UNIVERSIDAD COMPLUTENSE DE MADRID

FACULTAD DE CC. MATEMÁTICAS Departamento de Álgebra

GEOMETRÍA ENUMERATIVA EN UNA SUPERFICIE ALGEBRAICA

MEMORIA PRESENTADA PARA OPTAR AL GRADO DE DOCTOR POR Carlos Hermoso Ortiz

Bajo la dirección del Doctor: Ignacio Sols Lucía

Madrid, 2001

ISBN: 84-669-1798-5

UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS MATEMÁTICAS DEPARTAMENTO DE ÁLGEBRA

GEOMETRÍA ENUMERATIVA EN UNA SUPERFICIE ALGEBRAICA

TESIS DOCTORAL

DIRIGIDA POR EL PROFESOR DOCTOR DON IGNACIO SOLS LUCIA

CARLOS HERMOSO ORTIZ

2001

A mis padres y hermano.

Agradecimientos.

Quiero agradecer al Dr. Ignacio Sols su labor de dirección de esta tesis, su disponibilidad y continua ayuda, la paciencia demostrada y, de un modo muy especial, su contribución a mi aprendizaje en esta hermosa y fecunda rama de las Matemáticas que es la Geometría Algebraica.

Son muchas las personas que me han ayudado, desde las que han participado más directamente en mi formación matemática hasta aquéllas que, con su aliento y consejo -tan necesarios en momentos difíciles- han hecho posible la realización de este trabajo; a todas ellas muchas gracias.

Así mismo, deseo expresar también mi gratitud a quienes, con infinita paciencia, me han enseñado y proporcionado soportes informáticos, imprescindibles para la realización material de esta memoria.

He optado por omitir una larga lista de nombres por temor a olvidar alguno, no obstante, aunque no aparezcan reflejados, quiero dejar constancia en este apartado de lo inestimable de su ayuda.

ÍNDICE

Introducción.	6
Capítulo I: Preliminares.	12
I.0. Variedades complejas.	12
I.1. Haces y cohomología.	13
I.2. Topología de variedades.	16
I.3. Fibrados vectoriales, conexión y curvatura.	17
I.4. Divisores y fibrados lineales.	20
I.5. Clases de Chern.	23
I.6. Fibrados proyectivos.	24
I.7. Explosión de subvariedades.	26
I.8. Esquemas. El esquema de Hilbert.	27
I.9. Cálculo de las bases de los espacios de homología	32
racional del esquema de Hilbert de puntos.	
I.10. Método de las bases de cohomología de la variedad	34
de triángulos de Schubert.	
Capítulo II: Bases de los espacios de homología racional del esquema de Hilbert de puntos en una superficie algebraica.	37
Capítulo II: Bases de los espacios de homología racional del esquema de Hilbert de puntos en una superficie algebraica. II.0. Introducción.	37 37
Capítulo II: Bases de los espacios de homología racional del esquema de Hilbert de puntos en una superficie algebraica. II.0. Introducción. II.1. Preliminares y enunciado.	37 37 38
Capítulo II: Bases de los espacios de homología racional del esquema de Hilbert de puntos en una superficie algebraica. II.0. Introducción. II.1. Preliminares y enunciado. II.2. Demostración de T1.	37 37 38 42
 Capítulo II: Bases de los espacios de homología racional del esquema de Hilbert de puntos en una superficie algebraica. II.0. Introducción. II.1. Preliminares y enunciado. II.2. Demostración de T1. II.3. Demostración de T2. 	 37 37 38 42 48
 Capítulo II: Bases de los espacios de homología racional del esquema de Hilbert de puntos en una superficie algebraica. II.0. Introducción. II.1. Preliminares y enunciado. II.2. Demostración de T1. II.3. Demostración de T2. II.4. Demostración de T3. 	 37 37 38 42 48 51
 Capítulo II: Bases de los espacios de homología racional del esquema de Hilbert de puntos en una superficie algebraica. II.0. Introducción. II.1. Preliminares y enunciado. II.2. Demostración de T1. II.3. Demostración de T2. II.4. Demostración de T3. Capítulo III: La geometría de triángulos de Schubert en una	 37 37 38 42 48 51
 Capítulo II: Bases de los espacios de homología racional del esquema de Hilbert de puntos en una superficie algebraica. II.0. Introducción. II.1. Preliminares y enunciado. II.2. Demostración de T1. II.3. Demostración de T2. II.4. Demostración de T3. Capítulo III: La geometría de triángulos de Schubert en una superficie algebraica.	 37 37 38 42 48 51 53
Capítulo II: Bases de los espacios de homología racional del esquema de Hilbert de puntos en una superficie algebraica. II.0. Introducción. II.1. Preliminares y enunciado. II.2. Demostración de T1. II.3. Demostración de T2. II.4. Demostración de T3. Capítulo III: La geometría de triángulos de Schubert en una superficie algebraica. III.0. Introducción.	 37 37 38 42 48 51 53 53
 Capítulo II: Bases de los espacios de homología racional del esquema de Hilbert de puntos en una superficie algebraica. II.0. Introducción. II.1. Preliminares y enunciado. II.2. Demostración de T1. II.3. Demostración de T2. II.4. Demostración de T3. Capítulo III: La geometría de triángulos de Schubert en una superficie algebraica. III.0. Introducción. III.1. Variedad de triángulos de Schubert y base de	 37 38 42 48 51 53 53
 Capítulo II: Bases de los espacios de homología racional del esquema de Hilbert de puntos en una superficie algebraica. II.0. Introducción. II.1. Preliminares y enunciado. II.2. Demostración de T1. II.3. Demostración de T2. II.4. Demostración de T3. Capítulo III: La geometría de triángulos de Schubert en una superficie algebraica. III.0. Introducción. III.0. Introducción. III.1. Variedad de triángulos de Schubert y base de su cohomología racional.	 37 37 38 42 48 51 53 53 55
 Capítulo II: Bases de los espacios de homología racional del esquema de Hilbert de puntos en una superficie algebraica. II.0. Introducción. II.1. Preliminares y enunciado. II.2. Demostración de T1. II.3. Demostración de T2. II.4. Demostración de T3. Capítulo III: La geometría de triángulos de Schubert en una superficie algebraica. III.0. Introducción. III.1. Variedad de triángulos de Schubert y base de su cohomología racional. III.2. Intersección de las clases básicas.	 37 37 38 42 48 51 53 53 55 58

III.4.	Las fórmulas.	78
III.5.	Transversalidad.	80
Bibliografía.		89
Apéndice:	Matrices de intersección.	97

GEOMETRÍA ENUMERATIVA EN UNA SUPERFICIE ALGEBRAICA

Introducción

La construcción y el estudio de figuras que cumplen ciertas condiciones geométricas es un problema clásico en Matemáticas. La solución de este tipo de problemas -cuando existe- no siempre es única y pueden encontrarse varias figuras que cumplan los requisitos pedidos. Surge entonces la cuestión de estudiar cuántas soluciones puede tener un problema, así como de analizar el tipo de dependencia que tienen éstas respecto de los datos involucrados, es decir, estudiar cómo varían las figuras si se cambian las condiciones iniciales del problema. Ya Leibnitz afirmó que si se mueven un poco los datos de alguna construcción, las soluciones de la construcción también se moverán un poco, y que el número de soluciones no cambiará. Poncelet enuncia como principio de continuidad una propiedad similar y, posteriormente, Schubert enuncia el principio de posición especial o principio de conservación del número. El objeto de la geometría enumerativa consiste en calcular el número de figuras -sin construirlas o resolver las ecuaciones definidas por ellas- que satisfacen ciertas condiciones geométricas dadas. La geometría enumerativa se desarrolló fuertemente durante el siglo XIX con geómetras como M. Chasles (1793-1880), J. Steiner (1796-1883), J. Poncelet (1788-1867), J. Plücker (1801-1868), G. Salmon (1819-1904), De Jonquières (1820-1901), A. Cayley (1821-1895), L. Cremona (1830-1903), H. Zeuthen (1839-1920)... y, muy especialmente, con H. Schubert (1848-1911). Para una espléndida exposición de los orígenes de la geometría enumerativa y, en especial, del principio de conservación del número vid. [X].

David Hilbert propuso en el II Congreso Internacional de Matemáticas, celebrado en París en el año 1900, una serie de veintitrés problemas que debían marcar las líneas de investigación en el siglo XX; uno de ellos -el decimoquinto- se sitúa en el marco de la geometría enumerativa y solicita fundar con rigor el cálculo de Schubert. Lo enunció así:

"Establecer rigurosamente y con determinación exacta de sus límites de validez, los números geométricos que se han determinado a partir del principio de posición especial, o principio de la conservación del número, especialmente por Schubert, usando el cálculo desarrollado por él" [Hi].

Esta memoria de tesis doctoral se propone trasladar ciertas técnicas de geometría enumerativa conocidas para el plano al caso de una superficie algebraica *S* arbitraria. Se trata de una superficie algebraica polarizada $\langle S, H \rangle$, es decir, equipada de una clase de divisores muy amplios o secciones hiperplanas *H*, pues ya en el caso del plano se considera éste en geometría enumerativa de modo implícitamente polarizado por sus rectas, en la medida en que tratamos del grado de sus curvas. Además, por razones técnicas, se introducirá un haz lineal $\mathcal{V} = \mathbb{P}^1 \hat{O} |H|$ de secciones hiperplanas que jugará el papel de las rectas verticales del plano coordenado.

Las técnicas que nos proponemos desarrollar son las de las bases de homología racional del esquema de Hilbert de sus puntos y la de las bases de cohomología de la variedad de triángulos de Schubert -una variante de este esquema- que puede ser más adecuada a problemas particulares, donde el esquema de Hilbert no resulta efectivo y a que conduce a cálculos inasequibles.

En esta memoria nos ocupamos de hallar las bases en esos dos casos: el esquema de Hilbert de puntos y la variedad de triángulos, introducida por Schubert en [S1]. Se han dado muchas definiciones de triángulos en superficies arbitrarias, muy adecuadas para algunos propósitos pero que plantean problemas al aplicarse a ciertas cuestiones enumerativas por lo complicado de los cálculos. Así, por ejemplo, Semple [Se] construye una variedad de triángulos en \mathbb{P}^2 -estudiada a fondo por Roberts y Speiser en [RS1], [RS2], [RS3]- que consiste en ternas de puntos, ternas de rectas y un sistema de cónicas que contiene cónicas degeneradas. Le Barz [LB4] la generaliza a una variedad cualquiera V no singular considerando ternas de puntos, ternas de elementos de $Hilb^2 V$ y un elemento de $Hilb^3 V$, que cumple ciertas relaciones. Pero los cálculos enumerativos de las conjeturas de Schubert que aparecen en [S1] resultan muy complicados en esta variedad. Nosotros hemos dado una definición de triángulos de Schubert en una superficie arbitraria mucho más simple y que por tanto permite generalizar y probar en estas superficies las fórmulas sobre contactos dobles con las que Schubert consolidó su técnica de triángulos planos [S1].

Éstas son las partes que conforman la memoria. En el capítulo II se lleva el trabajo [MS] sobre curvas planas al caso de una superficie. La técnica, sin embargo, es distinta, pues en ese artículo se trabajaba deformando las bases obtenidas por el teorema de Bialynicki-Birula, por lo que este método de [MS] sólo es traducible al caso de una superficie algebraica que sea racional.

De hecho, nuestro método se basa en la teoría de intersección: consiste en probar que los candidatos a formar parte de una base, además de tener la cardinalidad adecuada, se cortan con una matriz triangular de determinante no nulo. Lo más difícil en este método consiste en demostrar que son nulas todas las intersecciones de elementos de un candidato a base con los elementos del candidato a base del grupo de cohomología de ciclos de dimensión complementaria, estrictamente priores en cierto orden natural que previamente hemos definido entre esos candidatos. Con este método se obtienen de hecho dos bases, una de ellas formada por las clases de homología de ciclos que parametrizan esquemas no reducidos, concentrados en un punto con adecuada cardinalidad y, la otra, la verdaderamente apta para hacer geometría enumerativa, formada por las clases de homología de ciclos que parametrizan esquemas reducidos y de muy sencilla definición: conjuntos de puntos distintos yaciendo en "verticales" con adecuadas cardinalidades y grados de libertad.

Hubiera sido natural, según nuestro plan, acompañar esta primera parte de su aplicación a la demostración de las fórmulas de Zeuthen-Schubert sobre contactos dobles, tal como se hizo en [MS], pero el esquema de Hilbert sólo permitiría probar estas fórmulas en el caso en que las curvas fuesen lisas, como sucede en [MS]. En el capítulo III de la memoria se crea una técnica capaz de probar esas fórmulas para curvas con nodos y cúspides, es decir, con toda la generalidad que Schubert les dio en el plano. Para ello se construye una variedad de triángulos de la que se calcula el anillo de cohomología racional. Las bases se obtienen por medio de las relaciones del anillo y del hecho de que las matrices de intersección de dimensión complementaria son triangulares con entradas distintas de cero en la diagonal. El proceso de obtención de las bases consiste en calcular generadores de los anillos de cohomología y eliminar los elementos que pueden ser obtenidos por medio de otros mediante las relaciones del anillo. El conjunto de elementos así obtenido resulta ser un sistema generador y, además, resulta ser base porque las matrices de intersección son triangulares con entradas no nulas en la diagonal.

Se definen nuevos invariantes para las familias de curvas -ya que muchos de ellos no pueden ser trasladados a cualquier superficie sin ser previamente redefinidos- lo que permite generalizar las fórmulas de Schubert de contactos dobles a una superficie arbitraria y se establecen relaciones con los antiguos invariantes correspondientes en el caso del plano. Se comprueba que en este caso las fórmulas que resultan coinciden con las fórmulas clásicas.

Cada fórmula se obtiene como resultado de multiplicar las dos clases de cohomología adecuadas, que definen los datos infinitesimales de las dos familias dadas de curvas junto con las condiciones geométricas que se quieren imponer en esas familias. Para expresar en la base correspondiente la clase de cohomología de cada una de esas dos familias de curvas, se obtienen los números de intersección de estas clases con los elementos de la base opuesta y se resuelve el sistema de ecuaciones a que dan lugar, donde las incógnitas son las coordenadas que se quieren hallar de esas clases en la base. Los números de intersección de las clases básicas

entre sí, que son los coeficientes de las incógnitas del sistema, son estudiados y codificados en las matrices de intersección.

Los números de intersección de las clases de las familias de curvas con las clases básicas se realizan cortando estas familias con ciclos que representan estas clases y la transversalidad de esos cortes se comprueba en una carta local del punto de intersección garantizando así que cada corte debe ser contado con multiplicidad 1 (capitulo III, §5).

Ciertas clases básicas requieren ser interpretadas geométricamente como ocurre con la autointersección e^2 (capítulo III, (3.2)) donde *e* es la clase del divisor excepcional de la explosión a lo largo de la diagonal de cierta segunda potencia cartesiana. Esto permite, a su vez, dar otra expresión a la clase *e* como suma de clases de ciclos reducidos (capítulo III, (3.9)), que permite el cálculo de ciertos números de intersección: en efecto, cuando haya que cortar un ciclo con e^2 , se hará el cambio a un factor *e* por la expresión no calculable al de dos intersecciones calculables. También se interpretará geométricamente la clase *t* del divisor asociado al fibrado lineal pull-back del fibrado lineal sobre \mathbb{P}^2 dual del tautológico, y se expresará en función de una clase que tiene representante con soporte en una "vertical" dada y de la clase de una sección hiperplana (capítulo III, (3.1)). Esto permite generalizar a una superficie el invariante d^q , la clase de una curva plana o grado de su dual, y análogamente con otros invariantes, que también se redefinen de modo generalizable a toda superficie, con la ayuda de esas verticales. De la misma forma que con e^2 , cuando haya que cortar con *t*, realizaremos la intersección con las clases que lo expresan como suma.

Ciertos invariantes duales de una curva o de una familia de curvas, (como k^{v} , número de inflexiones, por ejemplo) no se pueden generalizar a una superficie algebraica sin establecer una dualidad. Para ello se requeriría equipar la superficie de una red de secciones hiperplanas ("net" de divisores muy amplios), lo que hemos querido evitar, y a ese efecto hemos redefinido el invariante inflexional de Schubert en términos más intrínsecos, esencialmente como el número de cúspides.

Para el cálculo de los contactos triples entre curvas seguimos la misma técnica definiendo una variedad adecuada Z (capítulo III) relacionado con el trabajo de [ASS] y calculando su anillo de cohomología racional.

Así pues, éstas son las aplicaciones enumerativas que consideramos en esta tesis: las fórmulas de dobles contactos de Zeuthen-Schubert para curvas con nodos y cúspides en una superficie algebraica lisa.

Para evitar una exposición excesivamente larga estudiamos, de entre esas seis fórmulas, la primera de ellas, digamos la que motivó a todas las demás, y también las dos finales, por tener el valor añadido de que no consiguieron ser probadas en el caso del plano, sino que tan sólo fueron conjeturadas.

Fantechi [F] ha llegado de manera independiente y simultánea a esencialmente los mismos resultados que obtenemos en el capítulo II, aunque su demostración, aún no publicada, la juzgamos por el momento incompleta. Queremos agradecer el habernos permitido compartir generosamente su manuscrito. En particular, eso nos ha ayudado en la parte preliminar a proporcionar a nuestros candidatos la estructura natural de ciclos orientados de un modo mucho más fácil del que previamente habíamos ideado (capítulo II, §1).

Quisiéramos resaltar por último que existe en la actualidad un creciente interés por este tipo de técnicas y problemas enumerativos por parte de la comunidad matemática en conexión con otras ramas como las singularidades, geometría simpléctica, teoría de representaciones o física teórica. Véanse por ejemplo [L], [N] entre otras referencias.

Capítulo I

En este primer capítulo se recuerdan los conceptos necesarios para desarrollar las técnicas que se emplearán en los capítulos segundo y tercero. Se esboza una breve exposición de la teoría de intersección y clases de Chern, que se utilizará en el capítulo tercero, así como un breve recordatorio de las nociones básicas de la teoría de variedades complejas y de la teoría de esquemas y, en particular, del esquema de Hilbert y de sus propiedades, conceptos que se usarán de manera muy especial en el segundo capítulo . Se tomarán como referencias básicas [GH] y [H1].

Trabajaremos siempre sobre el cuerpo \mathbb{C} de los números complejos, salvo cuando se hace mención explícita de los cuerpos \mathbb{Q} , \mathbb{R} .

I.0. Variedades complejas

Definición. Una *variedad compleja* M es una variedad diferenciable que admite un recubrimiento abierto $\{U_J\}$ y aplicaciones coordenadas $j_J : U_J \ \mathbb{C}^n$ tales que $j_J E j_K^{?1}$ es holomorfa en $j_K \langle U_J \vee U_K \rangle$ $\oplus \mathbb{C}^n$ para todo J, K.

Una función en un conjunto abierto U es *holomorfa* si para todo $J, f E j_{J}^{?1}$ es holomorfa -12en $j_J \langle U \vee U_J \rangle$ $\oplus \mathbb{C}^n$. Análogamente, una colección $z = \hat{Y}z_1, ..., z_n \mathfrak{b}$ de funciones en $U \oplus M$ se dice que es un *sistema coordenado holomorfo* si $j_J \mathbb{E}z^{?1}$ y $z \mathbb{E}j_J^{?1}$ son holomorfas en $z \langle U \vee U_J \rangle$ y $j_J \langle U \vee U_J \rangle$, respectivamente, para cada J. Una aplicación $f : M \ N$ de variedades complejas es *holomorfa* si está dada en términos de coordenadas holomorfas locales en N por funciones holomorfas. ([GH], capítulo 0, §2, pag. 14)

Una *subvariedad compleja* S de una variedad compleja M es un subconjunto S \oplus M dado localmente por los ceros comunes de una colección $f_1, ..., f_k$ de funciones holomorfas con rango de la matriz $\langle /f_i / /z_j \rangle$ máximo k.

Una subvariedad analítica V de una variedad compleja M es un subconjunto dado localmente como los ceros de una colección finita de funciones holomorfas. Un punto $p \ 5 \ V$ es un *punto liso de V* si V es una subvariedad de M cerca de p. Denotemos por V^D el lugar de puntos lisos. Un punto $p \ 5 \ V$? V^D se denomina *punto singular*. ([GH], capítulo 0, §2, pag. 20)

Una variedad algebraica $V \oplus \mathbb{P}^n$ es el lugar en \mathbb{P}^n de una colección de polinomios homogéneos $\{F_{J} \not| x_0, ..., x_n \not| \}$. ([GH], capítulo 1, §3, pag.164), (cfr. también [H1], capítulo 1, §1 y §2). Si la variedad algebraica es de dimensión 2 se la denomina superficie algebraica.

Se tiene el siguiente **Teorema de Chow**: *Toda subvariedad analítica de un espacio* proyectivo es algebraica. ([GH], capítulo1, §3 pag. 167)

Cohomología de De Rham. Sea M una variedad diferenciable. Denotemos por $A^{p}\langle M,\mathbb{R} \rangle$ el espacio de formas diferenciables de grado p en M, $Z^{p}\langle M,\mathbb{R} \rangle$ el subespacio de p? formas cerradas y d el operador diferencial de una forma. Ya que $d^{2} = 0$, $d\langle A^{p?1}\langle M,\mathbb{R} \rangle \rangle \to Z^{p}\langle M,\mathbb{R} \rangle$; los grupos cociente $H^{p}_{DR}\langle M,\mathbb{R} \rangle = Z^{p}\langle M,\mathbb{R} \rangle/d\langle A^{p?1}\langle M,\mathbb{R} \rangle \rangle$ de formas cerradas módulo formas exactas se denominan grupos de cohomología de De Rham de M. ([GH], capítulo 0, §2, pag.23)

I.1 Haces y cohomología

Definición. (**Haz**). Dado un espacio topológico M, un *haz* \mathcal{F} en M asocia a cada conjunto abierto $U \oplus M$ un grupo $\mathcal{F}\langle U \rangle$ llamado secciones de \mathcal{F} sobre U, y a cada par $U \oplus V$ de conjuntos abiertos una aplicación $r_{V,U} : \mathcal{F}\langle V \rangle$, $\mathcal{F}\langle U \rangle$, llamada aplicación restricción, que cumple

1. Para cada terna de conjuntos abiertos $U \stackrel{\circ}{\ominus} V \stackrel{\circ}{\ominus} W$, $r_{W,U} = r_{V,U} \stackrel{\circ}{\mathsf{E}} r_{W,V}$. (escribiremos $a \stackrel{\circ}{\mathsf{P}}_U$ por $r_{V,U} \stackrel{\circ}{\mathsf{Y}} a \mathfrak{b}$)

2. Para cada par de abiertos $U, V \to M$ y secciones $a \in \mathcal{F}(U)$, $b \in \mathcal{F}(V)$ tales que $a \mathsf{P}_{UVV} = b \mathsf{P}_{UVV}$ existe una sección $\int \mathcal{F}(U \lor V)$ que verifica $\mathsf{P}_U = a, \mathsf{P}_V = b$.

3. Si a 5 \mathcal{F} (UVV) y a P_U = a P_V = 0 entonces a = 0.

Definición (Cohomología de ech). Sea \mathcal{F} un haz en M, y $\underline{U} = \{U_J\}$ un recubrimento abierto localmente finito. Definimos $C^p \langle \underline{U}, \mathcal{F} \rangle = \langle \mathcal{F} \langle U_{J_0} \vee ... \vee U_{J_p} \rangle$. Se llama p? cocadena de \mathcal{F} a un elemento $a = \{a_I \in \mathcal{F} \langle VU_{i_k} \rangle\}_{\#I=p+1}$ de $C^p \langle \underline{U}, \mathcal{F} \rangle$. Definimos el operador coborde $N: C^p \langle \underline{U}, \mathcal{F} \rangle \$, $C^{p+1} \langle \underline{U}, \mathcal{F} \rangle$ por la fórmula $\forall Na \mathbf{b}_{i_0,...,i_{p+1}} = \sum_{i=0}^{p+1} \langle \mathcal{P}_i \rangle^{i_0,...,i_{p+1}} \mathsf{P}_{U_{i_0} \vee ... \vee U_{i_p}}$.

Una p-cocadena es un *cociclo* si Na = 0. a es un *coborde* si a = Nb para algún $b \ 5 \ C^{p?1} \langle \underline{U}, \mathcal{F} \rangle$. Es fácil ver que $N^2 = 0$, es decir, un coborde es un cociclo; pongamos $Z^p \langle \underline{U}, \mathcal{F} \rangle = Ker N \ \oplus \ C^p \langle \underline{U}, \mathcal{F} \rangle \ y \ H^p \langle \underline{U}, \mathcal{F} \rangle = Z^p \langle \underline{U}, \mathcal{F} \rangle / NZ^{p?1} \langle \underline{U}, \mathcal{F} \rangle.$ Dados dos recubrimientos $\underline{U} = \{U_J\}_{J_{5J}}$ y $\underline{U}^{q} = \{U_K^{q}\}_{K_{5J}^{q}}$ de M, diremos que \underline{U}^{q} es un *refinamiento* de \underline{U} si para todo $K \ 5 \ I^{q}$ existe $J \ 5 \ I$ tal que $U_K^{q} \ D \ U_J$; escribiremos $U^{q} < U$ y $\underline{U}^{q} < \underline{U}$, podemos elegir una aplicación $j : I^{q} \ J$ tal que $U_K^{q} \ D \ U_J K$; entonces tenemos una aplicación $_j : C^{p} \langle \underline{U}, \mathcal{F} \rangle \ C^{p} \langle \underline{U}^{q}, \mathcal{F} \rangle$ dada por $\mathbf{\hat{Y}}_J \ a\mathbf{\hat{P}}_{K_0...K_p} = a_{jK_0...JK_p} \ P_{U_{K_0}V...VUK_p}$. Es evidente que $NE_J = _J \ E N$, y por tanto $_J$ induce un homomorfismo $_: H^{p} \langle \underline{U}, \mathcal{F} \rangle \ H^{p} \langle \underline{U}^{q}, \mathcal{F} \rangle$ que no depende de la elección de j. Definimos el p-ésimo grupo de cohomología de ech de \mathcal{F} en M como el límite directo de los $H^{p} \langle \underline{U}, \mathcal{F} \rangle$ cuando \underline{U} se hace más fino: $H^{p} \langle M, \mathcal{F} \rangle = \lim_{n \to \infty} H^{p} \langle \underline{U}, \mathcal{F} \rangle$.

Dada una sucesión exacta de haces en $M: 0 \ \mathcal{E} \ \mathcal{F} \ \mathcal{F} \ \mathcal{G} \ \mathcal{G}$ tenemos aplicaciones $C^{p} \langle \underline{U}, \mathcal{E} \rangle \ \mathcal{F} \ \langle \underline{U}, \mathcal{F} \rangle, C^{p} \langle \underline{U}, \mathcal{F} \rangle \ \mathcal{F} \ \mathcal{C}^{p} \langle \underline{U}, \mathcal{G} \rangle$ que commutan con N y que inducen, por tanto, aplicaciones $H^{p} \langle M, \mathcal{E} \rangle \ \mathcal{F} \ \mathcal{H}^{p} \langle M, \mathcal{F} \rangle, H^{p} \langle M, \mathcal{F} \rangle \ \mathcal{H}^{p} \langle M, \mathcal{G} \rangle$. Se puede definir la aplicación coborde $\mathbb{N}^{D}: H^{p} \langle M, \mathcal{G} \rangle \ \mathcal{H}^{p} \langle M, \mathcal{E} \rangle$ de manera que la sucesión

es exacta. ([GH], capítulo 0, §3, pags.), ([H1], capítulo II, §1 y capítulo I, §4)

Para un complejo simplicial K con espacio topológico subyacente M, $H^{6}\langle K,\mathbb{Z}\rangle > H^{6}\langle M,\mathbb{Z}\rangle$ (donde $H^{6}\langle M,\mathbb{Z}\rangle$ denota la cohomología de ech $H^{6}\langle M,\mathbb{Z}\rangle$, para evitar confusiones en la notación, y $\mathbb{Z}\langle U\rangle$ es el haz locamente constante \mathbb{Z}), es decir, la cohomología de ech del haz constante \mathbb{Z} en M es isomorfa a la cohomología simplicial del complejo K. Para más detalles consultar [GH], capítulo 0, §3, pags. 42-43. Sea *M* una variedad real C^{κ} . Diremos que una *p*? *cadena singular a* en *M*, dada como una combinación lineal formal > $a_i f_i$ de aplicaciones A $\stackrel{f_i}{}$ *M* del *p*? *simplex standard* A $\oplus \mathbb{R}^p$ a *M*, es lisa a trozos si las aplicaciones f_i extienden a aplicaciones C^{κ} de un entorno de A a *M*. Denotamos por $C_p^{ps} \langle M, \mathbb{Z} \rangle$ el espacio de las *p*? *cadenas* enteras lisas a trozos. Claramente, el borde de una cadena lisa a trozos es otra cadena lisa a trozos, de manera que $C_6^{ps} \langle M, \mathbb{Z} \rangle$ forma un subcomplejo de $C_6 \langle M, \mathbb{Z} \rangle$ y podemos poner $Z_p^{ps} \langle M, \mathbb{Z} \rangle = Ker \{ / : C_p^{ps} \langle M, \mathbb{Z} \rangle , C_{p?1}^{ps} \langle M, \mathbb{Z} \rangle \}$ y $H_p^{ps} \langle M, \mathbb{Z} \rangle = Z_p^{ps} \langle M, \mathbb{Z} \rangle //C_{p?1}^{ps} \langle M, \mathbb{Z} \rangle$.

Por un resultado de topología diferencial, la aplicación de inclusión $C_6^{ps}(M,\mathbb{Z})$, $C_6(M,\mathbb{Z})$ induce un isomorfismo $H_6^{ps}(M,\mathbb{Z})$ r $H_6(M,\mathbb{Z})$; en otras palabras, toda clase de homología en $H_p(M,\mathbb{Z})$ puede ser representada como como un p? *ciclo* liso a trozos, y si un p? *ciclo* a liso a trozos es homólogo a cero en el sentido usual, existe una (p+1)? *cadena* $b \operatorname{con} / b = a$.

Se tiene el siguiente **Teorema de De Rham**: $H_{DR}^{6}(M) \ge H_{sing}^{6}(M,\mathbb{R})$. Así pues, se tiene $H_{DR}^{6}(M) \ge H_{sing}^{6}(M,\mathbb{R}) \ge H^{6}(K,\mathbb{R}) \ge H^{6}(M,\mathbb{R})$. ([GH], capítulo 0, §3, pags. 43-45).

I.2. Topología de variedades

Sea *M* una variedad de dimensión *n* orientada, *A* y *B* dos ciclos lisos a trozos en *M* de dimensiones *k* y *n* ? *k*, respectivamente, y *P* 5 *A* V *B* un punto de intersección transversa de *A* y *B*. Sea $v_1,...,v_k$ 5 $T_P\langle A \rangle$ \oplus $T_P\langle M \rangle$ una base orientada para $T_P\langle A \rangle$, $w_1,...,w_{n?k}$ una base orientada para $T_P\langle B \rangle$ \oplus $T_P\langle M \rangle$; se dice que el índice de intersección $I_P\langle A \mathbf{6}B \rangle$ de *A* con *B* en *P* es +1 si $v_1,...,v_k,w_1,...,w_{n?k}$ es una base orientada para $T_P \langle M \rangle = T_P \langle A \rangle$ ã $T_P \langle B \rangle$, y ?1 en caso contrario. Si A y B intersecan transversalmente en todo punto, se define el *número de intersección* # $\langle A \mathbf{6} B \rangle$ como # $\langle A \mathbf{6} B \rangle = > I_P \langle A \mathbf{6} B \rangle$. Obsérvese que esta suma es finita, ya que $A \vee B$ es discreto y $P_{5A \vee B}$

A, B tienen soportes compactos.

El número de intersección # $(A \ \mathbf{6} B)$ depende solamente de la clase de homología de A y B; es decir, que $A \mathbf{j} = 0$ **i** # $(A \ \mathbf{6} B) = 0$.

Si $J \ 5 \ H_k \langle M, \mathbb{Z} \rangle$ y $K \ 5 \ H_{n?k} \langle M, \mathbb{Z} \rangle$ son dos clases de homología, podemos encontrar ciclos \mathcal{C}^K lisos a trozos A y B en M que representan a J y K respectivamente e intersecan transversalmente. El número de intersección $\# \langle A \ 6 B \rangle$ está determinado por las clases J y Ky ha permitido definir una aplicación bilineal $H_k \langle M, \mathbb{Z} \rangle \times H_{n?k} \langle M, \mathbb{Z} \rangle$ \mathbb{Z} .

