields, by Eq. (37), Q = 0, and we are assuming {2 # 0]. Hence, by
the strong minimum principle, Theorem 4 in Appendix B, applied to the differential
inequality (41), A cannot attain a non-positive minimum at an interior point of G;

using (42), we conclude then A > 0 in G, i.e. everywhere. O

Remark 1. A result analogous to Proposition 1 holds with the opposite sense of the
rotation; that is, if @ < 0 (Q # 0), then A < 0. This follows because Eq. (29) is

invariant with respect to the simultaneous change of sign (2, A) — (=, —A).

B. Upper bound (). Positivity of the angular momentum

density

Hereafter we discuss the sign of the difference 2 — A. Remarkably, this determines

the sign of wu'ug, which, with assumption (8), is the sign of the angular momentum

density, integrand of the total angular momentum, given by the “volume” integral®

J = [;2n T} (—g)/?dx, where g =det(g) and T} = (¢ 4 p) u'ug.
1. In the rigidly rotating case

Proposition 2

In the particular case of rigid rotation, with 2 = const.=: 2, > 0,
0< A<,

holds everywhere. As a consequence, in this case, u'ug, and, hence, the angular

momentum density, is non-negative.

Proof. We consider Eq. (29) for 2 = const.= Q, > 0, ie. LyA = —¢*-(Q, —
A), which, since the differential operator Ly, (30), is free from linear term, can be

rewritten in the form

Lo(A—Qu) = =42+ (2 — 4),
or, denoting again the differential operator L := Ly — 1? and defining
w(x) = A(z) — Q. (43)
in the whole spacetime, x € ZUE = R® (as already 5-lifted function; cf. Sec. III A),
Lw=LA-Q)=Ly(A-Q)—¢*-(A-Q,)=0 inR>.
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We have then the strictly elliptic linear (in w) equation
Lw=0 (in particular) in G = B,(0) C R®, (44)

where the radius o is arbitrary, with w € WY?(G)NC*(G), by (40) and (43). On the
other hand, by the condition of asymptotic flatness on A [in (33)], A is arbitrarily
small on 0G| provided that o is sufficiently large, i.e. (42); consequently,

lim wl,; = -0, <0. (45)
g—r00
Since w # const. [because, by (45) and continuity, would be w = const.= —Q,

in G, that is, A = const.= 0 in G, which is not allowed, by Eq. (37), since here
Q = Q, > 0], applying the strong maximum principle, Theorem 4 in Appendix B,
to Eq. (44), we get that w cannot attain a non-negative maximum at an interior
point of G; hence, using (45), w < 0 in G (everywhere), i.e. A < €, everywhere.
Moreover, A > 0 everywhere, by Proposition 1. This establishes the conclusion of

the proposition. O

Observe, in the static case, 2, = 0, we would have Lw = 0 and lim,_,o, w|y, = 0,
following, by the strong maximum and minimum principles, w = 0, i.e. A =, = 0;

as expected, A = 0.

Remark 2. Likewise, if ) = const.= €2, < 0, then 0 > A > (), everywhere, and,
hence, the angular momentum density is non-positive. We obtain this by applying
Proposition 2 to the function A := —A, solution of Eq. (29) for €, := —Q, > 0
(cf. Remark 1). More explicitly, the angular momentum density of a rigidly rotating
stellar model has the same sign as the angular velocity of the fluid. Also, as a result,

we have for a fluid rotating rigidly with €2 = const.= 2, # 0

0 < |A] < [Q].

2. In the general (differentially rotating) case

In the following we shall assume that a function F (to be specified) has been given,
and we have a solution of the problem, that is, (four) metric functions, K, U, B, and
A, and a fluid angular velocity distribution, 2, satisfying the (four) field equations
(1) [in particular, the elliptic equation for A, Eq. (29)] and Eq. (14), u'us = F(Q).

[Notice, in the interior, where the matter terms do not vanish (p > 0, ¢ > 0),
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substituting into the equation of motion (12) [with (13)] its integrability condition,
i.e. Eq. (14), and the equation of state, Eq. (6), we obtain the pressure, p, and the
energy density, £, as functions of p, U, B, A, and €.]

Remarkably, u'us may be written

p2€2(B—U) (Q . A)

t =
Wiy = €2V — p2e2(B-U)(() — A)?
2
o° (2 — A) . B—2U
= = P(p, Q- A th o:= 4
1= 2= A)? (e ) with g:=pe” ™,  (46)

where, from (10), 1 — ¢*(2 — A)?> = Ne™2Y > const. > 0 in Z. With the defined
function (46), Eq. (14) writes

Do, Q— A) = F(Q). (47)

Lemma

Assume

i.  the function F :R — R 1is strictly decreasing, and

ii. 3 a constant Q. (|| < 00) such that F(Q.) =0,

then, at each interior point (in T ), where Eq. (47), ® = F, is satisfied, the following
holds

A< = A<Q<Q (A<Q)
A>Q = A>0>0Q, (A>Q,)
A=Q = A=Q=Q, (A=Q,).

(48)
Note 1: Due to (i), €. [defined in (ii)] is unique. Also, observe, ). exists and

coincides with the (constant) value of © on the rotation axis, provided that part
of the axis, p = 0, is in the interior, Z, (i.e. if the rotating fluid does not have
toroidal topology). This is because at points in {¢ = 0} N Z # (), since ®|,_, =0
and ® = F in Z, we have F(Q)| ,—0 = 0; and F is, by requirement (i), invertible;
yielding Q[,_, = const. = (2.

Note 2: Observe, if F € C! and F' < 0, then, since 9q® > 0, Eq. (47) can be solved
for Q, by virtue of the implicit function theorem, yielding Q = Q(p, U, B, A); and,
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by the regularity of the metric functions, (32), it follows in particular Q € C! (f) ,

requirement (11).

Note 3: It should be stressed that, since ® is an increasing function in {2, choosing
the function F strictly decreasing [requirement (i)], Eq. (47) has a unique solution
in Q (“curve” solution with p variable). Specially, this makes likely the existence of
functions 2, K, U, B, and A, solutions of the field equations and Eq. (14). Indeed,
in numerical works concerning differential rotation the ansatz for the F-law F(2) =
RZ(2.—), where Ry is a free parameter describing the length of scale over which Q
changes, is generally used, and it is claimed that a solution exists. (See, e.g., Refs. 15-

17.)

Proof. We consider a point £ € Z where the metric functions and the fluid angular
velocity are solution, in particular, with reference to Eq. (47), the functions & and

JF valued at this point “intersect” each other, i.e.
O(o(z), Q) — A(x)) = F(QUz))  (Vz€I).

From requirements (i) and (ii), it follows (at each interior point) sign(F) = sign(Q.—
). As regards ® (at the interior point), on the axis (p = 0) it obviously vanishes,
cf. (46); following, from the relation ® = F (in Z), ® = F = 0 and, thus, Q = Q,
on the axis. Outside the axis (¢ # 0) we have sign(®) = sign(2 — A); and, hence,

(outside the axis)
P=F>0 = A<Q<Q.,

P=F<0 <= A>Q>Q,,

But also,
VeeT | Alx) < Qz), < Ar) < Q(x) < Q. if o(x) #0 ,
| A) < Q) = 2 i ole) =0 |
VeeT | Alz) > Q), ) A)> Q@) > Q. ifola) #0
\A(x) > Q(z) =Q. ifo(x) =0,
andVz €T / A(z) = Q(=), Alz) = Q(z) = Q..
This yields (48). -
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We are now in a position to get one of the main results of this work in the general

differentially rotating case, namely, the following proposition.

Proposition 3
If the F-law [in Eq. (14)] specifying the model of differential rotation is chosen such
that

i. F:R— R strictly decreasing,
ii. 3 a constant Q. (|Q] < 00) such that F(Q) =0, and
iii. Q. >0,

then
0<A<Q<Q, inT; (49)

in particular, utuy > 0, and, hence, the angular momentum density is non-negative.

Moreover,

O<A<m§LXQ§QC in €. (50)

Note: As remarked above, if the interior (fluid) contains points of the axis, then
condition (ii) is already guaranteed, and €2, is the constant value of Q2 on the axis;
cf. Note 1 in the previous lemma. See also Notes 2 and 3. And observe, requirement
(iii) is in principle much weaker than € > 0, but, as seen in the conclusion of this
proposition, € > 0 already follows. Furthermore, the fact that < Q. in Z shows
that in differentially rotating stars the core may rotate faster than the envelope, so
that the core can be supported by rapid rotation before mass shedding is reached

at the equator.'®

Proof. We divide the proof in four steps.

First step: Let us see first A <Q in Z.

Suppose (to get a contradiction) A(xq) > Q(xq) for some zy € Z. We have seen,
in the previous lemma, cf. (48), that this is equivalent to A(xg) > Q(zg) > Q;
and, hence, using hypothesis (iii), A(xy) > Q. > 0. Therefore, by the continuity
of A [indeed A € C', cf. (32)] and the asymptotic flatness [lim; 0 A = 0,
cf. (33)], we infer that
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3 an open and connected neighborhood of zy, N, C R®, such that

A>Q.  inN, (51)
and A=, on ON,.
We distinguish two cases:
Case 1: N, NE = (), that is, the neighborhood is contained in the interior,
Nz, CT.

Thus we have, again using the previous lemma, A > Q > Q. > 0 in N;
particularly, Q@ — A < 0 in N, and, therefore, by Eq. (29),

LyA>0 inN, CT.

From (32), in particular, A € C?(Z) N C°(Z), and, hence, A € C%(N,) N
C%Ng,)- And applying the weak maximum principle, Theorem 1 in Ap-
pendix A, to the operator Ly (on A) in N,,, we obtain that the maximum

of A is reached on the boundary, i.e.

max A = max A,
Nag ANz,

contradicting (51).
Case 2: N, NE # . (Notice, here is included the case where 2y € 0T = S.)
We denote
Ly,
Exo

NeyyNT CZT
NgpyNE C&

and T = MN,NS.

Observe, ' # (), because N, is connected, 2y € Ny, NZ # @, and, by assump-
tion in this case, N, N & # 0. Moreover, I' = T,, N E,, = 0L,, N &4,

Thus, we have
in the interior, from (51),

A>Q, inZ, Ul C N (I COL,)
A:Qc on 3Iz0\r C aNz‘oa



and, applying the weak maximum principle (Theorem 1 in Appendix A)

to the differential inequality [cf. (29)]
LyA>0 inZ, CT

[again using (48), A > Q > Q. in T,,], with A € C?(Z,,) N C°(Z,,), it
follows

max A =maxA =max A;
Taq 0Ly, r

in the exterior, we have analogously, from (51),

A>Q, in &, UDT C N, ([ CO&,)
A=Q, on 08, \T C ONg,.

(Note, the point co is not included in 9&,,, because Q. > 0 and A is
asymptotically flat, A|_ = 0.) But, in the exterior, £, ¥* = 0, and we
have the elliptic equation for A

L()A:O 1n5x0C5,

as a consequence, again by virtue of the maximum principle (Theorem 1

in Appendix A) now in &,

max A =maxA =max A4.
Zay OEqg T

We therefore have

max A = max A = mre}xA =: A(z,), forsome z; €.
Tag Exp

Thus, (mo =T, U Ewo)

I%axA = A(x1), forsome z; €' C N, (z interior point);
zo

and, since A € C'(R%), in particular, A € C'(N,,), it follows

VAl =0. (52)

z1

However, this is not possible, because, on the other hand, x; is a point of the

star’s surface 1 € I' C 8, and, from the assumptions on the stellar model,
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0Z = S satisfies an exterior sphere condition everywhere, i.e. 9 = S U {oo}
satisfies at each point of S (in particular, at z;) an interior sphere condition
(cf. Definition in Appendix A). This allows us to apply the so-called boundary-
point lemma, Theorem 2 in Appendix A, for the operator Ly in the exterior
domain &,,, with respect to the point z; € ' C 9&,,, being A(z;) = max A in
€4, And, since A # const. [because A > Q. in &, UT, A= Q. on 0&,, \ T,

and A is continuous], this yields
(v,VA)|, = 0, 4], #0, v = outward pointing unit normal to S at x1 ;
contradicting (52). Consequently,

A<Q inT. (53)

Second step: A <Q <, inT.

30

This can be seen as follows. From inequality (53) and using (48) we also have

0<Q, inT, (54)
and, combining (53) and (54),

A<Q, inT. (55)

On the other hand, we have Eq. (29), i.e. Ly A = —¢? - (Q — A), satisfied

everywhere, in particular, in the interior (in a classical sense). Let
u(z) := Ax) — Q. VzeT.
Since €2, is constant, we can rewrite Eq. (29),
Lu:= Lou —* -u = +¢*- (2. — Q) >0 [by (54)].

Hence, we have
Lu>0 inZT, (56)
where, like A, v € C*(Z) N C°Z), and

u<0 inZ, (57)

by inequality (55). We want to see u < 0. Suppose (to get a contradiction)
that u() = 0 for some & € Z; then, by (57), 0 = u(Z) = maxzu, £ € T



(interior point). However, by the strong maximum principle, Theorem 3 in
Appendix A, for (56), u cannot reach a non-negative maximum at an interior
point of Z, unless u is a constant in Z. That means, in our case, u cannot vanish
somewhere in Z unless it vanishes identically in Z. But u = const. = u(%) =0

inZ, i.e.
A= const. =Q, >0 inZ, A € C' everywhere, (58)

yields, in particular,
VA=0 onodI=S. (59)

On the other hand, in the exterior, £, we have Ly A = 0, with A € C*(£) N
C°(€), and, by the weak maximum principle (Theorem 1 in Appendix A)

maxA = max A,
z AE=8U{o0}

but, using asymptotic flatness (A|_ = 0) and (58), actually,

max A = mng =: A(x,) for some 21 € S C €.
3

In particular, since A # const., the boundary-point lemma, Theorem 2 in
Appendix A, applied to the operator Ly in the exterior domain £ (where, by
assumption, an interior sphere condition is satisfied in particular at ;1 € § C

0€) yields a non-vanishing outward normal derivative
(v,VA)|, = 0,A|, #0,

in contradiction to (59). Therefore, u < 0 everywhere in Z, i.e. A < Q. in Z;
and, hence, also on 0Z, because, by the weak minimum principle, Theorem 1
in Appendix A, applied to Ly A = —¢? - (2 — A) < 0in Z [by (53)], we get
minz A = mings A. Therefore, A < Q. in Z, or, equivalently [cf. (48)],

A<QN<Q, inZT.

Third step: A > 0 everywhere (i.e. the same conclusion of Proposition 1, but now

using different hypotheses).

We have seen in the first step A < Q in Z; which yields, Lo A < 0in Z. On
the other hand, Ly A = 0 in £. Accordingly,

LoA<0 everywhereinZUE =R°.
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Applying now the strong minimum principle for generalized supersolutions,
Theorem 4 in Appendix B, and using asymptotic flatness, as was argued in
the proof of Proposition 1, it follows A > 0 everywhere. [Notice, here A #
const., because, by asymptotic flatness and continuity, A = const. is equivalent
to A = 0; by Eq. (37), also © = 0, and, hence, from Q — A = 0, we would have
[cf. (46)] 0 = ® = F(0); but this is not possible, since requirements (i) and
(ii) imply F(0) > F(.) = 0.]

Thus, A > 0 everywhere, in particular, in the interior; using now the result
of the second step, we finally get (49), 0 < A < Q < €. in Z. Notice, hence,
Q>0 (in 7).

Fourth step: A <maxsQ < Q.in &.

The elliptic equation holding in the exterior,
LO A=0 in& 5
yields, by virtue of the weak maximum principle (Theorem 1 in Appendix A),

maxA = max A;
£ AE=8SU{oc0}

but, using asymptotic flatness (A| = 0), we actually have maxsyfe} A =
maxs A. On the other hand, we have seen A < 2 < Q2. in particularin 0Z = S,
and S is compact. Hence,

in &, O<A§mgXA:g1%§A<mgXQ§QC,
g =

establishing also (50). O

Remark 3. Analogously as argued in Remarks 1 and 2, it is possible to “reflect”
Proposition 3. As a consequence, in particular, in a model for a star which is
rotating differentially with the function F either strictly decreasing with 2. > 0 or
strictly increasing with . < 0, F(£2.) = 0, the angular momentum density has the
same sign as (2., and, hence, as the angular velocity of the fluid. Also, accordingly,
the following holds

0<[Al<[Q <] InZ,

0< Al < ‘mgxﬁ‘ <|Q.] in€&.
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V. GENERAL BOUNDS. ROTATIONAL ENERGY

A. Preliminary observation

Let u : R — R be a differentiable function, V : R* — R" be a vector field, and

G C R* a domain where Gauss’ theorem can be applied. Then, due to

div(uV) Z 0;(uV;) = (Du, V) + u divV

[where (.,.) is the Euclidean scalar product, D is the gradient operator, and divV :=

>-; 0i(V;), the divergence|, we get, integrating over G' and applying the Gauss theo-

LudivV:—L(Du,V)+[9Gu(Ku>, (60)

where v is the outer unit normal of G (and, for simplicity in the notation, volume-

rem,

and surface elements have been dropped).

B. Appropriate form of the field equation
The general (elliptic) field equation for A, Eq. (19), may be rewritten as follows:
div(p*e*Pe ™V DA) = —f2. (2 — A), (61)

where D := (8,,0,) and ‘div’ are the flat expressions in R?, and
pReB 2K =2U)
— p2eXB-U) () — A)?

Especially we have f? =0 in the exterior F of the star [cf. (5)].

fQ('O7 z) = fz — p363B—4U¢2 = 167 (€+p) T >0.

Note, in this section (independent of Sec. IV) we go back to the field equation
in the meridian plane coordinates, (p,z) € R x R, instead of the 5-lifted one (on
R%) (cf. Sec. IIT A).

C. Main observation

Multiplying Eq. (61) by A, and using Eq. (60), by settingu = A, V = p?e38e U DA,
and G = Rf x R C R? [actually, we consider a ball in R? centered at the origin of

the coordinate system with arbitrarily large radius, B,(0) C R?, and take G =
B,(0) N (R x R) C R?, 0 — oc], we obtain

- [Pa@-ay == [ petevpAPs [ AgSTe U DA),
RIxR A(RFXR)

1
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where I C R x R C R? represents the (p,z)-coordinates of the interior of the
star (note, f? vanishes in the exterior E). The first term on the right hand side
(which converges, since ||DA|| falls off rapidly enough at the space-like “infinity” %)
is obviously non-positive. And the second term vanishes, because of the asymptotic
behavior at spatial infinity of the metric functions, specially of A,'® and because the
integrand, due to the factor p?, vanishes on the axis of rotation p = 0, which is the
other part of (Rf x R) = {R = (p* + 2%)"/?2 — oo} U {p = 0}. Hence, we have

found

/FAK%mMEO. (62)

D. Consequences

In order to see more the linear algebra behind, we introduce now the bilinear form

(u,v) 5= /IfQ(p, z2)u(p, z) v(p, z) dpdz, u,v: I — R in L*(I),

)1/2

and the induced semi-norm ||.||; := ({.,.);)’". With this definition we can write

inequality (62) as
(4,9); > [lA[17,

and immediately see that especially
(Q,A);=(A,Q)r>0. (63)

Furthermore, using the Cauchy-Schwarz inequality, we have ||A|| /||| > (4, Q) >
| A]|3, and hence (since A =0 <= Q= 0) we get (in full general) the main result
of these sections, namely,

0 <[All; < Iy, (64)
i.e.

Proposition 4

OS/IfQAQS/IfQQQ (65)

[without any restriction concerning the rotation law, Q — F() in (14), in the

differentially rotating case, nor the regularity and sign uniformity of Q]. These
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integrals can be regarded as some kind of “mean value” with respect to the “density”

f?, thus, (65) fulfilling the physical expectations.?

In addition, multiplying inequality (64) by [|€?|| s, we find (again using the Cauchy-
Schwar, nequality) [ > 2] l1A]l; > (2, A)y, ie.

(Q,0-A4),>0. (66)

Remarkably, the integral given in (66) has an important physical meaning; it is, up
to a constant factor, the so-called total rotational energy (see, e.g., Refs. 15, 16, 18,

and 20),
T = 1/Q dJ = 1/zmTt(—g)l/?dpd,z - Lio0-a
~ 2/, 2/, ¢ 16" " !
(also denoted Fyo, or Myot). Thus, (66) shows T' > 0. Furthermore,
16 T =(Q,Q— A); = Q7 — (2, 4) < [IQIF,
by (63). Hence, we have the following proposition.

Proposition 5

T——/fQQAg—/fQQ. (67)

This generalizes the result given by Hartle (cf. Ref. 7, Sec. IV) in the limit of slow
(differential) rotation to the general differentially rotating case. Specifically, an
alternative and much simpler proof of the referenced result (in the slow rotation
limit) is possible in a way (cf. Ref. 21) which can be even generalized (outside this

limit).

VI. CONCLUSIONS

Aiming to derive general properties of equilibrium non-singular stellar models with
differential rotation, we have established that for a wide class of rotation laws the
distribution of angular velocity of the fluid has a sign, and then both the dragging
rate (angular velocity of locally non-rotating observers) and the angular momentum
density have the sign of the fluid angular velocity (Sec. IV). In addition, the mean

value (with respect to a density function) of the dragging rate is shown to be less
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than the mean value of the fluid angular velocity; and this is proved in full general,
without having to restrict the rotation law, nor the uniformity in sign of the fluid
angular velocity. A further simple calculation of linear algebra on this inequality
yields a generalization of the result given by Hartle” concerning positivity and upper
bound of the total rotational energy in the limit of slow (differential) rotation to the

general differentially rotating case (Sec. V).
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APPENDIX A: Maximum (minimum) principles for classical sub-(super)

solutions

By G we denote an open and connected set, i.e. a domain, in R*, n > 2. The

boundary is denoted by dG = G N (R* \ G). We define the differential operators

Lou := a;j(x) Oiju + bi(x) Oju, aij = Qji ,

and Lu := Lou + ¢(z)-u

(where the summation convention that repeated indices indicate summation from 1

to n is followed), such that*

1. L (and, hence, L) is uniformly elliptic in G in the special form

0 < Ayl* < aij(z)yiy; < Alyl®, VyeR"\{0}, Vz € G (\yP = Zyﬁ) ,

(A1)
where A and A are constants such that 0 < A < A < oo

2. all coefficients in L (and in L), a,j, b; (for all 4 and j), and ¢, are measurable

and bounded functions in G,
la;j| < oo, |bi] <oo, |cf]<oo inG (i,5€{l,...,n}). (A2)
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Theorem 1 (the weak maximum (minimum) principle for L, (¢ =0))
Suppose that Lou > 0 (< 0) in a bounded domain G, with u € C*(G) N C°(G).

Then the mazimum (minimum) of u is attained on the boundary, that is,

maxu = maxu I'IllIlU = mlnu .
a aG Fel aG

(A proof of that theorem can be found, e.g., in Ref. 23, Theorem 3.1.)

Definition

For a set G C R", the boundary 0G is said to satisfy an interior (exterior) sphere
condition at a point x; € OG iff there exists a ball B C G (B C R* \ G) with
x1 € OB

Theorem 2 (the boundary-point lemma)

Suppose that Lyu >0 (c=0) in a domain G not necessarily bounded.
Let 1 € OG be such that

(i)  u is continuous at z1,

(i) wu(z1) > u(x) for allz € G, and

(iii) OG satisfies an interior sphere condition at z.

Then the outer normal derivative of u at x1, if it exists, satisfies the strict inequality
Oyu(z1) > 0,

unless u = const. = u(z).

(A proof of that result can be found, e.g., in Ref. 24, Theorem 7, Chap. 2.)

If ¢ <0 (in Lu > 0 ), the same conclusion holds provided u(z;,) > 0.

(See Ref. 24, Theorem 8, Chap. 2. Also Ref. 23, Lemma 3.4.)

Theorem 3 (the strong maximum (minimum) principle for L)
Let Lu > 0 (< 0) in a domain G not necessarily bounded, with v € C?(G)NC°(G),
and the operator L satisfying

c<0 nG (A3)

apart from conditions (A1) and (A2) above.
Then u cannot attain a non-negative maximum (non-positive minimum) at an inte-

rior point of G, unless u = const. in G.
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For c = 0, i.e. L = Ly, the same conclusion holds without the requirement ‘non-

negative’ (‘non-positive’).

(For the proof we refer again to Ref. 23, Theorem 3.5; or Ref. 24, Theorems 5 and
6, Chap. 2.)

APPENDIX B: Maximum (minimum) principle for generalized sub-

(super) solutions

Consider in a domain (open and connected set) G C R* (n > 2) the differential

operator with principal part of divergence form, defined by
Lu = 8;[a;j(x)0ju + a;(x) u] + b;(z) Ou + c(z) u,

with a;; = aj;. Notice, an operator L of the general form Lu = &ij(x)aiju—i-gi(x)aiu—i-
¢(z)u may be written in divergence form provided its principal coefficients @;; are

differentiable. If furthermore the @;; are constants, then even with coinciding coef-

ficients (a;; = @;j, b = b;, ¢ = ¢) and a; = 0. Let us assume that

1. L is strictly elliptic in G|, i.e. 4 a constant A > 0 such that A < the minimum

eigenvalue of the principal coefficient matrix [a;;(z)],

A |y|2 <a(zr)yy; VYyeR', Vzed, (B1)

2. a;j, ai, b;, and c are measurable and bounded functions in G,

la;j| < oo, |ai| <oo, |bi]<oo, Jc]<oo inG (i,j€{l,...,n}). (B2)

By definition, for a function u which is only assumed to be weakly differentiable
and such that the functions a;;0;u +a;u and b;0;u+cu,t=1,...,n are locally
integrable [in particular, for u belonging to the Sobolev space W?(G)], wu is said
to satisfy Lu = ¢ in G in a generalized (or weak) sense (g also a locally integrable

function in G) if it satisfies
L(u,;G) = /{(aijaju + a;u)0;p — (b;0;u + cu)p}dr
G
= —/gwdx, Vo >0 ¢eC(G)
e
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[where C!(G) is the set of functions in C*'(G) with compact support in GJ.

