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Abstract

This dissertation is about Automatic Model building and Prediction procedures

that are useful to approximate and forecast the expected conditional mean of a

stationary target variable. We review the theoretical foundations of model selection

and compare the out-of-sample predictive ability of different automatic selection

procedures, focusing especially on the the RETINA method proposed by Pérez-

Amaral, Gallo & White (2003).

A new software implementation of RETINA called RETINA Winpack is proposed.

This software piece is designed for immediate use by non-specialist applied re-

searchers. As an important advantage over the original RETINA implementation,

it handles extreme observations and allows for distinctive treatment of categorical

inputs. Using RETINA Winpack, we present an empirical application to Telecom-

munications demand using firm-level data. RETINA Winpack is proven to be useful

for model specification search among hundred of candidate inputs and for finding

suitable approximations that behave well out-of-sample in comparison with alterna-

tive linear baseline models.

With the aim of increasing the flexibility of the RETINA method in order to deal

with non-linearities in the target variable, a new method called RETINET is pre-

sented. It generalizes RETINA by expanding the functional approximating capa-

bilities in a way which is similar to Artificial Neural Networks (ANN), by avoiding

some of the difficulties related to their practical implementation. As an advantage

over traditional ANN, RETINET’s specifications retain, to some extent, analytical

interpretability. Based on two different simulation examples the method provides

favorable evidence with respect to the out-of-sample forecasting ability provided

by both simpler and/or more complex modeling alternatives. RETINET balances

between a) Flexibility b) Parsimony c) Reverse engineering ability, and d) Computa-

tional speed. The proposed method is inspired by a Specific to General philosophy,

going from the simple to the sophisticatedly simple, avoiding unnecessary complexity.
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Chapter 1

Introduction

All models are wrong, some of them are useful.

George Box (1979)

1.1 Problem Statement

Throughout this dissertation we consider the problem of approximating the expected

value of a real valued target variable Yt given a p×1 random vector of predictors, or

inputs, Xt, where t ∈ N represents a generic indexing of the available observations.

Broadly speaking the ultimate goal of this problem is to translate a potentially

complex phenomena in a compact mathematical representation which is useful and

has certain desirable properties for prediction, using the information included in the

data at hand. In what follows we assume the convention that at time t we observe

Xt prior to the realization of Yt for which the prediction is to be made. Formally

we are interested to obtain a satisfactory approximation of

µ(Xt) ≡ E[(Yt|Xt)]

By restricting our attention on predictions based on the conditional mean we rule

out other type of approximations (e.g. those based on the conditional median or

conditional mode). To what extent this mathematical representation will be accept-

able depends on many aspects being studied and especially on its intended final use.

Here we are concerned mainly with the prediction problem, and will consider inter-

pretational issues only after a “certain type of representation of the data” has been

chosen1. We may be tempted to think in models in terms of causal relationships

1We intentionally use the expression “certain type of representation of the data” to remark that

1
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but in economics as well as other social sciences, our phenomena of interest Yt is

almost always generated from a natural experiment2. The main consequence is that

we do not know the true form that µt assumes. In addition it may be well the case

that some inputs may be not available, or if they are, they represent error-laden

measurements of variables that may or not be causally related to the target vari-

able. Because of this, it makes sense to assume that any representation m ∈M we

use for µ, is typically miss-specified. From a different point of view, we could say

that a true µ may not exist or is of infinite dimension3. Related to the idea of true

representation we have the following definition of correct and incorrect specification:

Definition 1.1.1. A model for E(Yt|Xt) is correctly specified if µ(Xt) belongs to the
collection M of the considered representations. Conversely when the collection M
is restricted such that it doesn’t include µ(Xt) then we say the model is misspecified.

As (White 2006) (p.462) argues, when the objective of the modeling is prediction,

model misspecification is by no means a problematic aspect, provided that we choose

suitably a representation m from a collection of possible M for µ. The availability

of a representation m derived from the data that provides a good approximation

to the underlying relationship, although may not have the exact functional form

as the true solution µ, is still very useful. If in addition, we are able to find an

analytical expression for m this would allow easy comparison to other models, could

be used to extract the relative importance of various predictors, and (depending on

the problem) could be used to decipher the underlying phenomena.

In any case, we must acknowledge that by using an element m of the collection M
our predictions may be not accurate as if we had the information about µ, the true

Data Generating Process (DGP)4.

there is not a unique way but a vast array’ of different possibilities which may be all equally valid
and useful to represent the data, including the averaging (or combination) of different models.

2A natural experiment is a naturally occurring event or situation, which a researcher exploits to
help answer a research question. Natural experiments are quasi-experiments in the sense that the
researcher has little or no control over the situation that is being observed. Natural experiments
rely solely on observations of the variables of the system under study, rather than manipulation
of just one or a few variables as occurs in controlled experiments. The main consequence is that
since we can not reproduce the same experiment in a laboratory, it is impossible to unequivocally
determine causation in any representation built from natural experiment data.

3For example think about an autoregressive stationary process of infinite order, which is equiva-
lent to a MA(1) process. If M is the restricted class of all possible autoregressive models, then µ is
not inM. Hence, any autoregressive model of finite order q inM, represents just an approximation
of the true DGP µ ≡ MA(1).

4We want to stress once again that the true DGP µ isn’t necessarily related to the data X
in a causal sense. In practical situations, the sample available doesn’t necessarily contain all the
relevant information, and some predictors are not necessarily relevant for prediction.
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The challenge then becomes how to choose a representation m from M such that

our predictions achieve a satisfactory level of accuracy in some sense that will be

clarified later.

1.2 Model Complexity, Parsimony principle

In order to choose an element from the model M, we may refer to two very broad

and general principles that can be adopted as scientific modeling philosophy. Since

the objective of our empirical analysis is to find a best approximating model, not a

true model, the goal is to find a possibly accurate approximation m̂ of the infor-

mation contained in the data at hand. Indeed, there is a long-standing tradition

in science that simple theories are preferable to complex ones. This is known as

Occam’s razor or the principle of parsimony that provides the following criterion

for deciding among scientific theories or explanations: one should always choose

the simplest explanation of a phenomenon, the one that requires the fewest leaps

of logic. Or said differently, one should not increase, beyond what is necessary, the

number of entities required to explain anything. This is almost opposite to Epicurus

principle of multiple explanations that “if more than one theory is consistent with

the data, keep them all”. A well known example of multiple theories derived from

the same data is Keplers laws of planetary motion and Copernicus’s refinement of

the Ptolemaic theory of epicycles. Ironically, at the time, Kepler’s laws did not

account for the known data quite as well as Copernicus’s refinement. Kepler’s laws

were ultimately chosen over those by virtue of their simplicity.

1.3 The number of possible parameterizations

How many possible representations are there in M? Each representation m maps

from Rk → R where k is the number of parameters to be estimated. In linear

regression given k predictors, there are 2k−1 representations in M. This number

rapidly grows as the dimension of the coefficient vector does, and in high dimen-

sional problems (i.e. k > 40) this is a serious problem, both for model selection and

estimation, because we should find the solution of the underlying discrete combina-

torial optimization problem. For more complicated models (e.g. Artificial Neural

Networks) the estimation of a single parameterization may be so time-consuming

that it is practically impossible to find the “best” combination of predictors.

Since it is usually infeasible to evaluate all possible representations, heuristic meth-

ods are applied to find a suitable subset of {1, . . . , K} in the space of all non-empty
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subsets. In linear regression this problem is called Subset regression (Miller 2002,

Tibshirani 1996b, Breiman 1995). In principle, all possible combinations of indepen-

dent variables should be tried for selecting a suitable representation. Since nowadays

databases easily reach many thousand of observations, consist of hundred of vari-

ables and often must be processed in real time, this could be a formidable task, even

if high performance computers are available.

Efficient search techniques like branch and bounds5 or leap and bounds (Brusco

& Stahl 2005) methods may be applied for exhaustive search and solve the model

selection problem if the number of possible coefficients to be estimated is not too

high. In linear regression, computational efficiency can also be achieved by using

the sweeping technique which will be discussed in chapter 4.

Besides the practicability of these approaches, there are also several theoretical

considerations:

• The contribution of a single variable to the prediction of Y may not easily be

assessed if only a small number of observations is available. (Efficiency)

• A simple criterion, like the goodness of fit, R2, may lead to wrong conclusions if

the number of selected variables is large relative to the number of observations

(over-fitting).

• The selection of combinations is guided by the available data; thus the resulting

final selection reflects the “best” model for the given data set, and not the

“best” subset for the population. This leads to “selection” biases as discussed

by Breiman (1996b).

• Some of the selection methods are specifically tailored to linear (regression)

models; they are unusable with non-linear methods such as neural networks.

• Computational efficiency is an important aspect to be taken into account,

especially if the number of predictors is very high (> 100).

Technically, any proposed model building and selection procedure should be able to

overcome most of the practical difficulties in applied work, and automate whenever

possible routine operations on the data. In building these procedures we find useful

to mention mining projects which usually consist of six phases, as adapted from the

5From Wikipedia: “Branch and bound (BB) is a general algorithm for finding optimal solutions
of various optimization problems, especially in discrete and combinatorial optimization. It consists
of a systematic enumeration of all candidate solutions, where large subsets of fruitless candidates are
discarded en masse, by using upper and lower estimated bounds of the quantity being optimized.”



5

industry standard, CRISP-DM (Cross-Industry Standard Process for Data Mining,

www.crisp-dm.org):

1. Research understanding phase - Translate research objectives into the

formulation of a data mining problem definition. - Prepare a preliminary

strategy for achieving these objectives.

2. Data understanding phase - Collect the data. - Use exploratory data

analysis to familiarize yourself with the data and discover initial insights. -

Evaluate the quality of the data.

3. Data preparation phase

(a) Clean the raw data. For example, there may exist gaps in the data and/or

different data sampling rates may have been used in the collection of

various variables. This phase is very labor intensive. - Select the cases

and variables to analyze. - Cast the data, including the variables of

interest, in a form suitable for the modeling tools.

(b) Perform transformations on certain data variables.

4. Modeling phase Select and apply appropriate modeling techniques. - Cali-

brate model settings to optimize results. - Often, several different techniques

may be used for the same data mining problem. - Sometimes it may be neces-

sary to loop back to the data preparation phase to bring the form of the data

into line with the specific requirements of a particular estimation technique.

5. Evaluation phase

Evaluate the one or more models delivered in the modeling phase for qual-

ity and effectiveness before deploying them for use in the field. - Determine

whether the model in fact achieves the objectives set for it in the first phase. -

Establish whether some important facet of the research problem has not been

accounted for sufficiently. - Come to a decision regarding use of the results.

6. Deployment phase

Make use of the models created: Model creation does not signify the com-

pletion of a project. Periodic revisions and monitoring of its out-of-sample

predictive ability remains important.
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Of the six steps above, it is phases 3b, 4, and 5 that lend themselves to an algorithmic

treatment and are the subject of Automatic Modeling techniques. These phases of a

modeling project pose the most serious challenge to non-experts. In standard data-

mining approaches, the user is left to decide on and to integrate particular strategies

for each of these three phases. This is a complex task even for an experienced user.

Throughout this dissertation we propose an approach that integrates and automates

these steps based on a set of optimally motivated strategies. The approach offers

automated model building and model evaluation. The automated methodologies are

exposed through high-level interfaces which hide the statistical concepts from the

users, thus helping to bridge the conceptual gap usually associated with automatic

modeling. Note, however, that the automation does not remove the need for human

direction of data mining. Since a sufficient exhaustive search almost leads to some

apparent pattern in the data, there is always a risk to mistake the spurious for

the substantive (White 2000). Also since the data is often used twice, both for

model selection and inference, the term “Automatic Modeling” has also acquired a

negative connotation because is easily leads to “Data Snooping”, or cruel activities

like “torture the data until it confesses” (Miller 2002). The approach adopted here,

tries to overcome these negative aspects of data dredging. Rather, here we consider

that Automatic Modeling techniques should be incorporated into a human process

of problem solving as useful tools. The human direction is particularly essential in

the research and the data understanding phases, as well as in the deployment phase

of the whole modeling process.

1.3.1 Automatic Modeling Procedures

The expression “Automated Modeling” is usually used as a synonymous of “Ma-

chine Learning” or model building without human intervention. Recently much

research has been initiated in the use of automated model selection procedures,

taking advantage of our access to computer power. Here our main concern is to im-

plement automatic data-driven strategies to pick the most convenient representation

(subset in M) defined as the best approximation to E(Yt|Xt). From this point of

view, approximation and model selection problems are strictly related and interact

constantly in any modeling procedure. For applications in Econometrics, readers

may refer to the 20th anniversary issue of Econometric Theory (vol.21 2005), a

monograph exclusively dedicated to Automated Inference and the future of Econo-

metrics. This volume contains contributions on various aspects of the theme of

automation, introducing the notion of automatic discovery, analyzing the validity
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of selection procedures, and discussing the methodological implications for inference

that arise in the use of automated procedures. We will review some of these aspects

in the first chapter. Here we define Automated Modeling as an algorithmic approach

to data exploration and knowledge discovery. Automated Modeling is directly re-

lated to “Data-Mining”. Data mining is an umbrella term and is being routinely

used in a variety of data-centric fields. In the recent years these techniques have

acquired a positive connotation as a means of automatically extracting valuable

information and relationship from massive databases. In real world applications,

Data mining algorithms are used to monitor daily transactions on nearly one bil-

lion active credit and debit cards and have significantly reduced fraud rates. Use of

data mining techniques in the analysis of biological data has given rise to a rapidly

growing field of bioinformatics (see special issue on Bioinformatics in Pattern Recog-

nition, 39, 2006). NASA’s Mars Exploration Rover Missions provided successful and

well publicized deployment of data mining techniques to auto-navigation and path

planning for rovers. These techniques are being further developed for rover ex-

ploration in future planetary missions. Recently, data mining has begun to find

more use in analysis of spacecraft data and some interesting studies have been at-

tempted (Lundstedt 1992, Dmitriev & Suvorova 2000, Jankovicová, Dolinskỳ, Valach

& Vörös 2002, O’Brien & McPherron 2003).

1.3.2 Reverse engineering

Less known and much less emphasized, but of significant interest to sciences, are

automatic procedures that provide their solution in terms of analytical functions.

We refer to the automatic derivation of analytical solutions from the data as reverse

engineering the data. An example would be to derive Newton’s law of gravity from

the planetary data. The analytical form of the model is essential. It allows one to

examine the role of various terms and decipher the underlying relation and allow

sharing and easy computation by others. Automatic modeling procedures that have

reverse engineering properties are interesting because they are useful for inductive

reasoning. An excellent example of inductive reasoning in the field of Economics

is given by Cobb & Douglas (1928) who proposed the well known Cobb-Douglas

production function which is still widely used in many applied economic studies:

T = AKαL(1−α) α ∈ [0, 1] (1.3.1)

where K and L are the quantities of capital and labor respectively, and α/(1−α) rep-

resents the substitution elasticity among the inputs K and L. It is remarkable that
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this function was discovered not from an a priori reasoning but through a process of

induction from the empirical data. Cobb and Douglas observed that labor share of

the US income had been approximatively constant over time during the years 1899

to 1922 and independent of the relative prices of capital and labor. They deduced,

under the assumption of constant returns to scale, perfect competition in the input

and output markets and profit maximizing firms, that the production function had

to be of the form given in 1.3.1. The Cobb-Douglas function forms the founda-

tion for Solow’s growth theory (Solow 1956) and research into productivity growth

factors, such as “technological progress” and “human capital development”. The

same inductive reasoning was applied by Arrow, Chenery, Minhas & Solow (1961)

to discover the Constant-Elasticity-of-Substitution function (C.E.S.), which repre-

sents a more general production function that the Cobb-Douglas. These examples

are by no means exhaustive of the “inductive” process of discovery which has a long

tradition in science. While the prediction of observations is a forward problem, the

use of actual observations to infer the properties of a model is an inverse problem.

Inverse problems are difficult because they may not have a unique solution, and it

is for this reason that automatic modeling strategies with reverse engineering capa-

bilities have inevitably a heuristic nature, but yet are still very useful for building

useful representations of real world phenomena. The key advantage of automatic

procedures with reverse engineering capabilities is that the solution is always in an

analytical form rather than a “black box” as in most standard data mining model-

ing technique like Artificial Neural Networks (ANN). It is rather surprising that the

reverse engineering capability of mining algorithms has not been in the forefront of

scientific data mining. Nevertheless, deriving analytical equations from data does

not in general always produce the same exact functional form. However, the result-

ing analytical equation will be a very close proxy for the actual equation. Ideally

one would like to be able to derive the underlying laws describing a system from the

data. In trying to craft such a capability in algorithm form, however, one is faced

with a number of issues. First, data samples are usually limited and have embedded

noise. Second, the necessary functional forms (e.g., ratios, derivatives, etc.) appro-

priate for a system that one is modeling may not be covered in the collection of

bases and/or the transformations of a given algorithm. Third, observe that defini-

tion of the optimality is relative to the goal (prediction or structural interpretation

and estimation) and the specific class of candidate representations in M.
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1.4 Outline

This dissertation is organized in 6 chapters including this introduction. In chap-

ters 2 and 3 we review the theoretical foundations for the developments included in

chapters 4,5 and 6. In particular, chapter 2 includes a review on methods and the

work done so far in the field of Prediction, Model Assessment and Selection. We

will review approximation techniques using linear modeling techniques in chapter 3.

In chapter 4 we review the fundamentals of Automatic Model building and selec-

tion and introduce the reader to different modeling strategies, focusing especially on

the features of the RETINA method and providing Monte Carlo evidence that this

method is as good as many others and has the advantage of incorporating approxi-

mation capabilities that other automatic methods do not have. Chapter 5 includes

an empirical application of RETINA to model the demand of US firm level telecom-

munications data, which shows the utility of RETINA as an approximation and an

automatic modeling tool. Chapter 6 presents the development of a new automatic

model building tool called RETINET. The method takes advantage of libraries of

highly non-linear transformations. Conclusions follow by providing a brief summary

of this work and suggesting some future research directions.
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Chapter 2

Prediction, Model Assessment and
Selection

2.1 Optimal prediction

In many instances in economics and finance we need to obtain a point forecast of

a target variable Yt given a vector of predictors Xt. One common way to proceed,

under quadratic loss, is to construct point forecasts as approximations to the con-

ditional expectation of Yt given Xt, µ(Xt) = E[Yt|Xt] which yields the best possible

prediction of Yt given Xt under Prediction Mean Squared Error (PMSE), provided

Yt has finite variance. That is, µ solves the problem

min
m∈M

E
[
(Yt −m(Xt))

2
]

where M is the set of functions m of Xt having finite variance and the expectation

is taken with respect to the joint distribution of Yt and Xt. Given Xt the PMSE

may be decomposed as:

E[Yt −m(Xt)]
2 = E[(Yt − µ(Xt) + µ(Xt)−m(Xt))

2]

= E[(Yt − µ(Xt))
2] + E[(µ(Xt)−m(Xt))

2]

+2E[(Yt − µ(Xt))(µ(Xt)−m(Xt))]

= E[(Yt − µ(Xt))
2]︸ ︷︷ ︸

Pure Error

+E[(µ(Xt)−m(Xt))
2]︸ ︷︷ ︸

Approximation Error

(2.1.1)

11
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The equality follows by applying the law of iterated expectations since:

E[(Yt − µ(Xt))(µ(Xt)−m(Xt))] = E[E[(Yt − µ(Xt))(µ(Xt)−m(Xt))]|Xt]

= E[E[(Yt − µ(Xt))|Xt](µ(Xt)−m(Xt))]

= 0 · [µ(Xt)−m(Xt)]

= 0

The PMSE is decomposed in two parts: the pure Prediction Mean Square Error σ2

and the Approximation Mean Square prediction Error (AMSE), E[(µ(Xt)−m(Xt))
2].

It follows that in order to minimize the PMSE it is sufficient to minimize the AMSE,

which is always non-negative. Notice that the AMSE is zero if and only if we choose

m = µ, that is only if the model M is correctly specified in the sense that the

representation m is the right one. In practice the parameters of our model m(Xt)

are unknown and we have to estimate them. One possibility is to use the OLS

estimator, m̂(Xt). We next define the loss or generalization error as

L = E[(Yt − m̂(Xt))
2] (2.1.2)

where the expectation above averages over everything that is random. In many

occasions we might want to use a linear model to approximate the unknown con-

ditional expectation of our target variable given our set of predictors. In this case

our model is given by L = {l(Xt) : l(Xt) = X ′
tβ, β ∈ Rk} and we might estimate

β using the OLS method, which is well known to be consistent for β∗ such that

β∗ = argminβE[(µ(Xt) −Xtβ)2] so when we estimate the parameters and compute

the approximation error (AMSE), it can be decomposed as follows

E[
(
µ(Xt)− m̂(Xt)

)2
] = E[

(
(µ(Xt)− E[m̂(Xt)] + E[m̂(Xt)]− m̂(Xt)

)2
]

= E[((µ(Xt)− E[m̂(Xt)])
2] + E[

(
E[m̂(Xt)]− m̂(Xt)

)2
]

+2E[
(
µ(Xt)− E[m̂(Xt)]

)(
E[m̂(Xt)]− m̂(Xt)

)

= E[((µ(Xt)− E[m̂(Xt)])
2]︸ ︷︷ ︸

Bias2

+E[
(
E[m̂(Xt)]− m̂(Xt)

)2
]︸ ︷︷ ︸

Variance

as E[
(
µ(Xt)− E[m̂(Xt)]

)(
E[m̂(Xt)]− m̂(Xt)

)
is 0.

The first component of the above decomposition is squared bias; that is, the amount

by which the average of the estimate differs from the true mean. The second term is

the variance, the expected squared deviation of m̂(Xt) around its mean. Importantly

what this expression tells us is that there is a trade-off between bias and variance.

For linear models fitted by ordinary OLS under usual assumptions and correct spec-

ification, the expected estimation bias is zero. However an unbiased representation
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may have a large mean-squared error if it has a large variance. This will be the case

if m(Xt) is highly sensitive to the peculiarities (such as noise, collinearity and the

choice of the sample points) of each particular estimation set and it is this sensi-

tivity which causes regression problems to be ill-posed (Tikhonov & Arsenin 1977).

Introducing bias is equivalent to restricting the range of parameterizations m for

which a model M can account. Typically this is achieved by reducing the number

parameters. In the linear regression terminology, this would consist in doing subset

selection by choosing only the most useful predictors. This can be carried out di-

rectly by the researcher but there are many methods to automatically perform this

operation, some of which will be discussed in chapter 4.

2.1.1 Regularization

Another possibility of introducing bias consists by imposing a penalty on the mag-

nitude of the parameters such they are shrunk towards the origin. This operation is

called “regularization”. Ridge regression Hoerl & Kennard (1970) is a specific form

of regularization with quadratic penalty:

β̂RIDGE = argminβ{(Y −Xβ)2 + λβ2}
Where λ is called penalty or “ridge” parameter. An equivalent way to write the

ridge problem is:

β̂RIDGE = argminβ{(Y −Xβ)2} s.t. ‖β‖2 ≤ s

where s is the size of the constraint imposed on the coefficients. This method

can not only reduce the variance but also the bias which model selection introduces

(Miller 2002). Ridge regression reduces the effective number of parameters. In other

words the resulting loss of flexibility makes the chosen representation less sensitive.

Compared with subset selection which is a discrete process (a predictor is included or

not in the approximating function), regularization methods are continuous processes.

This is because shrinking parameters towards the origin is equivalent to subset

selection in the limit, when the coefficient of a given predictor is set to zero. There are

many forms of regularization which depend on the functional form of the penalties

used. An example is the LASSO (Tibshirani 1996b) which uses a L1 penalty function

(see chapter 4). Out of sample prediction performance is usually enhanced by these

methods, especially when the design matrix is severely ill-conditioned or when the

complexity of the parameterization needs to be limited. Thus we may improve

accuracy of prediction either by expanding the set of candidate models M and/or
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Figure 2.1: Ridge Example with Longley data

by regularization, that is, shrinking some parameters towards zero. An improved

accuracy in prediction may be achieved in some equilibrium point where there is

an acceptable balance between model complexity and generalization ability. As an

example of ridge regression we use a well known data set which is often employed

as an example of ill-conditioning of the design matrix. This is the Longley data

set (Longley 1967). The ridge trace is depicted in figure 2.1 (left), which shows

how the coefficients vary as a function of the ridge parameter λ. On the right we

show how the sum of the squared coefficients decays as a function of the penalty

parameter. The ridge trace was introduced first by Hoerl & Kennard (1970) in order

to choose the ridge parameter for which the coefficients are not rapidly changing and

have “sensible” signs. In practice this method has been criticized for being highly

subjective and other methods are usually employed such as cross-validation (also

GCV is a popular choice, see Golub, Heath & Wahba (1979)).
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2.2 Model Selection

There is no agreement on a general definition of model selection, since it goes far

beyond subset selection in regression models. Broadly speaking the need for model

selection procedures arises when researchers have to decide among models classes

based on data. In general, we should apply any selection procedure with some

care, examining the structure of several good- fitting parameterizations rather than

restricting our attention to a single “best”. In practice it is common to estimate

different models before choosing the one which is used for practical purposes: pre-

diction, interpretation and hypothesis testing. In our context, the goal of model

selection is to assess the performance of different alternative parameterizations m

in order to choose the best one in terms of predictive ability. In linear regression

when the objective is interpretation and/or hypothesis testing, the problem of model

selection consists in finding a suitable subset of predictors. The model selection

approach is different from the more traditional hypothesis testing approach and is

appealing because Model selection allows one to focus on the issue at hand: out

of sample forecasting performance and doesn’t require the specification of a correct

model for its valid application, as does the traditional hypothesis testing approach.

In fact the distributional properties of single coefficients and statistics used in the

selection process, depend upon every modeling decision. See for example Leeb &

Pötscher (2005) for a discussion of these issues1. Here we remark that a good sub-

set of predictors for prediction may be inappropriate for hypothesis testing and/or

interpretation of each single coefficient.

When considering the properties of a model selection procedure an obvious question

that one may ask is whether it is consistent. A selection procedure is consistent

in the sense that it selects the true DGP with probability approaching one as the

sample size increases.

P
{
m̂n = µ

} P−→ 1

The subindex n makes explicit the dependency of any quantity on the sample size

n. Obviously such property is useful to the extent that the true representation is in-

cluded in the set of considered specifications M. If we do not make this assumption,

consistency becomes a less useful criterium to evaluate the asymptotic behavior of

any model selection procedure. As we will see further the asymptotic behavior of

many model selection procedures depends on the presence or absence of the true

1These authors show that data-driven model selection have an important impact on any post-
selection estimator, and ignoring these effects leads to invalid inference. Since our concern is about
approximation of unknown functional forms we skip this discussion here.
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DGP in M. Since we do not make any assumption regarding the true representa-

tion of µ we consider an optimality criterion for a model selection procedure which is

better suited in the context of approximation and prediction. Considering our pre-

diction problem, a selection procedure is optimal if it tends to select a representation

m which provides the lowest generalization error (or smallest expected loss) as the

estimation sample size increases. In linear regression this means that a subset of pre-

dictors that contains all relevant inputs will be called a “good” subset (thus yielding

a correctly specified model), while the subset that contains all relevant inputs but

no others will be called the “best” subset (which yields the correctly specified model

with the smallest dimension). Here we consider “good” and “best” subsets in an

asymptotic sense (as the number of observations available goes to infinity). With

a small estimation sample (training set), it is possible that a subset that is smaller

than the “best” subset may provide better generalization error.

Shao (1997) provides a more general definition of consistency that includes the case

where all models are misspecified (as it typically occurs in economics and finance as

well as other disciplines). For Shao (1997), a selection procedure is consistent if

P
{
m̂n = m∗

n

} P−→ 1 (2.2.1)

Here m∗
n is the representation that minimizes mean squared error loss among the rep-

resentations considered in M. In some cases a selection procedure is not consistent

but (m̂n) is still “close” to m∗
n in the sense that:

Ln(m̂n)

Ln(m∗
n)

P−→ 1 (2.2.2)

A selection procedure satisfying this condition is said by Li (1987) among others to

be asymptotic loss-efficient. Here the subscript n refers to the fact that both losses

explicitly depend on the sample size used for their estimation. Notice that the best

parameterization does not imply the consideration of any truth µ, we simply refer

to it as the best approximating representation m∗. Observe that the property of

Asymptotic Loss Efficiency is a weaker requirement than consistency in the sense

that, a consistent procedure is asymptotic loss efficient but the converse is not

necessarily true. This brings us back to the problem of estimating the generalization

error. The plug-in principle suggests to estimate this quantity using the available

information, that is computing the sample average loss given by:

L̂(m̂) =
1

N

N∑
t=1

(Yt − m̂(Xt))
2
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However it is well known that this estimator doesn’t represent a reliable estimate of

the generalization error, because the same data is being used to fit the model and

assess its error. The training error consistently decreases with model complexity,

and in the limit, when k → N for a given N , it drops to zero. A model with zero

training error would overfit the data and will typically generalize poorly. In fact as

the model becomes more and more complex it is able to adapt to more complicated

underlying structures (decrease in bias), but the estimation error increases with

model complexity (increase in variance). In between there is an optimal model

complexity that gives minimum generalization error. The consequence is that the

training error will be an overly optimistic estimate of the generalization error. The

expected difference between the generalization error and the training error is also

called the optimism effect. In order to have a reliable selection procedure we need to

solve this problem and we may adopt two different strategies, either estimating the

optimism effect included in the training error, or alternatively estimating directly

the generalization error using cross-validation or bootstrapping methods based on

“re-sampling” (Weiss & Kulikowski 1991, Efron & Tibshirani 1993, Hjorth 1994,

Plutowski & White 1993, Shao & Tu 1995).

2.3 Selection procedures

It can be shown that the optimism effect included in the in-sample error is positively

related with the covariance between the Yt and the predicted values Ŷt. In the linear

regression model the expression of the optimism effect in a linear model is very

simple (Hastie, Tibshirani & Friedman 2001):

2p

N
· σ2 (2.3.1)

This shows that the optimism increases linearly with the number of predictors p, but

decreases as the training sample increases. Similar versions of the optimism formula

also hold for other error models such as binary data and entropy loss. In linear

models, statistical theory provides several simple estimators of the generalization

error under various sampling assumptions (Efron & Tibshirani 1993, Miller 2002).

These estimators adjust the training error for the number of parameters being es-

timated, and in some cases for the noise variance if that is known. Mallows’ Cp

(Mallows 1973) is an example. This model selection procedure is obtained using

2.3.1 :

Cp = N−1

N∑
t

[Yt − µ̂(Xt)]
2 +

2p

N
σ2
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One of the disadvantages of Mallows C is that the variance of the noise σ2 must be

known. In practice this is estimated by a consistent estimator. Generalization error

estimators that do not require the noise variance to be known in advance, are:

AIC The Akaike Information Criterion (Akaike 1973), which is similar to the

Mallows Cp procedure but applicable whenever a likelihood loss function is

adopted. The AIC measure the relative Kullback-Leibler discrepancy. When

errors are assumed to be gaussian then the AIC statistic is equivalent to Mal-

lows Cp, thus in the case of linear regression model they are equivalent if the

error term is assumed to be normally distributed. For models linear in the

parameters and gaussian distributed errors we have:

AIC = N ln(σ̂2) + 2k

where k = p+2 represents the total number of estimated parameters, that is, p

predictors, the constant term and the residual variance2 It has been shown that

the Akaike Criterion may perform poorly when there are too many parameters

in relation to the available observations. Sugiura (1978) proposed a second

order derivation for the AIC called corrected AIC (AICC):

AICC = AIC +
2k(k + 1)

N − k − 1

It is usually advocated to always adopt AICC instead of AIC, since when N

is large with respect to k the second order correction is negligible and since

AICC ≈ AIC. Burnham & Anderson (2002) (pp.66) suggest its use when the

ratio N/k < 40.

BIC The Schwarz’s Bayesian Criterion, known as BIC (Schwarz 1978, Raftery

1995). The BIC procedure follows from a bayesian approach to model se-

lection is generically:

BIC = N ln(σ̂2) + ln(N)k

Notice that BIC is very similar with the factor of 2 replaced by ln (N) to

AIC, but its motivation is quite different. It arises from a Bayesian approach

2The penalization term k is an asymptotic estimator of tr(J(θ) · I(θ)−1) where J(θ) and I(θ)
are respectively the first and the second partial derivatives of the likelihood function. This bias
adjustment term defines the Takeuchi Information Criterion (TIC) (Takeuchi 1976) . For a gaussian
linear model : TIC= N ln(σ̂2) + tr(J(θ) · I(θ)−1). Although TIC is more general than the AIC
(see Burnham & Anderson (2002, p. 353-372) for further details on AIC derivation and TIC
generalization), it is almost ignored in applied research because, unless the sample size is big, the
elements of J(θ) and I(θ) will be poorly determined.
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to model selection. In this case choosing the model with the lowest BIC is

equivalent to choosing the representation with the largest posterior probability,

that is, the probability of selecting mi given the data Y, X:

Pr[mi|(Y,X)] =
Pr[(Y, X)mi] · Pr(mi)∫
Pr[(Y,X)mi] · Pr(mi)dm

This approach takes explicitly into account that there is an uncertainty in

estimating the parameterization mi given the data set (Y, X). Assuming a

gaussian prior, the implicit process prior for µ(X) is also Gaussian and it can

be shown that (Burnham & Anderson 2002, p. 303)

Pr[mi|(Y, X)] =
exp(−1

2
∆BICi) Pr(mi)∑M

i exp(−1
2
∆BICi) Pr(mi)

where ∆BICi = BICi − BICmin and Pr(mi) is the prior probability placed on

parameterization mi. BICmin is the value minimum BIC among all m’s in the

set M.

MDL Rissanen’s Minimum Description Length principle MDL (Rissanen 1978) has

been developed in the field of information theory. In this framework, provided

that each parametrization m gives a description of the observed data, we

discriminate between competing m’s based on the fit and the complexity of

each description. The fundamental idea behind the MDL Principle is that any

regularity in a given set of data can be used to compress the data, i.e. to

describe it using fewer symbols than needed. For the linear model the model

selection procedure is:

MDL =
N

2
ln(RSS) +

1

2
ln det(X ′

mXm)

where Xm refers to the n× p matrix of the predictors included in the specifi-

cation m, and RSS is the residual sum of squares.

All these measures3 are quantifying the relative distance between candidate models

both in terms of the goodness of fit and in terms of model complexity. Roughly

speaking, they measure the quantity of information corresponding to each parame-

terization m estimated from the sample. Theoretical foundations of these measures

have deep roots in information theory (Shannon & Weaver 1963). The idea is that

3For classification problems, the formulas are not as simple as for regression with normal noise.
For example, see Efron (1986) regarding logistic regression.
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information in the sample is something that can be quantified and that the quantity

of information is closely related to its probability. For example the MDL criterion is

motivated by the following problem: “how much data could one pack into a sequence

of number of bits, or conversely, how could one store a certain amount of data using

the least number of bits? If a parameterization may be represented as a sequence

of 0 and 1, then any representation m ∈ M is packing a different amount of infor-

mation contained in the sample. Define the probabilistic space {M,F ,P} where m

lives. The amount of information carried by each model m is strictly related to its

selection probability. In other words the idea is that the amount of data one can pack

into a certain number of bits is related to the redundancy or information content of

the data. Intuitively this means that the more redundancy, the more parsimonious

should be our representation m of µ.

The use of all the above procedures for model selection is quite simple. One picks

up the model with lowest index over the set M of models considered. Notice that

we can estimate not only the optimal model given M, but also assess the relative

merits of the representations considered. Other indexes as the generalized AIC such

the GIC method (Nishii 1984), belong to the same families of indexes that try to

estimate the optimism effect from the training sample.

2.4 Re-sampling methods

2.4.1 Split-sample or hold-out validation.

The most commonly used method for estimating generalization error is to reserve

part of the data as a “test” set, which must not be used in any way during the

estimation stage. The test set must be a representative sample of the cases that

one wants to generalize to. After training, one predicts the values of Yt on the test

set, and the error on the test set provides an unbiased estimate of the generalization

error, provided that the test set was chosen randomly. The disadvantage of split-

sample validation is that it reduces the amount of data available for both training

and validation (Weiss & Kulikowski 1991). If one uses this method to choose which

of several different candidates m to use for prediction purposes, the estimate of the

generalization error of the best model will be optimistic. To clarify this point, if we

estimate several parameterizations using one data set, and use a second (validation

set) data set to decide which representation is best, we will need use a third (test

set) data set to obtain an unbiased estimate of the generalization error of the chosen

model (Miller 2002). As we will see further the RETINA procedure splits the sample
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in three parts in order to overcome this problem. Hjorth (1994) explains how this

principle extends to cross-validation and bootstrapping.