Teorema. (**Dualidad de Poincaré**). Si M es una variedad orientada de dimensión n, compacta, la aplicación bilineal $H_k \langle M, \mathbb{Z} \rangle \times H_{n?k} \langle M, \mathbb{Z} \rangle$ \mathbb{Z} es unimodular; es decir, cualquier aplicación lineal $H_{n?k} \langle M, \mathbb{Z} \rangle$ \mathbb{Z} es expresable como intersección con alguna clase $J 5 H_k \langle M, \mathbb{Z} \rangle$ \mathbb{Z} , y cualquier clase $J 5 H_k \langle M, \mathbb{Z} \rangle$ que tiene número de intersección 0 con todas las clases de $H_{n?k} \langle M, \mathbb{Z} \rangle$ es una clase de torsión.

Como consecuencia de la dualidad de Poincaré se tiene: $H_k \langle M, \mathbb{Q} \rangle = H_k \langle M, \mathbb{Z} \rangle$ å \mathbb{Q} r $H^{n?k} \langle M, \mathbb{Q} \rangle = H^{n?k} \langle M, \mathbb{Z} \rangle$ å \mathbb{Q} . A veces, escribiremos $H_k \langle M \rangle_{\mathbb{Q}}$ denotando $H_k \langle M, \mathbb{Q} \rangle$. (cfr. [GH], capítulo 0, §4, pags. 49-60).

Sean M y N dos complejos simpliciales, se verifica la *fórmula de Künneth* ([GH], pag. 58): $H_6 \langle M \times N, \mathbb{Q} \rangle$ p $H_6 \langle M, \mathbb{Q} \rangle$ å $H_6 \langle N, \mathbb{Q} \rangle$.

I.3. Fibrados vectoriales, conexión y curvatura

Definición. (Fibrados vectoriales complejos y holomorfos). (cfr. [GH], capítulo 0, §5, pags. 66-70) Sea *M* una variedad diferenciable. Un *fibrado vectorial complejo* C^{K} en *M* consiste en una familia $\{E_x\}_{x5M}$ de espacios vectoriales complejos parametrizados por *M*, junto con una estructura de variedad C^{K} en $E = W_{x5M} E_x$, tales que

1) La aplicación ^ : $E \downarrow M$ que envía E_x a x es C^{K} , y

2) Para todo x₀ 5 M, existe un abierto U en M que contiene a x₀ y un difeomorfismo
j_U: ^?¹ (U) , U× C^k que aplica E_x de manera isomorfa sobre áxâ × C^k para cada x 5 U;
j_U se denomina una trivialización de E sobre U.

La dimensión de las fibras E_x de E se denomina el rango de E; en particular un fibrado vectorial de rango 1 se denomina fibrado lineal ("line bundle").

Obsérvese que para todo par de trivializaciones $\mathbf{j}_U \mathbf{y} \mathbf{j}_V$ la aplicación $g_{UV}: U \vee V$, GL_k dada por $g_{UV} \mathbf{\hat{y}} \mathbf{x} \mathbf{p} = \langle \mathbf{j}_U \mathsf{E} \mathbf{j}_V^{?\mathbf{l}} \rangle \mathsf{P}_{\mathbf{a} \mathbf{x} \mathbf{a} \mathbf{x} \mathbb{C}^k}$ es \mathcal{C}^{K} ; las aplicaciones g_{UV} se llaman funciones de transición para E relativas a las trivializaciones $\mathbf{j}_U, \mathbf{j}_V$.

Las funciones de transición de *E* satisfacen las identidades: $g_{UV}\hat{Y}x\mathbf{p} \mathbf{6}g_{VU}\hat{Y}x\mathbf{p} = I$, - $x 5 U \vee V y g_{UV}\hat{Y}x\mathbf{p} \mathbf{6}g_{VW}\hat{Y}x\mathbf{p} \mathbf{6}g_{WU}\hat{Y}x\mathbf{p} = I$, - $x 5 U \vee V \vee W$.

Recíprocamente, dado un recubrimiento abierto $\underline{U} = \{U_J\}$ de M y aplicaciones \mathcal{C}^K $g_{JK} : U_J \vee V_K$, GL_k que satisfacen estas identidades, existe un único fibrado vectorial complejo E, M con funciones de transición $\mathbf{a}g_{JK}\mathbf{a}$: no es difícil comprobar que E es la unión $\bigcup_J U_J \times \mathbb{C}^k$ con puntos $\mathbf{y}_X, \mathbf{V}\mathbf{p}$ 5 $U_K \times \mathbb{C}^k$ y $\mathbf{y}_X, g_{JK}\mathbf{y}_X\mathbf{p}$ 6 $\mathbf{V}\mathbf{p}$ 5 $U_J \times \mathbb{C}^k$ identificados y con la estructura de variedad inducida por las inclusiones $U_J \times \mathbb{C}^k \not\in \mathbf{D} E$.

Como regla general, las operaciones sobre espacios vectoriales inducen operaciones sobre fibrados vectoriales. Por ejemplo, si $E_{abc} M$ es un fibrado vectorial complejo, tomamos el

fibrado dual $E^{\mathbb{D}}$, M como el fibrado vectorial complejo con fibras $E_x^{\mathbb{D}} = \langle E_x \rangle^{\mathbb{D}}$; las trivializaciones $j_U : E_U$, $U \times \mathbb{C}^k$ (donde $E_U = {}^{\wedge ?^1} \langle U \rangle$) inducen aplicaciones $j_U^{\mathbb{D}} : E_U^{\mathbb{D}}$, $U \times \mathbb{C}^{k^{\mathbb{D}}} > U \times \mathbb{C}^k$, que dan a $E^{\mathbb{D}} = WE_x^{\mathbb{D}}$ la estructura de una variedad. Si E, Mtiene funciones de transición $\mathbf{\hat{a}}g_{JK}\mathbf{\hat{a}}$, entonces $E^{\mathbb{D}}$, M es el fibrado vectorial complejo dado por las funciones de transición $j_{JK}\mathbf{\hat{y}}\mathbf{x}\mathbf{p} = {}^t g_{JK}\mathbf{\hat{y}}\mathbf{x}\mathbf{p}^{?1}$.

De manera semejante, si $E \, My F \, My F \, M$ son fibrados vectoriales complejos de rangos ky l con funciones de transición **á** g_{JK} **â** y $\{h_{JK}\}$, respectivamente, se pueden definir fibrados vectoriales

1)
$$E \tilde{a} F$$
, dado por funciones de transición
 $j_{JK} \check{\mathbf{Y}} x \mathbf{p} = \begin{pmatrix} g_{JK} \check{\mathbf{Y}} x \mathbf{p} & 0 \\ 0 & h_{JK} \check{\mathbf{Y}} x \mathbf{p} \end{pmatrix} 5 GL \langle \mathbb{C}^k \tilde{a} \mathbb{C}^l \rangle$

2)
$$E \stackrel{*}{=} F$$
, dado por funciones de transición
 $j_{JK} \check{Y} x \flat = g_{JK} \check{Y} x \flat \delta h_{JK} \check{Y} x \flat 5 GL \langle \mathbb{C}^k \stackrel{*}{=} \mathbb{C}^l \rangle$

3)
$$T^r E$$
, dado por funciones de transición
 j_{JK} Ýx $\mathbf{p} = T^r g_{JK}$ Ýx $\mathbf{p} 5 GL \langle T^r \mathbb{C}^k \rangle$

En particular,
$$\mathsf{T}^{k} E$$
 es un fibrado lineal dado por
 $j_{jk}\dot{\mathbf{y}}\mathbf{x}\mathbf{p} = \det g_{jk}\dot{\mathbf{y}}\mathbf{x}\mathbf{p} \ 5 \ GL(1,\mathbb{C}) = \mathbb{C}^{\mathsf{D}}$

llamado el fibrado determinante de E.

Un subfibrado $F \oplus E$ de un fibrado E es una colección $\{F_x \oplus E_x\}_{x \in M}$ de subespacios de las fibras E_x de E tales que $F = WF_x \oplus E$ es una subvariedad de E. Esta condición es equivalente a decir que para todo $x \in M$, existe un entorno U de x en M y una trivialización $j_U : E_U \ U \times \mathbb{C}^k$ tal que $j_U P_{F_U} : F_U \ U \times \mathbb{C}^l \oplus U \times \mathbb{C}^k$. **Definición**. Una *sección* a del fibrado vectorial $E \stackrel{\circ}{,} M$ sobre $U \not D M$ es una aplicación $C^{\mathsf{K}} a : U \stackrel{\circ}{,} E$ tal que $a \not x x 5 E_x - x 5 U$. Una *referencia* ("frame") para E sobre U es una colección de secciones de M sobre U tales que $\mathbf{\hat{a}} a_1 \not x \mathbf{\hat{p}}, ..., a_n \not x \mathbf{\hat{p}} \mathbf{\hat{a}}$ es una base de $E_x - x 5 U$.

Definición. (Fibrado vectorial holomorfo). Sea M una variedad compleja, un *fibrado* vectorial holomorfo $E \stackrel{\circ}{,} M$ es un fibrado vectorial complejo junto con la estructura de variedad compleja en E, tal que para todo x 5 M existe U 8 x en M y una trivialización $j_U : E_U \stackrel{\circ}{,} U \times \mathbb{C}^k$ que es una aplicación biholomorfa de de variedades complejas.

Definición. (Fibrado tangente). Sea M una variedad compleja, y sea $T_x \langle M \rangle$ el espacio tangente complejo a M en x. Para cada $x \in U \oplus M$ y $j_U : U \ \mathbb{C}^n$ una carta coordenada, tenemos aplicaciones $j_{U_0} : T_x \langle M \rangle$, $T_{j_{X, \mathbf{0}}} \langle U \rangle > \mathbb{C} \left\{ \frac{I}{I_{X_1}}, \frac{I}{I_{Y_1}} \right\} > \mathbb{C}^{2n}$ para cada $x \in U$, y por tanto una aplicación $j_{U_0} : \mathbb{W} = T_x \langle M \rangle$, $U \times \mathbb{C}^{2n}$ que da a $T \langle M \rangle = \mathbb{W} = T_x \langle M \rangle$ la estructura de un fibrado vectorial complejo llamado el fibrado tangente complejo.

Se define, análogamente $T^{\mathbb{D}}M = T\langle M \rangle^{\mathbb{D}}$ el *fibrado cotangente complejo*. Si $V \oplus M$ se define el *fibrado normal* $N_{V/M}$ a V en M como el cociente del fibrado tangente a M, restringido a V, por el subfibrado $T^*\langle V \rangle \oplus T^*\langle M \rangle \mathbb{P}_V$. El *fibrado conormal* $N_{V/M}^{\mathbb{D}}$ es el dual del fibrado normal.

Definición. (Métrica, Conexión y Curvatura). ([GH], capítulo 0, §5, pags. 71-80) Sea E_{a} M un fibrado vectorial complejo. Una *métrica hermítica* sobre E es un producto interior hermítico en cada fibra E_{x} de E, que varía de forma diferenciable con x 5 M, es decir, si $Q = \mathbf{a}Q_{1},...,Q_{k}\mathbf{\hat{a}}$ es una referencia para E, entonces las funciones $h_{ij}\mathbf{\hat{y}}x\mathbf{p} = \mathbf{\hat{y}}Q_{i}\mathbf{\hat{y}}x\mathbf{p}, Q_{j}\mathbf{\hat{y}}x\mathbf{p}\mathbf{p}$ son C^{K} . Una referencia se dice unitaria si $Q_{1}\mathbf{\hat{y}}x\mathbf{p},...,Q_{k}\mathbf{\hat{y}}x\mathbf{p}$ es una base ortonormal en E_{x} para cada x.

Si \mathcal{A}^p (E) designa el haz de secciones de p? formas E? valuadas C^K en una variedad,

una *conexión* D en un fibrado vectorial complejo $E \, M$ es una aplicación $D : \mathcal{A}^0 \langle E \rangle \, \mathcal{A}^1 \langle E \rangle$ que satisface la regla de Leibnitz $D \langle f \mathbf{6} \, \mathcal{Q} \rangle = df \, \mathring{a} \, \mathcal{Q} + f \, \mathbf{6} \, D \, \mathring{q} \, \mathcal{Q} \, \mathbf{p},$ sección $\mathcal{Q} \, 5 \, \mathcal{A}^0 \langle E \rangle \langle U \rangle, f \, 5 \, \mathcal{C}^{\mathsf{K}} \langle U \rangle.$

Sea $e = \mathbf{i}e_1, ..., e_n \mathbf{\hat{a}}$ una referencia para *E* sobre *U*. Dada una conexión *D* en *E*, podemos descomponer De_i en sus componentes, escribiendo $De_i = S_{ij}e_j$. La matriz de 1 ? *formas* $S = \mathbf{i}S_{ij}\mathbf{p}$ se denomina la *matriz de conexión* de *D* respecto de *e*.

Dado un fibrado vectorial hermítico, existe una única conexión *D* en *E* compatible con la métrica y la estructura compleja. Remitimos a [GH], pag.73.

Dada una conexión D en un fibrado vectorial complejo $E \downarrow M$ podemos definir operadores $D : \mathcal{A}^p \langle E \rangle \downarrow \mathcal{A}^{p+1} \langle E \rangle$ que cumplan $D \dot{\mathbf{Y}} f \top Y \mathbf{p} = df a Y + \langle ?1 \rangle^p f \top D Y$ para $f 5 \mathcal{A}^p \langle U \rangle, Y 5 \mathcal{A}^0 \langle E \rangle \langle U \rangle$. En particular, se tiene el operador $D^2 : \mathcal{A}^0 \langle E \rangle \downarrow \mathcal{A}^2 \langle E \rangle$ que corresponde a una sección global B del fibrado $\mathsf{T}^2 T^0 a Hom \langle E, E \rangle = \mathsf{T}^2 T^0 a \langle E^0 a E \rangle.$

Si *e* es una referencia para *E*, entonces en términos de la referencia $\{e_i^D \triangleq e_j\}$ para $E^D \triangleq E$, podemos representar $B = 5 A^2 \langle E^D \triangleq E \rangle$ por una matriz B_e de 2? formas: $D^2 e_i = > B_{ij} \triangleq e_j$, llamada matriz de curvatura de *E* en términos de la referencia *e*.

Se tiene, en notación matricial, la *ecuación de estructura de Cartan*: $B_e = dS_e$? $S_e \top S_e$. ([GH], pag. 75)

I.4. Divisores y fibrados lineales

Definición. (**Divisores**). Sea M una variedad compleja de dimensión n, no necesariamente compacta. Un *divisor* D en M es una combinación lineal formal, localmente

finita $D = a_i \mathbf{6} V_i$ de hipersuperficies analíticas irreducibles de *M*. ("Localmente finito" significa que para todo *p* 5 *M*, existe un entorno de *p* que corta solamente a un número finito de las V_i que aparecen en *D*). Si *M* es compacta la suma es necesariamente finita.

El conjunto de divisores tiene estructura de grupo aditivo y lo denotamos por Div(M).

Un divisor $D = a_i \mathbf{6} V_i$ es efectivo $(D^3 0)$ si $a_i \mathbf{3} 0, -i$.

Sea V una superficie analítica irreducible, $p \ 5 \ V$ un punto, y f una función que define localmente a V cerca de p, definimos el orden $ord_{V,p} \dot{\mathbf{y}} g \mathbf{b}$ de g a lo largo de V en p como el mayor entero a tal que en el anillo local $\mathcal{O}_{M,p}$, $g = f^a \ \mathbf{6} h$. Si g es es una función holomorfa en M, $ord_{V,p} \dot{\mathbf{y}} g \mathbf{b}$ no depende de p. Así pues podemos definir el orden $ord_V \dot{\mathbf{y}} g \mathbf{b}$ de g a lo largo de V como el orden de g a lo largo de cualquier punto p 5 V.

Si g, h son funciones holomorfas, V una hipersuperficie irreducible, se tiene $ord_V \langle gh \rangle = ord_V \hat{\mathbf{y}} g\mathbf{p} + ord_V \langle h \rangle$. Si f es una función meromorfa en M, escrita localmente como f = g/h con g, h holomorfas y primas entre sí, definimos $ord_V \langle f \rangle = ord_V \hat{\mathbf{y}} g\mathbf{p}$? $ord_V \langle h \rangle$.

Definimos el divisor $\langle f \rangle$ de una función meromorfa $f \operatorname{como} \langle f \rangle = \operatorname{ord}_V \langle f \rangle$ **6** V. Si fse escribe localmente como f = g/h ponemos el divisor de ceros $\langle f \rangle_0 = \operatorname{ord}_V \langle \mathbf{\hat{y}g} \mathbf{\hat{p}} \mathbf{\hat{6}} V$ y el divisor de polos $\langle f \rangle_{\mathsf{K}} = \operatorname{ord}_V \langle h \rangle$ **6** V. Así pues, $\langle f \rangle = \langle f \rangle_0$? $\langle f \rangle_{\mathsf{K}}$.

Los divisores también se pueden describir en términos de la teoría de haces: Sea \mathcal{M}^{D} el haz multiplicativo de las funciones meromorfas en M no idénticamente cero, y \mathcal{O}^{D} el subhaz de las funciones holomorfas distintas de cero. Un divisor D en M es una sección global del haz cociente $\mathcal{M}^{D}/\mathcal{O}^{D}$. Se tiene $H^{0}(\mathcal{M}, \mathcal{M}^{D}/\mathcal{O}^{D}) = Div(\mathcal{M})$ es un isomorfismo. Dada una aplicación holomorfa $^{\wedge}: M \ N$ definimos una aplicación $^{n^{D}}: Div\langle N \rangle \ Div\langle M \rangle$ que asocia a cada divisor $D = \{ \{U_J\}, \{f_J\} \}$ en N el divisor pull-back $^{n^{D}}D = \{ \{ ^{\wedge?1}U_J \}, \{ ^{\wedge D}f_J \} \}$ definido como el divisor que tiene por funciones locales que lo definen el pull-back de las funciones locales que definen a D.

Dado un divisor *D* aparece el fibrado lineal [D] asociado que tiene por funciones de transición $\{g_{JK} = f_J/f_K\}$ donde las funciones $f_J \in \mathcal{M}^{\mathbb{D}}(U_J)$ en algún recubrimento abierto $\{U_J\}$ de *M*, son funciones locales que definen a *D*.

El conjunto de fibrados lineales con la operación producto tensorial tiene estructura de grupo que denominamos grupo de Picard de M, Pic $\langle M \rangle = H^1 \langle M, \mathcal{O}^D \rangle$.

La aplicación []: Div (M) , Pic (M) es un homomorfismo.

Se dice que dos divisores D, D^{\vee} en M son *linealmente equivalentes* y escribimos $D \ C \ D^{\vee}$ si $D = D^{\vee} + \langle f \rangle$ para alguna $f \ 5 \ \mathcal{M}^{\mathbb{D}} \langle M \rangle$, o equivalentemente, si $[D] = [D^{\vee}]$.

Denotaremos por $\mathcal{O}(L)$ el haz de secciones asociado al fibrado L, si D es un divisor pondremos $\mathcal{O}([D])$ o simplemente $\mathcal{O}(D)$.

Se llama sistema lineal de divisores para un fibrado lineal $L \ M$ a la familia de divisores efectivos en M que corresponden a un subespacio lineal de $\mathbb{P}(H^0(M, \mathcal{O}(L)))$. Un sistema lineal es *completo* si es de la forma |D|, es decir, el conjunto de todos los divisores efectivos linealmente equivalentes a D. Si la dimensión es 1 se le denomina haz lineal ("pencil"), si la dimensión es 2 se le denomina red ("net").

Si *M* es una subvariedad del espacio proyectivo y *H* es un divisor hiperplano, llamaremos a la restricción [H], \mathbb{P}^n a *M* el fibrado hiperplano en *M*; es, por functorialidad, el fibrado lineal asociado a una sección hiperplana genérica $\mathbb{P}^{n?1} \vee M$ de M.

Diremos que un fibrado lineal $L \ M$ sobre una variedad algebraica es *muy amplio* si $H^0(M, \mathcal{O}(L))$ da una inmersión $M \ \mathbb{P}^n$; es decir, si existe una inmersión $f : M \to \mathbb{P}^n$ tal que $L = f^0 H$; donde H designa el fibrado lineal asociado a un hiperplano $H \to \mathbb{P}^n$ (abusando de notación). El divisor asociado a un fibrado lineal muy amplio se le denomina *muy amplio*.

Sea *M* una variedad compleja compacta, $V \oplus M$ una hipersuperficie analítica lisa. Se define el *fibrado canónico* $K_M = \mathbb{T}^n T_M^{D_i}$. En particular, si $M = \mathbb{P}^n$, $K_{\mathbb{P}^n} = [?(n+1)H]$. El divisor asociado al fibrado canónico se le denomina *divisor canónico*. ([GH], capítulo 1, §1, pags. 128-139), ([H1], capítulo II, §6 y §7).

I.5. Clases de Chern

Definición. (**Clases de Chern de fibrados lineales**). Sea M una variedad compleja, compacta de dimensión n. La sucesión exacta de haces $0 \ \mathbb{Z} \ \mathcal{O} \ \mathcal$

Para un fibrado lineal $L \ 5 \ Pic\langle M \rangle = H^1\langle M, \mathcal{O}^D \rangle$, definimos la primera clase de Chern $c_1\langle L \rangle$ de L (o, simplemente, clase de Chern) como $N\langle L \rangle \ 5 \ H^2\langle M, \mathbb{Z} \rangle$; para D un divisor en M, definimos la clase de Chern de D como $c_1\langle [D] \rangle$. Abusando de lenguaje, escribiremos a veces $c_1\langle L \rangle \ 5 \ H^2_{DR}\langle M \rangle$ para la imagen de $c_1\langle L \rangle$ por la aplicación natural $H^2\langle M, \mathbb{Z} \rangle \ H^2_{DR}\langle M \rangle$.

Como consecuencia inmediata de la definición, se tiene $c_1 \langle L \ a \ L^{\vee} \rangle = c_1 \langle L \rangle + c_1 \langle L^{\vee} \rangle$ y $c_1 \langle L^{\mathbb{D}} \rangle = ?c_1 \langle L \rangle$.

También, si f: M, N es una aplicación holomorfa de variedades complejas, el diagrama

$$H^{1}\langle M, \mathcal{O}^{D} \rangle = H^{2}\langle M, \mathbb{Z} \rangle$$

$$\cdot_{f^{0}} \qquad \text{commuta, por lo que para todo fibrado lineal } L = N, \text{ se tiene}$$

$$H^{1}\langle N, \mathcal{O}^{D} \rangle = H^{2}\langle N, \mathbb{Z} \rangle$$

$$c_{1}\langle f^{0}L \rangle = f^{0}c_{1}\langle L \rangle.$$

Proposición.

1. Para todo fibrado lineal *L* con forma de curvatura B, $c_1 \langle L \rangle = \left[\frac{\sqrt{21}}{2^{\Lambda}} B \right] 5 H_{DR}^2 \langle M \rangle.$

2. Si L = [D] para algún $D = a_i V_i 5 Div\langle M \rangle$, $c_1 \langle L \rangle = R_D 5 H_{DR}^2 \langle M \rangle$ con $R_D = a_i \mathbf{6} R_{V_i}$ y R_{V_i} es la clase dual de Poincaré de la función lineal $\mathbf{j} \ \mathbf{X}_{V_i} \mathbf{j}$ sobre $H_{DR}^2 \langle M \rangle$. ([GH], capítulo 1, §1, pags. 139-146)

Esto permite generalizar a cualquier fibrado vectorial el concepto de clases de Chern: si $P^{i}\langle A \rangle = traza \langle \mathsf{T}^{i} A \rangle$ para A matriz cuadrada de orden n con entradas en \mathbb{C} , se definen las formas de Chern $c_{i} \dot{\mathsf{Y}} \mathsf{B} \mathbf{b}$ de la curvatura B en E, como $c_{i} \dot{\mathsf{Y}} \mathsf{B} \mathbf{b} = P^{i} \left(\frac{\overline{\mathsf{T}}_{1}}{2^{\wedge}} \mathsf{B} \right)$, y definimos las clases de Chern $c_{i} \langle E \rangle$, como $c_{i} \langle E \rangle = \left[P^{i} \left(\frac{\overline{\mathsf{T}}_{1}}{2^{\wedge}} \mathsf{B} \right) \right] 5 H_{DR}^{2i} \langle M \rangle$.

La clase de Chern total es la suma de las clases de Chern $c\langle E \rangle => c_i \langle E \rangle 5 H_{DR}^{2^6} \langle M \rangle.$

Propiedades de las clases de Chern.

1. Si $f: M \ N$ es una aplicación \mathcal{C}^{K} , $E \ N$ un fibrado vectorial complejo, entonces $c_r \langle f^0 E \rangle = f^0 c_r \langle E \rangle$.

2. Fórmula del producto de Whitney: Sean $E \downarrow M$, $F \downarrow M$ dos fibrados vectoriales, entonces $c \langle E \tilde{a} F \rangle = c \langle E \rangle$ 6 $c \langle F \rangle$. 3. Si $E \ M$ es un fibrado vectorial complejo y $E^{D} \ M$ es el fibrado vectorial dual, entonces $c_r \langle E^{D} \rangle = \langle ?1 \rangle^r c_r \langle E \rangle$.

4. *Producto invertible.* Sea *E* un fibrado vectorial de rango *r*, *L* un fibrado lineal. Entonces, para todo $p \stackrel{3}{} 0, c_p \langle E \stackrel{a}{=} L \rangle = \sum_{i=0}^{p} \langle \frac{r_{ii}}{p_{ii}} \rangle c_i \langle E \rangle c_1 \langle L \rangle^{p_{ii}}.$

La definición de las clases de Chern y la demostración de sus propiedades pueden verse en [GH], capítulo ,§3, pags. 400-419; véase también [H1], Apéndice A, §3 y [Fu], capítulo 3.

I.6. Fibrados proyectivos

Definición. Sea $E \ X$ un fibrado vectorial complejo de rango r y P (E) $\ X$ es su fibrado proyectivo asociado (que asocia a cada punto x 5 X el espacio proyectivo $P\langle E_x \rangle$, [GH], capítulo 4, §3, pag.515) definimos el fibrado lineal tautológico \mathcal{O}_{P (E) $\langle ?1 \rangle$, $P\langle E \rangle$ como subfibrado del fibrado pull-back $^{D}E \ P\langle E \rangle$ cuya fibra en cada punto $\langle p, c \rangle$ 5 $P\langle E \rangle$ es la línea en E_p representada por c.

Si *E* es un fibrado vectorial sobre *X*, *L* un fibrado lineal, hay un isomorfismo canónico $j : P\langle E \rangle$, $P\langle E \triangleq L \rangle$, que conmuta con las proyecciones a *X*, con $j^{D}\mathcal{O}_{P(E\triangleq D)}\langle 1 \rangle = \mathcal{O}_{P(E)}\langle 1 \rangle \triangleq \wedge^{D}L^{U}$ (donde L^{U} o L^{D} denotan, indistintamente, el fibrado lineal dual de *L*, se empleará una u otra notación si hay posibilidad de confusión). $P\langle E \rangle$ así definido coincide con $\mathbb{P}\langle \mathcal{E}^{U} \rangle$ de Grothendieck ([H1], capítulo II, §7)

La inmersión $\mathcal{O}_{P\!H\!E\!P}$ $\langle ?1 \rangle$ $\mathbb{D}^{D}E$, con $^{\wedge}: P\!H\!E\!P$ $_{\sim}X$ fibrado proyectivo, corresponde a la inmersión de $\mathcal{O}_{P\!H\!E\!P}$ en $^{\Lambda D}E$ å $\mathcal{O}_{P\!H\!E\!P}$ $\langle 1 \rangle$. El conúcleo de esta inmersión es el fibrado tangente relativo de $P\langle E \rangle$ sobre $X: 0 \ _{\circ} \mathcal{O}_{P\!H\!E\!P}$ $_{\circ} ^{\Lambda D}E$ å $\mathcal{O}_{P\!H\!E\!P} \langle 1 \rangle \ _{\circ} T_{P\!H\!E\!P} X \ _{\circ} 0$ (Sucesión exacta de Euler). ([H1], capítulo II, §7, [Fu], Apéndice B.5). El anillo de cohomología $H^6\langle P\langle E \rangle$ es, via la aplicación pull-back, $H^6\langle X \rangle \stackrel{\wedge^0}{\ } H^6\langle P\langle E \rangle$ un álgebra sobre el anillo $H^6\langle X \rangle$. Se tiene la siguiente proposición:

Proposición. Para toda variedad X orientada, compacta y \mathcal{C}^{K} , y $E \downarrow X$ fibrado vectorial complejo de rango r, el anillo de cohomología $H^{\mathbf{6}}\langle P \langle E \rangle \rangle$ está generado como $H^{\mathbf{6}}\langle X \rangle$? álgebra, por la clase de Chern $t = c_1 \langle \mathcal{O}_{P \mid E \mid} \langle 1 \rangle \rangle$ con la siguiente relación: $H^{\mathbf{6}}\langle P \langle E \rangle \rangle = H^{\mathbf{6}}\langle X \rangle [t] / (t^r + c_1 \langle E \rangle t^{r?1} + ... + c_r \langle E \rangle)$. ([GH], capítulo 4, §6, pags. 605-607; [H1], Apéndice A, §3).

Sea X una variedad *n*? *dimensional* y *lisa* con fibrado tangente $T\langle X \rangle$. Se definen las clases de Chern $c_i \langle X \rangle$ y la clase de Chern total de X como las clases de Chern del fibrado tangente $T\langle X \rangle$. La *característica de Euler* es $e\langle X \rangle = \chi c_n \langle T\langle X \rangle \rangle$, es decir, el grado de

 $c_n \langle T \langle X \rangle \rangle$ (Véase [K1], capítulo II). Así pues las clases de Chern pueden ser vistas como generalizaciones de la característica de Euler topológica. Por ejemplo, si X = C es una curva, $e \langle X \rangle = ?deg \langle K \rangle = 2 ? 2g$ con K un divisor canónico. Si X = S es una superficie $c_1 \langle X \rangle = c_1 \langle T \langle X \rangle \rangle = ?U$, con U clase de un divisor canónico y $c_2 \langle X \rangle = e$.

I.7. Explosión de subvariedades

Sea A un disco n-dimensional con coordenadas holomorfas $z_1, ..., z_n$, y sea $V \to A$ el lugar $z_{k+1} = ... = z_n = 0$. Sean $[l_1, ..., l_n]$ coordenadas homogéneas en $\mathbb{P}^{n?k?1}$, y sea $\stackrel{\text{ac}}{A} \to A \times \mathbb{P}^{n?k?1}$ la variedad lisa definida por las relaciones $\stackrel{\text{ac}}{A} = \{\langle (z, l) \rangle : z_i l_j = z_j l_i, k+1 \ge i, j \ge n \}$.

La proyección ^ : $\overset{\bullet}{A}$ A del primer factor es un isomorfismo de V, mientras que la imagen inversa de un punto z 5 V es un espacio proyectivo $\mathbb{P}^{n?k?1}$. La variedad $\overset{\bullet}{A}$, junto con

la aplicación $^{\circ}$: A $_{\circ}$ A, se llama la *explosión de* A *a lo largo de V*; la imagen inversa $E = ^{?1} \langle V \rangle$ se llama el *divisor excepcional* de la explosión.

A puede ser recubierto por los abiertos coordenados $U_j = \{l_j \otimes 0\}, j = k + 1, ..., n$ con coordenadas holomorfas $z_i = z_i$, i = 1, ..., k; $z(j)_i = l_i/l_j = z_i/z_j$, i = k + 1, ..., k; $z_j = z_j$, en U_j . Las coordenadas $\{z \langle j \rangle_i\}$ son coordenadas euclídeas en cada fibra $^{2}\psi p p \mathbb{P}^{n^{2k^{21}}}$ del divisor excepcional.

La explosión $\stackrel{\mathbf{a}}{\mathsf{A}}$ A no depende de las coordenadas elegidas en A.

Sea M una variedad compleja de dimensión n, y X \oplus M una subvariedad de dimensión k. Sea $\{U_J\}$ una colección de discos en M que recubren V, tales que en cada disco A_J la subvariedad XV A_J puede ser dada como el lugar $\{z_{k+1} = ... = z_n = 0\}$, y sea $A_J \stackrel{\wedge_J}{\underset{\sim}{}} A_J$ la de A_J a lo largo de XVA_J . Se tienen isomorfismos explosión $^{\wedge}_{JK}$: $^{?1}_{J}\langle U_{J} \vee U_{K} \rangle$, $^{?1}_{K}\langle U_{J} \vee U_{K} \rangle$ que permiten pegar las explosiones locales para formar una variedad $\mathbf{A}^{\mathbf{a}} = \mathbf{W}_{A_{\mathcal{A}}} \mathbf{A}^{\mathbf{a}}_{\mathcal{A}}$ con una aplicación $\mathbf{A}^{\mathbf{a}}_{\mathcal{A}}$ WA_J. Como ^ es un isomorfismo de a la identidad en M? X, se le denomina la explosión de M a lo largo de X.