Notice, u is generalized sub-(super-)solution relative to a differential operator L
and the domain G [i.e. satisfies Lu > 0 (< 0) in G in a generalized sense] if it

satisfies L£(u,p;G) <0 (>0), VYo >0 ¢ e CHQ).

Theorem 4 (strong maximum (minimum) principle)

Let u € WH2(G) N C*(QG) satisfy Lu > 0 (< 0) in G in a generalized sense, with

/(cgp —a;0;0)dz <0, Yo>0 ¢eCHG). (B3)
G

[equivalent to requirement (A3) in the classical case] and conditions (B1) and (B2)
above.
Then u cannot achieve a non-negative mazimum (non-positive minimum) in the

interior of G, unless u = const.

(A proof of this theorem can be found in Ref. 23, Theorem 8.19.)
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Abstract

For relativistic stars rotating slowly and differentially with a positive angular
velocity, some properties in relation to the positiveness of the rate of rotational
dragging and of the angular momentum density are derived. Moreover, the
proof for the bounds on the rotational mass-energy, which we have generalized

(outside the slow rotation limit) in a previous paper, is briefly exposed.

PACS numbers: 04.40.Dg, 97.10.Kc, 02.30.Jr

I. INTRODUCTION

In a previously published paper! we have given general bounds on the dragging rate
(angular velocity of locally non-rotating observers, or angular velocity of cumulative
dragging) of a differentially rotating relativistic stellar configuration; however, the
validity of these bounds depends heavily on the underlying rotation law, which must
be compatible with the field equations.

In the prescription for calculating a slowly and differentially rotating relativistic
stellar configuration the field equations are expanded in powers of a fluid angular
velocity parameter, and the perturbations (around a non-rotating configuration) are
calculated by retaining only first and second order terms. Hartle? has derived these

equations of structure in the rigidly rotating case. It is remarkable that at first
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order the only effect of the rotation is to drag the inertial frames; at second order
it also deforms the star. An expansion of the dragging rate potential in powers of
the angular velocity parameter only contains odd powers. Hence, if one is interested
in calculating all effects up to second order, it is then sufficient to include only the
linear (first order) corrections in the dragging rate. And it turns out that up to first
order there are no restrictions on the rotation profile by the field equations, more
exactly, by the Euler equation, through a rotation law. Hence, the result on bounds
on the dragging rate in the general (differentially) rotating case, mentioned above
(Proposition 3 in Ref. 1), does not apply any more in the slow rotation limit. In the
present paper the bounds on the dragging rate (including positivity of the angular

momentum density) are refined for the slowly and differentially rotating case.

The first order equations of structure reduce to the time-angle field equation
component (to first order), which is a partial differential equation, linear in the
dragging rate potential. This linearity in the dragging rate persuades us to re-
write that equation in appropriate coordinates —in order to avoid the coordinate
singularity occurring on the axis of rotation in spherical polar coordinates, gener-
ally used in the slow rotation approximation— so that in the new coordinates the
equation writes in a “regular” form as an elliptic equation with measurable and
bounded coefficients. This allows us to apply a minimum principle for generalized
supersolutions in the whole domain (interior and exterior of the star). Making use
of the asymptotic flatness condition, this will lead us directly to the positivity of
the dragging rate, provided that the distribution of angular velocity of the fluid
is non-negative everywhere (and non-trivial) and that we start from a reasonable
unperturbed (non-rotating) stellar model satisfying the weak energy condition. In
this case, the linearity (in the rotation) of the considered equation will guarantee
a positive angular momentum density, provided that the amplitude of the rotation

profile is bounded in a certain way.

The rotational mass-energy, derived by Hartle in Ref. 3, although accurate to
second order in the angular velocity, involves only quantities which can be calculated
from the first order structure equation (time-angle component of the Einstein field
equations) as well. A proof of the positivity and an upper bound on this rotational
energy was given in the same paper,® however using an expansion in eigenfunctions

(and leaving open the non-trivial mathematical problems which may arise on the
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existence of these eigenfunctions). We found a much simpler proof of that result,
avoiding expansions in eigenfunctions (in the present paper briefly exposed) which,
remarkably, was possible to generalize to the general differentially rotating case, i.e.

outside the slow rotation limit (cf. Sec. V of Ref. 1).

The paper is organized as follows. After a description of the relativistic rotating
stellar model in Sec. II, and a brief revision of the concepts of angular momentum
density and rate of rotational dragging in Sec. III, in Sec. IV we concentrate on
the slow rotation approximation, particularly on the first order perturbations of the
metric (linear correction of the dragging rate, with description of the unperturbed,
i.e. zero order, configuration), and explicit expressions for the expansions of the an-
gular momentum density and of the rotational mass-energy are derived. In the same
section the null contribution (at first order in the angular velocity) of the integrabil-
ity condition of the Euler equation is discussed, and the time-angle component of the
Einstein equations (to first order) is written in appropriate coordinates, as a back-
ground allowing to apply a minimum principle and obtain the first of the properties
mentioned above and proved in Sec. V, and consequences of that one. Apart from
this, we sketch here the alternative proof of the bounds on the rotational energy.

Finally, in Sec. VI, concluding remarks are briefly stated.

II. THE RELATIVISTIC ROTATING STELLAR MODEL

The spacetime of a rotating relativistic star is represented by a Lorentzian 4-manifold

(M, g) which satisfies the following

A. Assumptions

i. the spacetime is stationary in time and axially symmetric, which means that g
admits two global Killing vector fields, a time-like future-directed one, &, and
a space-like one, with closed trajectories, 1, except on a time-like 2-surface

(defining the axis of rotation) where n vanishes;

ii. the spacetime is asymptotically flat; in particular, g(&,&) — —1, g(n,n) —
+o0, and g(&,m) — 0 at spatial infinity [the signature of the metric g being
(= +++)];

44



iil.

iv.

vi.

vii.

Viii.

the matter —confined in a compact region in the space (interior), with vacuum
on the outside, so that (ii) holds— is perfect fluid, and therefore the energy-

momentum tensor (source of the Einstein equations) is written as
T=(c+pu’'®u’ +pg,

where € and p denote the energy density and the pressure of the fluid, respec-
tively; and u’ denotes the 1-form equivalent to the 4-velocity of the fluid u

(in the exterior T = 0; hence, € + p = p = 0 there);

the fluid velocity is azimuthal (non-convective) (circularity condition), i.e.
CAEAY =0;

(M, g) satisfies Einstein’s field equations g = 87T for the energy-momentum

tensor T of a perfect fluid (iii), where g = Ric — 1/2 R g denotes the Einstein

tensor —equations which can also be written in the form

Ric = 87(T — %tr(T) 9):; (1)

¢ and p satisfy a barotropic (one-parameter) equation of state, € = £(p);
e +p > 0 (weak energy condition for perfect fluid, assuming £ > 0);*

the metric functions are essentially bounded.

B. Form of the metric

Assumptions (i) and (ii) imply that the two Killing fields commute, [£,7] = 0,

which is equivalent to the existence of coordinates z° = ¢ and z' = ¢ such that

£ = 0, and = 0y4; moreover, by the circularity condition (iv), the spacetime g

admits 2-surfaces orthogonal to the group orbits of the Killing fields (orthogonal

transitivity).> We may then choose the two remaining coordinates (22, %) in one of

these 2-surfaces and carry them to the whole spacetime along the integral curves of

& and n; accordingly, the metric can be written in the form

ds? = gapdr®da®

= gudt® + 2g1pdtde + g¢¢d¢2 + gQQ(daj2)2 + 2¢93da’da® + g3 (da:3)2 ,
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where the metric coefficients are independent of the time 2° = ¢ and azimuthal
z' = ¢ coordinates corresponding to the two Killing fields; that is, gas = gas(@?, 2?).

When solving Einstein’s field equations it is convenient to specify the coordinates
22 and 2® in such a way as to simplify the task; a particular choice, usually made
when studying slowly rotating configurations,? is the one which makes gy3 = 0 and
933 = gpssin 2z3. Hence 2% and z® are chosen so that at large spatial distances the
asymptotically flat metric is expressed in terms of spherical polar coordinates in the
usual way. In the resulting coordinate system, with the notation z? = r, 23 = 4,

and with new symbols for the metric functions, the line element reads
ds* = —H%dt* + Q*dr® + r*K*[d6* + sin®0 (dp — Adt)?], (2)

where H,Q, K and A are functions of r and # alone. In these coordinates (r >
0, 0 < @ < 7) the spatial infinity is given by r — oo, and the axis of rotation
(0p =m =0) is described by § = 0 or 7 (r > 0).

Notice that the function A appears in the metric (2) as the non-vanishing of the
(t¢) metric component of a rotating configuration. A is actually the dragging rate

potential [cf. Sec. I11].

C. Differential rotation

According to assumption (iv) of Sec. II A —circularity condition—, the fluid 4-

velocity u has the form

u®  do
u = u'0, +u®dy = u'(9; + Q0;), where Q= = a

is the angular velocity of the fluid measured in units of ¢, i.e. as seen by an inertial
observer at infinity whose proper time is the same as the coordinate ¢ (observer
d;), and u' is the normalization factor, such that g(u,u) = —1, ie. (u')? =
— (g1t + 29015 + 9%gy)- The star’s matter rotates then in the azimuthal direction ¢.

We consider a star rotating differentially, with a prescribed distribution of angu-

lar velocity

Q= Q2?2 =Q(r,0),

an essentially bounded function. However, with the assumptions made (Sec. IT A),
the rotation profile of the fluid cannot be freely chosen, this shows up in the follow-

ing. We consider the equation of hydrostatic equilibrium, T 5=0 (integrability
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conditions of the field equations), particularly, its part orthogonal to the fluid 4-

velocity u, i.e. the Euler equation,
dp=—(e+p)a, (3)
where a is the 4-acceleration of the fluid, a' = V,u, specifically,
a=—dlnu"+ u'u,dQ. (4)

And the integrability condition of Eq. (3), taking into account (vi) of Sec. II A,

e =¢(p), is da = 0; following, from (4), d(u'ug) A dQ2 = 0; in other words, the fluid

angular velocity, €2, is functionally related to the specific angular momentum times
t

u 7

uluy = F(Q). (5)

Nevertheless, as will be seen in Sec. IV B, in the slow rotation approximation, at
first order in the angular velocity, Eq. (5) is no restriction on the rotation profile

Q(r, 0).

III. ANGULAR MOMENTUM DENSITY AND DRAGGING RATE

The total angular momentum of a rotating relativistic star can be defined” from
the variational principle for general relativity —for an isolated system which is not
radiating gravitational waves—, but this is shown’ to coincide with the geometrical
definition —from the asymptotic form of the metric at large space-like distances
from the rotating fluid— (analog to the ADM mass), which for stationary and
axisymmetric (asymptotically flat) spacetimes is given by the Komar integral for

8

the angular momentum,® a surface integral, which, when reformulated using the

Gauss theorem and the Einstein equations, converts into the volume integral over

the interior
J = /ITaﬂnangdv (6)
= [timan = [ 1 e, @)

where T is the energy-momentum tensor of perfect fluid, n is the Killing field corre-
sponding to the axial symmetry, n is the unit time-like and future pointing normal

to the hypersurface of constant ¢, i.e. n = n;dt, with n; > 0, and dv is the proper
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volume element of the surface ¢ = const., i.e. fz dv = Vol, the volume of the body
of the star, Z = interior of the star (¢ = const.). Here g = det(g). The invariantly
defined integrand of this volume integral (6), 7.,°n®ng, is what one would naturally
define as angular momentum density —coinciding with the standard form in special

relativity—, and can be calculated

Taﬁn"‘ ng = ny T¢t
= ny (e +p)uluy  [ug = u'(gp + QUYgy)]
= n¢ (e +p)(u')* (916 + QY0)

1/2
—Git9pp + 91:2¢) /

= (e +p)(u')ggs (2 — A), with n, = H = ( 9o
(8)

where A is the metric function [cf. (2)] such that

9o = —A ggg - 9)

It is remarkable that, since n, > 0, g4¢ > 0, and we are assuming the energy
condition € + p > 0 [(vii) in Sec. IT A], the sign of the angular momentum density
(8) is determined by the sign of the difference Q2 — A.

The metric function A is indeed the angular velocity of a particle which is dragged
along in the gravitational field of the star, as seen from a non-rotating observer at
spatial infinity (9;), so that it has zero angular momentum relative to the axis,
Py = 0,

dp  p® ¢“p ¢ —g do de
T ot ttt:7: < G0+ | 7 ) 90 =0;  — =A.
dt  p* g g 90 dt dt

A is called angular velocity of cumulative dragging (shortly called dragging rate).% 1

One of the purposes of this work is precisely to find appropriate bounds on the

uniformly non-negative distribution of angular velocity, Q = Q(22,23) > 0, of a
slowly differentially rotating star, so that 2— A > 0 holds; from where the positivity
of the angular momentum density (8) follows [Property (c) in Sec. V].

Observe, in the special relativistic limit [ g;, — 0, using coordinates (22, z*) which
go at spatial infinity to the usual flat coordinates, cf. Sec. II B], if the fluid rotates
uniformly with angular velocity € positive (negative), then the angular momentum

density, Eq. (8), is uniformly positive (negative).
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IV. SLOWLY DIFFERENTIALLY ROTATING STARS. FIRST ORDER
PERTURBATIONS

By slow rotation we mean that the absolute value of the angular velocity is much
smaller than the critical value Q. = (M/R?)'/? [taking units ¢ = G = 1], where
M is the total mass of the unperturbed (non-rotating) configuration, and R, its
radius; [Q(z?,23)|/Qerie < 1. Thus, stars which rotate slowly can be studied by
expanding the Einstein field equations for a fully relativistic differentially rotating

star in powers of the dimensionless ratio

|Qmaz ‘ _
chit

LH (10)

where |Qy,q2| is the maximum value of [Q(z?, 2*)| (at the interior of the star).

A. The metric and the energy density and pressure of the

fluid

We assume that the star is slowly rotating, with angular velocity
Q(r,0) = Qa%,2°) = O().

parameter p given, e.g., by (10). Because the star (stationary in time and axially
symmetric) rotates in the ¢ direction [(iv) of Sec. IT A], a time reversal (¢ — —t)
would change the sense of rotation, as well as an inversion in the ¢ direction (¢ —
—¢) would do. As a result, the metric coefficients H, ) and K [in (2)] and the
energy density will not change sign under one of these inversions, whereas A will
do. Therefore, an expansion of H,() and K, as well as of the energy density, ¢,
and, hence, of the pressure, p, in powers of the angular velocity parameter p will
contain only even powers, while an expansion of the dragging rate, A, will have only
odd ones. Hence, considering effects up to second order only the linear corrections
in the dragging rate count. Indeed, the only first order O(u) perturbation brought
about by the rotation is the dragging of the inertial frames; the star is still spherical,
because the “potential functions” which deform the shape of the star are O(u?). We
shall keep here only the effects linear in the angular velocity. At first order, O(u),
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the metric coefficients, and fluid energy density and pressure, are
H = Hy+O0(y’)
Q = Qu+0(1?)
K = K() + O(/J/2)
(11)
€ = &+ O(,LL2)

p = po+ O

but A = w+ O®u?),

where Hy, QQy and K, are the coefficients of the unperturbed (non-rotating) config-
uration, and w denotes the linear (first order) correction in p of the dragging rate

A, so that, from Eq. (9),

Gip = —w (ggpp)o + O(1°) . (12)

1. The (unperturbed) non-rotating configuration

The starting non-rotating equilibrium configuration is described by the spherically
symmetric metric in the Schwarzschild form
ds? = —e’ dt? + 7 dr? 4+ 12 (d6? + sin6 d¢?)
(13)
= —H32dt* + Q)2 dr® + r’K,* (df? +sin®0 d¢?)  [A; = 0],

with A(7), or equivalently, the mass m(r) interior to a given radial coordinate r,

given by

1— 2m(r) —A(r) (14)

and v(r), together with the pressure po(r), and the energy density €o(r), solutions of
the system of equations of general relativistic hydrostatics, which for a non-rotating

configuration are: the equation of hydrostatic equilibrium (Tolman-Oppenheimer-

Volkoff equation),
dpo v _  [eo(r) +po(r)]lm(r) + dmrpo(r)]
dr (r) r2[1 — 2m(r)/r] ’ (15)
the mass equation,
Z—T(r) = dnriey(r), (16)

20



and the source equation for v,

dv 2 dpo
dT (7‘) -

(), (17)

go(r) + po(r) dr r

with the initial boundary conditions

0<po(0) = po. < oo (central pressure),
m(0) = 0, and

v(0) = v, (constant fixed by the asymptotic condition at infinity),

this being the prescription for the interior of the star, that is, inside the fluid, r < R,
R = radius of the surface of the star, determined by po(R) = 0. Furthermore, we

assume py and g; related to each other by a barotropic equation of state,

€0 = 6o(po) ) (18)

po — €o0(po) a bounded function on any closed interval, and satisfying the weak
energy condition

€o+po=>0. (19)

Observe, from Eqgs. (15) and (19), py is a decreasing function from the center, r = 0,
to the star’s surface, r = R; in particular, po > 0 and attains its maximum value py,
at the center.

In the exterior (vacuum) the geometry is described by the same line element

(13), but with the metric function v specified and related to A by

2M
61/(1') — ei)‘(,r) — 1 -

> Vr >R, (20)

where M = m(R) is the star’s total mass.
Notice that this standard form of the non-rotating metric, (13), is the limit of

zero rotation of the general rotating metric in spherical polar coordinates (2),
H—oHy=¢"? Q- Q=e"? K—-Ky=1, A— A =0;

from where the effect of the rotation can be seen as given by the term d¢ — Adt in
the place of de¢.

Note, since at first order in the angular velocity there is still no effect on the
pressure and on the energy density [cf. (11)], conditions (18) and (19) for the starting

non-rotating configuration guarantee (vi) and (vii) of Sec. II A at first order.
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B. Euler equation

It will be important to note that at first order the (-profile is not restricted by
the field equations (through the Euler equation). That shows up in the following.
Consider the first integral of the Euler equation (3), namely,

p(r,0) dp 1
—— + ZIn[(ut) 72
L st e

Q(r,9)
+ / F(Q) dQ = const. , (21)

Qo

(r.0)
where Egs. (4) and (5) have been used, and 2 is a given constant (changing the
value of ©y simply modifies the value of the constant on the right hand side). The
first term in Eq. (21) is a function of the pressure, which is, to this approximation,

a function of r, i.e. O(1) with respect to the angular velocity; on the other hand,
(W) 72 = (gt + 2016 + V2gpp) = H* — K?r*sin’0 (2 — A)> = 0(1 — (Q — A)?),

so the second term is O((2 — A)?) and, hence, O(p?); also, since

K%r?sin®0 (2 — A)
H? — K2r2sin?g (Q — A)2

uttg = (u')?gse(2 — A) = =0(Q-4),

F(Q) = v'ugy = O(Q — A), thus, the third term is O((2 — A)?) as well, and, hence,
O(u?). Consequently, to O(u), the Euler equation reduces to its static (non-rotating)
case, and indeed we have presumably already used it to get the starting unperturbed

solution. Therefore, at this order in the angular velocity, Eq. (5) is no restriction on

Q(r, 0).

C. The angular momentum density

Using the definition of w, linear correction of the dragging rate, via the expansion
of the metric coefficient g5, Eq. (12), and the metric coefficients of the non-rotating

configuration [cf. (13)], we obtain the expansion for the angular momentum density

(8)

T nns = mTy' = ny (e + p)(u') (919 + Qo)
= ()0 (g0 +10)[(—9u)o) "' [~w (gap)o + 2 (gsp)o] + O(1*)
= €"/% (o + po)e " r?sin’f (Q — w) + O(1®)
= (g0 +po) e ?r?sin0 (Q — w) + O(1®) .

(22)
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Thus showing also for the first order rotational perturbation that, since we are
assuming the energy condition €9 + py > 0, the sign of the angular momentum

density (22) to O(u) is determined by the sign of Q — w.

D. The rotational mass-energy

In Ref. 3 Hartle has derived the difference in total mass-energy, M, between a
slowly and differentially rotating relativistic star and a non-rotating star with the

same number of baryons and the same distribution of entropy, namely,

1

Mrot:_/QdJ+O(/1’4)’
2 )z

where dJ is the angular momentum of a fluid element in the star (to first order in

the angular velocity), i.e., from (7),
dJ =T, (—8)"/*dx|ow) ;

taking into account (22) and (13), we obtain an explicit expression for the expansion

of M. in powers of the angular velocity parameter p,

1 R m
M,y = 5/ dr/ df 27 (g0 + po) r* eP /2 sin*0 Q(Q — w) + O(u?) . (23)
0 0

E. The time-angle component of the Einstein equation

The (t¢) field equation component retaining only first order terms in the angular

velocity (second order terms vanish), i.e., from Eq. (1),
R¢t = 87TT¢t + O(/.,L3) ;
takes the form
r? k(r)

0, [r*5(r) 0,w] + Wag[sin:"ﬁ Opw] — 167 r*k(r)[e0(r) + po(r)] [w— Q] =0, (24)

where we have introduced the abbreviations
i) = e~ AM+v(l/2 404 k(r) = eAr)—v(r)]/2 (25)
As outlined in Ref. 2, using the 0-order field equations, (14)-(17), it follows

dmrleo(r) +po(r)] k(r) = —j'(r) (26)
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(where ' = d/dr) which, substituted into Eq. (24), yields

2
B, [rtj (1) O] + - ’{gg) Op[sin®0 dpw] + 4735 () w = 473§ (r) Q(r,0).  (27)
Sin

We write this differential equation for the dragging rate in the abbreviated form

Lw = —0?Q, (28)

with the linear second order partial differential operator L = Ly — U2, where

L = 1 r*i(r) O,w L sin® w an
Low = T4j(T) 87[ _]( ) 8r ] + 7‘2j(7‘) sin3 (99[ 0 89 ] d (29)
: G0 e )

Equation (26) has been used in (30), and the sign follows from the assumed energy
condition (19), the functions j and k [cf. (25)] are always positive. Notice, U2 = 0
in the exterior (Vr € [R, 0] ), where vacuum [gg = py = 0, cf. (iii) in Sec. II A] is

considered.

Specifically, we are only interested in solutions w = w(r, ) of Eq. (28) in [0, oo[x [0, 7],

which satisfy the boundary conditions

w asymptotically flat (lim w = O) , (31)
T—00
w C'-regular on the axis of rotation, (32)

and a matching condition, namely, to be at least a class C' function on the surface

of the star —which is spherical at first order rotational perturbations—
w(.,0) class C' across r = R. (33)

Notice, (31) follows from our star model [condition (ii) in Sec. II A], and it can
be easily seen that (33) follows from the equation itself, provided that w(.,0) and
Q(.,0) are at least essentially bounded (€ L*°) —as has been assumed—, i.e. even
if they have a jump discontinuity.

At the star’s surface, 7 = R, higher regularity of w(.,f) is not guaranteed by
the equation, due to a jump discontinuity of the function ¥? at this point. For
this reason, we shall be considering (in the following section) generalized (€ W'?)

solutions w of Eq. (28) in the whole domain (interior and exterior).
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“Coordinate change”

In order to avoid the coordinate singularity occurring on the axis in polar coordi-
nates (r,6), and wishing instead to have in the differential operator (29) a Lapacian
in some higher dimension, we consider the following “change of coordinates”. Firstly,

we introduce #sotropic cylindrical coordinates in the meridian plane,
(r,0) = (p:=h(r)sin@ , z:=h(r)cosf) € Rf xR, (34)

with the function A satisfying the following ordinary differential equation of first

order with separated coefficients

= (35)

[which makes the coefficient of the crossed derivatives in the operator (29) after the

change (34) to vanish|, and the boundary condition

lim w

7—00 T

—1, (36)

i.e. so that the isotropic radius h(r) =7 approaches r at spatial infinity, because
far away from the source we assume to have euclidean geometry. This leads us to

the definition of the function [having w(r, ) ]

w(p, z) == w(hil(\/p2 +22), arctan(p/z)) , (37)
or inversely, w such that
w(r,8) =w (h(r)sinf, h(r)cosf) .

Secondly, (in the spirit of Ref. 11) we define [with w(p, z)] the 5-lift of w : Rf xR — R

in flat R®, axisymmetric around the zs-axis, by

w @ such that @(x) = @(z1, 22, 23,74, 75) = w(p = (Z?:l )2, z=15)
(38)
and, for every function @ : R> — R, the meridional cut (in direction 1) of &

@+ w such that w(p,2) :=a(p,0,0,0,z).
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For axisymmetric functions these are isometric operations inverse to each other.!!
After considering the change of variable (34) with (37) in the differential operator
Lo (29), we get [remember (25), e* = k/j]

_ A h(r)? 3 pO,w + 2z 0,w
Low= "0 w2 H(r)Pl T 2901
oW 2 {8ppw + 0w + ) d,w+ H(r) h(r) } (39)
where
—A(r) A(r) ,
H(r) = =2 [E6+6e > 7)) (40)

2 h(r)
But, through the 5-lift (38), the flat Laplacian in 5 dimensions of the “lifted” function
w gives exactly
5
AQ = Z@ii&) = Oppw + 0w + %8,,11) , (41)
i=1
first three terms in the bracket of (39). Furthermore, as outlined in Ref. 11, n-
lift and meridional cut (of azisymmetric functions) leave the regularity properties
and the norm invariant; and azisymmetric operations, like multiplication, d; [F =
h(r) = (0> + 22)'/? = (30_, #2)'/?], and scalar product, commute with n-lift and

meridional cut. In particular, in the fourth term in the bracket of (39) the factor

5
pow+z0,w = 0w = sz oW . (42)
i=1
Therefore, substituting (41) and (42) into (39), Eq. (28) in the form Ly® = —¥?(Q—
%) (with Q defined from Q as it was @ from w, and ¥? = e*167[go + po] ) now writes

A p(r)?

