UNIVERSIDAD COMPLUTENSE DE MADRID

FACULTAD DE CIENCIAS QUÍMICAS

Departamento de Química Analítica

DETERMINACIÓN DE PASTIFICANTES Y ANTIOXIDANTES MEDIANTE TÉCNICAS ELECTROANALÍTICAS EN SISTEMAS DISPERSOS

MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR

Araceli González Cortés

Bajo la dirección de los doctores

José Manuel Pingarrón Carrazón Paloma Yánez-Sedeño

Madrid, 1994

ISBN: 84-669-1325-4

19 279

UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS QUÍMICAS DEPARTAMENTO DE QUÍMICA ANALÍTICA

DETERMINACIÓN DE PLASTIFICANTES Y ANTIOXIDANTES MEDIANTE TÉCNICAS ELECTROANALÍTICAS EN SISTEMAS DISPERSOS

Directores: José Manuel Pingarrón Carrazón Paloma Yáñez-Sedeño Orive

ARACELI GONZÁLEZ CORTÉS MADRID, 1994

UNIVERSIDAD COMPLUTENSE FACULTAD DE CIENCIAS QUIMICAS DEPARTAMENTO DE QUIMICA ANALITICA

> LUIS MARÍA POLO DÍEZ, CATEDRÁTICO Y DIRECTOR DE ESTE DEPARTAMENTO

> CERTIFICO: Que el presente trabajo, titulado "Determinación de plastificantes y antioxidantes mediante técnicas electroanalíticas en sistemas dispersos", ha sido realizado en este departamento por Dña. Araceli González Cortés, bajo la dirección del Dr. José Manuel Pingarrón Carrazón y la Dra. Paloma Yáñez-Sedeño Orive, Profesores Titulares de este departamento, constituyendo la Tesis Doctoral de su autora.

> > Madrid, Marzo 1994

A Santi A mis padres El trabajo que se describe en la presente Memoria ha sido realizado bajo la dirección de los doctores José Manuel Pingarrón Carrazón y Paloma Yáñez-Sedeño Orive y se ha llevado a cabo íntegramente en el Departamento de Química Analítica de la Facultad de Ciencias Químicas de la Universidad Complutense de Madrid.

Estas páginas las quiero dedicar a expresar mi reconocimiento a aquellas personas que he conocido a lo largo de estos años y sin las cuales todo hubiera sido mucho más difícil, si no imposible.

Lo primero que he de mencionar es mi incorporación al grupo de investigación del que formo parte actualmente a través del Profesor Guillermo López Cueto de la Universidad de Alicante, quien me puso en contacto con el Director de este Departamento, el Profesor Luis María Polo Díez, el cual puso a mi disposición todos los servicios generales que este departamento posee, y al mismo tiempo me aconse jó el comienzo de mi actividad investigadora en la sección de Electroquímica Analítica.

Como todos sabemos, una Tesis es habitualmente un trabajo de investigación que, en ocasiones, resulta duro y difícil y surgen problemas adicionales, lo que hace que a veces se lleve muy cuesta arriba. En mi caso, aunque no ha sido una excepción, todo ha resultado mucho más llevadero y ésto se debe en gran parte a la labor realizada por Jose y Paloma, en quienes he encontrado, durante todos estos años, el mejor e jemplo de dedicación al trabajo, interés y preocupación por los demás, además de una infinita paciencia y apoyo constante tanto desde el punto de vista científico como humano.

Del buen ambiente de trabajo que he disfrutado son responsables todas las personas que han pasado por el laboratorio de Electroanálisis: Almudena, Elena, Alicia y Julio que me ayudaron en los comienzos; Asun y Carolina que, además de darme ánimos cuando las cosas no salen, han estado siempre dispuestas a prestarme su ayuda sobre todo en la escritura de esta Memoria que para mí ha sido la etapa más complicada por el manejo de los programas de tratamiento de textos, gráficos, impresora, etc; Julio, ha estado siempre ahí para todo lo que he necesitado, y en ocasiones, ha aguantado pacientemente mis malos humores; Pedro, Ernesto y Pilar, quienes colaboraron directamente en la realización de la presente Memoria; mis restantes compañeros de laboratorio: María, Lourdes, Concha, Rocío, Miguel Angel y César, que con su presencia han hecho más amenas las jornadas de trabajo.