La explosión tiene las siguientes propiedades:

1. ^ es un isomorfismo de X Đ M y E = ^?1 (X) Đ \overline{M} .

2. El divisor excepcional E es un fibrado vectorial sobre X con fibra $\mathbb{P}^{n^{2k}?1}$; en efecto, $E \downarrow X$ se identifica naturalmente con la proyectivización $P(N_{X/M})$ del fibrado normal $N_{X/M}$ $\det X \operatorname{en} M.$

3. Localmente la explosión es isomorfa a la explosión de un disco.

4. Las explosiones de subvariedades son únicas, en el sentido de que si $N \stackrel{^{\wedge}}{,} M$ es una -28aplicación de variedades complejas que es un isomorfismo de una subvariedad lisa X de dimensión k en M, y tal que la fibra de ^ sobre cualquier punto z 5 X es isomorfa al espacio proyectivo $\mathbb{P}^{n?k?1}$, entonces N $\hat{}$, M es la explosión de M a lo largo de X.

5. Para cualquier subvariedad $Y \oplus M$, se puede definir la *transformada propia* $\stackrel{\mathbf{ac}}{Y} \oplus \overline{M}_X$ de Y en la explosión \overline{M}_X como la clausura en \overline{M}_X de la imagen inversa $^{?1}\langle Y?X \rangle = ^{?1}\langle Y \rangle$? E de Y del divisor excepcional E.

Cohomología de una explosión. El anillo de cohomología de una explosión viene descrito por la expresión $H^{6}(\overline{M}) = {}^{D}H^{6}(M)$ ã $H^{6}(E)/{}^{D}H^{6}(X)$, con $E p P(N_{X/M})$. ([GH], capítulo 4, §6, pags. 602-611; [H1], capítulo II, §7).

I.8. Esquemas. El esquema de Hilbert

Definición. (Espectro de un anillo). Sea *A* un anillo. Definimos *SpecA* el conjunto de todos los ideales primos de *A*. Si *a* es un ideal de *A*, se define *V*¶*a*₱ Đ *SpecA* el conjunto de todos lo ideales primos de *A*. En *SpecA* se define una topología tomando los subconjuntos de la forma *V*¶*a*₱ como conjuntos cerrados. Definamos también el haz de anillos \mathcal{O} en *A*: Para cada ideal primo $p \hat{O} A$, sea A_p la localización de *A* en *p*. Dado un conjunto abierto $U \hat{O}$ *SpecA*, definimos $\mathcal{O}\langle U \rangle$ como el conjunto de funciones $s : U \ \mathbf{Q}_{p5U}A_p$, tal que s¶*p*₱ 5 A_p para cada *p*, y tal que *s* es localmente el cociente de elementos de *A*: – *p* 5 *U*, 0*V*, entorno de *p* contenido en *U*, y elementos $a_s f 5 A$ tal que para cada $q 5 V_s f 6 q$, y s¶*q*₱ = a/f en A_q .

El *espectro* de A es el par que consiste en un espacio topológico *SpecA* junto con el haz de anillos O.

Definición. (Espacio anillado). Un *espacio anillado* es un par (X, \mathcal{O}_X) que consiste

en un espacio topológico X y un haz de anillos \mathcal{O}_X en X. Un *morfismo* de espacios anillados de $\langle X, \mathcal{O}_X \rangle$ a $\langle Y, \mathcal{O}_Y \rangle$ es un par $\langle f_i f^{\#} \rangle$ formado por una aplicación continua f : X , Yy una aplicación $f^{\#} : \mathcal{O}_Y , f_D \mathcal{O}_X$ de haces de anillos en Y. El espacio anillado $\langle X, \mathcal{O}_X \rangle$ es un *espacio localmente anillado* si para cada punto P 5 X, $\mathcal{O}_{X,P}$ es un anillo local. Un *morfismo* de espacios localmente anillados es un morfismo $\langle f_i f^{\#} \rangle$ de espacios anillados tal que para cada punto P 5 X, la aplicación inducida de anillos locales $f_P^{\#} : \mathcal{O}_{Y,PP}$, $f_D \mathcal{O}_{X,P}$ es un *homomorfismo local* de anillos locales.

Definición. (Esquema). Un *esquema afín* es un espacio localmente anillado $\langle X, \mathcal{O}_X \rangle$ isomorfo (como espacio localmente anillado,) al espectro de algún anillo. Un *esquema* es un espacio localmente anillado $\langle X, \mathcal{O}_X \rangle$ en el que todo punto tiene un entorno abierto U tal que el espacio topológico U, junto con el haz restringido $\mathcal{O}_X P_U$, es un esquema afín. Un *morfismo* de esquemas es un morfismo de espacios localmente anillados.

Un morfismo de esquemas $f: X \downarrow Y$ es *plano* si para todo $U \oplus Y, U^{\vee} \oplus X$ abiertos afines con $f(U^{\vee}) \oplus U$ la aplicación inducida $f^{\#}: A(U) \downarrow A(U^{\vee})$ hace a $A(U^{\vee})$ un A(U) ? módulo plano.

Un esquema es *conexo* si su espacio topológico es conexo. Un esquema es *irreducible* si su espacio topológico es irreducible. Un esquema es *reducido* si para todo conjunto abierto $U \circ X$, el anillo $\mathcal{O}_X \langle U \rangle$ no tiene elementos nilpotentes. Un esquema es *íntegro*, si y sólo si es irreducible y reducido.

Un esquema es *localmente noetheriano* si puede ser recubierto por subconjuntos abiertos afines $SpecA_i$, donde cada A_i es un anillo noetheriano.

Definición. (Subesquema cerrado). Una *inmersión cerrada* es un morfismo $f: Y \downarrow X$ de esquemas tal que f induce un homeomorfismo de $sp \langle Y \rangle$ sobre un subconjunto cerrado de

sp(X), y además la aplicación inducida $f^{#}: \mathcal{O}_{X} \downarrow f_{D}\mathcal{O}_{Y}$ de haces en X es sobreyectiva. Un *subesquema cerrado de X* es una clase de equivalencia de inmersiones cerradas, donde decimos que dos inmersiones $f: Y \downarrow X y f^{*}: Y^{*} \downarrow X$ son equivalentes si existe un isomorfismo $i: Y^{*} \downarrow Y$ tal que $f^{*} = fE i$. ([H1], capítulo II, §3, pag. 85)

Para una exposición detallada del concepto de esquema y sus propiedades véase [H1], capítulo II.

Definición. (**Descomposición celular**). ([Fu], ejemplo 1.9.1). Un esquema X tiene una descomposición celular si existe una filtración $X = X_n \tilde{N} X_{n?1} \tilde{N} \dots \tilde{N} X_0 \tilde{N} X_{?1} = 2$ por subesquemas cerrados de modo que cada $X_i ? X_{i?1}$ es una unión disjunta de esquemas U_{ij} isomorfos a espacios afines $\mathbb{A}^{n_{ij}}$. Los U_{ij} son *células* de la descomposición. Las grassmanianas y las variedades de banderas son ejemplos de esquemas que tienen descomposiciones celulares.

Proposición. ([Fu], ejemplo (9.1.11.6)). Sea X un esquema con una descomposición celular. Entonces para $0^2 i^2 \dim X$

1) $H_{2i+1} (X) = 0$

*H*_{2i} (X) es un ℤ ? módulo libre generado por las clases de las clausuras de las células i-dimensionales.

3) Existe un isomorfismo $cl: A^{6}\langle X \rangle \ H_{6}\langle X \rangle$ (donde $A^{6}\langle X \rangle$ designa el anillo de Chow de X).

Mencionamos el siguiente teorema debido a la importancia que tiene para el cálculo de los números de Betti de los grupos $H_{2i}\langle Hilb^d \mathbb{P}^2 \rangle$, – d ([ES1]) y porque permite, además, calcular las bases en [MS] y [AMS].

Teorema. (Bialynicki-Birula, [BB1], [BB2]). Sea X una variedad proyectiva y lisa con

una acción de G_m . Si el conjunto de los puntos fijos para dicha acción es finito $\mathbf{a}x_1, ..., x_n \mathbf{\hat{a}}$ y definimos $X_i = \left\{ x \ 5 \ X / \lim_{t_a 0} tx = x_i \right\}$ entonces

1) X tiene una descomposición celular con células X_i .

2)
$$T_{X_i,x_i} = \langle T_{X_i,x_i} \rangle^+$$

donde T_{X_i,x_i} es el espacio tangente a X_i en x_i , y $\langle T_{X_i,x_i} \rangle^+$ es la parte de T_{X_i,x_i} en la que los pesos de G_m (en la acción inducida de G_m sobre el espacio tangente) son positivos.

Definición. (Esquema de Hilbert de \mathbb{P}^n). Es un esquema, $Hil_{\mathbb{P}^n}$, que parametriza todos los subesquemas cerrados de \mathbb{P}^n . La demostración de su existencia puede verse en (Grothendieck, [Gr]).

Podemos resumir su construcción así :

Sea S un esquema localmente noetheriano, se define $\mathcal{H}ilb_{\mathbb{P}^n}(S) = \{ \text{conjunto de subesquemas } Z \to \mathbb{P}^n \times S, \text{ planos sobre } S \} \text{ (corresponde a la idea intuitiva de familias de subesquemas de } \mathbb{P}^n \text{ parametrizadas por } S \text{)}$

Esta definición da lugar a un functor contravariante de la categoría de esquemas localmente noetherianos *S* a la de conjuntos. Por el teorema fundamental de existencia del esquema de Hilbert, dicho functor es representable, es decir, existe un esquema localmente noetheriano $Hilb_{\mathbb{P}^n}$ e isomorfismos $Hilb_{\mathbb{P}^n}(S)$ p $Hom(S, Hilb_{\mathbb{P}^n})$ uno para cada *S*, functoriales en *S*.

Esto equivale a la existencia de un subesquema cerrado $W \oplus \mathbb{P}^n \times Hilb_{\mathbb{P}^n}$ plano sobre $Hilb_{\mathbb{P}^n}$, "universal", en el sentido de que dado cualquier $Z \oplus \mathbb{P}^n \times S$, plano sobre S, existe un único morfismo $f: S \downarrow Hilb_{\mathbb{P}^n}$ tal que $Z = \langle 1_{\mathbb{P}^n} \times f \rangle^{\mathbb{D}} \langle W \rangle$. Dado $Z \oplus \mathbb{P}^n \times S$, plano sobre S, sea $Z_s \oplus \mathbb{P}^n \times Specn \forall s \mathbf{b}$ el esquema inducido sobre s, para todo $s \in S$ ($n \forall s \mathbf{b}$ el cuerpo residual de s). Pongamos P_s para designar el polinomio de Hilbert de Z_s , es decir, $P_s = e \forall \mathcal{O}_{Z_s} \forall n \mathbf{b} \mathbf{b}$.

Por platitud, si *S* es conexo todos los polinomios P_s son iguales; por tanto podemos escribir $Hilb_{\mathbb{P}^n} = \mathbf{Q}$ $Hilb_{\mathbb{P}^n}^P$ donde $Hilb_{\mathbb{P}^n}^P$ es un subconjunto abierto y cerrado de $Hilb_{\mathbb{P}^n}$

y si $W \oplus \mathbb{P}^n \times Hilb_{\mathbb{P}^n}$ es el subesquema universal, entonces W_s tiene polinomio de Hilbert Psi y sólo si s 5 $Hilb_{\mathbb{P}^n}^p$.

La versión fuerte del teorema fundamental de existencia establece que $Hilb_{\mathbb{P}^n}^P$ es proyectivo sobre Spec (Z).

El esquema de Hilbert es un esquema conexo [H2] y propio [H1].

Definición. (*Hilb^dX*) Sea X un subesquema de \mathbb{P}^n , llamamos d? plete a un esquema Y de dimensión cero y longitud d, es decir dim $\mathbb{C}^{@}\Psi Y, \mathcal{O}_Y \mathbf{b} = d$. Denotamos por $Hilb^d X$ al esquema de Hilbert de los d-pletes de X. Un elemento de $\langle Hilb^d X \rangle_{red}$ es un ideal I de $\mathcal{O}_{\mathbb{X}}$ con Soporte $\langle \mathcal{O}_{X}/I \rangle$ finito y dim $\mathbb{C}^{@}\langle X, \mathcal{O}_{X}/I \rangle = d$.

La definición del esquema de Hilbert aplicada a este caso implica que los esquemas Z son finitos sobre S y la longitud de Z_s es d, – s 5 S.

Denotamos por $Hilb^{d}_{*}X$ al abierto de $Hilb^{d}X$ que corresponde a los d-pletes de puntos distintos. No es denso, en general. Si *X* tiene dimensión *n* puede haber componentes de $Hilb^{d}X$ de dimensión mayor o menor que *k* **6** *n*. (Iarrobino [I1], Emsalen-Iarrobino [EI])

Si X es una superficie lisa $Hilb^d X$ es liso de dimensión 2d y $Hilb^d X$ es denso. (Fogarty [Fo1], Briançon [B]). Además $Pic\langle Hilb^d X \rangle = Pic\langle X \rangle$ ã Z. (Fogarty [Fo2], Iarrobino [I2]).

El siguiente teorema permite calcular los números de Betti del esquema de Hilbert de puntos en una superficie algebraica:

Teorema. (**Göttsche**). [G1] Sea *S* una superficie proyectiva lisa sobre \mathbb{C} o sobre $\overline{\mathbb{F}}_q$ (clausura algebraica de \mathbb{F}_q , cuerpo finito con *q* elementos). Entonces:

$$\sum_{n=0}^{K} \sum_{n=0}^{\infty} \langle Hilb^{n} \langle S \rangle, z \rangle t^{n} = \exp\left(\sum_{m=1}^{K} \frac{t^{m} p \langle S, z^{m} \rangle}{1 ? z^{2m} t^{m}}\right)$$

$$\sum_{n=0}^{K} p \langle Hilb^{n} \langle S \rangle, z \rangle t^{n} = \overset{K}{\underset{m=1}{\leftarrow}} \frac{(1 + z^{2m?1} t^{m})^{b_{1} \$ \$ \flat} (1 + z^{2m+1} t^{m})^{b_{1} \$ \$ \flat}}{(1 ? z^{2m?2} t^{m})^{b_{0} \$ \$ \flat} (1 ? z^{2m} t^{m})^{b_{2} \$ \$ \flat} (1 ? z^{2m+2} t^{m})^{b_{0} \$ \$ \flat}}$$

$$\sum_{n=0}^{K} e \langle Hilb^{n} \langle S \rangle \rangle t^{n} = \overset{K}{\underset{m=1}{\leftarrow}} \langle 1 ? t^{m} \rangle^{2e \$ \$ \flat}$$

$$\sum_{n=0}^{K} e \langle Hilb^{n} \langle S \rangle \rangle t^{n} = \underset{m=1}{\leftarrow} \langle 1 ? t^{m} \rangle^{2e \$ \$ \flat}$$

donde, dada una variedad proyectiva lisa X sobre \mathbb{C} o sobre $\overline{\mathbb{F}}_q$, $b_i\langle X \rangle$ designa el rango del *i*? *ésimo grupo de cohomología l*? *ádica* $H^i\langle X, \mathbb{Q}_l \rangle$ de X; $p\langle X, z \rangle$ el polinomio de Poincaré $> b_i\langle X \rangle z^i$ de X y $e\langle X \rangle => \langle ?1 \rangle^i b_i\langle X \rangle$ el número de Euler de X y i $p\langle X, z \rangle = p\langle X, ?z \rangle$.

A continuación describimos los métodos que vamos a seguir en los capítulos II y III de la memoria. Como se ha dicho en la introducción, en el capítulo II se calculan las bases de homología racional del esquema de Hilbert de sus puntos, y en el capítulo III se utiliza el método de las bases de cohomología de la variedad de triángulos de Schubert.

I.9. Cálculo de las bases de los espacios de homología racional del esquema de Hilbert de puntos

Exponemos aquí el método que seguiremos en el capítulo II de la memoria:

1) Se presentan las clases candidatas a formar base de los espacios de homología racional del esquema de Hilbert, para ello se realiza una descripción geométrica de los subesquemas cuyos ciclos asociados a sus clausuras originan estas clases. Los soportes de estos subesquemas se encuentran sobre ciclos topológicos orientados, que se tomarán de tal forma que las clases de estos ciclos topológicos, en los espacios de homología racional de dimensión complementaria de la superficie, tengan por matriz de intersección asociada una matriz diagonal con determinante no nulo. Esto es posible gracias al teorema de dualidad de Poincaré en la superficie. Esto ayudará después a lograr que la matriz de intersección de nuestros ciclos candidatos a base sea triangular con entradas no nulas en la diagonal.

Los soportes son ciclos topológicos, pues en una superficie algebraica general no se puede garantizar que sus clases estén realizadas por ciclos algebraicos, como ocurre en las superficies con irregularidad $q\langle S \rangle$ (número $h^{1,0}\langle S \rangle$ de 1-formas holomorfas en una superficie compleja compacta) y género $p_g\langle S \rangle$ (número $h^{2,0}\langle S \rangle$ de formas holomorfas de grado máximo en una superficie compleja compacta) ([GH], capítulo 4, §2, pag.494) nulos, como, por ejemplo, las superficies racionales.

Se definen dos tipos de candidatos a base, una formada por clases de homología de ciclos que parametrizan esquemas no reducidos y otra por clases de homología de ciclos parametrizando esquemas reducidos.

2) Se ordenan de manera adecuada estas clases candidatas a formar base en los espacios de homología de dimensión complementaria, de manera que se consigue una matriz triangular con entradas en la diagonal distintas de cero. Al ser triangular, el determinante de la matriz es el producto de los elementos -no nulos- de la diagonal. Por el teorema de dualidad de Poincaré, si los candidatos tienen la cardinalidad adecuada, constituyen una base.
Se comprueba que los candidatos a base tienen la cardinalidad requerida por los números de Betti que Göttsche calcula en [G1].

4) El "Chow moving lemma" garantiza que para realizar el producto de dos clases de ciclos basta considerar la intersección de dos subesquemas cuyos ciclos asociados tienen por clases las dadas en un abierto de $Hilb^d X$ adecuado que contenga a los subesquemas, es decir, en el que el cálculo sea evidente geométricamente y de la dimensión esperada; para conseguir esto se eligen los elementos que definen el ciclo de manera que no haya intersección en la frontera.

5) La multiplicidad local se calcula en una carta analítica local del punto de intersección conjuntista de los dos subesquemas que intersecan. De hecho se comprueba que todos los elementos de la diagonal son números de intersección distintos de cero y que ciertos elementos priores en el orden establecido dan intersección nula con los candidatos a base del espacio de homología de dimensión complementaria.

I.10. Método de las bases de cohomología de la variedad de triángulos de Schubert

Como en el apartado anterior, exponemos el método a seguir en el tercer capítulo de la memoria:

 Se define la variedad de triángulos de Schubert y se calcula su anillo de cohomología racional utilizando el método de las clases de Chern. Con el anillo de cohomología se determinan bases de estos espacios que permiten formular en términos de productos de clases la generalización de las fórmulas Schubert a una superficie algebraica arbitraria.

Para la obtención de las bases -como se ha dicho en la introducción- se determinan

generadores de los anillos de cohomología y se eliminan aquellos que pueden obtenerse a partir de otros por medio de las relaciones del anillo. Para no eliminar más generadores de los necesarios, se comprueba que las matrices de intersección de los generadores que resultan son triangulares con entradas distintas de cero en la diagonal. Así pues, el determinante es distinto de cero y, por el teorema de dualidad de Poincaré, constituyen bases.

2) Se definen invariantes para las familias de curvas debido a la imposibilidad de trasladar ciertos invariantes del plano a una superficie algebraica arbitraria. En la definición de estos invariantes intervienen, además de los ciclos topológicos de dimensión 2 no realizados algebraicamente, los ciclos topológicos de dimensiones 1 y 3 de la superficie y un haz de secciones hiperplanas que juega el papel de las rectas verticales del plano.

Se establecen relaciones de los "nuevos" invariantes con los "antiguos", para comprobar posteriormente que las fórmulas de Schubert generalizadas coinciden con las clásicas para el plano.

3) Como ya se ha dicho, se expresan las clases de cohomología que definen las familias de curvas en términos de las bases de los anillos, cuyos coeficientes, en las combinaciones lineales, dependen de los invariantes de dichas familias. Las fórmulas de Schubert resultan de calcular el producto de las clases de las familias de curvas, expresadas en sus respectivas bases de dimensión complementaria.

4) Por el "Chow moving lemma", para efectuar el producto de dos clases de ciclos se calcula la intersección con elementos definitorios de dichos ciclos en un abierto adecuado, de manera que no haya intersección en la frontera, que los cálculos sean evidentes geométricamente y que tengan la dimensión esperada.

Cuando alguna intersección resulta impropia (de mayor dimensión que la esperada) o de difícil cálculo, se recurre a ciclos auxiliares cuya expresión en coordenadas permite obtener el producto buscado. Este es el caso, por ejemplo, de la intersección con e^2 o con t; cuando queremos multiplicar por e^2 se cambia un factor e por otro factor equivalente que, previamente, se ha calculado; lo mismo ocurre con t, que se cambia por una suma de clases de ciclos, uno de los cuales depende de las "verticales".

 Las multiplicidades locales se determinan en cartas analíticas locales (capítulo III, §5, "transversalidad") del punto de intersección conjuntista de los subesquemas que intersecan.

La gran cantidad de cálculos necesarios para llevar a cabo las demostraciones que aparecen en la memoria es tal que, para hacer una exposición razonable, optamos por omitirlos. No obstante se exponen detalladamente las intersecciones más difíciles, con los cambios realizados y las cartas analíticas empleadas, mostrando así el método general seguido en todas las intersecciones, de manera que los cálculos suprimidos puedan ser reproducidos sin ofrecer ninguna dificultad. De hecho todos los cálculos suprimidos resultan ser siempre y por razones evidentes en cada caso, en la carta local explicitada en el capítulo III, la intersección transversa en el origen de variedades coordenadas de dimensiones complementarias.

Capítulo II

BASES DE LOS ESPACIOS DE HOMOLOGÍA RACIONAL DEL ESQUEMA DE HILBERT DE PUNTOS EN UNA SUPERFICIE ALGEBRAICA

II.0. Introducción

Sea *S una superficie algebraica compleja, propia, lisa y conexa.* Göttsche y Soergel ([G1], [GS]) han encontrado la homología racional $H_n \langle Hilb^d S \rangle_{\mathbb{Q}}$ del esquema de Hilbert de subesquemas de *S* de longitud *d*. En este capítulo se encuentran dos bases para estos espacios, una de ellas descrita por subesquemas no reducidos, y otra descrita por esquemas reducidos, es decir, por conjuntos de puntos distintos (más interesante, por tanto, para posibles aplicaciones en geometría enumerativa). De hecho, nosotros sólo tomamos de [G1] y [GS] el valor de los números de Betti, proporcionando así una construcción alternativa de estos espacios de homología. La técnica consiste en demostrar que los elementos de los dos candidatos a base intersecan con una matriz triangular de entradas diagonales distintas de cero, como en el trabajo de Mallavibarrena [M1] sobre una base de $H_n \langle Hilb^4 \mathbb{P}^2 \rangle$ sobre el esquema de Hilbert de cuatro puntos en el plano. De hecho los candidatos que se presentan son generalizaciones de los tipos 0⁴ y 2 en el trabajo [MS] de Mallavibarrena y Sols, aunque la demostración en ese artículo fue esencialmente distinta, no basada en la matriz de

intersección. El papel de las líneas verticales de \mathbb{P}^2 (es decir, pasando por (0,0,1)) es interpretado en una superficie arbitraria por un haz lineal de divisores muy amplios (por supuesto, sin "parte fija") que llamamos "verticales" (I.4).

Fantechi [F] ha llegado de manera independiente y simultánea a esencialmente los mismos resultados. Estamos agradecidos por habernos permitido generosamente compartir su manuscrito. En particular, eso nos ha ayudado en la parte preliminar a proporcionar a nuestros candidatos la estructura natural de ciclos orientados de un modo mucho más fácil del que previamente habíamos ideado.

II.1. Preliminares y enunciado

Elegimos un haz lineal (o "pencil") V de divisores muy amplios, sin componentes fijas, y llamamos "verticales" a tales divisores (para ayuda de la intuición). Si P 5 S no es un punto base del haz, denotamos por $V\langle P \rangle$ el divisor vertical que pasa por él, y decimos que un subesquema de S es vertical si está contenido en un divisor vertical.

Para cada i = 0, ..., 4, consideramos clases de ciclos orientados

$$c_{i1}, ..., c_{ib_i} \ 5 \ H_i \langle S \rangle; \overset{\mathbf{ac}}{c_{i1}}, ..., \overset{\mathbf{ac}}{c_{ib_i}} \ 5 \ H_{4?i} \langle S \rangle$$

(donde $b_i = \dim H_i \langle S \rangle_{\mathbb{Q}} = \dim H_{4?i} \langle S \rangle_{\mathbb{Q}}$) tales que c_{ij} **6** $\stackrel{\mathbf{a}}{c}_{ij^{q}} = 0$ si $j \otimes j^{q}$. Esto es posible gracias al teorema de dualidad de Poincaré (I.2) $H_i \langle S \rangle_{\mathbb{Q}}^{\mathsf{D}} \cap H_{4?i} \langle S \rangle_{\mathbb{Q}}$ para la variedad orientada y compacta *S*. (Podríamos haber simplificado usando más bien clases $c_i 5 H_i \langle S \rangle_{\mathbb{Q}}$ y $\stackrel{\mathbf{a}}{c}_i 5 H_{4?i} \langle S \rangle_{\mathbb{Q}}$ de manera que, además, $c_i \mathbf{6} \stackrel{\mathbf{a}}{c}_i = 1$, pero esto introduciría restricciones innecesarias en algunas aplicaciones. Este es el caso si, por ejemplo, queremos trabajar solamente con una base, es decir si $\stackrel{\mathbf{a}}{c}_{ij} = c_{ij}$ para todo *i*, *j*, lo que equivale a diagonalizar la

forma bilineal simétrica de intersección en $H_2\langle S \rangle_{\mathbb{Q}}$; o siempre que $q\langle S \rangle$ y $p_g\langle S \rangle$ no se anulen simultáneamente y, por tanto, no se pueda asegurar que todas las clases de homología estén realizadas por ciclos algebraicos).

Podemos representar las clases c_{ij} , \tilde{c}_{ij} por ciclos diferenciables a trozos y orientados C_{ij} , \overline{C}_{ij} que intersecan mutuamente en la dimensión esperada, y siendo esas intersecciones $C_{ij} \vee \overline{C}_{ij}$ transversas, es decir, intersecciones en un número finito de puntos reducidos de C_{ij} y de \overline{C}_{ij} (con sus espacios tangentes orientados de modo que el espacio tangente a *S* es suma directa de ellos, con la orientación inducida o la contraria dependiendo de que la intersección en ese punto sea +1 o ?1 (ver [GH] pp. 49-53, por ejemplo)). Además podemos suponer que la intersección de $C_{ij} \vee \overline{C}_{ij'}$ es geométrica, es decir, que sucede en exactamente $|c_{ij} \cdot \mathbf{6}_{ij'}^{\mathbf{2}}|$ puntos, con signo positivo o negativo en todos ellos, por lo que, en particular, $C_{ij} \vee \overline{C}_{ij'} = 2$ si $j \circledast j^{ij}$ (Este supuesto es también standard: Se puede suponer que las variedades diferenciables a trozos C_{ij} , $\overline{C}_{ij'}$ son conexas. Deformándolas dentro de su clase de homología, se mueven dos puntos de intersección de diferente signo a lo largo de un arco que los une, hasta que ambos se cancelan).

De hecho, necesitaremos por razones técnicas, varios representantes $\overline{C}_{ij}^0, ..., \overline{C}_{ij}^k, ... \det c_{ij}^a$ (*d* representantes serán, en cualquier caso, suficientes, si estamos estudiando $Hilb^d \langle S \rangle$). Podemos suponer que cada uno de ellos satisface estas condiciones de generalidad y además todas las intersecciones en el conjunto finito de los C_{ij} y $\overline{C}_{i'j'}^{k'}$, tienen la dimensión esperada.

Sea E_{ij}^k el conjunto de puntos $C_{ij} \vee \overline{C}_{ij}^k$, y $E = \widehat{a} E_{ij}^k$. Podemos suponer que cada punto de E no es ni un punto base ni un punto singular de un divisor vertical, y que el divisor vertical que pasa por el punto interseca a ambos $C_{ij} \vee \overline{C}_{i'j'}^{k''}$ transversalmente en ese punto. También podemos suponer que no hay dos puntos de E situados en la misma vertical, y que cada C_{ij} , $\overline{C}_{ij}^k \langle i \circledast 0, 4 \rangle$ interseca transversalmente al elemento general del haz en el punto general de la intersección.

Sea A el conjunto de sucesiones

$$\mathbf{a} = \langle \mathbf{a}_{ii} \rangle = \langle \mathbf{a}_4 = \mathbf{a}_{41}; \mathbf{a}_{3b_3}, ..., \mathbf{a}_{31}; \mathbf{a}_{2b_2}, ..., \mathbf{a}_{21}; \mathbf{a}_{1b_1}, ..., \mathbf{a}_{11}; \mathbf{a}_0 \rangle$$

donde cada \mathbf{a}_{ij} es una sucesión monótona $a_{ij}^0 \stackrel{3}{} \dots \stackrel{3}{} a_{ij}^k \stackrel{3}{} \dots \stackrel{3}{} a_{ij}^{r_{ij}}$, y de hecho estrictamente monótona si *i* es impar, y además tal que

$$> a_{ij}^k = d$$

Sea el subconjunto A_n de todas las a 5 A con

$$n = \sum_{ij} \langle ir_{ij} \rangle + 2 \left(d? > r_{ij} \right)$$

o equivalentemente

$$4d? n = \sum_{i,j} \langle 4?i \rangle r_{ij} + 2 \left(d? > r_{ij} \right)$$

Asociemos a cada a 5 A_n el subconjunto $\mathcal{Z}^a \oplus Hilb^d S$ que parametriza subesquemas

$$Z = W \{Z_{ij} P i = 0, ..., 4; j = 1, ..., b_i\}$$

de longitud *d* obtenidos como unión disjunta de esquemas Z_{ij} de longitud $a_{ij} = \sum_{k} a_{ij}^{k}$ soportados en C_{ij} y cuyas componentes irreducibles son r_{ij} esquemas puntuales de longitudes $a_{ij}^{0}, ..., a_{ij}^{r_{ij}}$ si i > 0, y $Z_0 = \hat{a}Z_0^k$ con Z_0^k de longitud a_0^k soportado en el punto C_0^k .

Asociemos también a cada a 5 A_n el subconjunto $\mathbb{Z}^a \oplus Hilb^d S$ que parametriza

subesquemas $Z = \hat{a}Z_{ij}^k \oplus S$ de longitud *d* obtenidos como unión disjunta de esquemas Z_{ij}^{k} de longitud a_{ij}^k situados en divisores verticales diferentes V_{ij}^k y que, si i > 0, intersecan a \overline{C}_{ij}^k en un punto Z_{ij}^{k} .

Las clausuras \mathbb{Z}^a y $\overline{\mathbb{Z}}^a$ en *Hilb^dS* tienen una estructura natural de ciclo orientado. Como ya agradecimos en la introducción de este capítulo, tomamos ahora prestado de [F] un camino muy simple para presentar esta estructura. Consideremos la variedad algebraica

con las proyecciones obvias $p \neq q$ a $\mathbb{E}S_{ij}^{k} \neq Hilb^{d}S$, donde todos los $S_{ij}^{k} = S$. Esta variedad es lisa y compacta. Consideremos en W la subvariedad *Inc* (incidencia) que está formada por ternas $\langle z_{ij}^{k}, Z_{ij}^{k}, Z \rangle$ tales que $z_{ij}^{k} \in Z_{ij}^{k} \neq Z = \hat{a}Z_{ij}^{k}$. Definamos también *Punt* o *Vert*, subvariedades de W, imponiendo a Z_{ij}^{k} ser puntual (es decir, soportado en un punto) o vertical (soportado en una vertical). Claramente $p^{?1} \langle \mathbb{E}C_{ij}^{k} \rangle$ (tomando $C_{ij}^{k} = C_{ij}$ para todo k) y $p^{?1} \langle \mathbb{E}\overline{C}_{ij}^{k} \rangle$ son también ciclos orientados, ya que p es la proyección de un producto cartesiano con una variedad algebraica propia y, por tanto, lo son también las intersecciones

$$Punt \lor \overline{Inc} \lor p^{?1} \langle \mathsf{E}C_{ij}^k \rangle \lor Vert \lor \overline{Inc} \lor p^{?1} \left(\mathsf{E}\overline{C}_{ij}^k \right)$$

pues éstas, por nuestras suposiciones de generalidad, son transversales en su punto general (cfr. [GH], p. 52). Estos dos ciclos de W se aplican con grado 1 sobre sus imágenes, que son $\mathbb{Z}^{\mathbf{a}}$ y $\overline{\mathbb{Z}}^{\mathbf{a}}$ por lo que son ciclos orientados. De hecho se sigue de esta construcción que si reemplazamos C_{ij} y \overline{C}_{ij}^{k} por ciclos homólogos $\langle C_{ij} \rangle^{\vee}$ y $(\overline{C}_{ij}^{k})^{\vee}$ obtenemos $\langle \mathbb{Z}^{\mathbf{a}} \rangle^{\vee}$ y $(\overline{\mathbb{Z}}^{\mathbf{a}})^{\vee}$ homólogos a $\mathbb{Z}^{\mathbf{a}}$ y $\overline{\mathbb{Z}}^{\mathbf{a}}$.