Ly®
7“2

{Ad} + H(r)%} = M) {—1671’[80(7‘) + po(r)][Q — d’]} ;

or, equivalently,'?

Aw + H(T)M = —167rr—[50(r) + po(M)][Q — @] . (43)

V. PROPERTIES

With the assumptions made in Sec. IT A for this slowly rotating configuration [start-
ing from a non-rotating one as described in Sec. IV A 1; particularly, satisfying the

energy condition £y + py > 0], and considering only solutions of Eq. (28) satisfying
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the boundary and matching conditions (31), (32), and (33), the following results
hold

Property (a) [Positiveness of the dragging rate]

If the distribution of angular velocity of the fluid is non-negative (and non-trivial),
then the dragging rate (to first order in the fluid angular velocity) is positive every-
where,

0>0, Q0 = w>0.

Proof. We have seen in the former section that, using the coordinate change (34)

and the 5-lift (38), Eq. (28) for w is equivalent to Eq. (43) for @, which reads

5 2 2

L= Ad+ ; H(r)% 8 — 167[eo + po] hé«)fv — —16m[0 + po] h&)?ﬂ . (44)

This equation may be obviously written in divergence form
L& = 0;a” (x)0;00 + a*(x) @] + b (x) %@ + c(x) @ = g(x)

(where repeated indices denote summation over the index), with the coefficients

a’(x) = &; (=1ifi=j, and = 0 otherwise),
a'(x) = 0,
bi(x) = H(r)hﬂ(”;) (Vi,j€{1,...,5)), and (45)
o) = 16rlal) + il (<0
and g(x) = c(x)Q(x). (46)

The isotropic radius 7 = h(r) is Gaussian coordinate with respect to the star’s
surface, 7 = h(R), and, thus, @ is at least class C' across this surface; therefore,
@ € C'(R5). Thus, considering the domain G defined by a ball in R’ centered at

the origin of coordinates x = 0 (7 = 0) and of arbitrary large radius o,
G :=B,(0) CR’, (47)

the function & and its (first) derivatives (continuous in R®) are 2-integrable in G,
ie. @ € Wh?(G) N CYG), and Eq. (43) is satisfied in G in a generalized sense
(cf. Appendix B).
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Notice, whenever > 0, we have, by (46), g < 0 (because ¢ < 0), and, hence,
L < 0, specifically @w is a generalized supersolution relative to the operator L,
n (44), and the domain G, (47). We look at the requirements for a minimum
principle to be applied (Appendix B). The Laplacian operator is obviously strictly
elliptic, and the coefficients (45) are measurable and bounded functions on G, this
shows up in the following: the mapping r — ﬁ is bounded from above and below
everywhere in [0, 00[ (Appendix A); €9 + po is also bounded, since py is bounded
and py — €o(po) is bounded in any closed interval (Sec. IV A 1); consequently,
the coefficient ¢ is bounded (from above and below); the coefficients of the first
derivatives, b, are also bounded (from above and below), because the function H
is bounded everywhere (Appendix A) and since (Vi = 1,...,5) ;2 < Z?:1 r? =
h(r)?, we have [z;/h(r)]> < 1. Thus, all conditions of a minimum principle for
generalized supersolutions relative to the differential operator L and the domain GG
hold, and, as a result of the weak minimum principle (Theorem 1 in Appendix B),

we have

info >inf@~ [®@ = min(®,0)]. (48)

G oG

But, since the radius of the ball G is arbitrary, we can make it sufficiently large
(0 — 00) so that, by asymptotic flatness [limy()—00 @ = 0, from condition (31) and
lim,_, o @ = 1], @ is arbitrary small at 0G, following, from (48), @ > 0. Actually,
the positivity is strict, because if @(xq) = 0 for some xo € G (interior point), then
@(xp) = min @ [since @ > 0], and, by the strong minimum principle (Theorem 2
in Appendix B), @ would be constant in G; in this case, @ = const. =0 in G (i.e.
everywhere); but @ = 0 yields, by Eq. (44), Q = 0, or, equivalently, Q = 0, and we

are assuming that €2 is non-trivial. We conclude then w > 0 everywhere. O

Property (b)

Suppose we perturb the non-rotating configuration (in particular, with a given equa-
tion of state) with two (small) different distributions of angular velocity, Oy and Q,
and integrate Eq. (28) to obtain their respective solutions for the dragging rate, w;

and ws, then

M >8,, UEQD = w>w.
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Proof. This follows form the linearity of Eq. (28) and Property (a). O

We are already in position to get a result about the positiveness of the difference
) —w, and, hence, of the angular momentum density (22). However, in order to first
do this more specific and concrete, we shall make use of a property for the particular

case of rigid rotation (RR), which can be found in Ref. 2, Sec. IV.

Property RR

For the slowly rotating configuration,

w(r,0) = w(r)
Q(r,0) = const. =0 >0 = 0<w(r)<Q in|0,R]
(in [0, R]x[0,7]) w > 0in [0,00[, w' <0 in]0,o00[, w'(0)=0.

Property (c) [Positiveness of the angular momentum density|

For the slowly rotating configuration, with a given equation of state, its dragging

rate w will satisfy

w(r, ) < Q(r,0)

if Q= Q(r,0) (> 0) is bounded in the form
Q=2 < Q@6 < Q,

(in [0, R] x[0, w] ) where €1 is an arbitrary positive constant 0 < Q (< Qerit) (Sec. IV),
and Q = w(0), @ solution of Eq. (28) with Q(r,0) = const. = Q, and with the same
0-order coefficients (same starting non-rotating configuration) as the ones considered
for our slowly rotating configuration, in particular with the same equation of state;

or, more generally, if (with that notation)
w(r) < Q>r,0) < Q.

Notice, w < €2 means that the angular momentum density to first order in the fluid
angular velocity, (22), of this configuration [with the energy condition (19)] is > 0,

vanishing on the azis.
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[Remarkably, the upper bound required on 2 is not restrictive, because for €2 con-

tinuous, (2 is essentially bounded (€ L*°) there, and Q/||Q||o < 1.]

Proof. We give a practical method of construction in two steps:

1st step: Consider Q(r,#) := Q = const. > 0, and solve the corresponding Eq. (28)

for w. Then, by Property RR, the solution satisfies

w(r,0) =w(r), (49)
0<w(r)<Q in0,R], (50)
and @ > 0in [0,00[, @' <0in]0,00[, @W(0)=0. (51)

2nd step: Consider a slowly rotating configuration starting from the same non-

60

rotating configuration (as in the first step) with a fluid angular velocity dis-

tribution €(r, ) such that

w(0)=:Q < Q(r,0) < Q. (52)

Observe, we are always allowed to do this because of (50). Or, more generally,
such that w(r) < Q(r,0) < Q; notice, from (51), w is a (positive) decreasing
function; in particular, @(0) > @(r) > 0, Vr € [0, o0l

From the second inequality in (52), i.e. from Q(r,0) < €, and, since we
have the same starting unperturbed configuration (same 0-oder coefficients)
for these both slowly rotating configurations, it follows, by Property (b), that
their corresponding solutions [of Eq. (28)] satisfy

w(r,0) <w(r), (53)

where we have used (49). On the other hand, the first inequality in (52), and
(51) yield

G(r) <w(0):=Q < Qr,0), (54)

and consequently, from (53) and (54),

w(r,0) < Qr,6).



Remark. Notice, the same argument also assures that, given a slowly rotating con-
figuration with Q(r, #) such that the corresponding dragging rate w(r,8) < Q(r, ),
we shall have the same positivity result [Property (c)] for any slowly rotating config-
uration, starting from the same unperturbed configuration (in particular, with the

same equation of state), with an angular velocity distribution Q(r, #) such that

Q(r,0) :=w(r,0) < Q(r,0) < Qr,0),

because we obtain, form the last inequality and Property (b), w(r,0) < @(r, ), and,
hence, w(r,0) < Q(r, ).

Series expansion. M,

Before we prove next property, we first stress that, since {2 and w transform like

vectors under rotation, Eq. (27) may be separated by expanding them as
Q(r,0) = Q(r,z) ~ ZQl (r)yi(z) and (55)
1=1

w(r,f) = wlrz)~ Y wlr)ul), (56)

with the change of variable 6 — z := cos, and

d
yi(x) := % Ve € [-1,1] (8 € [0,7]), P, = Legendre polynomial of degree [.
(57)
Then the equation for w; takes the form
d 4 - ! 31 2 351
—[r*j(r) wy] + [47r°5'(r) — r2 k(r) \] w, = 47r°5'(r) Qu(r), (58)

dr
with N :=1(l+1)—2, 1 €N, [ #0, and j and & defined in (25).

From conditions (31) and (32) on w, we have the respective boundary conditions on

wi
Tli)r?o wi(r) =0, (59)
w; C'-regular at the origin, (60)

and, from (33), the matching condition

w; class C' across 7= R. (61)
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In Sec. IV D an explicit expression for the expansion of the rotational mass-
energy M, in powers or the angular velocity parameter was obtained (23), or
using Eq. (26),

R T
My = — %/ drr® j'/ dfsin®0 Q(Q — w) + O (). (62)
0 0

Using the series expansions of Q2 and w, (55) and (56), and the fact that the system
{y1}72, is orthogonal in the Hilbert space L2([—1,1]), with respect to the weight
function p(z) := 1 —2?, = € [~1,1], and have norm ||y|| > = 2/(I + 1)/(2] + 1), the

integral over # in (62) may be expressed as the sum

/0d0s1n399(r 0) [2r,0) - _y e 2z+1 R () —w()],  (63)

and, consequently, the rotational mass-energy (62) can be expressed as a sum of

integrals (over r)

Mrot = Z % Ml + O(,U‘4) ) (64)
with M, := F2(r) u(r) [Qu(r) — wi(r)] dr, f2(r) :=—-r*5'(r) >0. (65)

Property (d) [Positivity and upper bound on the rotational energy M,

We consider Eq. (58), which can be written

d

%(7‘% W) =k Nw = —4 (% —w). (66)

The main observation is that, multiplying both sides of Eq. (66) by w;, integrating
from r = 0 to r = oo, and taking into account that f2 = —r®j' =4dnr* (g9 +po) k =

0 Vr > R,

0 d R
/ [d—(r4jwl')wl—r2k)\lwlz] dr:—4/ fPw (Y —w)dr
0 T 0

[note, the integral on the left hand side converges, because an asymptotically flat
(59) solution of Eq. (58) must behave as 7 — oo w; = O(r~'72), and w] = O(r~'73),
[ > 1]; and, after integrating once by parts the first term on the left hand side,

00 R
r4jwl'wl‘go—/ [r4j(wl')2+7“2k)\lwl2] dr:—4/ 2w (S —w) dr.
0 0
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The first term vanishes because w; falls off rapidly enough at » — oo, and the second
term (minus the integral on the left hand side) is non-positive (since j and k are

always positive), therefore

R
/ fPw (4 —w)dr >0, (67)
0

Using a few simple linear algebra calculations [including the Cauchy-Schwarz in-
equality for the bilinear form (u,v); := fOR F2(r)u(r)v(r)dr u,v € C°([0, R])], the
former inequality (67) yields [see Ref. 1, Sec. V] 0 < M, < fOR 29,2 dr, which gives
respective bounds on M [cf. (64)],

o0

<3 g [P ey + 0,

=1

or, writing the sum as integral over 6 [as in (63)],
1 R T
0< M <y [drfw) [ s s’ oF + 0, (69
0 0

where f2 := —r% j' = 47 r* (g9+po)e* /2. Additionally, [\ f2w,2dr < [ f2Q,2dr

also follows from (67), yielding the “mean values” inequality (in full general)

/0 dr 2(r) /O 40 sin®0 [w(r, O)2 < /O dr 12(r) /0 49 sin0 [Q(r, O + O(MZ; é)
[l

VI. CONCLUDING REMARKS

Summing up, it has been seen that relativistic stars rotating slowly and differentially,
with a non-negative (and non-trivial) angular velocity distribution, Q(xe, z3) > 0 (#
0), and satisfying the energy condition € + p > 0, have positive rate of rotational
dragging w > 0 [Property (a) in Sec. V]; and a restriction on the amplitude of
the Q-profile assures also the positivity of the difference {2 — w and, hence, of the
angular momentum density, this later vanishing on the axis, [Property (c)]. We also
observe that, the rotational mass-energy, [from Property (d)] non-negative and (as
expected) “increased” by a (slow) angular velocity of the fluid, 2, is “decreased”

by the dragging effect (over what it would be is this effect were neglected), i.e. is

decreasing with respect to dragging rate, w, despite of [as shown in Property (b)] w
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being an “increasing function” of 2. Property (b) and, hence, also Property (c) are
based on the linearity of the time-angle field equation component to first order in
the fluid angular velocity. In the general differentially rotating case, i.e. outside the
slow rotation limit, the rotation profile €2 cannot be freely chosen, but is restricted
by the integrability condition of the Euler equation, i.e. by Eq. (5). This makes
unlikely a generalization of Property (c) outside the slow rotation limit, other than

in the form given in Ref. 1, Sec. IV B.
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APPENDIX A: Boundedness of some functions in [0,00[> r

The ratio radius - isotropic radius x(r) := 1

h(r)
We have A2
K(r)y e
= Al
h(r) r (A1)
with
2
e =1 2mr) (A2)
r
where
A [T 2d : rel0,R
m(r) = 4 Ao cols)stds rel0.A (43)

M = 4x fORso(s)SQ ds : r€]Roo]
if we denote the stellar radius of the static model by R > 0. As we start with a

(physically) regular (i.e. non-collapsed) static solution, we assume that 2m(r) < r

(for all r €]0, R[), and 2M < R.

Integrating Eq. (A1) and using Eq. (A2) we get

(A4)

h(r) = h(R) exp ( /R ' = im(s)]) |

[Note, the constant h(R) is determined by the asymptotic condition
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see below.| Let

Vr >0. (A5)

g(r) = / &
"~ Jr \/s[s — 2m(s)]

With this definition the solution, (A4), now writes
h(r) = h(R) exp (g(r)) - (A6)

Due to the assumptions made for m, g is obviously a continuous function in the open
interval |0, oco[; consequently, by (A6), h is also a continuous function there, and,

in particular, A(r) cannot be zero in ]0, 00| (unless A(R) = 0, however this would

_r_

7(y is continuous in 10, o]

contradict asymptotic flatness); therefore x : 7 +— x(r) :=
as well. Choose an € €]|0, R| and an €' €|R, col, then x is bounded below and above
in the interval [¢, €] (where the upper and lower bound depend on the selected € and

€', of course). Let us now consider the intervals [0, €] and [¢', oo[ separately:

On [€¢/, 00[: We have

Then
1 1

sls — 2m(s)] sls — 2M]
As in this interval r > R, we find, with Eq. (A5),

[V

<

Vr € [€, 00].

T ds " ds VT +r—2M
n(z) = R?Sg(”:/m/ﬁ:m(\/ﬁim)‘

Inserting it into Eq. (A6), yields (since exp is a monotonically increasing func-

tion)
h(R) B Jr+Vr—2M \’ AR(R)
R r < h(r) = h(R) (\/R-I— *R—QM) < (\/}_%_1_ R—2M>2T

(A7)

@ = (\/E“fM—R#V)—?W’ but, by asymptotic flatness,

2
lim, 00 220 = 1; therefore h(R) = 1 <\/§ + VR = QM) > 0. Thus, h(R) > 0,
and, from Eq. (A7),

Note especially that lim,_,

(\/TB + JR—W)2
4h(R)

R
h(R)

0< <x(r) < <oo Vreld,ool. (A8)
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On [0, €¢]: We have

’ 4
0<m(r) = 47r/ go(5)s?ds < géor?’ =: 02—07“3,
0

where &g := sup,c( g €0(r) > 0. Next choose € > 0, such that 1 — cor* > 0 on
[0,€] [e.g., € :=(24/cy)""]. Then

1 < 1
s[s —2m(s)] — sV1 —cps?

and, since in this interval » < R, we find, with Eq. (A5),

R R s R ds R 1+ V1 —cor?
In{—) = — < —g(r) < ———=In{—)+In .
r , S r SV1—cps? T 1+ V1 —coR?

Again, inserting it into Eq. (A6), yields

w | =

< Vr € [0, €],

h(R) h(R)1+ /1 —coR2? h(R) (1 ++/1—coR?)
r > h(r) > r> r,
R 1++/1—c¢yr? 2R
and, hence,
R 2R
0<—< < < Vr e |0,¢. A9
h(R) — X(T) — h/(R) (1 + /1 — CORQ) o0 r [ 6] ( )

We can therefore conclude that, since Rf = [0, €] U [¢,€'| U [¢, 00 and x is bounded
(from above and below) in each of these subintervals, x is bounded (from above and
below) in Ry . O

The function H

We have o o) /
H(r) _ e [-6+6e 2 +7r1(r)]
2 h(r) ’
and
A2 — [y 2m(r)
T
, _2m(r) + 8mripo(r) 2m(r) 4 8mr2py(r)
rv(r) r —2m(r) 1 — 2m(r)
Thus,
1 2m(r) 2m(r) ) om(r) |
H(r) = 1 1 e 1-—
(r) 2h(r) {6 [ r ] [ r + 8777po(r) r }
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Using the Cauchy-Schwarz inequality in (A10), and the following estimates in r €

[0, €], for some € €]0, R[ small, (see former section in Appendix A)

0<m(r) < %r?’ (Al1)
0< 1—$§1—§ Vz € [0,1] (A12)
0<ecr<h(r)<ecor (A13)
0 < po(r) < po:= sup po(r) Vr>0, (A14)
r€[0,R]
where the constants ¢; (;—o,....2) are all strictly positive (and finite), we get
-1
[H(r)| < hr) ‘ +8rp()(1—2m7(r)) }
< i{ [50 [cor? + 8mpor?] (m)_l}
=: % =:qr, (A15)
cor

with 0 < ¢3, ¢4 < oo. Therefore H is bounded in [0, €]. [Especially, due to Eq. (A15),

H(0) = 0.] And, since, by Eq. (A10), H is also continuous in the open interval |0, co|

and lim,_, o, H(r) = 0 [because lim, hsr) = 1], H is bounded everywhere in [0, ool.

O

APPENDIX B: The minimum principle for generalized supersolutions

Consider in a domain (open and connected set) G C R* (n > 2) the differential

operator with principal part of divergence form, defined by
Lu = 9;lai;()0ju + ai(x) u] + bi(z) Oju + c(z) u

with a;; = aj;. Notice, an operator L of the general form Lu = a;; (:r)aiju+l~)i(x)0,-u+
¢(z)u may be written in divergence form provided its principal coefficients a,; are
differentiable. If furthermore the a;; are constants, then even with coinciding coef-

ficients (a;; = @;j, b; = bi, ¢ = ¢) and a; = 0. Let us assume that

1. L is strictly elliptic in G|, i.e. 4 a constant A > 0 such that A < the minimum

eigenvalue of the principal coefficient matrix [a;;(z)],
Myl? < ay(x)viy; Vy€eR', Vz€G; (B1)
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2. a;j, a;, b;, and ¢ are measurable and bounded functions in G,
la;;| < oo, |ai| <oo, |bi] <00, Je|]<oo inG (i,5€{l,...,n}). (B2)

By definition, for a function » which is only assumed to be weakly differentiable
and such that the functions «;;0;u +a,u and b;0;u+cu,t=1,...,n are locally
integrable [in particular, for u belonging to the Sobolev space WH2(G)], wu is said
to satisfy Lu = g in G in a generalized (or weak) sense (g also a locally integrable

function in @) if it satisfies
L(u,p;G) = /{(aijaju + a;u)0;p — (b;0;u + cu)pltdx
G

= —/gsod:r, V>0 ¢eCl(G)
G
[where C!(G) is the set of functions in C'(G) with compact support in GJ.

Notice, u is generalized supersolution relative to a differential operator L and the
domain G (i.e. satisfies Lu < 0 in G in a generalized sense) if it satisfies £(u, ¢; G) >
0, Vo >0 ¢ e CHQ).

Theorem 1: (weak minimum principle)
Let u € WH2(G), G a bounded domain, satisfy Lu < 0 in G in a generalized sense
with

/(cgo —a'0ip)dr <0, Yo>0 ¢eClG). (B3)
e
and conditions (B1) and (B2) above,
then
miny > minu~ [4~ = min(u,0)].
G oG

(A proof of this theorem can be found in Ref. 13, Theorem 8.1.)

Theorem 2: (strong minimum principle)

Let uw € WY(G) N C%QG) satisfy Lu < 0 in G in a generalized sense, with the
operator L satisfying conditions (B1), (B2), and (B3),

then u cannot achieve a non-positive minimum in the interior of G, unless u =

const.

(A proof of this theorem can be found in Ref. 13, Theorem 8.19.) Note that the weak

minimum principle, Theorem 1, for C°(G) supersolutions is a direct consequence.
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Resultado no publicado previamente.

Qualitative behavior of the dragging
potential in slowly and differentially

rotating stars

I. SERIES EXPANSIONS OF w AND

As outlined in Ref. 1 [Paper II}, the field equation component (t¢) to first order

in the angular velocity writes [with the abbreviations (25) in that paper]

o[ ,., 0wl 7r?k(r)o [., 0w 5 dj
B [7‘ _](T)E:| + 530 59 [P 0% + 4r d—(r) w
dj
— 3_YJ
= 4r o (r) Q(r,0) . (1)

which can be seen as a differential equation for the dragging rate w = w(r, ), with
the fluid angular velocity 2 = Q(r, #) in the inhomogeneity term.

Remarkably, due to the assumed energy condition,

&
d_Z“ = —dmrr(eo+po)k <0 inl0,R[ (interior), (2)

dj/dr = 0 in [R, oo (exterior), where vacuum (g9 = py = 0) is considered [hence,
Eq. (1) is homogeneous there]. Furthermore, j = 1 in the exterior [cf. (25) and (20)
in Paper II].

To solve Eq. (1) by separation of variables, we use an expansion in vector spher-

ical harmonics. The associated homogeneous equation satisfied by an w,

o, 0w r2k(r) 0 [ . 5, 0w 30dJ _
p [7" j(T)E(T,Q)] + =g o0 |50 0%(7",0) +4r %(r)w(r,O) =0, (3)

is separable by the ansatz w(r,0) = R(r) Y (), and yields
a radial equation, [r4j(r)R'(r)]l +[47%5'(r) = r?k(r) Al R(r) = 0, (4)
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and an angular equation, [sin®6 Y (0)] + Asin®0 Y(0) =0, (5)

where A € R and the notation for the derivatives d/dr = ' and d/df = has been
adopted.
We first solve Eq. (5), and obtain that foreach A= X\ =1(l+1)—2, €N, [ #0
there is a regular (at least, class C') solution, namely, with the coordinate change
0 — = := cosf, and denoting P, = Legendre polynomial of degree [,

dP,

Yi(0) =w(2) = —— Vee[-1,1] (6 €[0,7]). (6)

Consequently, w(r,0) = w(r,z) = > 2, Ri(r) yi(x), with R; solution of the radial
equation (4) for A\ = )\;, and y; given by? (6), is solution of the homogeneous equation
(3).

The system {y;}$°, is orthogonal in the Hilbert space?
1
2 —Ir. 2
L([-1,1]) ={f : [-1,1] — R, measurable //_1 p(z)[f(z)]*dr < +o0}

—with the scalar product (f, g), := f_ll p(z)f(z)g(x)dr Vf,g € L([-1,1]), which
defines the norm || f||, := ({f, f>p)1/2— with respect to the weight function p(x) :=
1 —2?, x € [-1,1], and the polynomials 3 have norm [|y|,> = 2I(l +1)/(2] + 1).
[These polynomials are indeed directly related to a class of the so-called Jacobi
polynomials. See Appendix B, where convergence of these series is discussed.|

Let w(r, @) be a solution of the complete equation (1) such that, for each r > 0

fixed, it can be expressed
w(r, ) =w(r,z) ~ Zwl(r) yi(z), where y; is given by (6).
=1

We next try to expand our term of inhomogeneity in Eq. (1) as well such that, for

each r > 0 fixed,

Q(r,0) =Q(r,z) ~ ZQl (r)yi(x), where y; is given by (6) and

=1

) = — /(1—3:2)Q(r,ac)yl(x)d$. (1)

iz S

Then each w; should satisfy the radial equation

[r4i(r) wi] + [47%5'(r) = k(r) M) w = 47%5(r) Qu(r) . (8)
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Accordingly, the series expansion
w(r, ) = w(r,z) ~ Y w(r)ulz), (9)
=1

where y; is given by (6) and w; satisfies (8), is (formal) solution of the complete
equation (1) in r € [0,00[, z € [-1,1].
Specifically, we are only interested in solutions w of Eq. (1) which, as functions

of r, are
a. w(., r) asymptotically flat (at  — oo) and

b. w(.,z) regular at the origin r = 0,

(boundary conditions)
apart from

c. w(.,z) at least class C! on the surface of the star (spherical at first order
rotational perturbations), that is, C! across r = R (r, Gaussian coordinate
with respect to the star’s surface);

(a matching condition)

Hence, in particular, we shall consider only solutions w; of Eq. (8) in [0, co[ with the

boundary (resp. matching) conditions
a’. w; asymptotically flat,

b’. w; regular at » = 0, and

Y

¢’. w; a class C! function across r = R.