2.4.2 Cross-validation methods

Cross-validation is an improvement on split-sample validation that allows one to

use all of the data for estimation. The disadvantage of cross-validation is that one

has to re-estimate all the candidate representations m many times. In K-fold cross-

validation, one divides the data into K subsets of (approximately) equal size. Then

one estimates the model K times, each time leaving out one of the subsets from

the estimation set, but using only the omitted subset to compute whatever error

criterion is of interest. If K equals the sample size, this is called leave-one-out

cross-validation. Leave-D-out is a more elaborate and expensive version of cross-

validation that involves leaving out all possible subsets of D cases. Observe that

cross-validation is quite different from the split-sample or hold-out method that is

common in subset regression and Neural Networks training. In the split-sample

method, only a single subset (the validation set) is used to estimate the gener-

alization error, instead of K different subsets; i.e., there is no “crossing”. The

distinction between cross-validation and split-sample validation is relevant since the

former delivers more reliable results for small data sets; this fact is shown by Goutte

(1997) discussing the results of Zhu & Rohwer (1996). For an insightful discus-

sion of the limitations of cross-validatory choice among several learning methods,

see Stone (1977). A variant of leave-one-out cross-validation is generalized cross-

validation(GCV ) which was introduced by Craven & Wahba (1979). GCV chooses

the model that minimizes

GCVn ≡ N−1
∑N

t=1(Yt − m̂n(Xt))
2

(
1−N−1trMn

)2

where trMn denotes the trace of Mn, the projection matrix of our predictors (also

usually called the hat matrix).

2.4.3 Bootstrapping

Bootstrapping is an improvement on cross-validation that often provides better es-

timates of generalization error at the cost of even more computing time. Bootstrap-

ping seems to work better than cross-validation in many cases (Efron 1983). In the

simplest form of bootstrapping, instead of repeatedly analyzing subsets of the data,

one repeatedly analyzes re-samples of the data. Each re-sample is a random sample
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with replacement from the full sample. For the bootstrap it is common to use be-

tween 50 to 2000 re-samples. There are many more sophisticated bootstrap methods

that can be used not only for estimating generalization error but also for estimating

confidence bounds for Artificial Neural Networks (Efron & Tibshirani 1993). For

estimating generalization error in classification problems, the .632+ bootstrap (an

improvement on the popular .632 bootstrap) is one of the currently favored methods

that has the advantage of performing well even when there is severe overfitting. Use

of bootstrapping for Artificial Neural networks is described in Baxt & White (1995),

Tibshirani (1996a), and Masters (1995). However, the results obtained so far are

not very thorough, and it is known that bootstrapping does not work well for some

other methodologies such as empirical decision trees (Breiman, Friedman, Olshen &

Stone 1984, Kohavi 1995, Ripley 1996), for which it can be excessively optimistic.

2.5 Model Selection procedures for dependent data

When we consider time series data and therefore dependent observations, the model

selection procedures outlined above retain their asymptotic properties as long as our

model errors are martingale differences and thus are uncorrelated. Nevertheless, if

they exhibit correlation the model selection criteria become biased and require gen-

eralizations. Generalized Mallow’s CL circumvents this problem by explicitly incor-

porating the error variance-covariance matrix, which of course has to be consistently

estimated. The family of cross-validation statistics also has to be modified. One way

of doing that is by considering H-block cross-validation procedures. H-block cross-

validation (Burman, Chow & Nolan 1994) is appropriate under stationarity. This

approach removes the tth observation and h observations preceding and following the

tth observation, then computes the average of the square differences between the tth

value of the dependent variable and the predicted value when the 2H observations

around observation t have been omitted from the data set for t = 1, 2, . . . , T . Ordi-

nary cross-validation is a special case of H-block cross-validation for which H = 0.

This procedure can also be generalized and used for Leave-D-out cross-validation

where H observations are removed preceding and following each of the D observa-

tions in the validation set and is called hv-block cross-validation (Racine 2000). A

computationally efficient way to implement this algorithm is described in Racine

(1997).
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2.6 Asymptotic properties of model selection pro-

cedures

Shao (1997) provides a very general framework for studying the asymptotic loss-

efficiency of linear model selection procedures when models are estimated by OLS.

He extends previous results by Li (1987) and analyzes under which conditions crite-

ria such as AIC, Mallow’s Cp, BIC, cross-validation and generalized cross-validation

are asymptotic loss-efficient. He distinguishes the cases where there is only one

correctly specified representation (just the best model), more than one (many good

models4) or all models are misspecified. When all models are misspecified or at

most only one is correctly specified, AIC, Mallow’s Cp, leave-1-out cross validation

and generalized cross-validation are asymptotically loss-efficient as defined above.

Notice that when models are misspecified, series function approximations (such as

series basis expansions or neural network models) are good choices and in such a

case regularity conditions for the optimality of the former statistics require the use

of approximations that don’t converge “too fast” to the true conditional expecta-

tion as well as sufficient error moment bounds (where the errors are defined as the

difference between our target variable and the true conditional expectation). Nev-

ertheless, criteria such as BIC and leave-D-out cross-validation with D/N tending

to one are not asymptotic loss-efficient. They only have this property when more

than one model is correctly specified. Moreover, in this case they are in addition

consistent as shown by Shao. Regarding leave-D-out cross-validation, Shao’s result

seems inconsistent with the analysis by Kearns (1997) of split-sample validation,

which shows that the best generalization is obtained with D/N strictly between 0

and 1, with little sensitivity to the precise value of D/N for large data sets. But the

apparent conflict is due to the fundamentally different properties of cross-validation

and split-sample validation. It is also important to keep in mind that the family of

leave-D-out statistics with D/N tending to 0 have the same asymptotic behavior

as leave-1-out cross-validation. With respect to hold-out cross-validation, it is im-

portant to mention that it would be asymptotic loss-efficient for a loss based on a

number of observations equal to those in the training sample. Nevertheless it is not

for a loss based on the whole sample.

4See section 2.2 for the definition of “best” and “good” representation in the case of linear
regression.
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2.7 Asymptotic loss efficiency in finite samples

The purpose of this section is to show the finite sample behavior of different model

selection procedures when we approximate the conditional mean of a given data

generating process by using a misspecified model. The main motivation of this

exercise is of practical order: since we are interested in “‘good approximations” of an

unknown data generating process, using an asymptotic efficient selection procedure

also warrants that we are picking a specification that should work well for forecasting

purposes, given a set of competing misspecified parameterizations. As we discussed

so far, if we assume that our models are misspecified the consistency property defined

in 2.2.1 is no longer useful simply because the true data generating process cannot

be found. Asymptotic loss efficiency criteria is more appropriate here, because in

this circumstance, the probability under which we pick up a “good” approximating

specification among those available, approaches one as the sample size grows. In

order to show how these theoretical results work in practice, we conduct a small

Monte Carlo experiment in which we measure asymptotic loss efficiency of AIC,

its corrected version for small samples (AICC), BIC, Mallows Cl, Leave-one Out

cross-validation (LOO CV) and Generalized cross-validation (GCV). On average,

except BIC which under misspecification is not asymptotic loss efficient, we expect

the ratio 2.7.1 to converge to one as we increase the sample size.

2.7.1 Design of Monte Carlo experiments

In our experiments we consider the following two non-linear data generating pro-

cesses:

DGP1

Yt = 1 + ln X2
1t + ln X2

2t + εt

DGP2

Yt = 10 sin(πX1t) + 20(X2t − .5)2 + εt

In both cases the N×2 predictors matrix are independent and uniformly distributed

on the interval [0, 1]. The error term ε is normal and centered at the origin with

unitary standard deviation. In order to ensure our miss-specification hypothesis we

approximate each of these functions with a single layer feed-forward neural network

(SLFFNN). SLFFNN are non-parametric methods (see chapter 3) which are univer-

sal approximators (Hornik, Stinchcombe & White 1989) in the sense that they can

fit any arbitrary function under some mild regularity conditions. The idea is quite
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simple as in many other non-parametric methods: a target variable is approximated

by a superposition of simpler functions of the data typically called basis functions.

Thus the selection problem here is to select an appropriate number of basis functions

that forecast well out-of-sample. If too many basis functions are selected, there is

a risk of over-fitting and an increase in variance forecasts. Conversely picking too

few basis functions will produce under-fitting and an increase in forecasts bias. In

both cases the approximation will perform poorly out-of-sample, hence we expect

loss efficient selection procedures to pick an optimal number of basis with increasing

probability as the sample size grows.

We consider sample sizes of N = 100, 250, 500, 1000 in our experiments. Since the

smallest is N = 100 we limited the series expansion to Q = 33 basis functions:

E(Yt|Xt) ≈
33∑

q=1

ψq(X1t, X2t)β̂

where ψ(Xt) = γ
−1/2
1 f [(X′

tγ2 − γ0)/γ1] with parameters Γ = {γ0, γ1, γ2} where γ0

represents a centering vector, γ1 is a scaling vector and γ2 is a direction vector on

the unit sphere in R2. The parameter set Γ is fixed a priori conveniently and only

the β’s are estimated by OLS5. The basis function ψ corresponds to a Ridgelet (see

section 3.1.3) but we could have used alternative basis functions as well6. Given

that the basis functions are added in a stepwise fashion we obtain up to Q = 33

candidate parameterizations for each DGP and each sample size. Model selection

statistics are computed at each step and the specification with the lowest selection

statistic is retained. Afterwards we compare the sum of the squared errors of the

selected model against the sum of the squared errors of the truly best out-of-sample

approximating model among all Q = 33 candidates. For this purpose we compute

the following loss ratio:

Ln(m̂n)

Ln(m∗
n)

(2.7.1)

where Ln(m̂n) and Ln(m∗
n) are defined as in 2.2.2. The average value and the

standard deviation of 2.7.1 is computed across 100 Monte Carlo simulations for

each considered sample size. At each iteration we generate a test sample having a

size of 25% of the estimation sample.

5We will give later a justification to proceed in this way, rather than estimating Γ by some
non-linear optimization procedure.

6The logistic function is a popular choice as well . The main reason for which we chose ridgelets
is due to their better approximating properties. See chapter 3 for deeper insights.
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2.7.2 Results

Main results of the experiment for DGP1 and DGP2 are reported respectively in

tables 2.1 and 2.2. From table 2.1 observe that all mean values of 2.7.1 except

the one corresponding to BIC converge fast to one as the sample size grows. At

the same time the number of selected basis increases and a better out-of sample

performance is obtained, while this is not true for BIC which picks severely under-

fitted specifications. Table 2.2 shows that from N = 500 to N = 1000 BIC diverges

while other statistics converge to one. Again BIC which selects severely under-fitted

specifications. Its standard deviation increases, meaning that uncertainty in picking

the right amount basis functions for optimal forecasting increases as the sample

grows instead of decreasing as do the others.

2.8 Conclusions

The literature on prediction and model selection is highly interdisciplinary and in-

terest in this field is fast growing. The review we presented in this chapter in by no

means exhaustive.

In this chapter we make the basic assumption that models can be regarded as con-

venient approximations of an unknown data generation process. Because of this

assumption, any model is inherently misspecified. In this context we consider model

selection procedures that behave well under the miss-specification hypothesis. If

prediction is the goal, and miss-specification is assumed, asymptotic loss efficiency,

rather than consistency, is a desirable property of any model selection procedure.

Among others, AIC, AICC, Mallows C and GCV benefit of this property, while BIC

does not, since it typically selects under-parameterized that have a high bias and

poor out-of-sample performance assessed by the RMSE.
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Table 2.1: Mean values of 2.7.1. Standard deviation in parenthesis. R=100 Monte Carlo
replications of DGP2. Size of test sample Nτ = 250. Notice all mean values except the
one corresponding to BIC converge fast to one as the sample size grows. At the same time
the number of selected basis increases and a better out-of sample performance is obtained,
while this is not true for BIC which picks severely under-fitted specifications.

DGP1: Yt = 1 + ln X2
1t + ln X2

2t + εt

Loss ratio (eq.2.7.1)
Sample LOO CV AIC AICC BIC Mallows C GCV

100 1.2413
(.1597)

1.1618
(.1339)

1.1747
(.1380)

1.2990
(.1708)

1.2327
(.1519)

1.2173
(.1522)

250 1.1212
(.0649)

1.0843
(.0611)

1.0918
(.0595)

1.1745
(.0672)

1.0932
(.0616)

1.1021
(.0627)

500 1.0330
(.0388)

1.0241
(.0323)

1.0268
(.0341)

1.1418
(.0420)

1.0265
(.0329)

1.0287
(.0340)

1000 1.0049
(.0100)

1.0040
(.0083)

1.0040
(.0083)

1.1219
(.0289)

1.0040
(.0083)

1.0041
(.0083)

Number of Selected basis
100 9.18

(4.1386)
14.23
(9.2530)

12.91
(8.68)

6.60
(1.4283)

9.17
(4.1184)

10.19
(6.2349)

250 11.86
(6.4172)

15.87
(9.0451)

14.81
(8.4979)

6.70
(1.0630)

15.13
(8.1298)

13.62
(7.9143)

500 23.91
(9.2337)

25.73
(8.4532)

25.17
(8.6788)

7.11
(1.5485)

25.23
(8.3831)

24.72
(8.6407)

1000 31.11
(3.8442)

31.16
(3.9591)

31.16
(3.9591)

7.70
(2.1190)

31.16
(3.9591)

31.14
(3.9548)
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Table 2.2: Mean values of 2.7.1. Standard deviation of the mean in parenthesis. R=100
Monte Carlo replications of DGP2. Notice how, from N = 500 to N = 1000 BIC diverges
while other statistics converge to one. This is because BIC which picks severely under-
fitted specifications (high bias). Also notice that its standard deviation diverges, meaning
that uncertainty in picking the right amount basis functions for optimal forecasting in-
creases as the sample size increases instead of decreasing as do the others.

DGP2: Yt = 10 sin(πX1t) + 20(X2t − .5)2 + εt

Loss ratio (eq.2.7.1)
Sample LOO CV AIC AICC BIC Mallows C GCV

100 1.1185
(.1496)

1.1938
(.2376)

1.1655
(.2187)

1.1492
(.1438)

1.1373
(.1703)

1.1311
(.1727)

250 1.0719
(.0601)

1.0851
(.0812)

1.0829
(.0768)

1.1201
(.0993)

1.0835
(.0766)

1.0731
(.0652)

500 1.0391
(.0429)

1.0364
(.0413)

1.0351
(.0401)

1.1153
(.0489)

1.0331
(.0384)

1.0327
(.0392)

1000 1.0145
(.0137)

1.0166
(.0162)

1.0167
(.0163)

1.1256
(.0632)

1.0167
(.0163)

1.0166
(.0164)

Number of Selected basis
100 8.10

(4.3139)
11.12
(7.1879)

9.72
(6.1904)

5.41
(1.1670)

8.74
(3.9840)

8.16
(3.6762)

250 9.61
(4.9130)

11.43
(6.7131)

11.25
(6.4177)

5.92
(.6274)

11.30
(6.3616)

9.81
(4.8098)

500 13.88
(5.1755)

14.36
(5.4065)

14.19
(5.1414)

6.25
(.8986)

14.62
(5.2073)

13.85
(4.7315)

1000 17.62
(4.6493)

17.82
(4.7987)

17.50
(4.6680)

7.66
(2.8713)

18.32
(4.9313)

17.41
(4.6478)



Chapter 3

Approximation Methods

In this chapter we will discuss approximation methods that will be incorporated in

automatic prediction and model selection methods discussed later. Namely we will

follow the approach proposed by White (2006). We will see that despite its sim-

plicity, a linear parametric model can be easily adapted to provide a quite general

framework useful for function approximation. This can be achieved by simple trans-

formations of the original predictors, keeping the approximating equation linear in

the parameters. These parameterizations may outperform more sophisticate non-

linear models in situation where the estimation sample is small, the data is sparse or

there is a low signal to noise ratio of the estimated parameters. Linear models are

also appealing because they are easily interpretable and thus provide reverse engi-

neering capabilities and mathematically represent first order Taylor approximations

to µ(X).

In order to enhance the flexibility in linear parameterizations one can use simple

transformations of the predictors that may include polynomial terms, or more in-

volved non-linear combinations of the predictors as in Artificial Neural Networks

(ANN). Here, in order to avoid computational problems which are typical in estima-

tion of ANN’s we will consider a class of function called Generically Comprehensive

Revealing (Stinchcombe & White 2000) and we will point out the main differences

of the approach adopted here with respect to the one typically taken in the ANN

literature.

We restrict our attention to parametric regression methods. In fact, even if non-

parametric regression methods rule out the possibility of model miss-specification,

they pose special challenges in high dimensional problems. This fact is known in the

literature as the curse of dimensionality (Bellman 1961). The main consequence is

that if we wish to be able to estimate with the same accuracy as in low dimensions,

we need the sample size to grow exponentially as the number of inputs increases.

29
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As we will see, parametric methods are not totally exempt of this problem, because

when the number of parameters to be estimated is high with respect to the available

observations, the precision in estimation is affected. We consider approximation

methods flexible enough to capture non-linearities in the data, which are computa-

tionally feasible and avoid numerical difficulties due to non-linear optimization. It

is for this reason that models which are linear in the parameters play a central role

in this chapter.

In what follows we assume that the data generation process is stationary in mean

and variance and therefore includes a limited time dependence. For cross-section

data, it means independent and identically distributed (i.i.d.) observations. In

time series applications, stationarity is compatible with considerable time depen-

dence. Here we assume as much dependence as is compatible with the availability of

suitable asymptotic distribution theory (White 1984). Our discussion thus applies

straightforwardly to unit root time-series processes after first differencing or other

suitable transformations, such as those relevant for cointegrated processes. In or-

der to simplify our discussion, we leave explicit treatment of these cases aside here.

Relaxing the stationarity assumption in order to accommodate heterogeneity is not

difficult, but the notation necessary to handle this relaxation is more cumbersome

than is justified here.

3.1 Approximating parameterizations

Consider a parametrization of the form m(Xt, θ) to approximate µt as a function

of the data Xt and some finite dimensional parameter vector θ ∈ Θ, such that m

belongs to a collection of functions M having finite variance. The input vector may

be chosen in advance, or may be measurements of random variables or both. In

what follows we do not distinguish the two situations. The point prediction based

on the representation m using the estimated θ for an out of sample predictor vector

Xt+1 is:

Ŷt+1 = m(Xt+1, θ̂)

We emphasize the out of sample nature of the predictor vector Xt+1 since in practical

applications forecasts are not based on the estimation sample, because the associated

target variable Yt+1 is not available until Xt+1 is observed. The objective of the

prediction exercise is to reduce the uncertainty about the as yet unavailable Yt+1,

but in order to do this we have to approximate the observed Yt given Xt. Our
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problem is to estimate θ so as to minimize the expected squared forecast error:

min
θ
E[(Yt −m(Xt, θ))

2] (3.1.1)

Notice that by narrowing the solutions space of the parameterizations in M, still

allows for a very wide range of possible solutions. Representations which are linear

in the parameters and linear in the predictors correspond to the well known linear

regression model. Given p predictors and putting θ = β the model is:

L ≡ {m : RP → R| m(Xt) = l(Xt, β) ≡ X ′
tβ, β ∈ RP}

Solving for β yields:

β∗ = arg min
β∈Rp+1

E[(Yt −X ′
tβ)2]

and provided that E(XtX
′
t) exists and is invertible, it can be easily shown that the

solution of this problem is:

β∗ = E[(XtX
′
t)]
−1E(XtYt)

Now, X ′
tβ
∗ is called the population linear projection of Yt on Xt. Assuming the data

has been generated by a stationary and ergodic process we can estimate β by OLS,

since:

β̂
P−→ β∗

Applying the plug-in principle using the available sample information we substitute

the unknown expectations with the corresponding sample means to estimate β:

β̂ = (X ′X)−1X ′Y

where X is the N × p matrix with rows X ′
t and Yt is a N × 1 vector of the response.

The optimal point prediction forecast is then simply:

Ŷt+1 = X ′
t+1β̂

Notice that the linear model makes a strong assumption about the dependence of

E(Yt) on Xt, namely that the dependence is linear in each predictor. Once we have

fitted the model we can examine the predictor effects separately, in the absence of

interactions.

Even if the linear model has several appealing features it may be not adequate to

model non-linearities in the data. In general nonlinear models are employed because

they allow greater flexibility than linear specifications and thus greater forecast ac-

curacy is expected from them. A way to ensure this is to build representations
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m which nest linear models in non-linear models. As alluded above, the challenge

posed by attempting to use non-linear models is that their computation that may or

may not behave well, in that the algorithm may or may not converge, and, even with

considerable effort, the algorithm may well converge to a local optimum instead of

to the desired global optimum. As the advantage of flexibility arises entirely from

nonlinearity in the predictors and computational challenges arise entirely from non-

linearity in the parameters, it makes sense to restrict attention to parameterizations

that preserve linearity in the parameters in order to ensure a closed form solution

of the estimation optimization problem. For this purpose let’s define the non-linear

representation n as:

N ≡ {n : RK → R| n(Xt) = ψ(Xt)
′β, β ∈ RK}

where n(Xt) = ψ(Xt)
′ is some non-linear function of the predictors. Solving this

minimization problem yields:

β∗ = arg min
β∈RK

E[Yt − ψ(Xt)
′β]2

Under usual assumptions, the solution is simply the OLS estimator using ψ(Xt)

instead of the original predictors Xt:

β∗ = E[ψ(Xt)
′ψ(Xt)]

−1E[ψ(Xt)
′Yt]

Again we may use the plug-in principle to find an estimate β̂ from the available

sample. With the problem framed in this way, an important next question is:

“What kind of functions ψ of the predictors should we consider?”

There is a vast range of possible choices of such functions; in the following we

mention some of the leading possibilities. Choosing among these depends not only

on the properties of the transformation functions, but also on ones prior knowledge

about µ, and ones empirical knowledge about µ, that is, the data.

3.1.1 Approximation by simple transformations of the in-
puts

We now concentrate our attention on linear representations in the parameters that

can improve the approximation ability of m using transformations ψ(Xt) of the

predictors Xt. From a practical point of view, a possibility is represented by using

transformations of the form:

ψ(Xt) = Xα1
it Xα2

jt with: {i, j = 1, 2, . . . , p} and α1, α2 = −1, 0, 1 (3.1.2)
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We will refer further to these special type of transformations as level one transfor-

mations, following the nomenclature adopted by Pérez-Amaral et al. (2003) who

proposed them in order to gain flexibility for their automatic model selection algo-

rithm called RETINA.

Notice that 3.1.2 delivers the identity transformation of the i − th predictor when

α1 = 1 and α2 = 0. Viceversa we get the identity transformation of the j − th

predictor when α1 = 0 and α2 = 1. Similarly, when i = j and α1 = α2 = 1 we

obtain interactions and when i 6= j with α1 = α2 = −1 we obtain inverses of the

interactions between predictors i and j. Notice that ψ(Xt) also include a constant

term for α1 = α2 = 0. As an example, if the original input matrix X includes

just two regressors, X1 and X2, then we would obtain the following collection of

predictors (we omit the observation index t without loss of generality):
{

1, X1, X2, X1X2, X2
1 , X2

2 ,
X1

X2

,
X2

X1

,
1

X1

,
1

X2

,
1

X2
1

,
1

X2
2

,
1

X1X2

}

In this special case ψ transformations include the original predictors, implying that

the resulting parametrization for m would mix-up linear and non-linear terms. Also,

given p predictors, m would have exactly 1 + 2p + 2p2 associated parameters to

estimate (including the constant). Another possible extension is to consider higher

order level one transformations of the form:

ψ(ψt) = ψα1
it ψα2

jt i, j = 1, 2, . . . , p α1, α2 = −1, 0, 1

we obtain:

ψ(ψt) = (Xα1
it Xα2

jt )α1(Xα1
it Xα2

jt )α2

which involves higher order polynomial terms up to the fourth order and interactions

between cubic and squared terms. As an example if we construct 1+2p+2p2 level one

transforms we will have 1+2(1+2p+2p2)+2(1+2p+2p2)2 = 5+12p+20p2+16p3+8p4

terms. As the reader may notice from table 3.1 the number of candidate predictors

increases very quickly as the number of inputs increases, and a method to select the

predictors or reduce the effective number of parameters is needed.

Some remarks on level one transformations. Observe that Level one trans-

formations include pairwise interactions of original variables, and second these trans-

formations rule out the appearance of further unknown parameters inside ψ because

that may result in non-concavity of the loss function. This ensures the possibility

to use Ordinary Least Squares estimations, and avoid more involved estimations

procedures.
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Table 3.1: Number of level 1 transforms as a function of the original predictors p

p ψt ψ(ψt)
1 5 61
2 13 365
3 25 1301
4 41 3445
5 61 7565
6 85 14621
7 113 25765
8 145 42341
9 181 65885

10 221 98125

Besides these two very important advantages that increase flexibility, there are also

some drawbacks. For example some of the level one transformations may not be

defined for certain values in the domain of the predictors as is the case of inverse

transformations which are not defined when the predictor assumes a zero value or

is a binary variables which is coded with 0 and 1 values. In this special case it is

convenient to allow binary variables to enter the regression equation without any

prior transformations (in which case their associated coefficients would represent

group-specific constants) or just let them interact with other variables (in which

case their associated coefficients would deliver group-specific slopes). It is also im-

portant to remark that some transformations can generate substantial collinearity

between the linear and nonlinear functions. As an example, consider a simple case

of a polynomial parametrization m(Xt) = c + Xt + X2
t where Xt consist just of

one predictor. Squared terms are common in economics, for example, age and the

square of age often enter in labor force participation models. It can be shown that

the collinearity between Xt and X2
t is 0 when E(Xt) = 0 but dramatically increases

to high collinearity as E(Xt) increases. One possible solution in order to reduce

such effects is by standardizing the predictors prior and after their transformations.

Standardization is necessary when performing ridge estimation, since the resulting

coefficients are not scale invariant. For example if the scales used to express the

individual predictors and their transformations are changed, then the ridge coeffi-

cients do not change inversely proportional to the changes in the variable scales.

Observe that in this context ridge estimation may result beneficial for reducing the

effect of ill-posed problems due to collinearity, and although these techniques de-

liver biased estimations of the parameters the out of sample predictive ability can
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be substantially improved.

3.1.2 Approximation by using Basis Expansions

Approximation using superposition of functions has existed since the early 1800’s,

when Joseph Fourier discovered that he could superpose sines and cosines to rep-

resent more complicated periodic functions, but there are many other possibilities.

The idea is quite simple and consist in approximating a regression surface by a

superposition of functions which are called basis functions, that is:

n(Xt) =

Q∑
q

ψ(Xt) βq

where ψ are univariate mappings R → R (thus excluding pairwise operations on

the predictors). A simple example is a polynomial series expansion. However, in

multivariate settings polynomial series expansion are more difficult to apply since,

we have to define a multivariate algebraic polynomial for all elements p of the pre-

dictor vector Xt with degree dependent on Q. Similar to algebraic polynomials are

Bernstein, Chebychev, or Hermite polynomials. Other important and powerful ex-

tensions of the algebraic polynomials are the classes of piecewise polynomials and

splines (Wahba & Wold 1975, Wahba 1990). Well-known types of splines are linear

splines, cubic splines, and B-splines.

3.1.3 Approximation using Artificial Neural Networks

Another popular class of approximating functions is represented by Artificial Neu-

ral Networks (ANN). Historically ANN’s were models inspired by the structure and

behavior of biological neurons and the nervous system, but after this point of in-

spirations all resemblance to biological system ceases. The use of ANN’s is quite

popular not only for regression, but also for classification and discrimination. There

is a huge variety of different architectures of ANN’s today. See Kuan & White

(1994) for a discussion on ANN’s from an econometric perspective, Trippi & Tur-

ban (1992) for application in Finance and Cheng & Titterington (1994) about their

use in statistics. The fashion for neural networks, which started in the mid 80’s

has given rise to new names for concepts already familiar to statisticians. Some

examples are reported in Table 3.2. Some of such terms already appeared in the

previous chapters. In the following they will be used interchangeably, although we

will generally use a statistical jargon. Feed-forward Neural Networks are perhaps
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Table 3.2: Equivalent terms in Neural Networks and Statistics

Statistics Neural Networks / Engineering
Specification Network Architecture
Estimation Learning
Regression Supervised learning
Interpolation Generalization
Estimation Sample Training Set
Predictors Inputs
Dependent variables Outputs
Parameter shrinkage/ ridge regression Weight Decay
Non-linear transformation Activation/Squashing/Ridge function
Derived features Nodes

the most popular type of ANN’s in use today. Their mathematical structure is quite

simple and is similar to an additive basis expansion considered above:

n(Xt, θ) =

Q∑
q=1

ψ(Xt, Γq)βq (3.1.3)

where the Q terms of the sum are usually called neurons or nodes and ψ are usually

multivariate mappings Rk → R, where k is the number of the inputs. In general

there is no need to use all available k inputs for a particular ψ. Instead we could

use just a subset of them which in turn is a selection problem we might avoid as we

shall see in chapter 6. Here Γ is a set of parameters which determines shifts and

variations in directions of ψ. In the ANN literature ψ is called activation, squashing

function or ridge function and is usually differentiable, bounded and monotone.

Any cumulative distribution function could be used as squashing function but a

prevailing choice is the logistic function Λ(z) = 1/(1+ e−z). Differentiability is used

to solve the problem of non-linear optimization to estimate Γ while the properties of

ψ as a squashing function enables the ANN to be a universal approximator of any

Borel measurable function from one finite dimensional space to another, regardless

the input dimension, the norm metric considered and provided that Q is sufficiently

large, as demonstrated by Hornik et al. (1989). This universal approximation result

justifies the use of ANN approximation and explains its success. A schematic of a

single hidden layer, feed-forward neural network is presented in figure 3.1.

The logistic function is probably one of the most popular basis functions in the ANN

literature. Nonetheless there is a wide range of choices available for the definition

of the basis functions ψ. Given that our primary objective is to obtain as good an



37

Figure 3.1: Single hidden layer, feed-forward neural network

approximation to E(Yt|Xt) as possible, besides the more traditional logistic function

we also consider other two powerful approximation methods which are Radial Basis

Functions (Powell 1987, Lendasse, Lee, de Bodt, Wertz & Verleysen 2002) and

Ridgelets (Candès 1998), which we will discuss briefly below.

Radial Basis Functions Radial Basis Functions (RBF) are a special class of

functions used in the ANN literature. Their characteristic feature is that their

response decreases (or increases) monotonically with distance from a central point

defined in the input space. The center, the distance scale, and the precise shape of

the radial function are parameters of the model, all fixed if it is linear. The radial

basis functional form arises by taking:

ψ(Xt, Γ) = exp[p2(Xt, Γ)]

where p2 is a polynomial of (at most) degree 2 in X with coefficients Γ = {γ1, γ2}.
Here γ1 represents a centering vector and γ2 is a p × p symmetric positive semi-

definite matrix which scales departures of Xt from γ1. The p2(Xt, Γ) is restricted

to have the form p2(Xt, Γ) = −.5(Xt − γ′1)
′γ−1

2 (Xt − γ′1). Notice that ψ results

proportional to a multivariate normal density with mean vector γ0 and γ1 a suitable
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generalized inverse of a given covariance matrix. Thus RBF are linear combinations

of multivariate densities, accommodating a mixture of densities as a special case.

Ridgelets Ridgelets are a class of powerful functions that represent an extension

of wavelets to the multivariate case. Ridgelets arise by taking

ψ(Xt, Γ) =
1√
γ1

f

(
X ′

tγ2 − γ0

γ1

)

with set of parameters Γ = {γ0, γ1, γ2} where γ0, γ1 ∈ R and γ2 is a direction vector

on the unit sphere in Rk. The function f must be chosen such that ψ satisfies the

following admissibility condition of vanishing moments, that is:

∫
ψ(X)XjdX = 0, j = 1, . . . , p (3.1.4)

As an example of a function satisfying such condition we may take the j−th deriva-

tive of the standard normal density φ(z) = 1√
2π

exp (−z2/2) which is admissible for

any ψ(z) = Dhφ where h = p/2 and D = d/dz (White 2006). Thus, a ridgelet with

p = 4 inputs, arises by taking h = p/2, that is, the second derivative of a standard

normal density function. Figure 3.2 reports the plot of the first three derivatives of

the standard normal. Notice that from a practical point of view, the admissibility

condition implies that ψ oscillates, has zero average value, zero average slope, etc.

We are motivated to use Ridgelets because, as Candès (1999) shows, they turn out

to be optimal for representing otherwise smooth multivariate functions that may

exhibit linear singularities1. This is in sharp contrast to Fourier series, which can be

badly behaved in the presence of singularities. In the univariate case we could over-

come this problem using wavelets, but their ability to deal with linear singularities

in higher dimensions doesn’t hold. Candès (2003) provides an extensive discus-

sion of the properties of ridgelet regression estimators, and, in particular proposes

regularization methods by thresholding the coefficients from a ridgelet regression2.

In particular, Candès (2003) discusses the superiority in multivariate contexts of

ridgelet methods to kernel smoothing and wavelet thresholding methods.

1When a smooth function f(x) has a linear singularity at x = c the first derivative at x = c
is not defined. As an example consider a mutilated gaussian distribution defined on the interval
[0,∞) which is singular at the origin but is differentiable elsewhere.

2Thresholding refers to setting to zero some estimated coefficients whose magnitude does not
exceed some pre-specified value. A typical choice is σ̂

√
2 log N where σ̂ is an estimate of the

standard deviation of the noise. See Hastie et al. (2001, pp.154) for an intuitive justification of
this.
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Figure 3.2: An example of three different ridgelet transforms which arise by taking the
j − th, j = 1, 2, 3 derivative of a standard normal density. These functions ensure that
admissibility condition (eq.3.1.4) is satisfied which traduces in a oscillatory behavior with
zero mean, zero average slope, etc.
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3.1.4 Generically Comprehensive Revealing functions

The main differences of ANN’s with respect to series expansions and level one trans-

forms, is that the derived feature vector ψ results from applying a nonlinear trans-

formation to a linear combination of the original predictors. This involves the esti-

mation of an unknown parameter set θ = {β, Γ}, where β and Γ can be estimated

simultaneously by using some non-linear optimization method. Barron (1993) shows

that ANN are efficient functional forms for approximating multidimensional func-

tions, but this property doesn’t always compensate for the operational difficulties

of fitting them. Jones (1997), Vu (1998) show that it is impossible to design algo-

rithms running in polynomial time that would produce accurate estimates of the

unknown parameters in ANN’s. It turns out, however, that by suitably choosing ψ,

it is possible to retain the flexibility of ANN’s without requiring the Γ’s to be free

parameters. In this circumstance, estimation problem reduces to the estimation of

the linear regression parameters (β’s) by optimizing a well defined convex objective

function, with a unique minima resulting from the minimization of the residual sum

of the squares.

A special class of ψ functions that satisfy such condition are Generically Comprehen-

sive Revealing Functions. This family of functions have been proposed by Stinch-

combe & White (2000) extending the results of Bierens (1990) on consistent specifi-

cation tests. In this context we refer to consistency as the property of having power

against any arbitrary model misspecification. Put succinctly the results of Bierens

imply that given a random variable εt and a random vector Xt, under some general

conditions E(εt|Xt) 6= 0 with non zero probability implies E[exp(X ′
tγ) εt] 6= 0 for

almost every γ ∈ Γ a non empty compact set. Here since we define εt = Yt−m(X ′
t, θ):

E(εt|Xt) = E[(Yt −m(X ′
t, θ))|Xt)] = µ(Xt)−m(Xt, θ) 6= 0

then for almost every γ ∈ Γ we have:

E[exp(X ′
tγ)(Yt −m(Xt, θ

∗))] 6= 0

In other words if a parameterization m is misspecified, the residuals will be correlated

with exp(X ′
tγ) for any γ. Stinchcombe & White (2000) show that this result holds

more in general for a class of functions ψ which they call Generically Comprehensive

Revealing (GCR) functions. The revealing property stems from the fact that they

can reveal a model misspecification of any form, while the generic property derives

from the fact that virtually any γ will reveal the misspecification. An important class

of such functions which is GCR is the class of non-polynomial real analytic functions.
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These functions are infinitely differentiable such that the Taylor series at any point

X0 in its domain is convergent for X close enough to X0 and its value equals m(Xt).

It follows that we can choose any arbitrary parameter value for γ ∈ Γ, and as we

will see this powerful result can be used to construct ANN architectures without

estimating γ as free parameters, but fixing them a priori in some way. For model

building and approximation purposes, we could generate a collection of γ parameters

at random and choose among them just those that deliver transformations of the

inputs which are most correlated with the target variable. A remarkable fact is that

among the functions belonging to the class of GCR functions there is the exponential

family. Thus, any exponential function (like a normal density) may be used to build

GCR functions with the properties defined above. It follows that the logistic, the

radial basis and the ridgelet function are all GCR. Following White (2006), we

can take advantage of these results to obtain flexible parameterizations which are

nonlinear in predictors but preserve linearity in parameters. For this purpose let’s

define the parametrization of a single hidden layer ANN as:

m(Xt, θ) =

Q∑
q=1

ψ(X ′
tγq)βq

where ψ is GCR. Now define the residual term:

ε̂t = Yt −m(Xt, θ̂)

It follows that if with non-zero probability µ(Xt) − m(Xt, θ) 6= 0 then for almost

every γ ∈ Γ we have E[ψ(X ′
tγ) εt] 6= 0. Given that Γ is compact we can pick γq+1

such that:

|corr(ψ(X ′
tγq+1), εt)| ≥| corr(ψ(X ′

tγq), εt)| ∀γ ∈ Γ

where corr(·,·) denotes the correlation of the indicated variables. This suggests a

process of adding nodes in a stepwise manner, stopping when at the i−th iteration

|corr(ψ(X ′
tγq+i), εt)| < δ, where δ is any arbitrary small number, or when any other

stopping rule has been reached (eg. minimum AIC).