Podemos enunciar ahora el teorema que va a demostrarse en este primer capítulo de la

memoria.

Teorema. Las clases de homología de las clausuras $[\mathbb{Z}^a]$ y $[\overline{\mathbb{Z}}^a]$ son bases de $H_n \langle Hilb^d S \rangle_{\mathbb{Q}}$ y $H_{4d?n} \langle Hilb^d S \rangle_{\mathbb{Q}}$

Probaremos este teorema demostrando:

T1) La matriz de intersección de ambos conjuntos $\left[\mathbb{Z}^{a}\right] \mathbf{6} \left[\mathbb{Z}^{a}\right]$ es triangular.

T2) Las entradas diagonales de esta matriz son distintas de cero.

T3) Las cardinalidades de ambos conjuntos son los números de Betti ya conocidos.

II.2. Demostración de T1

Obsérvese que obtenemos la misma clausura \mathbb{Z}^{a} si redefinimos \mathbb{Z}^{a} añadiendo la siguiente condición técnica: si Z 5 \mathbb{Z}^{a} , entonces cada punto z_{ij}^{k} 5 C_{ij} se encuentra de hecho en $\stackrel{E}{C}_{ij} = C_{ij} C W \{ C_{i^{i}j^{i}} P \langle i^{i}, j^{i} \rangle < \langle i, j \rangle$ lexicográficamente $\}$ Obviamente $S = \hat{a} \stackrel{E}{C}_{ij}$.

Supongamos que X 5 \mathbb{Z}^a V $\overline{\mathbb{Z}}^{aa}$ y que, lexicográficamente,

$$\hat{\mathbf{y}}r_4;r_{3b_3},...,r_{31};r_{2b_2},...,r_{21};r_{1b_1},...,r_{11};r_0 \mathbf{p}^2 \langle \begin{array}{c} \mathbf{a} \\ \mathbf{r}_4;r_{3b_3},...,r_{31};r_{2b_2},...,r_{21};r_{1b_1},...,r_{11};r_0 \rangle \\ \mathbf{r}_4;r_{3b_3},...,r_{31};r_{2b_2},...,r_{21};r_{1b_1},...,r_{11};r_0 \rangle \rangle$$

y descompogamos *X* como $\hat{a}X_{ij}$, con soportes $x = \hat{a}x_{ij}$ de manera que x_{ij} $\hat{O}C_{ij}^{E}$. Claramente habremos probado T1 (y estaremos en buena posición para probar T2 y T3) si demostramos

T12) Descomponiendo X como $\hat{a}X_{ij}$ con soportes $x = \hat{a}x_{ij}$ de manera que x_{ij} \hat{OC}_{ij} , se tiene $x_{ij} = \{x_{ij}^k \ P \ k = 0, ..., r_{ij}\}$ con el punto $x_{ij}^k = x_{ij} \ V \ C_{ij}^k$

T13) Cada X_{ij}^k es el a_{ij}^k ? *ésimo* entorno del punto x_{ij}^k en el divisor vertical que pasa por él.

Sea $Z\langle t \rangle$, $t \le \hat{\mathbf{y}}?0,0\mathbf{p}$, una curva diferenciable en \mathbb{Z}^a de modo que $Z\langle t \rangle = \hat{a}Z_{ij}\langle t \rangle \le \mathbb{Z}^a$ para $t \circledast 0$, y $Z\hat{\mathbf{y}}0\mathbf{p} = X$. Análogamente, el punto soporte $z_{ij}\langle t \rangle$, para $t \circledast 0$, define como límite un conjunto $z_{ij}\langle 0 \rangle \le X$, con $\#z_{ij}\langle 0 \rangle \ge \#z_{ij}\langle t \rangle = r_{ij} + 1$. Ya que X es también el límite $Z\langle 0 \rangle$ de una curva $Z\langle t \rangle = \hat{a}Z_{ij}^k\langle t \rangle$, $t \circledast 0$, cuando $t \ge 0$, podemos definir análogamente $Z_{ij}^k\langle 0 \rangle \odot Z\langle 0 \rangle = X$ de longitud $\frac{\mathbf{a}_{ij}}{a_{ij}^k}\langle t \rangle$ y entonces los puntos $\frac{\mathbf{a}_{ij}}{z_{ij}^k}\langle t \rangle$ definen un punto límite $\frac{\mathbf{a}_{ij}}{z_{ij}^k}\langle 0 \rangle \le X$.

Primero probaremos, por inducción descendiente sobre i, el

Enunciado A_i : Para $j = 1, ..., b_i$ se tiene

 $A_{i}\mathbf{1}\mathbf{P} \quad r_{ij} = \mathbf{\hat{r}}_{ij}$ $A_{i}\mathbf{2}\mathbf{P} \quad x_{ij} = \left\{x_{ij}^{k}\right\} \operatorname{con} x_{ij}^{k} = x_{ij} \lor E_{ij}^{k}$ $A_{i}\mathbf{3}\mathbf{P} \quad x_{ii} = z_{ii} \langle 0 \rangle$

(Este conjunto de valores del índice *j* se supondrá siempre sin mención explícita, así como también el conjunto de valores de *k* 5 $\{0, ..., r_{ij}\}$).

Comencemos con i = 4. Para todo $t \circledast 0$, el conjunto de puntos $\overline{C}_4 = \{\overline{C}_4^k\}$ está contenido en $z \langle t \rangle = \hat{a} z_{ij}^{a} \hat{y} h$, luego $\overline{C}_4 \hat{O} z \langle 0 \rangle \hat{O} x$. Por otra parte, por dimensionalidad y por nuestras suposiciones de generalidad, \overline{C}_4 es disjunto con $\underset{i^{23}}{\mathbb{W}} C_i$ y, por tanto, con $\underset{i^{23}}{\mathbb{W}} x_i$

(Aquí es $C_i = \bigcup_j C_{ij}$. Y en general, siempre que omitamos un subíndice de una letra quedando un subconjunto de S entenderemos que se está realizando la unión sobre ese índice). Por tanto \overline{C}_4 Ô x_4 , y así

$$1 + r_4^2 = \#\overline{C}_4^2 \# x_4$$

Además, $x_4 \stackrel{e}{OC_4}$ es disjunto con el conjunto cerrado $\bigvee_{i^{23}} C_i$, el cual contiene $\hat{a} z_i \langle t \rangle$

para todo $t \otimes 0$. Por tanto, éste es disjunto con el conjunto $\bigvee_{i^{23}} z_i \langle 0 \rangle$, luego $x_4 \otimes \hat{O} z_4 \langle 0 \rangle$ y

$$1 + r_4^2 = \#\overline{C}_4 = \#x_4 = \#z_4 \langle 0 \rangle = z_4 \langle t \rangle = 1 + r_4$$

En consecuencia, $r_4 = r_4$ y $x_4 = z_4$ (0) = $\overline{C}_4 = E_4$.

Sea ahora 0 < i < 4 y supongamos $A_{i^{*}}$ para todo $i^{*} > i$. Probemos la afirmación A_{i} . Sea $j \in \{1,...,b_{i}\}$ y $k \in \{0,...,\overset{\mathfrak{a}}{r_{ij}}\}$. Obsérvese primero que $x \vee \overline{C}_{ij}^{k} \circledast 0$, ya que $z : (i) \vee \overline{C}_{ij}^{k} \circledast 2$ para todo $t \circledast 0$. Sabemos que $x_{i^{*}} \vee \overline{C}_{ij}^{k} = 2$, si $i^{*} > i$, ya que, por hipótesis de inducción, $x_{i^{*}}$ está contenido en el **conjunto finito** $E_{i^{*}}$, **que por suposición de generalidad es disjunto con** \overline{C}_{ij}^{k} **dado que tiene dimensión** 4 ? i < 4. Sabemos también que, para $i^{*} < i$, todo $x_{i^{*}} \vee \overline{C}_{ij}^{k} \cap C_{i^{*}} \vee \overline{C}_{ij}^{k}$. Por tanto $x \vee \overline{C}_{i} \circledast 2$. Ahora bien, $x_{ij^{*}} \vee \overline{C}_{ij}^{k} \cap C_{ij^{*}} \vee \overline{C}_{ij}^{k} = 2$ para todo $j^{*} \circledast j$ dado que $c_{ij^{*}} \mathbf{6} c_{ij} = 0$, así que $x_{ij} \vee \overline{C}_{ij}^{k} \circledast 0$. Esto vale para cada $k = 0, ..., \overset{\mathfrak{a}}{a_{ij}}$. Además, para dos $k, k^{*} \leq \{0, ..., \overset{\mathfrak{a}}{a_{ij}}\}$ distintos se tiene

$$x_{ij} \vee \left(\overline{C}_{ij}^{k^*} \vee \overline{C}_{ij}^{k}\right) \cap C_{ij} \vee \left(\overline{C}_{ij}^{k^*} \vee \overline{C}_{ij}^{k}\right) = 2$$

por razones de dimensionalidad y nuestras suposiciones de generalidad. Así pues,

$$\#x_{ij} = 3 + r_{ij}$$

y, en caso de igualdad, cada $x_{ij} \vee \overline{C}_{ij}^k$ consta exactamente de un punto, digamos x_{ij}^k , que debe estar en $E_{ij}^k = C_{ij} \vee \overline{C}_{ij}^k$.

Por otra parte,

$$x_{ij} = x \bigvee_{C_{ij}}^{L} \hat{O} x \bigvee_{C_{ij}} = z \langle 0 \rangle \bigvee_{C_{ij}} C_{ij}$$

así que, para t ® 0,

$$1 + r_{ij}^{2} + x_{ij}^{2} + x_{ij}^{2} + z < 0 > V C_{ij}^{2} + z < t > V C_{ij} = 1 + r_{ij}$$

Ya que $\stackrel{\mathbf{ae}}{r_{ij}} \, {}^3 r_{ij}$, estas desigualdades son todas igualdades, y x_{ij} consta de $1 + r_{ij} = 1 + \stackrel{\mathbf{ae}}{r_{ij}}$ puntos x_{ij}^k 5 E_{ij}^k , siendo $x_{ij} = z_{ij}$ (0); y así queda probado A_i para i > 0.

Este argumento nada concluye en el último paso de la inducción, es decir, en el caso i = 0, ya que entonces no se dispone de la afirmación clave expresada en letras negritas algo más arriba. En este caso la igualdad $r_{ij} = \stackrel{\mathbf{a}}{r_{ij}}$ para todo i > 0, está ya supuesta.

Sumando las dos igualdades

$$n = \left\langle ir_{ij} \right\rangle + 2\left\langle d? > r_{ij} \right\rangle \quad \text{y} \quad 4d? n = \left\langle 4?i \right\rangle^{\frac{2}{2}} r_{ij} + 2\left\langle d? > r_{ij} \right\rangle$$

obtenemos

$$0 = \langle i?2 \rangle r_{ii}? \rangle \langle i?2 \rangle r_{ii}$$

por lo que concluimos que también $r_0 = \stackrel{\mathbf{a}}{r}_0$, lo cual es parte de A_0 .

Además, siempre que i > 0, el conjunto $x \bigvee \overline{C}_{ij}^k$ consta de sólo un punto de E_{ij}^k y, por tanto, éste es el límite $\mathbf{z}_{ij}^k \langle 0 \rangle$ del punto $\mathbf{z}_{ij}^{\mathbf{z}} \langle t \rangle$, $t^{\circledast} 0$, cuando t tiende a cero.

La vertical $V(x \vee \overline{C}_{ij}^k)$ no pasa por C_0 , por lo que podemos suponer (restringiendo si es necesario el intervalo $\hat{\mathbf{Y}}$? $0, 0\mathbf{p}$) que, de hecho, todas las verticales $V(\overline{z}_{ij}^k \langle t \rangle)$, para todo t 5 $\hat{\mathbf{Y}}$? $0, 0\mathbf{p}$, son disjuntas con un entorno abierto U_{ij}^k de C_0 . Tomemos $U = \nabla U_{ij}^k$. Para $t \circledast 0, i > 0$, los esquemas $\overline{z}_{ij}^k \langle t \rangle$ yacen en las verticales $V(\overline{z}_{ij}^k \langle t \rangle)$, por lo que son disjuntos con U y, así, su límite $\overline{z}_{ij}^k \langle 0 \rangle$ es también disjunto con U y por consiguiente con C_0 . En consecuencia, el esquema X_0 , cuyo soporte x_0 es C_0 , debe estar contenido en el límite $\overline{z}_{ij}^k \langle 0 \rangle$ de $\overline{z}_0 \langle t \rangle$. Ya que los puntos C_0^0 , ..., $C_0^{r_0}$ de C_0 han sido tomados en diferentes verticales, escribiendo $vert \hbar T\mathbf{p}$ el mínimo número de verticales (contadas con multiplicidad) que contienen a un esquema finito T, tenemos

$$1 + r_0 = \#C_0^2 \operatorname{vert}\left(\frac{\mathbf{a}}{Z_0} \left\langle 0 \right\rangle\right)^2 \operatorname{vert}\left(\frac{\mathbf{a}}{Z(t)}\right) = 1 + \frac{\mathbf{a}}{r_0}$$

Como $r_0 = \stackrel{\text{ae}}{r_0}$, se obtiene que todas estas desigualdades son de hecho igualdades. Esto prueba A_0 y así la inducción está acabada.

En lo sucesivo, será conveniente suponer que el conjunto

$$C_0 = \left\{ C_0^0, ..., C_0^k \right\} = x_0 = z_0 \langle t \rangle = \frac{2}{z_0} \langle t \rangle$$

ha sido reindicado de modo que $C^k = z_0^k \langle t \rangle$ sea precisamente el punto $z_0^{\mathbf{a}_k} \langle t \rangle$.

Probamos ahora los enunciados restantes T11 y T13. Para i = 0, esto es fácil: $X_0 = \hat{a}X_0^k$ tiene soporte $x_0 = \{x_0^k \mid p \mid k = 0, ..., r_0\}$, siendo $x_0^k = C_0^k = E_0^k$. Llamemos $Z_0^k \langle t \rangle$ al subesquema de $Z_0 \langle t \rangle$ soportado en x_0^k . Como $z_0 \langle t \rangle = x_0$, se tiene

$$Z_0:t \ge = \hat{a}Z_0^k:t \ge$$

у

$$X_0 = Z_0 \langle 0 \rangle = \hat{a} Z_0^k \langle 0 \rangle$$

por lo que

$$X_0^k = Z_0^k : 0$$

y así

$$long\langle X_0^k \rangle = long\langle Z_0^k \langle 0 \rangle \rangle = long\langle Z_0^k \langle t \rangle \rangle = a_0^k$$

Por otra parte, el esquema $Z_0^{\mathbf{a}}(t)$, de longitud \mathbf{a}_0^k , está soportado en la vertical $V\langle \mathbf{z}_0^k(t) \rangle = V\langle x_0^k \rangle = V\langle E_0^k \rangle$, por lo que su límite $Z_0^k\langle 0 \rangle$ está contenido en X_0 . Este límite debe tener la misma longitud \mathbf{a}_0^k y, de hecho, debe estar soportado en $x_0^k = x_0 \vee V\langle x_0^k \rangle$, por lo que $Z_0^{\mathbf{a}}\langle 0 \rangle \circ X_0^k$. Ya que $X_0 = \widehat{\mathbf{a}} X_0^k$ es igual a $\mathbf{a}_0^k = X_0 \vee V\langle x_0^k \rangle$, esto implica que $X_0^k = Z_0^k\langle 0 \rangle$ y así $a_0^k = \mathbf{a}_0^k$, y X_0^k está a la vez soportado en x_0^k y contenido en $V\langle x_0^k \rangle$, por lo que tiene que ser el a_0^k ? ésimo entorno infinitesimal de x_0^k en $V\langle x_0^k \rangle$. Esto prueba T11 y T13 para i = 0.

Supongamos ahora i > 0. Sabemos que $Z(t) = \hat{a}Z_{ij}^{k}(t)$, $t \circledast 0$, converge a X, y los distintos puntos $z_{ij}^{k}(t)$ convergen a distintos puntos $x_{ij}^{k} = x_{ij} \lor E_{ij} de x = \{x_{ij}^{k}\}$, todos ellos en distintas verticales. Por otra parte, cada x_{ij}^{k} es el límite de exactamente un punto de $z_{ij}(t)$, digamos $z_{ij}^{k}(t)$, puesto que hemos visto que $z_{ij}(0) = x_{ij}$ y que ambos $z_{ij}(t)$ y x_{ij} tienen la misma cardinalidad $r_{ij} + 1$. Así pues, el subesquema puntual de X soportado en x_{ij}^{k} , digamos X_{ij}^{k} , debe ser el límite del subesquema puntual $Z_{ij}^{k}(t)$ de $Z_{ij}(t)$ soportado en $z_{ij}^{k}(t)$, de modo que

$$long\langle X_{ij}^k \rangle = long\langle Z_{ij}^k \langle t \rangle \rangle = a_{ij}^k$$

para descomposiciones $X = \hat{a} X_{ij}^k y Z(t) = \hat{a} Z_{ij}^k(t)$.

Por otra parte, los esquemas $Z_{ij}^{k} \langle t \rangle$ en la descomposición $Z = \hat{a} Z_{ij}^{k} \langle t \rangle$ están contenidos en las verticales distintas $V(Z_{ij}^{k} \langle t \rangle)$, por lo que su límite $Z_{ij}^{k} \langle 0 \rangle$ (de la misma longitud a_{ij}^{k}) está contenido en $V(Z_{ij}^{k} \langle 0 \rangle) = V(x_{ij}^{k})$. Pero recuérdese que dos puntos de Eno están nunca situados en la misma vertical, por lo que todas las verticales $V(x_{ij}^{k})$ son distintas, así que X_{ij}^{k} es el subesquema de X soportado en $V(x_{ij}^{k})$ y todos los $Z_{ij}^{k} \langle 0 \rangle$ son mutuamente disjuntos. En consecuencia, el esquema $Z_{ij}^{k} \langle 0 \rangle$, de longitud a_{ij}^{k} , está contenido en el esquema puntual X_{ij}^{k} . Pero las uniones $Z(0) = \hat{a} Z_{ij} \langle 0 \rangle$ y $X = \hat{a} X_{ij}^{k}$ son iguales, así que $X_{ij}^{k} = Z_{ij}^{k} \langle 0 \rangle$, por lo que sus longitudes a_{ij}^{k} y a_{ij}^{k} son iguales, lo que prueba T11. La afirmación T13 es clara desde esta demostración, ya que X_{ij}^{k} es un esquema de longitud a_{ij}^{k} concentrado en el punto x_{ij}^{k} , que coincide con el esquema $Z_{ij}^{k} \langle 0 \rangle$ que está contenido en la vertical $V(x_{ij}^{k})$. Éste es el a_{ij}^{k} ? ésimo entorno infinitesimal de x_{ij}^{k} en $V(x_{ij}^{k})$, lo que prueba T13.

El enunciado T1 es una consecuencia obvia de T11. Los enunciados T12 y T13 nos ayudarán a probar T2.

II.3. Demostración de T2

Por la demostración de T1 sabemos que un punto de $\mathbb{Z}^a \vee \mathbb{Z}^a = \mathbb{Z}^a \vee \mathbb{Z}^a$ corresponde a un esquema $X = \widehat{a}X_{ij}^k$, siendo X_{ij}^k el a_{ij}^k ? ésimo entorno infinitesimal de un punto x_{ij}^k 5 E_{ij}^k en $V(X_{ij}^k)$. Para evitar notaciones engorrosas, suponemos que sólo un a_{ij}^k es distinto de 0, digamos *a*. Tomemos coordenadas $u = u^v + \sqrt{?1}u^w$, $v = v^v + \sqrt{?1}v^w$ de *S* en un entorno analítico de $x_{ij}^k = C_{ij} \vee \overline{C}_{ij}^k$ como origen, digamos $x \in C \vee \overline{C}$ (esencialmente esto será suficiente para probar lo que se pretende en este caso, como se comentará al final) Fíjese, para mayor simplicidad, el valor *i*, por ejemplo *i* = 2, y, a partir de ahora, omítanse los índices *i*,*j*,*k*, en nuestras notaciones previas. Los ciclos orientados *C* y \overline{C} están parametrizados cerca de *x* por funciones diferenciables

$$C: u = j \dot{\mathbf{Y}} V_1, V_2 \mathbf{b}, \quad v = f \dot{\mathbf{Y}} V_1, V_2 \mathbf{b} \quad \operatorname{con} \dot{\mathbf{Y}} V_1, V_2 \mathbf{b} \quad 5\mathbb{R}^{\frac{1}{2}}$$

(en algún abierto de \mathbb{R}^2)

$$\overline{C}: u = \int \mathcal{A} \hat{\mathbf{Y}} V_3, V_4 \mathbf{p}, \quad v = \mathcal{T} \hat{\mathbf{Y}} V_3, V_4 \mathbf{p} \quad \text{con } \hat{\mathbf{Y}} V_3, V_4 \mathbf{p} \quad \mathbf{5} \mathbb{R}^{1/2}$$

Recordando que ambos C y \overline{C} se cortan transversalmente en x con signo $a = a_{ij}$, se tiene que

$$\det \dot{\Psi} V_1, V_2, V_3, V_4 \mathbf{b} = \begin{vmatrix} \frac{j J^{*}}{V_U} & \frac{j J^{*}}{V_U} & \frac{j f^{**}}{V_U} & \frac{j f^{**}}{V_U} \\ \frac{j J^{*}}{V_Z} & \frac{j J^{**}}{V_Z} & \frac{j f^{**}}{V_Z} & \frac{j f^{**}}{V_Z} \\ \frac{j f^{**}}{V_3} & \frac{j f^{**}}{V_3} & \frac{j f^{**}}{V_3} & \frac{j f^{**}}{V_3} \\ \frac{j f^{**}}{V_4} & \frac{j f^{**}}{V_4} & \frac{j f^{**}}{V_4} & \frac{j f^{**}}{V_4} \end{vmatrix}$$

resulta distinto de cero y de signo *a*, al evaluarlo en $V_1 = V_2 = V_3 = V_4 = 0$.

Considérese el entorno abierto HO $Hilb^a S$ de X que parametriza los esquemas Z O U de longitud a, de ideal

$$\langle u ? W_{a?1}v^{a?1} ? ... ? W_1v ? W_0, \dot{\mathbf{y}}v ? X_0 \mathbf{b} \mathbf{6} ... \mathbf{6} \dot{\mathbf{y}}v ? X_{a?1} \mathbf{b} \rangle$$
 $\hat{\mathbf{O}} \mathbb{C} \mathbf{B} u, v \mathbf{a}$

donde $X_0 = X_0^{v} + \sqrt{?1} X_0^{w}, ..., X_{a?1}, W_0, ..., W_{a?1}$ son números complejos, todos ellos nulos en el

caso Z = X (¡Cuidado!: ésta no es una carta de U ya que una permutación de los números X_0 , ..., $X_{a?1}$ no cambia el esquema Z así definido por ellos.)

Obsérvese que $Z 5 \mathcal{Z}^{E_a} = \mathcal{Z}^a V_H^E$ si y sólo si

$$W_0 = j \dot{\mathbf{Y}} V_1, V_2 \mathbf{b}, \quad X_0 = f \dot{\mathbf{Y}} V_1, V_2 \mathbf{b} \quad \operatorname{con} \dot{\mathbf{Y}} V_1, V_2 \mathbf{b} \quad \mathbf{5} \mathbb{R}^2$$
$$X_0 = \dots = X_{a?1}$$

y que Z 5 Z^a si y sólo si, para algún l 5 $\{0, ..., a ? 1\}$, se tiene

$$W_0 = \int_{-\infty}^{\infty} \dot{\mathbf{y}} V_3, V_4 \mathbf{p}, \quad X_1^{\infty} = \mathcal{T} \dot{\mathbf{y}} V_3, V_4 \mathbf{p} \quad \operatorname{con} \dot{\mathbf{y}} V_3, V_4 \mathbf{p} \quad \mathbf{5} \mathbb{R}^2$$
$$W_0 = \dots = W_{a^{2}}$$

Definimos ahora para un pequeño valor $0 \ 5 \ \mathbb{R}^+$, un esquema $\stackrel{E}{\mathcal{Z}}_0^a \quad \stackrel{O}{O}_H^e$ deformación continua de $\stackrel{E}{\mathcal{Z}}_0^a = \stackrel{E}{\mathcal{Z}}$. Un elemento $Z \ 5 \stackrel{E}{\mathcal{Z}}_0^a$ será el esquema de ideal, en \mathbb{C} **f**u, v**à**,

$$\begin{split} & \check{\Psi} \check{\Psi} u ? W_0 \flat ? W_{a?1} \check{\Psi} v ? X_0 \flat^{a?1} ? ... ? W_1 \check{\Psi} v ? X_0 \flat, \\ & \check{\Psi} v ? X_0 \flat \check{\Psi} v ? X_0 ? O \flat \langle v ? X_0 ? 20 \rangle ... \langle v ? X_0 ? \langle a ? 1 \rangle 0 \rangle \end{split}$$

con números complejos $W_0, ..., W_{a?1}, X_0$ satisfaciendo, para algún $l \in \{0, ..., a?1\}$,

$$W_0 = j \mathbf{\hat{y}} V_1, V_2 \mathbf{p} ? W_{a?1} \langle l0 \rangle^{a?1} ? \dots ? W_1 l0$$

$$X_0 = f \mathbf{\hat{y}} V_1, V_2 \mathbf{p} ? l0, \qquad \text{donde } \mathbf{\hat{y}} V_1, V_2 \mathbf{p} 5\mathbb{R}^{E_2}$$

Ya que hay a^2 posible elecciones de l, l 5 {0,...,a?1} ambos $\mathcal{Z}_0^{\mathbf{E}, \mathbf{a}}, \mathcal{Z}^{\mathbf{E}, \mathbf{a}}$ $\mathcal{D} U$, intersecan en a^2 esquemas $X_{ll}^{\mathbf{Q}} = X^0$, que son conjuntos de puntos distintos

$$X^{0} = \{ \mathbf{\hat{Y}} W, \mathbf{X} \mathbf{\hat{p}}, \mathbf{\hat{Y}} W, \mathbf{X} + \mathbf{0} \mathbf{\hat{p}}, \langle W, \mathbf{X} + 2\mathbf{0} \rangle, ..., \langle W, \mathbf{X} + \langle a?1 \rangle \mathbf{0} \rangle \}$$

siendo

$$\begin{split} & W = j \langle V_1^0, V_2^0 \rangle \quad X = f \langle V_1^0, V_2^0 \rangle ? lo \\ & W = \stackrel{\text{ab}}{I} \langle V_3^0, V_4^0 \rangle \quad X = \mathcal{T} \langle V_3^0, V_4^0 \rangle ? lo \\ \end{split}$$

para algún $\langle V_1^0, V_2^0, V_3^0, V_4^0 \rangle$ 5 \mathbb{R}^4 .

Consideremos el conjunto abierto $H^{V}OH$ definido al imponer $X_{0} \ 5 \ B_{0},...,X_{a?1} \ 5 \ B_{a?1}$ donde los $B_{0}, ..., B_{a?1}$ son discos abiertos de \mathbb{C} con centros $X, X + 0, ..., X + \langle a \ ? \ 1 \rangle 0$ y con radio más pequeño que 0/2, por lo que garantizamos que sean mutuamente disjuntos. Así pues, los esquemas Z en H^{V} son simplemente conjuntos de puntos distintos $P_{0}, ..., P_{a?1}$, ordenados inequívocamente por la pertenencia de su segunda coordenada a uno de los discos, y así los $X_{0}, ..., X_{a?1}; W_{0}, ..., W_{a?1}$ están en una carta analítica de H^{V} . Cambiamos por comodidad a la carta analítica $W_{0}, W_{1}, ..., W_{a?1}; X_{0}, X_{1} = X_{1} ? X_{0}, ..., X_{a?1} = X_{a?1} ? X_{0} y,$ después de reordenar si es necesario, **suponemos** l = 0

En esta carta analítica de H^{v} , el conjunto de puntos naturalmente ordenado \mathcal{Z}_{0}^{a} está parametrizado localmente por V_{1} , V_{2} , W_{1}^{v} , W_{1}^{w} , ..., $W_{a?1}^{v}$, $W_{a?1}^{w}$ (recuérdese que $W_{1}^{v} + \sqrt{?1}W_{1}^{w} = W_{1}$, etc...) de la siguiente forma:

$$W_{0} = j \, \mathbf{\hat{y}} V_{1}, V_{2} \, \mathbf{p} \, ? \, W_{a?1} \, \langle \, l0 \, \rangle^{a?1} \, ? \, ... \, ? \, W_{1} \, \langle \, l0 \, \rangle, W_{1} = W_{1}, ..., W_{a?1} = W_{a?1}$$
$$X_{0} = f \, \mathbf{\hat{y}} V_{1}, V_{2} \, \mathbf{p} \, ? \, l0, X_{1} = 0, ..., X_{a?1} = \langle \, a \, ? \, 1 \, \rangle \, 0$$

Así mismo \overline{Z}^a está parametrizado por V_3 , V_4 , \overline{X}_1^{\vee} , \overline{X}_1^{\vee} , ..., $\overline{X}_{a?1}^{\vee}$, $\overline{X}_{a?1}^{\vee}$ en la forma

$$\begin{split} & W_0 = \int \mathbf{\hat{f}} \, \mathbf{\hat{y}} \, V_3, V_4 \, \mathbf{\hat{p}}, W_1 = 0, ..., W_{a?1} = 0 \\ & X_0 = \mathcal{T} \, \mathbf{\hat{y}} \, V_3, V_4 \, \mathbf{\hat{p}}, \mathbf{\hat{x}}_1 = \mathbf{\hat{x}}_1, ..., \mathbf{\hat{x}}_{a?1} = \mathbf{\hat{x}}_{a?1} \end{split}$$

Ambos intersecan en el punto X^0 de H^{v} , y el determinante en este punto de la matriz de derivadas parciales de las expresiones de arriba respecto de los parámetros coincide con det $\langle V_1^0, V_2^0, V_3^0, V_4^0 \rangle$, el cual, para pequeños valores de 0, es distinto de cero y tiene el mismo signo a que su límite det $\langle 0,0,0,0 \rangle$ cuando 0 o 0. Por tanto $\mathcal{Z}^{\mathbf{a}} \vee H^{\mathbf{v}}$ y $\mathcal{Z}^{\mathbf{a}} \vee H^{\mathbf{v}}$ tienen número de intersección aa^2 en su único punto de intersección. Ya que esto sucede en los $|c \mathbf{6} \mathbf{c}^{\mathbf{c}}|$ puntos de intersección de $\mathbb{Z}^{\mathbf{a}}$ con $\overline{\mathbb{Z}}^{\mathbf{a}}$, su número de intersección es

$$aa^2 | c \mathbf{6} c | = a^2 \langle c \mathbf{6} c \rangle$$

Ahora está claro que, en el caso general, tomando coordenadas u_{ij}^k , v_{ij}^k en entornos disjuntos U_{ij}^k de cada x_{ij}^k y repitiendo el mismo argumento para el subconjunto abierto del esquema de Hilbert que parametriza subesquemas contenidos en $U = \hat{a} U_{ij}^k$, acabaremos con un determinante que es el producto indicado por i,j,k (puesto que está formado por bloques diagonales) de determinantes como el de más arriba. Así queda probado que

$$\begin{bmatrix} \mathbb{Z}^{\mathbf{a}} \end{bmatrix} \mathbf{6} \begin{bmatrix} \overline{\mathbb{Z}}^{\mathbf{a}} \end{bmatrix} = \langle \langle a_{ij}^{k} \rangle^{2} \langle c_{ij} \mathbf{6}^{\mathbf{a}}_{cj}^{k} \rangle = \langle \langle a_{ij}^{k} \rangle^{2} \langle c_{ij} \mathbf{6}^{\mathbf{a}}_{cjj} \rangle^{1+r_{ij}} \otimes 0$$

II.4. Demostración de T3

Göttsche [G1] ha encontrado que la dimensión de la suma de los números de Betti de $Hilb^{d}S$ es el coeficiente de t^{d} en el desarrollo en serie del producto

$$\left(\sum_{m=1}^{\kappa} \left(\frac{1}{1?t^{m}} \right) \right) \left(\sum_{m=1}^{\kappa} \left(1+t^{m} \right) \right)^{b_{1}} \left(\sum_{m=1}^{\kappa} \left(\frac{1}{1?t^{m}} \right) \right)^{b_{2}} \left(\sum_{m=1}^{\kappa} \left(1+t^{m} \right) \right)^{b_{3}} \left(\sum_{m=1}^{\kappa} \left(\frac{1}{1?t^{m}} \right)^{b_{3}} \right)^{b_{3}} \left(\sum_{m=1}^{\kappa} \left(\sum_{m=1}^{\kappa} \left(\frac{1}{1?t^{m$$

$$\left(\left\{ \begin{array}{c} \mathsf{K} \\ < \\ m_{m-1} \end{array} \right\} \right) = \left\{ \begin{array}{c} \mathsf{K} \\ = \\ p \\ e = 0 \end{array} \right\} = \left\{ \begin{array}{c} \mathsf{K} \\ p \\ p \\ e = 0 \end{array} \right\} \right\} t^{e}$$

donde $p \langle e, e?f \rangle$ es el número de particiones de *e* como suma de *e*?*f* enteros positivos (no necesariamente distintos). Por tanto, P**ý**e**þ** => $p \langle e, e?f \rangle$ es el número de particiones de *e*

como una suma de enteros positivos. Por otra parte, está claro que

$$\left(\begin{array}{c} \mathsf{K} \\ < \\ \mathsf{N}=1 \end{array}\right) + t^{m} = \sum_{e=0}^{\mathsf{K}} P \mathbf{B} e \mathbf{a} t^{e}$$

donde *P***B***e***à** es el número de particiones de *e* como suma de enteros positivos **distintos**. Por tanto, la dimensión de $H(Hilb^d \langle S \rangle)_{\mathbb{O}}$ es el coeficiente de t^d en el producto

$$\binom{\mathsf{K}}{\underset{e=0}{\overset{\mathsf{P}}{\mathsf{Y}}} e \mathsf{P} t^{e}} \binom{\mathsf{K}}{\underset{e=0}{\overset{\mathsf{P}}{\mathsf{S}}} e \mathsf{a} t^{e}}^{b_{1}} \binom{\mathsf{K}}{\underset{e=0}{\overset{\mathsf{P}}{\mathsf{Y}}} e \mathsf{P} t^{e}}^{b_{2}} \binom{\mathsf{K}}{\underset{e=0}{\overset{\mathsf{P}}{\mathsf{S}}} e \mathsf{a} t^{e}}^{b_{3}} \binom{\mathsf{K}}{\underset{e=0}{\overset{\mathsf{P}}{\mathsf{S}}} e \mathsf{A} t^{e}}^{b_{4}} \binom{\mathsf{K}}{\underset{e=0}{\overset{\mathsf{K}}{\mathsf{S}}} e \mathsf{A} t^{e}}^{b_{4}} \binom{\mathsf{K}}{\underset{e=0}{\overset{\mathsf{K}}{\mathsf{S}}} e \mathsf{A} t^{e}}^{b_{4}} \binom{\mathsf{K}}{\underset{e=0}{\overset{\mathsf{K}}{\mathsf{S}}}} e \mathsf{A} t^{e}}^{b_{4}} e \mathsf{A} t^{e}}^{b_{4}} \binom{\mathsf{K}}{\underset{e=0}{\overset{\mathsf{K}}{\mathsf{S}}}} e \mathsf{A} t^{e}}^{b_{4}} e \mathsf{A} t^{e}} e \mathsf{A} t^{e}}$$

donde $P_{e_{ij}}$ es $P \mathbf{\hat{y}} e_{ij} \mathbf{\hat{p}}$ o $P \mathbf{\hat{k}} e_{ij} \mathbf{\hat{a}}$ según *i* sea par o impar. Este coeficiente es

>
$$\mathbf{\hat{a}}P_{e_{ij}}$$
 P> e_{ij} = $d\mathbf{\hat{a}}$

es decir, el número total de elementos de cada uno de los dos candidatos a base. Entonces, por T1 y T2, tenemos T3 probado.