Notice, condition (a) [and (a’)] follows from our star model, (b) [and (b’)] follows
from the regularity of Q(.,z) at 7 = 0 and the boundedness of w(., z) (cf. Appendix
A), and (c) [and (¢’)] is already satisfied, provided that the dragging rate, w, and
the fluid angular velocity, €2, as functions of r, are (at least) totally bounded al-
most everywhere —i.e. even if it has a jump discontinuity—, Q(.,z) € L*([0, R])
[cf. Appendix A, Property (a)].

Remarkably, since j' < 0 in [0, R[ [cf. Eq. (2)] and j' = 0 in [R,+o0], the

coefficient of w; in Eq. (8) is non-positive, i.e.
hy(r) = 47%'(r) = k(r) , <0 Vr>0. (10)
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The first observation is
Proposition 1

With the boundary conditions (a’) and (b’), and the matching condition (c’),
U=0<x w=0 foreach 1 €N, I #0.

Proof. From Eq. (8), obviously, w;, =0 = Q; = 0.
Suppose now €2, = 0.

In the INTERIOR,
integrating once Eq. (8), that is [with the notation in (10)],

[r*i(r) wi(r)] + h(r) wi(r) =0 YO0<r<R, (11)

from the axis on, we obtain

ri(r) w(r) = _/7‘ h(7) w(f)df YO0<r<R, ie.

0

(r) = — Thl(f)wf T r
wy(r) = /07"4]'(7”) (7)) di VO<r<R. (12)

On the other hand, the general solution of [the linear homogeneous second order

ordinary differential] equation (11) will be

wi(r) = Cll 911(7") + Cl2 9l2(7°) )

where g;' and g¢;% are the two fundamental solutions, which, by an ansatz of the

form 7%, can be seen to have the following behavior on the axis*?

1
1 2 -1
asr—0, g (T)er2 and g¢,°(r) ~ 77",

1

with constant coefficients ¢;* and ¢,?, the first of which, by regularity at the origin

[condition (b’) above], vanishes, ¢, = 0, thus showing that the general solution of

Eq. (11) has the form

1

wi(r) = ¢ g(r), with g(r) ~r"™' as r =0 and ¢ = const. (13)

In the EXTERIOR,
from Eq. (8), taking into account j(r) =1 Vr > R, one also has

[7‘4 wl'(r)]' +h(r) w(r) =0 Vr >R, here h(r)=—r*k(r) X\, (14)



which, integrated once from the star’s surface on, yields

r'wy(r) = R'wj(R) — / h(r) wi(r) dF  VYr >R, ie.
R

wl(r) = (?)4%'(3) _ / T h;(f)wl(r) dr. V> R (15)

R
Again, the general solution of Eq. (14) has the form

wi(r) =" fi'(r)+0> f,%(r), (16)

where b;' and b,? are integrating constants and f,* and f,? are the two fundamental

solutions with the asymptotic behavior®

1 _
as r — oo, fll(r)wm and f,%(r) ~ 7t

from where, by asymptotic flatness [condition (a’) above], b,? = 0.

Let us now suppose ¢; # 0 [in Eq. (13)], for instance, ¢; > 0 [and assume, naturally,
gi(r) > 0 at least for small 7], then w;, > 0 in [0, R] and, by (12), w; > 0 in [0, R];
in particular, w;(R) > 0 and wj(R) > 0, which, since, by continuity, w;(r) > 0 for
r in the neighborhood (on the right) of R, by formula (15) on the exterior and
by the C'-matching condition (¢’), it follows w; > 0 also in |R, oo[, and therefore
w; > 0 everywhere, that is, the global solution wj is a strictly increasing function.
Analogously, for the case ¢; < 0, w; is a strictly decreasing function. But that strict
monotonicity, starting from w;(r) — 0 as » — 0 for | > 2 [wi(r) — const. # 0,
in general| is in contradiction to the asymptotic flatness. Hence, we have ¢, = 0
(trivial interior solution) and in particular, w;(R) = wj(R) = 0, which, by the C*-
matching, are initial conditions for the exterior problem, but these are satisfied by
the trivial exterior solution (b,' = b = 0), and, by the uniqueness theorem of

ordinary differential equations, this is the only solution, w; = 0. [l

Remark 1. Since the Legendre polynomial of degree 1 is Pi(z) = z, then y; = 1,

and the first term of the series expansions of {2 and w is free of angular part,

o0 o0

Qr,z) ~ Qi (r) + ZQl(T) w(z), w(rz)~wl(r)+ sz(r) u(z).

=2 =2

Consequently, from the previous result (Proposition 1), it follows
Qlr,z) =Q(r) = Q(r) & wnz)=w(r)=w(r).
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Notice, that shows in particular, that in the case of rigid rotation [Q(r,z) =
const.], included in this particular differential rotation case, we have w(r,z) = w(r),
in accordance with the results in Ref. 4. We shall consider here the most general

case of slow differential rotation, and we shall therefore suppose 2, # 0 for some

lo > 2, i.e. 09/0z % 0.

II. QUALITATIVE BEHAVIOR OF THE RADIAL PART OF w.
COMPARISON WITH THE RADIAL PART OF (2

An interior solution of Eq. (8), for each [ € N [ # 0, can be written as
w(r)=z,"(r)+c alr) YO<r<R, (17)

where z,” is a particular solution, the one corresponding to a given €Y, and ¢;g; is the
general solution, g; solution of the associated homogeneous equation, and, hence, by
Eq. (12), a strictly monotonic function, with g;(r) ~ r*"! as r — 0, and ¢; = const.

The regularity of the particular solution z,” is determined by the regularity of the
right hand side of Eq. (8), term of inhomogeneity, specifically of ;. In particular,
if , € C°(]0, R[) and w; = =,” is essentially bounded, w, € L*([0, o0[), then w, =
z,F € C?(]0,00\{R}) N C'(NR) [N&, a neighborhood of r = R] [cf. Appendix A,
Property (a)]. Obviously, g, is analytical, like the exterior solution, f;!, since both
are solutions of an ordinary differential equation with analytic coefficient functions.
We shall suppose Q(.,z) € C* at r = 0 for some v < 1, leading to w(.,z) € C?7
at r = 0, cf. Appendix A, Property (b). [Notice, continuity of Q(.,z) at r = 0,
considering its series expansion, yields in particular €;(0) =0 VI > 2, what holds if,
for instance, its behavior at the origin is Q;(r) ~ ™ with m; > 1,asr — 0, VI > 2;
then, assuming that z,” (and its first and second derivatives) goes near r = 0 like
some power of 7, z,”(r) ~ rf!, for small r, it follows, via Eq. (8), P, = m; + 2, that
is, z,P(r) ~ r™*2 with m; > 1, as r — 0, VI > 2, from where w;(0) =0 VI > 2;
but then Eq. (8) guarantees w;(0) =0 VI > 1 as well, in consistency with w(.,z) at

least class C? at 7 = 0.]

Once ) is given, for each | > 1 with €, # 0 (given) a particular solution of
Eq. (8), wy = z;” # 0, is determined; g¢; is a fundamental solution [in (17)], and,
from the C'-matching on the surface of the star » = R [condition (c’)], namely,

Wi (R)|int = wi(R)|ext and wj(R)|int = w](R)|ext, for each constant ¢;, the coefficients
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of the exterior solution b,' and b,®> are determined. Remarkably, we can uniquely
choose ¢; such that b,> = 0, that is, such that the so considered interior solution
wy, Eq. (17), satisfying regularity at the origin, (b’), matches, (¢’), to an exterior
solution w; asymptotically flat, (a’), i.e. with the fall off behavior w;(r) ~ b,lr='=2

as r — oo. Namely, from b,2 = 0 it follows

/ ’
- [
hta—fta

Note, the denominator of (18) does not vanish, which can be seen as follows: by

(18)

r=R

Eq. (12) for w; = g¢;, homogeneous interior solution of Eq. (8), assuming g;(r) >

-1

0 for small r [remember, g,(r) ~ =" as r — 0], it follows g; > 0 (g, strictly

increasing function), in particular gj(R) > 0. Also, by Eq. (15) for w; = f; !, exterior

=2 as r — oo] take without

(homogeneous) solution of Eq. (8), [recall, f;'(r) ~ r~
restriction f;'(r) > 0 for large r, it follows f,'(r) > 0 for r in the neighborhood
on the right of R as well, then f,'(R) < 0 (and hence f,' < 0 everywhere in
[R,o0]), for if f,''(R) > 0, then f,'(r) > 0 in particular for large r, contradicting
the asymptotic flatness. We have then ¢/(R) > 0 and f,*(R) < 0, hence the
denominator of (18) does not vanish, and furthermore, in the quotient given by the

C'-matching at r = R,

wi (R) wi(R) YR
= = =0 = const., 19
)|y~ B~ TR 1
we therefore have o < 0, and, from the relation
wi(R) =0 w(R) [o<0], (20)

if w;(R) > = or < 0 (which depends on the sign of €, see below), then wj(R) < =

or > (, respectively.

Remarkably, from Eq. (8), w; will satisfy the following differential inequality
[with the notation in (10)], provided that €2, > 0,

[r*5(r) Wz’]l + hi(r) w=47%'(r) 4 <0,

that is, dividing by r%j(r) (> 0), w; will satisfy, in particular in the interval ]0, R],
where w; € C°(]0, R[), the inequality

Wy +b(r) w) + hy(r) w <0, (21)
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where it has been denoted

4 j'(r) : h(r) _45'(r) k() A

W=y M S EE T T e

(22)

Both b and h; are bounded functions on every closed subinterval of ]0, R[, and
remarkably ; < 0 (we had seen h; < 0). Thus a (strong) minimum principle (see,
e.g., Theorem 3 in Ref. 7, p. 6, for the function —u) applies to the differential
inequality (21) and, as a result, w; cannot attain a non-positive minimum at an
interior point of [0, R], unless w; = const. This and the matching at r = R to
a monotonic asymptotically flat exterior solution allows us to prove the following
results. Let us first study the case | > 2 [recall, we have assumed 2, # 0 for some

lo > 2].

Proposition 2 (VI > 2)

If >0 (in [0,R]), € C°]0,R[), O #0

then w; > 0 in |0, co[. In particular, w;(R) > 0 and w;(R) < 0

[wi(0) = Q(0) =0 VI > 2, from continuity at v = 0 of w(.,z) and Q(.,z);% hence,
w; > 0 in [0, 00]].

Proof. Let us first prove w;(R) > 0. Suppose w;(R) < 0. Then, by Eq. (20), wj(R) >
0. But from w;(0) = 0 and w;(R) < 0 with w;(R) > 0 it follows that 3 €]0, R|
such that w;(r;) < w(R) < 0 and w(r;) < w(0) = 0, contradicting the minimum
principle mentioned above. That shows that w;(R) > 0, which, together with w;(0) =
0, yields, via the same minimum principle, w; > 0 in [0, R], but also, by the matching
condition, w; > 0 everywhere in [0, oo[. Furthermore, w;(R) > 0 yields, via Eq. (20),
w;(R) < 0. But the case w;(R) = w;(R) = 0 is not possible for a non-trivial solution
w; Z 0, corresponding to an §2; #Z 0 (see Proposition 1), because it has been seen
w; > 0 in particular in [0, R], and if w;(R) = 0, that means w;(R) is a minimum, and
again by the minimum principle applied to inequality (21) (see, e.g., Theorem 4 in
Ref. 7, p. 7), it follows w;(R) < 0, which contradicts w;(R) = 0. Hence, w;(R) > 0
[and w;(R) < 0], following, from that minimum principle, w; > 0 in ]0,00[ (see

Corollary of Theorem 4 in Ref. 7, p. 7, for the function —u). U

Remark 2. For §; > 0 (in [0, R]), it has been seen (Proposition 2) w; > 0 in 0, oo].
Observe, since w;(R) > 0 and wj(R) < 0, having [from continuity of w(.,z) on the

axis] wy(0) = 0 (I > 2), we essentially have that w, reaches an maximum at an
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=2 as r — o0. See Fig. 1. Notice,

interior point (at least one) and falls off as r~
since b(r) is not bounded below at 7 = 0, 0 = w;(0) = w;(0) = min w; yields no

contradiction.

Q)]

FIG. 1. w; for I =2, 3 and 4, starting from a non-rotating configuration of incompressible (g9 =
const.) perfect fluid (interior Schwarzschild solution) with total mass M = 0.5 (g ~ 0.1492) and

radius R = 2, for ;(r) = (r/4)'"! 0<r<R.

The function difference w; — §2; can be studied with a similar reasoning, because
from Eq. (8) for w;, divided by j (> 0), it follows
4 4'(r) 45(r) k() M 45'(r)
w"+<—+. w | = - wy =~ 23
) \Fie T ime) T et @

which can be written —we shall assume that ] exists almost everywhere and is

locally bounded— in the form

(= )" + (2 4+ 258 (@ — ) + (9 - X)) (0 - )
— (4 i) 1 k() N

so that, for §2; satisfying
4 j'(r) k(r) A
Q' — | - Y+ ——<=0u>0 24
! <r+j(r) IO )
w = w; —  will satisfy the differential inequality
4 j'(r) 45'(r) _ k(r) A
u”+<—+. up+ | == — u >0,
T\ T ) T T ) i) )

i.e., using the notation in (22),

w4+ b(r) up + hy(r) u, > 0. (25)
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As already remarked, the functions b and h; are bounded on every closed subinterval
of )0, R[, and k; < 0. This enables us to apply a (strong) maximum principle (see,
e.g., Theorem 3 in Ref. 7, p. 6) to inequality (25), which is satisfied by u; in par-
ticular in the interval ]0, R[, where u; € C°(]0, R[) [assuming ©; € C°(]0, R[)], and
consequently, u; cannot attain a non-negative maximum at an interior point of [0, R},
unless u; = const., that is, w; = O + const., actually [since w;(0) = ,;(0), VI > 2]
w; = ; our requirements however will exclude this case. That gives the following

result

Proposition 3 (VI > 2)
For Q; # 0 satisfying

a. Q€ C0,R[), 3Q almost everywhere and is locally bounded,

B. =0 (in]0,R]),

7.
o _ é jl(r) ! Mﬁ m an
0 (r+j(r))szl+j(r)r2szlzo< 0,R]), and
5. QU(R) >0,

0 < wi(r) < (r) holds Vr €]0,R] [w(0) =Q,(0) =0 VI > 2, from continuity at
r=0].

Proof. First notice, by conditions («) and (), Proposition 2 applies, and we have
in particular wj(R) < 0, which together with condition (9), yields uj(R) = w;(R) —
Q(R) < 0. Condition () is (24), hence u; € C°(]0, R[) satisfies inequality (25),
to which, by («), the above mentioned maximum principle applies. Let us first
prove u;(R) < 0. We have seen uj(R) < 0 and u;(0) = w;(0) — €,(0) = 0. Hence, if
u;(R) > 0, then the function u; would reach a positive maximum at an interior point,
contradicting the maximum principle. Therefore u;(R) < 0, which, together with
u(0) = 0, gives, via the same maximum principle, u; < 0 in ]0, R], i.e. 0 < w; < €
in 10, R]. O

Remark 8. Notice, the requirements in Proposition 3 yield also directly €;(R) > 0.
In fact, by () and (), a maximum principle (for —€2;) applies to the differential
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inequality () of Proposition 3 in [0, R]. From (f) in particular ©;(R) > 0, but
if (R) = 0, then for ; > 0 [condition(S)] (R) would be a minimum, and
(R) < 0, but this contradicts condition (¢). It follows then ;(R) > 0. See Fig. 2.

FIG. 2. Q3(r) = (r/4)? 0 <r < R and the corresponding solution w3, starting from a non-
rotating configuration of incompressible perfect fluid with total mass M = 0.5 and radius R = 2

(1=3in Fig. 1)

For I =1, however, w;(0) # 0 (€(0) # 0) yields no contradiction to the con-

tinuity of w(.,z) [of Q(.,z)], because, as already stressed, the Legendre polynomial

— Py

= .t =1, so that the first term in the series

of degree 1 is P;(z) = x, and thus y;
expansion (9) of w(r, x) [of Q(r, )] (for each r fixed) does not depend on the angular
coordinate z (cf. Remark 1 above), in contrast to the [ > 2 case, where we have the
z-dependence.

We shall consider in the following results Q; > 0, €; # 0, Q; € C°(]0, R]). Let
us suppose, without loss of generality, that 0 < Q;(0) < oo, or Q(r) ~ const. > 0
[Q(r) = O(1)] as 7 — 0, then, just from the boundedness of w; and € it follows
[cf. Appendix A, Property (a)] wi(r) = O(r) as r — 0, specially, wj(0) = 0. In
particular, assuming that w; = z;¥ (and its first and second derivatives) goes near
r = 0 like some power of r, by Eq. (8), it follows z,”(r) ~ 72 as r — 0. On the

other hand, g;, an homogeneous interior solution of that equation for [ = 1, behaves

g1(r) ~ const. as 7 — 0, therefore near the star’s center, (17) for [ = 1,
wi(r) =z(r)+ci g1(r) ~ const.r? +¢; const. asr — 0,

and the dominant term for small 7 in w; is ¢;g;. The homogeneous solution, g,
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satisfies Eq. (11) for [ = 1 (notice A\; = 0), and therefore

gi(r) = —4 /Or A g (F)dr,

rt ()

from where, taking (without restriction) g¢;(0) > 0, it follows g} > 0 (g1 strictly
increasing), and g; > 0. wy will satisfy Eq. (8) for [ = 1, with €; # 0 in the interior,
ie.

[r*5(r) w'l(r)}’ +47r%'(r) wi(r) =47%'(r) Q(r) VOL<r<R, (26)

or in its integral form

"(r)y = — rjl(f)ﬁw F) — 7)| dF T
)= [ L0T b -l vo<r<m )

T

Let us recall, this interior solution with the appropriate uniquely chosen constant
c; matches to an asymptotically flat exterior (homogeneous, and therefore strictly

monotonic) solution

1
wi(r) = b11f11(7“) ~ bllr_3 where bl1 = const. as r — oo,

satisfying \
R
wi(r) = (;) wi(R) Vr>R, (28)

i.e. Eq. (15) for [ =1, where we have A\; = 0, and thus h; = 0. Actually the exterior
equation, Eq. (14), for [ = 1 can be integrated exactly; that is, we integrate Eq. (28)
once more, and, taking into account the condition of asymptotic flatness (b2 = 0),
we get

w(r) = (?)Swl(m =b,'f,"(r) Vr>R, (29)

take, e.g., fil(r) =73, b = R*wi(R).

Proposition 4 (I =1)
If Q1 >0 (in [0, R]), Q€ C°(J0,R[), Q%0
then wy > 0 in [0, o0,

wy > 0 4n |0, 00[. In particular, wi(R) > 0 and wi(R) < 0.

Proof. For Q; > 0, w; will satisfy inequality (21) for | = 1 [where A (r) < 0], to which
(as already remarked above Proposition 2) a (strong) minimum principle applies.
Let us first see w;(R) > 0. Suppose w;(R) < 0, then, by Eq. (20), wi(R) > 0. If

wi(0) > wq(R), then w; would attain an non-positive minimum at an interior point
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(at least one), contradicting the mentioned minimum principle. In the other case,
w1(0) < wi(R) (< 0), it follows wyi(r) < 0 Vr € [0, R] —for if 37, € ]0, R[ such
that wq(r1) > 0, then w; would reach a negative minimum at an interior point,
again in contradiction to the minimum principle—, but w; < 0 in [0, R] leads,
via Eq. (27), to wj < 0 in [0, R], which is not possible for w;(0) < w;(R) < 0.
Therefore wi(R) > 0. This yields directly, by Eq. (29), w1 > 0 in the exterior,
wi(r) = (R/r)3wi(R) > 0 Vr > R. But also wi(r) > 0 Vr € [0, R, because if
37 € [0, R[ such that wy(7) < 0 [F # R, since wi(R) > 0], then 37, € [0, R[ such
that wi(r,) = min w; < 0, and the only possibility which the minimum principle
would allow is 7, = 0 so that w;(0) < 0 and, by continuity, w;(r) < 0 for small
r; but, since ; > 0, Eq. (27) would yield wi(r) < 0 for small r, w; decreasing
and negative function for small r, which with w;(R) > 0, would reach a negative
minimum at an interior point, contradicting again the minimum principle. Thus,
also w; > 01in [0, R]. But if w;(R) =0 [w](R) =0, by Eq. (20)], then w;(R) would
be a minimum of w; (> 0) in particular in [0, R], following (see, e.g., Theorem 4 in
Ref. 7, p. 7) wi(R) < 0, in contradiction to w}(R) = 0. Therefore w;(R) > 0, and, by
Eq. (29), w; > 01in [R, 0o|. Also in the interior, since wy(0) > 0 and wy(R) > 0, the
minimum principle (see, e.g., Corollary of Theorem 4 in Ref. 7, p. 7) yields w; > 0
in ]0, R]. Hence, w; > 0 in ]0, oo]. O

Proposition 5 (I = 1)
If Q1 (r) = const. = Oy > 0,
then 0 < wy(r) < Qy in [0, R] and w, > 0 in [0,00[, w| <0 in ]0, 00, ! (0) = 0.

Proof. Notice, in this case, Q isa particular solution of Eq. (26), so that the interior

solution can be written
wi(r) =0 +c1g:(r), with g(r) ~const. =1 as r — 0, and ¢; = const.

Remember, from the matching and boundary conditions ¢; was given by (18) for
| = 1, yielding in the present case with z,(r) = Q; = const. > 0 [and assuming,
without loss of generality, g1 > 0, f,' > 0 so that ¢, > 0, f,* < 0; see above
at the beginning of Sec. II], it follows ¢; < 0. The first observation is that, since
c1g1(r) <0, wi(r) < €. Furthermore, w!(r) = c1g}(r) < 0 Vr €]0, R]; from where
w is a strictly decreasing function in ]0, R]. [This can be seen also directly from

Eq. (27).] But, using Proposition 4, w; > 0 in |0, R], and, hence, in [0, R]. Also,
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by the matching at »r = R with w{(R) < 0 [w1(R) > 0], Eq. (28) yields w} < 0 in
[R, 0o[. Thus, w; > 0 everywhere in [0, 00[, and w] < 0 in ]0,00[ [w}(0) = 0], falling
off for large r as r 3, Eq. (29). See Fig. 3. O

Remark 5. Actually, in the particular case of rigid rotation [Q(r,#) = const. = €],
w; = 0, VI > 2 [see Remark 1], and w(r,0) = w(r) = wi(r) = Q + c101(r), with
g1(r) ~ const. = 1 as r — 0, and ¢; = const., solution of Eq. (8) for | = 1.
With the boundary and matching conditions, a non-trivial solution w; can be seen
to be strictly monotonic —namely, (assuming g; > 0) if Q@ > 0 (¢; < 0), then
0 < w(r) = wi(r) < €, and w is strictly decreasing, and if @ < 0 (¢; > 0), then
Q < w(r) = wi(r) < 0, and w is strictly increasing—, with the fall off behavior
w(r) = wi(r) ~ b'r 2 as r — oo. The solution has the form w(r) = 2Jr 3 Vr > R
le.g., f1'(r) :=773, b’ := 2J], where the constant J can be identified with the total
angular momentum of the star. The main observation is |w(r)| < ||, the function
lw(r)| (dragging rate) taking its largest value at the center of the star. In accordance

with results in Ref. 4.

Q,

FIG. 3. w; for O = const. = 1 [= (r/4)!~! for | = 1], starting from a non-rotating configuration

of incompressible perfect fluid with total mass M = 0.5 and radius R = 2.

ITI. COMPARING SUMS OF SERIES. POSITIVENESS OF Q —w

In view of the results obtained in Sec. II, particularly Propositons 3 and 5, one hopes
to extend them, making use of some results on series expansions, and conlclude some
positivenes result of the sum of the series difference, {2 — w. In our attept to do it,

we even conjecture the result below.

Notice, assuming (., z) € C°([0, R[) and furthermore class C%" (for some v < 1)
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at r = 0, it follows in particular (cf. Appendix A)
w(.,z) € C*([0,00[\{R}) N C"(Nr) [N, a neighborhood of r = R]. (30)

We have assumed w(., z) asymptotically flat, moreover, [by condition (viii) in Sec. IT A
of Paper II] bounded almost everywhere, w(.,z) € L*([0, 00[). Hence, all of condi-
tions (a), (b), and (c) in Sec. I are satisfied. As a function of the angular coordinate

T, w is assumed

w(r,.) € L2([-1,1))nCY([-1,1]), p(z):=1—2*. (31)

With the assumptions made (for this slowly rotating configuration), if furthermore

the distribution of angular velocity of the fluid, Q = Q(r,z) [z = cosb), satisfies

. Q(.,z) € C%[0, R]), and class C* (for some vy < 1) at r =0,

= ‘?;)T?(.,x) almost everywhere and is locally bounded,

n Q) € (-1,1)NCY([~1,1])  [p(z) :=1—22],

= ?,27? and is bounded with respect to x in [—1,1],
. fil p(z) L (r, z)dz = 0,
w. Q(0,z) >0,
V. ‘g—g Z 0, and

vi. all even order (> 2) derivatives (in x) of the functions

a(r,), SR, and -%@«,.)-(%?{Q) g—f(r,.)+1—g%9(r,.)

are non-negative,

then w(r,z) < Q(r,z) Vr € [0,R] Vz € [-1,1], and, consequently, the angular
momentum density (to first order in the fluid angular velocity) is > 0, vanishing on

the axis.

Remark 1.1. 1f 3 ‘3272 bounded in [~1,1] [in ()], then in particular 22 € Lip;_y 10

Vo < 1, i.e. it satisfies Vz,z € [—1,1] |%(x) - %(iﬂ < Klz—z|° V6 <1 and

84



for some constant K. Indeed, instead of this condition [in (11)], it suffices to assume

% ¢ Lipp_, 410, with 6 > 1/2.