Durante los dos últimos años he impartido clases prácticas de laboratorio de lo cual he de decir que ha sido una grata experiencia sobre todo si se cuenta con amigos como Paloma y Javier quienes me han enseñado mucho de lo que he aprendido; María, Yolanda y Pilar a quienes he acudido frecuentemente con la dudas que se me hayan planteado.

No puedo olvidar a Santi, Ana, M^a José, Mar, José Angel, Javier, Elena, Marga, M^a José, Javier, todos ellos pertenecientes al laboratorio de Fotoquímica (contiguo al nuestro) del Departamento de Química Orgánica de esta Facultad, y a Pilar y Javier del mismo departamento, pues han contribuido a hacer más agradable el trabajo diario, además de poner a mi disposición cualquier cosa (material, reactivo, etc.) que haya podido necesitar.

Sobre todo durante la última etapa de esta Memoria, he necesitado en muchas ocasiones salir a horas poco habituales de la Facultad, por lo que ha sido estupendo tener siempre a alguien esperándome para dar una vuelta y sentarnos a tomar una cerveza mientras comentamos los hechos del día, además de darme, esa dosis de ánimos que tanto me ha hecho falta en no pocas ocasiones. Naturalmente, me estoy refiriendo a Santi, gracias por estar ahí.

Quiero también recordar a todas aquellas personas, cuya labor en la Facultad no es docente ni investigadora, con las que he tenido trato, y que me han ayudado a solucionar algunos problemas que me han surgido.

No olvido tampoco los buenos ratos, fuera de la Facultad y dentro de ella, que he pasado junto a amigos entre los cuales incluyo a Arturo, Angel, Santi, Julio, Luis y Begoña. Todos los que nos dedicamos a la investigación sabemos que es difícil no perder el contacto con los amigos cuyo trabajo no es el mismo que el nuestro. Este no ha sido mi caso, pues desde hace unos años nos venimos encontrando todos los viernes, después del trabajo y sin previo aviso en Delia's, aquí incluyo a Elena, José Angel, Santi, Ana, Javier y Myriam, Juanan, Alicia, Fernando, Eduardo y Gloria, Julio y Paloma, Pilar y Feito, Mari Cruz y Pedro.

También quiero citar a mis compañeras de piso Elena, Ana, Carmen, Laura y Mercedes, con quienes he compartido, aparte de la vivienda, muchos ratos agradables y no tanto; ellas también han soportado, a veces, mis desánimos y me han ayudado en esos momentos.

Asimismo, deseo expresar mi agradecimiento a la C.I.C.Y.T. (Programa Nacional de Tecnología de Alimentos) por la financiación del Proyecto de Investigación ALI 89-0055 y a la Comunidad (Plan Regional De Investigación C009/91), de los cuales formo parte como Investigadora y que han supuesto una inestimable ayuda para la consecución de los resultados que se recogen en esta Memoria.

Finalmente, muchas gracias a toda mi familia por su constante e incondicional apoyo durante todo el tiempo que ha durado la realización de este trabajo.

INDICE

n /	•
10	ama
ւս	Enia

	-
I INTRODUCCION	1
I.1 CARACTERISTICAS GENERALES DE LOS	
PLASTIFICANTES	4
I.1.1 MIGRACION ENVASE-ALIMENTO	5
I.2 CARACTERISTICAS GENERALES DE LOS	
ANTIOXIDANTES	7
I.2.1 MECANISMOS DE ACCION DE LOS	
ANTIOXIDANTES FENOLICOS	7
I.2.2 TIPOS DE ANTIOXIDANTES FENOLICOS	9
I.3 ANTECEDENTES BIBLIOGRAFICOS	15
I.3.1 DETERMINACION DE PLASTIFICANTES	
DERIVADOS DEL ACIDO FTALICO	17
I.3.2 DETERMINACION DE ANTIOXIDANTES	
FENOLICOS EN ALIMENTOS	30
I.4 ASPECTOS DE INTERES RELATIVOS A LOS	
MEDIOS DISPERSOS	49
I.4.1 DISOLUCIONES MICELARES	49
I.4.2 MEDIOS EMULSIONADOS	54
I.5 TECNICAS ELECTROANALITICAS UTILIZADAS	60
I.5.1 CARACTERISTICAS GENERALES DE LA	
VOLTAMPEROMETRIA DE ONDA CUADRADA	60
I.6 OBJETIVO Y PLAN DE TRABAJO	65
II <u>PARTE EXPERIMENTAL</u>	67
II.1 INSTRUMENTACION	69
II.1.1 APARATOS	69
II.1.2 ELECTRODOS Y CELULAS DE TRABAJO	69
II.2 REACTIVOS	70