Observación. De hecho, no solamente se han encontrado dos bases, sino cuatro, siendo las otras dos muy similares a las primeras. En efecto, podíamos haber definido $[\mathbb{Z}^a]$ tomando elementos $Z 5 \mathbb{Z}^a$ que son uniones disjuntas $\widehat{a}Z_{ij}^k$ con cada Z_{ij}^k puntual y soportado en un representante C_{ij}^k de la clase c_{ij} , todos ellos diferentes y mutuamente transversos. Análogamente, podíamos haber definido $[\overline{\mathbb{Z}}^a]$ tomando $\widehat{\mathbb{Z}} = \widehat{a}Z_{ij}^k 5 \mathbb{Z}^a$ de manera que \widehat{Z}_{ij}^k sea vertical intersecando en exactamente un punto a un representante \overline{C}_{ij} de \widehat{c}_{ij}^k (el mismo -55representante para todo $k = 0, ..., r_{ij}$). El argumento con estos dos nuevos candidatos -obviamente de la misma cardinalidad que los dos antiguos- habría sido análogo.

Capítulo III

LA GEOMETRÍA DE TRIÁNGULOS DE SCHUBERT EN UNA SUPERFICIE ALGEBRAICA

III.0. Introducción

El problema XV de Hilbert, enunciado al comienzo del siglo que ahora finaliza, propone la formalización de las técnicas de Schubert en geometría enumerativa, siendo la técnica de triángulos planos la más importante de entre éstas. Se ha llevado a cabo una gran cantidad de trabajo en esta dirección, especialmente durante el último cuarto de siglo. En particular, en un artículo conjunto [AMS] de Arrondo, Mallavibarrena y Sols, las dos fórmulas de Zeuthen sobre contactos dobles demostradas de nuevo por Schubert con la ayuda de sus triángulos planos han obtenido una demostración rigurosa en términos de la teoría de esquemas, al entender los triángulos planos desordenados como elementos de $Hilb^2F$, donde *F* es la variedad de incidencia de pares de punto-rectas en el plano. Esta moderna visión de los triángulos ha permitido probar, también en [AMS], las series de cuatro fórmulas sobre dobles contactos que Schubert añadió a las de Zeuthen, las dos últimas presentadas por Schubert tan sólo como "muy probables", proporcionando alguna evidencia heurística para esa afirmación. Las bases de esta variedad de triángulos planos desordenados han sido encontradas en [AMS] usando el Teorema de Bialynicki-Birula (I.8) que, desafortunadamente, sólo es válido para el caso de superficies racionales.

El propósito de este capítulo ha sido extender la técnica de triángulos a todas las superficies algebraicas, definiendo objetos que, en el caso del plano, son los triángulos de

-56-

Schubert y encontrando, por técnicas distintas a las del Teorema de Bialynicki-Birula, bases explícitas de la variedad lisa y compacta que parametriza tales objetos.

Potencialmente, en esto consiste hacer posible la geometría de triángulos en superficies algebraicas arbitrarias. Pero hemos querido mostrar que esto proporciona realmente una herramienta, tal como lo hizo Schubert, es decir, demostrando con estos triángulos las fórmulas de dobles contactos en una superficie algebraica arbitraria. Aunque personalmente hemos comprobado las seis fórmulas, para procurar que el espacio de exposición fuera razonable hemos traído aquí la primera fórmula de la lista por ser la que dio origen a la serie, y también las dos últimas, ya que éstas tienen el especial interés de no haber sido demostradas sino tan sólo conjeturadas por Schubert.

Los siguientes hechos hacen este trabajo esencialmente diferente del de [AMS]:

 Ya que no trabajamos en el plano, necesitamos tener en cuenta ciclos topológicos de la superficie que no son algebraicos y, en particular, ciclos de dimensión 1 y 3, que añaden a las fórmulas términos desconocidos por Schubert.

2) Obviamente, fuera del plano, no podemos trabajar con punto-rectas, así que trabajamos con punto-direcciones, es decir, con la proyectivización del fibrado tangente. De hecho, nuestros triángulos de Schubert son elementos del cuadrado cartesiano de esta proyectivización, después de explotar la diagonal, es decir, trabajamos aquí con triángulos *ordenados* como lo hizo Schubert en el plano, en lugar de desordenados como en [AMS]. En el caso del plano nuestros triángulos son precisamente los triángulos de Schubert mientras no degeneren, y las degeneraciones recuerdan dos de los tres lados del triángulo que, como en los ejemplos que estudiamos, bastan para todas las aplicaciones que Schubert proporciona a su Teoría de Triángulos.

3) Como se ha mencionado anteriormente, la técnica para encontrar las bases es diferente

de la del teorema de Bialynicki-Birula y basada más bien en los generadores y las relaciones del anillo de cohomología racional de la explosión de una variedad (I.7); y consiste en demostrar que las matrices de intersección de dimensión complementaria en esta base son triangulares con entradas no nulas en la diagonal.

Desde luego, las superficies algebraicas que estudiamos se suponen principalmente polarizadas, de la misma manera que Schubert ha considerado siempre el plano, de forma implícita, como principalmente polarizado, en cuanto que considera el grado de curvas. Adicionalmente, y por razones técnicas, consideraremos un haz lineal general dado $\mathcal{V} = \mathbb{P}^1 \ \hat{O} \ |H|$ en esta polarización, jugando el mismo papel en una superficie algebraica arbitraria que las líneas "verticales" en un plano proyectivo coordenado.

III.1. Variedad de triángulos de Schubert y base de su cohomología racional

Sea $\hat{Y}S, H\hat{P}$ una superficie compleja, proyectiva y lisa. El anillo de cohomología racional (I.6) de la variedad $Y = P\hat{Y}T_S\hat{P}$, \hat{S} de pares de "punto-dirección" en S es

$$H^{6}\dot{Y}Y, \mathbb{Q}b = H^{6}\dot{Y}S, \mathbb{Q}b \upharpoonright t \urcorner /\dot{Y}t^{2}? Ut + eb$$

donde e es la característica de Euler-Poincaré de S y U es su clase canónica (I.6). El núcleo, en cada punto, de una 1-forma diferenciable compleja en S define una distribución que es un ciclo diferenciable de Y cuya clase de homología es dual de Poincaré de t. (De aquí en adelante adoptamos las siguientes convenciones notacionales: Tomamos como proyectivización de un fibrado vectorial el fibrado de sus rayos (I.6); denotamos por el mismo símbolo ciclos de S y las clases de cohomología que representan por la dualidad de Poincaré (I.2) y también su alzamiento por un morfismo. El contexto ayudará siempre a evitar equívocos)

La clase fundamental de \mathbb{Q} , o sea, el generador de $H^4 YS, \mathbb{Q} \triangleright > \mathbb{Q}$, es la (dual de Poincaré

de la) clase de un punto de *S*, y la denotamos por p^{S} . Por tanto, la clase fundamental de *Y* es $p^{S}t$ 5 H^{6} **Ý**Y, \mathbb{Q} **Þ** > \mathbb{Q} , que denotamos por p^{Y} .

Para una clase de cohomología J de Y denotaremos siempre por J_L y J_R , J å 1 y 1 å J. Así pues, podemos escribir

$$H^{6}\dot{Y}Y \times Y, \mathbb{Q}\flat = H^{6}\dot{Y}Y, \mathbb{Q}\flat \stackrel{a}{=} H^{6}\dot{Y}Y, \mathbb{Q}\flat = \frac{H^{6}\dot{Y}S, \mathbb{Q}\flat \stackrel{a}{=} H^{6}\dot{Y}S, \mathbb{Q}\flat \stackrel{c}{=} t_{L}, t_{R} \stackrel{c}{=} \frac{H^{6}\dot{Y}S, \mathbb{Q}\flat \stackrel{c}{=} t_{L} \stackrel{c}{=} \frac{H^{6}\dot{Y}S, \mathbb{Q}\flat \stackrel{c}{=} t_{L} \stackrel{c}{=} \frac{H^{6}\dot{Y}S, \mathbb{Q}\flat \stackrel{c$$

Por [GH] cap. 4, §6. (cfr. también [FG]), el anillo de cohomología de la explosión $X = \overline{Y \times Y} \dot{Y} A_Y \mathbf{b}$ de $Y \times Y$ con centro en la diagonal A_Y (I.7), que **definimos como variedad de** triángulos de Schubert de S, es

$$H^{6}\dot{Y}X, \mathbb{Q}b = \frac{H^{6}\dot{Y}Y, \mathbb{Q}b \, \mathring{a}_{\mathbb{Q}} \, H^{6}\dot{Y}Y, \mathbb{Q}b\text{Be}\dot{a}}{\dot{Y}\dot{Y}x \, \mathring{a}_{Y}? \, y \, \mathring{a}_{x}be, e^{3}? \, \dot{Y}c_{1}\dot{Y}Yb \, \mathring{a}_{1}be^{2} + \dot{Y}c_{2}\dot{Y}Yb \, \mathring{a}_{1}be? \, A_{Y}b}$$

donde Ay denota tanto la diagonal como su clase de cohomología. De las sucesiones exactas

$$0 \quad \mathcal{O}_{Y} \quad \stackrel{\wedge \mathsf{D}}{} T_{S} \stackrel{\vee}{\mathbf{Y}} \mathbf{1} \stackrel{\bullet}{\mathbf{P}} \quad T_{Y/S} \quad 0$$
$$0 \quad T_{Y/S} \quad T_{Y} \quad \stackrel{\wedge \mathsf{D}}{} T_{S} \quad 0$$

calculamos $c_1 \hat{\mathbf{Y}} \mathbf{Y} \mathbf{P} = ?2U + 2t, c_2 \hat{\mathbf{Y}} \mathbf{Y} \mathbf{P} = ?2Ut + U^2 + e$. Por tanto

$$H^{6}$$
Ý $Y,$ Q $b = H^{6}$ Ý $S,$ Q $b å_{Q} H^{6}$ Ý $S,$ Q $b [t_L, t_R, e]/Ý r_1^1, r_2^1, r^2, r^3 b$

donde las relaciones son

$$r_{1}^{1} = t_{L}^{2} ? U_{L}t_{L} + e$$

$$r_{2}^{1} = t_{R}^{2} ? U_{R}t_{R} + e$$

$$r^{2} = \mathbf{\dot{Y}}x \, \dot{a} \, y ? \, y \, \dot{a} \, \mathbf{x}\mathbf{P}e$$

$$r^{3} = e^{3} ? \, \mathbf{\dot{Y}}?2U_{L} + 2t_{L}\mathbf{P}e^{2} + \mathbf{\dot{Y}}?2U_{L}t_{L} + U_{L}^{2} + e\mathbf{P}e ? \mathbf{A}_{Y}$$

y e es la clase del divisor excepcional de la explosión (I.7).

Obsérvese que la clase fundamental $p^{Y \times Y} = p^X \text{ de } H^{12} \mathbf{\hat{Y}} X, \mathbb{Q}\mathbf{\hat{P}} > H^{12} \mathbf{\hat{Y}} Y \times Y, \mathbb{Q}\mathbf{\hat{P}} > \mathbb{Q}$ es

$$p_L^Y p_R^Y = p_L^S t_L p_R^S t_R$$

Ésta se encuentra relacionada con la clase fundamental de Y por

$$p_L^Y A_Y = p_R^{Y \times Y} = p_R^Y A_Y$$

Esto nos proporciona una base explícita de $H^{6}\check{Y}X, \mathbb{Q}\flat$ a partir de una base de $H^{6}\check{Y}S, \mathbb{Q}\flat$. Por dualidad de Poincaré, podemos suponer que los elementos básicos de $H^{4?n}\check{Y}S, \mathbb{Q}\flat$ están representados por las clases de homología a_n^i de ciclos n-dimensionales diferenciables orientados $A_n^i\check{Y}i = 1,...,b_i\flat$. Así $a_0^1 = p^S$, y los productos de intersección

$$H^2$$
Ý S, \mathbb{Q} Þ × H^2 Ý S, \mathbb{Q} Þ \mathbb{Q} y H^3 Ý S, \mathbb{Q} Þ × H^1 Ý S, \mathbb{Q} Þ \mathbb{Q}

están expresados por matrices diagonales de entradas

$$a_{2}^{i} \mathbf{6} a_{2}^{i} = \mathbf{P}^{i} \mathbf{\hat{Y}} i = 1,...,b_{2} \mathbf{P}$$

 $a_{1}^{i} \mathbf{6} a_{3}^{i} = N^{i} \mathbf{\hat{Y}} i = 1,...,b_{1} \mathbf{P}$

Los números de intersección de la clase canónica U y de la clase sección hiperplana h con elementos básicos merecerán notaciones especiales:

$$U^{i} = Ua_{2}^{i}, U^{ij} = Ua_{3}^{i}a_{3}^{j}$$
 y $h^{i} = ha_{2}^{i}, h^{ij} = ha_{3}^{i}a_{3}^{j}$

Por tanto, una base de $H^{6?n} \check{\Psi} Y, \mathbb{Q} \mathfrak{b}$ está dada por $a_{n?2}^i$, $a_n^i t$. Así pues, una base de $H^{12?!} \check{\Psi} Y \times Y, \mathbb{Q} \mathfrak{b}$ está dada por

$$a_{nm}^{ij}t_L t_R \qquad \cos n + m = l$$

$$a_{nm}^{ij}t_L, a_{nm}^{ij}t_R \qquad \cos n + m + 2 = l$$

$$a_{nm}^{ij} \qquad \cos n + m + 4 = l$$

Una base de $H^{12?l}$ ÝX, \mathbb{Q} Þ está dada por

$a_{nm}^{ij}t_Lt_R$	$\cos n + m = l$
$a_{nm}^{ij}t_L, a_{nm}^{ij}t_R$	$\cos n + m + 2 = l$
a_{nm}^{ij}	$\cos n + m + 4 = l$
$a_{n4}^{i1}e$	$\cos n + 6 = l$
$a_{n4}^{i1}t_Le$	$\cos n + 4 = l$
$a_{n4}^{i1}e^2$	$\cos n + 4 = l$
$a_{n4}^{i1}t_L e^2$	$\cos n + 2 = l$

Esta base ha sido obtenida a partir de la base de $H^{12?!}$ Y × Y, Q ha intersecar sus elementos con 1, *e*, e^2 y suprimir las repeticiones forzadas por las relaciones r^1 , r^2 , r^3 tales como, por ejemplo,

$$a_{n4}^{i1}t_Le = a_{n4}^{i1}t_Re = a_{4n}^{1i}t_Re = a_{4n}^{1i}t_Le$$

forzada por r^2 .

Obsérvese, finalmente, que $p^X = a_{00}^{11} t_L t_R$.

III.2. Intersección de las clases básicas

En esta sección tabulamos primero los números de intersección -todos ellos enteros- de los elementos básicos de dimensión complementaria de X, que, en cada caso, pueden ser calculados fácilmente a partir de las relaciones de los anillos de cohomología. Estudiaremos más tarde algunas intersecciones de dimensión no complementaria que tienen especial interés. Aunque sólo las clases de dimensión par en X son interesantes en geometría algebraica, necesitamos primero, por razones técnicas, los números de intersección de Y en todas las dimensiones. **Reducimos drásticamente el tamaño de estas listas al adoptar el convenio de omitir las intersecciones que son cero**.

En un apéndice de esta tesis hemos escrito tabularmente estas matrices de intersección

para facilitar su consulta y resaltar su triangularidad.

Los números de intersección tabulados abajo son, por supuesto, los correspondientes múltiplos de la clase fundamental p^Y 5 H^{6} ÝY, \mathbb{Q} Þ y p^X 5 H^{12} ÝX, \mathbb{Q} Þ.

$H^5\acute{\eta}Y, Q\rlap{P}\times H^1\acute{\eta}Y, Q\rlap{P}\ , Q$

(1) $a_1^i t \mathbf{6} a_3^i = N^i$ (para $i = 1, ..., b_1$. Esto será siempre sobreentendido)

 $H^4\acute{y}Y, Q\rlap{P}\times H^2\acute{y}Y, Q\rlap{P}\ \ Q$

- (2) $a_0^1 \mathbf{6} t = 1$
- (3) $a_2^i t \mathbf{6} a_2^i, t = \mathbf{P}^i, U^i$

$H^{3}\acute{\mu}Y,Q\rlap{P}\times H^{3}\acute{\mu}Y,Q\rlap{P}\ \ ,\ Q$

(4)
$$a_3^i t \mathbf{6} a_1^i, a_3^j t = N^i, U^{ij}$$

 $\mathbf{H}^{10} \acute{\textbf{y}} \mathbf{X}, \mathbf{Q} \emph{\textbf{P}} \times \mathbf{H}^{2} \acute{\textbf{y}} \mathbf{X}, \mathbf{Q} \emph{\textbf{P}} \ \ \mathbf{Q}$

- (5) $a_{02}^{1i}t_Lt_R$ **6** a_{42}^{1i} , $t_R = P^i$, U^i
- (6) $a_{11}^{ij} t_L t_R \mathbf{6} a_{33}^{ij} = N^i N^j$
- (7) $a_{20}^{i1}t_Lt_R$ **6** a_{24}^{i1} , $t_L = \mathsf{P}^i$, U^i
- (8) $a_{00}^{11}t_R$ **6** $t_L = 1$
- (9) $a_{00}^{11}t_L$ **6** $t_R = 1$
- (10) $a_{04}^{11}t_Le^2$ **6** e = 1

 $H^8\acute{y}X,Q\rlap{P}\times H^4\acute{y}X,Q\rlap{P}\ \ Q$

- (11) $a_{04}^{11}t_Lt_R$ **6** a_{40}^{11} , $a_{42}^{1i}t_R = 1$, U^i
- (12) $a_{13}^{ij}t_Lt_R \mathbf{6} a_{31}^{ij}, a_{33}^{ij^{\vee}}t_R = N^i N^j, N^i U^{ij^{\vee}}$
- (13) $a_{22}^{ij}t_L t_R \mathbf{6} a_{22}^{ij}, a_{24}^{i1}t_R, a_{42}^{1j}t_L, t_L t_R = \mathsf{P}^i \mathsf{P}^j, \mathsf{P}^i U^j, \mathsf{P}^j U^i, U^i U^j$
- (14) $a_{31}^{ij} t_L t_R \mathbf{6} a_{13}^{ij}, a_{33}^{i^{v}j} t_L = N^i N^j, N^j U^{ii^{v}}$
- (15) $a_{40}^{11}t_Lt_R$ **6** a_{04}^{11} , $a_{24}^{i1}t_L = 1$, U^i
- (16) $a_{02}^{1i}t_L \mathbf{6} a_{42}^{1i}t_R = \mathsf{P}^i$
- (17) $a_{11}^{ij} t_L \mathbf{6} a_{33}^{ij} t_R = N^i N^j$
- (18) $a_{20}^{i1}t_L \mathbf{6} a_{24}^{i1}t_R, t_L t_R = \mathsf{P}^i, U^i$
- (19) $a_{02}^{1i}t_R$ **6** $a_{42}^{1i}t_L$, $t_Lt_R = \mathsf{P}^i$, U^i
- (20) $a_{11}^{ij}t_R \mathbf{6} a_{33}^{ij}t_L = N^i N^j$
- (21) $a_{20}^{i1}t_R \mathbf{6} a_{24}^{i1}t_L = \mathsf{P}^i$
- $(22) \quad a_{00}^{11} \mathbf{6} t_L t_R = 1$
- (23) $a_{24}^{i1}t_Le^2$ **6** $a_{24}^{i1}e, t_Le, e^2 = \mathsf{P}^i, U^i, 0$
- (24) $a_{04}^{11}e^2$ **6** $t_L e, e^2 = 1, 2$
- (25) $a_{04}^{11}t_L e \mathbf{6} e^2 = 1$

$H^6\acute{y}X,Q\flat\times H^6\acute{y}X,Q\flat\ ,\ Q$

(26) $a_{24}^{i1}t_Lt_R \mathbf{6} a_{20}^{i1}, a_{22}^{ij}t_R, a_{40}^{11}t_L, a_{42}^{1j}t_Lt_R = \mathsf{P}^i, \mathsf{P}^i U^j, U^i, U^i U^j$

- $(27) \quad a_{33}^{ij} t_L t_R \ \mathbf{6} \ a_{11}^{ij}, \ a_{13}^{ij^{\dagger}} t_R, \ a_{31}^{i^{\dagger}j} t_L, \ a_{33}^{i^{\dagger}j^{\dagger}} t_L t_R = N^i N^j, \ N^i U^{jj^{\dagger}}, \ N^j U^{ii^{\dagger}}, \ U^{ii^{\dagger}} U^{ij^{\dagger}}$
- (28) $a_{42}^{1i}t_L t_R \mathbf{6} a_{02}^{1i}, a_{04}^{11}t_R, a_{22}^{ji}t_L, a_{24}^{j1}t_L t_R = \mathsf{P}^i, U^i, U^j \mathsf{P}^i, U^j U^i$
- $(29) \quad a_{04}^{11}t_L \ \mathbf{6} \ a_{40}^{11}t_R = 1$
- (30) $a_{13}^{ij}t_L \mathbf{6} a_{31}^{ij}t_R = N^i N^j$
- (31) $a_{22}^{ij}t_L \mathbf{6} a_{22}^{ij}t_R, a_{42}^{1j}t_L t_R = \mathsf{P}^i\mathsf{P}^j, U^i\mathsf{P}^j$
- (32) $a_{31}^{ij}t_L \mathbf{6} a_{13}^{ij}t_R, a_{33}^{i^{\vee}j}t_L t_R = N^i N^j, N^j U^{ii^{\vee}}$
- (33) $a_{40}^{11}t_L \mathbf{6} a_{04}^{11}t_R, a_{24}^{i1}t_L t_R = 1, U^i$
- (34) $a_{04}^{11}t_R$ **6** $a_{40}^{11}t_L$, $a_{42}^{1i}t_Lt_R = 1$, U^i
- (35) $a_{13}^{ij}t_R \mathbf{6} a_{31}^{ij}t_L, a_{33}^{ij^{v}}t_L t_R = N^i N^j, N^i U^{ij^{v}}$
- (36) $a_{22}^{ij}t_R \mathbf{6} a_{22}^{ij}t_L, a_{24}^{i1}t_L t_R = \mathsf{P}^i \mathsf{P}^j, \mathsf{P}^i U^j$
- (37) $a_{31}^{ij} t_R \mathbf{6} a_{13}^{ij} t_L = N^i N^i$
- $(38) \quad a_{40}^{11} t_R \ \mathbf{6} \ a_{04}^{11} t_L = 1$
- (39) $a_{02}^{1i} \mathbf{6} a_{42}^{1i} t_L t_R = \mathsf{P}^i$
- (40) $a_{11}^{ij} \mathbf{6} a_{33}^{ij} t_L t_R = N^i N^j$
- (41) $a_{20}^{i1} \mathbf{6} a_{24}^{i1} t_L t_R = \mathsf{P}^i$
- (42) $t_L e^2 \mathbf{6} a_{04}^{11} e, a_{24}^{i1} t_L e, a_{24}^{i1} e^2, t_L e^2 = 1, U^i, 0, ?2e$
- (43) $a_{24}^{i1}e^2 \mathbf{6} a_{24}^{i1}t_L e, a_{24}^{i1}e^2, t_L e^2 = \mathsf{P}^i, 2\mathsf{P}^i, 0$

(44)
$$a_{24}^{i1}t_L e \mathbf{6} a_{24}^{i1}e^2, t_L e^2 = \mathsf{P}^i, U^i$$

(45)
$$a_{04}^{11}e \mathbf{6} t_L e^2 = 1$$

Obsérvese que sólo en las últimas filas (10, 23-25, 42-45) de la matriz triangular $H^{6}\dot{\Psi}X, \mathbb{Q}\Phi$ aparece la clase *e* del divisor excepcional. Las primeras filas forman de hecho un sumando directo menor que es la matriz de intersección de $H^{6}\dot{\Psi}Y \times Y, \mathbb{Q}\Phi$ Ô $H^{6}\dot{\Psi}X, \mathbb{Q}\Phi$.

Obsérvese también que en (23), (42) y (43) aparece un cero, contra nuestro convenio de no escribir intersecciones que son cero. Se debe a que éstos son los tres únicos casos donde la intersección cero no ha sido obtenida del hecho de que ciertos ciclos básicos de *S* sean disjuntos, sino más bien como resultado de una cancelación eventual, como por ejemplo en el caso

$$a_{24}^{i1}t_Le^2$$
 6 $e^2 = a_{24}^{i1}t_Le$ Ý?2 $U_L + 2t_L$ Þ e^2 ? $a_{24}^{i1}t_Le$ Ý?2 $U_Lt_L + U_L^2 + e$ Þ $e + a_{24}^{i1}t_Le$ A_Y = 0

En efecto, el primer término desaparece porque en *Y* se tiene $?2Ut + 2t^2 = ?2e$, y en *S* es $a_2^i \mathbf{6} e = 0$. El segundo término se anula porque en *Y* se tiene $a_2^i t^2 U = 0$ dado que esta intersección tiene codimensión mayor que la dimensión de la variedad. El tercer término se anula porque la intersección de la clase excepcional con el alzamiento (en este caso $a_{24}^{i1} t_L A_Y$) de una clase de codimension estrictamente más grande que la dimensión 6 del centro de la explosión A_Y es nula.

En la segunda parte de esta sección estudiamos la intersección de algunas clases especiales. Hemos hecho explícitas, hasta ahora, tan sólo intersecciones de dimensión esperada cero, pero necesitaremos también la difícil autointersección e^2 que estudiamos ahora y que relacionamos con la variedad Z de triples contactos en S. Por esta variedad Z entendemos, siguiendo a [ASS], la proyectivización $P\hat{Y}T^{W}\mathbf{p}$ del núcleo T^{W} en el diagrama

donde la sucesión exacta de la derecha es la sucesión de Euler relativa de $Y = P\hat{\Psi}T_S \Phi$ y la sección $R = P\hat{\Psi}T_{YS}\Phi$ de $Z = P\langle T^W \rangle$ corresponde a las cúspides (del francés "points de rebout"). Por tanto $Z = P\langle T^W \rangle$ Ô $P\langle T_Y \rangle = E$. Recuérdese que E es el divisor excepcional 10-dimensional de $X = \overline{Y \times Y} \Phi_Y \Phi$ (cfr. [H1], cap. II, §7 y §8). La variedad Z es el lugar de ceros 8-dimensional de una sección $j_Z : T_Y \downarrow \hat{\Psi}^{A} g_S^{21} \Phi a \mathcal{O}_Y \langle 1 \rangle$ del fibrado lineal

$$\mathcal{O}_{PYT_Y a^{\wedge D}q_S a \mathcal{O}_Y Y_{1} b b}$$
 $\dot{Y}_1 b = \mathcal{O}_{PYT_Y b} (1) a^{\wedge D} g_S^{21} a \mathcal{O}_Y Y_{1} b$

Por otra parte, sabemos que e^2 es la primera clase de Chern del fibrado normal de $E = P\hat{\Psi}T_Y \mathbf{b}$, que es $\mathcal{O}_{P\Psi T_Y \mathbf{b}} \hat{\Psi}$? 1 \mathbf{b} (cfr. [H1], Appéndice A, §3 y cap. II §8). Concluimos que la clase de cohomología z de Z está dada por

$$z = ?e^2 ? U + t (2.2)$$

Recordemos de la introducción que, por una curva de *S*, siempre entenderemos, siguiendo a Schubert, una curva "tradicional", o sea, una curva cuyas únicas singularidades son nodos y cúspides simples. Denotamos por _ el número de cúspides ("points de rebout")

Para una curva C de S, denotamos por c su clase de homología. Si C_{reg} es su parte lisa entonces naturalmente $C_{reg} \stackrel{}{\to} P \not{\P} T_S \not{P} = Y$ y su clausura $C_Y \stackrel{}{\to} Y$ es la desingularización $C_Y = \overline{C} \not{R} C$ de la curva C, ya que C es tradicional. Denotamos por c_Y su clase de cohomología en $H^{6?2}$ Ý*Y*, **Qb**. La transformada estricta, en *X*, del ciclo Ý*C*_{*Y*}**b**_{*L*} **6**Ý*C*_{*Y*}**b**_{*R*} de *Y* × *Y* será denotada por *C*_{*X*}. Ésta juega un papel principal en este capítulo.

La curva inmersa $\overline{C} \stackrel{.}{\ominus} P \stackrel{.}{\Psi} T_{Y} \stackrel{.}{\Psi} = E$ está de hecho contenida en Z y denotamos por $C_Z \stackrel{.}{\ominus} Z$ y c_Z la curva de Z y su clase en $H^{8?2} \stackrel{.}{\Psi} Z, \mathbb{Q} \stackrel{.}{\Psi}$.