3.1.5 Final remarks

As we anticipated, the choice of the basis functions depends on their approximation

properties but also on ones prior knowledge about µ, that is, the data. Unfortu-

nately there are no fast prescriptions about how to choose the ψ’s, especially in

the circumstances commonly faced by economists, where one may have little prior

information about the form of the conditional mean function and its smoothness.
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Knowing the smoothness could help in choosing the most appropriate approximating

function, which should be the one for which a minimum number of Q basis func-

tion is needed to approximate well our response. As a practical matter, then, it may

make sense to consider a collection of different bases, and let the data drive us to the

best choice. Such a collection of bases is often called a library. Given a base function

ψ we expect better approximations to µ as the number of terms of the expansion

increases, but at the same time given the limited amount of available data, we would

like to use a small number of terms as possible, in order to achieve a parsimonious

representation. As White (2006) points out, this suggests not to force the inclusion

of the terms in a strict order (e.g. zero order polynomial first, followed by first or-

der polynomials and son on). Instead we should just consider those terms useful in

approximating µ. Parameterizations of this form are denominated highly non-linear

approximations, as not only there is a nonlinearity associated with choosing Q basis

functions, but there is the further choice of the basis itself or of the elements of the

library (eg. mixing level one transforms and ANN’s with logistic squashing func-

tions simultaneously). The choice of the inputs is also another non-trivial aspect

to consider in practical ANN applications. Inputs should be selected carefully prior

to the construction of the network. In theory one could choose the inputs based

on prior knowledge, but this information is seldom available especially in empirical

Economic studies. Another aspect to consider is the choice of the number Q of basis

functions. In practical applications this means that the architecture of the network

is not known in advance. Indeed any asymptotic loss efficient method can be used

when choosing among competing architectures (specifications), and the strategies

to generate can be automated easily as we will see later.

3.2 Conclusions

In this chapter we reviewed different methods which may prove to be useful for ap-

proximating an unknown data generating process. The main conclusion is that there

is no need for parameterizations which are non-linear in the parameters. Since they

suffer that the likelihood function may have several local minima, we prefer to in-

clude non-linearities using simple transformations of the inputs or taking advantage

of Generically Comprehensive Revealing functions as will be evident in chapter 6.

Libraries of different approximating functions may be useful where, as in economic

data occurs, the degree of smoothness of the target variable is usually unknown.

Selection of the inputs and the choice of the number Q of basis functions remains

an important practical issues to solve in order to implement automatic modeling
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and approximation procedures. We shall see in the next chapters how this can be

implemented in practice.
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Chapter 4

Automatic Model Selection

In previous chapters we reviewed what desirable properties a model selection criteria

should have and what kind of parameterizations approach we can use in order to

approximate a given target variable. Libraries or dictionaries of basis functions and

in particular ANN’s may prove useful for approximation. Generically Comprehen-

sive Revealing functions provide a convenient shortcut to avoid the computational

burden of non-linear optimization. Model selection criteria provide stopping rules

and aim to avoid over-fitting and select a parameterization with good “general-

ization abilities”. Since in our context there is a potentially unlimited number of

transformations and basis function among which to choose as candidate predictors,

Automatic Model Selection Algorithms become essential in order to choose a para-

metric formulation for forecasting purposes. In this context, an heuristic approach

is adopted, where the data is the final arbiter of how well a particular approach

works, unless external information or some theory provides some guidance about

the most convenient parameterization.

Despite the controversy surrounding many model selection strategies, in the last

decade different approaches with “‘good” properties have been developed. The

automatization of selection procedure has gained more attention by the scientific

community and many methods, some based on regularization techniques (the Non-

negative Garrote (Breiman 1995), the LASSO (Tibshirani 1996b)) other based on

subset selection, (Gets (Hendry & Krolzig 2001), RETINA (Pérez-Amaral et al.

2003)) have gained increasing popularity since some of them are readily available in

many commercial statistical packages. In the following we consider a method pro-

posed recently by Pérez-Amaral et al. (2003) (PAGW from now on) called RETINA.

(RElevant Transformations of the Input Network Approach), which is based on ear-

lier work by White (1998). We will review in this chapter its philosophy and its

properties and compare it with other methods as an automatic model selection tool.

45
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Figure 4.1: The RETINA algorithm

.

In addition we present a software implementation called RETINA Winpack, which

has been designed for applied researchers. The RETINA method is of special inter-

est here since it was designed to identify a parsimonious set of predictors useful for

forecasting purposes and approximate the conditional mean µ(X) of an unknown

functional form.

It is worth to clarify that this chapter is concerned with the mechanics of producing

candidate specifications, not with their statistical properties which can be derived

based on other considerations. The discussion that follows applies to the case when

the number of predictors P is less than the number of observations N , although

ridge regression or variable grouping may be considered when the number of candi-

date predictors exceeds N . Our problem here is consider automatic methods which

starting from a set of predictors find a subset k < P which has a satisfactory out-of

sample predictive ability. We shall now discuss in more detail how RETINA deals

with these important aspects in empirical modeling.
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4.1 The RETINA algorithm

We next describe the RETINA algorithm from a high level perspective reported in

figure 4.1, while a much more detailed description can be found in table 4.1 at page

49. RETINA is a procedure which has been developed considering simultaneously

two problems discussed so far:

• the approximation problem, because it provides some flexibility to accommo-

date possible non-linearities of the response.

• the selection problem which allows to automatically select a parsimonious sub-

set of predictors among a potentially very large set of candidates.

A third aspect to consider is relative to automatization and practical implementation

of the rules given by the procedure. We shall now discuss in more detail how

RETINA deals with these aspects.

Approximation. RETINA deals with the approximation problem by using sim-

ple non-linear transformations of the predictors as those discussed earlier in section

3.1.1 called level one transformations (eq.3.1.2). Previous to any specification search

the algorithm generates these transforms, allowing certain degree of flexibility by

expanding the predictor set embodying both interactions and non-linearities. Inter-

actions allow to capture local curvature and subset behavior as well as non-linearities

of the form of squares, inverses of the original inputs which may substitute more

complicated non-linear functions. Thus specification is linear in the parameters, but

non-linear in the inputs. This avoids non-linear optimization of the objective loss

function where different local minima may be present. Summarizing the specifica-

tions that handles the original RETINA algorithm, as proposed by PAGW, is of the

form:

E(Yt|Xt) =
K∑

k

ψk(Xt)βk ψ(Xt) = Xα1
it Xα2

jt i, j = 1, 2, . . . , p α1, α2 = −1, 0, 1

(4.1.1)

Recall that this functional form includes as a special case the specification with

only original predictors. A possible extension is to consider higher order level one

transformations of the form already discussed in section 3.1.1, but there are many

other possibilities as we shall see later. As we already pointed out undertaking

such non-linear transformations of the inputs, may generate substantial collinear-

ity between the untransformed and the transformed ones. Collinearity artificially
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generated by level one transformations may be limited by prior and/or posterior

variable standardization. Nonetheless as we will see later in this section RETINA

is able to prevent such problems based on a selective search that explicitly controls

for collinearity among the predictors.

Selection. RETINA deals with the selection problem considering the following:

1) a method for specifications search using a collinearity index, 2) a method for

out of sample performance evaluation, and 3) a method for further reduction and

final specification selection. To implement these methods, the procedure splits the

sample into three disjoint subsamples:

1. The building sub-sample: used for the specification search.

2. The validation sub-sample: used for out-of sample validation and re-estimation

of candidate parameterizations obtained as at point 1.

3. The testing subsample: used for out-of-sample testing and, eventually, further

specification reduction.

The main motivation for using three sub-samples relies on the fact that we want

to avoid “too optimistical predictions” by using the same data set to 1) build a

set of candidate models, 2) estimate their parameters and finally 3) evaluate their

predictive ability and possibly adopt an even more parsimonious representation than

the current specification. Ideally we would like to have a new fresh data set available

for each of these steps in order to avoid selection biases (Miller 2002) due to the fact

that we use the same data set to build and choose a specification.

As we anticipated, RETINA starts by generating transformations ψ(Xt) of the can-

didate predictors and splitting the whole data set into three sub-samples of approx-

imate equal size1, say Sub1, Sub2 and Sub3.

On subsample Sub1, a set of specifications is obtained by ordering each transforma-

tion on the basis of the univariate absolute correlation with the response. This serves

as the basis to build candidate specifications. The first specification considered al-

ways includes just a constant. Then the predictors are included in the specification

in a stepwise manner following their rank order, only if the R2 of its regression

1In the case of time series data, each subsample is chosen such that all the observations are
contiguous within the whole data set. In the case of cross-section data, we can pick a subsample
by selecting randomly in the whole sample.
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Table 4.1: The prototype Retina algorithm based on PAGW

Stage 0 – Preliminary

1. Data building and sorting

(a) Generate the set of transformed variables ψ(Xt) = {W1t, . . . , Wkt}.
(b) Divide the sample into three sub-samples.

Stage I – Isolating a candidate model

2. Using data on the first sub-sample:

(a) order the variables in ψλ(X) according to their (absolute) sample correla-
tion with the dependent variable in the first sub-sample alone. Let W(1)

be the variable with the largest absolute correlation with Y, W(2) be the
second most correlated, and so on.

(b) Consider various sets of regressors all of which include a constant and
W(1): each set of regressors ψλ(X) is indexed by a collinearity threshold
λ ∈ [0, 1] and is built by including W(j) (j = 2, . . ., k) in ψλ(X) if the R2

of the regression of W(j) on the variables already included in the model is
≤ λ.

(c) The number of sets of regressors is controlled by the number of values of
λ between 0 and 1 chosen, say, m.

3. Using Data both on the first and second Sub-sample:

(a) Estimate each model by regressing Y on each set of regressors ψλ(X)
using the data on the first sub-sample only and compute an out-of-sample
prediction criterion (the cross-validated mean squared prediction error)
using the data on the second sub-sample only. This involves the estimation
of m models.

(b) Select a “candidate” model as the one corresponding to the best out-of-
sample performance ψ∗λ(X).

Stage II – Search Strategy

4. Using data from both the second and third Sub-sample:

(a) Search for a more parsimonious model: estimate all models including a
constant and all the regressors in ψ∗λ(X) one at a time in the order they
were originally produced by procedure sub 2.a, this time on the basis of
the absolute correlations of the second sub-sample or of the correlations
of the first and the second sub-sample together.

(b) Perform an evaluation of the models out of sample (using the data on the
third sub-sample) calculating a performance measure (the cross-validated
mean squared prediction error, possibly augmented by a penalty term for
the number of parameters in the model)

Stage III – Model Selection

5. Repeat Stage I and stage II changing the order of the sub-samples. Produce a
candidate model for each sub-sample ordering.

6. Select the model which has the best performance over the whole sample using
AIC or any other Asymptotic Loss efficient selection procedure.
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against all the remaining inputs is below a given value of λ ∈ [0, 1]. The role of λ is

crucial in the specification building stage since it represents the thresholds parame-

ter that controls the amount of collinearity allowed among the predictors. Choosing

m thresholds values varying between 0 and 1 RETINA will deliver a sequence of m

specifications.

Next, we step into the validation stage: all m specifications obtained so far, are

compared in terms of their out-of-sample predictive ability on the second subsample

Sub2, the validation sub-sample. Only the specification with the best accuracy in

predicting on the validation sub-sample is retained. The winning specification is

indexed by λ∗.

Finally the testing stage is performed. Given the winning specification indexed by

λ∗, we re-estimate it along with all its nested specifications based on their absolute

correlation ranking with the response. We choose the one which has the best out-of

sample performance on the test sub sample Sub3. We call this a final specification.

At the end of the whole process, in order to gain efficiency, the final specification is

re-estimated using the whole sample and the model selection process ends.

Iteration Observe that the final specification so far, is conditional on the order by

which the sub-samples are fed into the modeling process. In the above description

we used Sub1 as the building sample, Sub2 as the validation sample and Sub3 as

the testing sample. However we may consider any possible sub-sample ordering

and, as an example, use Sub2 for the building stage, Sub1 for the validation stage

and Sub3 for the testing stage. In total, given three sub-samples, there are six

possible orderings (see table 4.2), which may deliver six specifications that differ or

not from each other. The final choice may then be decided by using any Asymptotic

Loss Efficient model selection criteria, like the AIC, AICC and Mallows Cp. From

another point of view, RETINA allows us to examine the structure of several “good”

fitting specifications rather than restricting the attention on a single best. Producing

a number of candidates is also useful to evaluate selection uncertainty, which is

conditional on several aspects of the data such as:

1. Small sample size.

2. Possible presence of outliers.

3. Clusters of heterogeneity.
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Table 4.2: Subsample rotations in the RETINA procedure.
Ordering Building Validation Testing

1 Sub1 Sub2 Sub3
2 Sub1 Sub3 Sub2
3 Sub2 Sub3 Sub1
4 Sub2 Sub1 Sub3
5 Sub3 Sub1 Sub2
6 Sub3 Sub2 Sub1

Having a small sample size is not under researcher’s control, but as we will see in

section 4.2, a new software implementation called RETINA Winpack is able to deal

with outliers and/or identified cluster of heterogeneity which, in empirical appli-

cations, enhances the performance of the prototype RETINA algorithm described

here.

4.1.1 Some simple examples

Example 1: Exponential target Here, we demonstrate RETINA’s performance

using a data set generated with an exponential function, and show that (i) it can

recover the original function when exponential functions are included in the library

of transformations, and (ii) that if we exclude exponentials from its list of transfor-

mations, it recovers the first few terms of a Taylor expansion of an exponential. We

generated T = 100 of three uniformly distributed variables in the interval [−2, 2]

and the response was generated as:

Y = 3 + 5X1 + eX3 + ε (4.1.2)

where the noise is Gaussian distributed σ = 1. Note that Y has no dependence on

X2 and we were interested in checking whether the variable selection would discard

X2 from the model. The Taylor expansion of an exponential function is particularly

simple:

exp(X) ≈ 1 + X +
1

2
X2 + . . .

Using just level one transformations the suggested specification is:

Y = 3.95 + 4.98X1 + 1.44X3 + 0.66X2
3 (4.1.3)

This is quite close to the original equation 4.1.2, with the exponential replaced be

the first terms of the Taylor expansion. Notice that the coefficients are not exactly

what would be calculated from the expansion; this is due the fact that RETINA
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provides a good fit using all the available input data, whereas a Taylor expansion is

constructed so that it is most accurate around X = 0. Also note that the spurious

variable X2 is absent from the parameterization. Adding exponential transforms to

the list of transformations we get the following specification:

Y = 3.03 + 4.99X1 + 0.99eX3 (4.1.4)

Comparing equations 4.1.3 and 4.1.4, we observe that the selection method imple-

mented in RETINA is able to derive the original equation to a very high accuracy

from the data.

Example 2: Orthogonal predictors When predictors are orthogonal to each

other the cost of search for a new specification can be easily assessed. Suppose the

ranking in terms of univariate predictive ability of the j-th variable corresponds

to the index j. That is, X1 is the predictor most correlated with the response,

X2 is the second most correlated, and so on. Since all predictors are uncorrelated,

none of them will fail the collinearity check, regardless the value assumed by the

collinearity threshold λ. Once the predictors have been ranked based on their cor-

relation with the response, p increasing in the number of parameters specifications

m0,m1,m2, . . . , mp, are obtained for any value of λ1 < λ2 < · · · < λl. The search

process will always end with the full model. This is illustrated in table 4.3.

Example 3: Correlated predictors Here we consider a case in which there are

three predictors, two of them being jointly highly predictive but at the same time

strongly correlated. This example is taken from Miller (2002) and is often proposed

to illustrate the behavior of forward search algorithms. Here we use it to illustrate

the behavior of the RETINA specification search algorithm and to understand more

in detail how it works. Let’s generate some data from the process Yt = X1t − X2t

and correlation matrix:

R =

X1 1.0000
X2 .9999 1.0000
X3 .0000 −0.0007 1.0000
Y .0000 −0.0016 0.4472 1.0000

There are three predictors and Y = X1 − X2, but it is X3 the predictor most

correlated with the response. This may be well the case in which one considers the

log of a predictor expressed in per-capita terms or in a time series setting the log

taken with respect to the ratio between a predictor and its own lagged value, which

represents the relative variation of that predictor over time. From the correlation
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Table 4.3: RETINA steps in the building sample for three orthogonal predictors
X1, X2, X3 sorted in terms of predictive ability with the response and λ1 = 0.1 < λ2 =
0.2 < · · · < λ10 = 1.0

Search Current Intermediate Candidate
λvalue Iteration Spec. Candidate CI Included Spec. Spec.

1 1 X1 .0000 Yes 1, X1

0.1 2 1, X1 X2 .0000 Yes 1, X1, X2

3 1, X1, X2 X3 .0000 Yes 1, X1, X2, X3 1, X1, X2, X3

1 1 X1 .0000 Yes 1, X1

0.2 2 1, X1 X2 .0000 Yes 1, X1, X2

3 1, X1, X2 X3 .0000 Yes 1, X1, X2, X3 1, X1, X2, X3

. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

1 1 X1 .0000 Yes 1, X1,
1.0 2 1, X1 X2 .0000 Yes 1, X1, X2

3 1, X1, X2 X3 .0000 Yes 1, X1, X2, X3 1, X1, X2, X3

Notes: The specification search of RETINA provides always the same specification
1, X1, X2, X3 for any value of λ.

matrix R above X1 and X2 are almost perfectly correlated. Thus X3 is included first

in the regression equation. Then for any value of the collinearity threshold λ, X2 is

included second and X1 is included last. It is instructive to see that the best model

which includes only X1 and X2 is not detected by the RETINA search procedure,

however a “good” model given by X3, X2 and X1 is still considered. All specification

search steps are reported in table 4.4.

4.2 Software implementations of RETINA: a com-

parison

RETINA is available in different versions as stand-alone application and as Matlab

and Gauss codes. The stand-alone application, RETINA Winpack for Windows,

is available upon request from the author. Another Matlab implementation is due

to Brownlees (2005). The Winpack version of RETINA is especially designed to

be used in an initial and exploratory stage of the specification search when con-

sidering real data sets. RETINA Winpack uses the prototype PAGW’s RETINA

as the basis, but makes it applicable to real world problems by including specific

customization features that are necessary in these circumstances. In table 4.5, we
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Table 4.4: RETINA steps in the building sample for the case in which two highly corre-
lated predictors together have high predictive value

Current Intermediate Candidate
λvalue Iteration Spec. Candidate CI Included Spec. Spec.

1 1 X3 .0000 Yes 1, X3

0.1 2 1, X3 X2 .0007 Yes 1, X3, X2

3 1, X3, X2 X1 .9999 No 1, X3, X2 1, X3, X2

1 1 X3 .0000 Yes 1, X3

0.2 2 1, X3 X2 .0007 Yes 1, X3, X2

3 1, X3, X2 X1 .9999 No 1, X3, X2 1, X3, X2

. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

1 1 X3 .0000 Yes 1, X3,
1.0 2 1, X3 X2 .0007 Yes 1, X3, X2

3 1, X3, X2 X1 .9999 Yes 1, X3, X2, X1 1, X3, X2, X1

Notes: The specification search of RETINA provides two possible specifications 1, X3, X2

and 1, X1, X2, X3 given the default λ-grid used by PAGW. The algorithm is yet able to
find a good parameterization given by the full specification.

point out which are the main contributions of RETINA Winpack with respect to

the earliest version of PAGW’s RETINA as well as RETINA for Matlab (from now

on RETINA MATLAB ).

Purpose. First of all, a basic distinction concerns the purpose of each implementa-

tion: the PAGW’s RETINA (from now on RETINA PAGW) was a prototype

intended to be used primarily for Monte Carlo simulations. The Winpack

is primarily intended to be used for exploratory analysis on real data sets.

The RETINA MATLAB implementation can be adapted to both situations.

Nonetheless the main advantage for less experienced users in using RETINA

Winpack is the Graphical User Interface (GUI) illustrated in figure 4.2 that

simplifies all operations involved in the application of the procedure. Also,

RETINA Winpack is the only version which has been carefully documented

so far. An online user manual is available from inside the GUI: it includes

installation instructions and is aimed to support the user in setting up the

data, interpreting the result and reproduce some easy examples.

Input Data RETINA Winpack accepts the input data in Excel format, which is

widely used in practice and doesn’t require special knowledge from the user.
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Table 4.5: Comparative features of PAGW’s RETINA vs. RETINA Winpack and
RETINA for Matlab.

RETINA PAGW RETINA WINPACK RETINA MATLAB
Purpose Prototype Exploratory Specification Exploratory Specification

Analysis of Real data Analysis of Real
and Artificial data

Dependency Gauss 3 or higher Gauss Runtime 6 Matlab 6 or higher
or higher
(free for non-
commercial use)

Delivery format Source code Executable (EXE) Dynamic library (DLL)
OS platform Depends on Gauss Windows Windows, Linux

Programming Gauss 3 Gauss 6 and C
language Visual Basic

Graphical User No Yes No
Interface (GUI)

User Documentation No Yes No
Data input No, only internally Yes, from Yes, importing

generated data Microsoft Excel as Matlab data set
Transformations For continuous For continuous and For continuous

predictors categorical predictors. predictors
User control over No Yes Yes

input transformations
Informative Output Success rate over Selected predictors, Selected predictors,

Monte Carlo Summary statistics (no summary
experiments statistics)

Automatic Data scaling No Yes No
Automatic Outliers No Yes No

detection
Union Model No Yes No

Computational No Yes (sweeping) Unknown.
efficiency

in repeated operations
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Figure 4.2: The RETINA Winpack user interface

This feature is not present under the RETINA PAGW nor RETINA MATLAB

although the latter may do so, it needs some little programming skills (that

unexperienced users may not have) to import real data sets.

Pre-processing routines. Another relevant feature which is desirable in prac-

tical applications is the availability of data preprocessing routines which are

able to detect outliers and automatically re-scale the data. As we have seen so

far, re-scaling is important prior to data transformation as well as outlier de-

tection. The procedure to detect outliers is the one proposed by Peña & Yohai

(1999), which is especially adequate for regression problems in large data sets.

These are unique features of the Winpack version which are documented and

are not included in the other versions.

Transformations. Also, in applied research users may want to control the types

of transformations of the inputs to be used, and additionally may want to

distinguish binary/categorical from continuous inputs. This situation poses

special problems since categorical data cannot be used to generate simple level
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one transformations. Categorical inputs usually reflect a specific group mem-

bership, such as gender, age, or the size (big, small) of a firm, its activity

sector and so on. For these predictors, RETINA Winpack considers just inter-

actions with continuous predictors which are built internally by the software.

In particular, RETINA Winpack allows for automatic building of interactions

between binary predictors and continuous predictors. This allows the user to

easily extend the parameterization 4.1.1 to a more general one where the vec-

tor of coefficients β includes group specific constants and group specific slopes.

Observe that in this case the resulting formulation is akin to an analysis of

covariance and can be further extended to the case in which we also consider

interactions between categorical inputs and genuine level one transformations.

An empirical application of this feature is reported in the next chapter where

the problem consists in predicting the telecommunications services usage by

a sample of US firms. As we shall see the inclusion of categorical indicators

is essential to obtain accurate forecasts, since they account for an intrinsic

heterogeneity which is present among different types of firms. RETINA Win-

pack allows the user to control explicitly these features through “‘checkboxes”

on its GUI. RETINA MATLAB allows some of these options through simple

commands, but doesn’t distinguish between categorical and continuous inputs.

The union specification Among others, an additional feature implemented in

the Winpack version of RETINA is the union model. The union model sum-

marizes the six final specifications and finds a subset specification. In practice

this is obtained taking all the predictors selected by the previous six steps

and creating a new (union) subset of predictors which are now considered as

the starting inputs for a new selection round. The main difference with the

previous steps is that here the inputs are only those already suggested. The

specification search, the estimation and the validation are performed over the

whole sample, and there is no sub-sample rotations involved. Another impor-

tant distinction is that in this step, no controls for collinearity are performed.

Instead we consider just the ordering of each predictor with the response in

order to build a specifications sequence where the AIC index is tracked. The

resulting specification is the one with the lowest AIC and is usually compared

with the previous six ones.

Informative Output: RETINA Winpack always ends its selection process sug-

gesting at most seven final specifications, but it may be the case that some
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of these parameterizations are coincident resulting in a lower number of alter-

native specifications. The hope is that the procedure delivers a low number

of alternatives meaning that, regardless the starting subsample adopted, the

specification delivered doesn’t vary that much and the procedure is rather in-

sensitive to the available sample features. Given multiple alternatives among

the final models the user is faced with the problem of selecting one of these.

In RETINA Winpack the user is provided with some useful statistics in or-

der to take a decision on which specification to adopt. These are based on

cross-validated PMSE and the AIC statistic. Alternatively, one may choose to

consider all models simultaneously adopting a model averaging strategy. This

allows to estimate unconditional prediction errors of all parameters (Burnham

& Anderson 2002). Any model selection procedure discussed in section 2.3

could be adopted, but AIC seems to be justified in view of the fact that we do

not assume the existence of any true DGP (µ) and because of its Asymptotic

Loss Efficiency property discussed in section 2.6.

4.2.1 Computational considerations

In RETINA, as for other automated subset regression procedures, computational

efficiency is an important issue. The execution time depends essentially on the cho-

sen cardinality v of λ thresholds (which is under the user’s control) and the number

of predictors p which depends on the selected transformations and original inputs

Xt. The specification search involves v × p OLS estimations, where p is the total

number of predictors (including transformations). These estimations include those

necessary to obtain the collinearity index at each λ-step. Efficient algorithms have

the advantage of being faster, and fortunately there are computational shortcuts

that prove to be useful in this context.

Let’s briefly consider the magnitude of operations involved in a typical RETINA

execution with six sub-sample rotation. For each subsample configuration let’ say

sub1,sub2 and sub3, we perform a specification search in sub1, then validate in

sub2, Re-estimate in sub1 + sub2 the resulting specifications and test in sub3. Let’s

summarize the number of OLS computations as follows:

1. Each specification search depends on the cardinality v of the λ thresholds

grid. At each λi one has to compute the necessary collinearity indexes in

order to check the inclusion or exclusion condition of a candidate predictor.

The number of OLS computations for the specification search is of order2

2It is of order O(v × (p − 1)) and not O(v × p) since we start the specification search always
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O(v × (p − 1)) and depends on the correlation structure of the data and the

given threshold value.

2. Given that the specification search ends providing at most v candidate speci-

fications there are at most v OLS estimations to perform in order to test their

predictive ability in sub-sample sub2.

3. For the test sample sub3: we consider the winner specification from the previ-

ous step and test it in sub-sample sub3 along with all its nested sub-models.

This involves a number of OLS estimations which depend on the dimension

of the selected model. In any case the order of OLS operations is at most of

dimension p if all predictors are included in the specification obtained from

previous steps.

The following rules are adopted in RETINA Winpack in order to avoid unnecessary

OLS computations and minimize computational time:

Specification search: Compute all collinearity indexes just once and store their

values in memory. At future iterations of the specification search, the collinear-

ity indexes may be retrieved from the memory if necessary, and don’t need to

be computed again. As an example consider the case with orthogonal predic-

tors. There are p = 3 predictors and v = 10 thresholds. In total we should

perform v× (p− 1) = 20 OLS estimations in order to compute all collinearity

indexes, but in this case, only 2 are necessary.

Sub-samples rotations: Even if there are six possible rotations of the sub-samples

involved in the procedure, there is no need to perform the specification search

six times. In fact results of the specification search will be the same for rotation

sub1−sub2−sub3 as for sub1−sub3−sub2, where the first sub-sample, in this

case sub1 is used for the specification search. This consideration may save a

significant amount of computational time since the specification search is the

most computing intensive stage of RETINA.

Validation and testing: As we have seen, once the specification search ends with

a list of proposed specifications, we need to assess them in terms of their

forecasting ability in the validation subsample and further in the testing sub-

sample. These steps imply the estimation of many specifications, which may

be time very consuming, especially when the X ′X moment matrix needs to

including the most correlated predictor with the response.
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be inverted in presence of a large number of predictors. Fortunately there are

many computational shortcuts that avoid inverting from scratch moment ma-

trix X ′X when a new (old) predictor is included (removed) from the regression

equation. Miller (2002) provides a very complete and exhaustive overview of

these methods. They deliver a very efficient way to compute the statistics

used in multiple regression3 since only the moment matrix is needed to com-

pute all statistics, there is no need to keep the whole raw data set in computer’s

memory. Second, the usefulness of such methods is evident when we want to

estimate a large number of different regressions involving the same response

variable but having different sets of predictors, as is our case. In virtue of

its programming simplicity, RETINA Winpack uses the “sweeping” method

(Dempster 1969) for the validation and testing stage. For a regression model:

Yt = β0 + β1X1t + β2X2t + · · ·+ βpXpt + εt

the sweeping procedure starts with a moment matrix M . Let M̃ be the new

matrix produced by sweeping on the k−th row and column of M . The elements

of M̃ will be:

m̃k,k = 1/mk,k

m̃i,k = mi,k/mk,k for i 6= k

m̃k,j = mk,j/mk,k for j 6= k

m̃i,j = (mi,jmk,k −mi,kmk,j)/mk,k for i, j 6= k

If we define M as a partitioned matrix:

M =




MXX MXY

MY X MY Y




where MXX is the moment matrix of the predictors and MXY is the vector of

the moments between the predictor X’s and the response Y while MY Y is the

scalar associated with the moments of the response itself. After sweeping all

3Multiple correlation, residual variance, regression slopes, and standard errors of slopes, plus
some other values.
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the rows and columns of MXX we have:

M̃ =




M−1
XX −M−1

XXMXY

MY XM−1
XX MY Y −MY XM−1

XXMXY




The term (MY XM−1
XX) include the coefficients β of the regression and MY Y −

MY XM−1
XXMXY represents the residual error of the variance. An example

of sweeping can be found in table 4.6. Notice that sweeping is a reversible

operation, thus sweeping can be used to include/exclude a variable from the

estimated equation.

The main drawback of sweeping is that rounding error can accumulate over

many estimations. One way to check on this is to recompute backwards all the

steps involved, since sweeping is reversible – to get back to a moment matrix

that will differ from the original one only due to rounding error, and then see

how much rounding error has accumulated. In summary using sweeping or any

other moment matrix up/down-dating method, we avoid computations of M−1

from scratch and in virtue of the fact that memory storage requirements are

less demanding by just operating on the moment matrix instead of the raw

data matrix, this results in a significant saving of computational execution

time.

Algorithm 1: The Sweeping algorithm

Data: Moment matrix M(i, j), predictor index= k
begin

- Initialize empty matrix S having same dimension of M
- Initialize pivot:
pv = 1/m(k, k)
- Sweep:
S = M −M(., k)M(k, .)pv
S(k, .) = M(k, .)pv
S(., k) = −M(., k)pv
S(k, k) = pv

end
Result: Return S, the swept matrix
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Table 4.6: An example of the sweeping procedure

We have a moment matrix M with 4 predictors in the first four rows/columns. The
response is in the fifth column.

M =

X1 X2 X3 X4 Y
1.0000 0.2000 0.3000 0.4000 0.5000
0.2000 1.0000 0.2000 0.3000 0.4000
0.3000 0.2000 1.0000 0.2000 0.3000
0.4000 0.3000 0.2000 1.0000 0.2000
0.5000 0.4000 0.3000 0.2000 1.0000

After sweeping of predictors k = 1, 2, 3, 4 we have:

M̃ =

X1 X2 X3 X4 Y
1.2706 −0.0684 −0.2812 −0.4315 −0.4373

−0.0684 1.1278 −0.1488 −0.2812 −0.3160
−0.2812 −0.1488 1.1278 −0.0684 −0.1245
−0.4315 −0.2812 −0.0684 1.2706 0.0946

0.4373 0.3160 0.1245 0.0946 0.6365

where:

1. An upper-left 4 × 4 sub-matrix, which equals the inverse of the corresponding sub-
matrix of the original M .

2. A lower-right scalar, which is the residual variance over the total variance. From the
example we may easily compute the R2 as 1− 0.6365 = 0.3635

3. An 1 × 4 lower left vector contains the regression coefficients for predicting the
un-swept variables (in this case the response) from the swept ones. In this case
0.4373, 0.3160, 0.1245,−0.0946 are the coefficients for predicting Y .

Observe that we omitted to report all intermediate steps, relative to sweeping the predictor
1, first, the predictor 2 second, and so on. In this case, each of these intermediate steps
would provide information of the regressions of Y , respectively, over predictor 1, over
predictors 1 and 2, over predictors 1,2 and 3. This speeds up the estimation of these subsets
model. Also, since sweeping is reversible we may easily exclude a predictor sweeping it
again. As an example if we would like to exclude predictor 2 then we should sweep it
again and we would obtain the coefficient of the regression of Y on 1,3,4.
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4.3 A comparison between different approaches

In this section we review briefly some existing automatic model building procedures

and compare them to RETINA conducting three Monte Carlo experiments. This

comparison is not intended to be exhaustive, but still wants to assess the useful-

ness of the RETINA method against other selection methods in terms of forecast-

ing ability. Systematic horse race studies on comparing RETINA with alternative

automatic selection methods are scarce, and limited to the econometric literature

(Pérez-Amaral et al. 2003, Castle 2005, Pérez-Amaral, Gallo & White 2005). In their

original contribution PAGW compare RETINA on a Monte Carlo basis against step-

wise regression and the Breiman’s Non-Negative Garrote method (Breiman 1995).

Pérez-Amaral et al. (2005) compare RETINA and PcGets4 on a conceptual ba-

sis and report a comparison based on real world telecommunications data. Castle

(2005) compares RETINA against PcGets based on the same telecommunications

data set of Pérez-Amaral et al. (2005) besides artificial data sets already considered

in Lovell (1983) and Hoover & Perez (1999). All these studies focus especially on

the ability of recovering the true underlying DGP. In particular PAGW show the su-

periority of RETINA against stepwise regression and the NN-Garrote in recovering

the true DGP for different settings of the underlying DGP. Castle (2005) concludes

that both RETINA and PcGets methods are useful for their intended use of mod-

eling and forecasting, with no clear winner, although RETINA shows a tendency of

selecting more parsimonious models than PcGets. Nonetheless none of the above

studies compared RETINA in terms of forecasting ability in Monte Carlo settings.

Given our main interests in forecasting, we propose a new study considering three

Monte Carlo studies where the main concern is exclusively the out-of-sample PMSE

ability. We provide evidence of the finite sample properties of RETINA and assess

its validity and accuracy in forecasting compared against other methods which are

popular also in fields other than econometrics:

• Stepwise regression method (Draper & Smith 1966) which is perhaps one of

the most popular selection method used in regression.

• Ridge regression (Hoerl & Kennard 1970), which has been discussed briefly in

section 2.1.1 at page 13.

• Non-Negative Garrote (Breiman 1995).

• Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani 1996b).

4This is a particular software implementation of the Gets methodology.
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Table 4.7: A comparison between automatic model selection algorithms
Method Search Modeling Control for Embedded User

Strategy Approach collinearity Flexibility settings
1.RETINA Forward Building, Yes Yes Collinearity

Estimating threshold
Validating
3 subsamples

2.Ridge - Regularization, Yes no Ridge
shrinkage parameter

3.NN-Garrote - Constrained Yes no Garrote
estimation parameter

4.LASSO Forward and Constrained Yes no -
Backward estimation

5.LARS Forward Building Yes no -

6.Stepwise Forward and Hypotheses No no Nominal
Backward testing test sizes

7.Gets Backward Building No no Nominal
validating test sizes
2 sub-samples

• Least Angle Regression (LARS), (Efron, Hastie, Johnstone & Tibshirani 2004).

• General to specific (Gets) methodology (Campos, Ericsson & Hendry 2005).

A brief description for these methods (for ridge estimation see section 2.1.1), can

be found in the next section, although interested readers should refer to the origi-

nal contributions for further insights. Table 4.7 provides a quick reference relative

to these differences. A main distinction is between methods that perform subset

selection like Stepwise, Gets and RETINA and methods based on some regularized

estimation strategy as the ridge, NN-Garrote, the LASSO and the LARS. Another

basic distinction concerns the use of validation strategies as is for RETINA and

Gets. These validation strategies are not embedded in other methods which need

the user to define some stopping rule to select the final parameterization. Finally,

RETINA is the only method that automatically embeds non-linear transformations

of the inputs.

4.3.1 A short review of automated selection methods

Stepwise selection Among automated model selection algorithms Stepwise re-

gression (Draper & Smith 1966) is probably the best known data driven

method in the linear regression literature. Stepwise selection is a method
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that allows moves in either direction, dropping or adding variables at the var-

ious steps. Backward stepwise selection involves starting off in a backward

approach and then potentially adding back variables if they later appear to be

significant. The process is one of alternation between choosing the least signifi-

cant variable to drop and then re-considering all dropped variables (except the

most recently dropped) for re-introduction into the model. This means that

two separate significance levels must be chosen for deletion from the model

and for adding to the model. The second significance must be more stringent

than the first. Forward stepwise selection is also a possibility, though not as

common. In the forward approach, variables once entered may be dropped if

they are no longer significant as other variables are added.