II.3 PROCEDIMIENTOS EXPERIMENTALES	72
II.3.1 PREPARACION DE LAS DISOLUCIONES	
PATRON	72
II.3.1.1 PREPARACION DE LAS DISOLUCIONES	
MICELARES	73
II.3.1.2 PREPARACION DE LAS EMULSIONES	
ACEITE/AGUA	73
II.3.2 PRETRATAMIENTO DEL ELECTRODO	
DE CARBONO VITRIFICADO	74
II.3.3 OBTENCION DE LOS POLAROGRAMAS Y	
VOLTAMPEROGRAMAS	74
II.3.4 DETERMINACION DE FTALATO DE DIMETILO	
Y FTALATO DE DIETILO EN LECHE MEDIANTE	
POLAROGRAFIA DIFERENCIAL DE IMPULSOS	75
II.3.5 DETERMINACION DE BHA EN GOMA DE	
MASCAR MEDIANTE VOLTAMPEROMETRIA	
DIFERENCIAL DE IMPULSOS SOBRE UN	
ELECTRODO DE CARBONO VITRIFICADO	76
II.3.6 DETERMINACION DE TBHQ EN ACEITES	
MEDIANTE POLAROGRAFIA DIFERENCIAL DE	
IMPULSOS	76
II.3.7 DETERMINACION DE TBHQ EN PALOMITAS DE	
MAIZ MEDIANTE VOLTAMPEROMETRIA DE	
ONDA CUADRADA SOBRE UN ELECTRODO	
DE GOTA COLGANTE DE MERCURIO	77
III <u>RESULTADOS Y DISCUSION</u>	79
III.1 ESTUDIO ELECTROANALÍTICO DE LOS	
PLASTIFICANTES FTALATO DE DIMETILO, DE	
DIETILO Y DE DIBUTILO MEDIANTE TÉCNICAS	
POLAROGRÁFICAS EN MEDIOS MICELARES Y	
EMULSIONADOS	81

III.1.1 ESTUDIOS PREVIOS EN MEDIO ACETONITRILO	
Y ACETONITRILO/AGUA	83
III.1.2 DISOLUCIONES MICELARES	84
III.1.2.1 Elección del tensoactivo	84
III.1.2.2 Influencia de la concentración de	
tensoactivo sobre los parámetros de la	
respuesta polarográfica	85
III.1.2.3 Influencia del pH	91
III.1.2.4 Naturaleza de la corriente límite de los	
procesos de reducción polarográfica	96
III.1.2.5 Estudio de la reversibilidad de los	
procesos de reducción	99
III.1.2.5.1 Voltamperometría cíclica	99
III.1.2.5.2 Polarografía de de muestreo de corriente	101
III.1.2.5.2.1 Análisis logarítmico de los	
polarogramas	101
III.1.2.5.2.2 Criterio E _{3/4} -E _{1/4}	115
III.1.2.6 Determinación del parámetro αn_{a}	11 6
III.1.2.7 Características analíticas de los	
métodos desarrollados mediante polarografía	
diferencial de impulsos	
	121
III.1.3 EMULSIONES ACEITE/AGUA	121 125
III.1.3 EMULSIONES ACEITE/AGUA III.1.3.1 Elección del disolvente orgánico	121 125 125
III.1.3 EMULSIONES ACEITE/AGUAIII.1.3.1 Elección del disolvente orgánicoIII.1.3.2 Optimización de las variables	121 125 125
 III.1.3 EMULSIONES ACEITE/AGUA III.1.3.1 Elección del disolvente orgánico III.1.3.2 Optimización de las variables experimentales de la emulsión 	121 125 125 125
 III.1.3 EMULSIONES ACEITE/AGUA III.1.3.1 Elección del disolvente orgánico III.1.3.2 Optimización de las variables experimentales de la emulsión III.1.3.3 Influencia del pH 	121 125 125 125 135
 III.1.3 EMULSIONES ACEITE/AGUA III.1.3.1 Elección del disolvente orgánico III.1.3.2 Optimización de las variables experimentales de la emulsión III.1.3.3 Influencia del pH III.1.3.3.1 Polarografía de de muestreo de corriente 	121 125 125 125 135 135
 III.1.3 EMULSIONES ACEITE/AGUA III.1.3.1 Elección del disolvente orgánico III.1.3.2 Optimización de las variables experimentales de la emulsión III.1.3.3 Influencia del pH III.1.3.3.1 Polarografía dc de muestreo de corriente III.1.3.3.2 Polarografía diferencial de impulsos 	121 125 125 125 135 135 138
 III.1.3 EMULSIONES ACEITE/AGUA III.1.3.1 Elección del disolvente orgánico III.1.3.2 Optimización de las variables experimentales de la emulsión III.1.3.3 Influencia del pH III.1.3.3.1 Polarografía de de muestreo de corriente III.1.3.3.2 Polarografía diferencial de impulsos III.1.3.4 Naturaleza de la corriente límite de los 	121 125 125 125 135 135 138