Remark 1.2. Requirement (vi) is satisfied, for instance, if the even order (> 2)
derivatives (in z) of these functions vanish up to a certain order, and the non-
null ones are positive (see example in Sec. IV). Furthermore, the unperturbed non-
rotating configuration satisfies j'(r)/j(r) < 0, and if the coefficient \(r) is an in-
creasing function (what happens for instance for an incompressible perfect fluid),
then k(r)/j(r) = exp[A(r)] is also increasing, starting from £(0)/j(0) = 1, yielding
k(r)/j(r) > 1. In such a case it will be sufficient to consider

0%Q) 4 00 10
—w(ﬁ D)= ;5(7“, )+ ﬁQ(ﬁ y

instead of the last function in (vi) for these inequalities.

Remark 1.3. Notice, we are not necessarily restricted to the case of uniformly
positive rotation, Q(r,z) > 0. However, requirements (11) and (1v) say that we are

perturbing around a first Fourier-Jacobi coefficient Q;(r) = const.> 0

Using some results on Jacobi-Fourier series, which are actually the series expan-
sions we have, (cf. Appendixes B and C) the attepts to proof the former conjecture
have not yet been successfull. Instead, we see the following example, where the
rotation profile of a slowly rotating configuration is constructed so that the angular

momentum density is positive.

IV. AN EXAMPLE

Consider, as fluid angular velocity of the configuration, a function of the form
Q(r,z) = a(r) + c(r)z?, (32)

where the radial functions a and c are in C°([0, R|), such that Ja” and ¢" almost
everywhere and are locally bounded [condition (1) of Sec. III]. ¢ # 0 (v) will have
to satisfy furthermore ¢(0) = ¢(0) = 0. Obviously, (32) as a function of z, Q(r,.),

satisfies (11). The determinant conditions will be however the differential inequalities
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of (v1), which for (32) reduce to

c(r) >0 (33)
d(R)>0 (34)
4 4'(r) 10 k(r)
c(r ~|—(—+, d(r) — =—=2¢(r) <0. 35
0+ (;+507) 20 e (3)
But we can always choose ¢ as the solution of the homogeneous equation
4 10
"+~ —c=0,
r r

non-divergent at r = 0, that is, ¢(r) = Cyr?, with C; = const., where the multiplying
constant must be positive for (33) and (34) to be also satisfied. Notice, since the
non-rotating configuration satisfies j'/j < 0 and [for A(r) increasing function, what
happens in particular for incompressible perfect fluid] £/j > 1, it follows

() + (% + 9]((:))) ¢(r) - i—g%c(r) < () + () = —gelr) =0,
and (35) holds. We then have

c(r) = Cir?, with C; > 0. (36)

Conditions (u1) and (1v) will now determine the function a in (32). In this case

[ o ey = ) + 1000,
hence condition (m) yields a'(r) + 1/5¢/(r) = 0, that is,
a(r) = —%c(r) + Cy, with Cy = const.
But, since ¢(0) = 0, Q(0,z) = a(0) = Cy, and (1v) gives Cy > 0. We then have
a(r) = —01%72 +Cy, with Cy,Cy >0, (37)
and from (32), (36) and (37), it follows

C
Q(r,z) =Cy — 317“2 + Cyr?z?, with C1,Cy > 0. (38)

Note, if the constants satisfy C,/C; > R?/5, then also a(r) >0 [0 < r < R] and,
since ¢(r) > 0, we have Q(r,z) > 0.

We consider a non-rotating (unperturbed) configuration of incompressible per-

fect fluid with total mass M = 0.5 and radius R =2 [note, R/(2M) =2 > 8/9],
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to which we shall give a small angular velocity in the sense of Sec. IV in Paper II.
The critical value of angular velocity —which would deform the star so greatly, be-
coming close to the shedding mass at its equator— is in this case Qi = (M/R3?)Y/? =

0.25. Hence, we must choose the constants C; and C5 in (38) such that
MaX(r,z)efo,”]x[~1,1]| 27, )| K Qerig = 0.25..

Provided that C; and C, are also such that Cy/C; > R?/5 = 4/5 [which is satisfied
in particular if Cy > C4], Q(r, ) > 0 follows, and thus,

4. 5 4 2
max(r,w)e[oyR]x[,1,1]9(7“, x) = max,e[(),R]Q(r, :]:1) = ma.XTe[o,R] (CQ + 3017‘ ) = 02 + 501R

16
= Cy+ —C;.
5
We choose then the constants C; and Cy such that
16 .
02 + 301 <K 0.25 with CQ Z 01 .

Hence, taking for instance C; = 1/125 and Cy = 1/100, the star would rotate slowly
(in the sense of Sec. IV in Paper II) with (positive) angular velocity

1 I, I 55
—_—— — — 00R=2 —1.1§. 39
00 625T +1257"x, r € |0, |, ze€l[-1,1] (39)

Qr,z) =

In order to get (numerically) the corresponding dragging velocity function w(r, x),
solution of Eq. (1), we first notice that (39) can be written as series expansion in the
orthogonal system of the derivatives of Legendre polynomials {y;}{2, = {%};’il, in

this case with only two terms, namely,

Q(r,z) = U (r) + Q(r)ys(z), r€[0,R=2], z€]-1,1],

where y3(z) = ?(m) = 2(51'2 — 1), remember y;(z) =1,
x
with
Qu(r) == const. =Cy= —  and  Qu(r) == —Cir® = —¢?
1\7) = const. = 2—100 all 3\T) ‘= 15 1T —1875T .

The corresponding dragging rate function (in the interior of the fluid)

w(r,z) = wi(r) + ws(r)ys(z), rel0,R=2], ze€[-1,1],
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with w; and w; the (numerical) solutions of the radial equation (8) for these ; and

3, respectively, in the inhomogeneity term, satisfies (as expected, cf. Sec. III)
w(r,z) <Qr,z), re[0,R=2], ze€]-1,1],

These functions are plotted in Figs. 4.
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FIG. 4.1. Q(r,0) = 1/100 — 1/62572 + 1/12572cos? 0, r € [0, R = 2] and 6 € [0, 7], given by
(39) (z = cosh). [Note, each value of Q and w is plotted over a half-sphere, “euclidean” picture of
the coordinate-range, representing a meridional cut across the rotating fluid ball. Remember, the
geometry in this slowly rotating approximation, i.e. to first order in the angular velocity, is still

the geometry of the static (global) solution.]

r sin(1/2—-0)

o 1 2

1.5

r cos(m/2—0) ' 2
FIG. 4.2. Angular velocity of cumulative dragging (to first order in the angular velocity), w,
corresponding to a perturbed configuration whose angular velocity distribution is the one in Fig.
4.1, starting from a non-rotating spherical configuration of incompressible perfect fluid (interior

Schwarzschild solution) with total mass M = 0.5 and radius R = 2.
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r cos(m/2—0)
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FIG. 4.3. Q and w plotted together.

r sin(m/2—0
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r cos(n/2—9).

FIG. 4.4. Function difference Q2 — w.

APPENDIX A: Regularity
Let us consider a function w; satisfying
[r4i(r) wi(r)]" + [47°5'(r) — P k(r)Mwn(r) = 47%'(r) Qu(r)  Vr € [0,00[, (A1)

where \y =1(1+1)—2, 1 €N, I #0, j(r) =exp[-1/2(A(r) +v(r))] and k(r) =
exp[1/2 (A(r) — v(r))], A and v coeflicients of the starting non-rotating spherical
metric described in Paper ITI (Remember j < 0 in [0, R], provided that the energy
condition €y + py > 0 holds, and j' = 0 in [R, 0o]). The first result is

89



Property (a):

if Q€ C%0,R]) (w € L™([0,00])), (A2)
then  w; € C*(]0,00\{R}) N C*(N&) [N&, a neighborhood of r = R].

We first write Eq. (Al) in integral form,

Jo [4735' (7Y (F) — (4735 (F) — P2k (F)Ay) wi (7)) dF
rj(r)

wy(r) = Vr e [0,00[, (A3)

or, integrating once more, we could write w; as solution of a fixed-point equation.
Consider first a generalized solution of that equation, satisfying the right boundary

conditions at r — oo and at r = 0, and essentially bounded,
w; € L=([0, 00f) - (A4)

Let us denote the integrand in (A3) by

L(7) = 475" (F)u(r) — [47°5'(7) = Pk (F) Nwi(7) (A5)

so that (A3) now writes

" I(7)dr
' fo !
=J0 D7 . A
wy (1) 0 Vr € [0, 00[ (A6)
We have assumed (A4). If furthermore
€ L=([0, RJ) (A7)

[which follows in particular for €; € C°(]0, R[)], then (A5) is a bounded function
almost everywhere, I; € L*°([0,00]), (j and k are continuous functions). Therefore
the map r — h(r) := [] [;(F)dF is continuous, even Lipschitz-continuous. Hence,
the numerator on the right hand side of (A6) is a Lipschitz-continuous function
in [0,00[. The function j in the denominator of (A6) is also Lipschitz-continuous
[because its derivative, j, has only a jump discontinuity at the star’s surface r = R;
outside and inside it is even C*°]. Hence, the right hand side of (A6), and, therefore,
w) (VI > 1), is at least a class C%! function everywhere except at r = 0 for [ > 2 [due
to the factor r* in the denominator, and the term 72k(7) = O(7%), k(r) = O(1), as
r — 0 in the numerator of (A6) if [ > 2|. But this implies that w; (VI > 1) is at

least a class C1! function everywhere except at r = 0 for [ > 2.
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We shall study the regularity at » = 0 later on. So far, in the case [ = 1, where
Ai—1 vanishes, and hence also the term with 72k(7), there is no problem at r = 0,
because in this case the integrand, (A5), can be written in the form 7* multiplied
by a bounded function, since j'(7) = O(F) as 7 — 0. Namely, since j'(7) < ¢;7 for

some constant ¢y, then, from (A5) for [ =1,
\(7)| < 4ei7 (Q1(F) — wi (7)) = 7* x [a bounded function] as r — 0,

so that, | [; I;(F)dr| < const.7®, and, therefore, since j(r) > 1, it follows from (A6)
lwi(r)] < const.'7, i.e. wi(r) = O(F), as r — 0, in particular, | € C%' at r = 0
[specially it follows w/(0) = 0], and thus w; € CY! at r = 0. Hence, w; is at least a

class C™! function everywhere in [0, ool.

We had already seen that, in particular, w; € C*'(]0,00[) (VI > 1). At the star’s
surface r = R higher regularity of w; is not possible, due to the jump discontinuity
of the functions j' and & at this point. But in the interior without the origin and in
the exterior we can go further:

In the interior, if (as in Propositions 2 to 4)
€ C°(J0, R]) (A8)

then, in particular, €2; is bounded in every compact subinterval, i.e. (A7) is satisfied,
and, with the assumption made that w; is bounded, (A4), we found before that w; is
a class Cb! function. Particularly, w; € C°(]0, R[), which, together with (A8), yields
[cf. (AB)] I; € C°(]0, R]), following, by the second fundamental theorem of calculus,
that the integral in the numerator of (A6) is in C''(]0, R]), on the other hand, also
the function 7, in the denominator, is in particular class C' in [0, R] (interior), and,

therefore, w) is in C*(]0, R[), yielding
wp € 02(]0, RD .

In the exterior (where j' = 0) actually, starting from an (almost everywhere)
bounded function, assumption (A4), and arguing as before recursively, we even find,
by induction, w; € C*°(]R, oc]), as is known for a solution of an ordinary differential

equation with analytic coefficient functions.

So far, for Q; € C°(J0, R]) and w; € L*(]0,0[), we have found in particular
w; € C*(]0,00\{R}) N C*(NRg) [Nk, a neighborhood of r = R].

Let us then study the regularity at » = 0. We make this in general for w = w(r, 6),
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solution of the complete equation (r € [0,00[, 6 € [0,7]) [Eq. (8) divided by 7],

10 [, 0w k(r)y 0] . 5,0w 4 dj
ﬁa[ ](T)E} nm[” 5| T o
_4dj
= 2Zmawe.  (a9)

We shall prove
Property (b):

if  Q,0) € C™ atr =0, for somey <1 [w(.,0)€L>® atr=0],
then w(,0) €C® atr=0. (A10)

We first consider the following change of coordinates, by first introducing cylin-

drical coordinates in the meridian plane,
(r,0) — (p:=rsinf , z:=rcosb),
and second, making a “5-lift” of w to R®. To this end, we identify
X = (z1, T2, 73,24, T5) € R°

with

Ts

Z?:1 xi2

and 6 = 0(x) = arccos (A11)

in the original spherical coordinates.
Hence, we define with w(r,#) the “lifted” function @ in flat R®, axisymmetric
around the zs-axis, by
- - Ts
0(x) = w(x1, T2, T3, T4, T5) = W (r(x),arccos <@>> .
Now, the flat Laplacian in 5 dimensions of & gives

5
4 1
AG = Z@f(b = Pw+ ;arw + T—Qagw +

i=1

3cot 6
7.2

8060
7 wl+ Sin Wi .
4T T 2 i 30 0 0

92



Since, as 7 — 0, j(r) = jo +j1r* + ... and k(r) = ko + kir® + ..., with jo = ko =
7(0) > 0, and the coefficient of w and  in Eq. (A9) is
14

4. . _— . : :
i (2717 + 3jor® + ...) = 8j1 + 12jor + ..., where j; <0,

(r) = ”
we can thus read Eq. (A9) in a neighborhood of » = 0 as a Poisson-equation in a
5-dimensional flat space, and @& will satisfy

Ad(x) = ZH{3x) 5] (o> 0. 1 <0). (A12)
Therefore, by the regularity of Poisson’s integral,” provided that the functions w
and 2 are in L* (in particular in a neighborhood of r = 0), it follows that @, and
therefore, through the change of coordinates (A11), also w, is at r = 0 at least a class
C' function for some y < 1, with respect to all their arguments. In particular, (for
each 0 fixed) at least w(.,#) € C"" in a neighborhood of r = 0 (for some v < 1).
Notice, from the continuity at r = 0, its Fourier-Jacobi coefficients (series expansion
in z = cos #) must satisfy
wi(0)=0 VI>2,

as has been used in Propositions 2 and 3. w;(0) = 0 VI > 1 follows directly from
Eq. (A3).) Further, assuming (as in Sec. III) that Q(.,0) is at least a class C% (for

some 7y < 1) in a neighborhood of » = 0 [from where
Q0)=0 VIi>2],

we have in particular Q(.,0) —w(.,#) € C%7 in a neighborhood of r = 0, and, again,
by the regularity of the Poisson integral applied to (A12), @, and hence w, is at
r = 0 a class C?7 with respect to all their arguments; particularly, w(.,0) € C*7 in

a neighborhood of r = 0 (for some vy < 1).

APPENDIX B: Jacobi-Fourier expansion of ) — w

The series expansions in the orthogonal system [in L2([—1,1])] of the derivatives

P

1121, can be transformed into series

of Legendre polynomials (6), {y;}i2; = {
expansions in Jacobi polynomials with parameters a = 8 =1, {5}, = {P{""}2,.

Both systems are indeed equal up to a factor, namely,”
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Accordingly, for each r > 0 fixed, we consider the series expansions

- Py —
0 ~ ST (Y2 — Q. (ryP(D B1
(r, z) lz:; () e (z) ; (r)Py" (z), (B1)
o) ~ S um D@ = 3 wrP ), (B2)
=1 d$ n=0
with Q, = nTHQnH and @, = n?—i_?wnﬂ (B3)
A = Ans1 = n(n + 3) (n=0,1,...).

The orthogonal system of Jacobi polynomials,? {’Pl(l’l)}loio is closed, and hence

complete, on the interval | —1, 1 with respect to continuous functions in L2([-1,1]),
p(x) := 1 — 22, Therefore, convergence in the mean, that is, in the norm |.||, in
L2([-1,1]) of the Jacobi-Fourier series (B1) and (B2) follows from the particular
requirement Q(r,.), w(r,.) € L2([-1,1]) N C°([-1,1]) [as required in Sec. III]; but
then also the function difference Q(r,.) — w(r,.) € L3([-1,1]) N C°([-1,1]), and, as

a consequence, its Jacobi-Fourier expansion,

Qr,z) —w(re) ~ Y [Q(r) =0 (n)]PD (@),

n=0

will converge also (at least) in the mean.

Furthermore,requiring (as in Sec. III) Q(r,.) € C'([-1,1]) and 3 ‘?9272 bounded
(with respect to ), guarantees that the series (B1) converges uniformly.!! On
the other hand, each function @, (for each n = 0,1,...) is solution of a second
order differential equation, Eq. (8), with inhomogeneity term €2,, and therefore its
regularity is two orders higher than the regularity of (,, that will assure that its
series expansion (B2) converges even absolutely. [By Lemma 3 in Appendix C, if
Q, = O((n +1)7?), then @,(Q,) = O((n + 1)7P~2). Therefore, since Q,, = O((n +
1)7%/2), we have @, (Q,) = O((n+1)~7/?). With this, in particular, since on the other
hand [PS"Y(z)] < PED(1) = n+ 1, it follows |@,(r)] ‘737(11’1)(:10) = O(n +1)75/2),

yielding a series (B2) which converges absolutely].

Notice, assuming equatorial symmetry, i.e. symmetry about the plane z =0 (=
7/2), w = w(r,x) is an even function in x; on the other hand, and by the symmetry
relation (parity) P (—z) = (=1)"P{*"(z), it follows that when n is even (odd),

PP is an even (odd) function in z ['P,(f"ﬁ ) contains only even (odd) powers of
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x]; thus, looking at the series expansion (B2) of the function w(r,.) even in z, the
odd coefficients should vanish, w, = 0 Vn > 0 n odd, and, by Proposition 1,
0, =0 Vn >0 nodd, as well, that is, by the expansion (B1), €2 is an even function

in z. Hence, we have the even series expansions

T) = Z ng(T)’PQ(}C’l) () and w(r,z)= ngk(r)’PQ(,lc’l)(x) , yielding
k=0 k=0

o

Qr,z) —w(r,z) = Y [Qu(r) — @ (NP (@) (B4)

converging at least uniformly. Actually, since P{" = 91 =1, we have

Qr,z) = Q)+ Qu(r)Py Y (@) = Qolr)+Qe(r)PE (@) +Qu(r)PE (2) +

w(r,z) = —|—Zw2k PLV (@) = @o(r)+@a(r)PS) (z) +@a(r) P (2) +. ..
and therefore
Qr,z) —w(r,z) = Q(r) — oo(r) + Z[ng — Wor(r )]'Pé,lc 1)( )

= Qu(r) — @olr) + [QQ(T)—MQ(T)]P;”(@+... (B5)

Notice, condition g—g # 0 guarantees (), Z 0 for some ny > 2.

APPENDIX C: Results on Jacobi-Fourier series

Lemma 1 [positivity of Jacobi-Fourier sums]

N plae)
Z%ZO Va>0 Veel-1,1] YN>0 (NeN).

n=0
[cf. Eq. (4.10.18) in Ref. 12, p. 97, or Ref. 13|

In particular, for o =1,

N (1,1)
ZP’(LT)(J’)EO Vz €]—1,1 VN >0,
n=0 P”l ’ (1)

whose even part is also non-negative, that is, due to the parity relation pbY (—x) =
(=1)"Pi (=),

N (1,1)
ZP?(’;f)(x) >0 holds Vz € [-1,1] VN >0,
o P2 (1)
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or, since PV (1) = n 41,

N

(1,1)
ZMZO Ve e [-1,1] VN >0. (C1)
p 2k +1

Lemma 2 [Abel transformation (summation by parts)]

If
N
Y a>0 VN >0 (NeN) (C2)
k=0
and 0<bNSbN_1S...§b1§b0, (03)
then
N
D aby > 0. (C4)
k=0
Lemma 3

Consider the Jacobi-Fourier expansion of a function, f(z) =3 ", cnPLP) (x),

if f € CY([~1,1]), then ¢, = O((n+ 1)71/279).

In words, there is a correspondence between smoothness of a function and order
of magnitude of its Jacobi-Fourier coefficients; they fall off faster for smoother
functions. Specifically, it follows from the last part of Exercise 91 on p. 391 of
Ref. 12 that the Jacobi coefficients of a bounded function are O((n + 1)~/2). This
estimate also holds for L2 functions via the Parseval relation."* Via the differ-
entiation formula (4.21.7) in Ref. 12, it follows that if the function is g-times
continuously differentiable, then the estimate O((n + 1)%/279) holds.'® In our
case, since Q(r,.) € C*([—1,1]) [requirement (1) in Sec. III], its Jacobi coefficients
Q) =2, =0(n+ 1)) =0((n+1)73/2).

Lemma 4

The Fourier-Jacobi coefficients, c,, of an absolutely monotonic function [i.e. of a

function [ satisfying Z;—,’:(:E) > 0 Vn > 0/ are non-negative numbers.'

Moreover,
in the particular case where f is an even function (of z) it is enough to require

I (x) >0 Vk > 0 (all even order derivatives > 0).'7

dr2k

Notice, condition (1) in Sec. III guarantees («) of Proposition 3 [via a theorem on
parameter-integrals applied to Eq. (7)]; also, by continuity at r = 0 [cf. (1), Sec. III],
©2,(0) =0 VI>2and, by (30), w;(0) =0 VI > 2 as well.
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It has been seen, by equatorial symmetry, (r,.) (and its derivatives with respect
to r) are all even functions of x. Therefore, by Lemma 4, requirement (vi) in Sec. III
guarantees (3), () and (§) of Proposition 3 (Sec. II). [Note, \; > A\3 = 10 V] > 3
(An > Ay = 10 Vn > 2), and, since k(r)/j(r) > 0 and Q; > 0, we have

k() o 10K
T2j(r)Ql > sz(r)Ql Vi > 3].

On the other hand, (m) yields Qy(r) = 0, i.e. Qo(r) = const. and with (1v),
Qo(r) = const. > 0 [Q(r) = const. > 0], so that Proposition 5 also applies [notice,
since 2,(0) = 0 Vn > 2, we have (0,z) = 4(0)]. Hence, Propositions 3 and 5
apply, and it follows [with notation (B3)]

0 < @p(r) < Qu(r) Vre€lo,R], @,(0)=9,(0)=0, V even n>2,
0 < @o(r) < Qo(r) Vr €[0,R]; which can also be written

0< (I)Qk(?“) < ng(’l“) Vr G]O,R] Vk > 0,
0 < wp(0) < Q(0),
and @219(0) = ng(O) =0 Vk 2 1,

in particular, from the first relation,

QQ]C - (ng(ng) >0 in ]O,R] Vk Z 0.
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Capitulo 3

Propiedades de dos soluciones

interiores exactas

Dado que nuestra intuicién estd basada en la teoria newtoniana y puede ser enganosa
cuando se aplica a fenémenos relativistas, para conseguir una buena comprension
conceptual de ciertos efectos en relatividad general —como son los efectos de la
rotacién en fluidos autogravitantes completamente relativistas— puede ser de gran
ayuda el estudio e interpretacion de soluciones particulares fisicamente relevantes
de las ecuaciones de campo de Einstein, y la comparacion de resultados con los

conocidos en el dominio newtoniano

Propiedades geométricas

Resultados newtonianos de los cuales todavia no existe un equivalente relativis-
ta son la existencia de un plano ecuatorial (simetria de reflexién) para un fluido
autogravitante y en rotacién estacionaria, y la simetria esférica en el caso estati-
co, ademas de resultados clasicos sobre la geometria de la superficie frontera, como
son una relacion entre velocidad de rotacién y oblaticidad versus prolaticidad, o la
“convexidad vertical”: en el caso newtoniano es bien sabido [14] que las figuras en
equilibrio de un fluido en rotacién permanente deben ser convexas verticalmente, es-
to es, cualquier linea recta paralela al eje de rotacién corta a la superficie del fluido
como maximo en dos puntos; en relatividad general no es conocido ningtn resultado
equivalente. Ademads, en el marco newtoniano, al tener en el espacio una métrica
plana (euclidea), las propiedades de convexidad del cuerpo contenido en una deter-
minada superficie pueden obtenerse a partir de las propiedades de la curvatura de

la superficie [14—16]; sin embargo, en el caso de tener una métrica riemanniana (en
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relatividad general) esto no es directamente asi. Para demostrarlo de forma explicita
y para una métrica determinada de manera dindmica por las ecuaciones de Einstein,
un ejemplo interesante es la solucién de Kramer [8] representando de forma exacta
el campo gravitatorio interior debido a un cuerpo de fluido perfecto autogravitante

y axisimétrico, en rotacion rigida y estacionaria.

OBJETIVOS

Para las soluciones exactas interiores de Wahlquist [7] y de Kramer pretendemos
derivar varias propiedades geométricas relacionadas con la forma y la convexidad
del cuerpo de fluido y su variacién con la rotacion, mediante un estudio analitico y
numeérico de la superficie frontera de presion nula. En especial, para la solucion de
Kramer —en la que la superficie frontera del fluido tiene una expresién simple en
términos de funciones elementales— incluyendo el cédlculo de la curvatura gaussiana
y un anélisis detallado de las geodésicas de la métrica 3-dimensional espacial (tiempo

constante).

RESULTADOS Y DISCUSION

Considerando la 2-superficie borde del fluido (superficie de presién nula a un
tiempo constante) de la solucién de Kramer —superficie que, de los célculos de la
integral de Gauss-Bonet, se demuestra topolégicamente esférica— vemos primera-
mente que, para valores altos de rotacién de la fuente, esta 2-superficie borde del
fluido desarrolla una curvatura gaussiana negativa cerca del ecuador, y que la lon-
gitud de los circulos paralelos sobre la superficie cerca del ecuador decrecen con el
aumento de la rotacion del fluido. Desde un punto de vista euclideo, esta situacion
se interpretaria como no-convexidad vertical; sin embargo, haciendo un andlisis mas
detallado del cuerpo 3-dimensional acotado por la 2-superficie, obtenemos el andlo-
go de propiedades newtonianas; en concreto, el comportamiento de las geodésicas
espaciales dentro del fluido —y, en particular, la introduccién de una familia de
geodésicas que generaliza el concepto de lineas rectas paralelas al eje de rotacién en
el caso newtoniano— indica que si se dan las propiedades newtonianas en lo referen-
te a “convexidad”, demostrando el andlogo al resultado newtoniano de Lichtenstein

en esta solucién particular, Publicacién III [17].