The non-negative garrote, the LASSO and the LARS. These three techniques

share all the characteristic of imposing a constraint on the size of the regres-

sion coefficients. The Non-negative garrote (NN-Garrote) was introduced by

Breiman (1995) and consists in imposing a constraint on the absolute values

of the regression coefficients:

β̂NN-G = argminβ

∑
t

(
Yt −

∑
j

cjβjXjt

)2

s.t. cj > 0 and
∑

j

cj 6 s

Observe that with respect to the ridge technique, here a different shrinkage

factor is applied to each predictor. As the NN-Garrote and ridge, the LASSO

(Tibshirani 1996b) is also a constrained Least Squares problem. LASSO stands

for Least Absolute Selection and Shrinkage Operator. It minimizes the usual

sum of squared errors, with a bound on the sum of the absolute values of the

coefficients, that is:

β̂LASSO = argminβ

∑
t

(
Yt −

∑
j

cjβjXjt

)2

s.t.
∑

j

|β| 6 s

This is the solution to a quadratic programming problem, and recently a simple

modification of another method, the LARS (Least Angle Regression)(Efron

et al. 2004), has been showed to provide also the LASSO solutions. The LARS

procedure works roughly as follows. As with classic Forward Selection, we start

with all coefficients equal to zero, and find the predictor most correlated with

the response, say X(1). We take the largest step possible in the direction of

this predictor until some other predictor, say X(2), has as much correlation

with the current residual. At this point LARS parts company with Forward
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Figure 4.3: Ridge and Lasso

.

Selection. Instead of continuing along X(1), LARS proceeds in a direction

equiangular between the two predictors until a third variable X(3) earns its

way into the “most correlated” set. LARS then proceeds equiangular between

X(1), X(2) and X(3), that is, along the “least angle direction”,until a fourth

variable enters, and so on. The LARS algorithm with LASSO modification

is a forward stepwise algorithm that produces all the solutions of the LASSO

algorithm in a computing time proportional to the number of predictors.

General to specific (Gets) Approach. This approach is ascribed to the LSE

school of econometrics and is described in Campos et al. (2005), Gilbert (1989),

Pagan (1987), Hendry & Krolzig (2005) and Mizon (1995). The starting point

of the methodology is to consider a sufficiently general model (the General

Unrestricted Model or GUM), which includes all potentially relevant factors

to describe the complexity of the real world which one wants to model. In

order for the GUM to be admissible it has to accomplish with certain condi-

tions such as congruency with the data and has to be consistent with some

economic theory. The approach tests downwards the GUM to find a valid re-

striction, that is a more parsimonious model which conveys all the information

contained in the more general model. The procedure is outlined in table 4.24

at page 80. The method is based on the theory of encompassing which implies

that one specification encompasses another if it conveys all of the informa-

tion included by the initial specification. The Gets method has been refined
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and improved as an automatic model selection tool in the commercial PcGets

package, but a less sophisticate implementation coded in Matlab language by

HP which can be used to reproduce the results of their paper, is available from:

http://www.feweb.vu.nl/econometriclinks/journal/volume2/HooverKD PerezSJ.

4.3.2 Monte Carlo evidence

We will now investigate the properties of different automatic model selection algo-

rithms in practice. We will look at the performance with respect the sample size,

the nature of the data (cross-section or time series) and different features of the

DGP. All simulations are conducted considering 1000 replications for each instance

and different experimental setting most of which have been already used in other

Monte Carlo studies (Breiman 1992, Hoover & Perez 1999, Lovell 1983, McQuarrie

& Tsai 1998). We are concerned in evaluating different algorithms in terms of out-of-

sample one-step-ahead forecasting errors, given that using the training set to derive

a parameterization we would get too optimistic predictions and the errors would be

biased downwards. A test for predictive ability is required on hold out data. We use

different error measures, the Root Mean Square Error (RMSE) the Mean Absolute

Error (MAE) and the Mean Relative Error (MRE), to compare performance across

models on the hold-out sample:

RMSE =

√√√√ 1

H

N+H∑
t=T+1

(Yt − Ŷt)2 (4.3.1)

MAE =
1

H

T+H∑
t=T+1

|Yt − Ŷt| (4.3.2)

MRE =
1

H

T+H∑
t=T+1

|Ŷt − Yt|
Yt

(4.3.3)

Here H is the number of observations in the hold-out sample. RMSE statistic

delivers the average forecasting accuracy over squared errors, while MAE does the

same over absolute deviations which are less sensitive to large forecast errors than

their squared counterpart. MRE puts a different weight on errors depending on

the magnitude of the value to be predicted. Small absolute deviations from the

true response value may be big in comparison to the value to be predicted and

vice versa. To assess whether forecasts are statistically different between different

selection algorithms we use a modified version of the Morgan-Granger-Newbold5

5This is a test of out-of-sample Mean Square Error equality, assuming that the forecasting errors
are unbiased, are normally distributed and serially uncorrelated.



68

test of comparative predictive accuracy, in Harvey, Leybourne & Newbold (1997)

(HLN) which corrects for the effect of non-normality of the forecast errors. Defining

as two competing forecasts at T +h as êT+h and ẽT+h the test considers the following

orthogonalizing transforms:

u1,T+h = êT+h − ẽT+h (4.3.4)

u2,T+h = êT+h + ẽT+h (4.3.5)

A test for difference between the forecasts êT+h and ẽT+h is equivalent to a test

of null correlation between u1,T+h and u2,T+h which corresponds to testing the null

hypothesis H0 : β = 0 in the regression:

u2,T+h = βu1,T+h + εT+h h = 1, . . . , H

The test statistic is given by:

HLN = β̂




∑T+H
i=t+1 u2

1,tε̂
2
i(∑T+H

t=T+1 u2
1,t

)2




− 1
2

which is asymptotically t−distributed with H − 1 degrees of freedom under the null

hypothesis.

4.3.3 Design of Experiments

We now describe the data sets used in Monte Carlo experiments.

Breiman data. The data for this experiment has been generated using the fol-

lowing procedure proposed by Breiman (1992). The predictors matrix X was

generated independently from a multivariate normal distribution centered at

the origin and with covariance satisfying E[Xi, Xj] = ρ|i−j|. Different settings

were considered: the uncorrelated case with ρ = 0 and the correlated case

with ρ = 0.9. Three sample sizes were considered: N = 50, N = 100 and

N = 500. In all settings we considered 15 predictors with only three non-zero

βj coefficients centered at every 4th variable. The specification was calibrated

such that R2 ≈ 0.75. A N (0, 1) disturbance was added. For each ρ correlation

setting, simulations were repeated 1000 times independently.

Moving Average MA(1) Misspecified as Autoregressive Models. This ex-

periment is inspired by McQuarrie & Tsai (1998) who considered an MA(1)

data generation process. The candidate parameterization are restricted to
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be autoregressive models, thus the true model does not belong to the set of

candidate models M. The MA(1) data generation process is:

Yt = θut−1 + ut ut ∼ i.i.d. N(0, σ2)

We consider two settings, θ = .5 and θ = .9. Both are stationary and can be

written in terms of an infinite order AR model:

Yt =
∞∑

j=0

θjYt−j

Notice that the autocorrelations of the MA(1) process decay much more quickly

for θ = .5 than for θ = .9 and thus better approximation may exist in small

samples in the former case. The case where θ = .9 has AR parameters that

decay quite slowly and in small samples no good approximation may exist. A

maximum of 15 predictors obtained as lagged valued of the response Yt were

considered, thus allowing candidate AR models of order 1 through 15 to be

fitted to the data.

Lovell’s (1983) and Hoover and Pèrez (1997) Time series data. To assess the

performance on time series data we consider the simulation framework used

by Lovell (1983) and Hoover & Perez (1999) (HP from now on). The data

represent macroeconomic variables of the US economy from 1960.3 to 1995.1.

A description of the data set is reported in table 4.9. There are a total of

40 predictors which include current and first lag of independent variables and

four lags of the consumption variable. The data set includes two sets of quite

closely related time series, the fiscal variables (3, 4, 5) and monetary variables

(10, 11, 12, 13). As in Lovell’s and HP’s work, each replication of the Monte

Carlo experiment consisted in generating a pseudo-real consumption depen-

dent variable accordingly to an explicit specified stochastic process and one

draw from a random number generator. For the sake of simplicity we consider

here only three of the nine specifications considered by the HP study. These

are reported in Table 4.8 and reflect the original numbering used in the HP pa-

per. Briefly model 3 takes the log of simulated consumption as the dependent

variable and is an AR(2) time-series model. Model 7 is a monetary dynamic

model and model 9 is defined by Lovell as eclectic because here consumption

is related to both the M1 monetary aggregate and government purchases. For

testing purposes observations from 1991.4 to 1995.1 (a 10% of the sample) are

excluded from the training sample used for the specifications search.
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Table 4.8: HP DGP’s used to generate artificial consumption target variables.

Model 3: ln(Y 3)t = .395 ln(Y 3)t−1 + .3995 ln(Y 3)t−2 + .00172ut

Model 7: Y 7t = 1.33X11t + 9.73u∗t

Model 9: Y 9t = .67X11t − .023X3t + 4.92u∗t

ut ∼ N(0, 1) u∗t = u∗t−1 + ut

√
7/4

4.3.4 Methodology

In all experiments, all automatic selection procedures competed in forecasting by

using always the same set of predictors. In other words RETINA was not given

any advantage in terms of approximating ability over its competitors, by using level

one transformations6. A number of R = 1000 replications were carried out for each

DGP and forecasting statistics were recorded for each method and each repetition.

Other settings, specific to each method were as follows. The nominal size of the

Gets procedure that governs the critical values used in all of the tests employed in

the search were 1%,5% and 10%. For the Ridge method, the shrinkage parameter

was found using GCV. For the stepwise procedure a nominal size of 5% was used.

For LARS and the LASSO we used the LARS package written by Vanden Berghen

(2005) and adopted as stopping rule a 5-fold cross-validation. Finally the constraint

on coefficients for the NN-garrote is obtained by GCV.

4.3.5 Results

Results of predictive forecast measures for Breiman’s, HP data and MA(1) are pre-

sented respectively in tables 4.10, 4.17 and 4.21. Recall these are always referred to

out-of-sample predictive ability. Forecasting accuracy is evaluated on the basis of

RMSE, MAE and MRE statistics as well as the values of the HLN test statistics of

equivalent forecast errors averaged over all Monte Carlo replications (tables 4.11 to

4.16 for Breiman data, tables 4.18 to 4.20 for Lovell’s data and 4.22 to 4.23 for the

MA(1) process).

A striking fact is that all methods perform equally well in terms of forecasting per-

formance. The forecasts from all methods are similar and it is difficult to draw

6This “fair” comparing approach is also used in Castle (2005) and Pérez-Amaral et al. (2005).
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Table 4.9: Hoover and Perez (1999) data set.

Identifier Variable Times differenced
for stationarity†

1. DCOINC Index of four coincident indicators 1
2. GD GNP price deflator 2
3. GGEQ Government purchases of goods and services 2
4. GGFEQ Federal purchases of goods and services 1
5. GGFR Federal government receipts 2
6. GNPQ GNP 1
7. GYDQ Disposable personal income 1
8. GPIQ Gross private domestic investment 1
9. FMRRA Total member bank reserves 2
10.FMBASE Monetary base 2
11.FM1DQ M1 1
12.FM2DQ M2 1
13.FSDJ Dow Jones Stock Price 1
14.FYAAC Moody’s AAA corporate bond yield 1
15.LHC Labor force (civilian,aged > 16) 1
16.LHUR Unemployment rate 1
17.MU Unfilled orders (manufacturing, all industries) 1
18.MO New orders (manufacturing, all industries) 2
19.GCQ Personal consumption expenditure (Response) 1

Note†: Indicates the number of times the series had to be differenced before a Phillips-Perron test
could reject the null hypothesis of stationarity at a 5% significance level. Candidate variables for
specification search were the original non-stationary predictors, their stationary transforms, and
the lagged values of the simulated consumption response.
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substantive results. The only exception is relative to Ridge estimation, which de-

livers a significant lower predictive accuracy, measured by the RMSE, especially for

Lovell’s data experiment. Test of forecast error equivalence confirms this in Tables

4.18 to 4.20 in which the HLN statistic is recorded in the lower diagonal. Neg-

ative entries refer to lower predictive performance of the method in column with

respect to the method in row. Indeed Lovell’s data set doesn’t represent a favorable

setting for ridge estimation since the proportion of relevant variables is quite low

compared to the available candidates (between one and three out of 40) and where

the collinearity among predictors is high. This may explain the result. The same

tendency is found also for the Breiman and the MA1 experiment, although these

represent somewhat more favorable settings because the total number of candidate

variables in both cases is 15. A better suited shrinkage method in this context is

the NN-Garrote, which tends to perform somewhat better in terms of RMSE than

the remaining methods, although the difference is not statistically significant for all

experiments considered (Tables 4.11 to 4.16, 4.18 to 4.20 and 4.22 to 4.23). Step-

wise selection performs quite satisfactory especially for small samples sizes on the

Breiman data set, but seems to be somewhat less accurate when the sample size

grows. The same phenomena happens for the Gets strategy whose accuracy isn’t

that good as other methods when the sample size increases. On the other side,

RETINA seems to improve as the sample size increases suggesting that it is bet-

ter suited where the number of observations is large. The LASSO and the LARS

method seem to be particularly accurate for smaller sample sizes.

4.4 Conclusions

In this chapter we presented an automatic modeling tool useful for forecasting pur-

poses called RETINA (Pérez-Amaral et al. 2003). The method implements an au-

tomated strategy for specification search and out-of-sample model validation and

testing. We reviewed in detail its main characteristics and presented a specific im-

plementation for real data sets called RETINA Winpack, which adds specific features

such as the union model and more importantly it allows to distinguish for continu-

ous and categorical inputs and specify a very wide class of parameterizations which

are similar to those used in an analysis of covariance setting. The Winpack has a

user-friendly graphical interface which allows the less experienced to easily explore

possible useful specifications that include transformations of the original data set.

The chapter also tries to fill a gap present in the literature on comparing RETINA

with other methods (Pérez-Amaral et al. 2003, Castle 2005, Pérez-Amaral et al.
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2005) since we explicitly assess its validity as an automatic modeling tool focusing

exclusively on the out-of-sample forecasting ability against a variety of methods

(Stepwise regression, Non-negative Garrote, LARS, LASSO, Ridge and the General

to Specific methodology). A striking fact that emerges from the experiments is that

there is no clear winner in terms of forecasting ability. RETINA seems to behave

better in large sample problems, while other methods are better suited for smaller

sized problems. These phenomena may be explained by the fact that the procedure

always splits the sample into three sub-samples, which may reduce the efficiency

especially in the specification and estimation stage. Tests for forecast equality do

not show evidence of better performance of RETINA but it doesn’t do worse at all

considering different settings in which sample sizes (even small, eg. 50 observations),

the number of candidate predictors, and the nature of the data (time series or cross-

section) vary systematically across experiments.
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Table 4.10: One step ahead predictive ability measures for different correlation patterns
and sample sizes. Breiman data.

ρ N RETINA Ridge NN-Garrote LASSO LARS Stepwise Gets
Hold-Out RMSE

50 1.0756
(0.0086)

1.1944
(0.0076)

1.0545
(0.0069)

1.0741
(0.0069)

1.0741
(0.0069)

1.0564
(0.0070)

1.0585
(0.0072)

ρ = 0.0 100 1.0099
(0.0046)

1.0792
(0.0050)

1.0193
(0.0046)

1.0348
(0.0048)

1.0348
(0.0048)

1.0248
(0.0047)

1.0215
(0.0047)

500 1.0015
(0.0020)

1.0135
(0.0020)

1.0023
(0.0020)

1.0063
(0.0020)

1.0063
(0.0020)

1.0044
(0.0020)

1.0036
(0.0020)

50 1.1549
(0.0077)

1.1759
(0.0079)

1.0888
(0.0074)

1.0671
(0.0071)

1.0660
(0.0071)

1.1046
(0.0074)

1.1322
(0.0076)

ρ = 0.9 100 1.0861
(0.0053)

1.0875
(0.0050)

1.0508
(0.0049)

1.0496
(0.0050)

1.0486
(0.0050)

1.0522
(0.0050)

1.0534
(0.0051)

500 1.0028
(0.0020)

1.0119
(0.0020)

1.0039
(0.0020)

1.0083
(0.0022)

1.0082
(0.0022)

1.0030
(0.0020)

1.0021
(0.0020)

Hold-Out MAE
50 0.8761

(0.0074)
0.9703
(0.0065)

0.8561
(0.0059)

0.8727
(0.0058)

0.8727
(0.0058)

0.8582
(0.0059)

0.8605
(0.0061)

ρ = 0.0 100 0.8119
(0.0039)

0.8674
(0.0042)

0.8198
(0.0039)

0.8324
(0.0040)

0.8324
(0.0040)

0.8243
(0.0040)

0.8216
(0.0040)

500 0.8005
(0.0017)

0.8099
(0.0017)

0.8009
(0.0017)

0.8041
(0.0017)

0.8041
(0.0017)

0.8027
(0.0017)

0.8021
(0.0017)

50 0.9408
(0.0067)

0.9521
(0.0066)

0.8856
(0.0063)

0.8657
(0.0059)

0.8646
(0.0059)

0.8957
(0.0062)

0.9158
(0.0064)

ρ = 0.9 100 0.8737
(0.0045)

0.8742
(0.0042)

0.8455
(0.0042)

0.8434
(0.0041)

0.8428
(0.0041)

0.8459
(0.0042)

0.8464
(0.0042)

500 0.8016
(0.0017)

0.8088
(0.0017)

0.8024
(0.0017)

0.8060
(0.0018)

0.8059
(0.0018)

0.8016
(0.0017)

0.8009
(0.0017)

Hold-Out MRE
50 0.2001

(0.2195)
0.0442
(0.2243)

0.2756
(0.1959)

0.2621
(0.1859)

0.2621
(0.1859)

0.1258
(0.1924)

0.1278
(0.1920)

ρ = 0.0 100 0.6597
(0.5582)

0.5591
(0.6584)

0.6425
(0.5444)

0.6246
(0.5766)

0.6246
(0.5766)

0.5494
(0.4847)

0.5651
(0.4860)

500 −0.2964
(0.3429)

−0.0141
(0.3207)

−0.2469
(0.3431)

−0.2643
(0.3545)

−0.2643
(0.3545)

−0.2897
(0.3568)

−0.2680
(0.3448)

50 6.4115
(5.5288)

−0.9416
(1.6434)

2.3541
(1.5911)

5.2591
(4.4879)

5.1705
(4.3948)

4.7737
(3.8725)

4.8823
(3.9388)

ρ = 0.9 100 1.1350
(0.6152)

1.7350
(0.8910)

1.5288
(0.5871)

1.3096
(0.5000)

1.2811
(0.5000)

1.3794
(0.5635)

1.3641
(0.5628)

500 5.2163
(3.4828)

5.1258
(3.3898)

4.9455
(3.2546)

5.0486
(3.3747)

5.0461
(3.3747)

4.5945
(3.0466)

5.2144
(3.4929)
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Breiman data. Average HLN test statistics of equivalent forecast errors. Negative entries
refer to lower predictive performance of the method in column with respect to the

method in row. On average, none of the absolute values of the HLN statistic is larger
than two.

Table 4.11: n = 100 and ρ = 0.
1 2 3 4 5 6

1. RETINA −
2. Ridge 1.0699
3. NN-Garrote 0.0413 −1.3639
4. LASSO 0.2345 −1.1237 0.3107
5. LARS 0.2345 −1.1237 0.3107 0.0000
6. Stepwise 0.0195 −1.2233 −0.0113 −0.2688 −0.2688
7.Gets −0.0009 −1.2274 −0.0227 −0.2956 −0.2956 −0.0130

Table 4.12: n = 100 and ρ = 0.
1 2 3 4 5 6

1.RETINA
2.Ridge 1.0541
3.NN-Garrote 0.3181 −1.0478
4.LASSO 0.5167 −0.8365 0.3411
5.LARS 0.5167 −0.8365 0.3411 0.0000
6.Stepwise 0.3109 −0.9143 0.1070 −0.2199 −0.2199
7.Gets 0.2361 −0.9540 −0.0066 −0.2800 −0.2800 −0.0767

Table 4.13: n = 500 and ρ = 0.
1 2 3 4 5 6

1.RETINA
2.Ridge 0.8825
3.NN-Garrote 0.1852 −0.9130
4.LASSO 0.4219 −0.6692 0.4270
5.LARS 0.4219 −0.6692 0.4270 0.0000
6.Stepwise 0.2815 −0.7510 0.2029 −0.2056 −0.2056
7.Gets 0.2000 −0.7895 0.0865 −0.2752 −0.2752 −0.0938
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Breiman data. Average HLN test statistics of equivalent forecast errors. Negative entries
refer to lower predictive performance of the method in column with respect to the

method in row. On average, none of the absolute values of the HLN statistic is larger
than two.

Table 4.14: n = 50 and ρ = 0.9
1 2 3 4 5 6

1.RETINA
2.Ridge 0.1187
3.NN-Garrote −0.6754 −0.9430
4.LASSO −0.9055 −0.8938 −0.2621
5.LARS −0.9221 −0.9086 −0.2596 −0.0220
6.Stepwise −0.5068 −0.5894 0.2829 0.4778 0.4925
7.Gets −0.2527 −0.4253 0.6356 0.6609 0.6675 0.2631

Table 4.15: n = 100 and ρ = 0.9.
1 2 3 4 5 6

1.RETINA
2.Ridge 0.1047
3.NN-Garrote −0.5074 −0.8051
4.LASSO −0.6035 −0.6467 −0.0804
5.LARS −0.6177 −0.6691 −0.0918 −0.0102
6.Stepwise −0.4780 −0.6021 0.0757 0.1475 0.1509
7.Gets −0.4668 −0.5905 0.0719 0.0976 0.0988 0.0012

Table 4.16: n = 500 and ρ = 0.9.
1 2 3 4 5 6

1. RETINA
2. Ridge 0.7648
3. NN-Garrote 0.1132 −0.8220
4. LASSO 0.1513 −0.5334 0.0770
5. LARS 0.1534 −0.5316 0.0814 0.0062
6. Stepwise −0.0497 −0.7832 −0.0947 −0.1935 −0.1956
7. Gets −0.1494 −0.8197 −0.2280 −0.2720 −0.2737 −0.1127
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Table 4.17: One-step ahead predictive ability measures for Hoover and Pérez models
3, 7 and 9. Observe that Ridge estimation delivers a significant lower RMSE predictive
accuracy (see also tables 4.18, 4.19 and 4.20). This may due to the fact that there is a
high number of irrelevant predictors. Recall that ridge regression shrinks all regression
coefficients towards zero, but retains all of them.

model RETINA Ridge NN-Garrote LASSO LARS Stepwise Gets
Hold-Out RMSE

Model 3 0.0017
(0.0000)

0.0032
(0.0000)

0.0019
(0.0000)

0.0019
(0.0000)

0.0019
(0.0000)

0.0020
(0.0000)

0.0020
(0.0000)

Model 7 9.4482
(0.0626)

15.0431
(0.1077)

9.3808
(0.0593)

10.3504
(0.0720)

10.3500
(0.0720)

9.9321
(0.0770)

10.0810
(0.0818)

Model 9 4.7179
(0.0322)

7.4996
(0.0529)

4.7056
(0.0304)

5.2125
(0.0371)

5.2123
(0.0370)

4.9862
(0.0400)

4.9896
(0.0424)

Hold-Out MAE
Model 3 0.0014

(0.0000)
0.0026
(0.0000)

0.0016
(0.0000)

0.0015
(0.0000)

0.0015
(0.0000)

0.0016
(0.0000)

0.0016
(0.0000)

Model 7 7.6493
(0.0535)

12.0867
(0.0877)

7.5875
(0.0495)

8.3605
(0.0602)

8.3604
(0.0602)

8.0385
(0.0640)

8.1515
(0.0687)

Model 9 3.8302
(0.0276)

6.0299
(0.0430)

3.8202
(0.0258)

4.2119
(0.0307)

4.2119
(0.0307)

4.0354
(0.0331)

4.0233
(0.0344)

Hold-Out MRE
Model 3 1.6035

(1.0554)
3.1764
(2.1307)

1.4719
(0.7428)

1.2296
(0.6669)

1.2296
(0.6669)

1.2887
(1.0234)

2.0510
(1.1216)

Model 7 0.1176
(0.4514)

1.5315
(1.1552)

0.3072
(0.3819)

0.6012
(0.4953)

0.6015
(0.4953)

0.9671
(0.7748)

0.9831
(0.7961)

Model 9 −0.2466
(1.0353)

−1.9479
(2.6976)

0.5520
(0.7358)

−0.8876
(1.0085)

−0.8875
(1.0085)

−2.0880
(1.8160)

−0.7355
(0.9224)
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Table 4.18: Average HLN test statistics of equivalent forecast errors for Hoover and Pérez
Model 3. Negative entries refer to lower RMSE predictive performance of the method in
column with respect to the method in row. Notice that Ridge regression (column 2)
provides significantly lower accuracy on out-of-sample forecasts than its competitors.

1 2 3 4 5 6
1.RETINA −
2.Ridge 3.9247 −
3.NN-Garrote 1.1538 −3.1572 −
4.LASSO 0.6227 −3.6072 −0.6624 −
5.LARS 0.6227 −3.6072 −0.6624 −
6.Stepwise 1.1336 −3.3231 −0.0353 0.5713 0.5713 −
7.Gets 1.0839 −3.3515 −0.0187 0.5495 0.5495 −0.0199

Table 4.19: Average HLN test statistics of equivalent forecast errors for Hoover and Pérez
Model 7

1 2 3 4 5 6
1.RETINA −
2.Ridge 2.8647 −
3.NN-Garrote −0.1439 −2.8625 −
4.LASSO 0.6717 −2.4494 0.7509 −
5.LARS 0.6713 −2.4494 0.7503 −0.0061 −
6.Stepwise 0.1529 −2.8897 0.1861 −0.5451 −0.5441 −
7.Gets 0.2782 −2.8043 0.2737 −0.3785 −0.3776 0.1519

Table 4.20: Average HLN test statistics of equivalent forecast errors for Hoover and Pérez
Model 9.

1 2 3 4 5 6
1.RETINA −
2.Ridge 2.9588
3.NN-Garrote −0.0989 −2.8911 −
4.LASSO 0.7740 −2.3835 0.7479 −
5.LARS 0.7739 −2.3817 0.7471 0.0009 −
6.Stepwise 0.2480 −2.8359 0.1998 −0.5436 −0.5429 −
7.Gets 0.1947 −2.8458 0.1425 −0.5462 −0.5492 0.0106
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Table 4.21: MA(1) Artificial data. One-step ahead predictive ability measures with
n = 1000 replications

MA(1) Parameter RETINA Ridge NN-Garrote LASSO LARS Stepwise Gets
Hold-Out RMSE

θ = .5 1.1253
(0.0086)

1.3140
(0.0118)

1.0930
(0.0077)

1.1359
(0.0084)

1.1357
(0.0083)

1.1428
(0.0085)

1.1441
(0.0089)

θ = .9 1.2398
(0.0100)

1.3157
(0.0127)

1.1788
(0.0091)

1.2521
(0.0097)

1.2523
(0.0097)

1.2317
(0.0099)

1.2267
(0.0104)

Hold-Out MAE
θ = .5 0.9208

(0.0074)
1.0777
(0.0107)

0.8931
(0.0067)

0.9298
(0.0073)

0.9297
(0.0073)

0.9340
(0.0073)

0.9366
(0.0077)

θ = .9 1.0107
(0.0086)

1.0802
(0.0112)

0.9597
(0.0078)

1.0184
(0.0082)

1.0184
(0.0082)

1.0045
(0.0084)

1.0021
(0.0088)

Hold-Out MRE
θ = .5 0.9658

(0.6282)
2.7798
(1.3150)

1.0675
(0.5147)

1.9786
(0.6885)

1.9777
(0.6885)

1.1809
(0.5966)

1.5722
(0.7785)

θ = .9 2.9447
(1.4116)

2.0783
(1.1438)

1.9999
(0.8930)

2.2672
(1.0921)

2.2489
(1.0921)

3.0085
(1.3954)

2.8316
(1.3624)

Average HLN test statistics of equivalent one-step-ahead forecast errors for MA(1) DGP.
Negative entries refer to lower predictive performance of the method in column with

respect to the method in row.

Table 4.22: θ = .5.
1 2 3 4 5 6

1.RETINA −
2.Ridge 1.1248 −
3.NN-Garrote −0.5507 −1.5371 −
4.LASSO −0.0038 −1.2877 0.6689 −
5.LARS −0.0059 −1.2883 0.6685 −0.0037 −
6.Stepwise 0.1514 −1.0720 0.7305 0.2423 0.2430 −
7.Gets 0.1262 −1.0911 0.6966 0.1895 0.1910 −0.0309

Table 4.23: θ = .9
1 2 3 4 5 6

1.RETINA −
2.Ridge 0.2560 −
3.NN-Garrote −0.7701 −0.7347 −
4.LASSO −0.0003 −0.2164 0.9350 −
5.LARS 0.0047 −0.2194 0.9388 −0.0004 −
6.Stepwise −0.1236 −0.3700 0.5770 −0.1069 −0.1103 −
7.Gets −0.1580 −0.4613 0.4036 −0.2309 −0.2335 −0.0734
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Table 4.24: The Hoover and Perez (1999) Gets algorithm

Stage I – Preliminary: Formulate a General Unrestricted Model (GUM)

1. Split the sample into two parts: the training sample and the test sample.

2. Formulate a General Unrestricted Model and Check for Admissibility

(a) Check consistency with theory
(b) Check congruency with data
(c) Run battery of tests:

i. Normality of residuals (Jarque Bera, 1980)
ii. Autocorrelation of residuals up to second order (Godfrey, 1978, Breusch and

Pagan 1980)
iii. Autocorrelated conditional heteroskedasticity (ARCH) up to second order

(Engle, 1982)
iv. Chow test for in-sample and out-of sample coefficient stability (Chow, 1960)
v. If specifications passes all test at the nominal test size go ahead, otherwise

re-formulate the GUM or adopt a looser test size.

Stage II – Specification search and reduction

3. Using the training sample: Rank the regressors based on the t-statistics. Initialize the
number of search paths, (HP use 10 paths). For each search path:

(a) Eliminate least significant variable in the subset of non-significant variables (ac-
cording to the nominal test size) and re-estimate.

(b) Run again the battery of tests as above and run an F-test of the hypothesis that
the current specification is a valid restriction of the general specification

(c) If the current specification passes all of the tests the variable with the next lowest
t−statistic is removed.

(d) Re-run the battery of tests as in I.2.c). If the current specification fails any of
these tests, the last eliminated predictor is restored and the current specification
is re-estimated eliminating the variable with the next lowest t− statistic.

(e) The process of variable elimination ends when a current specification passes the
battery of tests an either has all variables significant or cannot eliminate any
remaining non-significant variables without failing one of the tests.

4. Using the whole sample, re-estimate the model

(a) If all variables are significant the current specification is the terminal specifica-
tion.

(b) If any variables are non-significant they are removed as a block and the battery
of test is performed again on the current specification.

i. If the new model passes and all variables are significant the new model is
the terminal model and try a new search path.

ii. If the model does not pass, restore the block and try a new search path.
iii. If the new model passes and some variables are insignificant, return to II.4.b).

(c) Iterate: after a terminal specification has been reached, store it in memory and
the next search path is tried until all paths have been searched.

Stage III – Model Selection.
Once all paths have ended in a terminal specification, the final specification for the replica-
tion is the terminal specification with the lowest standard error of the regression.



Chapter 5

An application of RETINA to
Telecommunications data

In this chapter we present an application of the RETINA procedure to predict the

business telecommunications demand for short, medium and large distance telephone

services. We analyze firm level data of US companies from the Bill Harvesting data

base1 of 1997. Parts and samples of this data set were also used by Pérez-Amaral

& Marinucci (2002), Pérez-Amaral et al. (2005) and Castle (2005). The data base

is a cross-section of 13766 firms observed in 1997 and includes expenditures for lo-

cal calls and time spent for medium and large distance calls. Many predictors are

available, providing detailed information about the characteristics of the firm such

as the number of employees or its physical extension. However the data presents

many problems such as anomalous observations and missing information including

the prices charged for the services. Additional difficulties arise because of unob-

served predictors. Taylor (1996) suggests that consumption patterns among firms

may depend on determinants other than prices charged, such as the size, the activ-

ity sector and the localization of the business. Thus we expect that incorporating

this information in the prediction function may help in explaining and predicting

telecommunications demand. Unobserved sources of variation are found by run-

ning mixture regressions. Using this method we find additional predictors which

we use as inputs of RETINA (i.e. the dummy variables which represent the group

membership of each firm for each type of demand). Since the number of candi-

date predictors (including transformations) is potentially very large, we exploit the

fact that the automated procedure is able to select “good” parameterizations for

predictive purposes. We find quite parsimonious representations for each type of

1 Bill Harvesting is a proprietary methodology of PNR & Associates (now TNS Telecoms).
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demand and obtain estimations of consumption elasticities relative to specific char-

acteristics of the firms. The specifications suggested by the procedure are assessed

on the ground of cross-validation measures which are readily available from the out-

put of the RETINA Winpack software (see section 4.2). We compare suggested

specifications versus a linear baseline specification. Suggested specifications per-

form satisfactorily in terms of the Cross-Validated Mean Square Prediction Errors

(CMSPE). Interestingly firm’s telephone equipment variables show to be relevant

predictors. On the other hand, the output of the firm, as well as its physical exten-

sion, have second order, yet significant effects on the demand for telecommunication

services. Estimated elasticities are different for the three demands but always pos-

itive for access form (single-line or private network). Cross-elasticities also show

possible “substitution patterns” between different telephone equipments. The rest

of the chapter is organized as follows: section 5.1 discusses related work and the

empirical approach we adopt, section 5.2 describes the data, section 5.3 discusses

the methodology we used, section 5.4 presents the results and section 5.5 contains

the conclusions. The appendixes follow.

5.1 Business toll demand forecasting

The literature on econometric modeling of Telecommunications demand is very ex-

tensive2. The theoretical framework for the modeling is well known and goes back to

Artle & Averous (1973), Von Rabenau & Stahl (1974) and Rohlfs (1974) among oth-

ers. Public empirical studies on business demand are not so abundant. A relevant

contribution in this field is the pioneering work of Ben-Akiva & Gershenfeld (1989)

which focuses on the demand for different types of access lines3. Another example

is where they estimated the demand for local telecommunications services by using

Bill Harvesting. Within a classical microeconomic framework business telecommu-

nications demand, is considered as a production input. Demand, considered as a

function of the price and other production factors, is derived from the firm’s cost

minimization conditions. In this circumstance we follow Taylor (1996) as a useful

2Many residential demand studies use Bill Harvesting or other customer databases. For example
Kridel & Taylor (1997) presented a study of carrier choice, usage demand and price elasticities
for the residential intra-LATA toll market using Bill Harvesting data. Taylor (1996) estimated
competitive cross-price elasticities for the residential intra-LATA toll market with a two stage
approach and using Bill Harvesting data. Levy (1998) estimated a semi-parametric generalized
additive Tobit model of residential Intra-LATA Telephone demand on a cross-section of residential
telephone consumers across 28 states using bills of GTE customers.

3 They consider a discrete choice framework to estimate price elasticities with respect to the
choice of different telephone systems (PBX, Centrex).
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starting point of our empirical analysis. He divides firms into four generic types,

where each type is referred to as a stage. Firms need telecommunications services not

only for external communications but also for internal use, and this need increases

nonlinearly with the size, the location and the activity sector of the firm.

Stage I firms are assumed to operate from a single location and are supposed to

have mostly external communications needs. Moreover, they are supposed to

access the public network with few single-line telephone systems. These are

usually small-sized businesses.

Stage II firms have multiple locations in the same locality. As the number of em-

ployees increases, the internal use of telecommunications grows. Increased us-

age can be accommodated by increasing the number of lines until the purchase

(or rental) of a small private network is considered. Nonetheless, purchasing

toll services in bulk (WATS, 800 service)4 is frequent as a valid alternative

to such a decision and small businesses usually still work well with multiple

single-lines.

Stage III firms in general tend to be larger than stage I and II firms. But the main

difference is that they have multiple locations in different localities. Stage III

firms may switch from multiple single lines to private networks if there is a

sufficient volume of communications between fixed points. In this stage access

to the public network is still required for external needs, while internal needs

are largely satisfied by the private network. Nonetheless, frequently so-called

smart switches are used to select the lowest cost for external or internal calls.

This is done by routing a call over the private network and then into the

corresponding local destination area.

Stage IV firms include multinational corporations located in multiple countries.

The main difference with respect to previous stages is their bigger size and the

fact that their workers are spread across different states and countries. Thus

International Toll services are required for business activity.

4 WATS: Wide Area Telephone Service is a flat rate or a special rate pay-by-the-minute (mea-
sured) billing for a specified calling area. It is usually offered by companies that buy transmission
capacity in bulk from other network operators in order to re-offer it to customers at lower prices.
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Table 5.1: Summary of an a priori segmentation scheme proposed by Taylor (1994).
Stage I Stage II to IV

Locations Single location Multiple locations,
same locality,

or in multiple localities
Type of Usage External Internal +External

Type of access Multiple Single Lines Multiple Single Lines
(Business Lines, Private Network
Hunting Lines) (PBX, Centrex,

WATS, 800 service )
Sociodemographic The number of Employees Number of employees

characteristics may be low with respect larger than in stage I
to firms that are not in stage I

5.2 The Data

Our Bill Harvesting database has complete information on 4391 firms. Details about

the data pre-processing can be found in the appendix. The data has been provided

by PNR & Associates (Philadelphia, PA) which today forms part of the TNS group.