III.1.3.4.1 Efecto de la altura corregida del	
depósito de mercurio	143
III.1.3.4.2 Influencia de la concentración de	
plastificante sobre la corriente	
límite	146
III.1.3.5 Estudio de la reversibilidad de los	
procesos de reducción	148
III.1.3.5.1 Voltamperometría cíclica	148
III.1.3.5.2 Polarografía de de muestreo de corriente	149
III.1.3.5.2.1 Análisis logarítmico de los	
polarogramas	149
III.1.3.5.2.2Criterio E _{3/4} -E _{1/4}	164
III.1.3.6 Determinación del parámetro αn_{α}	165
III.1.3.7 Determinación de los coeficientes de	
difusión	169
III.1.3.8 Características analíticas de los	
métodos desarrollados mediante	
polarografía diferencial de	
impulsos	170
III.1.3.9 Estudio de interferencias de los distintos	
ftalatos entre sí	172
III.1.3.10 Determinación de ftalato de dimetilo y	
ftalato de dietilo en leche mediante polaro-	
grafía diferencial de impulsos	179
III.2 ESTUDIO ELECTROANALITICO DE LOS	
ANTIOXIDANTES 2-tert-BUTIL-4-METOXIFENOL	
(BHA) Y tert-BUTILHIDROQUINONA (TBHQ)	
EN MEDIOS MICELARES Y EMULSIONADOS	185
III.2.1 DETERMINACIÓN VOLTAMPEROMÉTRICA	
DE 2-tert-BUTIL-4-METOXIFENOL (BHA)	187
III.2.1.1 DISOLUCIONES MICELARES	187
III.2.1.1.1 Elección del tensoactivo	187

III.2.1.1.2 Influencia de la concentración de	
tensoactivo sobre los parámetros de	
la respuesta voltamperométrica	189
III.2.1.1.3 Comportamiento voltamperométrico	
mediante la técnica de barrido lineal	
sobre un electrodo de disco rotatorio	
de carbono vitrificado	190
III.2.1.1.3.1 Influencia del pH sobre	
$E_{1/2} e i_1$	190
III.2.1.1.3.2 Efecto de la velocidad de rotación	n
del electrodo sobre la intensidad	
límite	193
III.2.1.1.3.3 Influencia de la concentración	
sobre la intensidad	
límite	195
III.2.1.1.3.4 Análisis logarítmico de los	
voltamperogramas	197
III.2.1.1.4 Culombimetría a potencial controlado	200
III.2.1.1.5 Comportamiento voltamperométrico	
mediante la técnica de barrido lineal	
sobre un electrodo estacionario de	
carbono vitrificado	202
III.2.1.1.5.1 Influencia del pH sobre	
E _p e i _p	202
III.2.1.1.5.2 Efecto de la velocidad de	
barrido de potencial	
sobre E _p e i _p	2()4
III.2.1.1.6 Voltamperometría cíclica	206
III.2.1.1.7 Comportamiento voltamperométrico	
mediante la técnica diferencial de	
impulsos sobre un electrodo estacionario	
de carbono vitrificado	209