La variedad Z puede ser llamada **variedad de triples contactos** por la siguiente razón. Supongamos que C, C^v tienen un (doble) contacto en un punto liso P de C, C^v, es decir, que ambas tienen la misma tangente en P, o sea, que tienen un punto común en Y. Entonces como curvas inmersas en Y, ambas tienen la misma tangente, o sea, tienen un contacto triple en P 5 S, si y sólo si P tiene la misma imagen en Z por las inclusiones de C_{reg} y C_{reg}^{v} .

El género g de C está relacionado con los ciclos de arriba por

$$t \, \mathbf{6} \, c_Y = 2g \, ? \, 2 \, ? \, _$$
 (2.3)

como se sigue de la descripción del ciclo *t* dada al principio de III.1, ya que una 1-forma en *S* se anula, después de componerla con $\overline{C} \to S$, en exactamente 2g ? 2 ? _ puntos de \overline{C} .

Si *F* es una familia plana de curvas de *S*, cuyo miembro general es una curva tradicional C^V , la clausura de la unión en *Y* de la correspondiente familia C_Y^V define un ciclo y una clase denotados por F_X y f_Y . Definimos ciclos F_X , F_Z y clases f_X , f_Z en *X*, *Z* análogamente.

Finalizamos esta sección describiendo el anillo de cohomología de la variedad Z

de triples contactos y alguna matriz de intersección en ésta que nos será necesaria. Para esto, obsérvese que la primera clase de Chern de T^{W} puede ser calculada a partir de la clase de Chern de T_{Y} , calculada en III.1, y la sucesión vertical de en medio en el diagrama (2.1)

$$c_1 \mathbf{\hat{Y}} T^{\mathsf{W}} \mathbf{\hat{P}} = \mathbf{?} U_Y + t_Y; c_2 \mathbf{\hat{Y}} T^{\mathsf{W}} \mathbf{\hat{P}} = \mathbf{e} \mathbf{?} t_Y^2$$

Por tanto, siendo $Z = P \mathbf{i} T^{W} \mathbf{b}$, su anillo de cohomología es

$$H^{6}\dot{Y}Z, \mathbb{Q}b = H^{6}\dot{Y}Y, \mathbb{Q}bBu\dot{a}/\dot{Y}u^{2} + \dot{Y}?U_{Z} + t_{Z}bu + \dot{Y}e?t_{Z}^{2}bb$$

donde *u* es la clase del divisor $\mathcal{O}_Z \hat{\mathbf{Y}} \mathbf{1} \mathbf{b}$. Ya que en $H^{\mathbf{b}} \hat{\mathbf{Y}} Y, \mathbb{Q} \mathbf{b}$ tenemos $t_Y^2 = U_Y t_Y$? *e*, se tiene

$$H^{6}\dot{\mathbf{Y}}Z, \mathbb{Q}\mathbf{b} = H^{6}\dot{\mathbf{Y}}S, \mathbb{Q}\mathbf{b}[t_{Z}, u]\dot{\mathbf{X}}t_{Z}^{2}? U_{Z}t_{Z} + e, u^{2} + \dot{\mathbf{Y}}?U_{Z} + t_{Z}\mathbf{b}u + \dot{\mathbf{Y}}?U_{Z}t_{Z} + 2e\mathbf{b}\mathbf{b}$$

¡Cuidado!: U_Y , U_Z son las clases alzadas del canónico U_S de la superficie, no la clase del divisor canónico en *Y*, *Z*.

El divisor R de $Z = P \Psi T^* \mathbf{b}$ que describe cúspides ("points de rebout") tiene clase denotada por r que podemos identificar, a partir de la sucesión exacta más baja en el diagrama (2.1), como

$$r = u ? t_Z \tag{2.4}$$

ya que *u* es la clase de $\mathcal{O}_{P \not \mid T^m \mathbf{b}} \not \mid \mathbf{b}$ y t_Y es la clase de $\mathcal{O}_{P \not \mid T_S \mathbf{b}} \not \mid \mathbf{b}$.

Nuestro uso de la variedad Z es auxiliar para nuestros propósitos, por lo que, desde la estructura del anillo H^{6} ÝZ, QÞ, describimos la única matriz de intersección que será utilizada más tarde en el cálculo de III.4, a saber

H⁶ÝZ, QÞ × H²ÝZ, QÞ , Q
(46)
$$a_2^i t_Z u \mathbf{6} a_2^i, t_Z, u = P^i, U^i, 0$$

(47) $a_0^1 u \mathbf{6} t_Z, u = 1, ?1$
(48) $a_0^1 t_Z \mathbf{6} u = 1$

Justificamos las intersecciones que aquí han aparecido y que pueden resultar, quizá, menos obvias:

$$a_{2}^{i}t_{Z}u \mathbf{6} t_{Z} = a_{2}^{i}ut_{Z}^{2} = a_{2}^{i}u\mathbf{1} U_{Z}t_{Z} ? \mathbf{CP} = U^{i}$$

-68-

$$a_{2}^{i}t_{Z}u \,\mathbf{6}\, u = a_{2}^{i}t_{Z}u^{2} = a_{2}^{i}t_{Z}\mathbf{\hat{Y}}?\mathbf{\hat{Y}}?U_{Z} + t_{Z}\mathbf{\hat{P}}u?\mathbf{\hat{Y}}?U_{Z}t_{Z} + 2e\mathbf{\hat{P}}\mathbf{\hat{P}} = U_{Z}a_{2}^{i}t_{Z}u?a_{2}^{i}\mathbf{\hat{Y}}U_{Z}t_{Z}?e\mathbf{\hat{P}}u = 0$$

$$a_{0}^{1}u \,\mathbf{6}\, u = a_{0}^{1}u^{2} = a_{0}^{1}\mathbf{\hat{Y}}?\mathbf{\hat{Y}}?U_{Z} + t_{Z}\mathbf{\hat{P}}u?\mathbf{\hat{Y}}?U_{Z}t_{Z} + 2e\mathbf{\hat{P}}\mathbf{\hat{P}} = ?a_{0}^{1}t_{Z}u = 0$$

III.3. Dobles contactos

Como hemos mencionado en la introducción, el objetivo de este capítulo no es sólo hacer asequible en una superficie algebraica arbitraria la herramienta de triángulos de Schubert para geometría enumerativa, sino probar su utilidad demostrando algunas de las fórmulas de Schubert. Hemos elegido la serie de seis fórmulas en (cap. IX) [S1] que enumeran dobles contactos. Aunque hemos verificado personalmente con nuestra generalización de su herramienta de "triángulos" que todas ellas pueden ser probadas en una superficie algebraica arbitraria, aquí probaremos tan sólo la primera de ellas y las dos últimas por las razones mencionadas en la introducción.

?1

Para el enunciado de esas fórmulas necesitamos fijar un haz lineal $\mathcal{V} = \mathbb{P}^1 \ \hat{O} |H|$ dentro de la polarización principal H de la superficie proyectiva (es decir, que H es un divisor muy amplio (I.4)), y llamamos "verticales" a los divisores hiperplanos $V 5 \mathcal{V}$ que pertenecen al haz. Esto proporciona una "dirección vertical", o sea, un punto de $P\hat{\Psi}T_PS\Phi$, en el punto general P 5 S, llamada la dirección tangente a la vertical por P o simplemente la dirección vertical en P. Denotamos por V_Y el divisor en Y cuyo punto general corresponde a un punto de S y su dirección vertical. De manera más precisa, sean $P_1,...,P_d$ puntos base del haz $\mathcal{V} \hat{O} |H|$, la explosión $S = S\Psi P_1,...,P_d \Phi \stackrel{P}{\ s} S$ está fibrada $S \stackrel{q}{\ s} \mathbb{P}^1$ sobre \mathbb{P}^1 en "verticales", y así

$$0 extsf{J} T_{S/\mathbb{P}^1}^{a} extsf{J} T_S^{a} extsf{J} q^{\mathsf{D}} \mathcal{O}_S^{a} extsf{Y} 2H_S^{a} extsf{P} extsf{O} extsf{0}$$

de manera que $| g_{S/\mathbb{P}^1} = g_S^{\mathbf{z}} \sqrt[4]{2} H_S^{\mathbf{z}} \mathbf{b}$, siendo $H_S^{\mathbf{z}}$ la transformada estricta de H_S . Denotaremos por $S^0 = S$? $\{P_1, ..., P_d\}$ y por Y^0 , $X^0 = \overline{Y^0 \times Y^0}$ su antimagen en Y, X por las proyecciones obvias.

El divisor vertical $V_{Y_{\underline{a}}}$ en $Y_{\underline{a}}$ es la imagen de la inmersión $S = P \mathbf{\hat{V}} T_{S/\mathbb{P}^1}^{\underline{a}} \mathbf{\hat{P}} \to P \mathbf{\hat{V}} T_{S}^{\underline{a}} \mathbf{\hat{P}} = Y_{\underline{a}}^{\underline{a}}$ de la clase dual de Poincaré de $v_{Y_{\underline{a}}} = t_{Y_{\underline{a}}} + 2h_{Y_{\underline{a}}}$. El divisor vertical V_{Y_S} o V_Y en Y es $P_D \mathbf{\hat{V}} V_{Y_{\underline{s}}} \mathbf{\hat{P}}$, y así

$$v_Y = t_Y + 2h_Y \tag{3.1}$$

En consecuencia, la clase en Y correspondiente a punto-direcciones en S que son verticales para dos sistemas generales de verticales es (elevando al cuadrado la expresión (3.1) y usando la igualdad $t_Y^2 = U_Y t_Y$? e)

$$v_Y^2 = \mathbf{\hat{Y}} U_Y + 4h_Y \mathbf{\hat{P}} v_Y ? \mathbf{\hat{Y}} 4h_Y^2 + 2U_Y h_Y + \mathbf{e} \mathbf{\hat{P}} p^Y$$
(3.2)

donde, recordemos, p^{Y} es la antimagen por $Y \not\in S$ de la clase p del punto P de S.

Los alzamientos de V_Y a X por las dos proyecciones a Y serán denotados en adelante por V_L , V_R .

Introduzcamos primero los invariantes naturales para una curva C de S. Denotamos por $d^i = ca_2^i \ \mathbf{\dot{y}}i = 1,...,b_2\mathbf{b}$ su multigrado, es decir, los números de intersección de su (dual de Poincaré de la) clase de cohomología y los cociclos básicos de $H^2\mathbf{\dot{y}}S$, $\mathbb{Q}\mathbf{b}$. Denotamos también

$$d = ch = \mathbf{i} \mathbf{i} \mathbf{P}^{i} \mathbf{P}^{?1} h^{i} d^{i} \quad \mathbf{y} \quad n = cU = \mathbf{i} \mathbf{i} \mathbf{P}^{i} \mathbf{P}^{?1} U^{i} d^{i}$$

para simplificar futuras expresiones. Sea d^{v} el número de puntos de C que tienen una tangente vertical y sea _ el número de sus cúspides.

Sea F una familia completa 2-dimensional, de curvas (tradicionales) C en S; sus desingularizaciones forman una familia F_Y de curvas lisas C_Y en Y, y sea F_X la familia en X de transformadas propias de $\Psi C_Y \Phi_L$ $\delta \Psi C_Y \Phi_R$. Asociamos a F los siguientes invariantes:

d^{*i*}, **d**^{*ν*}, <u></u>, multigrado, número de puntos con tangente vertical y número de cúspides de cada curva *C* 5 *F*;

 $\mathbf{f}_{\mathbf{nm}!}^{\mathbf{ij}}$ **Ýpara n** + **m** = **2Þ**, número $f_X a_{nm}^{ij} v_R = f_X a_{mn}^{ij} v_L$ de curvas *C* de la familia que cortan al ciclo básico A_n^i y que cortan a A_m^j verticalmente (es decir, tangente a la vertical en el punto de intersección);

 $\mathbf{f}_{\mathbf{n}!\mathbf{m}!}^{\mathbf{ij}}$ **Ýpara n** + **m** = **4Þ**, número $f_X a_{nm}^{ij} v_L v_R = f_X a_{mn}^{ji} v_L v_R$ de curvas *C* 5 *F* que cortan a ambos ciclos A_n^i y A_m^j verticalmente;

 \mathbf{f}_{00}^{11} (W^2 en notación de Schubert), número $f_X a_{00}^{11}$ de curvas de la familia F que pasan por dos puntos generales dados de S;

 $\mathbf{f}_{0!}^{\mathbf{l}}$ (*M* en notación de Schubert), número $f_Y a_0^1 v_Y = f_X a_{04}^{11} v_L e = f_X a_{40}^{11} v_R e$ de curvas *C* que pasan por un punto general tangente a su vertical;

 $\mathbf{f}_{0}^{\frac{1}{2}}$ (*K* en notación de Schubert), número de curvas de la familia que tienen una cúspide en un punto general dado de *S*;

 f_{2}^{i} , número de curvas de la familia que tienen una cúspide vertical en A_{2}^{i} .

Aunque no será necesaria para nuestro propósito, puede ser de intrínseco interés observar que una generalización a una superficie arbitraria de la fórmula de Plücker en el plano deriva de (3.1) y (2.3), a saber:

$$2g ? 2 ? _ = d^{\vee} ? 2a$$
Podemos enunciar ahora las tres fórmulas que probaremos en este capítulo:

FÓRMULA DE ZEUTHEN-SCHUBERT : El número de dobles contactos entre una familia 2-dimensional general F de curvas C de invariantes d^i , d^v , _ y una curva general \overline{C} de invariantes \overline{d}^i , \overline{d}^v , _ es

$$\mathbf{ZS} = \mathbf{ZS}_{22} \mathbf{ZS}_3$$

donde

$$\begin{aligned} \mathbf{ZS}_{22} &= 2^{21} \mathbf{B} \left(\overline{d}^{\mathsf{V}} ? 4 \overline{d} ? \overline{n} \right)^{2} f_{00}^{41} + 2 \left(\overline{d}^{\mathsf{V}} ? 4 \overline{d} ? \overline{n} \right) > \mathbf{\hat{Y}} \mathbf{P}^{i} \mathbf{P}^{21} \overline{d}^{i} f_{021}^{4i} + >_{ij} \mathbf{\hat{Y}} \mathbf{P}^{j} \mathbf{P}^{21} \overline{d}^{i} \overline{d}^{j} f_{2121}^{ij} \\ &? \mathbf{\hat{Y}} \overline{d}^{\mathsf{V}} ? 4 \overline{d} ? \overline{n} \mathbf{P} f_{0}^{\mathsf{A}} ? > \mathbf{\hat{Y}} \mathbf{P}^{j} \mathbf{P}^{21} \overline{d}^{i} f_{211}^{\mathsf{A}} + \left(?4 \left(\overline{d}^{\mathsf{V}} ? 2 \overline{d} \right) ? \underline{=} + 2 \overline{n} \right) f_{01}^{\mathsf{A}} \mathbf{\hat{a}} \end{aligned}$$

$$\begin{split} \mathbf{\hat{y}} para \ \mathbf{i}, \mathbf{j} &= 1, ..., b_2 \mathbf{\hat{P}} \\ y \\ \mathbf{ZS}_3 &= \mathbf{\hat{y}} \mathbf{\hat{P}}^{\prime} \mathbf{\hat{P}}^{\prime} \mathbf{\hat{d}}^{\prime} \mathbf{f}_{21}^{\mathbf{\hat{a}}} + \left(\overline{d}^{\vee} ? 4\overline{d} ? \overline{n}\right) \mathbf{f}_0^{\mathbf{\hat{a}}} + \left(\overline{-} + 3\left(\overline{d^{\vee}} ? 2\overline{d}\right) ? \overline{n}\right) \mathbf{f}_{01}^{\mathbf{\hat{a}}} \end{split}$$

CONJETURA DE SCHUBERT 1: El número de dobles contactos en un punto general de S entre curvas de dos familias 2-dimensionales generales F, \overline{F} es

$$\mathbf{SC1} = \mathbf{SC1}_{22}\mathbf{?SC1}_3$$

donde

$$\mathbf{SC1}_{22} = \left(\overline{d}^{v}? 4\overline{d}? \overline{n}\right) \overline{f}_{01}^{1} f_{00}^{41} + \left(d^{v}? 4d? n\right) f_{01}^{4} \overline{f}_{00}^{11} + \ge \mathbf{\check{Y}P}^{i} \mathbf{\check{P}}^{21} \overline{d}^{i} f_{021}^{4i} \overline{f}_{01}^{4} \\ + \ge \mathbf{\check{Y}P}^{i} \mathbf{\check{P}}^{21} d^{i} \overline{f}_{021}^{1i} f_{01}^{4}? \overline{f}_{0}^{4} \overline{f}_{01}^{4}? f_{0}^{4} \overline{f}_{01}^{1}? 4\overline{f}_{01}^{1} f_{01}^{4} \\ y \\ \mathbf{SC1}_{3} = 2\mathbf{\check{Y}} \overline{f}_{0}^{4} \overline{f}_{01}^{4} + f_{0}^{4} \overline{f}_{01}^{1} + 3\overline{f}_{01}^{1} f_{01}^{4} \mathbf{\check{P}}$$

CONJETURA DE SCHUBERT 2: El número de dobles contactos en dos secciones

hiperplanas generales entre curvas de dos familias 2-dimensionales generales $F y \overline{F}$, es

$$SC2 = SC2_{22}?SC2_{3}$$

donde

$$\begin{split} \mathbf{SC2}_{22} &= \sum \mathbf{\check{Y}} \mathbf{\check{P}}^{i} \mathbf{\check{P}}^{?1} \mathbf{\check{Y}} \mathbf{\check{P}}^{j} \mathbf{\check{P}}^{?1} h^{i} h^{j} \mathbf{\check{B}} \overline{f}_{2:2}^{ij} f_{00}^{11} + 2 \overline{f}_{021}^{1i} f_{021}^{jj} + f_{2:2!}^{ij} \overline{f}_{00}^{11} \mathbf{\check{a}} \\ & \stackrel{i,j}{?} \\ &? 2 > \mathbf{\check{Y}} \mathbf{P}^{i} \mathbf{\check{P}}^{?1} \mathbf{\check{Y}} \mathbf{P}^{j} \mathbf{\check{P}}^{?1} h^{i} h^{j} \mathbf{\check{Y}} U^{j} + 4 h^{j} \mathbf{\check{P}} \mathbf{\check{D}} \overline{f}_{021}^{11} f_{01}^{11} + f_{02!}^{1i} \overline{f}_{00}^{11} \mathbf{\check{a}} + \\ & \stackrel{i,j}{?} \\ & (> \mathbf{\check{Y}} \mathbf{P}^{i} \mathbf{\check{P}}^{?1} h^{i} \mathbf{\check{Y}} U^{i} + 4 h^{i} \mathbf{\check{P}})^{2} \overline{f}_{001}^{11} f_{01}^{11} + 2 \left[d\overline{d}? 2 > \mathbf{\check{Y}} \mathbf{P}^{i} \mathbf{\check{P}}^{?1} \mathbf{\check{Y}} h^{i} \mathbf{\check{P}}^{2} \right] \overline{f}_{01}^{1} f_{0!}^{4} \\ &? > \mathbf{\check{Y}} \mathbf{P}^{i} \mathbf{\check{P}}^{?1} \mathbf{\check{Y}} h^{i} \mathbf{\check{P}}^{2} \mathbf{\check{B}} \overline{f}_{0}^{\frac{1}{2}} f_{01}^{4} + f_{0}^{\frac{1}{2}} \overline{f}_{0!}^{1} \mathbf{\check{a}} \\ & \mathbf{\check{Y}} \\ &\mathbf{SC2}_{3} = 2 > \mathbf{\check{Y}} \mathbf{P}^{i} \mathbf{\check{P}}^{?1} \mathbf{\check{Y}} h^{i} \mathbf{\check{P}}^{2} \left[\overline{f}_{0}^{\frac{1}{2}} f_{0!}^{1} + f_{0}^{\frac{1}{2}} \overline{f}_{0!}^{1} + 3 \overline{f}_{0!}^{1} f_{0!}^{4} \right] \end{split}$$

Veamos ahora que en el caso del plano $S = P^2 y H 5 P' H^0 YO_{P^2} YIPP estas fórmulas son exactamente las de Zeuthen y Schubert. Obsérvese primero que la elección de un haz lineal es precisamente la elección de un punto <math>P 5 \mathbb{P}^2$, y que

$\overline{\mathbf{d}}$, $\underline{-}$ (\overline{n} , \overline{k} en notación de Schubert) son el grado y el número de cúspides de un curva C,

 $\mathbf{\bar{d}}^{\vee}$ ($\mathbf{\bar{n}}^{\vee}$ en notación de Schubert) es el número $2\mathbf{\bar{d}}$? $\mathbf{\bar{-}}$? 2 + 2*género***Ý**C**P** de puntos de una curva con tangente vertical,

 $f_{0!}^1$ (*M* en notación de Schubert) es el número de curvas tangentes a un línea general en un punto general de ésta,

 f_{00}^{11} (W² en notación de Schubert) es el número de curvas que pasan por dos puntos generales de $\mathbb{P}^2,$

 f_0^1 (K en notación de Schubert) es el número de curvas con una cúspide en un punto

general.

Demostraremos más tarde que los otros invariantes

 $f_{22!}^{11}$, número de curvas de la familia que cortan a una línea general y que cortan a otra línea general verticalmente,

 $f_{2|2|}^{11}$, número de curvas que cortan a dos líneas generales verticalmente,

 f_{21}^1 , número de curvas de la familia que tienen una cúspide vertical en una línea general,

están relacionados con los invariantes de Schubert

 $\mathbf{\bar{k}}^{\vee}$, número de inflexiones de *C*,

(WW^{*}), número de curvas de la familia por un punto general y tangentes a una línea general,

 $W^{\prime 2}$, número de curvas tangentes a dos líneas generales,

D, número de curvas con un nodo en un punto general,

K, número de curvas con una cúspide en un punto general,

 \mathbf{D}^{V} , número de curvas con una bitangente en una línea general,

 \mathbf{K}^{v} , número de curvas con un punto de inflexión en una línea general,

por las expresiones

$$\bar{k}^{\vee} = 3\bar{d}^{\vee}?\;3\bar{d} + \bar{k} \tag{3.3}$$

$$\langle WW' \rangle = f_{02!}^{11} ? W^2$$
 (3.4)

$$W^2 = f_{2!2!}^{11} ? 2f_{02!}^{11} + W^2$$
(3.5)

$$2(D+K)? W^2 = ?K? M$$
(3.6)

$$2\langle D^{\vee} + K^{\vee} \rangle ? 2\langle D + K \rangle + W^{2} ? W^{2} = 2K + 3M ? f_{2!}^{\mathbf{a}}$$

$$(3.7)$$

$$K^{\vee} ? K = f_{2!}^{\mathbf{a}} ? 2K ? 3M$$
 (3.8)

Por tanto, en el caso del plano, nuestras fórmulas ZS, SC1, SC2, tienen sumandos

$$\mathbf{ZS}_{22} = \left(\frac{\overline{n}^{\vee}}{2}\right)W^{2} + \overline{n}\overline{n}^{\vee}\left(WW^{\prime}\right) + \left(\frac{\overline{n}}{2}\right)W^{2} + \overline{n}\left(D^{\vee} + K^{\vee}\right) + \overline{n}^{\vee}\left(D + K\right)?\frac{1}{2}\Psi\overline{3}\overline{n} + \overline{k}^{\vee}\Phi M$$

$$\mathbf{ZS}_{3} = \Psi\overline{3}\overline{n} + \overline{k}^{\vee}\Phi M + \overline{n}K^{\vee} + \overline{n}^{\vee}K$$

$$\mathbf{SC1}_{22} = \overline{M}\left[W^{2}\Psi\overline{n}^{\vee}?1\Phi + \left(WW^{\prime}\right)\overline{n} + 2\left(D + K\right)\right] + MBW^{2}\Psi\overline{n}^{\vee}?1\Phi + \overline{\left(WW^{\prime}\right)}n + 2\left(\overline{D} + \overline{K}\right)$$

$$\mathbf{SC1}_{3} = 2\overline{M}K + 2M\overline{K} + 6\overline{M}M$$

$$\mathbf{SC2}_{22} = W^{2}W^{2} + W^{2}W^{2} + W^{2}W^{2} + 2W^{2}\left(WW^{\prime}\right) + 2W^{2}\overline{\left(WW^{\prime}\right)} + 2\overline{\left(WW^{\prime}\right)}?W^{2}M?W^{2}$$

$$+ 2\overline{M}\left(D + K\right) + 2M\left(\overline{D} + \overline{K}\right) + 2\overline{M}M\left(\overline{n}n?1\right)$$

$$\mathbf{SC2}_{3} = 2\overline{M}K + 2M\overline{K} + 6\overline{M}M$$

y son pues, exactamente, las fórmulas de Zeuthen-Schubert de dobles contactos en el plano de una familia 2-dimensional con una curva general y las dos conjeturas de Schubert.

Justificamos ahora las expresiones (3.3) a (3.8). Obsérvese, primero, que la igualdad (3.3) ha sido obtenida de las conocidas igualdades

$$2g? 2? k = n^{\vee}? 2n$$

у

$$2g ? 2 ? k^{\vee} = n ? 2n^{\vee}$$

para una curva en el plano. Probemos (3.4) y (3.5). Necesitamos a este propósito la clase

auxiliar $J \ 5 \ H^4 \mathbf{\check{Y}} Y, \mathbb{Q} \mathbf{\check{p}}$, dual de Poincaré del ciclo $P \mathbf{\check{Y}} T_{\mathbb{P}^1} \mathbf{\check{p}} \ \hat{O} \ P \mathbf{\check{Y}} T_{\mathbb{P}^2} \mathbf{\check{p}} = Y$ para una línea $\mathbb{P}^1 \ \hat{O} \ \mathbb{P}^2$. Su expresión en la base de III.1 es

$$a_0^1 + a_2^1 t$$

porque $J \mathbf{6} t, a_2^1 = ?2, 1$. Por tanto, por (3.1), es

$$J = a_2^1 v ? a_0^1$$

El entero (WW) de arriba puede ser definido como $a_{04}^{11}J_R f_X$ de manera que

$$\left< \mathcal{W} \mathcal{W} \right> = a_{04}^{11} J_R f_X = \left< a_{02}^{11} v_R ? a_{00}^{11} \right> f_X = f_{02!}^{11} ? \mathcal{W}^2$$

у

$$W^{2} = J_{L}J_{R}f_{X} = \left\langle a_{22}^{11}v_{L}v_{R} ? a_{20}^{11}v_{L} ? a_{02}^{11}v_{R} + a_{00}^{11} \right\rangle f_{X} = f_{2!2!}^{11} ? 2f_{02!}^{11} + W^{2}$$

Probamos ahora la igualdad (3.6) al demostrar que ambos términos son iguales a $f_X a_{04}^{11} e^2$, e introducimos a este propósito otra clase auxiliar *K* 5 $H^2 \dot{\mathbf{Y}} X$, $\mathbb{Q}\mathbf{P}$, dual de Poincaré de la clausura *B* en *X* de la transformada estricta B^0 en $X^0 = \overline{Y^0 \times_V Y^0}$ del ciclo $Y^0 \times_V Y^0$ obtenido como pullback

$$Y^{0} \times_{\mathcal{V}} Y^{0} \stackrel{pr_{\mathcal{R}}}{,} Y^{0} \stackrel{\gamma}{,} S^{0}$$

$$1^{pr_{\mathcal{L}}}$$

$$Y^{0} \qquad 1$$

$$1$$

$$S^{0} \qquad \mathbf{\tilde{I}} \qquad \mathcal{V}$$

Su expresión en la base de III.1 es

$$K = h_L + h_R ? e \tag{3.9}$$

porque

$$K \,\mathbf{6} \, a_{02}^{1i} t_L t_R, a_{11}^{ij} t_L t_R, a_{20}^{i1} t_L t_R, a_{00}^{11} t_R, a_{00}^{11} t_L, a_{04}^{11} t_L e^2 = \mathbf{\acute{Y}} \mathbf{P}^i \mathbf{P}^{?1} h^i, 0, \mathbf{\acute{Y}} \mathbf{P}^i \mathbf{P}^{?1} h^i, 0, 0, ?1$$

y la última intersección ?1, que no es trivial, equivalente por (2.2) a $K \mathbf{6} a_{04}^{11} t_L \mathbf{6} \mathbf{\acute{y}} ? z \mathbf{Þ} = ?1$, será probada más abajo en III.5 por medio de una carta local.

Ahora bien

$$f_X a_{04}^{11} e^2 = f_X a_{04}^{11} \langle h_L + h_R ? K \rangle e = ?f_X a_{04}^{11} K e = ?f_0^{\mathsf{a}} ? f_0^{\mathsf{b}}$$

es decir, ?*K* ? *M* en notación de Schubert. La última intersección será probada con la ayuda de una carta en III.5, así como también

$$f_X a_{04}^{11} e^2 = f_X a_{04}^{11} \langle h_L + h_R ? K \rangle \langle h_L + h_R ? K \rangle = f_X a_{04}^{11} h_R^2 ? 2 f_X a_{04}^{11} h_R K + f_X a_{04}^{11} K^2$$
$$= W^2 ? 2W^2 + 2\dot{Y}D + K\mathbf{P} = ?W^2 + 2\dot{Y}D + K\mathbf{P}$$

quedando así probado (3.6).

Demostramos ahora (3.7) viendo que ambos términos son iguales a $f_X a_{24}^{11} t_L e^2$. Obsérvese a este propósito que en una superficie algebraica,

$$\begin{aligned} f_X a_{24}^{i1} t_L e^2 &= f_X a_{24}^{i1} t_L \left(h_L + h_R ? K \right) e = 2h^i f_X a_{04}^{11} t_L e ? f_X a_{24}^{i1} t_L K e \\ &= 2h^i f_X a_{04}^{11} t_L e ? f_X a_{24}^{i1} v_L K e + 2h^i f_X a_{04}^{11} K e = 2h^i f_{0!}^4 ? \mathbf{\hat{Y}} U^i + 4h^i \mathbf{\hat{P}} f_{0!}^4 ? f_{2!}^{\mathbf{\hat{a}}} + 2h^i \mathbf{\hat{Y}} f_{0}^{\mathbf{\hat{a}}} + f_{0!}^4 \mathbf{\hat{P}} \\ &= 2h^i f_0^{\mathbf{\hat{a}}} ? U^i f_{0!}^{\mathbf{\hat{a}}} ? f_{2!}^{\mathbf{\hat{a}}} \end{aligned}$$

es decir, en el caso del plano,

$$f_X a_{24}^{i1} t_L e^2 = 2K + 3M? f_{2!}^{a}$$

Aquí las únicas intersecciones no triviales han sido $f_X a_{04}^{11} Ke = f_0^{\frac{1}{2}} + f_{01}^{\frac{1}{2}}$, que ya ha aparecido en (3.6), y $f_X a_{24}^{i1} v_L Ke = \hat{Y} U^i + 4h^i \hat{P} f_{01}^4 + f_{21}^{\frac{1}{2}}$. Esta última es la intersección más difícil que será comprobada en este capítulo. Para esta comprobación, observamos que el ciclo F_Z en $Z \hat{O} X$ es la intersección transversal de los ciclos F y E de X. (La transversalidad de estas intersecciones será comprobada en III.5 en coordenadas locales, así como también la transversalidad de las intersecciones $V_L V Z = V_Z, B V Z = V_Z W R y \hat{Y} A_{24}^{i1} \mathbf{P} V Z = \hat{Y} A_2^{i} \mathbf{p}_Z$). Por tanto, el número de intersección $f_X e a_{24}^{i1} v_L K$ es igual al número de intersección $f_Z \hat{Y} a_2^i \mathbf{p}_Z v_Z \hat{Y} r + v_Z \mathbf{p}$ en Z. Así pues, $v_Z \hat{Y} r + v_Z \mathbf{p}$ es la suma de la clase $\hat{z}^{\frac{3}{2}}$! de cúspides de tangente vertical y el alzamiento $\hat{Y} v^2 \mathbf{p}_Z$ a Z de la autointersección v^2 en Y, que ya ha sido calculada en (3.2). Por tanto

$$\ddot{\mathbf{a}}_{z}! + v_{z}^{2} = \ddot{\mathbf{a}}_{z}! + \dot{\mathbf{Y}}U_{z} + 4h_{z}\mathbf{P}v_{z}?\dot{\mathbf{Y}}4h_{z}^{2} + 2U_{z}h_{z} + e\mathbf{P}p^{z}$$

donde U_Z , h_Z , p^Z son las antimágenes por la proyección $Z \notin Y \notin S$ de la clase canónica U, clase hiperplana h y clase del punto p de S. Como consecuencia, obtenemos el número de intersección que queríamos:

$$f_X a_{24}^{i1} v_L K e = f_{21}^{\mathbf{a}} + \langle U_Z + 4h_Z \rangle \langle a_2^i \rangle_Z v_Z f_Z = f_{21}^{\mathbf{a}} + \langle U_Z^i + 4h_Z^i \rangle f_{01}^{\mathbf{a}}$$

Por otra parte, en el caso del plano, podemos calcular $f_X a_{24}^{11} t_L e^2$ usando la expresión en coordenadas en $H^8(X, \mathbb{Q})$ de una línea *L*. En primer lugar,

$$l_X = a_{22}^{11} t_L t_R + a_{20}^{11} t_L + a_{02}^{11} t_R + a_{00}^{11} + a_{24}^{11} t_L e^2 + a_{04}^{11} e^2$$

porque

en la base de III.1; y además

$$f_X I_X = 2 \left\langle D^{\vee} + K^{\vee} \right\rangle = W^2 ? 2 \left\langle WW^{\vee} \right\rangle + W^2 + \left(\left\langle WW^{\vee} \right\rangle ? W^2 \right) + \left(\left\langle WW^{\vee} \right\rangle ? W^2 \right) + W^2 + f_X a_{A}^{11} t_L e^2 + 2 \left\langle D + K \right\rangle ? W^2$$

Por tanto

$$f_X a_{24}^{11} t_L e^2 = 2 \langle D^{\vee} + K^{\vee} \rangle ? 2 \langle D + K \rangle + W^2 ? W^2$$

quedando así probado (3.7).