Since the AT&T divestiture (January 1st, 1984) local telecommunication services in

this area are provided in a quasi-monopoly regime by Bell South. In fact 78% of the

firms were served by this company and the rest by other independent carriers.

Since visual inspection of the histograms and empirical densities of the original vari-

ables shows highly skewed distributions, log-transforms have always been considered.

Logarithmic transformations tend to normalize the data, stabilize the variances and

limit the potential negative effect of the most extreme observations. Variables with

zero values, such as the number of lines, have all been augmented by a unit con-

stant prior to transformations. We also consider log − ratio transforms, by using

the log of the ratio between the original variables (BUS, HUN, PBX, CTX, SAL,

EMT, SQFT) and the number of workers employed locally EMH. Worker per capita

transforms, obtained by dividing the variables by the number of employees working

locally EMH, have been chosen since they are common in the literature and reduce

heteroscedasticity. A description of the original variables is reported in Table 5.2,

while descriptive statistics of their transformations over the complete data sample

are given in table 5.3 and figure 5.1.
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Table 5.2: 1997 Bill Harvesting Data: Variable definitions†.

Variable Description
LOCAL Total expenditures for local calls in dollars
INTRA Total duration of intra-LATA calls in minutes
INTER Total duration of inter-LATA calls in minutes
BUSa Number of Business Lines +1
HUN b Number of Hunting Lines +1
PBX c Number of PBX Trunks +1
CTX d Number of Centrex Lines +1

SAL Sales expressed in dollars
EMT Total number of employees
EMH Number of employees working locally
SQFT Square footage of the firm
POP Population habitat size

IMILLS Inverse of the Mills ratio (see Appendix 5.6.1)
STAGE I Binary variable= 1 if Firm is at stage I
BSOUTH Binary variable= 1 if Service is provided by Bell South

AL Binary variable= 1 if Alabama
GA Binary variable= 1 if Georgia
KY Binary variable= 1 if Kentucky
LA Binary variable= 1 if Lousiana
MS Binary variable= 1 if Missouri
NC Binary variable= 1 if North Connecticut
SC Binary variable= 1 if South Connecticut
TN Binary variable= 1 if Tennessee
FL Binary variable= 1 if Florida (omitted to avoid perfect colinearity)

†Source: PNR & Associates, Philadelphia, PA, now TNS.

a. BUS : Business Lines. A service that handles all the routine business telecommunications appli-
cations. Data transmissions for fax, email, and Internet access are usually charged at the
same price as voice calls.

b. HUN : Hunting Lines. A service that bundles all the telephone lines (2 lines up) in the same
location to be easily accessible with a single number (pilot number).

c. PBX : PBX Trunks. Connections between an organization’s PBX (Private Branch eXchange) and
the outside telephone network. Telephone users within the customer’s company share these
connections for making and receiving calls outside the company’s network.

d. CTX : Centrex Lines. (Central office exchange service) is a service which is functionally equivalent
to the PBX and consists of up-to-date phone facilities offered by the telephone company
to business users so they do not need to purchase the equipment. The Centrex service
effectively partitions part of its own centralized capabilities among its business customers.
The customer is spared the expense of having to keep up with fast-moving technology
changes and the phone company has a new set of services to sell. In many cases, Centrex
has now replaced the private branch exchange. The central office has effectively become
a huge branch exchange for all of its local customers. In most cases, the Centrex service
provides customers with as much if not more control over the services they have than PBX
did.

Notice that Business and Hunting Lines can be considered as single line access forms while PBX
and Centrex services are network access forms.
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Table 5.3: Univariate statistics of the log of each variable per worker.
Mean Std. Dev. Median Kurtosis Skewness n

ln(LOCAL/EMH ) 2.556 1.049 2.613 .580 −.135 4391
ln(INTRA/EMH ) 1.296 1.767 1.428 .001 −.416 1261
ln(INTER/EMH ) 2.538 1.573 2.693 −.108 −.322 1176
ln(BUS/EMH ) −1.614 1.864 −1.061 .147 −.898 4391
ln(HUN/EMH ) −1.919 1.447 −1.609 .820 −.691 4391
ln(PBX/EMH ) −2.490 1.354 −2.398 .207 −.323 4391
ln(CTX/EMH ) −2.259 1.699 −2.197 .294 −.295 4391
ln(SAL/EMH ) 1.249 3.499 .182 .280 1.176 4391
ln(EMT/EMH ) .249 .706 .000 21.277 4.217 4391
ln(SQFT/EMH ) 5.928 1.235 5.968 1.399 −.273 4391
ln(POP) 1.193 2.273 9.770 −1.461 .210 4391

Figure 5.1: Histograms, by the stage of the firm.



87

Table 5.4: Demand by type of access: Firms that demand intra-LATA and inter-LATA
calls do not own private networks (Vertical %).

Firm demands Firm demands
only Local calls intra-LATA or

inter-LATA calls
Type of access (n = 2921) (n = 1542)

Firm owns Multi-Single Lines 80.2% 99.6%
(Business or Hunting lines)
Firm owns Private Networks 39.3% .7%
(PBX or Centrex)

The data include four types of variables:

Access form variables: There are four different types of lines, which may be

grouped into two categories. The first includes single-line access equipment:

business lines (BUS ) and hunting lines (HUN ). The second group represents

private network access forms and includes PBX trunks (PBX ) and Centrex

lines (CTX ).

Socio-demographic variables: These are the population habitat size (POP) and

the States (AL, GA, KY, LA, MS, NC, SC, TN ).

Business size and dispersion related variables, such as the number of employees

in the whole business (EMT ), the number of workers employed locally (EMH )

and the physical extension of the firm (SQFT ).

Output variable: the sales of the firm (SAL).

Bivariate plots of the transformed variables, reported in Figures 5.2, 5.3 and 5.4,

announce that the modeling problem is difficult especially because of non-linearities

and heterogeneity among businesses with respect to telecommunications services.

From these plots we find initial evidence of heterogeneity. In some cases as for local

demand (Figure 5.2), two moderately separated clusters may be visually identified.

Clusters appear upward sloping and as elliptic shaped clouds, suggesting that they

may have different mean and covariance structures. Demand for medium and long

distance services (Figures 5.3 and 5.4) also accounts for evident heterogeneity es-

pecially with respect to the firm output proxied by sales (SAL). Nonetheless for

the remaining variables, heterogeneity is visually much less evident and statistical

methods are necessary to assess its existence.
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Figure 5.2: Bivariate plots of Local demand vs. explanatory variables. (The LR-prefix
stands for the log transformation of the original variables divided by EMH ).

Two or more groups are visible. Heterogeneity patterns with respect to the demand for local
services are visible for the number of Business Lines (LRBUS) and sales (LRSAL).

Figure 5.3: Bivariate plots of intra-LATA demand vs. explanatory variables. (The LR-
prefix stands for the log transformation of the original variables divided by EMH ).

Intra-LATA services show a possible two-cluster structure especially with respect to sales (LRSAL).
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Figure 5.4: Bivariate plots of inter-LATA demand vs. explanatory variables. (The LR-
prefix stands for the log transformation of the original variables divided by EMH ).

Heterogeneity in inter-LATA services is not so evident. Non-linearities emerge from LREMT, the
log of the ratio between the total number of employees (EMT ) and the number of workers

employed locally (EMH ).

A new variable called Stage I was also added to the analysis. This is a dummy vari-

able which proxies Taylor’s definition of Stage I firms, i.e., single location businesses

with only a single-line access form used for external communication purposes5. This

variable is used to show some other interesting facts as reported in Figure 5.1. For

example note that stage I firms are on average smaller, in terms of number of em-

ployees and their physical extension, than firms at higher stages, although to some

extent this also depends on the nature of the markets sold in. Moreover, Figure 5.1

shows that intra-LATA and inter-LATA services are almost exclusively demanded

by stage I firms. On the contrary, bigger or multiple-location firms that are not at

stage I make a more intensive use of local services. Yet this seems plausible only if

such firms use some “smart” switches which route non-internal calls over the private

network and then into the appropriate local area through a local call.

Finally, from Table 5.4 we also learn that firms using intra-LATA or inter-LATA

services use almost exclusively single-line equipment access forms (99.6%). In other

5 Location conditions have been inferred from the difference between the number of employees
working locally (EMH ) and the total number of employees of the company (EMT ). If the difference
EMT − EMH = 0 then the firm is assumed to be single location.
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words the private network dimension will not play a relevant role in the explanation

of medium and long distance calls and may be dropped without losing relevant

information during the modeling process. We conclude this by bearing in mind that

telecommunication services demanded by the firms are related with the dimension

of the firm and its location.

5.3 Methodology

Our analysis begins with the defintion of a baseline specification that we call Bench-

mark Linear Model (BLM). We define a BLM for each type of demand. The BLM

is the specification that one would consider a priori, without using any particu-

lar selection strategy using only the original predictors provided in the data base.

This is the natural starting point because we require any alternative specification

to have a lower approximation error than the BLM. Our final objective is to obtain

a approximating function which we call Useful Representative Model (URM). The

URM should have higher predictive ability over the corresponding BLM, keeping

the number of parameters as low as possible (parsimony).

We assume that it is possible to approximate telecommunication demand as a func-

tion of firms characteristics. Relevant information is available on the number of

employees, which can give an idea about the dimension of internal communication

needs. Output is proxied by sales although its relevance is unclear a priori, since

phone calls are made by people and sales may influence the volume of calls only if

the business involves a heavy tele-marketing activity. Socio-demographic variables

such as the population habitat size and the geographic region are included in the

general specification as well, but their effects are uncertain. The signs of the coef-

ficients are expected to be positive in the case of the number of different types of

lines and the relative size of the firm. Response variables are defined as follows:

ln(LOCAL/EMH): log − ratio of the expenditures in local calls in dollars per

worker.

ln(INTRA/EMH): log−ratio of the duration of intra-LATA calls in minutes per

worker.

ln(INTER/EMH): log− ratio of the duration of inter-LATA calls in minutes per

worker.

As starting point, we adopt a double logarithmic specification for the BLM, which

expresses telecommunications consumption in per worker terms as a function of the
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candidate predictors (or any transformation of them):

ln

(
Yt,j

EMH t

)
= β0 + β1 ln

(
BUS t

EMH t

)
+ β2 ln

(
HUN t

EMH t

)
+ β3 ln

(
PBX t

EMH t

)
+

+ β4 ln

(
CTXt

EMHt

)
+ β5 ln

(
SALt

EMH t

)
+ β6 ln

(
EMT t

EMH t

)
+

+ β7 ln

(
SQFTt

EMHt

)
+ β8 ln (POP t) + δ1IMILLS t +

+ δ2 STAGEI t + δ3 BSOUTH t +
∑

h=4

δhSTATE t,h + ut (5.3.1)

The term ut is an i.i.d. disturbance, IMILLS is the inverse of the Mills ratio (which

is explained in section 5.6.1) and Yt,j represents alternatively the total local bill

(j = 1), the intra-LATA minutes (j = 2) or the inter-LATA minutes (j = 3). In

the following sections we discuss how to obtain possible URM models, from which

we can choose a final URM*. Without loss of generality, equation (5.3.1) may be

expressed in a more compact form using matrix notation as follows:

ln

(
Yj

EMH

)
= X ′β + F ′δ + u (5.3.2)

Where:

X: is a matrix which includes ln(BUS/EMH ), ln(HUN /EMH ), ln(PBX /EMH ),

ln(CTX /EMH ), ln(SAL/EMH ), ln(EMT/EMH ), ln(SQFT/EMH ), ln(POP).

F : is a matrix which includes STATE , IMILLS , BSOUTH , and STAGEI .

u: is a T × 1 vector of i.i.d. disturbance term.

In general, X represents a matrix of predictors susceptible to be transformed by level

one (see section 3.1.1), while F represents a matrix of predictors that the researcher

wants to enter “as it is” in the initial specification of the model. If we allow for level

one transformations of X we may generalize 5.3.2 as follows:

ln

(
Yj

EMH

)
= W ′β + F ′δ + u (5.3.3)

where W = Xα
r Xβ

s with r, s = (1, . . . , P ) and α, β = −1, 0, 1. Here P is the total

number of untransformed continuous inputs. The main difference with respect to

the BLM specified in (5.3.1) is that here we allow transformations of the original

regressors, while the BLM exclusively considers logs of ratios of variables per worker.

We use (5.3.3) because we want RETINA to generate the W transforms and identify
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which ones may help to predict better than the BLM. We can further generalize

equation (5.3.3) by using the dummy variables included in F to model group-specific

slopes and allowing interactions between such dummy variables and the continuous

regressors. Formally, assume Hg to be a subset matrix of F with g − 1 columns,

which represents some specific grouping which accounts for heterogeneity in the data

set. This leads to:

ln

(
Yj

EMH

)
= W ′β + [Hg ×W ]′βh + F ′δ + u (5.3.4)

with: Hg ⊂ F.

This specification is akin to an analysis of covariance formulation where the param-

eters of W may vary across the categories by using dummy indicators included in F

to model group-specific constants, or in Hg to model group-specific slopes. In our

case Hg predictors are obtained clustering the data using finite mixture of regression.

Details about this step may be found in the appendix.

5.4 Results

In this section we present the main results of this study. For the sake of brevity,

details about estimations are reported in the appendix as well as the description

of the partitions found using finite mixtures framework. We may summarize the

results obtained so far as follows:

• In Table 5.5 we report summary statistics of the Benchmark Linear Models

in comparison with the final URM specifications suggested by RETINA. They

show that modeling heterogeneity and non-linearities substantially increases

the overall fit and predictive ability of the estimated models with respect to

the correspondent BLM’s. The R̄2 increases for all the proposed models which

is a significant improvement in in-sample-fit. Also the RCMSPE drops to

between one half and one third of the benchmark model, which is a marked

improvement in the out-of-sample forecast ability.

• Suggested specifications include access equipment variables (table 5.4.5). Rele-

vant first order effects for medium distance (intra-LATA) and for long distance

calls (inter-LATA) are single lines access6, whereas local demand additionally

includes network access equipment variables7 in the final specification8. As

expected, the signs of these effects are positive.

6 ln(BUS/EMH ) and ln(HUN /EMH ).
7 ln(PBX /EMH ) and ln(CTX /EMH ).
8 URM6: Table 5.19.
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Table 5.5: Comparison of Benchmark Linear Models (BLM) and Useful Represen-
tative Models (URM)†.

Local Intra-LATA Inter-LATA
(n=4391) (n=1261) (n=1176)

BLM URM6 BLM URM BLM URM

Parameters 19 41 18 5 16 10
R̄2 .682 .930 .191 .711 .243 .730

Std.Err. Estimate .592 .278 1.589 .950 1.369 .818
Robust CMSPE .595 .286 1.619 .955 1.392 .827

AIC -4590 -11207 1188 -122 757 -463
BIC -4462 -10945 1285 -91 843 -412

† Here we use non-weighted models for direct comparison between BLM and URM. The overall fit
of the estimated URM models improves with respect to the corresponding BLM’s.

• The specification of the three telecommunication demands never includes the

physical extension of the firm9.

• First order effects never include the output of the firm (SAL) in the final

specification. However this variable appears in second order terms.

• There are significant pairwise interactions between access equipment vari-

ables10 for local demand and between single access systems11 for inter-LATA

demand. The signs are always negative.

• Heterogeneity parameters estimated via finite mixtures are always included in

the demand functions, in the form of specific constants or slopes.

• These heterogeneity parameters also influence elasticity of the demands with

respect to the relevant predictors. We observe that access form variables,

namely single access lines (Business and Hunting lines) and network accesses

(PBX trunks and Centrex), produce larger relative variations in demand than

the remaining explanatory variables.

The above results suggest that:

1. Access equipment variables are good predictors of telecommunication demand.

9 ln(SQFT/EMH ).
10 ln(BUS ), ln(HUN ), ln(PBX ), ln(CTX ).
11 ln(BUS ) ln(HUN ).
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Table 5.6: Final suggested specifications. (t-statistics in parentheses)

Local demand

̂
ln

(
LOCAL
EMH

)
= 2.630

(102.99)
+ 2.722

(79.07)
ln(EMH ) + 1.098

(82.60)
ln

(
BUS
EMH

)
+ .694

(52.15)
ln

(
HUN
EMH

)

+ 1.219
(89.10)

ln
(

PBX
EMH

)
+ .774

(101.88)
ln

(
CTX
EMH

)
+ .184

(6.84)
ln

(
EMH
SAL

)

− .194
(−25.99)

ln(BUS ) ln(HUN )− .214
(−6.34)

ln(BUS ) ln(PBX )

− .204
(−36.98)

ln(HUN ) ln(PBX )− .143
(−35.95)

ln(HUN ) ln(CTX )

+ .012
(8.19)

ln(EMH ) ln(EMT ) + .179
(12.70)

BSOUTH + .262
(14.58)

AL + .107
(6.34)

GA

+ .155
(6.97)

KY + .371
(15.97)

LA + .445
(19.78)

MS + .262
(11.09)

SC + .249
(1.49)

TN

n = 4391 R̄2 = .891 σ̂ = .346 RCMSPE (1000) = .349
∑

ε̂2 = 522.485 AIC = −9305 BIC = −9171

intra-LATA

̂
ln

(
INTRA
EMH

)
= 3.015

(51.90)
+ .662

(23.88)
ln

(
BUS
EMH

)
− 2.637

(−45.75)
H1 − .203

(−3.36)
BSOUTH − 1.205

(−14.80)
LA

Weighted Statistics: n = 1261 R̄2 = .701 σ̂ = 1.766

Non Weighted Statistics

n = 1261 R̄2 = .711 σ̂ = .950 RCMSPE (1000) = .955
∑

ε̂2 = 1134.094 AIC = −121.755 BIC = −90.918

inter-LATA

̂
ln

(
INTER
EMH

)
= 3.858

(44.27)
+ .481

(7.49)
ln

(
BUS
EMH

)
+ .234

(3.85)
ln

(
HUN

EMH

)
− 2.051

(−24.03)
H1

+ .626
(9.20)

ln(HUN )2 + .001
(2.19)

ln(POP)2 − .397
(−8.01)

ln(BUS ) ln(HUN )

− .787
(−3.29)

H1
ln(SAL)
ln(POP)

+ .840
(5.05)

H1 ln
(

EMT
EMH

)

Weighted Statistics: n = 1176 R̄2 = .733 σ̂ = 1.774

Non Weighted Statistics: (5.4.1)

n = 1176 R̄2 = .730 σ̂ = .818 RCMSPE (1000) = .827
∑

ε̂2 = 780 AIC = −463 BIC = −412
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2. Interactions between different telephone access equipments, are not negligible.

3. The sales account only for a small proportion of explained variance for the

proposed models, since their effects are second order.

4. Heterogeneity needs to be taken into account to represent the data and eval-

uate leading elasticities with respect to the relevant inputs.

We now discuss the details relative on the findings.

5.4.1 BLM Demand Models

In Table 5.12 in the Appendix, we report the Benchmark Linear Models for local,

intra-LATA and inter-LATA demand. The estimations show that:

1. Demands appear to be sensitive to equipment variables (BUS, HUN, PBX,

CTX ).

2. Constant terms for intra-LATA and inter-LATA are not significant.

3. The sales (SAL) variables have wrong signs. This may be due to heterogeneity

(see Figures 5.2, 5.3 and 5.4).

4. The Stage I indicator is negative for local calls, confirming that firms at stages

higher than the first make a more intensive use of local services by routing

long distance calls over their private network (PBX, CTX ).

5. Dimension of the firm appears to be relevant for local services demand, again

reflecting the fact that larger-sized firms demand ceteris paribus use more local

services than firms at stage I.

The sample fit for local calls is quite satisfactory, (R̄2 = .682), but this is not the case

of intra-LATA (R̄2 = .191) and inter-LATA demands (R̄2 = .243). These results

suggest that alternative specifications should be taken into account.

5.4.2 Local Demand URM

Summary statistics for a set of alternative specifications of local demand are reported

in Table 5.7. The final selected model is URM6 which has been chosen among six

possible URM’s suggested by RETINA by varying the inputs as detailed in Table

5.17. We start by defining a new specification, say URM1, and adding to the BLM

the heterogeneity parameters of the optimal three-cluster solution. In Table 5.7 we
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see that URM1 slightly improves predictive ability with respect to the BLM and R̄2

increases from .682 (BLM) to .708 (URM1).

However substantial improvement in prediction is achieved with the use of W trans-

formations generated by RETINA. This is the case of URM2, which includes W

transforms of worker per capita log-ratios. With 27 parameters URM2 has an

R̄2 = .883, thus explaining an increased variance of about 20% with respect to

the BLM and about 18% with respect to URM1. Out of sample predictive ability,

measured by the Robust Cross Mean Square Prediction Error (RCMSPE)12 increases

substantially (about 60% of the BLM) as do the information statistics (AIC, BIC).

Perhaps the most interesting results are obtained for URM3 and URM4 in which we

exclude all mixture heterogeneity parameters and just use per capita log-ratios to-

gether with W transforms of the logs of the original variables. Both models slightly

outperform URM2, in terms of predictive ability without using mixture heterogene-

ity parameters. URM3 is a very appealing specification suggested by RETINA

because it has just 20 parameters, almost as many as the number of parameters of

the BLM (19), while URM4 has 27 parameters and shows a modest forecasting im-

provement with respect to URM3. We can say more about URM3 by looking at its

specification in table 5.4.5. Note that RETINA suggests that interaction effects are

not negligible for the final specification. Selected W transformations mainly involve

interactions between different types of lines: ln(BUS ) ln(HUN ), ln(BUS ) ln(PBX ),

ln(HUN ) ln(PBX ) and ln(HUN ) ln(CTX ). All of them have negative signs indi-

cating a negative impact on demand. Ramsey’s RESET test Ramsey (1969) was

computed for URM3 to test departure from the null hypothesis of correct model

specification. With an F (2, 4369) = 105.24 the null hypothesis of correct specifica-

tion is rejected, suggesting that there is room to improve the results. Just as URM3,

URM4 is still not well specified, RESET F (2, 4363) = 69.74, and thus we reject the

null hypothesis of correct specification. A natural way to re-specify URM3 is to add

heterogeneity parameters suggested by finite mixtures. Both URM5 and URM6 in-

corporate two-cluster and three-cluster mixture parameters, respectively. Estimates

of URM6 are shown in Table 5.18. Inclusion of heterogeneity parameters improves

prediction ability at the expense of having a larger number of parameters (37 and 41

for URM5 and URM6, respectively). But this gain in prediction ability is larger than

the loss in precision of the estimates since AIC and BIC statistics both show evidence

in favor of URM5 and URM6 over previous models. URM6 has an R̄2 of .930 and

RCMSPE which is about half that of the BLM. Both models include line-equipment

12 See Marinucci (2005) for details on RCMSPE.
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Table 5.7: Local Demand: Comparison of selected statistics of candidate URM
models with respect to the BLM†.

Specification BLM URM1 URM2 URM3 URM4 URM5 URM6

No. of Parameters 19 21 27 20 26 37 41
No. of Clusters 1 3 3 1 1 2 3

RETINA Selection No Y es Y es Y es Y es Y es Y es
W Transforms No No Y es Y es Y es Y es Y es

Specific Constants No Y es Y es No No Y es Y es
Specific Slopes No No No No No Y es Y es

R̄2 .682 .708 .883 .891 .896 .912 .930
σ̂ .592 .567 .359 .346 .339 .312 .278

rcmspe(1000)a .595 .571 .365 .349 .343 .317 .286∑
ε̂2 1530 1403 562 522 500 423 336

AICb −4590 −4965 −8973 −9305 −9484 −10199 −11207
BICc −4462 −4824 −8794 −9171 −9312 −9956 −10939

†Different URM models have been selected by RETINA using different initial specifications for
X,F and H. Details are reported in Table 5.17.

• URM1: Obtained starting with BLM + three specific constants corresponding to the optimal
S1, G3 three cluster solution.

• URM2: As in URM1 + W transforms.

• URM3: Here heterogeneity mixture parameters are excluded. Auxiliary log-transforms of
original variables (BUS, HUN, PBX, CTX, EMT, EMH, SQFT ) are used to generate W
transforms and original log-ratios are included in F , the untransformed inputs.

• URM4: A different specification proposed by RETINA using the same specification as in
URM3.

• URM5: As in URM3, but this time allowing heterogeneity parameters corresponding to the
S1, G2 two-cluster solution.

• URM6: As in URM3 and including heterogeneity parameters of the S1, G3 optimal three-
cluster solution.

a. Robust Cross Mean Square Prediction Error is an approximation of the out of sample σ̂2

using 1000 bootstrap random selection of three disjointed sub-samples. See Marinucci (2005)
for details.

b. Here AIC is specified as n ln(σ̂ε
2) + 2k, where n is the sample size and k is the number of

parameters.

c. Here BIC is specified as n ln(σ̂ε
2) + ln(n)k, where n is the sample size and k is the number

of parameters.
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interactions as in URM3 (see Table 5.18), but additional demand variation is mod-

eled by cluster-specific slopes, namely regressors that are selected by RETINA from

the [Hg ×W ] term of equation (5.3.4). Going back to Table 5.7, the out of sample

prediction ability (RCMSPE) is only 48% of the BLM for URM6 (.286/.595) and

53% for URM5 (.317/.595) while it is 59% for URM3 (.349/.595). Almost all of the

variables already used in the earlier specification of the BLM are included in the

URM. These are: Business Lines (BUS ), Hunting Lines (HUN ), PBX trunks (PBX )

and Centrex lines (CTX ). RESET test for URM6 gave F (2, 4349) = 1.10 which does

not reject the null hypothesis of correct specification. In URM6, the specification

suggested by RETINA includes untransformed variables as well as interactions and

cross-ratios between them. Equipment variables (such as type and number of lines)

have non-linear effects on demand. Non-linearities may arise due to a variety of

reasons including the unavailability of other relevant variables such as the nature of

the business activity or whether usage is primarily internal or external. In order to

capture the above mentioned non-linearities, the proposed URM6 for local services

includes a variety of transformations that go beyond the a priori specification of

the BLM. Final WLS estimations that incorporate heteroskedasticity correction of

URM6 are shown in Table 5.19. F − tests for variable exclusion were also carried

out, since some of the initial 41 variables were no longer significant, finally reducing

the number of parameters of URM6 from 41 to 37.

5.4.3 Intra-LATA URM

The intra-LATA and inter-LATA demand results are quite different. As seen from

Table 5.12, both BLM’s show relatively poor fits and high standard errors of the

estimation over the whole data set. The estimations suggest that both demands are

sensitive to the number of single-line accesses in the business. Moreover we observe

that the constant term in both BLM’s is not significant. The negative sign of the

(EMT/EMH ) coefficients is due to the fact that both medium and long distance

services are mostly demanded by single-location and small sized firms. Since these

results are somewhat unsatisfactory from the prediction point of view, we apply here

a selection strategy similar to the one used for local demand. For the sake of brevity,

for intra-LATA and inter-LATA demand we report just the final selected URM mod-

els. The final selected Useful Representative Model (URM) for intra-LATA minutes

is reported in equation 6: RETINA selects a very simple formulation as URM of

intra-LATA demand. This model has only 5 parameters and, with the inclusion of

just one specific constant for cluster 1 (H1), we take into account heterogeneity in
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the data set. Moreover the Bell South effect is negative, reflecting the fact that

intra-LATA services tend to be provided by alternative companies. But perhaps

the most interesting characteristic of the inter-LATA demand model concerns the

ln(BUS/EMH ) ratio, which represents the effect of basic single line access demand.

In other words, intra-LATA demand is found to be especially sensitive to the num-

ber of business lines, while the effect of the other variables negligible. The model

passes the RESET specification test; with F(2,1254) = .958 we do not reject the

null hypothesis of correct specification. Then we applied weighted OLS to correct

for heteroscedasticity. The R̄2 of the intra-LATA URM increases from .191 to .711

(.701 for weighted estimation), while the RCMSPE is about a fifth of the BLM cor-

responding value. Also the standard error of estimate is about 60% with respect to

the corresponding BLM value. This model shows very appealing features because

its specification includes only five variables in modeling the demand of intra-LATA

calls. With respect to the corresponding BLM, we gained in terms of predictive

ability and also in terms of a more parsimonious representation.

5.4.4 Inter-LATA URM

For inter-LATA demand, we also obtain a quite parsimonious representation with

just 9 parameters, after considering a set of potential URM candidates suggested by

RETINA. The selected URM for inter-LATA minutes has been estimated by WLS

for heteroscedasticity correction. Here, significant effects are provided by the number

of lines per capita, namely the number of business (BUS ) and hunting (HUN ) lines.

Also their interaction is relevant, as well as the square of ln(HUN ). Again, these

interactions have negative signs. R̄2 is .730 versus .243 of the corresponding BLM,

and RCMSPE (.827) is only 59% of the corresponding BLM (1.392) value. The

model suggested by RETINA is a very significant improvement over the BLM.

5.4.5 Elasticities

We are interested in evaluating the leading elasticities both for local and inter-

LATA final URM models. In the case of the intra-LATA URM, since the demand

specification is very simple, we do not need to make further calculations to evaluate

the elasticities because the corresponding coefficients may be interpreted directly.

Elasticity of intra-LATA demand with respect to the number of business lines is .66

(see eq. 6). On the other hand, evaluation of the local and inter-LATA elasticities is

more tedious because the respective URM’s often embed nonlinear transformations

of the inputs. As a consequence, expressions for the elasticities of the local and the
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Table 5.8: Selected Elasticities based on URM estimates†.
BUS HUN PBX CTX SAL EMT SQFT POP

Local ($) 1.02 .21 .87 .74 -.04 .02 .00 .00
intra-LATA (min.) .66 - - - - - - -
inter-LATA (min.) .29 .44 - - .03 .36 - .03

† See Tables 5.20 and 5.9 for elasticity expressions of local and inter-LATA demand, respectively.

Table 5.9: Selected Cross-Elasticities from inter-LATA URM weighted model (eq.7).

∂ ln(INTER)
∂ ln(BUS )∂ ln(HUN )

= − .397
BUS ·HUN

< 0

∂ ln(LOCAL)
∂ ln(BUS )∂ ln(PBX )

= − .200
PBX

< 0

∂ ln(LOCAL)
∂ ln(HUN )∂ ln(CTX )

= − .540
CTX ·HUN

< 0

∂ ln(LOCAL)
∂ ln(HUN )∂ ln(PBX )

=
−.111 + .100H1

PBX ·HUN
/ 0

inter-LATA URM also embed heterogeneity parameters and other non linearities

represented by further transformations of the inputs, as shown in Table 5.20 and

Table 5.21. Note that the reported expressions in most cases depend on the values

assumed by other variables. We evaluate the elasticities at the average values of

the influencing variables. The results are shown in Table 5.8. For local demand,

we found larger positive elasticities for telephone equipment of the firm. Elasticities

with respect to the number of basic accesses, namely the number of business lines,

is close to one. Elasticities with respect to network access forms, PBX trunks and

Centrex lines, are .87 and .74, respectively. Demand elasticities are quite irrelevant

for the other explanatory variables, including the number of workers in the firm

(EMH, EMT ), sales (SAL), and physical extension (SQFT ) and population habitat

size (POP). Single line access forms were also positively related to demand for inter-

LATA services. Elasticity is .29 for business lines and .44 for hunting lines. On the

other hand, the elasticity with respect to the total number of employees is .36.
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5.5 Conclusions

In this chapter we estimate business telecommunications demands for local, intra-

LATA and inter-LATA services using US Telecommunications data. Graphical bi-

variate analysis and Benchmark Linear Model estimation show strong evidence of

heterogeneity which must be modeled in order to achieve a useful representation of

the data. We achieve this goal by first using finite mixtures of normal heteroscedastic

components to partition the data into homogeneous subgroups. For local demand

we fit three components, while two components were fitted both for intra-LATA

and inter-LATA demand. We then perform an automatic model search using the

RETINA algorithm to obtain a flexible model useful for out of sample prediction.

RETINA generates an expanded regressor set using the firm group membership as

a heterogeneity parameter to estimate specific constants and specific slopes. In ad-

dition RETINA includes interactions and nonlinear transformations of the original

variables as candidate regressors. We find that telephone equipment variables are

almost always selected as relevant first order effects. Moreover, the corresponding

coefficients are always positive. Also heterogeneity parameters and negative interac-

tions between different forms of access are significant and play an important role in

demand prediction. As a result, the demand elasticities, evaluated for the relevant

variables at the average values, show that:

• Local calls demand is most sensitive to a relative variation of the number of

business lines (1.02) and network access equipment (PBX Trunks (.87) and

Centrex (.74)), while a change in the remaining explanatory variables is not

significantly linked to relative variations of demand.

• Intra-LATA demand was sensitive only to single line access equipment repre-

sented by the number of business lines (elasticity is .66), while the effect of

most of the remaining explanatory variables was negligible.

• Inter-LATA demand elasticity is positive with respect to business lines (.29)

and hunting lines (.44) but also shows a positive relationship with respect to

the total number of workers of the whole business (.36).

With these results we are tempted to claim that modeling of business telecommuni-

cations demand using RETINA for this data set is adequate for its intended primary

use of out of sample forecasting.
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5.6 Appendices

5.6.1 Data pre-processing

Prior to the model specification a large preprocessing stage was undertaken. Only

4463 observations had complete data and our effective sample size varies along with

the type of demand13. Local services are used by all the firms, while intra-LATA

and inter-LATA services have been used by only 29% and 27% of the businesses,

respectively. Descriptive analysis and estimations were carried out twice, first by

using complete records, and then by using the total data set of 13743 observations

where missing information is imputed with a method suggested by Troyanskaya,

Cantor, Sherlock, Brown, Hastie, Tibshirani, D. & Altman (2001). In general,

results over the imputed data set differed slightly with respect to the results obtained

over the reduced record set, and the results are not reported here. In modeling

intra-LATA and inter-LATA demand, PBX trunks (PBX ) and Centrex lines (CTX )

have been excluded a priori from the respective BLM’s due to the lack of variation

across the considered sample. Also, for the same areas, the Alabama and South

Connecticut dummy indicators have been excluded from the specification of inter-

LATA traffic. Furthermore, in order to avoid perfect collinearity between the State

dummy indicators, Florida is taken as the reference level and is always removed

from the analysis. Finally all the equipment variables such as business lines (BUS ),

hunting lines (HUN ), PBX trunks (PBX ) and Centrex lines (CTX ) have been

augmented by one because these variables present zero values, and therefore log

transformations would be undefined. Outliers were detected by using an automated

procedure proposed by Peña & Yohai (1999). The procedure is implemented in

RETINA Winpack14 and may be run optionally by the user prior to model selection.

This reduced the effective sample size of local demand to 4391 firms, while 1261

were kept for intra-LATA demand and 1176 for inter-LATA demand. Also, prior to

estimation, data have been re-scaled to avoid the potential negative effect of different

orders of magnitude.

5.6.2 Estimation

Estimation of the BLM is straightforward for local traffic but not for intra-LATA

and inter-LATA demand since, as seen in Section 5.2, not all firms use public carriers

13The variables which reported missing values were (number of missing values reported in paren-
thesis): SQFT (9270), EMH (416), EMT (2458), SAL (2735).

14 See section 4.2.
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for this type of service. Direct estimation of the BLM by OLS, using only the sample

with nonzero demand, would be inconsistent since the mean of the error estimates

could be biased by sample selection effects. In these cases we first use a probit model

to explain the probability of the firm having a non-zero demand. Probit analysis

provides us with a new variable called the inverse of the Mills ratio (IMILLS ). After

this step we can go ahead with the OLS estimation of the BLM considering only

those firms with some toll calling activity. But this time, among the regressors, we

include the inverse of the Mills ratio as an explanatory variable because it adjusts

the mean of the error term which is not necessarily equal to zero. Probit estimations

for intra-LATA and inter-LATA demand are provided in Table 5.11.

5.6.3 Modeling Heterogeneity using Finite Mixtures

Since the presence of heterogeneity can in our case be visually detected from bivariate

scatter plots as seen in Section 5.2, the problem of modeling heterogeneity may well

be addressed by using available information at hand (geographic indicators, stage

of the firm and so on). Nonetheless, this a priori information may not account

for all the heterogeneity in the data set. Finite mixtures may then be used to

detect or represent any additional group structure, if present, in the data. The

only assumption in this case is that the distribution of our dependent variable may

be approximated as a weighted sum of normal distributions, each of which has an

expected mean expressed as a function of the explanatory variables, without loss of

generality if we define:

ln

(
Yj

EMH

)
= W ′βg + F ′δg + σg u

where u ∼ N(0, 1) and βg, δg, σg may assume different G values with probabilities

(π1, . . . , πG): the conditional distribution of the dependent variable with respect to

the candidate regressors may then be expressed formally as a mixture of G compo-

nents as:

ln(Yj/EMH ) | W,F ∼
G∑

g=1

πg N( W ′βg + F ′δg, σ
2
g)

Using this formulation15, the Expectation Maximization (EM) algorithm16 is then

used to estimate the maximum likelihood parameters of the regression equations

of each group β̂g, δ̂g, σ̂g, and the posterior probabilities π̂g for each firm. Cluster

15 Note that we are assuming normal heteroscedastic components. See Appendix 5.6.1 for more
details.

16 See McLachlan & Peel (2000) for a discussion on finite mixture modeling.



104

membership (the Hg matrix) is then determined by assigning each observation to

the group for which posterior probability is highest. What is relevant here is that

this methodology allows us to obtain a consistent inference about Hg better suited

to our objectives than any other traditional non-parametric clustering method, eg.