Ademis, si medimos distancias fisicas (geodésicas) desde el centro del fluido a la

superficie frontera, podemos ver que la configuracion de Wahlquist es “prolata” para
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la mayoria de los valores admisibles de los parametros, y en estos casos la prolaticidad
aumenta con velocidades de rotacién crecientes, Publicacién IV [18]; mientras que
la configuracién de Kramer es “oblata” y tal oblaticidad aumenta incrementando
la rotacién, Publicacién V [19]; lo cual indica cierta correlacién entre dindmica y

geometria.

Propiedades cinematicas y dindmicas

Una forma de estudiar las propiedades de un espacio-tiempo (o métrica) dado es
estudiar las propiedades de movimiento de particulas prueba en el seno del mismo;
en el caso en el que la fuente del espacio-tiempo (estacionario y axisimétrico) es un
fluido, unas particulas privilegiadas son las del fluido, por lo que un estudio de las

propiedades cinematicas y dindmicas de las mismas resulta de particular interés.

Vemos en la literatura que se han utilizado diferentes métodos con el fin de ana-
lizar la cinemdtica y la dindmica de particulas en rotacién alrededor de una fuente
de gravedad muy compacta. En estos estudios siempre surgen algunos efectos ‘anti-
intuitivos’ desde un punto de vista newtoniano. Aunque estos efectos ya se ven en
su forma mds simple en el caso estatico (sin rotacién) —por ejemplo, en el espacio-
tiempo de Schwarzschild un aumento de la velocidad angular de la particula causa
mas atraccién que repulsion por debajo del radio de la drbita fotonica espacialmente
circular—, cuando se estudian espacio-tiempos en rotacién estacionaria y axisimétri-
cos, se aniade el efecto relativista “dragging” o arrastre, producido por la rotaciéon

de la fuente.

Se han desarrollado dos principales formalismos dirigidos hacia la interpretacién
del movimiento relativista en términos de fuerzas newtonianas [20, 21], con sendas
particiones de la 4-aceleracién de la particula (4-fuerza sobre la particula, con signo
opuesto) en componentes gravitatoria, centrifuga, Coriolis, etc. En el primero, la
“fuerza gravitatoria” es independiente de la velocidad de la particula, de forma que
el efecto ‘anémalo’, ya presente en el caso estatico, se expresa como un cambio de
signo en la “fuerza centrifuga” cerca de la fuente. En este caso, esttico, exacta-
mente en las orbitas fotonicas la fuerza centrifuga pasa de ser dirigida hacia afuera
(‘normal’) a ser dirigida hacia adentro (‘anémalo’). Cuando el formalismo es exten-
dido a espacio-tiempos estacionarios no-estaticos y axisimétricos [20], una “fuerza

de Coriolis” esta también presente, haciendo que el cambio de la fuerza centrifuga
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ocurra no en las érbitas foténicas. En el otro formalismo [21] la “fuerza gravitato-
ria” contiene el factor relativista de Lorentz, de forma que el efecto ‘anémalo’ es
adscrito al hecho de que la fuerza gravitatoria (atractiva) supera a todas las otras
fuerzas en juego. En estos términos se han analizado soluciones exactas exteriores
de las ecuaciones de campo estacionarias no-estiticas y axisimétricas (p. ej., Kerr),
o aproximaciones de rotacion lenta, pero nunca antes soluciones exactas interiores

con estas simetrias.

OBJETIVOS

Se pretende estudiar las propiedades cinematicas y dindmicas de las soluciones
de fluido exactas de Wahlquist y de Kramer —especialmente de la soluciéon de Wahl-
quist, que realmente es una clase de soluciones, incluyendo la de Kramer como un
limite, y que ademés tiene muchas ventajas, como la existencia de soluciones con
presién positiva y decreciente (desde el centro hacia el borde) o la existencia de un
limite estatico (solucién de Whittaker). Este estudio cinemético y dindmico se quiere

hacer desde varios puntos de vista.

Primeramente, ver de qué forma depende la aceleracion de una particula prueba
en movimiento circular ecuatorial (en el plano del ecuador de la solucién) de su
velocidad angular, a valores extremos de ésta, y su relacion con la érbita foténica
que aparece en la solucién (en ambas soluciones) a velocidades altas de rotacién de

la fuente.

En segundo lugar, aplicar los dos principales formalismos de “fuerzas inerciales”
en relatividad general, anteriormente mencionados, a particulas en el plano ecuato-
rial de la solucion considerada; asi podremos someter a prueba estas definiciones de
fuerzas inerciales en situaciones extremas interiores de rotaciéon rapida y gravedad

fuerte, donde los efectos relativistas deberian ser mas importantes.

Finalmente, presentar un método para separar “fuerzas rotacionales” y “gravita-
torias” sobre particulas del fluido en el ecuador, siguiendo una analogia con el analisis
clasico newtoniano: basandonos en la ecuacion de Euler, introducir un “peso” de las
columnas polar y ecuatorial en relatividad general, y obtener dos posibilidades para
la definicién de fuerza rotacional, analizando ambas en relacién con la velocidad de

rotacion y la forma de la configuracion de fluido, Publicacién V.

RESULTADOS Y DISCUSION
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En ambas configuraciones (Wahlquist y Kramer) se obtiene que, a velocidades
de rotacion del fluido suficientemente altas, para las que ya aparece una O6rbita
foténica en el plano ecuatorial del fluido, si consideramos particulas prueba que
circulan en el plano ecuatorial, la dependencia de la aceleracion de la particula de su
velocidad angular, a valores extremos de la misma, estd determinada por la posicion
de la particula relativa a la érbita foténica (como tedéricamente se argumentaba
en [22]). En concreto, el comportamiento es ‘intuitivo’ para radios menores que el
de dicha érbita, mientras que para valores mayores, las particulas co-rotantes se
comportan ‘intuitivamente’ y las particulas contra-rotantes, ‘anti-intuitivamente’,

Publicacion IV.

Los citados formalismos de “fuerzas inerciales” —descomposicion de aceleracién
(- fuerza)—, aplicados a particulas del fluido en 6rbita circular en el plano del ecuador
de las soluciones, muestran (cuando la rotacién de la configuracién es suficientemente
rapida) un cambio de signo en la “fuerza centrifuga” para particulas circulando en
un radio mayor a un cierto radio critico, de forma que aumentando la velocidad de
rotacién del fluido tal radio critico disminuye, esto es, la érbita critica se acerca al
centro; asi, a mayor rotacién corresponde una regién mayor del fluido con esta ‘rara’

propiedad de, p. ej., “fuerza centrifuga” dirigida hacia adentro, Publicacién IV.

Y comparando distintos formalismos concluimos que la forma en la que el efecto
‘andmalo’ o no-newtoniano se deja ver en términos de fuerzas newtonianas depende
de la particién ad hoc hecha. De hecho, con la nueva particién (en analogia con la
descripcién newtoniana) propuesta en Publicacién V| p. €j., para una particula en
el ecuador de la solucién de Kramer, la parte de la fuerza (por definicién) dirigida
hacia adentro —que es siempre menor que la parte dirigida hacia afuera— crece
més rapidamente conforme aumenta la rotacién, de forma que la fuerza total (hacia
afuera) se hace menor a mayor rotacién del fluido (de Kramer); por otra parte, a

mayor rotacion el fluido se hace méas oblato.

Esto sugiere una cierta correlacién entre dindmica y geometria de la configuracion
(como se espera desde un punto de vista newtoniano); pero, desde luego, no podemos
decir esto directamente, entre otras cosas, porque en el formalismo descrito (en
Publicacién V) estamos suponiendo que el campo gravitatorio en el “polo” no es

afectado por la rotacién, lo cual no es cierto en relatividad general.
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En cualquier caso, interesa medir una magnitud de la aceleracion o fuerza total
sobre la particula en el ecuador, que, por cierto, es una propiedad de frontera, mien-
tras que la elipticidad de la configuracién de fluido, medida con distancias geodésicas

desde el centro, es una propiedad interior.

Analizando la fuerza o aceleraciéon total de las particulas de fluido en el ecuador
de la solucién de Wahlquist (configuracién con presién positiva y decreciente desde
el centro, en un régimen de rotacién general) —exactamente, el valor absoluto de la
fuerza total proyectada sobre el vector unitario de distancia geodésica ecuatorial—,
obtenemos que la fuerza total (hacia adentro) se hace mayor cuando la velocidad de
rotacion del fluido crece; sin embargo, por otra parte el objeto se hace mas prolato
(la distancia geodésica desde el centro disminuye) conforme aumenta la rotacién,

condicién no-newtoniana [23].

Podemos pues concluir que, contrariamente a lo que ocurre en el caso newtonia-
no, en el que las propiedades de frontera (fuerza total en el ecuador, convexidad,
etc.) estan relacionadas con las interiores [14—16], en relatividad general no pode-
mos extrapolar directamente propiedades geométricas y dindmicas de la frontera al

interior de la configuracion de fluido.
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Publicacién II1. Class. Quantum Grav. 1999, Vol. 16, pp. 3823-3834.

On some geometric features of the
Kramer interior solution for a rotating
perfect fluid

F.J. Chinea and M.J. Pareja
Dept. de Fisica Teorica II, Ciencias Fisicas,
Universidad Complutense de Madrid
E-28040 Madrid, Spain
Abstract

Geometric features (including convexity properties) of an exact interior grav-
itational field due to a self-gravitating axisymmetric body of perfect fluid in
stationary, rigid rotation are studied. In spite of the seemingly non-Newtonian
features of the bounding surface for some rotation rates, we show, by means
of a detailed analysis of the three-dimensional spatial geodesics, that the stan-
dard Newtonian convexity properties do hold. A central role is played by a
family of geodesics that are introduced here, and provide a generalization of

the Newtonian straight lines parallel to the axis of rotation.

PACS numbers: 04.20.Jb, 04.40.-b

1. Introduction

In the (thus far, unfulfilled) quest for a realistic exact solution in general relativity,
representing both the exterior and interior gravitational field generated by a self-
gravitating axisymmetric mass of perfect fluid in stationary rotation, the detailed
analyses of the features of whatever partial results we already have seem relevant.
Specifically, comparison with the known results in the Newtonian domain will im-

prove our intuition within the general relativistic regime.
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It is remarkable that there exists a number of treatments based on numerical
integration of the field equations, or on approximation schemes valid for small ro-
tation rates (applied, in particular, to the calculation of the shape of the bounding
surface of the fluid configurations, or to the analysis of the meaning of centrifugal
forces), but, surprisingly, very few exact results, based on the growing wealth of inte-
rior exact solutions in the literature (both rigidly and differentially rotating). Here,
we analyse some geometric features of one such interior solution, in order to check
whether the analogues of some Newtonian properties hold. Remarkably, they do, in
spite of the fact that the analysis of the bounding surface p = 0 in section 3 seems
to point naively to the contrary. A more detailed analysis of the three-dimensional
geodesics (sections 4 and 5) shows that standard Newtonian features do indeed hold
for the solution under consideration, if some of the Newtonian elements are rede-
fined appropriately. In particular, we introduce in section 5 what we believe is the
generalization of straight lines parallel to the rotation axis in the Newtonian case:
geodesics whose points have constant azimuthal angle and intersect the equatorial

plane orthogonally.

2. The Kramer solution

An exact solution of the Einstein field equations, representing the interior gravita-
tional field of a self-gravitating, axially symmetric, rigidly rotating perfect fluid, was

introduced by Kramer! and further analysed by himself.? The metric can be written

as
2mds® = [n—1—bcos&e "|dt* + [4(n — 1) — dbcos&(e™ — e~ 1)]dtde (1)
_ _ _ dn? e
4n—1)—4 T4 e ? —2e 1)|de? 2
+[4(n—1) —4bcos&(e "+ e e ]do” + - + bcosgdf ,

where m and b are positive parameters. The coordinate ¢ is a time coordinate,
while ¢ is an azimuthal angle. The spacetime possesses the two commuting Killing
fields 0, and 0. The axis of rotation is characterized by the equation n = 1, and
there exists a discrete symmetry & — —&. The invariant set under this symmetry
(i.e. points with & = 0) will be referred to as the equatorial plane in what follows,

and the point with coordinates n = 1, £ = 0 as the centre of the body. The fluid

106



obeys the following barotropic equation of state
2m
e+3p=—, (2)
Ko
where p is the pressure, ¢ is the energy density, and k, is a positive constant. The

dependence on 7 and £ of the pressure and the energy density is the following:

m
- _ 1
p 2f€o(1 +n—bcosée™) (3)
€= ﬁ(1 —3n+3bcosée™™) . (4)
2/4)0

It is rather remarkable that the pressure is harmonic in the (7, &) coordinates:

Pyn + Dee = 0. (5)

Due to the minimum principle for the corresponding Laplacian, the pressure attains
its minimum value at the boundary of the domain of definition in the (n,£)-plane.
This domain is given by the interior of the region bounded by the line = 1 and the
curve p(n,&) = 0. As a matter of fact, the pressure has its lowest possible (negative)
value at the centre. The boundary value p = 0 (the greatest value) defines the
boundary of the object. In spite of the pressure being negative inside the body, and

growing from the centre to the boundary, the dominant energy condition is satisfied:
e>0, |p|<e. (6)

It is remarkable that the boundary p = 0 has a relatively simple equation,
bcosé — (1+n)e"=0. (7)

This, and the fact that (as will be shown in section 4) the integration of the relevant
spatial geodesics can be reduced to quadratures, is crucial in our analysis of the

geometric features of the solution.

The parameter b is related to the modulus of the vorticity vector at the centre

i) = [ +e) ®)

When the requirement is made that the metric have the appropriate signature, as

by means of

well as the requirement that 9, be timelike and 0 spacelike, the following inequalities

result:!
m >0, n>1, bcosé > 0,

(9)

1—n+bcos€&e™ >0, (n+1)(2e" ! —e*172) > 2,
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We shall refer to the intersection of the equatorial plane with the boundary p = 0
as the equator of the body, and to the region with £ > 0 (respectively, £ < 0) as
the northern (resp., southern) hemisphere. Similarly, the intersection of the axis of
rotation with the boundary p = 0 having & > 0 will be called the north pole; the
intersection with £ < 0 will be termed the south pole. The object is oblate (in the
sense that the polar distance to the centre is less than the distance from one point

in the equator to the centre), as calculated in ref. 1.

As b is bounded away from zero, there is no static limit for this solution. One
is tempted to interpret this feature in the light of the Newtonian result® that the
pressure cannot have a minimum at the centre if Q2 < 27p, where Q is the angular
velocity of the Newtonian fluid body, and p the mass density. It would be of interest

to find the corresponding result in general relativity.

Finally, let us mention that the acceleration and the vorticity vectors are parallel

at the pole, and orthogonal at the equator, as required for symmetry reasons.

3. Geometry of the bounding surface {¢=constant,

p =0}

The spacetime metric (1) induces the following metric on the two-dimensional sur-

face given by t = constant and p = 0:

2m dsy” = gpedd® + gyydiy? (10)
b (n+1) — (3n+ 5)e*
[0 — (1 +n)*e* (> — 1)

= [4(n+1) (2" — €"7%) = 8]dg” + dn”

where we have used the equation for the surface p = 0 (7) in order to express the
two-dimensional metric as a function of the coordinate 7. It is remarkable that
(for large enough values of the rotation parameter b) the surface possesses a region

around the equator with negative Gaussian curvature K [cf. figures 1 and 2].
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Figure 1. Gaussian curvature on the 2-surface ¢ = constant, p = 0, from the pole (y = 1)
to the equator, for different values of the parameter b (b = 6.1,6.3,6.5529,7,7.5) corresponding,

respectively, to the double-dot-broken, chain, full, broken and dotted lines in the figure. (2m = 1)

100y

5.5 6.5 7 7.5 8 5
~100}
200}
~300}
400}
~500
600

Figure 2. Gaussian curvature on the 2-surface ¢t = constant, p = 0, at the equator, as a function

of b.

Our intuition with two-dimensional surfaces embedded in three-dimensional Eu-
clidean space would lead us to interpret that region as a concave “waist” near the
equator. This impression is reinforced by computing the length of the parallels
(closed curves of constant 7, that circle around the surface and can be parametrized

by means of the azimuthal angle; they are not geodesics, in general). The expression
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for the length of one such parallel, obtained from (10), is the following:

1

| = \/%7?[4(7] +1)(2e" 1t —e*172) — 8]z . (11)

It is easily seen that the length presents a local maximum for

2n+4—(2n+3)e™ ' =0. (12)

As a matter of fact, if the length is plotted as a function of 7 [cf. figure 3], we see that
it increases monotonically from 7 = 1 (corresponding to the pole, in which case the
length vanishes) to a maximum at n = 1.1716, obtained by solving (12) numerically.
From that point on, the length decreases, until it vanishes again for the numerical
value n = 1.3134. Notice that the preceding values, as well as (12) itself, do not
depend on the rotation parameter . The dependence on b, however, shows up in the
following: the coordinate n varies from 1 = 1 (intersection of the rotation axis with
the surface p = 0) to a maximum value (corresponding to the equator), obtained
by solving (7) with £ = 0. Accordingly, the maximum value of 7 is an increasing
function of b. When b < 7.0077, the corresponding 7 is such that it falls within
the left side of the curve in figure 3, and we have the “normal” situation, where
the length of the parallels increases from one pole to the equator. However, if b >
7.0077, then the maximum length for a parallel occurs at an intermediate latitude,
and it subsequently decreases towards the equator. In the extreme case b = 8.603
(n = 1.3134), the circumferential length at the equator vanishes, which could be
interpreted as the fission of the body along the equator at extreme rotation rate.
Due to positivity requirements in the metric, the values n > 1.3134 are excluded.

The Gaussian curvature of the 2-surface vanishes precisely at n = 1.1716. This
is not accidental, as the curvature has a factor gy¢n, and ges, = 0 is precisely the
condition expressed by (12). Thus, the surface is “flat” at the equator for b = 7.0077.
If b is increased, then a finite region with K < 0 arises symmetrically around the
equator, including the equator itself. At the extreme value b = 8.603, K becomes
singular (minus infinity, see figure 2) at the equator.

If the 3-geometry where the 2-surface ¢ = constant, p = 0 is embedded were
Euclidean, we would find that the 3-volume ¢ = constant enclosed by the 2-surface
would not be convex, and, in particular, certain straight lines parallel to the axis of

rotation would intersect the boundary p = 0 in more than two points (for sufficiently

110



1 1.05 1.1 1.15 1.2 1.25 1.3
n

Figure 3. Length of the parallels (closed curves of n = constant, parametrized by ¢ in the surface
p=0).

large values of b), against the well-known Newtonian theorems of Lichtenstein.?®
We shall see below, however, that a natural generalization of the mentioned parallel
straight lines to the true three-dimensional Riemannian geometry does preserve the

analog of the classical results.

It should be remarked that the closed curves n =const. on the boundary surface
are not geodesics on the surface, except for the particular case where g44, = 0. This

can be readily seen by writing the equations for the geodesics in the metric (10)

94 = constant (13)

297 + grm,nﬁz - 9¢¢,n¢2 =0 (14)

(where a dot denotes a derivative with respect to length along the geodesic).

We thus see that the only parallel circles which are geodesics are the two (sym-
metrically placed with respect to the equator) corresponding to n = 1.1716, when
b > 7.0077. When b = 7.0077, the two parallels coincide with the equator (and that

is the only case in which the equator is a geodesic).

Finally, it is easily shown (by computing the Gauss-Bonnet integral of K numer-
ically over the surface) that the 2-surface ¢ = constant, p = 0 has the topology of a
2-sphere.
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4. Geodesics of the 3-dimensional spatial metric

The spacetime metric (1) reduces for ¢ = constant to the following three-dimensional
metric:

el

2
1+bcos§d£' (15)

dn?
2mdsy’ = 4[n—1—bcosE(e "+ e ? —2e ')]do* + n ﬁ

From (15), we find the following equations for the geodesics in the three-space:

[n—1—bcosE(e™ + €2 — 2e71)]¢p = constant (16)
21 UN el i - —2\1 72
- . —4[1 —beos&(—e M + ¢ =0 17
A — e A = beos (e ) a7)
2e .. 267’7'76' e"siné :

£2 — 4bsiné(e™ + "2 — 2e71) % = 0. (18)

bc0s§§+ bcosé  bceos?E

In particular, geodesics with qb = 0 are characterized by the two equations

21) s el i

77—1_(77—1)2_13(30355 =0 (19)
. - 1sin§ o
EHmit5iset =0 (20)

It is a rather remarkable feature of the Kramer solution that the geodesic equa-
tions (19) and (20) can be reduced to quadratures. Two clearly different cases
appear, depending on whether 5 = 0 at all points of the geodesic or not. In the
former case, the integration reduces to that of the equation

2 72
_ _ 21
n—1 (n—1)2 0 1)

which yields

SZQ\/%[\/nf_l_\/ni_l]a (22)

where ¢ = £1, depending on the sense in which the geodesic is traversed; 7; is the
initial n-coordinate, and 7y the final one, and s is the distance along the geodesic.
In the case f # 0, we introduce the new variable w = /n — 1, in order to simplify
the equations. By dividing equation (20) by f, it can be immediately integrated
once, giving

6‘2

= ke 20 23
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where k is a positive constant. By substituting (23) into (19), we obtain

k 2
D— —we ¥ =0. 24
W~ o -we 0 (24)

If w = 0, we get the system
w=0 (25)
& i

= ke *. 26
cos & ¢ (26)

This corresponds to the geodesic along the rotation axis. In the generic case, w # 0,

upon multiplication of (24) by w we obtain

.. LA
Wi — e ww =0, (27)
whose first integral is
k
4air® + %6_“’2 =« (28)

with a > 0 a constant of integration. One can now express the relation among the

coordinate w on the geodesic and the distance s along the geodesic by

2d
i =qds (29)
a— Le v

(¢ = £1), while the equation for the trajectory is given by

% __ 26q@de , (30)

veosé € Jo_ kpw

be

where € = +1. By using (15), we find @ = 2m. To summarize, the relevant equations
can we written as
m 1

W o= ¢ 2 75 B — ew? (31)

£ = 26(]\/@% g\/cos e (32)

where 8 = beTo‘
Equations (31) and (32) can be expressed as quadratures:
d¢ \ﬁ e v’
= 264/ -—=d 33
\ecosé& ¢ e/ —e v’ v (33)
2 dw
ds = q\| —VB—m——= (34)

m A /B — e_w2
(Note that ¢ and e are signs, which can be chosen so that the distance s along the

geodesic increases from the initial value s = 0 at the initial point.)
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5. Convexity properties of the fluid body

Given the results in section 3, one could naively expect that the distance from points
in the surface p = 0 to the axis of rotation would decrease (for large enough values
of b) as the equator is approached. We shall see that this is not the case. In order
to do that, let us first identify some general properties of geodesics starting from
some point in the symmetry axis and reaching a point in the boundary p = 0.
For definiteness, we shall work in the northern hemisphere; due to the symmetry
with respect to the equatorial plane, analogous considerations hold for the southern
hemisphere.

The first observation is that geodesics from the axis of rotation lie in the (w, £)-plane,
with constant ¢. This can be seen from equation (16): if the value w =0 (n = 1),
characterizing the axis, is substituted, then the left-hand side vanishes. Therefore,
the constant on the right vanishes. This shows that ¢ = 0 for such geodesics. The
relevant equations for the geodesics are then (19) and (20), whose integrals are given
by (33) and (34). Next, we find the meaning of the constant §: it is easily seen, by
using the standard Riemannian formula, that the angle v between the axis and the
tangent to the geodesic at the axis (defined such that v = 0 for a geodesic starting
at the axis and pointing towards the north pole) is related to § by the following

relation:
1

75

For a given point in the boundary p = 0, characterized by w = wy, it is found

cosy = (35)

that a geodesic joining it to the axis has a distance s to the axis given by

2 [ d
s =)= / e (36)
mJo /1 —cos?ye v’

From (36), we see that

0 [2 wy —w?
Sl —sin*ycos*y/ c —dw . (37)
o m o (1—cos?2ye w")2

Consequently, s is a decreasing function of + in the northern hemisphere. The

minimum is obtained at v = 7, which corresponds to a geodesic with constant ¢,

whose length (22) is

s=1/—wy . (38)
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This, being the minimum of the different distances along different geodesics to the
axis, we will define as the distance to the azis from the given point (wy, &) in the
boundary. Let us now look at how the distance thus defined varies when we consider

different points in the boundary. By using the equation for the boundary,
9 w2 b
(w;” +2)es = —coséy , (39)
e

and the derivative of wy with respect to £; along the boundary,

2

dwy b e s
= 2y 40
d&; (e) 2w * 4 6wy cosér (40)
we obtain ,
0s 0s dwy 2 (b e s
— = = D) — 41
o Owy dé m (e) 2w + 6wy cosér (41)

thus showing that the distance from a point in the boundary to the axis increases
monotonically from the north pole to the equator.