III.2.1.1.7.1 Influencia del pH sobre	
E _p e i _p	209
III.2.1.1.7.2 Influencia de la amplitud del	
impulso aplicado	213
III.2.1.1.8 Características analíticas del método	
desarrollado mediante voltamperometría	
diferencial de impulsos	215
III.2.1.2 EMULSIONES ACEITE/AGUA	218
III.2.1.2.1 Optimización de las variables	
experimentales de la emulsión	218
III.2.1.2.1.1 Influencia de la proporción del	
tensoactivo	218
III.2.1.2.1.2 Influencia del volumen de fase	
orgánica	219
III.2.1.2.1.3 Tiempo de emulsificación	220
III.2.1.2.2 Influencia del pH	
III.2.1.2.2.1 Voltamperometría de barrido	
lineal sobre electrodo estático de	
carbono vitrificado	220
III.2.1.2.2.2 Voltamperometría diferencial de	
impulsos sobre electrodo estático	
de carbono vitrificado	224
III.2.1.2.3 Voltamperometría cíclica	226
III.2.1.2.4 Análisis logarítmico de los	
voltamperogramas obtenidos mediante	
voltamperometría de barrido lineal	
sobre un electrodo de disco rotatorio	
de carbono vitrificado	227
III.2.1.2.5 Características analíticas del	
método desarrollado mediante	
voltamperometría diferencial de	
impulsos	230

111.2.1.2.6 Estudio de interferencias mediante	
voltamperometría diferencial de impulsos	233
III.2.1.2.7 Determinación de BHA en goma de	
mascar mediante voltamperometría	
diferencial de impulsos	236
III.2.2 ESTUDIO ELECTROANALÍTICO DE LA	
tert-BUTIL HIDROQUINONA (TBHQ)	2 41
III.2.2.1 DETERMINACIÓN POLAROGRÁFICA	
DE TBHQ EN DISOLUCIONES	
MICELARES	241
III.2.2.1.1 Elección del tensoactivo	241
III.2.2.1.2 Influencia del pH	243
III.2.2.1.2.1 Polarografía de de muestreo	
de corriente	243
III.2.2.1.2.2 Polarografía diferencial	
de impulsos	245
III.2.2.1.3 Influencia de la concentración de	
tensoactivo sobre i_p y E_p mediante	
polarografía diferencial de impulsos	247
III.2.2.1.4 Características del proceso electródico	249
III.2.2.1.4.1 Determinación de la naturaleza	
de la corriente límite del	
proceso de oxidación	249
III.2.2.1.4.2 Análisis logarítmico de los	
polarogramas obtenidos	
mediante polarografía de de	
muestreo de corriente	250
III.2.2.1.4.3 Criterio E _{3/4} -E _{1/4}	252
III.2.2.1.4.4 Voltamperometría cíclica	252
III.2.2.1.4.5 Culombimetría a potencial	
controlado	253

III.2.2.1.4.6 Características analíticas del	
método desarrollado mediante	
polarografía diferencial de	
impulsos	254
III.2.2.2 EMULSIONES ACEITE/AGUA	257
III.2.2.2.1 Emulsiones formadas con n-hexano:	
acetato de etilo (99:1)	258
III.2.2.2.1.1 Optimización de los componentes	
de la emulsión	258
III.2.2.2.1.1.1 Influencia de la proporción	
de tensoactivo	258
III.2.2.2.1.1.2 Influencia del volumen de	
disolvente orgánico	259
III.2.2.2.1.2 Influencia del pH sobre i _p	
y E _p mediante polarografía	
diferencial de impulsos	259
III.2.2.2.1.3 Estabilidad de la emulsión	262
III.2.2.2.1.4 Características del proceso	
electródico	263
III.2.2.2.1.5 Características analíticas de los	
calibrados mediante polarografía	
diferencial de impulsos	266
III.2.2.2.1.6 Estudio de interferencias	
mediante polarografía diferencial	
de impulsos	268
III.2.2.2.1.7 Determinación de TBHQ en	
aceites comestibles mediante	
polarografía diferencial	
de impulsos	269
III.2.2.2.2 Emulsiones formadas con acetato	
de etilo	273

III.2.2.2.2.1 Influencia del pH sobre i _p y	
E _p mediante polarografía	
diferencial de impulsos	273
III.2.2.2.2.2 Optimización de las variables	
de la emulsión	277
III.2.2.2.2.2.1 Influencia de la proporción	
de tensoactivo	277
III.2.2.2.2.2.2 Influencia del volumen de	
disolvente orgánico	278
III.2.2.2.2.2.3 Estabilidad de la	
emulsión	279
III.2.2.2.2.3 Características del proceso	
de oxidación	280
III.2.2.2.2.4 Características analíticas del	
método desarrollado mediante	
polarografía diferencial de	
impulsos	283
III.2.2.2.2.5 Estudio de interferencias	
mediante polarografía	
diferencial de impulsos	286
III.2.2.2.2.6 Voltamperometría de onda cuadra	da
sobre un electrodo de gota	
colgante de mercurio	287
III.2.2.2.2.6.1 Influencia de la amplitud	
de la onda cuadrada	288
III.2.2.2.2.6.2 Influencia de la altura	
del salto	290
III.2.2.2.2.6.3 Influencia de la frecuencia	
de onda cuadrada	291
III.2.2.2.2.6.4 Características analíticas	