K-means (MacQueen (1967)), Ward (Ward Jr. (1963)). Traditional clustering meth-

ods are concerned with grouping objects, in our case the firms, by minimizing some

distance measure among them. The distance measures are defined on the basis of a

specific metric which typically is chosen by the researcher on an a priori basis (Eu-

clidean distance is usually considered). Thus traditional clustering methods do not

involve the estimation of any a priori parametric model structure on the variables.

With Finite Mixtures, on the contrary, distributional assumptions and conditional

heterogeneity among the variables, rather than unconditional heterogeneity, are ex-

plicitly taken into account and a parametric (or semi-parametric) inference about

a specific partition model is possible. We fitted a number of Gaussian mixture

models to capture additional sources of variation for each demand. We specify the

dependent variable to be distributed as a mixture of normal distributions with het-

eroscedastic components allowing different variances for each component. Indeed,

there are many different initial specifications that may be used for clustering our

data via finite mixtures. Moreover, within each specification, the number of groups

of the resulting partition must be assessed after estimations. Interested readers may

refer to Table 5.10 for details. When heteroscedastic components are specified, the

likelihood function is unbounded for the component covariances, which in turn im-

plies that a global maximizer does not exist, (see McLachlan & Peel (2000)). This

means that great care must be taken in order to ensure that the provided estimations

do not correspond to a spurious local solution on the edge of the parameter space

for σg, g = (1 . . . G), which should be discarded. For this reason, we compared a

wide range of solutions by using different strategies to select the starting parameter

values. For their definition, we used both k −means clustering (MacQueen 1967)

and 100 random initial partitions of the original data set. Using this strategy we

fitted up to 5 groups for each initial model specification relative to each demand. As

regards the number of groups to be retained for subsequent analysis, since regular-

ity conditions do not hold for the log-likelihood function, usual likelihood ratio tests

cannot be applied here. Thus the decision on the number of partitions to retain is

based on information criteria (both AIC and BIC in our case) as well as on an a

priori hypothesis about a two-cluster structure especially for local and intra-LATA

demand. As discussed in the foot note of Table 5.10, only in the case of inter-LATA
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demand was there a need to assess a two cluster structure using a bootstrap likeli-

hood ratio test. Computations were carried out using the Flexmix (Leisch 2003) and

the Mixreg packages designed for the R software (R Development Core Team 2007).

For the model selection step, we used RETINA Winpack which allows to perform

model selection and estimate a variety of econometric models including those corre-

sponding to equations (5.3.2), (5.3.3) and (5.3.4).

In summary we used a two-step approach to obtain a set of possible URM models

from which we can choose a final URM*. The first step is to model heterogeneity,

fitting finite mixtures to each demand. The second is to perform a variable selection

on an expanded regressors set which, besides the original variables, also includes

transformations of the form Xα
r Xβ

s as well as heterogeneity parameters. More

specifically:

1. First fit a mixture of regressions for each demand and for each proposed initial

specification by estimating the maximum likelihood mixture parameters via

the EM algorithm.

2. Decide the number G of clusters to be retained for subsequent analysis in each

case (we use AIC and BIC).

3. Obtain the corresponding Hg matrixes (if any) by assigning each observation

to the cluster for which the posterior cluster membership probability is highest.

4. Once a partition has been chosen, consider a general specification as in equa-

tion (5.3.4) but this time including the cluster membership matrix Hg:

• into F in order to model group-specific constants

• into Hg in order to model group-specific slopes

5. Then use RETINA to automatically select only the most relevant predictors

among W , F , and the Hg ×W interactions between predictors and clusters.

Obtain a candidate URM*.

This approach works well in practice. One can get different candidate URM’s by

running the above steps for different specifications of the inputs, namely X, F and

H. All of them represent a candidate model set on which Multi-Model Inference,

MMI (Burnham & Anderson 2002) may be carried out by comparing the models on

the basis of AIC and BIC criterion.
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5.6.4 Mixtures of Linear Demand Models

After applying the EM algorithm, the number of groups was selected by examining

both the AIC and BIC criteria over three different specifications, say S1, S2 and

S3 where S1 ≡ BLM, S2 the relevant regressors of the BLM selected by RETINA,

and S3 the BLM excluding all dummy variables. The AIC and BIC statistics of the

fitted mixture of linear demand models using S1, S2 and S3 as initial specification

are reported in Table 5.1017.

Strong evidence for a two group solution was found for intra-LATA demand using the

S2 specification suggested by RETINA, while for local calls we adopted both a two

cluster and a three cluster solution using the S1 BLM specification. For inter-LATA

demand there is apparently weaker evidence of heterogeneity although finally a boot-

strap likelihood ratio test was finally used to choose a two group structure using the

S2 specification proposed by RETINA. The estimated models are reported in Tables

5.13, 5.14, 5.15 and 5.16. Interestingly the results show that most differences among

clusters can be captured by differences in constants. For example, while in the intra-

LATA or inter-LATA BLM’s the constant term was not statistically significant (see

Table 5.12), homogeneous clusters found by using mixture modeling show significant

variations across the constant terms of two groups (see Table 5.15 for intra-LATA

and Table 5.16 for inter-LATA demand). Basically, this means that firms belong-

ing to clusters with higher constants may be “heavy users”, while components with

lower constants may be “light users” of the service. Other differences among groups

are associated with component variances and slope parameter estimates. Interest-

ingly we find a close relationship between these results and the descriptive statistics

shown in Table 5.1. For example, consider the coefficient of ln(EMT/EMH ) for

inter-LATA demand (Table 5.16). This parameter gives an indication of the effect

of the relative size of the local subsidiary with respect to the whole business. It gives

an approximation of the dimension of the firm’s internal communication needs. As

we can see from Table 5.16 inter-LATA “heavy users” (cluster 2) are not sensitive

to the ln(EMT/EMH ) ratio since the corresponding coefficient is not significantly

different from zero. This reflects the fact that “heavy users” of inter-LATA service

are mostly stage I firms, which are smaller and single location firms. In fact, since

the proportion of single location firms is higher in this cluster, EMT tends to EMH

and this causes the ln(EMT/EMH ) ratio to tend towards zero. More evidence of

heterogeneity is reported in Table 5.14. Here, local services demand is decomposed

17 See also Appendix 5.6.1 for more details about the justification of using AIC and BIC as
selection criterion for mixture models.
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Table 5.10: Model selection of BLMM (Benchmark Linear Mixture Models)†.

AIC Statistic
Local intra− LATA inter − LATA

Groups S1 S2 S3 S1 S2 S3 S1 S2 S3

1 7871 8161 8628 4766 4774 4796 4094 4170 4139
2 4155 4960 5415 4721 4730∗ 4766 4067 4139∗ 4116
3 3403 4405 4823 4674 4734 4769 4020 4149 4110
4 3300 4231 4592 4614 4739 4749 3984 4154 4101
5 3209∗ 4146∗ 4561∗ 4564∗ 4747 4744∗ 3928∗ 4160 4092∗

BIC Statistic
Local intra− LATA inter − LATA

Groups S1 S2 S3 S1 S2 S3 S1 S2 S3

1 7999 8238 8692 4864∗ 4795 4842∗ 4180∗ 4190 4185∗

2 4417 5145 5550 4922 4776∗ 4864 4244 4184∗ 4212
3 3799∗ 4648 5027 4978 4806 4918 4288 4220 4257
4 3831 4556∗ 4866∗ 5020 4837 4949 4344 4250 4299
5 3873 4614 4906 5073 4870 4996 4379 4260 4340

†In Table 5.10 we show up to five groups solution for each demand. Solutions were obtained using
both k−means starting values and 100 random starting values for each partition. Values marked
with an asterisk represent the lowest values of AIC and BIC along specifications S1, S2 and S3.
More in detail:

S1 : An initial specification as in equation (5.3.1). This is adopted as a natural starting point,
since it is the BLM specification.

S2 : An initial specification suggested by performing a variables selection on eq. (5.3.1). Here
we choose a more parsimonious specification than the BLM, where selected regressors were
suggested by RETINA.

S3 : An initial specification using a specification as in (5.3.1) but excluding all the dummy
variables. This is just an additional specification allowing only continuous regressors.

Solutions proposed by both criteria do not generally coincide. BIC criterion is in general the
preferred statistic since AIC has been observed to over-estimate the number of components
(McLachlan & Peel 2000). In fact AIC tends to suggest a higher dimensional solution exclud-
ing some special cases. The lowest AIC value for local demand models corresponds to a five
group solution (AICLOCAL,G5,S1 = 3209) while BICLOCAL,G5,S1 = 3799 suggests a three group
solution using specification S1. Note that these are the lowest values with respect to alterna-
tive group solutions, but also with respect to specifications S2 and S3. Nonetheless, since a two
cluster solution is visually expected we also take into consideration a two group solution for sub-
sequent steps. A similar reasoning is applied to intra-LATA demand. We find evidence for a two
groups solution since the lowest BIC statistic across alternative specifications corresponds to S2

for which 18 BICINTRA,G5,S1 = 4776. The choice of the number of groups is more difficult in
the inter-LATA case. Heterogeneity is not strongly supported as in the case of local and intra-
LATA demand, since lowest information statistics provide opposite results: we find the lowest
AICINTER,G5,S1 = 3928 suggests 5 groups using specification S1, but BICINTER,G1,S1 = 4180
suggests evidence in favor of absence of heterogeneity in the data proposing a one-cluster solution.
Nonetheless we observe that the second best solution is for the two groups S2 specification, for which
BICINTER,G2,S2 = 4184. But the differences BICINTER,G2,S2−BICINTER,G1,S1 = 4184−4180 = 4
and BICINTER,G1,S2 −BICINTER,G2,S2 = 4190− 4184 = 6 indicate only a weak evidence in favor
of the S1 and S2 absence of heterogeneity model. To verify this hypothesis at least on the S2 speci-
fication we run a bootstrapped likelihood ratio test where null hypothesis is the one group solution
and the alternative is a two group solution. Departure from the null hypothesis was significant
using n = 100 replications at α = .0001 level thus we finally decided on a two cluster solution.
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into three components: cluster 1 with a constant term of 4.112 (virtually equal to

the whole sample estimate), cluster 2 with a constant term of 2.497 and cluster 3

with a constant term of 3.125. For the sake of convenience we will call cluster 1

“heavy users” cluster 2 “light users”, and cluster 3 “medium users”. We observe

that estimated demand elasticities of single-line accesses such as business (BUS ) and

hunting (HUN ) lines have positive signs as expected and are significant. Nonethe-

less, for network systems such as PBX trunks (PBX ) and Centrex lines (CTX),

the signs of the elasticities vary across clusters: PBX trunk elasticities are negative

(-1.259) for “light users”, and Centrex line elasticities are also negative (-1.229) for

“medium users” - with very high t− values.

A final comment is due for Sales, which is the variable that proxies the firm output.

Heterogeneity of demand with respect to sales (SAL) is evident from Figure 5.2,

where the upward sloping cloud may suggest a positive relationship between local

demand and the firm’s sales. Nonetheless the estimated parameter has negative

signs across clusters (Table 5.14). This suggests that the heterogeneity attributed

to sales has no correlation with heterogeneity due to different access equipment in

the firm, which in turn is represented by four variables (BUS , HUN , PBX , CTX )

and accounts for a greater proportion of explained variance.
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Table 5.11: Probit models for intra-LATA and inter-LATA demand (t − statistics
are reported in parenthesis)

Dependent Variable intra-LATA (Yes=1) inter-LATA (Yes=1)
Observations 4463 4463

log-L −1806.962 −1343.420
restricted log-L −2675.425 −2594.076

Chi-sq (dgf) 1736.927 (18) 2501.312 (16)
sig. .0000 .0000

Constant −.815
(−3.381)

−.954
(−3.565)

ln(BUS/EMH ) .389
(11.439)

.376
(9.095)

ln(HUN /EMH ) −.238
(−6.288)

−.153
(−3.590)

ln(PBX /EMH ) .205
(5.929)

.313
(8.446)

ln(CTX /EMH ) −.015
(−.578)

.065
(2.316)

ln(SAL/EMH ) −.119
(−1.793)

−.255
(−16.439)

ln(EMT/EMH ) −.102
(−1.987)

−.198
(−3.063)

ln(SQFT/EMH ) −.020
(−.806)

−.026
(−.925)

ln(POP) −.006
(−.459)

.026
(1.870)

STAGEI .774
(9.534)

1.053
(1.785)

BSOUTH −.083
(−1.314)

.010
(.143)

AL .503
(5.390)

−
GA −.043

(−.514)
.103

(1.247)

KY 1.599
(15.670)

1.904
(18.568)

LA .493
(4.597)

1.327
(12.299)

MS .911
(9.186)

1.442
(14.330)

NC 1.347
(12.342)

2.240
(17.634)

SC 1.575
(15.117)

−
TN 1.004

(1.055)
1.720
(15.638)

Predicted counts for intra-LATA and inter-LATA probit models
intra-LATA inter-LATA

Predicted Predicted
Actual 0 1 Total Actual 0 1 Total

0 2890 292 3182 0 3111 156 3267
1 503 778 1281 1 364 832 1196

Total 3393 1070 4463 Total 3475 988 4463
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Table 5.12: Benchmark Linear Models for Local, intra-LATA and inter-LATA traffic
(t− statistics are reported in parenthesis).

Dependent Variable ln(LOCAL/EMH ) ln(INTRA/EMH ) ln(INTER/EMH )

Observations 4391 1261 1176
R̄2 .682 .191 .243

Std.err.est. .592 1.589 1.369
Robust CMSPE .595 1.619 1.392

AIC −4590 1188 757
BIC −4462 1285 843

Constant 4.112
(45.115)

1.374
(1.297)

.941
(1.349)

ln(BUS/EMH ) .290
(29.320)

.694
(3.515)

.713
(5.330)

ln(HUN /EMH ) .168
(15.181)

.111
(1.228)

.509
(6.632)

ln(PBX /EMH ) .157
(15.371)

− −
ln(CTX /EMH ) .112

(16.950)
− −

ln(SAL/EMH ) −.024
(−5.796)

.009
(.165)

−.343
(−5.985)

ln(EMT/EMH ) .138
(9.520)

−.324
(−1.615)

−.188
(−.945)

ln(SQFT/EMH ) .001
(.087)

.017
(.379)

.036
(.878)

ln(POP) .004
(.804)

.009
(.378)

.110
(5.577)

IMILLS − .256
(.420)

1.159
(3.591)

STAGEI −.490
(−17.197)

−.064
(−.176)

.125
(.448)

BSOUTH .221
(9.142)

−.355
(−2.956)

.051
(.544)

AL .092
(2.884)

.859
(2.516)

−
GA .047

(1.614)
.356
(1.726)

−.374
(−2.172)

KY −.275
(−7.100)

.881
(1.383)

1.242
(3.171)

LA .089
(2.199)

−.517
(−1.551)

.712
(2.130)

MS .004
(.099)

.646
(1.417)

1.119
(3.221)

NC −.598
(−13.489)

.763
(1.281)

2.156
(4.520)

SC −.156
(−3.808)

.819
(1.289)

−
TN −.101

(−2.450)
.435
(.920)

.923
(2.472)
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Table 5.13: Local Demand: Two-cluster solution Benchmark Linear Mixture Models
(BLMM)(t− statistics in parenthesis).

ln(LOCAL/EMH ) Total Sample cluster 1 cluster 2

Observations 4391 3287 1104
R̄2 .682 .962 .764

Std.err.est. .592 .191 .566
Constant 4.112

(45.115)
2.482
(7.516)

4.742
(26.067)

ln(BUS/EMH ) .290
(29.320)

1.178
(166.347)

.171
(7.734)

ln(HUN /EMH ) .168
(15.181)

.249
(47.777)

.032
(1.796)

ln(PBX /EMH ) .157
(15.371)

−1.165
(−123.813)

.341
(2.932)

ln(CTX /EMH ) .112
(16.950)

.761
(137.977)

.219
(19.808)

ln(SAL/EMH ) −.024
(−5.796)

−.017
(−11.296)

−.052
(−4.125)

ln(EMT/EMH ) .138
(9.520)

.008
(1.171)

.169
(8.813)

ln(SQFT/EMH ) .001
(.087)

.000
(−.044)

−.018
(−1.018)

ln(POP) .004
(.804)

.005
(2.676)

−.005
(−.598)

STAGEI −.490
(−17.197)

.029
(2.512)

−.272
(−4.372)

BSOUTH .221
(9.142)

.237
(26.234)

.033
(.696)

AL .092
(2.884)

.406
(32.997)

−.143
(−2.274)

GA .047
(1.614)

.243
(22.739)

−.345
(−5.098)

KY −.275
(−7.100)

.347
(23.727)

−.324
(−4.040)

LA .089
(2.199)

.316
(19.833)

.271
(3.559)

MS .004
(.099)

.451
(29.652)

−.059
(−.753)

NC −.598
(−13.489)

.034
(1.817)

−.800
(−1.211)

SC −.156
(−3.808)

.415
(28.702)

−.623
(−5.004)

TN −.101
(−2.450)

.355
(24.162)

−.132
(−1.216)
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Table 5.14: Local Demand: Three-cluster Benchmark Linear Mixture Models
(BLMM) for Local Calls Billing (t− statistics in parenthesis)†.

ln(LOCAL/EMH ) Total Sample cluster 1 cluster 2 cluster 3

Observations 4391 585 2622 1184
R̄2 .682 .759 .972 .984

Std.err.est. .592 .586 .163 .134
Constant 4.112

(45.115)
4.113
(15.347)

2.497
(73.969)

3.125
(74.760)

ln(BUS/EMH ) .290
(29.320)

.146
(4.684)

1.248
(179.245)

1.046
(139.117)

ln(HUN /EMH ) .168
(15.181)

.072
(3.051)

.203
(41.950)

.104
(2.523)

ln(PBX /EMH ) .157
(15.371)

.247
(1.484)

−1.259
(−138.700)

1.101
(136.011)

ln(CTX /EMH ) .112
(16.950)

.215
(15.284)

.841
(165.416)

−1.229
(−106.006)

ln(SAL/EMH ) −.024
(−5.796)

−.054
(−2.96)

−.026
(−18.348)

−.043
(−22.712)

ln(EMT/EMH ) .138
(9.520)

.256
(9.212)

−.002
(−.368)

−.017
(−2.661)

ln(SQFT/EMH ) .001
(.087)

.013
(.493)

−.001
(−.156)

−.007
(−1.593)

ln(POP) .004
(.804)

.003
(.283)

.004
(2.204)

−.001
(−.527)

STAGEI −.490
(−17.197)

−.040
(−.465)

.037
(3.387)

−.042
(−3.225)

BSOUTH .221
(9.142)

−.165
(−2.349)

.158
(18.509)

.331
(29.423)

AL .092
(2.884)

−.046
(−.502)

.425
(37.658)

.211
(13.002)

GA .047
(1.614)

−.430
(−4.037)

.068
(6.296)

.391
(31.415)

KY −.275
(−7.100)

−.382
(−2.898)

.218
(14.668)

.330
(21.140)

LA .089
(2.199)

.481
(4.542)

.311
(2.804)

.220
(11.350)

MS .004
(.099)

.175
(1.584)

.357
(24.757)

.451
(24.196)

NC −.598
(−13.489)

−.584
(−5.266)

−.002
(−.116)

.242
(11.329)

SC −.156
(−3.808)

−.444
(−2.617)

.392
(28.314)

.358
(18.019)

TN −.101
(−2.450)

−.030
(−.213)

.299
(2.840)

.362
(18.870)

†These parameter estimates correspond to the optimal three-cluster solution of specification S1.
See Table 5.10 where the choice of the mixture regression partition is discussed for Local demand
calls.
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Table 5.15: Selected Benchmark Linear Mixture Models (BLMM) for intra-LATA
minutes (t− statistics in parenthesis).

ln(INTRA/EMH ) Total Sample cluster 1 cluster 2

Observations 1261 472 788
R̄2 .177 .361 .349

Std.err.est. 1.603 1.030 .902
Constant 1.923

(32.597)
.281

(4.451)
2.849
(68.752)

ln(BUS/EMH ) .738
(15.691)

.776
(15.490)

.626
(18.713)

LA −1.037
(−5.361)

−.973
(−4.507)

−1.244
(−9.348)

Table 5.16: Selected Benchmark Linear Mixture Models (BLMM) for inter-LATA
minutes (t− statistics in parenthesis).

ln(INTER/EMH ) Total Sample cluster 1 cluster 2

Observations 1176 505 665
R̄2 .184 .389 .396

Std.err.est. 1.422 .928 .763
Constant 3.404

(48.208)
2.133
(29.648)

4.354
(88.110)

ln(HUN /EMH ) .693
(15.891)

.743
(16.666)

.637
(2.937)

ln(EMT/EMH ) .442
(2.982)

1.153
(6.073)

−.102
(−.110)
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Table 5.17: Local Demand: Specification of X,F and H inputs of RETINA †.

URM1 URM2 URM3 URM4 URM5 URM6

ln(BUS/EMH ) X W F F F F
ln(HUN /EMH ) X W F F F F
ln(PBX /EMH ) X W F F F F
ln(CTX /EMH ) X W F F F F
ln(SAL/EMH ) X W F F F F

ln(EMT/EMH ) X W F F F F
ln(SQFT/EMH ) X W F F F F

ln(BUS ) − − W W W W
ln(HUN ) − − W W W W
ln(PBX ) − − W W W W
ln(CTX ) − − W W W W
ln(SAL) − − W W W W

ln(EMT ) − − W W W W
ln(EMH ) − − W W W W

ln(SQFT ) − − W W W W
ln(POP) X W W W W W

STAGEI F F F F F F
BSOUTH F F F F F F

AL F F F F F F
GA F F F F F F
KY F F F F F F
LA F F F F F F
MS F F F F F F
NC F F F F F F
SC F F F F F F
TN F F F F F F

H1 F/H F/H − − F/H F/H
H2 F/H F/H − − − F/H

† Each letter of the table is referred to a specification as in model 5.3.4.
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Table 5.18: Local Calls: URM6 OLS parameter estimates.

Observations 4391
R̄2 .930
Std.err.est. .278
Robust CMSPE .286
AIC −11207
BIC −10939

Variable coefficient t-statistic
Constant 2.644 8.783

A priori ln(EMH ) 2.427 61.851
transforms ln(BUS/EMH ) 1.095 76.492

ln(HUN /EMH ) .341 18.568
ln(PBX /EMH ) 1.201 77.146
ln(CTX /EMH ) .767 55.685

Specific STAGEI .028 2.031
constants BSOUTH .163 14.159

AL .307 2.694
GA .099 7.064
KY .180 9.861
LA .357 18.921
MS .389 21.035
SC .317 16.586
TN .265 13.747

Interaction ln(BUS ) ln(HUN ) −.077 −1.642
Terms ln(BUS ) ln(PBX ) −.145 −5.040

ln(HUN ) ln(PBX ) −.101 −15.432
ln(HUN ) ln(CTX ) −.055 −13.331
ln(EMH )/ ln(SAL) .119 4.100
[ln(SAL) ln(SQFT )]−1 4.511 9.162

Specific H1 ln(EMH )2 .058 19.144
slopes H1 ln(BUS ) ln(EMH ) −.172 −22.787
of Cluster 1 H1 ln(HUN ) ln(EMH ) −.027 −4.916

H1 ln(PBX ) ln(EMH ) −.139 −25.710
H1 ln(CTX ) ln(EMH ) −.064 −16.913
H1 ln(HUN ) ln(PBX ) .082 8.469
H1 [ln(SAL) ln(SQFT )]−1 −3.185 −4.723
H1 ln(BUS )/ ln(POP) 2.195 6.373
H1 ln(HUN )/ ln(POP) .450 1.986
H1 ln(EMH )/ ln(POP) −1.381 −7.654
H1 ln(EMT )/ ln(POP) 1.630 14.357

Specific H2 ln(BUS )2 .022 4.174
slopes H2 ln(SAL)−2 −1.151 −8.161
of Cluster 2 H2 ln(SQFT )−2 −9.551 −8.977

H2 ln(CTX ) ln(EMH ) .015 5.185
H2 ln(EMH ) ln(POP) −.003 −4.505
H2 ln(BUS )/ ln(SAL) .161 2.756
H2 ln(HUN )/ ln(SQFT ) .506 3.472
H2 ln(EMH )/ ln(POP) −.446 −6.724
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Table 5.19: WLS estimation of URM6 with heteroskedasticity correction†.

Observations 4391
R̄2 .973
Std.err.est. .278

Variable coefficient t-statistic
Constant 2.534 166.664

A priori ln(EMH ) 2.592 11.937
transforms ln(BUS/EMH ) 1.150 155.441

ln(HUN /EMH ) .370 29.58
ln(PBX /EMH ) 1.239 119.72
ln(CTX /EMH ) .804 6.735

Specific STAGEI .178 26.892
constants AL .380 38.466

GA .119 13.372
KY .233 21.59
LA .309 23.085
MS .405 35.803
SC .377 46.607
TN .307 33.193

Interaction ln(BUS ) ln(HUN ) −.100 −19.099
Terms ln(BUS ) ln(PBX ) −.200 −6.318

ln(HUN ) ln(PBX ) −.111 −21.988
ln(HUN ) ln(CTX ) −.054 −15.52
ln(EMH )/ ln(SAL) .057 3.346
[ln(SAL) ln(SQFT )]−1 5.336 2.662

Specific H1 ln(EMH )2 .058 12.556
slopes H1 ln(CTX ) ln(EMH ) −.076 −15.211
of Cluster 1 H1 ln(HUN ) ln(EMH ) −.027 −5.391

H1 ln(HUN ) ln(PBX ) .100 7.721
H1 ln(PBX ) ln(EMH ) −.151 −19.665
H1 [ln(SAL) ln(SQFT )]−1 −.149 −13.382
H1 ln(EMH )/ ln(POP) −1.112 −3.587
H1 ln(EMT )/ ln(POP) 1.863 9.001
H1 ln(BUS )/ ln(POP) 1.625 4.180
H1 ln(SAL)/ ln(POP) −.531 −3.153

Specific H2 ln(SAL)−2 −1.320 −16.472
slopes H2 ln(SQFT )−2 −9.782 −17.047
of Cluster 2 H2 ln(EMH ) ln(CTX ) .008 2.835

H2 ln(EMH ) ln(POP) −.002 −4.989
H2 ln(EMH )/ ln(POP) −.389 −1.103
H2 ln(BUS )/ ln(SAL) .332 9.438
H2 ln(HUN )/ ln(SQFT ) .369 4.034

† Several transformations have been dropped since they were no longer significant after WLS
estimations.
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Table 5.20: Selected Elasticities from local calls URM6 weighted model (Table 5.19)

∂ ln(LOCAL)
∂ ln(BUS )

= 1.150− .149H1 ln(EMH )− .100 ln(HUN )− .200 ln(PBX ) +

+
1.626H1

ln(POP)
+

.332H2

ln(SAL)

∂ ln(LOCAL)
∂ ln(HUN )

= .029− .149H1 ln(BUS )− .076H1 ln(CTX ) + .008H2 ln(CTX ) +

− .027H1 ln(HUN )− .151H1 ln(PBX ) + .116H1 ln(EMH ) +

− .002H2 ln(POP)− 1.112H1

ln(POP)
− .389H2

ln(POP)
+

.057
ln(SAL)

∂ ln(LOCAL)
∂ ln(PBX )

= 1.239− .200 ln(BUS )− .151H1 ln(EMH )− .111 ln(HUN ) +

+ .100H1 ln(HUN )

∂ ln(LOCAL)
∂ ln(CTX )

= .804− .076H1 ln(EMH ) + .008H2 ln(EMH )− .054 ln(HUN )

∂ ln(LOCAL)
∂ ln(SAL)

= − .531H1

ln(POP)
+

2.637H2

ln(SAL)3
− .332H2 ln(BUS )

ln(SAL)2

− .057 ln(EMH )
ln(SAL)2

− 5.336
ln(SAL)2 ln(SQFT )

∂ ln(LOCAL)
∂ ln(EMT )

=
1.863H1

ln(POP)

∂ ln(LOCAL)
∂ ln(EMH )

= .029− .149H1 ln(BUS )− .076H1 ln(CTX ) + .008H2 ln(CTX ) +

+ .116H1 ln(EMH )− .027H1 ln(HUN )− .151H1 ln(PBX )− 1.112H1

ln(POP)
+

− .389H2

ln(POP)
− .002H2 ln(POP) +

.057
ln(SAL)

∂ ln(LOCAL)
∂ ln(POP)

= −.002H2 ln(EMH )− 1.625H1 ln(BUS )
ln(POP)2

+
1.112H1 ln(EMH )

ln(POP)2
+

.389H2 ln(EMH )
ln(POP)2

− 1.863H1 ln(EMT )
ln(POP)2

+
.531H1 ln(SAL)

ln(POP)2
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Table 5.21: Selected Elasticities from inter-LATA URM weighted model (eq.7).

∂ ln(INTER)
∂ ln(BUS )

= ln(HUN )

∂ ln(INTER)
∂ ln(HUN )

= .234− .397 ln(BUS ) + 1.251 ln(HUN )

∂ ln(INTER)
∂ ln(EMT )

= .840H1

∂ ln(INTER)
∂ ln(EMH )

= .285− .840H1

∂ ln(INTER)
∂ ln(POP)

= .002 ln(POP) + .787H1 ln(SAL) ln(POP)−2

∂ ln(INTER)
∂ ln(SAL)

=
.787H1

ln(POP)



Chapter 6

RETINET

6.1 Introduction

This chapter reports the results of an on-going project for the development of a new

automatic approximation and modeling tool called RETINET. In previous chapters

we have seen both approximation and automatic selection procedures that allow

to build predictive functions inspired by the principle of parsimony. Among other

subset selection methods, RETINA has the unique feature to automatically include

level one transformations of type Xα1
it Xα2

jt with α1, α2 = −1, 0, 1 that may be able

to capture the presence of simple non-linear structures in the data. However, even

if this approach may be useful in many contexts, it may well be the case that dif-

ferent non-linear structures are not approximated by level one transformations. As

a possible remedy to this, one could extend the class of transformations to include

a wider choice of functional forms, such as logarithms, lags or expansions, such as

polynomials, splines, or trigonometric series. Another convenient approach is to use

artificial neural network functions which in virtue of their approximation properties

(Cybenko 1989, Hornik et al. 1989, Barron 1993) can achieve an approximation rate

of order O(q−1) by using a number of parameters O(qT ) that grow linearly in q

where q is the number of nodes in the hidden layer and T is the sample size. This is

in contrast with traditional polynomial, spline and trigonometric expansions which

require exponentially O(qT ) terms to achieve the same approximation rate. Hence

ANNs are at least asymptotically more parsimonious than these series expansions in

approximating unknown functions. In spite of these results, a less attractive feature

of ANNs is relative to the computational effort for parameter estimation. More-

over in empirical applications, it is not always clear how the specification (network

architecture) should be defined. Finally, ANNs do not provide reverse engineering

119
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capabilities, which to some extent level one transformations still retain. Regard-

less of these practical issues, ANN become an attractive alternative econometric

tool for nonparametric applications and an interesting way to extend RETINA’s

approximation capabilities.

In this context, it seems natural the development of a more advanced automatic

modeling and prediction tool, which incorporates the advantages of both RETINA

and ANN modeling, while keeping some of the principles we have been inspired so

far: low computational effort, reverse engineering capabilities and parsimony. In

this chapter we propose a new algorithm called RElevant Transformations of the

Inputs NETwork (RETINET). RETINET integrates the approximation capabilities

and specification search of RETINA and ANN in order to achieve more flexibility

in approximating an unknown function. Our approach takes into account different

aspects related to the empirical construction of ANNs architectures and their esti-

mation. The typical problem associated with neural network estimation is that the

functional form embodied in these models may easily become “too flexible” which

may easily result in overfit (Looney 1997), a situation in which the model does not

generalize well out of sample. Model overfit in ANN’s is fundamentally caused by

an over-complexity in the model specification that is directly analogous to the over-

fitting problems that one encounters with linear models. As we already discussed in

chapter 2, the solution consists in simplifying the specification by dropping variables

and/or using some form of regularization like ridge regression.

Recently White (2006) described a new family of methods called QuickNet which in

part underlies RETINET. These methods aim directly at balancing the competing

dangers of underfit and overfit to identify the level of model complexity that guar-

antees the best out-of-sample prediction performance without ad-hoc modifications

to the fitting algorithms themselves. While QuickNet provides a general method, it

leaves open several choices in specific implementation of the various modeling steps.

RETINET uses QuickNet as the basis, draws from RETINA for its specific im-

plementation schemes, and includes additional customization features. RETINET

creates a predictive model architecture that is linear in the parameters but yet non-

linear (level one) or highly non-linear in the inputs (ANN-likewise). This allows

us to avoid the minimization of complicated non-linear estimation procedures for

the parameters of such transformations, preserving the linearity in the parameters

which is also a characteristic of RETINA.

The chapter is organized as follows: the next section will briefly overview some of
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the work done in the econometric literature related to Neural Networks. Section 6.3

specifies the econometric model and gives a statistical interpretation of it. Section

6.4 discusses specific aspects of building flexible functional forms. A model specifi-

cation strategy, susceptible of algorithmic treatment implemented in RETINET, is

presented in section 6.5. Two applications using simulated data sets are presented

in the last two sections. Final remarks and conclusions follow.

6.2 Some applications of ANN in econometrics: a

brief overview

ANNs have recently gained popularity as an emerging and challenging computational

methodology, and they offer a new avenue to explore the dynamics of a variety of

applications in economics and finance. Single layer feed-forward networks by far

have been the most popular in time series econometrics, and therefore, we restrict

attention to this particular form of ANN. Models using single layer networks for

forecasting exchange rates have been investigated in a number of studies by Kuan

& Liu (1995), Brooks (1997), Zhang, Patuwo & Hu (1998), Zhang, Patuwo & Hu

(2001), White & Racine (2001) and Kodogiannis & Lolis (2002) to mention a few. In

several applications, Tang & Fishwich (1993), Jhee & Lee (1993) and Hill, O’Connor

& Remus (1996) have shown that ANNs perform better than linear ARIMA mod-

els in terms of out-of-sample predictive ability, specifically, for irregular series and

for multiple-period-ahead forecasting. Forecasting macroeconomic variables such as

inflation using ANN have been considered by Swanson & White (1997), Nakamura

(2005) and Binner, Elger, Nilsson & Tepper (2006). Another application often en-

countered in the literature is relative to forecasting of stock returns. White (1988)

assesses the efficient markets hypothesis1 using single layer feed-forward ANN. Re-

cently, hybrid ANNs integrating predictions from GARCH models as inputs, have

been proposed to overcome the difficulty of ANN in predicting volatility of financial

time series (Roh 2007). This is by no means an exhaustive list of the applications

of ANN in economics and finance but may give the reader an idea on how much

interest there is nowadays in exploring new research directions using ANNs.

1In finance, the efficient market hypothesis asserts that financial markets are informationally
efficient, or that prices on traded assets, e.g., stocks, bonds, or property, already reflect all known
information and therefore are unbiased in the sense that they reflect the collective beliefs of all
investors about future prospects.
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6.3 Specification of flexible functional forms

If we put all the parameterization possibilities already discussed in chapter 3 in a

single specification we obtain a generic functional approximation of the form:

Yt = α′X̃t (a) Pure Linear Component

+
∑l

g ζg(Xt)
′δg (b) Level One Transformations

+
∑q

h ψ(Xt, Γh)
′βh (c) ANN Transformations

+ εt

(6.3.1)

The notation makes clear the distinction between the different components of the

proposed specification. In particular we have: (a) the vector of inputs X̃t ∈ Rk+1

and their associated coefficients vector α ∈ Rk+1. Here X̃t defined as X̃t = [1, X ′
t]
′

where Xt ∈ Rk may include lagged values of the response Yt as well as exogenous

predictors Xt and their lagged values. The second term (b) of eq. 6.3.1 includes

level one transformations of the inputs, of the type discussed in section 3.1.1 given

by: ζ(Xt) = Xa1
it Xa2

jt with i, j = 1, 2, . . . , k and a1, a2 = −1, 1 with an associated

coefficients vector δ ∈ Rk+2k2
. Finally we have (c) the ANN transformations of the

inputs Xt given by ψ(Xt, Γh), often called the activation function. The function ψ is

chosen among a library Ψ of Generically Comprehensive Revealing (GCR) functions

(see section 3.1.4). In particular we consider a library of the following three GCR

activation functions:

The Logistic Function:

ψlgt(Xt, Γ) =
1

1 + exp(−γ′1Xt + γ2)

where Γ = {γ1, γ2} with direction vector γ1 ∈ Rk and centering scalar γ2 ∈ R.