Another measure of the convexity (or lack thereof) of the boundary p = 0 is the
behaviour of the distances from the centre (w = 0,& = 0) to points in the boundary
[cf. figure 4]. Let us denote by wy(7y) the w-coordinate of the endpoint of a geodesic
starting from the centre with an angle v with respect to the northern semiaxis. The

distance to the endpoint will be given by

[ /"Uf(’Y) 1 (42)
5= dw . 42
0 V/1 — cos? ye—v’

According to the previous equation, the derivative of s with respect to 7 is

m0s  Owg(y) 1 /“’f(” sin y cos ye ¥’
20 7 \/1 — cos? ’Ve_“’me 0 (

We are interested in the growth properties of s at the equator. In order to eval-

dwy(v)
Oy

ME

dw . 43
1 — cos? yev?)3 43)

uate the derivative , we consider the equation for the boundary (39), and

differentiate it with respect to :

9 (7) 3 w 2(y) 0wy (7)
— s () =5 = 2w (7) + 6wy (y)] €7 o (44)
The geodesic with v = 7 corresponds to a geodesic along the equatorial plane, with
§ = 0. Hence, {(%) = 0. Substituting v = 7 in (44), one obtains
3 (T T\ w2(x) owy () B
20 (3) +6ur (3)] @ =LE =0, (45)

us
2
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Figure 4. Trajectories of geodesics ¢ = constant from the centre to the surface p = 0, with

different values of initial velocities, i.e. varying

However, the coefficient in front of the derivative does not vanish, therefore,

ows(y)|  _
afT =0. (46)

s

=3
By substituting this result into equation (43), evaluated at v = 7, we obtain

0s

il = 4
> =0 (47)

=3

thus showing that the distance from the centre to the equator is a local extremum, if
the second derivative of s with respect to v does not vanish. Its sign will then decide
whether the equatorial distance is a maximum (corresponding to local convexity at
the equator) or a minimum (local concavity). The second derivative of s with respect
to v will be given from equation (43) by

2 2
\ /%g z _ 9 ng(fY) (1= cos2ye s M)=2 — (1 — cos? ye s )2
Y Y

8 2
x [cos 7 sin 7y + cos® yw; (7)]6—%2(7) [%(7)}
y

0
— sin 7y cos fye_wf2(7) (1 — cos® fye—wf2 ('7))73 “g ()
v
wy(y) e—w2
+(sin® v — cos® ) / - dw
0 (1 — cos?ye~v")2

) ) wg(y) 67211)2
—3sin” v cos fy/ —sdw . (48)
0 (1 — cos? ye~w*)2
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At v = 7, the preceding equation reduces to

[m 6%s O*w () w3
—Z° = “dw . 4
207 _. . +/O e w (49)

2
o |, = :
2
In order to evaluate the second derivative a_g72(f_7)

, we first consider the equation
V=%
for the trajectory of a geodesic from the centre; from (33),

2

&0y \/7 wy(y e W
cos 7y / dw . 50
/ Veos€ V1 — cos? ye~v’ (50)

By differentiating (50) with respect to 7, we find

0&s(7) 1 _ b owy () e~ws" ()

= cos 7y
07 Jcos&s(7) e Oy \/ | — cos?ye ()

b wy(7y) —w?
—2\/jsinfy/ ‘ it 3 - (51)
e 0 (1 — cos? ye~v*)2
wy (%)
= -2 / e dw . (52)

=3

Hence

9 (v
37

By differentiating (44) we obtain

2oty (o) | 0] - gy T (53
02w () + bus())e ) [ngy)]

~ ws(y)
w2 02w ()
+[2wf3(’y) + 6wy (y)]e”s (7)8772

Y

and, setting v = 7 in (53),

|| = fou (5) o (5] ) L2

Finally, from (54) and (52) we get

2 ~w (%) wy(%) 2
— 9 (9) S / Tevdw| . (55)
=1 e) wi(3)+3w(3)

Going back to (49), and substituting 82217;}(7)

*wy(7)
0?2

from (55), the following expression

y=1
for the second derivative of the distance is obtalned.

2 wy(%) 9(b)2e~w; (5) ws(%)
m a_‘z :/ e dw |1 — (c)°e — / e dw| . (56)
Veael_, " w7 (5) + 3uy(3)
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However, substituting ¢ from (39) (with & = 0) in (56), we find the following
inequality:
2(9)26_"72(%)

w (%) + 3w (5

wy(%) ofw 2(T) + 212e%s’(3)  pws(3)
)/ e~ dw = [ f( ) ] / e dw
0 0

2w(5) + 2P B pud) 2w (%) + 2]
> T - e Ur\Ydw = 2Ty 53 > 2, (57)
wf (2)+3wf(2) 0 wf (2)+
thus showing that
% <0 (58)
02 =1

It should be stressed that (58) does not depend on b. We conclude that the
distance from the centre presents a local mazimum at the equator, thus showing
that our naive expectations from the analysis in section 3 were unfounded.

Let us now consider geodesics joining points symmetrically placed with respect
to the equator, (wo, &) and (wq, —&), and having ¢ = 0. For symmetry and differ-
entiability reasons, such geodesics must intersect the equatorial plane orthogonally,

with respect to the metric

2 1 e\ e 9
mdw * 2m (b) cos{;“alg ' (59)

The orthogonality condition fixes the parameter £ in (33) and (34):
/3 = e_wc s (60)

where w, is the w-coordinate of the intersection of the geodesic with the equatorial
plane. We shall now consider the portion of the geodesic starting orthogonally to
the equatorial plane from (w,, 0) and ending in (wy, &), whose length will obviously
be half that of the complete geodesic starting at (wgy, —&) and ending in (wy, &p).
The signs in (31) and (34) are fixed by the initial conditions, giving

eq=+1. (61)

In principle, the considered portion of geodesic in the northern hemisphere could

have w > 0 or w < 0. But the latter does not, in fact, exist, as one would have

2

g—e " <0, (62)
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due to the fact that wy < w, for 1w < 0: from (33), such a possibility is incompatible
with the equation for the geodesic trajectory. We conclude that the unique geodesic
joining (wg, —&) and (wg, &) cuts orthogonally the equatorial plane at (w,, 0), with
w, < w, and exhibits the monotonic behaviour @ > 0 and € > 0 [from equations (61)
and (31)] in the northern hemisphere.

Such a geodesic is the natural generalization of a straight line parallel to the
rotation axis in the Newtonian case: both can be defined as non-twisting (gb = 0)
geodesics that intersect the equatorial plane orthogonally. We shall now show that
the geodesic thus introduced is completely contained in the three-dimensional body

bounded by the surface ¢ = constant, p = 0. To this end, we consider the pressure

p as a function of a point in the geodesic; from (3),
b
2—p(s) = w?(s) +2 —  cos £(s)e ") (63)

By differentiating (63) with respect to the distances from the starting point (w, 0)
along the portion of the geodesic in the northern hemisphere (we denote the deriva-

tive by a dot), we find
b 2 b 2
2@15 = <2w + 2—coswe™ ) w4+ —sinée”™ € ; (64)
m e e

but, due to the inequalities w > 0 and 5 > () for the northern portion of the geodesic,

and the fact that 2w + 22 cos §we‘“’2 > (0 and gsin fe‘“’z > 0, we conclude that
p>0. (65)

As a consequence, the pressure along the geodesic increases from (we,0) to the
endpoint (wy, &). Conversely, traversing the geodesic in the opposite sense [starting
from (wp, &) and heading towards (w,, 0)] corresponds to decreasing values of p. As
the pressure decreases towards the interior in the solution under consideration, it
is clear that a geodesic of the type just introduced which starts at a point in the
surface (p = 0) in the northern hemisphere has p < 0 at all other points in the
northern hemisphere. By symmetry, all other points of the geodesic in the southern
hemisphere have p < 0, except for the final point, where p = 0. Thus, a geodesic of
the type considered has only two points of intersection with the bounding surface,
thus maintaining in the present fluid configuration the classical (Newtonian) result
for the intersection of straight lines parallel to the rotation axis with the boundary

p=0.
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We have found that all the criteria we have considered reproduce the convexity
properties of Newtonian configurations, in spite of the peculiar behaviour of the
boundary surface, as analysed in section 3. It is clear that the standard Euclidean
relations among convex bodies and their bounding surfaces,’® do not hold for a

general Riemannian geometry, dynamically prescribed by Einstein’s equations.

6. Conclusions

We have analysed some geometric features related to the shape and convexity prop-
erties of a self-gravitating body of perfect fluid in stationary rotation, as given by
the exact solution in ref. 1. Our analysis of the boundary (¢ = constant, p = 0)
shows that for some rotation rates there appear features that would be interpreted
in the Euclidean case as non-Newtonian. However, by looking at the behaviour of
geodesics in the three-dimensional fluid within the bounding surface, the analog of
the Newtonian results under consideration is obtained. The technique to show them
is a detailed analysis of the spatial geodesics within the fluid, and specifically the
introduction of a family of geodesics which generalize the straight lines parallel to

the axis of rotation in the Newtonian case.
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Abstract

We study several properties (geometrical kinematical and dynamical) of the Wahlquist
solution for a rotating object (stationary and axisymmetric). Different approaches
to the definition of inertial forces in general relativity are analysed for particles in

the equatorial plane of this solution (in particular, for fluid particles).

PACS numbers: 04.20.Jb, 04.40.-b, 04.25.-g

1. Introduction

The interest of the stationary axisymmetric spacetimes is clear, given that they can de-
scribe rotating objects of interest in astrophysics (neutron stars, black holes, etc.). On the
other hand, the study of the motion of particles in a given spacetime is a natural method
to obtain information from this spacetime. Different approaches have been used in order
to study the kinematics and dynamics of particles (particularly, in “circular” motion) in

stationary axisymmetric spacetimes.

Our intuition from our “Newtonian” experience drives us to attempt to define general-
izations of “inertial forces” for a particle in circular motion in a general relativistic context.

Following this idea, we can find several studies defining “inertial forces” for particles in
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rotation about a very compact source of gravity; in these studies some ‘counter-intuitive’
effects (from a Newtonian point of view) arise. Although these effects can be seen in their
simplest form in the static case [e.g., in the Schwarzschild spacetime an increase of the
angular velocity of the particle causes more attraction than repulsion below the radius of
the (spatially) circular photon orbit], when studying stationary non-static axisymmetric
singularity-free spacetimes the relativistic effect of rotation of the source, i.e. the dragging

of the inertial space by mass currents, is added.

Two major formalisms have been developed, aiming at the interpretation of relativistic
motion in terms of “Newtonian forces”. In the first one,2 based on the “optical reference
geometry”,® the gravitational force is independent of velocity, so that the ‘anomalous’
effect, already present in the static case, is expressed as a reversal in the direction of
action of the “centrifugal force” in the vicinity of the source.®5 In this case (static) the
reversal occurs exactly at the photon orbits (which are the geodesics of this “geometry”).
When the formalism is extended to stationary non-static axially symmetric spacetimes,’
a “Coriolis force” is also present, making the reversal of the “centrifugal force” not to
occur at the photon orbits. Some applications have been made to the Kerr metric,”

Kerr-Newman,®?

and slowly rotating ultracompact objects,'® where the “eccentricity”
behaviour is related to the defined “inertial forces”. Gyroscopic precession has also been
related to this forces.®%1! In the other approach!? !¢ the “gravitational force” contains
the relativistic Lorentz factor square, so that the ‘anomalous’ effect is ascribed to the
fact that the (attractive) gravitational force overwhelms all other forces in play. In these
terms, the motion of test particles in Kerr-Newman and simpler spacetimes has been

analysed,'»'®1719 as well as gyroscopic behaviour.'*2%2!

Our interest in this paper is centered on the study of the properties of interior solutions
(perfect fluids) describing rotating compact objects. Very few solutions of this kind (sta-
tionary non-static axisymmetric perfect fluid solutions, with a finite boundary of vanishing
pressure, satisfying positivity energy conditions and possessing no more Killing vectors
than 0, and 0,) exist; for a revision see, for instance, ref. 22. Among these solutions there
is one obtained by Wahlquist, as a special case of a larger family of solutions.?>?* In order
to obtain more information about this solution, we study the kinematical and dynamical
properties of the particles in circular motion around the centre of the configuration. Of
particular interest are the properties of fluid particles, that will be analysed in more detail

(for test particles we can think of them as moving in a closed circular tube around the
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symmetry axis of the solution, thin enough to not perturb the configuration and allowing

the particle to move without interaction with fluid particles).

The rest of the paper is organized as follows. In section 2.1 we briefly revise the
Wahlquist solution for rotating fluid bodies, in order to fix our notation. In section 2.2
some geometrical properties of this solution and former studies in the literature on this
solution are presented. In section 2.3 we study the total acceleration of a test particle in
circular motion; in particular, and following a suggestion given by Semerék,'® we analyse
the dependence of the particle’s acceleration on its angular velocity at limiting values, and
its relation to the circular photon orbit appearing in the equatorial plane of the Wahlquist
solution for certain ranges of the parameter defining the rotation rate. Also, the orbital
region is described and the maximally accelerated observer is identified.'® In section 3,
the two formalisms of “inertial forces” in general relativity, mentioned above, are applied
to fluid particles in the equatorial plane of the solution under consideration (let us note
that, to the best of our knowledge, those formalisms have not been previously applied to
interior exact solutions). Hence, we are able to test the definitions of inertial forces in
extreme interior situations of rapid rotation and strong gravity, where relativistic effects
should be more important. Both formalisms, in the case of circular motion in stationary
axisymmetric spacetimes, are briefly introduced, in order to fix the notation, and applied
to the Wahlquist solution. In particular, we shall be able to discuss slowly rotating limits
and an upper limiting case in rotation, the Kramer solution. The obtained results for fluid
particles are analysed in detail and comparison between them is made. This is followed

by the concluding remarks of section 4.

2. The Wahlquist solution for rotating fluid bodies.

Geometrical and dynamical properties

2.1. The Wahlquist solution

There exists a singularity-free exact interior solution for a finite rigidly rotating body of
perfect fluid, as a special case of the axially symmetric, stationary, type-D solution of

t22724 (

Einstein’s field equations found by Wahlquis in which we set m = a = 0). The

metric can be written, in terms of comoving pseudoconfocal spatial coordinates ((, &, @),
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as:

2 _ _ L UAaN2 L 2002, 2 d¢? de? 82hy hodg?
ds* = —f(dt Aw)+¢“C+f)[u—k%am'*u+k%am Iy ],(U
with
_ hi—hy <~ E2hy + CPhy
fzm, A:5TO<W—§A2>,
b= =1+ o= 1A= RE) s (k)|
imzhﬂas1—§%-%{§—%a+k%%ﬂ2mm*w@},

where k and k are interior parameters, as well as rg, J, and £ 4, defined below. This solution
contains, as special cases, the static limit spherically symmetric (the Whittaker solution)
and the Kramer solution, which was shown to be an upper limiting case in rotation.

The fluid has pressure and energy density given by
1 2 1 2
ngss(l—mf), 62565(3l€f—1),

respectively, and obeys the barotropic equation of state € + 3p = const. = ¢, . We note
that the surfaces of constant p,e and f coincide, and that the constant ¢, is the energy
density on the bounding surface p = 0, or x*f =1 .

In general, we have three free parameters, which can be chosen to be the fluid energy
density at the bounding surface ¢, the central pressure p., and the modulus of the vor-
ticity at the centre €}, —as a “rotation parameter”—, or alternatively, €, k and x. The

/ ’rok. The constants &4 and 6 are adjusted so

parameter 7 is defined such that k£ = £
that the solution behaves properly on the axis: £ = &4 defines the axis of symmetry and
rotation, and it is impliciltly determined as the solution of the equation hy(€4) = 0, and

0 is determined such that the metric satisfies the regularity condition

§=§A]

We shall set €, = 1. The ranges over which the remaining two free parameters (k, k), or

172 @ha

§=+£2
dg

(1+K%€))

(pe, €2¢), run are restricted by positivity and energy conditions, namely, Lorentzian metric,
positive pressure, and dominant energy condition.
The surfaces ( = const. and £ = const. are the analog of the confocal spheroids and

hyperboloids, respectively, in flat space. An important location is the coordinate ring
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(¢ =0, &=0). The ring itself may be either inside (k* < 1) or outside (k* > 1) the
body. Having the ring inside the body implies very slow rotation for normal objects. The
metric (1) admits two discret symmetries, ( — —( and & — —&. If the ring is outside
the body, then the invariant set under this symmetry —equatorial plane— is the set of
points with ( = 0, whereas if the ring is inside the body, then the equatorial plane will
be given by {¢ =0, [£| < &4} from the axis to the ring and by {{ =0, ¢ > 0} from
the ring to the bounding surface of vanishing pressure. The intersection of the equatorial
plane with the axis of rotation, i.e. the point with coordinates (( =0, & = £4), will be
refered to as the centre of the body. In the permitted ranges of parameters the general
solution has positive and decreasing pressure (from the centre to p = 0.) In what follows,
the intersection of the equatorial plane with the boundary (p = 0) will be refered to as
the equator of the body. For definitness, we shall work in the region defined by ¢ > 0 (the
northern hemisphere) and £ > 0. The intersection of the axis of rotation (£ = £4) with
the boundary (p = 0) having ¢ > 0 will be called the pole (the north pole).
The square of the modulus of the vorticity vector * = 2e""u,.,us (where u” is the

fluid 4-velocity) at the centre,

o1 [R(EL 1) — RS

¢ ARk §A4(1 + k2 7) ,

will be considered as the rotation parameter.

Up to now, this solution (1) has not been matched to any vacuum solution for a
rotating configuration. And there is no definitive proof that it cannot be joined to any
asimptotically flat exterior vacuum solution, although some results in this direction have

recently been obtained.?’

2.2. Geometrical properties and definitions

There exist spatial geodesics from the centre along the equatorial plane with qﬁ = 0 and

(=0 (£ =0), and a geodesic along the rotation axis from the centre to a point in the
axis, with § = (. Thus, the physical distances from the centre to the surface p = const.

are given by the geodesic distances:

€a 12 1ot
Seq (n2>1)(§): ; g.g'g'df

in the equatorial plane if the ring is outside,
& 1/2 341 ¢ 1/2 301
Seq (""2<1) (C) = gglgdg + gglcldc
0 0
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if the ring is inside, and
¢
1/2
Sp(€) = / gc,/(:,d{'
0
along the axis. Their integrands are positive functions, as g¢¢ and g¢¢ are in the admissible

ranges, and the metric is diagonal in ¢ and ¢ (g = 0); accordingly, we consider their

normalized gradients as the equatorial and polar geodesic distance unit vectors:

—1/2 —1+k22h 1/2 .

and from the axis to the ring if % < 1

71/234 = wag from the ring to the surface if k? < 1.

9¢¢ r0C

12
ep = gCC ag .

Numerically comparing the metric distances from the centre to the bounding surface
fi.e. Seq (2>1)(&s), Seq (w2<1)(Cs), and Sp((p), where &, (,, and (, are solutions of the
surface of vanishing pressure x%f = 1, setting ( = 0, £ = 0, and & = £, respectively], it
was shown?® that the body of fluid described by this solution is prolate for most of the
admissible values of the parameters, although there is a small range for which it is oblate.
The referenced study was made fixing the rotation parameter and varying instead the
energy density on the bounding surface and a third parameter. However, if we allow the
rotation paremeter to be free, it can be seen that, for the range of parameters for which
we have prolateness, this solution becomes more and more prolate as the rotation rate

increases.

2.3. Dynamical properties

In a stationary axially symmetric spacetime, if we consider a test particle in (spatially)

circular motion with 4-velocity
u=u"(0; +wdy) , (2)

where w does not depend on ¢ and ¢ (i.e. u*w, = 0 ), the 4-acceleration of the particle
[or the specific thrust which is required to keep the particle moving (steadily) on a given

circular orbit] can be written as

_ L guu + 201 @ + pgu @’ 3)

P2 gy + 20 W+ Gog w2
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In particular, for a fluid particle of the Wahlquist configuration, u = u‘0; = g{tl/ %9, (i.e.

w = 0 when expressed in comoving coordinates®®) and

1gtt,u
a, = -——.
g 2 gu
Namely,
o 14 [h—la] C 26 "
2d¢ |2+ &% hi—hy
a/g _ ld_ hl - h’2 <2 +§2 (5)
2dE [P +E ] hy—hy’

and a' = a? = 0, because of the symmetries.

In the rest of this subsection we shall restrict ourselves to the study of circular motion
at the equatorial plane of the Wahlquist solution. We first notice some remarks on the
inward / outward directions. In the case with the ring coordinate outside the body
(k? > 1), the (-component of acceleration in the equatorial plane ({ = 0) works out to
be zero. Obviously, for any z#(£) and w (€. fixed) this acceleration is parallel to the
“radial” direction 0¢, @ = a9, and for any fixed £ (( = 0) only its magnitude varies with
w. On the other hand, the equatorial geodesic distance (previous subsection) in the case
k* > 1 decreases with the parameter &, so that 9 is an inward “radial” direction. Hence,
negative a® (as can be numerically seen this is the case for particles of the fluid) means

outward acceleration (or maintaining thrust) vector.

Also, when the ring is inside the body (k? < 1) a particle in the equatorial plane
between the axis and the ring (¢ = 0) has acceleration a = aiag, with a¢ < 0, i.e. outward
a; and a particle in the equatorial plane between the ring and the border (£ = 0) posseses
a = a0, with a¢ > 0. Hence, as 9, is an outward “radial” direction, then a is an outward

vector too.

Therefore, in any case of the Wahlquist configuration, the acceleration of a fluid par-

ticle located at the equatorial plane is an outward vector.

Notice that in the Wahlquist solution, possesing positive and decreasing pressure from
the centre to the bounding surface, the gradient of pressure goes in the inward direction
(outward “strenght of pressure”) (see section 2.1), balancing the outward acceleration of
equatorial fluid particles, equations (4) and (5), via the Euler equation

_ TPy

a, = .
B oetp
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In a recent paper Semerak!® has analysed in a general stationary axisymmetric spacetime
the dependence of the 4-acceleration of a circular orbiting test particle on its angular
velocity at limiting values (permitted for a time-like orbit) of the velocity. It is argued
that the rotospheres [defined by the author as the regions where the 4-acceleration (or
maintaining thrust) of a given family of orbits diverges to an outward direction at the
limiting possible values of the orbital angular velocity w, i.e. where this dependence is
counter-intuitive from a Newtonian point of view| are always bounded by photon orbits.
We have studied the dependence a(w), given by (3) —equatorial circular motion of test
particles— at various fixed “radii” ¢ in the Wahlquist field with x? > 1 (for a fixed rotation

rate) at limiting values of w [cf. figure 1].

Let wmin and wmax denote the minimal and the maximal angular velocities which are
permitted for a time-like orbit, i.e. the light angular velocities for the counter-rotating

(retro-grade) and for the co-rotating (pro-grade) directions respectively,

—Gtp \/gt2¢ — G1t9ee

9oe
In the Wahlquist spacetime for a rotating fluid body with x? > 1, for certain intervals of

Wmin, max =

the admissible ranges of parameters, there is a circular photon orbit (light-like geodesic)
at the equatorial plane. Let &, denote the “radius” of the photon orbit. It can be
numerically seen that at the equatorial plane of the solution under consideration, for any
given pair of parameters for which the photon orbit exists, a®(w) behaves ‘intuitively’ below
the photon orbit (&, < £ < €4) [for both ultrarelativistic co-rotating (w — wWmax) and
counter-rotating (w — wmin) particles|, whereas above the photon orbit (§; < & < &), it
behaves ‘intuitively’ for w — wmin and ‘counter-intuitively’ for w — wnay; that is, for any
fixed £ > &, (below the photon orbit) the co-rotating particle needs greater and greater
inward thrust as its velocity approaches that of light; for £ < &, (above the photon orbit),
however, the co-rotating particle needs greater and greater outward thrust as its velocity
approaches that of light. At the lower limit w — wmi, (counter-rotating particle) the
behaviour is ‘classical’ (intuitive) everywhere. Loosely speaking, one can then conclude

that the ‘classical’ region is below the photon orbit.

At each & > &, (below the photon orbit), that is, in the orbital region,'s af has
a positive maximum at some w > 0 (there exist the extremely (mazimally) accelerated

15, 16)

observer and it is zero for two values of w (giving the stationary observers with

a® = 0). An example of this behavior is illustrated in figure 1. This dependency of the
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Figure 1. The dependence of (minus) the £&-component of 4-acceleration, —af, on the angular velocity
w with which a test particle moves on a circular orbit in the equatorial plane of the Wahlquist fluid
configuration with x? > 1, for central pressure p, = 0.152 and rotation parameter 2.2 = 0.12, (for which
there is one photon orbit at the equatorial plane, corresponding to the thickest line), at various fixed
‘radii’ £&. Note: O¢ points in the direction contrary to the increasing geodesic distances, so that —af has

the same sign than the projection of @ onto e.,.

4-acceleration of a circularly orbiting test particle on its angular velocity was also anal-
ysed for the Kramer solution.?”>?® This configuration, although possesing the undesirable
property of negative pressure, satisfies positivity energy conditions and might also provide

an insight on fully relativistic rotational aspects and phenomena.

Contrary to what happens in the general Wahlquist solution, in the Kramer solution,
the outward gradient of pressure balances the inward acceleration of fluid particles. And,
similarly to what occurs in the Wahlquist solution, it is below the photon orbit in the
equatorial plane —which exits for a certain interval of the permitted range of the rotation
parameter b— where the behaviour is also ‘intuitive’, whereas above the photon orbit
it is ‘intuitive’ for limiting co-rotating test particles but ‘counter-intuitive’ for limiting

counter-rotating particles [cf. figure 2].
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Figure 2. The dependence of the ‘radial’ component of 4-acceleration a” on the angular velocity w with
which a test particle moves on a circular orbit in the equatorial plane of the Kramer fluid configuration,
at various fixed ‘radii’ n, with (a) b = 6 —when there is no photon orbits—, and (b) b = 7 —when there
is one photon orbit (corresponding to the thickest line in the figure). Small rhombus indicate the position

of the local extrema (maximum) of the curves [the ‘extremely (maximally) accelerated observer’t® 16].