La última fórmula (3.8) ha sido obtenida fácilmente de la fórmula (3.6), su fórmula dual en el plano:

$$2\langle D^{\vee} + K^{\vee} \rangle ? W^{2} = ?K^{\vee} ? M$$

y la fórmula (3.7).

Obtenemos ahora, para una curva tradicional C, las coordenadas:

$$x_{3}^{ij} = \mathbf{\hat{Y}} \mathbf{P}^{i} \mathbf{\hat{P}}^{?1} \mathbf{\hat{Y}} \mathbf{P}^{j} \mathbf{\hat{P}}^{?1} \overline{d}^{i} \overline{d}^{i}$$

$$x_{8}^{i} = x_{9}^{i} = \mathbf{\hat{Y}} \mathbf{P}^{i} \mathbf{\hat{P}}^{?1} \overline{d}^{i} \left(\overline{d}^{v} ? 2\overline{d} ? n \right)$$

$$x_{12} = \left(\overline{d}^{v} ? 2\overline{d} ? n \right)^{2}$$

$$x_{13}^{i} = \mathbf{\hat{Y}} \mathbf{P}^{i} \mathbf{\hat{P}}^{?1} \overline{d}^{i}$$

$$x_{14} = \overline{d}^{v} ? 2\overline{d} ? n$$

$$x_{15} = ?3 \left(\overline{d}^{v} ? 2\overline{d} \right) ? = + 2n$$

(y las coordenadas restantes $x_1, x_2^{ij}, x_4^{ij}, x_5, x_6^{i}, x_7^{ij}, x_{10}^{ij}, x_{11}^{i}$ son nulas)

de la clase c_X 5 $H^8 \langle X, \mathbb{Q} \rangle$ dual de Poincaré de C_X en la base obtenida en III.1

$b_1 = a_{04}^{11} t_L t_R$	$b_2^{ij} = a_{13}^{ij} t_L t_R$	$b_3^{ij} = a_{22}^{ij} t_L t_R$
$b_4^{ij} = a_{31}^{ij} t_L t_R$	$b_5 = a_{40}^{11} t_L t_R$	$b_6^i = a_{02}^{1i} t_L$
$b_7^{ij} = a_{11}^{ij} t_L$	$b_8^i = a_{20}^{i1} t_L$	$b_9^i = a_{02}^{1i} t_R$
$b_{10}^{ij} = a_{11}^{ij} t_R$	$b_{11}^i = a_{20}^{i1} t_R$	$b_{12} = a_{00}^{11}$
$b_{13}^i = a_{24}^{i1} t_L e^2$	$b_{14} = a_{04}^{11} e^2$	$b_{15} = a_{04}^{11} t_L e$

Estas coordenadas se obtienen, con la ayuda de la matriz de intersección triangular en III.2, al resolver el fácil sistema de ecuaciones proporcionado por los números de intersección de c_X con las clases básicas de $H^4 \dot{Y} X$, $\mathbb{Q} \mathfrak{b}$. Ciertamente, la intersección de c_X con cada uno de los elementos de la base de $H^4 \dot{Y} X$, $\mathbb{Q} \mathfrak{b}$

$K_1 = a_{40}^{11}$	$K_2^{ij} = a_{31}^{ij}$	$K_3^{ij} = a_{22}^{ij}$
$K_4^{ij} = a_{13}^{ij}$	$K_5 = a_{04}^{11}$	$K_6^i = a_{42}^{1i} t_R$
$K_7^{ij^{\vee}} = a_{33}^{ij^{\vee}} t_R$	$K_8^i = a_{24}^{i1} t_R$	$K_9^i = a_{42}^{1i} t_L$
$K_{10}^{i^{v_{j}}} = a_{33}^{i^{v_{j}}} t_{L}$	$K_{11}^i = a_{24}^{i1} t_L$	$K_{12} = t_L t_R$
$K_{13}^i = a_{24}^{i1} e$	$K_{14} = t_L e$	$K_{15} = e^2$

es, por una parte, consultando la matriz de intersección de III.2,

<i>x</i> ₁	$N^i N^j x_2^{ij}$	$P^iP^jx_3^{ij}$
$N^i N^j x_4^{ij}$	<i>x</i> ₅	$U^i x_1 + P^i x_6^i$
$> N^i U^{ij^{v}} x_2^{ij} + N^i N^{j^{v}} x_7^{ij^{v}}$	$> P^i U^j x_3^{ij} + P^i x_8^i$	$> P^i U^j x_3^{ji} + P^i x_9^j$
j	j	j
$> N^{i}U^{ii^{v}}x_{4}^{ij} + N^{i^{v}}N^{j}x_{10}^{i^{v_{j}}}$	$U^i x_5 + P^i x_{11}^i$	$> U^{i}U^{j}x_{3}^{ij} + > U^{i}x_{8}^{i} + > U^{i}x_{9}^{i} + x_{12}$
i		i,j i i
$P^i x_{13}^i$	$> U^i x_{13}^i + x_{14}$	$2x_{14} + x_{15}$
	i	

Por otra parte, por las definiciones y cálculos de arriba, es también

0	0	$\overline{d}^i \overline{d}^j$
0	0	0
0	$\bar{d}^i \acute{\mathbf{y}} \bar{d}^v$? $2 \bar{d} \mathbf{P}$	$\bar{d}^i \acute{\mathbf{y}} \bar{d}^{\scriptscriptstyle V}$? $2 \bar{d} \mathbf{P}$
0	0	$\dot{\mathbf{Y}}\overline{d}^{\mathtt{V}}$? $2\overline{d}\mathbf{P}^2$
\overline{d}^i	$\bar{d}^{"}$? 2 \bar{d}	$2\overline{d}?\overline{d}^{\vee}?$

Análogamente, para una familia 2-dimensional completa F cuya curva general es tradicional, las coordenadas

$$\begin{aligned} x_{1} &= x_{5} = \langle d^{i} ? 2d ? n \rangle f_{0!}^{i} \\ x_{2}^{ij} &= \tilde{\mathbf{Y}} \mathcal{W}^{\mathbf{p}}^{2!} \tilde{\mathbf{Y}} \mathcal{W}^{\mathbf{p}}^{2!} \left[f_{1:1:}^{ij} ? > \tilde{\mathbf{Y}} \mathcal{W}^{i} \mathbf{p}^{2!} \tilde{\mathbf{Y}} \mathcal{U}^{ji^{i}} + 2h^{ij^{i}} \mathbf{p}_{1:1:}^{ij^{i}} \right] \\ x_{3}^{ij} &= \tilde{\mathbf{Y}} P^{i} \mathbf{p}^{2!} \tilde{\mathbf{Y}} P^{j} P^{2!} \left[f_{2:2:}^{ij} ? \tilde{\mathbf{Y}} \mathcal{U}^{j} + 2h^{j} \mathbf{p}_{0:2:}^{ij} ? \tilde{\mathbf{Y}} \mathcal{U}^{i} + 2h^{i} \mathbf{p}_{0:2:}^{ij^{i}} + \tilde{\mathbf{Y}} \mathcal{U}^{i} + 2h^{i} \mathbf{p}_{1:1:}^{ij^{i}} \end{bmatrix} \\ x_{4}^{ij} &= \tilde{\mathbf{Y}} \mathcal{W}^{i} \mathbf{p}^{2!} \tilde{\mathbf{Y}} \mathcal{W}^{j} \mathbf{p}^{2!} \int_{1:1}^{j_{1:1}^{ij}} 2 \\ x_{6}^{ij^{i}} &= x_{1:1}^{i} &= \tilde{\mathbf{Y}} P^{i} \mathbf{p}^{2!} \tilde{\mathbf{Y}} \mathcal{U}^{i}_{1:1:} \\ x_{6}^{i} &= x_{1:1}^{i} &= \tilde{\mathbf{Y}} P^{i} \mathbf{p}^{2!} \tilde{\mathbf{Y}} \mathcal{U}^{j}_{0:1:} ? \tilde{\mathbf{Y}} \mathcal{U}^{i} + 2h^{i} \mathbf{p}_{0:0}^{i_{1:1}} \mathbf{p} \\ x_{7}^{ij^{i}} &= \tilde{\mathbf{Y}} \mathcal{W}^{i} \mathbf{p}^{2!} \tilde{\mathbf{Y}} \mathcal{U}^{j}_{0:2:} ? \tilde{\mathbf{Y}} \mathcal{U}^{i} + 2h^{i} \mathbf{p}_{0:0}^{i_{1:1}} \\ x_{8}^{i} &= x_{9}^{i} &= \tilde{\mathbf{Y}} P^{i} \mathbf{p}^{2!} \tilde{\mathbf{Y}} \mathcal{U}^{j}_{0:1:} ? \tilde{\mathbf{Y}} \mathcal{U}^{i} + 2h^{i} \mathbf{p}_{0:0}^{i_{1:1}} \mathbf{p} \\ x_{1:0}^{i,j} &= \tilde{\mathbf{Y}} \mathcal{W}^{i} \mathbf{p}^{2!} \tilde{\mathbf{Y}} \mathcal{W} \mathbf{p}^{2!} f_{1:1:}^{i,j} \\ x_{1:2} &= f_{0:0}^{i_{1:1}} \\ x_{1:2} &= f_{0:0}^{i_{1:1}} \\ x_{1:4} &= ?f_{0:0}^{i_{1:1}} ? ? f_{0:1}^{i_{1:1}} + \tilde{\mathbf{Y}} \mathcal{U}^{i} + 2h^{i} \mathbf{p}_{0:1}^{i_{1:1}} + 2h^{i} \mathbf{p}_{0:1}^{i_{1:1}} \\ x_{1:4} &= ?f_{0:0}^{i_{1:1}} ? ? f_{0:1}^{i_{1:1}} \\ \end{array}$$

$$x_{15} = f_{0!}^1$$

de la clase f_X 5 $H^4 \noti X, \mathbb{Q} \noti$ en la base

$K_1 = a_{40}^{11}$	$K_2^{ij} = a_{31}^{ij}$	$K_3^{ij} = a_{22}^{ij}$	$K_4^{ij} = a_{13}^{ij}$	$K_5 = a_{04}^{11}$
$K_6^i = a_{42}^{1i} t_R$	$K_7^{ij^{\vee}} = a_{33}^{ij^{\vee}} t_R$	$K_8^i = a_{24}^{i1} t_R$	$K_9^i = a_{42}^{1i} t_L$	$K_{10}^{i^{v_{j}}} = a_{33}^{i^{v_{j}}} t_{L}$
$K_{11}^i = a_{24}^{i1} t_L$	$K_{12} = t_L t_R$	$K_{13}^i = a_{24}^{i1} e$	$K_{14} = t_L e$	$K_{15} = e^2$

se obtienen análogamente al resolver el fácil sistema triangular de ecuaciones de intersección

de f_X con la base de H^8 ÝX, \mathbb{Q} Þ

$b_1 = a_{04}^{11} t_L t_R$	$b_2^{ij} = a_{13}^{ij} t_L t_R$	$b_3^{ij} = a_{22}^{ij} t_L t_R$	$b_4^{ij} = a_{31}^{ij} t_L t_R$	$b_5 = a_{40}^{11} t_L t_R$
$b_6^i = a_{02}^{1i} t_L$	$b_7^{ij} = a_{11}^{ij} t_L$	$b_8^i = a_{20}^{i1} t_L$	$b_9^i = a_{02}^{1i} t_R$	$b_{10}^{ij} = a_{11}^{ij} t_R$
$b_{11}^i = a_{20}^{i1} t_R$	$b_{12} = a_{00}^{11}$	$b_{13}^i = a_{24}^{i1} t_L e^2$	$b_{14} = a_{04}^{11} e^2$	$b_{15} = a_{04}^{11} t_L e$

que es, por una parte,

$x_1 + \sum_i U^i x_6^i$	$N^{i}N^{j}x_{2}^{ij} + $ $> N^{i}U^{ij^{y}}x_{7}^{ij^{y}}$ $_{j^{y}}$	$P^{i}P^{j}x_{3}^{ij} + P^{i}U^{j}x_{8}^{i} +$ $P^{j}U^{i}x_{9}^{j} + U^{i}U^{j}x_{12}$	$N^{i}N^{j}x_{4}^{ij} + \sum_{i^{v}}N^{j}U^{ii^{v}}x_{10}^{i^{v}j}$	$x_5 + \sum_i U^i x_{11}^i$
$P^i x_6^i$	$N^i N^j x_7^{ij}$	$P^i x_8^i + U^i x_{12}$	$P^i x_9^i + U^i x_{12}$	$N^i N^j x_{10}^{ij}$
$P^i x_{11}^i$	<i>x</i> ₁₂	$P^{i}x_{13}^{i} + U^{i}x_{14}$	$x_{14} + 2x_{15}$	<i>x</i> ₁₅

y, por otra parte,

$\langle d^{\vee} ? 2d \rangle f_{0!}^4$	$f_{1:3:}^{ij}$ $?2 > \dot{\mathbf{Y}} N^{j^{v}} \mathbf{P}^{?1} h^{j^{v}j} f_{1:1}^{j^{v}}$	$\begin{array}{c} f^{ij}_{212!} \\ ?2h^{i}f^{1i}_{02!} \\ ?2h^{i}f^{4j}_{02!} \\ +4h^{i}h^{j}f^{41}_{00} \end{array}$	f_{3111}^{ij} $?2 > \hat{\mathbf{Y}} N^{i^{x}} \mathbf{P}^{?1} h^{ii^{x}} f_{111}^{i_{11}}$	$\langle d^{"}?2d\rangle f_{0!}^{l}$
$d^i f^i_{0!}$	$f^{ij}_{1!1}$	$f_{02!}^{1i}$?2 $h^i f_{00}^{11}$	$f^{4i}_{02!}$?2 $h^i f^{11}_{00}$	$f^{ij}_{11!}$
$d^i f^i_{0!}$	f_{00}^{11}	2h ⁱ fa ?U ⁱ f ¹ _{0!} ?f ^a _{2!}	? f_0^{a} ? $f_{0!}^{d}$	$f_{0!}^{I}$

III.4. Las fórmulas

En esta sección probamos finalmente la fórmula de Zeuthen-Schubert y las dos conjeturas de Schubert. De hecho, las fórmulas ZS_{22} , $SC1_{22}$ y $SC2_{22}$ han sido potencialmente probadas puesto que sus expresiones anunciadas en III.3 son exactamente la mitad (a causa del orden artificial -izquierda y derecha- que hemos introducido en los pares de punto-direcciones) de los números de intersección de clases en *X*, que equivalen a los números descritos en cada una de las fórmulas

ZS₂₂ = $2^{?1}\bar{c}_X f_X$

$$\mathbf{SC1}_{22} = 2^{?1} f_X \bar{f}_X \dot{\mathbf{Y}} a_{04}^{11} + a_{40}^{11} \mathbf{P} = f_X \bar{f}_X a_{04}^{11}$$

$$\mathbf{SC2}_{22} = f_X \overline{f}_X h_L h_R$$

Las tres fórmulas las obtenemos directamente al usar las expresiones de c_X y f_X en la base dada en III.1, las expresiones obvias $h_L = > \hat{\mathbf{Y}} \mathbf{P}^i \mathbf{p}^{?1} h^i a_{24}^{i1}$ y $h_R = > \hat{\mathbf{Y}} \mathbf{P}^i \mathbf{p}^{?1} h^i a_{42}^{1i}$, y las matrices de intersección de III.2. Ahora podemos calcular fácilmente las restantes fórmulas ZS_3 , $SC1_3$, $SC2_3$ como hemos calculado las correspondientes tres primeras fórmulas. Para una curva tradicional *C*, obtenemos las coordenadas

$$x_{1}^{i} = \mathbf{\hat{Y}} \mathbf{P}^{i} \mathbf{\hat{P}}^{?1} \overline{d}^{i}$$
$$x_{2} = \overline{d}^{v} ? 2\overline{d} ? \overline{n}$$
$$x_{3} = 2(\overline{d}^{v} ? 2\overline{d}) + \underline{-} ?$$

de la clase c_Z 5 $H^6 \dot{\mathbf{Y}} Z, \mathbb{Q} \mathbf{D}$ en la base

ħ

$$b_1^i = a_2^i t_Z u \ b_2 = a_0^1 u \ b_3 = a_0^1 t_Z$$

Éstas han sido obtenidas resolviendo el sistema de ecuaciones proporcionado por los números de intersección de c_Z con las clases básicas de $H^2 \dot{\Psi} Z$, $\mathbb{Q} \mathbf{b}$. La intersección de c_Z con cada uno de los elementos de la base de $H^2 \dot{\Psi} Z$, $\mathbb{Q} \mathbf{b}$

$$K_1^i = a_2^i \mid K_2 = t_Z \mid K_3 = u$$

es, por una parte,

$$|\mathbf{P}^{i}x_{1}^{i}| > U^{i}x_{1}^{i} + x_{2}| ?x_{2} + x_{3}$$

y, por otra parte,

$$\overline{d}^{i} \ \overline{d}^{v} ? 2\overline{d} \ \overline{d}^{v} ? 2\overline{d} + \underline{-}$$

como se ve al usar (2.4) y (3.1) alzado a Z.

Análogamente, para una familia 2-dimensional completa F de curvas tradicionales, las

coordenadas

$$\begin{aligned} x_{1}^{i} &= \mathbf{\hat{Y}} \mathbf{P}^{i} \mathbf{\hat{P}}^{?1} \mathbf{\hat{Y}} f_{21}^{\mathbf{\hat{a}}} ? \mathbf{\hat{Y}} U^{i} + 2h^{i} \mathbf{\hat{P}} f_{0}^{\mathbf{\hat{a}}} ? U^{i} f_{0!}^{1} \mathbf{\hat{P}} \\ x_{2} &= f_{0}^{\mathbf{\hat{a}}} + 2f_{0!}^{\mathbf{\hat{a}}} \\ x_{3} &= f_{0!}^{\mathbf{\hat{a}}} \end{aligned}$$

de la clase $f_Z 5 H^2 \dot{\mathbf{Y}} Z, \mathbb{Q} \mathbf{b}$ han sido obtenidas resolviendo el sistema de ecuaciones de intersección de f_Z con la base de $H^6 \dot{\mathbf{Y}} Z, \mathbb{Q} \mathbf{b}$. Estas intersecciones son, por una parte,

$$P^{i}x_{1}^{i} + U^{i}x_{2} | x_{2} ? x_{3} | x_{3}$$

y, por otra parte,

$$f_{2!}^{i}$$
? $2h^{i}f_{0}^{i} + U^{i}f_{0!}^{i}$ $f_{0}^{i} + f_{0!}^{i}$ $f_{0!}^{i}$

Así pues se obtiene, como queríamos,

$$\mathbf{ZS}_3 = \overline{c}_Z f_Z$$

$$\mathbf{SC1}_3 = 2a_0^1 f_Z f_Z$$

$$\mathbf{SC2}_{3} = 2 > \mathbf{\acute{Y}P}^{i}\mathbf{\acute{P}}^{?1}\mathbf{\acute{Y}}h^{i}\mathbf{\acute{P}}^{2}a_{0}^{1}f_{Z}\overline{f}_{Z}$$

donde la última fórmula corresponde a los contactos simples de tercer orden en los puntos de H^2 .

III.5. Transversalidad

Dejamos para esta última sección la tarea de comprobar en cartas analíticas locales la

transversalidad de algunas intersecciones que han aparecido a lo largo del capítulo.

Sea N_0 5 $X = \overline{Y \times Y}$ y sea $\langle p_0, t_0 \rangle$ su imagen por la primera proyección a Y, de manera que p_0 5 S y t_0 5 $P\langle T_{S,p_0} \rangle$. Tomemos coordenadas analíticas $\hat{Y}_{X,Y} \phi$ de S cerca de p_0 , de manera que $p_0 = \langle 0, 0 \rangle$, es decir, $x_0 = y_0 = 0$. (Las coordenadas x, y han sido tomadas de manera que la pendiente m_0 de t_0 es finita y, a veces, supondremos también $m_0 = 0$). Consideramos, provisionalmente, la carta analítica

que asigna a puntos $N \ 5 \ X$, las coordenadas $\mathbf{\hat{y}}_{X,y} \mathbf{\hat{p}}$ de $p \ 5 \ S \ y$ la pendiente $m = \frac{dy}{dx}$ de $t \ 5 \ T_{Sp}$, donde $\langle p,t \rangle$ es la primera proyección de $N \ y \ dx$, dy son las coordenadas inducidas en el fibrado tangente. Si N yace fuera del divisor excepcional, es decir, si $N \ 5 \ Y \times Y \ 7 \ A_Y$, llamando $\langle p^{\forall}, t^{\forall} \rangle$ a la segunda proyección de N, se tiene $Ax = x^{\forall} \ 7 \ x, \ Ay = y^{\forall} \ 7 \ y, \ Am = m^{\forall} \ 7 \ m$ donde $\langle x^{\forall}, y^{\forall} \rangle$ son las coordenadas de $p^{\forall} \ y \ m^{\forall}$ es la pendiente de t^{\forall} en la misma trivialización analítica local de S y su fibrado tangente. Si N yace en el divisor excepcional $E \ O \ X$, que es isomorfo a $P \ (T_Y) \ O \ X$ y que está parametrizado localmente por $\langle x, y, m, Ax, Ay, Am \rangle$, debemos elegir cuál de las tres últimas coordenadas homogéneas $\mathbf{\hat{y}}Ax : Ay : Am\mathbf{\hat{p}}$ será más adecuada para deshomogeneizar la terna. Nunca interesará el caso donde $N_0 \ 5 \ X$ es una inflexión en x, y, m (que corresponde a la línea del infinito Am = 0 del plano proyectivo $\mathbf{\hat{y}}Ax : Ay : Am\mathbf{\hat{p}}$), porque, por la generalidad de las familias de curvas en la fórmula de Zeuthen-Schubert, nuestros puntos de intersección nunca son inflexiones. Por tanto siempre deshomogeneizaremos respecto de la tercera coordenada Am.

Resumiendo, ya que siempre estaremos interesados en casos en que N_0 5 X (y así también en puntos cercanos N 5 X) no es una inflexión, trabajaremos siempre, cerca de N_0 , con coordenadas analíticas

$$\langle x, y, z, \langle Ax/Am \rangle, \langle Ay/Am \rangle, Am \rangle$$

donde Ax, Ay, Am son incrementos finitos si N_0 6 *E*, y si N_0 5 *E* estos tres son cero pero (Ax/Am) y (Ay/Am) no se anulan necesariamente, tomando valores finitos y bien definidos que tienen el significado de las derivadas de las coordenadas locales *x*, *y* de *S* respecto de la variación de la primera pendiente *m*.

En esta carta, la ecuación local del divisor excepcional es evidentemente Am = 0 (ya que esto implica Ax = Ay = 0, puesto que las coordenadas $\langle Ax/Am \rangle$, $\langle Ay/Am \rangle$ tienen valores finitos en la carta). El divisor excepcional contiene el muy importante subesquema Z, o ciclo z, que tiene en esta carta ecuaciones locales

Z:
$$Am = 0$$
, $\langle Ay/Am \rangle = m \langle Ax/Am \rangle$

Analizamos ahora, en la carta, seis intersecciones que han aparecido en este capítulo que son transversales, pero no lo son trivialmente. Es muy fácil de ver -en la carta- que el resto de intersecciones son transversales y, de hecho, la mayor parte de ellas -en particular todas las que se encuentran en las matrices de intersección de las bases- aparecen localmente como la intersección en el origen de algunas hipersuperficies coordenadas de la carta. Como hemos hecho a veces, abusaremos ligeramente de notación y de terminología identificando subesquemas cerrados, los ciclos que éstos definen y su clase en cohomología racional.

5.1) **K 6 a**¹¹₀₄**t**_L**6z** = 1

Como siempre, es obvio que la intersección conjuntista de los correspondientes esquemas es un punto. Cerca de este punto de intersección, y siempre en la carta analítica de arriba, el ciclo K (definido en III.3) tiene ecuación $\langle Ax/Am \rangle = 0$; el ciclo $a_{04}^{11}t_L$ es localmente x = y = 0, $m = m_0$ para algún valor complejo m_0 que podemos suponer distinto de cero; y recordemos -87que el esquema Z, o ciclo z (abusamos siempre de terminología y notación) es Am = 0, $\langle Ay/Am \rangle = m \langle Ax/Am \rangle$. Estos ciclos intersecan en el punto

$$\langle x, y, m, \langle Ax/Am \rangle, \langle Ay/Am \rangle, Am \rangle = \langle 0, 0, m_0, 0, 0, 0 \rangle$$

En las coordenadas lineales inducidas

$$\langle dx, dy, dm, d\langle Ax/Am \rangle, d\langle Ay/Am \rangle, d\Upsilon Am \rangle$$

del espacio tangente a la carta en este punto, los subespacios lineales tangentes a los tres ciclos que intersecamos tienen ecuaciones lineales

$$d\langle Ax/Am \rangle = 0$$
 para el tangente a K

$$dx = 0, dy = 0, dm = 0$$
 para el tangente a $a_{04}^{11}t_L$

$$dYAm = 0, d\langle Ay/Am \rangle ? m_0 d\langle Ax/Am \rangle = 0$$
 para el tangente a z

probando que la intersección es transversal, es decir, $K \mathbf{6} a_{04}^{11} t_L \mathbf{6} z = 1$, como queríamos.

5.2)
$$\mathbf{v}_{\mathbf{L}}\mathbf{6z} = \mathbf{v}_{\mathbf{Z}}$$

Como intersección conjuntista, la igualdad es evidente, pero debemos comprobar la transversalidad en el punto general de v_Z . En la carta analítica de arriba, cerca de este punto general, los tres ciclos tienen ecuaciones

$$v_L : m = m_0 \text{ (para algún valor complejo no nulo } m_0\text{)}$$

$$z : Am = 0, \langle Ay/Am \rangle = m \langle Ax/Am \rangle$$

$$v_Z : m = m_0, Am = 0, \langle Ay/Am \rangle = m \langle Ax/Am \rangle$$

Así pues, sus espacios tangentes en el punto tienen ecuaciones lineales

$$Tv_{L} : dm = 0$$

$$Tz : d\mathbf{\hat{y}} Am\mathbf{\hat{p}} = 0, d\langle Ay/Am \rangle = dm \langle Ax/Am \rangle + m_{0}d \langle Ax/Am \rangle$$

$$Tv_{Z} : dm = 0, d\mathbf{\hat{y}} Am\mathbf{\hat{p}} = 0, d\langle Ay/Am \rangle = m_{0}d \langle Ax/Am \rangle$$

probando la transversalidad de la intersección, es decir, $v_L \mathbf{6} z = v_Z$ como se quería.

5.3)
$$f_X 6e = f_Z$$

Esta transversalidad es más complicada y, por razones técnicas, probaremos más bien la transversalidad de la intersección

$$a_{04}^{11} \mathbf{6} f_X \mathbf{6} e = g$$

donde g es la obvia intersección transversal $a_{04}^{11} \mathbf{4} f_Z$, que evidentemente implica la transversalidad buscada. Esto es, a su vez, equivalente a probar la transversalidad de la intersección cerca de un punto general de g, así que consideramos la carta analítica de arriba de X, cerca de este punto. Obsérvese que la restricción a la carta de la familia 2-dimensional F_X de curvas tiene el tipo analítico general de una familia 2-dimensional de curvas analíticas en la carta, y las que pasan por el origen tienen el tipo analítico de una familia monodimensional general de curvas analíticas de la carta pasando por el origen. Ya que la transversalidad es una condición abierta, para probar la transversalidad de la intersección para una familia monodimensional particular, y elegimos la siguiente familia, parametrizada por un pequeño parámetro complejo $V \mathbf{\hat{y}} q V \mathbf{q} < P \mathbf{\hat{p}}$ de curvas en un entorno del origen de \mathbb{C}^2 de ecuación $y = Vx + x^2$, es decir, curvas dadas en forma paramétrica explícita como

$$\mathbf{\hat{Y}}x, y\mathbf{\hat{P}} = (t, Vt + t^2)$$

Así pues, la tangente en el punto de parámetro t tiene pendiente V + 2t.

En la carta analítica provisional *x*, *y*, *m*, A*x*, A*y*, A*m* de *X*? $E = Y \times Y$? A_Y, el esquema 2-dimensional $a_{04}^{11}f_X$, está dado localmente en forma explícita, es decir, como función de parámetros *t*, *V*, como

$$x = y = 0, \quad m = V$$

Ax = t, Ay = Vt + t², Am = (V + 2t)? V = 2t

En la carta analítica que estamos considerando, esto es

$$\langle x, y, m, \langle Ax/Am \rangle, \langle Ay/Am \rangle, Am \rangle = \left(0, 0, V, \frac{1}{2}, \frac{V}{2} + \frac{t}{2}, 2t\right)$$

y recuérdese que e tiene ecuación Am = 0, y así intersecan en el esquema g 1-dimensional de ecuación local

$$\left(0,0,V,\frac{1}{2},\frac{V}{2},0\right)$$

siendo los espacios tangentes en el origen a los ciclos que intersecan, en forma paramétrica

$$T\left(a_{04}^{11}f_{X}\right) : 0 = dx = dy = d\left(Ax/Am\right)$$
$$d\Psi Am\Phi = 2dt, d\left(Ay/Am\right) = \frac{dV}{2} + \frac{dt}{2}$$
$$Te : d\Psi Am\Phi = 0$$

Así pues, intersecan transversalmente en el espacio lineal 1-dimensional

$$Tg : 0 = dx = dy = d \langle Ax/Am \rangle$$
$$d \langle Ay/Am \rangle = \frac{1}{2}dm + \frac{1}{4}dYAm \mathbf{P}$$

lo que prueba la transversalidad de la intersección a_{04}^{11} **6** f_X **6**e = g.

5.4)
$$a_{04}^{11} 6K^2 6f_X = 2 \langle D + K \rangle$$

Probamos la transversalidad de la intersección $a_{04}^{11}K^2 = P$, donde el punto general de P está fuera del divisor excepcional, es decir, en $Y \times Y$? A_Y, y es un par ordenado de punto-direcciones de S, con los dos puntos siendo coincidentes en un punto general dado de S. Entonces la intersección restante P **6** $f_X = 2\langle D + K \rangle$ será por definición (el doble de) el número de nodos D y cúspides K de una familia 2-dimensional F_X en un punto general de S.