The Radial Basis Function:

ψrbf (Xt, Γ) = exp[−.5(Xt − γ′1)
′γ−1

2 (Xt − γ′1)]

where Γ = {γ1, γ2}. Here γ1 ∈ Rk represents a centering vector and γ2 is a

k × k symmetric positive semi-definite matrix which scales departures of Xt

from γ1.
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The Ridgelet Function:

ψrdg(Xt, Γ) =
1√
γ1

f

(
X ′

tγ2 − γ0

γ1

)

with parameters set Γ = {γ0, γ1, γ2} where γ0, γ1 ∈ R, and γ2 is a direction

vector on the unit sphere in Rk. The function f has to be admissible (see

section 3.1.3). In this particular case we use the (k/2)th derivative of the

standard normal which has been shown to satisfy the admissibility condition

(White 2006).

The coefficients βh associated to each ψ ANN transform configure a vector of pa-

rameters β ∈ Rq. Furthermore εt is a sequence of independently distributed random

variables with zero mean and variance σ. Notice that since we allow for simultane-

ous presence of the three activation functions in our approximation, 6.3.1 should be

written as follows:

Yt = α′X̃t+
l∑
g

ζg(Xt)
′δg+

qlgt∑

h=1

ψlgt(Xt, Γh)
′βh+

qrbf∑

h=1

ψrbf (Xt, Γh)
′βh+

qrdg∑

h=1

ψrdg(Xt, Γh)
′βh+εt

where qlgt + qrbf + qrdg = q of eq. 6.3.1. Nonetheless in order to keep notation simple

we prefer the representation of eq. 6.3.1 with the implicit assumption that ψ refers

to a library of activation functions rather than just a single definition.

Notice that, in order to achieve more flexibility, a possible variant of eq. 6.3.1 is:

Yt = α′X̃t +
l∑
g

ζg(Xt)
′δg +

q∑

h

ψ[ζ(Xt), Γh]
′βh + εt (6.3.2)

which allows for simple transforms ζ(Xt) to act as inputs of the highly non-linear

transformation ψ. The topology of 6.3.1 and 6.3.2 is represented respectively in

figures 6.1, and 6.2. In 6.1 a single layer feed-forward network is represented having

as special feature the simultaneous presence of highly non-linear transforms (the

ψ’s) and the level one transforms as well (the ζ’s). Direct input-to-output connec-

tions, associated with the α coefficients account for linear relationships, allowing the

hidden units to concentrate on nonlinearities. Direct input-to-output connections

are also called jump connections in virtue of the fact that in this case the inputs

Xt influence directly the response Yt. This network has a single layer architecture

because input nodes Xt are directed towards the corresponding hidden units, and

the resulting transformations ψ are a weighted sum of these. Equation 6.3.2 is rep-

resented graphically in fig. 6.2, where the ζ level one transforms are used as derived
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Figure 6.1: Single Layer architecture with direct Jump Connections
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Figure 6.2: Double layer architecture with direct Jump Connections
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inputs for the hidden units of type ψ. In this latter case we obtain a double layer

network, with the first layer of ζ transforms and the second layer of ψ’s transforms.

An important feature of the specifications proposed so far is that they nest the

simple linear regression model as a special case. Moreover eq. 6.3.1 and 6.3.2 also

nest RETINA specifications (see chap.4) and the usual definition of single layer

feed-forward networks which is given by:

Yt = α′X̃t +

q∑

h

ψlgt(Xt, Γh)
′βh + εt (6.3.3)

where ψlgt is the logistic activation function. The main difference with respect to

our formulation is that we consider a library of different approximation functions

(including simple level one transforms besides more involved ANN transforms) as

discussed in chapter 3. This point will be discussed further in section 6.4.3, but

for now, it allows to refer to eq.6.3.1 and eq.6.3.2 as network architectures. In

virtue of the following we will use the term specification and network architecture

interchangeably.

Also notice that certain special cases of eq. 6.3.1 using a logistic activation function

for ψ are of interest. In particular Franses & van Dijk (2000) show that when Xt =

Yt−r in ψ it may accommodate Multiple logistic smooth transition auto-regressive

models (MLSTAR) with q+1 regimes in which only the intercept changes according

to the regime. Other special cases is the Self-Exciting Threshold autoregressive

Model (SETAR) (Terasvirta 1994) also discussed in Franses & van Dijk (2000).

6.4 Building flexible functional forms

In the previous section we defined a very general flexible functional form that con-

siders libraries of linear and non-linear transformations of the input data. The

resulting equation 6.3.1 is highly non-linear in the inputs and parameters Γ. In

order to build such flexible functional forms, we proceed in a specific to general di-

rection, from smaller to larger models, letting the data to determine the final model

architecture. This is like a “growing” process as an analogy with biological systems.

This analogy is useful because it establishes a correspondence between the size and

the complexity of the resulting specification. In practice the idea is the following:

we always start the specification with linear terms. When then let grow the size

of the specification adding more complex non-linear terms chosen from a library of

non-linear transformations. This procedure corresponds to increase the degree of

non-linearity of the specification as the number of terms in the model grows. As
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an important advantage of this approach it retains, as much as possible, reverse

engineering capabilities in our final model.

In an attempt to automatize this modeling procedure we also need to consider the

difficulties associated with the estimation of the model, as its complexity, in the

sense above described, increases. Adding non-linear terms also increases computa-

tional costs due to non-linear estimation. As already discussed in chapter 3, taking

advantage of the properties of GCR activation functions, it is possible to circum-

vent this problem by generating a collection Ψ of ψ transformations from which we

choose in a way described later some particular ψ∗. In addition, other aspects to

consider are relative to the choice of the inputs, the type of activation function, and

the number of hidden nodes. All these elements may heavily influence the forecast-

ing performance of the network. In the following sections we shall discuss more in

detail these aspects and some common solutions proposed in the literature, and in

the approach considered here.

6.4.1 Choice of the inputs

The choice of the inputs is a very important step in building any network architec-

ture. In many empirical works using ANNs, the choice of the inputs is driven by

systematic experimentation. In a dynamic context it is natural to include lagged

values of the response as inputs in order to capture memory effects (Auto-Regressive

Neural Networks, AR-NN). In the univariate case the input vector is:

Xt = {Yt−1, Yt−2, . . . , Yt−r}

where r is the index of the maximum lag order considered. Another class of net-

works are the Auto-Regressive Neural Networks with exogenous regressors (ARX-

NN) where:

Xt = {Yt−1, Yt−2, . . . , Yt−r, Zt, Zt−1, Zt−2, . . . , Zt−s}

where Zt is a vector of exogenous predictors2. One difficulty in AR-NN and ARX-

NN models is represented by the choice of the correct number of lags which is

2Auto-Regressive Neural Networks with exogenous predictors are studied by Chen, Racine &
Swanson (2001). They establish root mean square convergence rates for ANN estimates of the con-
ditional mean function with stationary β−mixing data. They consider three classes of ANN: one
smooth sigmoid activation functions, the second uses radial basis, and the third uses ridgelets, and
provide evidence that all networks outperform linear models based on different forecasting mea-
sures. Their results provide the theoretical justification for using neural networks to fit multivariate
economic time series.
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unknown a priori3. A common way to proceed is to choose the order r of the lags

of the dependent variable by estimating a sequence of auto-regressive specifications

up to order r. Then the specification that delivers the lowest AIC or BIC statistic

is chosen and the corresponding lagged values of the response are considered as

inputs of the network. This strategy may become problematic for two reasons: first

because one may consider exogenous predictors in addition to lagged values of the

response as candidate inputs. In this circumstance one needs also to consider lagged

values of each exogenous predictor and different combinations of lagged response

and exogenous predictors should be considered which increases the difficulty of the

selection task. Second, when dealing with unordered or cross-section data, lack of

an a priori ordering is always a possibility. But even if ordering of the inputs is

possible, a parsimonious alternative, taking fewer unordered terms which avoids an

unnecessarily set of inputs, should be considered.

Among other existing non-parametric approaches (Tschernig & Yang 2000, Yao &

Tong 1994) which are computationally very demanding, a simpler procedure for

input selection has been suggested by Medeiros, Teräsvirta & Rech (2006). They

propose to select the inputs by linearizing the ANN model specification by using a

polynomial series expansion. After estimating the coefficients associated with each

term of the expansion by OLS, one starts an iterative procedure by dropping one

term at time and re-estimating the expansion without the removed term. Subse-

quently, one repeats the procedure by dropping two terms at time, then three terms

and so forth until the polynomial is a function of a single regressor and, finally,

just a constant. For each estimation one tracks a model selection statistics and fi-

nally chooses the inputs included in the specification with the lowest statistic. The

procedure amounts to estimating
∑q

i=1
q!

i!(n−i)!
regressions by OLS which is still a

formidable task especially when the number is potentially large. In addition even if

this strategy has a lower computational cost with respect to non-parametric meth-

ods, it still suffers the problem that the network architecture has to be established in

advance, which limits the practical implementation of the method. Since a definitive

solution doesn’t exist, and the solution is inevitably heuristic in its nature, auto-

matic subset selection may prove to be a valid alternative. In particular we consider

3As Kuan & Liu (1995) observes, the inclusion of the lagged response in the input set may not be
sufficient to characterize the behavior of the output. In order to mitigate this deficiency networks
with “memory” have been proposed in the literature. The Elman (1990) recurrent network is such
an example. Networks with recurrent architecture have a richer dynamic structure and may better
approximate non-linear dynamics if it present in the data. In particular the Elman network mimics
an MA process in time series analysis. Nonetheless, in this first implementation of RETINET we
shall skip this discussion for now, and just focus on AR-NN type networks.
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the RETINA algorithm very useful for this purpose and motivate this choice by the

fact that the procedure already embeds simple transformations of the inputs which

are akin to polynomial series expansions (see section 4.1.1). RETINA performs au-

tomatically the selection task thus providing a great saving in terms of time while

keeping the computational effort low, compared with non-parametric methods as

well as compared with the procedure proposed by Medeiros et al. (2006).

6.4.2 Choice of the number of nodes

The choice of the number of nodes in a neural network resembles the decision that

one has to make when deciding how many terms to retain when approximating by

using series expansions. This problem is similar to subset selection for linear models.

Again, a possibility is to use systematic experimentation together with selection pro-

cedures outlined in chapter 2. One may estimate many networks with an increasing

number of nodes and then choose the one that has better out-of-sample predictive

performance or better model selection criterion. Alternatively one estimates a large

ANN model and subsequently reduces the size of the network by pruning applying an

appropriate technique such as cross-validation. See Fine (1999). As an alternative

Medeiros et al. (2006) propose an LM-testing procedure to deal with this prob-

lem when Maximum Likelihood (ML) estimation is used. Nonetheless, as already

pointed out by different authors, ML is prone to computational difficulties as many

other non-linear estimation methods. However, when the hidden units are selected

from a collection of ANN transformations, a possibility is to use automatic subset

selection methods developed for linear models to accomplish this task. Consider the

following single layer neural network:

Ŷt = α̂′Xt +

q∑

h

δ̂hψ(Xt, Γ̂h)

Now we rewrite it as:

Ŷt = ĉ +

q∑

h

δ̂hŴht

where Wt = ψ(Xt, Γ̂h) are viewed as derived predictors and the linear terms are

collapsed into a constant term ĉ = α̂′Xt. Re-parameterizing the ANN specification

in this way we get back to a linear model, where automatic subset selection for

linear models may be used in order to select the number of hidden units. Once

the flexible functional form has been obtained we are motivated use RETINA as a

subset selection method to obtain a more parsimonious specification. This provides

an effective heuristic method to choose the final number of nodes of the network.
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6.4.3 Choice of the Activation function

The activation function ψ is an important part of the network architecture. As

Fletcher (1996) points out, selecting the correct one has the same effect on training

as selecting the correct topology; networks that use the correct activation functions

are smaller and simpler than those that do not. As already discussed in chapter 3 the

appropriate choice of a class of approximant functionals depends on the smoothness

properties of the underlying data generation process. From the theoretical point of

view there aren’t specific theoretical reasons for which one should employ just one

type of activation function in the network specification. From a practical point of

view, the use of libraries from which to choose an appropriate “mix” of functions

may result beneficial simply because of the different approximation properties of each

of them. To our knowledge, currently, no ANN software implementations and/or

ANN applications provide libraries of different activation functions that can be used

simultaneously in a network specification. This is probably motivated by the fact

that heuristics to choose the appropriate “mix” is problematic in many ways. First,

because it is not clear how to define and justify an a priori network specification

given these circumstances, and most importantly because estimation difficulties may

easily arise.

The RETINET procedure considers this as a possibility. As pointed out in section

6.3, RETINET implements and allows to combine three types of activation func-

tions: the logistic function, radial basis function and ridgelets. We are motivated

to use logistic function since it is computationally inexpensive and because, histor-

ically, it has been by far the most used in the literature. Radial basis functions

are useful to accommodate mixtures of multivariate normal functions of the input

space. Ridgelets are powerful at detecting singularities and sharp profiles of the

data, although it must be noticed that its computations is more involved than other

transforms since it depends on the number of inputs considered (see section 3.1.3).

Fortunately, when a normal density kernel is employed, it is possible to compute

ridgelets by using a well known recursive relationship valid for Hermite polynomi-

als which allows to easily compute any derivative of the normal distribution. This

method, implemented in the RETINET algorithm is described in section 6.9.1 of

the appendix.
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6.4.4 Hidden parameters generation

As anticipated, to build our approximating function, we generate a library Ψ of can-

didate transformations of the inputs ψ, by, randomly generating the weight param-

eters Γ. Doing this we take into consideration the fact that the resulting transforms

ψ should be not too collinear with the inputs Xt or ζ(Xt). By the same token, those

inputs that are approximatively constant or have reduced range of variation should

also be avoided. In order to ensure these desirable properties we proceed as White

(2006) suggests.

First we generate the hidden units by scaling adequately and selecting randomly the

elements of the weights set Γ such that the magnitudes of the parameters (usually

position and scale) are comparable and independent each other. As an example take

the logistic squashing function ψ(γ0 + γ1Xt) with a single predictor Xt having mean

zero. Here Γ = γ0, γ1 ∈ R. If γ0 (the scale parameter) is chosen too large in absolute

value compared to γ1Xt it will happen that ψ(γ0 + γ1Xt) behaves approximately

as ψ(γ0) that is it will be roughly constant. If γ1 (the scale parameter) is chosen

small relative to the standard deviation of Xt then it will happen that ψ(γ0 + γ1Xt)

will vary proportionally to γ0 + γ1Xt and therefore will be collinear with respect to

ψ(γ0+γ1Xt). To avoid such problems let ψ(γ0+γ1Xt) behave as a nonlinear function

of Xt. It is thus recommendable to scale γ0, γ1 adequately and second, to choose them

independently. Independence is be warranted by choosing γ0, γ1 randomly. This

also ensures that correlation among predictors is reduced which is also enforced by

further standardization of the generated hidden units. Standardization is beneficial

also in that it reduces potential numerical problems that may arise during matrix

inversions if the magnitudes of the variances of the predictors vary greatly. These

considerations are general and hold also in the multivariate case, as well as for

different activation functions, although a different tune up has been necessary for

Ridgelets and Radial Basis Functions.

6.5 RETINET’s modeling strategy

At this point we are ready to combine the above ingredients into a coherent modeling

strategy which, in its automated version, we call RETINET.

From a high level RETINET starts selecting the input units adopting the RETINA

automated strategy discussed in chapter 4, and builds the linear component which

may include some simple transformation of inputs that prove to be useful in order
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to retain some reverse engineering properties in the final network specification.

Second, it builds an ANN component on top of the linear part trying to explain

additional the residual variance which the linear part is not able to capture. This

is done by adding in a stepwise manner non-linear transformations of the inputs ψ

which are taken from a library of a possibly large randomly generated collection of

non-linear transforms.

Finally, the resulting specification is pruned in order to achieve a more parsimonious

final representation. This last stage is obtained by means of RETINA which at this

point just acts as a subset selection tool.

Next we will describe in more detail the whole procedure:

Step 1: Selection of inputs to build the linear component. The first step is

aimed to select the inputs of the network and an approximating specification

using simple transformations ζ(Xt). We accomplish this by selecting a suitable

subset of Xt and ζ(Xt) transforms. We do this using the RETINA strategy

described in the previous chapter. At the end of this stage one could stop if

no more accuracy in predicting the response is necessary, estimating by OLS

a reduced version of eq. 6.3.1 which excludes the ψ’s ANN-like components:

Ŷt = α̂′X̃t +
l∑
g

ζg(Xt)
′δ̂g (6.5.1)

then compute the residual term as:

ε̂t = Yt − Ŷt (6.5.2)

Step 2: Generate the Ψ library. Here we generate a potentially large number,

say υ of ψj, j = 1, . . . , υ ANN transforms of the inputs Xt, where υ has been

chosen in advance. This collection of transforms configures a matrix Ψ stored

in the computer memory.

Step 3: Select a ψ∗ ∈ Ψ. From the collection of the Ψ randomly generated trans-

forms. We choose one ψ∗ ≡ ψ(Xt, Γ
∗) such that:

ψ∗ = argmaxψ∈Ψ |ρ(ε̂t, Ψ)|

where ρ is the univariate correlation between ε̂t and each ψj ∈ Ψ. This is

equivalent to search along the space orthogonal to the predictors already in-

cluded in the specification at step 1.



133

Step 4: Add the new candidate ψ∗j and estimate the new specification. Add

ψ∗j to the 6.5.1 specification and estimate α, β, δ by OLS. This delivers:

Ŷt = α̂′X̃t +
l∑
g

ζg(Xt)
′δ̂g + ψj(Xt, Γ

∗)′β̂1

from which we obtain the residuals :

ε̂t = Yt − α̂′X̃t −
l∑
g

ζg(Xt)
′δ̂g − ψ(Xt, Γ

∗)′β̂1 (6.5.3)

Step 5: Iterate steps 2 to 4, Q times. After iterating Q times (where Q has

been established in advance) we obtain a specification of the form

Ŷt = α̂′X̃t+
l∑

g=1

ζ(Xt)
′δ̂g+

qlgt∑

h=1

ψlgt(Xt, Γh)
′β̂hh+

qrbf∑

h=1

ψrbf (Xt, Γh)
′β̂hh+

qrdg∑

h=1

ψrdg(Xt, Γh)
′β̂hh

Step 6: Network reduction and pruning. Use RETINA subset selection search

to select the final specification.

Some considerations:

Remark 1. Using RETINA in Step 1 provides ζ(Xt) transformations as a first

order approximation to the unknown underlying DGP, and as such, less ψ

terms are usually required for the approximation, thus retaining as much a

possible an analytic formulation in the final specification to facilitate reverse

engineering.

Remark 2. Steps 2 to 4 are akin to White (2006) Quicknet strategy. However we

may optionally also want to consider the following possibilities:

• in step 3 we may allow to choose the first n ψ’s most correlated terms

with the residual series, instead of selecting just one.

• in step 3 we may want to store the Ψ’s generated at each step and cumu-

late these across iterations, such that a wider set of possible candidate

ψ’s is available at each iteration.
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Remark 3. We could use RETINA to select a set of ψ’s at each iteration instead of

using the absolute univariate correlation as a criterion. However this increases

the computational cost, although it may provide a better specification in a

lower number of iterations.

Remark 4. We could use a stopping rule such as the AIC criterion instead of using

a final RETINA selection stage as in step 6. Nonetheless the solution provided

by RETINA usually offers a more parsimonious solution since it re-shuffles all

the terms included in the final specification and simultaneously evaluates the

predictive ability of different combinations of them.

Remark 5. White’s Quicknet doesn’t provide a strategy to select the inputs which

is provided in step 1 by RETINA.

The mechanics of the whole procedure is represented in figure 6.3. If the specifi-

cation containing only the linear transforms of the input variables does as the user

expected, or the user wishes to check the model accuracy when the non-linear terms

are used, RETINET proceeds to building and then adding the non-linear transfor-

mations to the model which may lead to increase in accuracy. Once the non-linear

transformations ψ of the input are created, they are merged with the linear trans-

forms selected in the previous steps of the algorithm, and a final subset selection

step suggests the final specification.

6.6 An application to simulated Time Series

In this section we propose some simple examples that show the forecasting ability

of the specifications suggested by RETINET. First we are interested in evaluating

RETINET’s suggested specifications versus single layer ANN networks estimated by

Maximum Likelihood, (ML-ANN in the following) on the basis of their respective

out-of sample forecasting ability. A second, and possibly even more relevant ques-

tion, is whether the forecasting performance of RETINET’s models provide some

gain with respect to simpler linear approximations.

In order to clearly distinguish RETINET specifications that include ANN-like trans-

formations of the inputs (eq.6.3.1 (a+b+c)), from those that do not (eq.6.3.1 (a+b)),

we shall refer to the former as RNET-ANN and to the latter as RNET-LIN. Since

RETINET’s suggested models always incorporate a linear component, we expect an

out-of-sample forecasting ability which, at least, doesn’t perform worse in terms of

forecasting ability than less elaborate linear models.



135

Figure 6.3: The RETINET algorithm
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Based on the parsimony principle, RETINET should deliver a specification with just

linear components when the highly non-linear transformations of the inputs do not

provide any generalization ability (i.e. poor out-of-sample predictive ability).

However two situations should be distinguished with this outcome: the first is when

no neglected (non-linear) structure is present in the residuals, which is by no means

problematic for the purpose of prediction. The second situation, less satisfactory

in terms of forecasting ability, is when non-linear structure is still present in the

residual term. In this case, one should consider the presence of non-linearities in

conditional moments other than the first, which as an example, may be due to

heteroscedasticity. Finally, there exists always a possibility that poor predictive

performance may be due to lack of relevant inputs, which are essential to capture

completely the features of the target.

In what follows we evaluate the forecasting performance of RETINET’s suggested

models using a number of different criteria which in part have already been discussed

in section 4.3.2. In particular we consider the out-of-sample RMSE and MAE statis-

tics to compare the forecasts of the more elaborate RNET-ANN models with respect

to RNET-LIN, as well as with respect to random walk forecasts. Loosely speaking,

the comparison between RNET-ANN and RNET-LIN models is of special interest

here in order to check whether the procedure behaves as expected by delivering an

RNET-ANN specification only if needed. We check the results using the Harvey

et al. (1997) - HLN - and the Diebold & Mariano (1995) - DM - test statistics of

equivalent forecast errors.

In addition we also evaluate the ability of the various models to correctly forecast the

sign of the target variable. This criterion is of special interest especially in financial

applications since financial agents are mostly interested in predicting the sign of the

returns in order to decide future investment actions. For this purpose we consider

the Success Ratio (SR) statistic defined as:

SR =
1

m

m∑
j=1

Ij[Yt+j · Ŷt+j|t+j−1 > 0]

where I is an indicator function. Observe that SR is simply the proportion of m

forecasts Ŷt+1|t+j−1 that have the same sign as the realizations Yt+j, that is, the

number of times the sign of Ŷt+1|t+j−1 is correctly predicted. Based on this measure

Pesaran & Timmermann (1992) proposed a test of Directional Accuracy (DA) where

the null hypothesis is that Yt+j and Ŷt+1|t+j−1 are distributed independently.

In order to compare RNET-ANN against ML-ANN models, the same number of

lagged realizations of the response were used as inputs. These were selected by



137

RETINET among the lagged inputs:

Xt = {Yt−1, Yt−2, . . . , Yt−10}

The number of hidden units were assumed to be same suggested by RETINET.

This ensures that the comparison between both models is “honest” since they have

similar characteristics.

For each DGP we generated a sequence of 400 realizations and kept 100 observations

for out-of-sample predictive assessment. Forecasts were evaluated one-step ahead.

Stationarity conditions were checked by means of various test on GLS de-trended

series, including Phillips & Perron (1988) test. We consider the following five DGP’s

which are often used as examples of non-linear time series. Realizations for each

DGP are reported graphically for the estimation as well for the test sample in figure

6.4. RETINET settings were as follows: we let the algorithm choose among the

logistic, the radial basis function and the ridgelets activation function. The library

Ψ included v = 1000 of each activation function at each iteration. A maximum of

Q = 20 hidden nodes was allowed. For the sake of simplicity, no level one transforms

were produced thus fitting an equation of the form of:

Ŷt = α̂′X̃t+

qlgt∑

h=1

ψlgt(Xt, Γh)
′β̂hh+

qrbf∑

h=1

ψrbf (Xt, Γh)
′β̂hh+

qrdg∑

h=1

ψrdg(Xt, Γh)
′β̂hh (6.6.1)

We now describe the DGP’s used in this example:

Exponential Autoregressive (EXPAR) process

Yt = [0.5 + 0.9 exp(−Y 2
t−1)]Yt−1 − [0.8− 1.8 exp(−Y 2

t−1)]Yt−2 + εt

This is an exponential autoregressive model of order 2. Exponential autore-

gressive time series models can capture certain types of nonlinear dynamics,

accounting for amplitude-dependent frequency, jump phenomena and limit cy-

cles. This class of models were introduced by Haggan & Ozaki (1981) to rep-

resent time series that behave as nonlinear random vibrations. A realization

of the process is represented in figure 6.4.

Stochastic Chaos (SC) Process:

Yt = Yt−1(1− Yt−1)εt

with Y0 = .5 and εt ∼ U [0, 1]. This process generates only positive values

and alternates periods of high volatility followed by flat intervals, hence it
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may be useful to represent either implied volatility or observed volatility pro-

cesses in financial markets (McNelis 2005). The dynamic of the process is

stable provided that the the starting value is Y0 ∈ [0, 1] otherwise it diverges

quickly. Observe that a convenient re-parameterization of the process is to

take logarithms on both side of the equation which yields:

log(Yt) = log(Yt−1) + log(1− Yt−1) + log(εt) (6.6.2)

Notice that in this case we are violating the usual hypothesis of normal dis-

tributed errors, since the shocks in 6.6.2 are asymmetric and non-positive. A

realization of the log-transformed process is shown in figure 6.4.

Self Exciting Threshold Auto-Regressive (SETAR) Process This is an ex-

ample taken from Franses & van Dijk (2000). Among others, SETAR pro-

cesses (Tong 1978, Tong & Lim 1980) are non-linear auto-regressive processes

proposed to model non-linearities in returns of financial time series. SETAR

models are auto-regressive models characterized by two or more regimes de-

termined by the value of the lagged values of the series relative to a threshold

value c. Here we consider two regimes determined by the value of the first lag

with respect a threshold value of zero.

Yt =





φ0,1 + φ1,1Yt−1 + φ2,1Yt−2 if Yt−1 > 0

φ0,2 + φ1,2Yt−1 + φ2,2Yt−2 if Yt−1 ≤ 0

(6.6.3)

The autoregressive parameters were set equal to φ0,1 = 0, φ1,1 = 0, φ2,1 = 0,

φ1,2 = .5 and φ2,2 = .14, hence this is process is a White Noise in the regime

Yt−1 > 0 while is an AR(2) if Yt−1 ≤ 0 . The threshold value is set to zero and

σ = .2 is the same in both regimes. A realization of the process is represented

in figure 6.4.

Bilinear (BIL) process

Yt = βYt−2εt−1 + εt

where β = .6 and σε = 1. Granger & Andersen (1978) showed that this model

has null auto-correlations at all lags and thus cannot be forecasted by linear

models. A realization of the bilinear process is reported in fig.6.4.

GARCH(1,1)

Yt = zt

√
ht
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Table 6.1: Standard deviations and Median Absolute Deviation of simulated Time series
discussed in section 6.6

EXPAR SC SETAR BIL GARCH
Standard Deviation 1.393 3.810 0.338 1.279 0.576
Median Absolute Deviation 1.578 2.076 0.251 0.985 0.511

with ht = ω + α1Y
2
t−1 + β1ht−1. We set α1 = .2, β1 = .6 and ω = 1 −

α1 − β1 while the shocks zt are distributed as a standard normal. GARCH

(Bollerslev 1986) and ARCH models (Engle 1982) are widely used in finance for

modeling conditional heteroscedasticity in financial time series. A realization

of this process is illustrated in fig.6.4.

We do not expect RETINET and/or ML-ANN models to capture non-linearities in

the case of the bilinear and GARCH(1,1) process, since the non-linearities embedded

in these processes occur in the (conditional) second moment of Yt, whereas ANN and

RETINET are expected to capture non-linearities in the first (conditional) moment.

Nonetheless we are motivated to use RETINET and ML-ANN in these settings

because GARCH-type effects often arise in high frequency data and are one of the

prominent features of daily and weekly financial data.

Also notice that some of the proposed processes may be well approximated by linear

models. This is evident considering the autocorrelation (ACF) and partial autocor-

relation (PACF) functions of each process which are reported in fig.6.5. In particular

observe that the ACF of EXPAR process suggests an AR(1) process. SC’s process

is clearly auto-regressive and has the root of the characteristic equation closer to the

non-stationary region. SETAR’s process has a ACF dying out slowly and a PACF

off after the first lag which may suggest an ARMA(1,1) process with both negative

AR and MA coefficient. Standard deviations and Median Absolute Deviations of

simulated Time series are reported in table 6.1.

6.6.1 Results

The results of this simulation exercise are reported in tables 6.2,6.3 and 6.4. Table

6.4 reports the forecasts error statistics both in-sample and out-of-sample.

Overall specifications obtained for RNET-ANN models included at most three out of

ten possible lags of the response that were used as inputs. This is shown in table 6.2.

Only in the case of the GARCH specification, RNET-LIN included just a constant.

Further, and only for the GARCH DGP, the final proposed specification RNET-

ANN included just a constant, meaning that no non-linear terms were retained by
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Figure 6.4: Simulated Time Series
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Figure 6.5: Conditional mean ACF (left) and PACF (right) simulated Time Series in fig.
6.4 †. (Horizontal lines indicate confidence interval bounds)

EXPAR process

Stochatic Chaotic process

SETAR

Bilinear process

GARCH(1,1) process
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Table 6.2: Details about RNET-LIN, RNET-ANN and ML-ANN models as well as ML-
ANN optimization details of simulated DGP’s discussed in section 6.6. ML-ANN stands
for Maximum Likelihood estimated ANN. For the GARCH(1,1) process, no ML-ANN was
estimated since RETINET suggested a specification including just a constant. For all other
DGP’s, ML-ANN’s are characterized by using a logistic activation, the same inputs and
the same number of nodes selected by RETINET. Notice that ML optimization always
converged although the Hessian matrix failed to invert most of times due to numerical
problems.

EXPAR SC SETAR BIL GARCH

RETINET

Lags selected Yt−1, Yt−3 Yt−1 Yt−1, Yt−2 Yt−1 Constant
Yt−9

# Nodes 2 7 4 4 -
# Ridgelets 2 6 3 4 -
# Rad.Basis - 1 - - -
# Logistic - - 1 - -

ML-estimated
ANN

ML convergence Ok Ok Ok Ok -
Hessian Inversion Ok Failed Failed Failed -

the algorithm. Hence, in this case the RNET-ANN solution is equivalent to the

linear RNET-LIN solution.

For all the remaining DGPs, the RNET-ANN solutions differed from the RNET-

LIN, and a number between 2 (EXPAR) and 7 (SC) non-linear terms were selected.

Among these different types of activation functions were used, although ridgelets

appeared more often than others, confirming their good approximation properties

especially in presence of sharp profiles of the data. Maximum Likelihood estimated

ANN optimization routines always converged although inversion of the Hessian ma-

trix failed most of times, which reflects the fact that numerical problems in non-linear

optimization routines are always a possibility, even in naive setting like this.

From table 6.3, comparing RETINET final models (RNET-ANN) versus alternative

specifications does not generally yield significant differences (measured by DM and

HLN statistics), excluding for forecasts produced by random walk models, which

in almost all cases have lower predictive ability. Only in the case of the SETAR

DGP, RNET-ANN model outperforms at a 10% significance level the RNET-LIN

forecasts.

However it must be noticed that numerical results of out-of-sample RMSE, MAE

and SR in table 6.4 show a general trend where the RNET-ANN models always

outperform the forecasts provided by RNET-LIN models and RW models. This is

encouraging since the algorithm provides RNET-ANN solutions which consistently
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Table 6.3: Test statistics of equivalent forecast errors of the RNET-ANN estimated model
versus the RNET-LIN, the RW and ML-ANN model, considering a quadratic loss function
(QLOSS) and an absolute loss function (ALOSS).

Statistic Model EXPAR SC SETAR BIL GARCH
DM-QLOSS RNET-LIN 0.750 0.573 1.728∗ 0.812 -

RW 1.116 4.408∗∗ 12.350∗∗ 1.591 9.578
ML-ANN -0.578 2.892∗∗ 1.505 -0.573 -

DM-ALOSS RNET-LIN 0.185 1.476 1.769∗ 0.862 -
RW 0.665 10.400∗∗ 19.150∗∗ 1.970∗∗ 7.618∗∗

ML-ANN -1.147 3.561∗∗ 0.398 0.215 -
HLN-QLOSS RNET-LIN 0.483 -0.192 0.837 -0.051 -

RW 1.427∗∗ 9.756∗∗ 6.151∗∗ 5.214∗∗ 14.260∗∗

ML-ANN -0.147 0.372 0.072 -0.152 -

Test are based on the Diebold & Mariano (DM) statistic and the Harvey, Leybourne,
Newbold, (HLN) statistic. The latter is valid only under quadratic loss functions, hence
tests for equality absolute errors were computed only for the DM statistic.(∗∗, ∗) indicate
respectively (5%, 10%) significance levels. Positive entries refer to a higher predictive
ability of RNET-ANN models with respect to RNET-LIN, RW and ML estimated ANN
(ML-ANN).

result in a lower out-of-sample forecast error respect to simpler linear specifications;

see table 6.4. In fact RNET-ANN performs reasonably well compared both to sim-

pler linear specifications such as random walk forecasts and purely linear RNET-LIN

specification in almost all cases.

When comparing with respect to ML estimated networks, the out-of-sample perfor-

mance of RNET-ANN models, in almost all cases, is quite similar and in some cases

better. See the out-of-sample RMSE results for the bilinear, BIL, and the stochastic

chaotic model, SC. Nonetheless notice that, in terms of directional accuracy, the

forecasts provided by RNET-ANN are consistently better than those provided by

alternative methods. See the case of SETAR, EXPAR and BIL processes in table

6.4. In the case of the bilinear process, RNET-ANN and RW directional forecast

are more accurate than maximum likelihood estimated neural networks.

These results, provide evidence that RETINET models are, in terms of predictive

ability, at least not worse than more computationally intensive Maximum Likelihood

estimated ANN. Also the algorithm behaves as expected, providing parsimonious

solutions in most situations, finding an adequate balance between bias and variance.

More tests are needed to complement the evidence reported here. Nonetheless we



144

consider that these results are encouraging and suggest that the algorithm is capable

of detecting informative non-linearities in the first conditional moment where these

exist, and avoids some numerical inconveniences typical of non-linear models.
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Table 6.4: One step ahead forecasting performance of RETINET versus alternative models
for DGP’s discussed in section 6.6. In comparison RNET-LIN and the RW models, the
RNET-ANN model shows consistently lower out-of-sample RMSE and higher direccional
accuracy measured by the SR statistic.

RNET-LIN RNET-ANN RW ML-ANN
EXPAR In-sample RMSE 1.280 1.122 1.546 1.176

MAE 1.398 1.222 1.485 1.215
SR 69% 72% 67% 68%

Out-of-sample RMSE 1.144 1.077 1.359 1.077
MAE 0.974 1.033 1.152 0.964

SR 75% 76% 72% 73%
SC In-sample RMSE 1.113 0.868 1.145 1.068

MAE 0.832 0.738 0.938 0.754
SR 100% 100% 100% 100%

Out-of-sample RMSE 0.985 0.959 1.049 0.980
MAE 0.771 0.735 0.937 0.731

SR 100% 100% 99% 100%
SETAR In-sample RMSE 0.276 0.207 0.533 0.203

MAE 0.262 0.209 0.446 0.215
SR 64% 67% 42% 63%

Out-of-sample RMSE 0.274 0.243 0.475 0.240
MAE 0.263 0.273 0.451 0.237

SR 53% 65% 35% 63%
BIL In-sample RMSE 1.271 1.136 1.876 1.268

MAE 1.021 1.068 1.552 1.01
SR 54% 63% 51% 55%

Out-of-sample RMSE 1.245 1.232 1.717 1.250
MAE 1.098 1.167 1.439 1.094

SR 43% 55% 57% 42%
GARCH In-sample RMSE 0.570 0.570 0.836 -

MAE 0.511 0.511 0.624 -
SR 56% 56% 47% -

Out-of-sample RMSE 0.644 0.644 0.952 -
MAE 0.597 0.597 0.643 -

SR 45% 45% 53% -

Comparisons across column show forecasting performance, in-sample and out-of-sample,
relative to: 1) RETINET’s linear model (RNET-LIN) which is nested into 2) RETINET’s
final specification (RNET-ANN) 3) the random walk forecast (RW) and 4) the ANN
model estimated by Maximum Likelihood (ML-ANN). See table 6.2 for further details
about the characteristics of the RNET-ANN and the ML-ANN models. See section 6.6
for an explanation of forecast measures, RMSE, MAE and SR. Notice that the predictive
ability of RNET-ANN models is similar compared to the ML estimated ANN models. In
the case of the GARCH process RETINET delivered a specification including just the
constant, and as such, RNET-LIN and RNET-ANN are equivalent and no ML-ANN was
estimated.
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6.7 An application to Geophysics

In this section we show an application of RETINET to solve a problem of geophysical

sciences. More details about the results of this work may be found in Karimabadi,

Sipes, White, Marinucci, Dmitriev, Chao, Driscoll & Balac (2007). We are motivated

to use the RETINET strategy here because of its reverse engineering properties and

partial interpretability of its suggested specification. Actually this investigation has

been the starting point for developing an integrated datamining open-source soft-

ware denominated Minetool which integrates RETINET among other applications

designed especially for scientific data-mining4. From now on we will refer to it as

the RETINET-Minetool package.