3. “Inertial forces” on fluid particles in the equatorial

plane

Aiming at the interpretation of relativistic motion in strong gravitational fields in terms of
Newtonian forces, two major formalisms, which maintain the idea of splitting the inertia
into different kinds of “inertial forces”, have been developed: one, given by Abramowicz
and coworkers,® and based on the optical reference geometry,® has the gravitational force
independent of velocity; the other decomposition, given by Semerak'® (in accordance with

12,19) has the gravitational force containing the relativistic

the one proposed by de Felice
Lorentz factor square. Here we summarize both Abramowicz’s® and Semerak’s'® decom-
positions for ‘circular’ (azimuthal) motion in stationary axially symmetric spacetimes and

apply them to equatorial ‘circular’ motion in the Wahlquist solution for rotating objects.
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In stationary axisymmetric spacetimes, the hypersurface-orthogonal (HSO) congru-
ence in the 2-plane (t,®) generated by the symmetries of the space can be shown to be
unique, corresponding to the congruence of zero-angular-momentum observers (ZAMOs),

let n* be their unit 4-velocity;

n' = n'(0; + wady), = 9 , (6)
Yoo
that is, nj = n,dt with the normalization factor

—-1/2
ny=(n")""=—(=¢")""? = - (%) : (7)

— Gtt9¢¢

The two formalisms that we shall be going through define quantities by projection of

their respective decompositions of 4-acceleration onto the 3-space of the ZAMO.

Besides, Abramowicz et al.® consider, in a general spacetime, the globally hypersurface-
orthogonal timelike unit vector n* having 4-acceleration equal to the gradient of a scalar
function ®, (i.e. n*V,n, = —®,), condition which is fulfilled in stationary axisymmet-
ric spacetimes by the ZAMO [cf. (6),(7)] * with n; = —e™® [e2® = —g¢', n! = €?].
The optical geometry is obtained by conformal rescaling of the projected space, h,, =
Juv + M, iNL,W = e”hw.

Let us now consider a test particle of rest mass m moving in azimuthal ‘circular’
motion, in our stationary axisymmetric spacetime, with 4-velocity u* and 4-acceleration
a* = v’V ut. At each point of the trajectory, u* can be uniquely decomposed in terms

of the ZAMO 4-velocity n*,

ut = y(n* 4+ vrH)

where 7# is a unit space-like vector orthogonal to n* [for azimuthal motion, 7" = 7719, =
(9¢) /? 04 ] along which the particle moves with velocity v (with respect to the observer

n*)

v = R,

where

H 9o¢ ~2

R = ntgl/ ’ = =g

0 (95 — guges)'*’ e
[ = the circumferential radius, which determines the proper circumference of the orbit,
1/2
27Tg¢¢ ],
W=w—wy,
*Notice that if n,n” = —1, the minus sign in eq. (7) must hold, instead of what is stated in ref. 6.
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and v is the overall normalization factor, 72 = 1_11)2. It follows that the 4-velocity of

the test particle is u’ = ynf(9;, + wd,), where w = % is the coordinate orbital angular
velocity of the particle (angular velocity with respect to a static observer 9; at oo). In
both formalisms a certain particular “gauge” is adopted, in order to extend 7* into a

vector field and be able to calculate n*V ,7%.

Once the 4-velocity of a particle, u*, is specified, the ZAMO vector field n* can be
used for the definition of Newtonian analogous “gravitational” and “inertial forces” in
stationary axisymmetric spacetimes. In particular, for azimuthal circular motion we have

the following splitting formulae:

3.1. Abramowicz’s splitting formula

Following Abramowicz’s description, the “real force” f* = ma* is balanced by the sum of
four forces: “gravitational” G*, “Coriolis” C*, “centrifugal” Z*, and “Euler” E* [plus the
term mAn#, which vanishes when projected onto the HSO orbserver (ZAMO) 3-space],
ie. ft=-GF—CF—Z! — E* +m7yn*. The corresponding acceleration decomposition,
projected (onto the HSO 3-space) and, once adopted the “Abramowicz-Carter-Lasota-
gauge”, for circular motion in a stationary axisymmetric spacetime reads a* = g* + c* +

zH + et | with

gu = GzAMOu = _q),u (8)
Cp = 72vR Wy 9)
e (3 )
2 24l 2 2 PP,
Zy =YV —= ==YV | z——— — AzAMO (10)
g R 2 9oy g
€u = 07 (11)

where azamo, is the ZAMO 4-acceleration. In fact, the term z, involves the geodesic

curvature (in the optical geometry)

POg == s = (g

3.2. Semerdk’s splitting formula

Semerak suggests the decomposition of the 4-acceleration consisting of the “gravitational”
part a, the “dragging” part a;', the “Coriolis” part a*, the “centrifugal” part (minus

“normal component of the particle’s specific inertial resistance”) a*, and the (minus)

AR
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“tangent component of the particle’s specific inertial resistance” a,;”, which, projected
onto the HSO (ZAMO) 3-space, in the stationary and axisymmetric case reads a* =

p o p p B
al' +ai +at+at+a,”, with

Qg, = ’YQGZAMOM (12)

Ug-c, = 20, = 204, = 2v*v (QrNre X TT)N = ’y%R Wa,p (13)
r, 1 9o,

a,, = 721)2 b-$¢ _ _5,),2?)2 PP,u (14)
94 9o¢

ati” =0 y (15)

where (Quxrr X 71), = no€%,,, Q0 (gp7” if the locally non-rotating frame (orthonormal
frame adapted to the ZAMO) rotates with respect to a gyroscope (Fermi-Walker trans-
ported) with angular velocity Qf ygr and €7, is the Levi-Civita tensor. We have denoted
Qg-c, = Gq, + G, (in this case a., = aq, ).

Analogously to the Abramowicz’s formula, the Semerdk’s centrifugal term can be

expressed in the classical Huygens’ form, a,, = 202N, where

v T _(g;{;)’” 1/2 L 9ppu _ Tugo
Np =T VI/T/.L = - 7 = 1/2 = _[ln(g¢¢ )]:H = _5 q = qg
s 90 96

Comparison between the Abramowicz and Semerdk’s splitting formulae (for ‘circular’
motion in stationary axisymmetric spacetimes) shows that the Abramowicz’s Coriolis part
is the Semerdk’s dragging plus Coriolis parts, ¢, = a4, (= a4, +ac,). As a consequence,
the Abramowicz’s gravitational plus centrifugal part equals the Semerdk’s one, g, + 2, =
Qg, + Gy, .

We analysed both decompositions of the acceleration (projected onto the equatorial
geodesic distance unit vector e.,) for a fluid particle moving circularly on the equator
of the Wahlquist configuration for a rotating fluid, when varying the rotation parameter
Q2 for slowly rotating bodies (k? < 1) [cf. figures 3(a) and 3(c)]; for the general case
(k? > 1) [figures 3(b) and 3(d)]; and for the Kramer configuration [cf. figure 4].

Our first observation is that in the slow rotation limit [figures 3(a) and 3(c)], the
behaviour of these ‘Newtonian inertial forces’ is classical; in particular, we have inward
“centrifugal accelerations” (outward “centrifugal forces”). When rotation is important
[cf. figures 3(b) and 3(d)], they change sign in the Abramowicz’ splitting at Q2,2 ~ 0.085
[cf. figure 3(a)], where

lg
azAMO |¢=¢, — 5%&:53 =0,
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Figure 3. Splitting of the acceleration of a fluid particle in the equator of Wahlquist solution for slow
rotation (k2 < 1), in Abramowicz, (a), and Semerak’s, (c), formalisms, and for important rotation rates
(k2 > 1), in Abramowicz, (b), and Semerak’s, (d), cases. (Here 3-vectors acceleration are projected onto

the equatorial geodesic distance unit vector egg).

whereas in the Semerdk’s one, a similar change of sign occurs at Q.2 =~ 0.17 [cf. fig-
ure 3(d)], where azanmole=¢, = 0. One can observe, in both decompositions, that for small
rotation rates the “gravitational” part of acceleration dominates over the “centrifugal”
plus “Coriolis” (“dragging-Coriolis”) part, making positive (outward) the total accelera-
tion, and in this regime the total acceleration increases with the rotation rate; for larger
values of the rotation parameter, despite the “centrifugal” part becomes positive (inward
“centrifugal force”), the effect of the “Coriolis” part becomes more important, making

the total acceleration decrease as the rotation rate increases [figure 3].

In the Kramer case [cf. figure 4] a similar change of sign in the “centrifugal” parts
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occurs and, in both decompositions, for small rotation rates, the “centrifugal” plus “Cori-
olis” (“dragging-Coriolis”) part of acceleration dominates over the “gravitational” part,
making negative (inward) the total acceleration; for larger rotation rates, although the
“centrifugal” part becomes positive, the “Coriolis” (“dragging-Coriolis”) part dominates

again maintaining negative (inward) the total acceleration.

@ (b)
87 8
6 z 6 ag
4 4
g aZ
OUTT 2 2
o
a a
IN l i 2
4] -4
6] 6]
8] 8]
-109 C -10] au+ a,
-12] -12]
-14] -14]
-16] -16]
T

T T T T T T T T T T T T T
5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 5.6 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8

Figure 4. Abramowicz (a) and Semerak’s (b) splittings of the acceleration of a fluid particle in the
equator of the Kramer solution. 3-vectors acceleration are projected onto the equatorial geodesic distance

unit vector e, and plotted as functions of the rotation parameter b.

Abramowicz and Semerak’s splittings of acceleration for all particles of the fluid or-
biting in the equatorial plane of the Wahlquist solution with x? > 1 was also analysed
[cf. figure 5]. Here 3-vectors were projected onto the equatorial geodesic distance unit
vector e., = —gg/ 285, and were plotted as functions of the geodesic (metric) equato-
rial distance s for several values of the rotation parameter. The result was that in both
decompositions, both the (outward) “gravitational acceleration” [inward “gravitational
force”] and the (inward) “Coriolis (dragging plus Coriolis) acceleration” [outward “Cori-
olis force”] increase (in absolute value) from the centre towards the equator. We can
observe that the Semerdk’s “gravitational acceleration” is larger than the Abramowicz’s
one, and, as already shown, the Semerak’s “dragging plus Coriolis accelerations” equals
the Abramowicz’s “Coriolis acceleration”. The behaviour of the “centrifugal acceleration”
is also similar in both formalisms; it is negative [positive outward “centrifugal force”] for
all fluid particles at a certain range of .2, becomes zero at the equator for 2.2 ~ 0.085 in
the Abramowicz’s definition and for Q.2 ~ 0.17 in the Semerdk’s one, and a region with

positive value [negative inward “centrifugal force”] arises from the equator to inside the
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body, above these critical values of 2.

The same analysis was made for the Kramer solution, giving qualitatively equal results.
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Figure 5. Abramowicz’s “gravitational” (a), “Coriolis” (b), and “centrifugal”(c) and Semerdk’s “gravi-
tational” (d), “dragging plus Coriolis” (e), and “centrifugal” (f) parts of acceleration (projected onto e.q) of
fluid particles in the equatorial plane of the Wahlquist configuration (for k2 > 1, p. = 0.152), as functions
of the metric equatorial distance s, from the axis of rotation to the equator, for different rotation rates
(2.2 =0.12,0.15,0.18,0.19), corresponding, respectively, to the full, broken, chain, and dotted curves in
the figure. Notice that the end points of the plotted curves [£ = £;(Q2.2)] belong to the curves in figure 3,

i.e. they correspond to fluid particles in the equator (border).

4. Conclusions

In this paper we have studied the stationary axisymmetric perfect fluid solution given by
Wahlquist from several points of view. Firstly, we considered circularly orbiting test parti-

cles (co-rotating or counter-rotating with the fluid) in the equatorial plane of this solution
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and we were able to see that, as argued by Semerdk, at limiting values of the particle’s
angular velocity, the 4-acceleration (or maintaining thrust) diverges (‘counter-intuitively’)
to an outward direction or (‘intuitively’) to an inward direction, just being determined
by their location relative to the photon orbit (which exists in the equatorial plane of the
considered solution for certain ranges of values of the parameters). Specifically, the parti-
cle’s acceleration behaves ‘intuitively’ below the photon orbit, whereas above the photon
orbit it behaves ‘intuitively’ for counter-rotating particles and ‘counter-intuitively’ for

co-rotating ones.

We have applied two major formalisms for the definition of the “general relativistic
equivalents of inertial forces” to circularly orbiting particles in the equatorial plane of the
Wahlquist solution —as far as we know, never before applied to a stationary non-static
axisymmetric interior exact solution—, have analysed the results (particularly, for fluid
particles) and have obtained a qualitatively similar behaviour in both acceleration (force)
decompositions; in particular, a reversal in the sense of the centrifugal force, starting at
the equator (border) at a certain rotation rate (different in each definition), and then, as
the rotation rate increases from this critical value, rising a region which affects particles

closer and closer to the centre of the body.

Both splittings of the inertia into different kinds of “inertial forces” in a general rel-
ativistic context illustrate the counter-intuitive features of dynamics of circular motion
occurring in strong fields like the represented by the Wahlquist exact solution for a perfect
fluid, in which it has been shown that the total acceleration (or maintaining thrust) of
equatorial fluid particles (which is outward directed), when projected onto the equatorial
geodesic distance unit vector, is, in absolute value, a decreasing function of the rotational
parameter in a general rotation regime (k* > 1), which is ‘intuivive’ from a Newtonian
point of view; however, for slow rotation for normal objects (k? < 1) it is an increasing
function, but the geodesic prolateness also increases as the rotation rate increases, so that

a larger (inward) total force corresponds to a smaller geodesic distance from the centre.

With this result, one is tempted to conclude that the boundary properties (total force
at the equator, convexity, etc.) are related to the interior ones (ellipticity, etc.), as in
the Newtonian case. However, as shown in a previous paper,?’ in general relativity one
cannot directly extrapolate geometrical and dynamical boundary features to the interior

of the fluid configuration.
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Rotational effects in the Kramer solution

M. J. Pareja
Dept. de Fisica Teorica II, Ciencias Fisicas,

Universidad Complutense de Madrid
E-28040 Madrid, Spain

Abstract

Several dynamical properties of the Kramer solution for a rotating object (stationary
axisymmetric) of perfect fluid are studied. We also present a definition of “rotational
force” on fluid particles at the equator, following an analogy with the Newtonian

classical description.

Keywords: exact solutions, self-gravitating systems, inertial forces

PACS: 04.20.Jb, 04.40.-b

Two major formalisms have been developed aiming at the interpretation of relativistic
motion in terms of “Newtonian forces”, and have been extended to stationary axisymmet-
ric spacetimes.l’? In these terms, the motion of test particles in Kerr and Kerr-Newman
spacetimes and approximation schemes valid for slow rotation have been analysed. How-
ever, to the best of our knowledge, those formalisms have not previously been applied to

interior exact solutions.

Among these solutions (stationary axisymmetric perfect fluid, with a finite boundary
of vanishing pressure, satisfying positivity energy conditions, and possessing no more

Killing vectors than 9; and 9,) there is one obtained by Kramer,?

2mds® = [n—1—bcos&e "dt* + [4(n — 1) — 4bcosé(e " — e 1)]dtdo
dn? el

d 2
n—1 + bcos& &

+[4(n—1) —4bcos&(e " + e 2 _ 2671)]d¢2 +

where the boundary of the fluid has a simple expression in terms of elementary functions,

bcosé = (1 + n)e”, and the modulus of the vorticity vector at the centre, (n = 1,& = 0),
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is an increasing function of b, 2e < b < 8.6. Some geometrical properties of this solution

have been analysed in Ref. 4.

We have studied the total acceleration of a test particle in circular motion in the
Kramer spacetime, in particular, and following a suggestion given by Semerédk,® we anal-
yse, for circular orbiting test particles in the equatorial plane (£ = 0), the dependence
of the particle’s acceleration on its angular velocity w at limiting values, and its relation
to the circular photon orbit appearing in this solution for 6.28 < b < 8.6; and we have
obtained that the 4-acceleration a = a”(w) 0, diverges (‘intuitively’) to —oo (inward)
below the photon orbit (when there is), whereas above the photon orbit, it diverges (‘in-
tuitively’) to —oo for co-rotating particles, and diverges (‘counter-intuitively’) to +oc for

counter-rotating particles.

When the two formalisms of “inertial forces” in general relativity, mentioned above,
are applied to particles in the equatorial plane of the solution under consideration, one
obtains a qualitatively similar behaviour in both acceleration (force) decompositions; in
particular, the “centrifugal parts of acceleration” reverse sense at the equator at a certain
rotation rate (b &~ 6.55 in the Abramowicz case, b ~ 7.18 in the Semerdk case) and, as
the rotation rate increases from these critical values, the reversal comprises a region of

particles closer and closer to the centre of the body.

Finally, we present a definition of “rotational force” on fluid particles at the equator
of the considered solution, following an analogy with the Newtonian classical description.

Based on the Euler equation, (¢ + p)a = —dp, we introduce

Spole
“weight” of polar column = / (e +p)lal ds

Scentre

= (ppole - pcentre) |77:1
n=1

and, similarly,
“Weight” of equatorial column = (pequator - pcentre)‘gzo .
Notice that ppore = Pequator = 0, thus showing that

b
weight of polar column = weight of equatorial column = - — 2. (1)
e
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Let us now consider the “rotational (r) - gravitational (g) decomposition” of the accelera-
tion a (force f) of two fluid particles, one located at the pole (p subindex) and the other at
the equator (eq subindex): suppose ap = g, (rp =0) and foq = —8eq = 8eq + req, With
feq| = |@eq| = ¢(|8eq| — |Teq|); ¢ = £1 (8eq and req anti-parallel) such that feoq is outward
directed. As |ap| = ){—f\/m, we write b in terms of |ap| (or |gp|), and Eq. (1) yields

1
“weight” of polar column = —/2|g,|? + 4e2 — 2.
e

We define, in analogy with Newtonian settings, geq and req such that

1 e
“weight” of equatorial column = (—\ [2|8eq|? + 4€% — 2) |1 —m|, m = ||; q‘l ,
e eq

from where, by Eq. (1),

1 1
g\/2|gp|2 +4e? -2 = (g\/2|geq|2 + 4e? — 2) |1 —m|.

This yields

and for [reql,
case (i): g =1, |Teq| = [8eq| = |2eql,
case (ii): ¢ = —1, |Teq| = |Zeq| + |aeq] -

One can numerically see that in both cases |geq| and |req| are increasing functions of the
rotation rate (parameter b) [and of the “ellipticity” = % > 0, leg and [, the equatorial
and polar (resp.) geodesic distances from the centre to the boundary|. In case (i) the
“dilution factor” m < 1 is an increasing function of b, and in case (ii) m > 1 is a
decreasing function of b; it follows that the defined inward part of the force (“rotational”
or “gravitational”), which is always smaller than the outward part, increases more rapidly

as the rotation rate (and the ellipticity) increases.

Accordingly, we find that, contrary to what happens in the Newtonian case, in general
relativity the boundary properties (e.g., total force at the equator) are in general not

related to the interior ones (e.g., ellipticity).

Financial support from Direccién General de Ensefianza Superior e Investigacién Cientifica (Project

PB95-0371) is gratefully acknowledged.
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Capitulo 4

Discusion integradora de las

publicaciones presentadas

En la primera parte de este trabajo, Capitulo 2, se derivan propiedades generales de
modelos relativistas estelares con rotacion diferencial, en concreto se obtienen cotas
en la velocidad de arrastre (que implica, en particular, la positividad de la densidad
de momento angular) y cotas en la masa-energia total de rotacion.

Las cotas en esta energia total de rotacién son absolutamente generales y validas
para cualquier ley de rotacién. Las cotas en la velocidad de arrastre dependen de
la subyacente ley de rotacién (la cual determina el modelo de rotacién diferencial y
ha de ser compatible con las ecuaciones de campo). Pero los resultados dados —en
Publicacién I son para una clase muy general y fisicamente importante de tales
leyes de rotacién (que incluye casi todos los perfiles de rotacién de interés astrofisico,
as{ como rotacién rigida).

Sin embargo, en el caso de rotaciéon lenta —estudiado en Publicacién IT—,
resulta que la distribucién de velocidad angular del fluido (o perfil de rotacién) no
es restringida por las ecuaciones de campo, a través de una posible ley de rotacién.
Y en el mismo articulo se refinan las cotas en la velocidad de arrastre. Por otra
parte, la nota-Ref. 11 en Publicacién II muestra como la ecuaciéon componente
(t ) utilizada (en el caso de rotacién lenta) corresponde a la ecuacién que satisface
la métrica general (cf. Publicacién I) a primer orden en la rotacién.

En un resultado —mo previamente publicado— incluido aqui tras Publica-
cion II, se analiza de forma exhaustiva esta ecuacion, para obtener el compor-
tamiento cualitativo de su solucién, distribucién de velocidad de arrastre, en una

configuracion con rotacién lenta y diferencial. El argumento utilizado para probar
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estos resultados, y el propio comportamiento tipico de estas funciones, daban las
ideas de partida de resultados mds generales, en Publicaciones I y II.

En cuanto a las cotas en la energia total de rotacién, la prueba que damos en
Publicacién II en el caso limite de rotacién lenta (prueba alternativa a la dada por
Hartle) resulta ser generalizable en un régimen de rotacién general (esto es, fuera

de tal limite), Sec. V de Publicacién 1.

Este efecto arrastre de campos inerciales (objeto de estudio en Publicaciones I
y II) es puramente relativista, y para poder comparar efectos relativistas de la
rotacion con resultados en el ambito newtoniano, necesitamos estudiar soluciones
particulares.

En Publicacién III el andlisis geométrico en relacion con la forma y la con-
vexidad de la superficie borde de la configuracién de fluido de Kramer, muestra
caracteristicas (a velocidades altas de rotacién del fluido) que se podrian interpre-
tar como no-newtonianas; sin embargo, el comportamiento de las geodésicas en el
interior de la configuracion muestra el analogo de resultados newtonianos sobre
convexidad.

Por otra parte, en Publicaciones IV y V hemos recogido ciertas propiedades
cinematicas y dindmicas de la solucion —o familia de soluciones— de Wahlquist
(incluida la solucién de Kramer) interior para fluido perfecto y con rotacién rigida,
y las hemos relacionado con la geometria de estos espacio-tiempos interiores. En
particular, se compara la fuerza total sobre particulas del fluido en el ecuador de la
configuracion —una propiedad de frontera— con la elipticidad de estas configuracio-
nes, medida con distancias geodésicas desde el centro —una propiedad interior—,
variando la velocidad de rotacién del fluido.

Los resultados obtenidos en Publicaciones IV y V corroboran y completan
Publicaciéon III en la conclusion de que, a diferencia del caso newtoniano, en
relatividad general, las propiedades geométricas y dindmicas de la frontera del fluido
no pueden extrapolarse directamente al interior de la configuracién de fluido.

En Publicacién IV obtenemos asimismo efectos no-newtonianos en el movi-
miento de particulas del fluido en el plano ecuatorial, similares a los obtenidos en
el caso estdtico, pero ahora la rotacién de la fuente (en particular, el arrastre de
los campos inerciales) hace que el efecto anémalo o no-newtoniano ocurra a partir

de una cierta érbita limite que se desplaza con respecto a la correspondiente Orbita
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en el caso estatico con forme varia el parametro de rotacién del fluido; en concreto,
este radio limite se hace menor a medida que la velocidad de rotacion de la fuente

aumenta.

Nota: La velocidad de un observador que localmente no rota (vista desde el
infinito espacial), o lo que es lo mismo, de un observador con momento angular
nulo (ZAMO) arrastrado por el campo gravitatorio del fluido —que coincide con la
velocidad de arrastre del fluido— es denotada en Publicacién IV por wy, en lugar

de A, como en Publicaciones Iy II.
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Capitulo 5

Conclusiones

1)

2)

3)

4)

5)

6)

En un modelo estelar relativista con rotacién diferencial, el arrastre de los cam-
pos inerciales ocurre en la misma direccién que la rotacién del fluido estelar,

cuando esta direccion es la misma para todas la particulas del fluido.

Para una gran clase de leyes de rotacion, la distribucién de velocidad angular
del fluido estelar tiene signo (todas las particulas giran en el mismo sentido)
y ademas ambos, la velocidad de arrastre y la densidad de momento angular,

tienen este mismo signo.

En el caso particular de rotacion rigida, la densidad de momento angular tiene

el mismo signo que la (constante) velocidad angular del fluido.

El valor medio —con respecto a una densidad intrinseca— de la velocidad
de arrastre es menor que el valor medio de la velocidad angular del fluido

[independientemente de la ley de rotacién, completamente en general].

La positividad y la cota superior de la energia total de rotacién dadas por
Hartle en el limite de rotacién lenta (y diferencial) se generalizan fuera de
este limite. En particular, la energia de rotaciéon —que se demuestra positiva,
y que decrece con el efecto arrastre (sobre lo que seria si este efecto fuese
eliminado)— estd acotada superiormente por el valor medio de la velocidad
angular del fluido, y asi, como era de esperar, crece con un incremento de la

velocidad de rotacién del fluido (en términos absolutos, sin signo).

Diferentes procedimientos ilustran las propiedades anti-intuitivas (desde un

punto de vista newtoniano) de la dindmica del movimiento circular, que ocu-
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7)

150

rren con campos gravitatorios fuertes (en rotacién) como los representados por

las soluciones exactas de Wahlquist y de Kramer para un fluido perfecto.

Contrariamente a lo que ocurre en el caso newtoniano, en el que las propiedades
de frontera (fuerza total en el ecuador, convexidad, etc.) estdn relacionadas con
las interiores, en relatividad general no podemos extrapolar directamente pro-
piedades geométricas y dinamicas de la frontera al interior de la configuracion

de fluido.
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