En la carta local de arriba cerca del punto general de P , los ciclos que consideramos tienen ecuaciones

$$a_{04}^{11} : x = y = 0$$

$$K : \langle Ax/Am \rangle = 0$$

otro representante de $K : \langle Ay/Am \rangle = 0$

$$P : 0 = x = y = \langle Ax/Am \rangle = \langle Ay/Am \rangle$$

siendo así evidente la transversalidad de la intersección. Esto prueba 5.4

Antes de probar la transversalidad de las dos últimas intersecciones 5.5, 5.6 probamos, como un lema técnico, la intersección auxiliar

$$K\mathbf{6}\mathbf{j}_{\mathbb{P}^2} = \mathbf{j}_{\mathbb{P}^2}^{\mathbb{U}} + N$$

en el caso $S = \mathbb{P}^2$. Éstas son clases de ciclos en la variedad $X_{\mathbb{P}^2}$ de pares ordenados de punto-direcciones en \mathbb{P}^2 , es decir, la explosión $\overline{Y_{\mathbb{P}^2} \times Y_{\mathbb{P}^2}}$ con centro en la diagonal del cuadrado cartesiano de la variedad $Y_{\mathbb{P}^2}$ de punto-direcciones en \mathbb{P}^2 , que obviamente, puede ser vista como la variedad

$$Y_{\mathbb{P}^2} = \left\{ \langle p, L \rangle \mid \mathsf{P} \ p \ 5 \ L \ \hat{\mathsf{O}} \ \mathbb{P}^2 \right\}$$

de punto-rectas incidentes en \mathbb{P}^2 . El ciclo auxiliar $j_{\mathbb{P}^2}$ (resp. $j_{\mathbb{P}^2}^U$) se define como la clausura del subesquema de $X_{\mathbb{P}^2} ? E_{\mathbb{P}^2} = \langle Y_{\mathbb{P}^2} \times Y_{\mathbb{P}^2} \rangle$? $A_{\mathbb{P}^2}$ que parametriza pares ordenados $\langle \langle p_1, L_1 \rangle, \langle p_2, L_2 \rangle \rangle$ con p_2 5 L_1 (resp. con L_1 siendo, además, "vertical") y el ciclo N se define como la clausura del subesquema de $X_{\mathbb{P}^2} ? E_{\mathbb{P}^2}$ que parametriza pares de punto-rectas siendo los dos puntos coincidentes. Como siempre, la intersección conjuntista $K \vee j_{\mathbb{P}^2} = j_{\mathbb{P}^2}^U \vee N$ (abusando de notación) es evidente, pero tenemos que comprobar que la intersección es transversal tanto en el punto general de $j_{\mathbb{P}^2}^U$ como en el punto general de N, para así concluir que $K \mathbf{6} j_{\mathbb{P}^2} = j_{\mathbb{P}^2}^U + N$. Pero esto es obvio en nuestra carta local $\langle x, y, m, \langle Ax/Am \rangle, \langle Ay/Am \rangle, Am \rangle$, donde K es $\langle Ax/Am \rangle = 0$ y $j_{\mathbb{P}^2}$ es $\langle Ay/Am \rangle = m \langle Ax/Am \rangle$ luego se cortan transversalmente en la unión del esquema de ecuación m = 0, $\langle Ay/Am \rangle = 0$, que es $j_{\mathbb{P}^2}^U$, y el esquema $\langle Ax/Am \rangle = \langle Ay/Am \rangle = 0$ que es N.

5.5) **K 6 z** = $v_z + r$

Como siempre, la intersección conjuntista $K \vee z = v_Z \vee r$ es evidente y el problema aquí es la transversalidad de la intersección en el punto general de v_Z y en el de r. Ya que, localmente, la superficie S es analíticamente isomorfa al plano \mathbb{P}^2 , es suficiente demostrar esta transversalidad en el caso $S = \mathbb{P}^2$, donde podemos usar el ciclo auxiliar $j_{\mathbb{P}^2}$ y el primer lema $K \mathbf{6} j_{\mathbb{P}^2} = j_{\mathbb{P}^2}^{\mathbb{U}} + N$. Intersecando ambos miembros de la igualdad con la clase e del divisor excepcional $E_{\mathbb{P}^2}$ de $X_{\mathbb{P}^2}$ encontramos, como queríamos,

$$K \delta z = K \delta \dot{Y} j_{\mathbb{P}^2} \delta e \flat = \langle j_{\mathbb{P}^2}^U \delta e \rangle + \dot{Y} N \delta e \flat = v_Z + r$$

Ciertamente, estos ciclos tienen ecuaciones locales

$$K : \langle Ay/Am \rangle = m_0 \langle Ax/Am \rangle$$

$$e : Am = 0$$

$$j_{\mathbb{P}^2} : \langle Ay/Am \rangle = m \langle Ax/Am \rangle$$

$$j_{\mathbb{P}^2}^{\mathbb{U}} : \langle Ay/Am \rangle = m \langle Ax/Am \rangle, m = m_0$$

$$z : Am = 0, \langle Ay/Am \rangle = m \langle Ax/Am \rangle$$

$$N : \langle Ay/Am \rangle = \langle Ax/Am \rangle = 0$$

$$v_Z : m = m_0, Am = 0, \langle Ay/Am \rangle = m \langle Ax/Am \rangle$$

$$r : Am = 0, \langle Ay/Am \rangle = \langle Ax/Am \rangle = 0$$

y observamos que el espacio tangente en el punto general de v_Z o r, a la única variedad no lineal que aparece aquí $\langle Ay/Am \rangle = m \langle Ax/Am \rangle$ tiene ecuación $d \langle Ay/Am \rangle = md \langle Ax/Am \rangle$ ya que, en ambos casos, $dm \langle Ax/Am \rangle = 0$ en el punto general.

Por tanto es evidente que $j_{\mathbb{P}^2}$ y *e* intersecan transversalmente en *z*, y que $j_{\mathbb{P}^2}^{U}$ y *e* intersecan transversalmente en v_Z , así como también *N* y *e* intersecan transversalmente en *r*. Esto prueba 5.5.

5.6) $f_X 6a_{04}^{11} 6K 6 e = f_{0!}^1 + f_{0}^1$

Hemos visto en 5.3 que la intersección f_Z de f_X y *e* es transversal, es decir, f_Z es un esquema reducido y, obviamente, éste se encuentra dentro del subesquema reducido e irreducible *z* de *e* (abusando siempre de notación). Por tanto, la intersección de $f_X e$ con *K* es la intersección de $f_X e$ con la intersección de *K* y *z* que hemos visto en 5.5 que es transversal, es decir, que es un esquema reducido, y éste es la unión de v_Z y *r*. Por tanto, la intersección esquemática $f_X Ke$ en *X* es la intersección esquemática de esquemas reducidos $f_Z \mathbf{i} v_Z + r\mathbf{p}$ dentro de *Z*, y así la intersección $f_X a_{04}^{11} Ke$ en *X* es la intersección $f_Z \langle v_Z^P + r^P \rangle$ dentro de *Z*, donde v_Z^P y r^P son las intersecciones transversales v_Z **6** a_{04}^{11} y *r* **6** a_{04}^{11} . Estos dos números $f_Z v_Z^P y f_Z r^P$ son, por definición, los números de curvas de la familia que pasan por el punto *P* con dirección vertical, y el número de cúspides en *P* de curvas de la familia. Esto prueba 5.6.

BIBLIOGRAFÍA

[AMS] Arrondo, E.-Mallavibarrena, R.-Sols, I.: *Proof of the Shubert's conjectures on double contacts.* Springer L.N.M. 1436 (1990), 1-29.

[ASS] Arrondo, E.-Speiser, R.-Sols, I.: *Global moduli for contacts*. Arkiv för Mathematik 35 (1997), 1-57.

[B] Briançon, J.: Description de Hilbⁿ \mathbb{C} áx, yâ. Invent. Math. 41, 45-89 (1977).

[BB1] Bialynicki-Birula, A.: *Some theorems on actions of algebraic groups*. Ann. of Math., vol. 98, n° 3 (1973), 480-497.

[BB2] Bialynicki-Birula, A.: Some properties of the descompositions of algebraic varieties determined by actions of a torus. Bull. de l'Academie Polonaise des Sciences. Série des Sci. Math. astr. et phys. Vol. 24, n°9 (1976), 667-674.

[BI] Briançon, J.-Iarrobino, A.: Dimension of the punctual Hilbert scheme. Journal of Algebra 55 (1978), 536-544.

[C] Collino, A.: Evidence for a conjecture of Ellinsgrud and Strømme on the Chow ring of $Hilb^d \mathbb{P}^2$. Illinois J. of Math. Vol.32, N° 2 (1988), 171-210.

[CF] Collino, A.-Fulton, W.: Intersection rings of spaces of triangles. Colloque en l'honneur de Pierre Samuel (Orsay, 1987). Mém. Soc. Math. France (N. S.) N° 38 (1989), 75-117.

[CK1] Colley, S.J.-Kennedy, G.: *A higher-order contact formula for plane curves*, Comm. Algebra 19 (1991), 479-508.

[CK2] Colley, S.J.-Kennedy, G.: *Triple and quadruple contact of plane curves*, in *Enumerative Algebraic Geometry* (Kleiman, S.L. and Thorup, A., eds.), Contemp. Math.

123, pp. 31-59, Amer. Math. Soc., Providence, R.I., 1991.

[Ch1] Cheah, J.: On the cohomology of Hilbert scheme of points. J. Algebraic Geometry (1996), 479-511.

[Ch2] Cheah, J.: Cellular descompositions for nested Hilbert schemes of points. Pacific Journal of Mathematics, Vol. 183, N° 1, 1998.

[Ch3] Cheah, J.: Thesis, Chicago 1994. The cohomology of smooth nested Hilbert schemes of points.

[Che] Chevalley, C.: Anneaux de Chow et Applications, Séminaire Chevalley.Secrétariat. Math. Paris (1958).

[DL] Dias, D.-Le Barz, P.: Configuration Spaces over Hilbert Schemes and Applications. Lecture Notes in Math. Springer (1996), Vol. 1647 Paru(e)-Publication dans une Revue à Comité de Lecture.

[EI] Emsalem, J.-Iarrobino, A.: Some zero-dimensional generic singularities: finite algebras having small tangent spaces. Compositio Math. 36 (1978), 145-188.

[EL1] Elencwajg, G.-Le Barz, P.: *Una base de Pic* $(Hilb^k \mathbb{P}^2)$. Comptes Rendus Acad. Sci. sér. I Math. 297 (1983), 175-178.

[EL2] Elencwajg, G.-Le Barz, P.: Determination de l'anneau de Chow de Hilb³ P². Comptes rendus, 301. Série I, 1985, p. 635-638.

[EL3] Elencwajg, G.-Le Barz, P.: Explicit computations in Hilb³ P², in Algebraic Geometry, Sundance 1986 (A. Holme and R. Speiser eds.), Lect. Notes in Math. 1311, Springer-Verlag 1988, pp. 76-100. [EL4] Elencwajg, G.-Le Barz, P.: L'anneau de Chow des triangles du plan. Compositio Math. 71, 1989, N° 1, 85-119.

[ES1] Ellinsgrud, G.-Strømme, S. A.: On the homology of the Hilbert sheme of points in the plane. Invent. Math. 87 (1987), 343-352.

[ES2] Ellinsgrud, G.-Strømme, S. A.: *On a cell descomposition of the Hilbert scheme of points in the plane.* Invent. Math. 91 (1988), 365-370.

[ES3] Ellinsgrud, G.-Strømme, S. A.: On the Hilbert scheme of 3 points in the plane. Conf. in Rocca di Papa, 511-521.

[F] Fantechi, B.: Base of the homology groups of the Hilbert scheme of points on a surface. Preprint.

[Fo1] Fogarty, J.: Algebraic families on an algebraic surface. Amer. J. Math. 10 (1968), 511-521.

[Fo2] Fogarty, J.: Algebraic families on an algebraic surface II: Picard scheme of the punctual Hilbert scheme. Amer. J. Math. 95 (1974), 660-687.

[Fu] Fulton, W.: *Intersection Theory*. Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag (1984).

[FG] Fantechi, B.-Göttsche, L.: *The cohomology ring of the Hilbert scheme of 3 points on a smooth projective variety.* J. reine angew. Math. 439 (1993), 147-158.

[FKM] Fulton, W.-Kleiman, S.-MacPherson, R.: *About the enumeration of contacts*, in Algebraic Geometry-Open Problems. Springer. L. Notes 997 (1983), 156-196.

[G1] Göttsche, L.: The Betti numbers of the Hilbert scheme of points on a smooth -97-

projective surface. Math. Ann. 286, (1990) 193-207.

[G2] Göttsche, L.: *Hilbertschemata nulldimensionaler Unterschemata glatter Varietäten*. Bonner Math. Schriften 243, Univ. Bonn, Bonn 1991.

[Gr] Grothendieck, A.: Techniques de construction et théorémes d'existence en geometrie algébrique IV: Les schémes de Hilbert. Sem. Bourbaki 221 (1960/61).

[GH] Griffiths, P.-Harris, J.: Principles of algebraic geometry. Addison Wesley, 1977.

[GS] Göttsche, L.-Soergel, W.: Perverse sheaves find the cohomology of Hilbert schemes of smooths algebraic surfaces. Math. Ann. 296 (1993), 235-245.

[H1] Hartshorne, R.: Algebraic Geometry. GTM. 52. Springer Verlag, New York-Heidelberger, 1977.

[H2] Hartshorne, R.: Connectedness of the Hilbert scheme. Publ. Math. IHES, 29, (1966) 261-304.

[Hi] Hilbert, D.: Sur les problèmes futurs des Mathematiques. Comptes rendus du deuxième Congrès International des Mathématiciens (Paris), 58-114. La traducción al inglés se encuentra en Mathematical Problems. Bull. Ann. Math. Soc. 50, (1902) 437-479.

[Hir] Hirschowitz, A.: *Le group de Chow équivariant*. Comptes rendus. t. 298 (1984)87.

[HS] Hermoso, C.-Sols, I.: *Bases of the homology spaces of the Hilbert scheme of points in an algebraic surface*. Revista Matemática de la U.C.M. Vol. 9, nº 1, (1996) 53-66.

[I1] Iarrobino, A.: *Reducibility of the families of 0-dimensional schemes on a variety*.Invent. Math. 15 (1972), 72-77.

[I2] Iarrobino, A.: *Punctual Hilbert schemes*. Bull. An. Math. Soc. 78 (1972), 819-823.Memoirs of the AMS. 188, 1977.

[13] Iarrobino, A.: *Hilbert schemes of points: overview of last ten years*. Proc. of Symp.in Pure Math., Vol. 46, Part 2, Algebraic Geometry, Bowdoin (1987) 297-320.

[K1] Kleiman, S.: *The enumerative theory of singularities*. Proc. Sym. Oslo, 1976 (P. Holm. ed.) 297-396. Sythoff. Noordhoff Int. Publ.

[K2] Kleiman, S.: *Problem* 15. *Rigorous foundation of Schubert's enumerative calculus*, in Proceedings of Symposia in Pure Mathematic, Vol. 2, A.M.S., Providence (1976).

[K3] Kleiman, S.: Multiple point formulas II: the Hilbert scheme. Enumerative Geometry, Lect. Notes Math. 1436 (1990), 101-138.

[K4] Kleiman, S.: Intersection theory and enumerative geometry. Bowdoin Proceedings II, 1985, 321-370.

[KS] Kleiman, S.-Speiser, R.: *Enumerative geometry of cuspidal plane cubics*.
 Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, 227-288, CMS Conf.
 Proc. 6, Amer. Math. Soc. Providence R.I. 1986.

[L] Lehn, M.: Chern classes of tautological sheaves on Hilbert schemes of points on surfaces. Invent. Math. 136 (1999), 157-207.

[LB1] Le Barz, P.: Validité de certaines formules de géométrie énumérative. Comptes rendus, 289, (1979), 755-758.

[LB2] Le Barz, P.: Formules multisecantes pour les courbes gauches quelconques. Enum. Geometry and Classical Alg. Geometry. Birkhauser 1982. [LB3] Le Barz, P.: *Quelques calculs dans la varieté des alignements*. Advances in Mathematics 64, 1987, N° 2, 87-117.

[LB4] Le Barz, P.: La varieté des triples complets. Duke Mathematical Journal, Vol. 57, N° 3 (1988)

[M1] Mallavibarrena, R.: Les groupes de Chow de Hilb⁴ \mathbb{P}^2 et une base pour A^2 , A^3 , $A^{2d?2}$, $A^{2d?3}$ de Hilb^d \mathbb{P}^2 . Comptes rendus, t 303 I 13, 1986.

[M2] Mallavibarrena, R.: Validité de la formule classique des trisecantes stationnaires.Comptes rendus, t 303 I 16, 1986.

[M3] Mallavibarrena, R.: El método de las bases de los grupos de Chow de Hilb^d \mathbb{P}^2 en geometría enumerativa. Tesis. 1987.

[MS] Mallavibarrena, R.-Sols, I.: *Bases for the homology groups of the Hilbert scheme of points in the plane*. Compositio Mathematica 74 (1990), 169-201.

[N] Nakajima, H.: Lectures on Hilbert schemes of points on surfaces. Univ. Lecture Series, Vol. 18, AMS, 1999.

[R1] Roberts, J.: Chow's moving lemma: an appendix to lectures of S. Kleiman, in Algebraic Geometry, Oslo 1970. Wolters-Noordhoff (1972), 89-96.

[R2] Roberts, J.: Old and new results about the triangle variety. Proc. Sundance Conf.,1986; Lect. Notes in Math. 1311, Springer-Verlag, Berlin, 1988, pp. 197-219.

[Ro1] Roselló, F.: *Tesis*, Univ. de Barcelona 1988. *Cálculo de los grupos de Chow y aplicaciones*.

[Ro2] Roselló, F.: Les groupes de Chow de quelques schèmes qui paramétrisent des -100points coplanaires. Comptes rendus, t. 303 série I, Nº 8, 363-366.

[Ro3] Roselló, F.: *The Chow-Ring of HIlb*³ (ℙ³) in *Enumerative Geometry*, (Sitges 1987) (Xambó-Descamps, S., ed.), Lect. Notes Math. 1436 pp. 225-255, Springer-Verlag, Berlin-Heidelberger 1990.

[Ro4] Roselló, F.: Triple contact formulas in P³, in Enumerative Algebraic Geometry
(Kleiman S. L. and Thorup, A. eds.), Contemp. Math. 123, pp. 223-246, Amer. Math. Soc.,
Providence, R. I., 1991.

[RS1] [RS2] [RS3] Roberts, J.-Speiser, R.: *Enumerative geometry of triangles I, II, III*.
 Comm. in Alg. 12(10), 1213-1255 (1984); 14(1), 155-191 (1986); 15(9), 1929-1966 (1987).

[RX] Roselló, F.-Xambó, S.: Computing Chow groups, in: Algebraic Geometry Sundance 1986 (eds. A. Holme and R. Speiser), Lect. Notes in Math. 1311, Springer-Verlag, pp. 220-234.

[S1] Schubert, H.: *Anzahlgeometrische Behandlung des Dreiecks*. Math. Ann. XVII (1880), 153-212.

[S2] Schubert, H.: Kalkul der abzählenden Geometrie. Teubner (1879). Reeditado por Springer en 1979.

[Se] Semple, J. G.: The triangle as a geometric variable. Mathematika 1 (1954), 80-88.

[SeR] Semple, J. G.-Roth, L.: *Introduction to algebraic geometry*. Clarendom Press, 1949, Oxford.

[Ser] Serre, J.P.: Algèbre Locale. Multiplicités. LNM 11 (1965).

[Sp1] Speiser, R.: Enumerating contacts, in Algebraic Geometry, Bowdoin 1985

(Bloch, S. J., ed.), Proc. Sympos. Pure Math. 46:2, pp. 401-418, Amer. Math. Soc., Providence, R. I., 1987.

[Sp2] Speiser, R.: *Derived triangles and differential systems*, in *Projective Geometry with Applications* (Ballico, E., ed.), Lecture Notes in Pure and Appl. Math. 166, pp. 97-109, Dekker, New York, 1994.

[V] Vasallo, V.: Justification de la méthode fonctionelle pour les courbes gauches.Comptes rendus, 303, Série I, p. 299-302.

[X] Xambó, S.: Francesco Severi and the principle of conservation of number.
 Suplemento a Rend. del Circolo Matematico di Palermo, serie II, Nº 36, 1994.

[Z] Zeuthen, H.G.: Comptes rendus, t. 809.

Apéndice

MATRICES DE INTERSECCIÓN

1. Matrices de intersección de H 6 \langle S,Q \rangle

 $H^2 \acute{\text{y}}S, Q \rlap{p} \times H^2 \acute{\text{y}}S, Q \rlap{p} \ \ \ Q$

$$\begin{array}{c|c} a_2^i \\ \hline a_2^i & \mathsf{P}^i \end{array}$$

 $H^{3}\acute{\text{V}}S, Q \rlap{P} \times H^{1}\acute{\text{V}}S, Q \rlap{P} \ \ Q$

$$\begin{array}{c|c} a_3^i \\ \hline a_1^i & \textit{N}^i \end{array}$$

2. Matrices de intersección de H⁶ $\langle Y, Q \rangle$

 $H^5 \acute{y} Y, Q \rlap{p} \times H^1 \acute{y} Y, Q \rlap{p} \ \ \ Q$

$$\begin{array}{c|c} a_3^i \\ \hline a_1^i t \ N^i \end{array}$$

 $H^4 \acute{y} Y, Q \rlap{p} \times H^2 \acute{y} Y, Q \rlap{p} \ \ \ Q$

$$\begin{array}{c|ccc} & a_2^i & t \\ \hline a_2^i t & \mathsf{P}^i & \mathcal{U}^i \\ a_0^1 & 0 & 1 \end{array}$$

 $H^{3}\acute{\mu}Y, Q \rlap{P} \times H^{3}\acute{\mu}Y, Q \rlap{P} \ \ \ Q$

3. Matrices de intersección de H⁶ $\langle Y \times Y, Q \rangle$

$\mathbf{H}^{10} \mathbf{\acute{Y}} \mathbf{Y} \times \mathbf{Y}, \mathbf{Q} \mathbf{\flat} \times \mathbf{H}^{2} \mathbf{\acute{Y}} \mathbf{Y} \times \mathbf{Y}, \mathbf{Q} \mathbf{\flat} \ \ \mathbf{\Diamond} \ \mathbf{Q}$

	a_{42}^{1i}	a_{33}^{ij}	a_{24}^{i1}	t_L	t_R
$a_{02}^{1i}t_L t_R$	P ⁱ	0	0	0	U
$a_{11}^{ij}t_Lt_R$	0	Ŋ ⁱ Ŋ ⁱ	0	0	0
$a_{20}^{i1}t_Lt_R$	0	0	P^i	U ⁱ	0
$a_{00}^{11}t_R$	0	0	0	1	0
$a_{00}^{11}t_L$	0	0	0	0	1

 $H^8 \acute{\mu} Y \times Y, Q \rlap{p} \times H^4 \acute{\mu} Y \times Y, Q \rlap{p} \ \ \ Q$

	a_{40}^{11}	a_{31}^{ij}	a_{22}^{ij}	a_{13}^{ij}	a_{04}^{11}	$a_{42}^{1i}t_R$	$a_{33}^{ij^{v}}t_{R}$	$a_{24}^{i1}t_R$	$a_{42}^{1i}t_L$	$a_{33}^{i^{v_j}j}t_L$	$a_{24}^{i1}t_L$	$t_L t_R$
$a_{04}^{11}t_L t_R$	1	0	0	0	0	U^i	0	0	0	0	0	0
$a_{13}^{ij}t_Lt_R$	0	N ⁱ N ^j	0	0	0	0	N ⁱ U ^{ij™}	0	0	0	0	0
$a_{22}^{ij}t_Lt_R$	0	0	$\mathbf{P}^i\mathbf{P}^j$	0	0	0	0	$P^i U^j$	$\mathbf{P}^{j}U^{i}$	0	0	U ⁱ U ^j
$a_{31}^{ij}t_Lt_R$	0	0	0	N ⁱ N ^j	0	0	0	0	0	N ^j U ^{ii™}	0	0
$a_{40}^{11} t_L t_R$	0	0	0	0	1	0	0	0	0	0	U^i	0
$a_{02}^{1i}t_L$	0	0	0	0	0	P^i	0	0	0	0	0	0
$a_{11}^{ij}t_L$	0	0	0	0	0	0	N ⁱ N ^j	0	0	0	0	0
$a_{20}^{i1}t_L$	0	0	0	0	0	0	0	P^i	0	0	0	U^i
$a_{02}^{1i}t_R$	0	0	0	0	0	0	0	0	P^i	0	0	U^i
$a_{11}^{ij}t_R$	0	0	0	0	0	0	0	0	0	N ⁱ N ^j	0	0
$a_{20}^{i1}t_R$	0	0	0	0	0	0	0	0	0	0	P^i	0
a_{00}^{11}	0	0	0	0	0	0	0	0	0	0	0	1

 $H^6 \acute{\eta} Y \times Y, Q \rlap{p} \times H^6 \acute{\eta} Y \times Y, Q \rlap{p} \ \ _\circ \ Q$

	a_{20}^{i1}	a_{11}^{ij}	a_{02}^{1i}	$a_{40}^{11}t_R$	$a_{31}^{ij}t_R$	$a_{22}^{ij}t_R$	$a_{13}^{ij^{v}}t_{R}$	$a_{04}^{11}t_R$	$a_{40}^{11}t_L$	$a_{31}^{i^{v_j}t_L}$	$a_{22}^{ji}t_L$	$a_{13}^{ij}t_L$	$a_{04}^{11}t_L$	$a_{42}^{1j}t_Lt_R$	$a_{33}^{i^{\vee}j^{\vee}}t_Lt_R$	$a_{24}^{j1}t_Lt_R$
$a_{24}^{i1}t_Lt_R$	Р ^{<i>i</i>}	0	0	0	0	₽ <i>ⁱ U^j</i>	0	0	U^i	0	0	0	0	$U^i U^j$	0	0
$a_{33}^{ij}t_Lt_R$	0	N ⁱ N ^j	0	0	0	0	N ⁱ U ^{ij™}	0	0	N ^j U ⁱⁱ ^v	0	0	0	0	$U^{ii^{*}}U^{jj^{*}}$	0
$a_{42}^{1i}t_Lt_R$	0	0	P^i	0	0	0	0	U^i	0	0	<i>U</i> ^j P ⁱ	0	0	0	0	$U^{j}U^{i}$
$a_{04}^{11}t_L$	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
$a_{13}^{ij}t_L$	0	0	0	0	N ⁱ N ^j	0	0	0	0	0	0	0	0	0	0	0
$a_{22}^{ij}t_{L}$	0	0	0	0	0	P^iP^j	0	0	0	0	0	0	0	$U^i P^j$	0	0
$a_{31}^{ij}t_L$	0	0	0	0	0	0	N ⁱ N ^j	0	0	0	0	0	0	0	<i>№ U^{ii*}</i>	0
$a_{40}^{11}t_L$	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	U ^j
$a_{04}^{11}t_R$	0	0	0	0	0	0	0	0	1	0	0	0	0	U ^j	0	0
$a_{13}^{ij}t_R$	0	0	0	0	0	0	0	0	0	N ⁱ N ^j	0	0	0	0	N ⁱ U ^{jj*}	0
$a_{22}^{ij}t_R$	0	0	0	0	0	0	0	0	0	0	P^iP^j	0	0	0	0	$P^i U^j$
$a_{31}^{ij}t_R$	0	0	0	0	0	0	0	0	0	0	0	N ⁱ N ^j	0	0	0	0
$a_{40}^{11}t_R$	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
a_{02}^{1i}	0	0	0	0	0	0	0	0	0	0	0	0	0	P^i	0	0
a_{11}^{ij}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	N ⁱ N ^j	0
a_{20}^{i1}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	P ⁱ

 $H^{10}\acute{\mathtt{Y}}X,Q {\clubsuit} \times H^{2}\acute{\mathtt{Y}}X,Q {\clubsuit} \ \ , \ Q$

t_L	t_R	е
0	U ⁱ	0
0	0	0
U ⁱ	0	0
1	0	0
0	1	0
0	0	1
	t_L 0 U^i 1 0 0	$\begin{array}{ccc} t_{L} & t_{R} \\ 0 & U^{i} \\ 0 & 0 \\ U^{i} & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}$

$H^8\acute{y}X,Q\rlap{P}\times H^4\acute{y}X,Q\rlap{P}\ \ \ Q$

	a_{40}^{11}	a_{31}^{ij}	a_{22}^{ij}	a_{13}^{ij}	a_{04}^{11}	$a_{42}^{1i}t_R$	$a_{33}^{ij^{v}}t_{R}$	$a_{24}^{i1}t_R$	$a_{42}^{1i}t_L$	$a_{33}^{i^{v_j}j}t_L$	$a_{24}^{i1}t_L$	$t_L t_R$	$a_{24}^{i1}e$	$t_L e$	e^2
$a_{04}^{11} t_L t_R$	1	0	0	0	0	U ⁱ	0	0	0	0	0	0	0	0	0
$a_{13}^{ij}t_Lt_R$	0	N ⁱ N ^j	0	0	0	0	N ⁱ U ^{ij™}	0	0	0	0	0	0	0	0
$a_{22}^{ij}t_Lt_R$	0	0	$\mathbf{P}^i \mathbf{P}^j$	0	0	0	0	₽ ^{<i>i</i>} <i>U^j</i>	$\mathbf{P}^{j}\mathbf{U}^{i}$	0	0	U ⁱ U ^j	0	0	0
$a_{31}^{ij}t_Lt_R$	0	0	0	Ŋ ⁱ Ŋ ⁱ	0	0	0	0	0	N ^j U ⁱⁱ ^v	0	0	0	0	0
$a_{40}^{11} t_L t_R$	0	0	0	0	1	0	0	0	0	0	U^i	0	0	0	0
$a_{02}^{1i}t_L$	0	0	0	0	0	P^i	0	0	0	0	0	0	0	0	0
$a_{11}^{ij}t_L$	0	0	0	0	0	0	N ⁱ N ^j	0	0	0	0	0	0	0	0
$a_{20}^{i1}t_L$	0	0	0	0	0	0	0	P^i	0	0	0	U^i	0	0	0
$a_{02}^{1i}t_R$	0	0	0	0	0	0	0	0	P^i	0	0	U^i	0	0	0
$a_{11}^{ij}t_R$	0	0	0	0	0	0	0	0	0	N ⁱ N ^j	0	0	0	0	0
$a_{20}^{i1}t_R$	0	0	0	0	0	0	0	0	0	0	P^i	0	0	0	0
a_{00}^{11}	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
$a_{24}^{i1}t_L e^2$	0	0	0	0	0	0	0	0	0	0	0	0	P^i	U ⁱ	0
$a_{04}^{11}e^2$	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2
$a_{04}^{11}t_L e$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

 $H^{6}YX, QP \times H^{6}YX, QP \ Q$

	a_{20}^{i1}	a_{11}^{ij}	a_{02}^{1i}	$a_{40}^{11}t_R$	$a_{31}^{ij}t_R$	$a_{22}^{ij}t_R$	$a_{13}^{ij^v}t_R$	$a_{04}^{11}t_R$	$a_{40}^{11}t_L$	$a_{31}^{i^{v_j} j} t_L$	$a_{22}^{ji}t_L$	$a_{13}^{ij}t_L$	$a_{04}^{11}t_L$	$a_{42}^{1j}t_Lt_R$	$a_{33}^{i^{v}j^{v}}t_{L}t_{R}$	$a_{24}^{j1}t_Lt_R$	$a_{04}^{11}e$	$a_{24}^{i1}t_L e$	$a_{24}^{i1}e^2$	$t_L e^2$
$a_{24}^{i1}t_Lt_R$	P ⁱ	0	0	0	0	₽ <i>ⁱ U^j</i>	0	0	U^i	0	0	0	0	$U^i U^j$	0	0	0	0	0	0
$a_{33}^{ij}t_Lt_R$	0	N ⁱ N ^j	0	0	0	0	N ⁱ U ^{jj}	0	0	N ^j U ⁱⁱ ^v	0	0	0	0	$U^{ii^*}U^{jj^*}$	0	0	0	0	0
$a_{42}^{1i}t_Lt_R$	0	0	P^i	0	0	0	0	U^i	0	0	$U^{i} \mathbf{P}^{i}$	0	0	0	0	$U^{j}U^{i}$	0	0	0	0
$a_{04}^{11}t_L$	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$a_{13}^{ij}t_L$	0	0	0	0	N ⁱ N ^j	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$a_{22}^{ij}t_L$	0	0	0	0	0	P^iP^j	0	0	0	0	0	0	0	$U^i P^j$	0	0	0	0	0	0
$a_{31}^{ij}t_L$	0	0	0	0	0	0	N ⁱ N ^j	0	0	0	0	0	0	0	N ^j U ⁱⁱ ^v	0	0	0	0	0
$a_{40}^{11}t_L$	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	U ^j	0	0	0	0
$a_{04}^{11}t_R$	0	0	0	0	0	0	0	0	1	0	0	0	0	U ^j	0	0	0	0	0	0
$a_{13}^{ij}t_R$	0	0	0	0	0	0	0	0	0	N ⁱ N ^j	0	0	0	0	$N^i U^{jj^*}$	0	0	0	0	0
$a_{22}^{ij}t_R$	0	0	0	0	0	0	0	0	0	0	P^iP^j	0	0	0	0	$P^i U^j$	0	0	0	0
$a_{31}^{ij}t_R$	0	0	0	0	0	0	0	0	0	0	0	N ⁱ N ^j	0	0	0	0	0	0	0	0
$a_{40}^{11}t_R$	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
a_{02}^{1i}	0	0	0	0	0	0	0	0	0	0	0	0	0	P^i	0	0	0	0	0	0
a_{11}^{ij}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	N ⁱ N ^j	0	0	0	0	0
a_{20}^{i1}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	P^i	0	0	0	0
$t_L e^2$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	U^i	0	?2e
$a_{24}^{i1}e^2$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	P^i	$2P^i$	0
$a_{24}^{i1}t_L e$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	P^i	U^i
$a_{04}^{11}e$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1