The object of investigation is a simulated magnetopause data set. The magnetopause

is the thin boundary separating the shocked solar wind plasma from the plasma of

the magnetosphere of the earth. The form of this boundary varies depending on some

physical magnitudes such as the solar wind intensity and the earth’s magnetic field.

The magnetopause has a bullet-shaped front, gradually changing into a cylinder.

Its cross-section is approximately circular. An illustration of the magnetopause is

represented in figure 6.6.

Our starting point is an empirically derived model of magnetopause by Shue, Kokubun,

Song, Russell, Steinberg, Chao, Zastenker, Vaisberg, Singer & Detman (1998) which

was obtained by using a least squares fit to a pre-defined functional form using space-

craft data:

R = R0

(
2

1 + cos θ

)α

(6.7.1)

where:

α = (.58− .01Bz)(1 + .01Dp)

and:

R0 =





(11.4 + .013Bz)D
−1/6.6
p if Bz ≥ 0

(11.4 + .140Bz)D
−1/6.6
p if Bz ≤ 0

(6.7.2)

Here R and θ are polar coordinates representing the position of the magnetopause,

and Bz and Dp are the z−component of the interplanetary magnetic field (IMF) and

solar wind dynamic pressure, respectively. This model has a complex dependence

on Bz and Dp including a change in the functional form as a function of sign of Bz.

4Current efforts are concentrated on time series classification tools. RETINET-MineTool is
being implemented in C code by Sciberquest Inc., Solana Beach, CA, USA.
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Figure 6.6: The Magnetopause of the Earth. Source: National Aeronautics and Space
Administration (NASA)
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We find it convenient to work with the following variables: ln(R), cos(θ), ln(Dp),

and Bz. We then generate a data set of ln(R) for a range of values in cos(θ), ln(Dp),

and Bz. The idea is to use the resulting data set and derive a model for:

ln(R) = f(cos(θ), ln(Dp), Bz) (6.7.3)

which can then be compared against the original equation 6.7.1. We consider two

cases: (i) noiseless case and (ii) noisy case where:

ln(R′) = ln(R) + σε (6.7.4)

with R′ representing the magnetopause distance from noise. Here R is from eq.

6.7.1, σ is the deviation of standard gaussian distribution defined on the interval

[4RE, 20RE] where RE is the earth’s radius5. These boundaries establish a realistic

representation of the orbital bias in experimental measurements, which are usually

restricted by a satellite perigee and apogee.

6.7.1 Results

In this section we compare the results, including the resulting equations, from various

algorithms. We use three different error measures, root mean squared error (RMSE),

mean absolute error (MAE), and mean relative error (MRE) as defined in section

4.3.2, to compare performance across models. In all cases we choose a Benchmark

Linear Model (BLM) based on linear regression of the three normalized6 predictors

cos(θ)s, lns(Dp), and Bzs:

l̂n(R) = 0.986− 0.063 cos(θ)s − 0.084 lns(Dp) + 0.025Bzs (6.7.5)

Noiseless Case

A first RNET-LIN specification was found using 43 double level 1 transformations

of the form ζ[ζ(Xt)] (see section 3.1.1) including the constant term. The 10 leading

terms are listed in Table 6.5. Further, the algorithm provided an improved spec-

ification including ANN transformations of the original inputs Xt. The resulting

RNET-ANN specification retained 33 terms from the RNET-LIN specification plus

45 ANN terms which included both ridgelets and radial basis transformations.

5Distances in the magnetosphere are often measured in Earth radii (RE), with one Earth radius
amounting to 6371 km or 3960 miles. In these units, the distance from the Earth’s center to the
“nose” of the magnetosphere is about 10.5 RE and to the flanks abreast of the Earth about 15
RE, while the radius of the distant tail is 25-30 RE. By way of comparison, the moon’s average
distance is about 60 RE.

6The sub index s refers to normalized variables.
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Table 6.5: RETINET-MineTools 10 leading terms of the Best Linear Model. The term ρ
stands for the bivariate correlation of each predictor with the response.

Predictor ρ Coeff.
lns(Dp) 0.757 -9.15E-02
cos(θ)s 0.680 7.59E-03
cos(θ)s ln2

s(Dp) 0.578 -5.67E-02
[lns(Dp)]

3 0.564 1.20E-03
coss(θ)Bzs 0.531 -1.73E-03
coss(θ)[lns(Dp)]

3 0.463 -7.58E-03
Bzs 0.218 3.75E-02
coss(θ) lns(Dp)Bzs 0.166 -2.32E-04
coss(θ)

2 0.155 -2.30E-03
cos(θ)[lns(Dp)]

2Bzs 0.155 3.77E-04

Table 6.6: Performance comparison of the two RETINET models on the hold-out data
Benchmark Model RNET-LIN RNET-ANN

RMSE 2.66E − 02 8.56E − 04 3.42E − 04
MAE 2.06E − 02 5.89E − 04 2.52E − 04
MRE −9.30E − 04 1.58E − 05 −1.17E − 05

Table 6.6 compares the performance of the three suggested specifications on the

hold-out data. A visual method of gauging the performance of the results is to plot

the actual versus the predicted values as shown in Fig. 6.7. In the zero error limit,

all data will be lined up along the 45◦ line. Visual inspection of this figure along

with the error measures in table 6.6 reveal a number of interesting points. First,

the simple regression model (benchmark) does a reasonable job and with RMSE

of about 0.026 would be considered adequate for most space physics applications.

Secondly, the RNET-ANN model achieves an amazingly high accuracy. Figure 6.8

shows the distribution of the MRE as a function of the inputs ln(R), Bz, cos(θ),

and ln(Dp). Such a figure can be used to help identify any heteroscedasticity in

the model performance as may occur if the quality of data (e.g., coverage, noise,

etc.) varies significantly across observations. In the present case the data are more

sparse at large values of Bz and dynamic pressure, but the error shows a fairly

homoscedastic distribution.

Comparison with other Data Mining Models

Models obtained so far by applying RETINET were compared with a set of standard

data mining techniques described in the appendix (section 6.9.2).
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Figure 6.7: Plot of actual versus predicted values for a benchmark model based on linear
regression and RNET-LIN and RNET-ANN models

Figure 6.8: Plots of relative error as a function of log(R) and three input variables for
each of the benchmark linear model, RNET-LIN and RNET-ANN models.
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Table 6.7: Performance comparison of alternative data-mining techniques and commercial
packages. See section 6.9.2 for further details.

RMSE MAE MRE
Benchmark 2.66E-02 2.06E-02 -9.30E-04
RNET-LIN 8.56E-04 5.89E-04 1.58E-05
RNET-ANN 3.42E-04 2.52E-04 -1.17E-05
Genetic 2.25E-03 1.17E-03 4.50E-03
Neuro 4.90E-03 3.70E-03 -1.60E-05
GMDH 4.50E-03 3.30E-03 -1.10E-05
MT 7.40E-03 4.95E-03 2.70E-04
RT 9.80E-03 8.30E-03 3.52E-05
ANN 1.10E-02 9.00E-03 -8.70E-03
SVM 2.25E-02 1.63E-02 -2.90E-03
RBF 1.38E-02 1.07E-02 -5.90E-04
PR 2.75E-02 2.10E-02 -1.00E-03
Bagging-MT 6.00E-03 4.79E-03 1.97E-04
Bagging-RT 6.00E-03 4.79E-03 1.97E-04
Bagging-ANN 6.80E-03 4.80E-03 -1.60E-04
MS 9.80E-03 8.40E-03 2.26E-05

Nomenclature: GMDH (Group Method of Data Handling), MT (Model Tree), RT (Re-
gression Tree), NN (Neural Networks), SVM (Support Vector Machines), RBF (Radial
Basis function Network), PR (Pace Regression), MS (Multi-Scheme)
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Table 6.7 show the performance accuracy of each of the models. Overall, the Model

Tree (MT), Regression Tree (RT) and Multi-Scheme methods gave the best non-

RETINET-MineTool, basic method results, with an RMSE of 0.0074 and 0.0098

respectively. The MT, having given a smaller output evaluated slightly better, most

likely due to offering a more general output model that tends to overfit less than

the more detailed RT. Bagging (see section 6.9.2) of the top three basic methods

(MT, RT and ANN) definitely increased their performance, especially in the case

of ANN, RMSE decreased from 0.0110 to 0.0068. Excluding RETINET-Minetool

models, the best overall performers are bagged model trees and bagged regression

trees, evaluating at the RMSE of 0.0060. These two models are similar in how

they choose the attributes to split the search space and best distinguish among the

input space, and therefore, when bagged, gave identical composite results. As figure

6.9 illustrates, even the best performers in Weka (Frank, Hall, Trigg, Holmes &

Witten 2004) do not achieve the same accuracy as the Neural Net package of Ward

Systems or RETINET-MineTool in this example. This is partly due to the fact

that Weka includes many different data mining algorithms and as a result some of

the algorithms are not as fine tuned as the specialized packages that concentrate on

one or two types of algorithms. Although RETINET-MineTool provides the highest

accuracy, most models provided accuracy that would be adequate for most space

physics applications. None of the other techniques except pace regression provides

an analytical form. In short, RETINET-MineTool provides the most accurate model

and has the added advantage that the solution is in analytical form.

Effect of Noise in the Data

We now generate a data set based on Eq. 6.7.4 with σ = 0.1. It is easy to show

that this puts a theoretical limit of 0.1 in the accuracy of the forecasts that can be

obtained. Using RETINET-MineTool, the modeling steps are the same as for the

noiseless case. The benchmark model is similar in form to that for the noiseless case

but with different coefficients:

l̂n(R) = 0.988 + 0.061 cos(θ)s − 0.080 lns(Dp) + 0.024Bzs (6.7.6)

The best candidate model now consists of only 12 terms (including the constant) as

compared to 43 terms for the noiseless case. This is because the presence of noise

puts a theoretical limit on the level of accuracy that can be achieved, thereby limiting

the number of terms required. This testifies to the power of our algorithm which only

keeps the minimum number of terms required to achieve the desired accuracy and
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Table 6.8: RETINET-MineTools 10 leading terms of the RNET-LIN model in the noisy
case. The term ρ stands for the bivariate correlation of each predictor with the response.

Predictor ρ Coeff.
lns(Dp) 0.556 -8.90E-02
[lns(Dp)]

3 0.500 9.70E-03
cos(θ)s 0.426 -5.70E-02
sins(θ)[lns(Dp)]

2 0.339 -6.16E-03
Bzs 0.160 3.40E-02
B3

zs 0.097 -1.20E-02
coss(θ)Bzs 0.083 1.20E-02
sins(θ)[lns(Dp)]

3 0.061 -7.70E-03
B−2

zs 0.058 1.00E+00
B−3

zs 0.058 3.39E+00

hence avoiding overfit. The top 10 explanatory variables are listed in 6.8. The neural

RNET-ANN model (not shown) consists of 8 terms plus 6 hidden layer terms that

involve ridgelets, radial basis functions and logistic functions. Table 6.9 compares

the relative performance of the RNET-ANN and RNET-LIN models as well as that

from ANN routine GMDH from Ward Systems. Note that the benchmark and

the best model yield very similar results to the RNET-ANN model which is only

slightly less accurate. GMDH yields somewhat more accurate result than RNET-

ANN model but all four models in this case are very comparable in performance.

Table 6.9 shows the performance comparison of the basic and advanced methods in

Weka. The accuracy of predictions is very close to the theoretical value in all models.

This is further illustrated in figure 6.10 where we plot the actual versus predicted

values of the response. The spread about the 45◦ slope in all cases is due to the

presence of noise in the data which limits the accuracy of prediction. If particular

attention is paid to the RT model plot in figure 6.10, one notices vertical stripes in

the model output. This is due to the RT model slightly generalizing the output and

assigning it a certain value, multiple times inside the tree structure, where actual

values of the target were around that predicted value. The slight over-generalization

is caused by the presence of noise that was added to the data set. Because the data

set was fairly noisy, the RT method simply tried to generalize and extract the “gist”

from the noisy data.
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Table 6.9: Performance comparison of alternative data-mining techniques and commercial
packages. See section 6.9.2 for further details.

RMSE MAE MRE
Benchmark 9.59E-02 7.68E-02 1.12E-02
RNET-LIN 9.66E-02 7.73E-02 -1.10E-02
RNET-ANN 9.64E-02 7.70E-02 -1.00E-02
GMDH 9.90E-02 7.90E-02 1.00E-02
MT 9.70E-02 7.80E-02 1.18E-02
RT 9.76E-02 7.80E-02 1.18E-02
ANN 9.60E-02 7.70E-02 1.12E-02
SVM 1.00E-01 8.00E-02 1.10E-02
RBF 9.80E-02 7.87E-02 1.15E-02
PR 1.00E-01 8.00E-02 1.10E-02
Bagging-MT 9.75E-02 7.80E-02 1.11E-02
Bagging-RT 1.00E-01 8.00E-02 1.00E-02
Bagging-ANN 9.60E-02 7.70E-02 1.11E-02
Multi-Scheme 9.60E-02 7.70E-02 1.00E-02

Nomenclature: GMDH (Group Method of Data Handling), MT (Model Tree), RT (Re-
gression Tree), NN (Neural Networks), SVM (Support Vector Machines), RBF (Radial
Basis function Network), PR (Pace Regression)
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Figure 6.9: Plots of actual versus predicted values of log(R) for various methods in Weka
in hold-out data. NN refers to the artificial neural net algorithm in Weka software whereas
genetic and neural refer to artificial neural net algorithms in Ward System package.
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Figure 6.10: Plots of actual versus predicted values of the response from a variety of
models in the presence of noise, using the hold-out data.
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6.8 Conclusions

In this chapter we presented the RETINET algorithm which avoids technical diffi-

culties related with non-linear estimations procedures to compute the weights of the

ANN transformations. It also provides guidance about 1) the decision on which in-

puts Xt to use for the construction of the ANN transformations and 2) the selection

of the most promising ANN candidate transforms to choose. Non-linear estimations

procedures are avoided since the weights of the hidden units are generated randomly

in virtue of the results discussed in section 3.1.4.

Being the specified equations always linear in the parameters OLS estimation tech-

niques can be used, and computations, even if intensive, can be performed reason-

ably fast. The algorithm presented here differs from White’s (2006) Quicknet in that

we use RETINA to control for over-fitting and model evaluation method. Finally

the procedure chooses among a mix of three different types of squashing functions,

namely Logistic, Radial Basis and Ridgelets ANN, which provides a library of ap-

proximants and hence, more parsimonious models may be obtained.

Our choice is obviously not intended to be limited to these three functions but repre-

sents an example of how the Quicknet network building strategy has been extended

in the present context. Obviously many other powerful approximation methods that

are special cases of ANN may be considered, such as those discussed briefly in chap-

ter 3. The fact that we don’t restrict the inclusion of just one basis function at

a time, nor adopt any specific order for their inclusion in the approximation func-

tion, is dictated by the consideration that by letting the algorithm choose suitably

which basis function to adopt in any given instance, one may obtain a better final

approximation. These are important advantages compared with networks estimated

by non-linear methods.

A summary of the differential characteristics between RETINET, Quicknet and non-

linear estimated ANN is reported in table 6.10. Another advantage of RETINET is

that the final model to some extent retains analytical interpretability. This facilitates

easier dissemination of the model as well as exploration of the effects of individual

or groups of terms.
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Table 6.10: Differential characteristics of Traditional, non-lineraly estimated ANN,
RETINET and White’s prototype Quicknet

Traditional ANN† Prototype Quick net RETINET

Linearity/Non
linearity

Non linear in the
parameters and
predictors.

Linear in the
parameters, Non-Linear
in the predictors.

Linear in the
parameters, Non-Linear
in the predictors.

Estimation of
parameters

Non-Linear LS or
Maximum Likelihood OLS OLS

Linear
component
(Jump
Connections)

Usually there are no
linear components
although there are no
major limitations to this

.

No, the user has to
specify the linear
component to start with.

Yes, using a previous
RETINA building and
selection stage. In this
stage simple non-linear
transformations of the
inputs may be used
(level 1 transforms).

Inputs
The user defines the
inputs to build ANN
transforms

The user defines the
inputs to build ANN
transforms

May use all inputs
(single layer) or chose
among level one
transforms previously
selected by RETINA
(double layer network)

Bases
implemented

Usually Logistic Logistic, Ridgelets Logistic, Radial Basis,
Ridgelets

Network
Architecture
selection
(specification)

Information/cross-
validations criterion
(AIC, BIC)

Information/cross-
validations criterion
(AIC, BIC)

RETINA selection, at
the end, AIC.

Computational
Issues

Non-convexity of the
objective function.

Convex objective
function.

Convex objective
function. Uses updating
of moment matrix, no
computations from
scratch when adding
bases.



159

6.9 Appendices

6.9.1 Fast Computation of Ridgelets transforms

As already seen in section 3.1.3, in order to compute ridgelets transforms we may

consider any particular function ψ which has vanishing moment (see eq. 3.1.4). A

function satisfying such condition is the j−th derivative of the standard normal

density where j = p/2 given p predictors. From a practical point of view, to build

a ridgelet transformation when the inputs p are varying, implies that we need to

compute the appropriate derivatives ψ(X) = Dhφ where h = p/2 and D = d/dX of

the standard normal function for each p = 1, . . . , P predictor. One would like to have

a method that computes quickly any of such derivatives for a different number of

inputs. This is essential for automatizing the computation of ridgelets. Fortunately

there is a simple way to compute successive derivatives of the standard normal. Let

φi with i = 1, 2, . . . be the i−th derivative of φ(X). Then:

φ′(X) = −Xφ(X)

φ′′(X) = (X2 − 1)φ(X)

φ′′′(X) = −(X3 − 3X)φ(X)

It can be shown that it is possible to compute the derivatives of any order of the

normal density distribution by considering a family of polynomials better known as

Hermite polynomials which satisfy the following recursive relationship:

Hi(X) = XHi−1 − (r − 1)Hr−2

where it is agreed by convention that H0(X) = 1. The interesting thing about the

Hermite polynomials in this context is that it suffices to multiply the normal density

by those functions, the result is the i− th derivative of the normal density:

φi(X) = (−1)iHi(X)φ(X)

6.9.2 Data Mining Algorithms

There is a plethora of data mining algorithms and approaches such as Bayesian

techniques, genetic programming and machine learning, artificial neural networks

(ANN), evolutionary algorithms, and Support Vector Machines (see Berthold &

Hand (2003) for a review). Here we describe several of the more commonly used

techniques that we tested and compared with RETINET-MineTool implementation.



160

Artificial Neural Networks: We used several ANN packages including Matlab,

Ward System (Ward Systems Group, Inc., 1997), and Weka (Frank et al. 2004).

We found the package from Ward Systems to be the fastest and it led to the

very accurate results. In the noiseless case, we used two different paradigms

in the NeuroShell Predictor, the Genetic Method and the Neural method.

The Neural method took 15 seconds to train on Pc with 2GHz speed and

2 Gb ram memory, and the genetic method 10 minutes before we stopped it.

For comparison, the four-step RETINET-MineTool modeling process typically

takes about 7 minutes with the training time taking only 2-3 seconds for this

data set. The speed advantage of RETINET-MineTool becomes even more

apparent for large data sets.

We also used another ANN technique from an older version of NeuroShell called

Method of group account of arguments or Group Method of Data Handling

(GMDH) (Farlow 1984). GMDH involves building a sequence of layers with

complex links, which represent different parts of a polynomial. The polynomial

parts are generated using linear and non-linear regressions. The initial layer

is just a simple input layer. The first layer is created as a polynomial of

input nodes that is selected as the best one from various polynomial structures

(candidates). The best candidate is called a “winner”. A special algorithm

(in this case the genetic algorithm) selects the winners.

The second layer is constructed as a polynomial, which uses both the network

input nodes and output nodes of the first layer. The third layer uses the

input nodes and output nodes of the second layer. The number of layers

increases and the process is repeated from layer to layer, until the network

cannot achieve more accuracy based on a pre-selected criterion. Finally the

network represents a polynomial expression.

The GMDH can use different criteria to stop the training. We used a criterion

of “calibration”, which requires a test data set for determination of the “best”

model. The genetic algorithm is incorporated into the GMDH as an indepen-

dent algorithm, which is used for generation of a variety of the polynomial

forms and selection of the winners.

Ward Systems also has a genetic programming software that is not yet publicly

released. This software yielded less accurate results than the two paradigms in
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the NeuroShell Predictor and it took much longer to run but it yielded simple

analytical forms unlike GMDH or neural nets.

We also found similar results using other genetic programming (GP) software.

GP tends to be very time consuming and less accurate but results in analytical

form of the solution, which has its advantages over the output of traditional

ANN techniques. The rest of the methods we used were all implemented

in Weka. We explored several basic methods, such as model trees (MT), re-

gression trees (RT), support vector machines (SVM), radial-basis function net-

works (RBF) and Pace Regression (PR). We also investigated the performance

of advanced, ensemble or meta methods that combine several basic classifiers,

such as bagging, boosting and stacking.

Regression Trees (RT): To create regression tree models we used Weka’s repre-

sentations tree method, a fast decision/regression tree learner. The method

builds a decision/regression tree by means of information gain/variance and

prunes it using reduced-error pruning (with back-fitting). It also only sorts

values for numeric attributes once. Missing values are dealt with by splitting

the corresponding instances into pieces (as in C4.5 method Quinlan (1993)).

The method was one of the fastest in building a model of the data; on average,

it took 0.17-0.24 seconds to complete the task. The resulting regression trees

were very large, having around 2000-4000 nodes.

Support Vector Machines (SVM): When used for classification, the SVM al-

gorithm creates a hyperplane that separates the data into two classes with the

maximum-margin. Given positive and negative training examples, a maximum-

margin hyperplane is identified which splits the two categories of training

examples, such that the distance between the hyperplane and the closest ex-

amples (the margin) is maximized.

For non-linear classifiers the classification is accomplished by applying the

“kernel trick” where every dot product is replaced by a non-linear kernel func-

tion. This allows the algorithm to fit the maximum-margin hyperplane in the

transformed feature space. If the kernel used is a radial basis function, the

corresponding feature space is a Hilbert space of infinite dimension.

Maximum margin classifiers are well regularized, so the infinite dimension does

not ruin the results. Some common kernels include a version of a SVM used for
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regression was proposed in late 1990’s and is called Support Vector Regression

(SVR) (Schölkopf, Smola, Burges & Soentpiet 1999).

The model produced by support vector classification (as described above) only

depends on a subset of the training data, since the cost function for building the

model does not take into consideration the training points that lie beyond the

margin. The specific SVM implementation we used is the sequential minimal

optimization algorithm proposed by Smola & Schölkopf (2004) for training

a support vector regression model Smola, Scholkopf & Muller (1998). This

implementation globally replaces all missing values and transforms nominal

attributes into binary ones. It also normalizes all attributes by default (hence

the output coefficients are based on the normalized/standardized data, not the

original data). This implementation of the SVM allows control over whether

feature-space normalization is performed (only available in the case of non-

linear polynomial kernels). Moreover, it allows the use of an RBF kernel or

a polynomial one. The SVM modeling time was by far the longest, taking

anywhere from 310 to 880 seconds on a Pc with 2GHz speed and 2 Gb ram

memory. The resulting model is a linear combination of the kernel function

values, which is not very easily readable and does not fit our reverse engineering

definition.

Model Trees (MT): Model trees produces a tree with linear models in the leaves

(instead of a numeric value such as in regression trees). The modeling process

was short, taking 35-77 seconds to complete on a Pc with 2GHz speed and

2 Gb ram memory. These models were also smaller in size as compared to

regression trees, on average producing a tree with around 200 nodes (i.e. 200

linear models).

Pace Regression (PR): Pace regression (Wang 2000) is a method for fitting lin-

ear models in high dimensional spaces. Under regularity conditions, pace re-

gression is provably optimal when the number of coefficients tends to infinity

(Wang & Witten 2002). It consists of a group of estimators that are either

overall optimal or optimal under certain conditions. Pace only took approxi-

mately 0.05-0.07 seconds to complete the modeling task. The model is fairly

simple, but produces not as accurate out-of-sample forecasts as other models.

Advanced/Meta Methods: The basic idea of meta learning schemes it to build

different “experts” and let them vote. The advantage of such a model is that it
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often improves predictive performance. The disadvantage is that it produces

output that is very hard to analyze. Some of the well-known meta schemes

include bagging, boosting, and stacking.

Bagging (Breiman 1996a) employs the simplest way of combining predic-

tors: by voting or averaging, which means that each model receives an equal

weight. The term “bagging” comes from “bootstrap aggregating”. Bagging is

performed by creating N training sets from the original data set with N ob-

servations, by sampling with replacement. Then, a classifier is built for each

training set, and, finally, the output from all of the classifiers is combined to

produce an averaged output. Bagging reduces variance by voting/averaging

and usually reduces the overall expected error.

Boosting (Kearns 1988, Schapire 1990, Freund & Schapire 1996) also uses vot-

ing/averaging, but the models are weighted according to their performance.

It is an iterative procedure in the sense that the new models are influenced

by performance of previously built ones. The new model is “encouraged” to

become an expert for the instances incorrectly classified by earlier models.

The intuitive justification of the method is that the models should be “ex-

perts” that complement each other. Boosting often produces classifiers that

are significantly more accurate on novel/unseen data than bagging. Neverthe-

less, sometimes it fails in practical situations for the reason that the combined

classifier over-fits the data.

Stacking (Wolpert 1992) is used to combine forecasts produced by different

models. The basic idea behind the algorithms is that instead of evaluating

several methods and selecting one, it is better to combine them. To combine

the classifiers, stacking uses a meta learner instead of voting. The goal of

the meta learner is to learn which classifiers are the reliable ones. In other

words, the input into the meta learner is the output of the individual basic

classifiers. Weka’s implementation of combining multiple methods is called the

“multi scheme”. It selects a classifier from among several using cross validation

on the training data or the performance on the training data. Performance

is measured based on percent correct (classification) or mean-squared error

(regression). We tested all three of the composite methods, and found that

the bagging of our best-performing basic models, as well as the multi scheme

with the top three basic classifiers delivered the best performance.

MT Bagging: Bagging of the model tree resulted in a model similar to the basic
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model tree. It consists of 217 nodes. It differs from the basic method model

starting at the node level 2, but it does produce a very similar tree with just

slightly different linear models in the leaves. It took anywhere from 330 to 593

seconds to build the bagged model.

Regression Tree Bagging: Bagged regression trees model gave a fairly different

output. Compared to the basic model’s 4589-node tree, it gave a shorter,

3889-node regression tree at the output. The performance improvement was

most likely due to the basic tree’s overfitting tendencies. By virtue of being

shorter, the bagged tree most likely tends to overfit less. It took on average

2-3 seconds to build the composite model.

ANN Bagging: Bagged ANN created a different neural network model in 530-600

seconds of training time on a 2GHz with 2GB ram Pc. The out-of-sample

forecasting performance was improved. The models are difficult to compare

as both are “black-box” models. The training time was the longest of all the

composite methods, almost as long as the SVM model training time.

Multi Scheme: We used the MT, RT and ANN models as the input to the multi

scheme. Multi scheme took on average 96-327 seconds to complete the task

on a 2GHz with 2GB ram Pc. The method selected the same basic regression

tree model as the greatest performer (see table 6.7).

Overall, the model tree and regression tree methods gave the best non-MineTool,

basic method results, with the out-of-sample RMSE of 0.0074 and 0.0098 re-

spectively. The model tree, having given a smaller output evaluated slightly

better, most likely due to offering a more general output model that tends to

overfit less than the more detailed regression tree. Bagging of the top three

basic methods (MT, RT and ANN) definitely increased their performance,

especially in the case of ANNs-RMSE decreased from 0.0110 to 0.0068.

The best overall performers are bagged model trees and bagged regression

trees, evaluating at the RMSE of 0.0060. These two models are similar in how

they choose the attributes to split the search space and best distinguish among

the split instances, and therefore, when bagged, gave identical composite re-

sults.



Chapter 7

Conclusions and directions for
future research

7.1 Conclusions

The literature on prediction and model selection is highly interdisciplinary and in-

terest in this field is fast growing. The review presented in this dissertation in by

no means exhaustive. Automatic modeling and data-mining methods may help in

many real-world problems where time constraints may have an important impact

on the development of predictive models. However the automation of algorithms

does not remove the need for human direction of data mining, and “data snooping”

(White 2000) should be avoided.

We propose automated procedures that focus on the issue at hand: out-of-sample

forecasting. In practical terms we try to find a balance between the following prin-

ciples:

• Flexibility

• Parsimony

• Reverse engineering ability

• Computational speed

We follow a coherent strategy that balances all these aspects. We are inspired by

a Specific to General philosophy, going from the “simple” to the “sophisticatedly

simple” avoiding unnecessary complexity.

165
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We assume that statistical and econometric models can be regarded as convenient

approximations of an unknown data generation process. Because of this assump-

tion, any model is inherently misspecified. Nonetheless, since we are interested in

prediction, automated methods are still useful for our purposes. We propose au-

tomatic model building and selection procedures that behave well under the miss-

specification hypothesis and discuss solutions to problems that one typically faces

in applied research.

If prediction is the goal, and miss-specification is assumed, asymptotic loss efficiency,

rather than consistency, is a desirable property of any model selection procedure.

Among others, AIC, AICC, Mallows C and GCV benefit of this property, while BIC

does not, since it typically selects under-parameterized models that have a high bias

and poor out-of-sample performance assessed by the RMSE.

Another aspect of the prediction problem is the choice of an approximating function.

Many approximating methods have been developed since computing power has be-

come available. In the third chapter we reviewed briefly some of them with especial

emphasis on different types of basis functions used in the Artificial Neural Net-

work Literature, focusing especially on radial basis and ridgelets. Since non-linear

optimization methods suffer the fact that the likelihood function may have many

local minima, we consider approximations that non-linearities only in the inputs.

A convenient class of such functions useful to build libraries of approximants are

the Generically Comprehensive Revealing functions. Libraries of different basis may

be useful where, as in economic data occurs, the smoothness degree of the target

variable is usually unknown. Nonetheless other practical issues arise in empirical

building of such flexible functional forms. These are related to the choice of the

inputs and the selection of the approximation bases.

Throughout this dissertation, we referred many times to a subset selection tool use-

ful for forecasting purposes called RETINA (Pérez-Amaral et al. 2003). The method

implements an automated strategy for specification search and out-of-sample model

validation and testing. We reviewed in detail its main characteristics and presented

a new implementation for real data sets called RETINA Winpack. This is a stand-

alone software, fully documented, with features which are relevant in applied re-

search:

1. It is designed for immediate use by non-specialist applied researchers.
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2. It reads data in the Excel format, allowing fast and easy data input.

3. It has a simple extremely user-friendly Graphical User Interface of just one

window frame.

4. It handles extreme observations in both response and predictors set using the

(Peña & Yohai 1999) method.

5. It allows for distinctive treatment of categorical predictors prior to input trans-

formations. This feature allows to build flexible functional forms that include

specific constants and specific slopes like an analysis of covariance.

6. It delivers an informative output by summarizing out-of-sample predictive

statistics of proposed specifications and allowing the user to easily compare

among them.

We also fill a gap present in the literature on comparing RETINA with other methods

(Pérez-Amaral et al. 2003, Castle 2005, Pérez-Amaral et al. 2005) since we explicitly

assess its validity as an automatic modeling tool focusing exclusively on the out-of-

sample forecasting ability against a variety of methods (Stepwise regression, Non-

negative Garrote, LARS, LASSO, Ridge and the General to Specific methodology).

A striking fact which emerges from the experiments is that a similar behavior results

in terms of forecasting ability, although RETINA seems to be specially well suited

for cases where the ratio N/k is large. Tests for forecast equality show that RETINA

does equally well or better than other methods, under different settings in which

sample sizes (even small, eg. 50 observations), the number of candidate predictors,

and the nature of the data (time series or cross-section) vary systematically across

experiments.

We applied RETINA Winpack to an empirical case. We use it to forecast busi-

ness telecommunications demands for local, intra-LATA and inter-LATA services

using US Telecommunications data. We obtained specifications that proved to be

useful for out-of-sample prediction. RETINA generates an expanded input set us-

ing the firm group membership as a heterogeneity parameter to estimate specific

constants and specific slopes. All suggested specifications include interactions and

nonlinear transformations of the original predictors. As a result, out-of-sample fore-

casting ability significantly improves over alternative formulations. We also find

that telephone equipment variables are almost always selected as relevant first order

effects. Semi-parametric demand elasticities, evaluated for the relevant variables at
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Table 7.1: The main contributions of this dissertation.

1. RETINA Winpack: An user friendly software for real data sets which incorpo-
rates: outlier detection, normalization of variables, Graphical User Interface,
user guide, treatment of categorical variables, informative output.

2. Comparison between RETINA and other subset regression methods: Stepwise
method, The LASSO, Non-negative Garrote, Ridge Regression, Gets mod-
elling, LARS. RETINA Winpack show to be as valid as all these methods,
based on out-of-sample forecasting ability.

3. Empirical Application to Telecommunications demand using firm-level data:

• We show the potential of RETINA Winpack in finding suitable approx-
imations that behave well out-of-sample in comparison with alternative
linear baseline models.

• The reverse engineering capabilities of RETINA account for possible sub-
stitution patterns among telephone equipments.

4. RETINET:

• Generalizes RETINA.

• Automatizes the process of building flexible functional forms from simple
linear specifications to highly non-linear in the inputs specifications, using
a Specific To General methodology.

• Alternative methodology or flexible model building to non-linearly esti-
mated ANN.

the average values, suggest substitution patterns between different types of telephone

equipment.

Finally we presented a new automated modeling tool called RETINET, which pro-

vides a heuristic method to build flexible functional forms by using libraries of highly

non-linear transformations of the original predictors. The procedure avoids techni-

cal difficulties related to non-linear estimation procedures to compute the weights of

the ANN transformations. As an advantage over traditional ANN empirical build-

ing strategies, the method also provides guidance about 1) the selection of inputs

Xt 2) the selection of the hidden nodes of the network. Being the specified equa-

tions always linear in the parameters, OLS estimation techniques can be used, and
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computations, even if intensive, can be performed reasonably fast. The algorithm

presented here differs from White’s (2006) Quicknet in that we use RETINA to se-

lect the inputs and to control for over-fitting and model evaluation method. Finally

the procedure chooses among three different types of squashing functions, namely

Logistic, Radial Basis and Ridgelets transformation. These provide a sufficiently

rich library of approximants and more parsimonious models can be obtained. Based

on the data, the algorithm chooses which basis function to adopt in any given in-

stance, and parsimonious approximations are usually delivered. These are important

advantages compared to networks estimated by non-linear methods. Another advan-

tage of RETINET is that suggested specifications retain, to some extent, analytical

interpretability and allow reverse engineering. This facilitates easier dissemination

of the model as well as exploration of the effects of various terms. Based on two

different simulation examples the method provides favorable evidence with respect

to the out-of-sample forecasting ability provided by other simpler or more sophisti-

cated methods. Even though these results cannot be considered as a definitive proof

of the superiority of the method, we can state that it doesn’t perform worse while

offering the relevant advantages commented above. More experimentation is needed

under controlled settings using Monte Carlo methods.

7.2 Future Research directions

We are currently applying RETINET-Minetool in a number of projects using fi-

nancial and geophysical spacecraft data. These include the analysis and prediction

of foreign exchange rate, stock market returns and other macro-economic variables

forecast such as inflation. In the area of geophysical sciences there is a special inter-

est in using these techniques in the development of a 3D model of magnetopause,

identification of flux transfer events and traveling compression regions, among oth-

ers.

In its earliest version, the RETINET algorithm has been written by the author in

Gauss language. After its successful application to geophysics data, Sciberquest Inc.

a scientific consultancy agency based in Solana Beach, California decided to include

it in a data-mining package called Mine-tool. Currently the software is being re-

written in C language and soon a public licensed version of it should be available

to the scientific community. These represent important directions in our research

agenda, as well as further developments in order to extend the method to:

• Window roll estimation and multiple step ahead based forecasts.
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• Multiple output forecasts.

• Include a richer variety of highly non-linear libraries.

• Include richer non-linear dynamic structure detection ability by means of

recurrent networks (like the Elman (1990) network. network) or stochastic

volatility models.

• Provide user-friendly interfaces and user documentation.

• Improve the computational efficiency.

• Extend the method to panel data

These are just a few of the many possibilities that actually exist to improve the

algorithm. Nonetheless our main hope, and at the same time our main concern, is

that the method will generate future interest and will be of some usefulness in the

research community especially where real-time predictions, as in financial markets,

are of big interest to analysts and practioneers. In this context we agree with the

point of view of McAleer (2005) who points out:

An automated method of inference that is never used has zero value.
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