- uei metouo	del	método	294
--------------	-----	--------	-----

III.2.2.2.2.6.5 Estudio de interferencias.	296
III.2.2.2.2.6.6 Determinación de TBHQ	en
palomitas de maíz	299
IV <u>CONCLUSIONES</u>	303
V BIBLIOGRAFIA	323

I.- INTRODUCCIÓN

I.- INTRODUCCIÓN

Con el fin de atender a la demanda de calidad y seguridad de los alimentos, hoy en día es necesario controlar los niveles de concentración de diversos componentes orgánicos de carácter no nutriente, como son los aditivos y las sustancias originadas durante su procesado o almacenamiento, las especies nocivas naturales o los contaminantes accidentales y residuos. Para efectuar dicho control debe disponerse de métodos analíticos de elevada sensibilidad y fiabilidad que permitan determinar aquellas sustancias químicas cuya presencia en el alimento es indeseable, bien por su probada toxicidad o por el riesgo indefinido que conlleva su ingestión prolongada, y cuya concentración máxima permitida aparece regulada generalmente en las legislaciones técnico-sanitarias existentes.

Los plastificantes y los antioxidantes constituyen dos grupos representativos de este tipo de compuestos, y su determinación en alimentos a los niveles de concentración que cabe esperar, posee, como se demostrará más adelante, un indudable interés.

En este sentido, debe destacarse la gran utilidad que poseen las técnicas electroanalíticas para el análisis de compuestos orgánicos, ya que su aplicación permite no sólo realizar determinaciones con una elevada sensibilidad y precisión, sino que además, la información acerca de los mecanismos electroquímicos que tienen lugar puede correlacionarse, en ocasiones, con algunos procesos metabólicos en organismos vivos o de degradación en diferentes sustratos. Cabe citar aquí las magníficas revisiones realizadas por Bersier y Bersier (1,2) y de Kalvoda (3), donde se recogen numerosos ejemplos ilustrativos del empleo de técnicas electroquímicas en este campo.

Por último, como se verá más adelante, el empleo de medios dispersos en Electroanálisis da lugar a notables ventajas con respecto a la utilización de

3

medios hidroalcohólicos o de disolventes orgánicos. El uso de estos medios para la determinación de plastificantes y antioxidantes es particularmente interesante desde el punto de vista práctico, como se discutirá en el apartado I.V.

I.1.- CARACTERISTICAS GENERALES DE LOS PLASTIFICANTES

Los materiales plásticos que se emplean en el envasado de alimentos contienen, además del polímero básico, diversos componentes no poliméricos y una serie de aditivos que les confieren características peculiares. Entre estos últimos destacan los plastificantes, que se añaden a los plásticos con el fin de aumentar la flexibilidad de los mismos y dotarles de una menor fragilidad.

Los compuestos orgánicos que se utilizan para este fin son ésteres fosfóricos, ftálicos, glicólicos, de ácidos grasos (adipatos, sebacatos, estereatos y oleatos) y de poliácidos (citratos y tartratos), con alcoholes de peso molecular medio y bajo (4). Aunque la gama de sustancias plastificantes es muy amplia, no todas pueden ser utilizadas indiscriminadamente para los plásticos destinados al contacto con alimentos, ya que pueden conferir sabores extraños al producto envasado, como es el caso de los adipatos o sebacatos, y algunos son tóxicos para el organismo humano (ésteres fosfóricos).

Los materiales que se emplean más frecuentemente para el empaquetado de los alimentos: polietileno, policloruro de vinilo y celulosa regenerada (celofán) contienen típicamente como plastificantes ésteres de tipo ftalato. Es el caso de las láminas para envoltura de uso doméstico (PVC) y las de los caramelos. En estas últimas, la cantidad total de aditivos puede alcanzar hasta el 20% en peso (5), mientras que en las primeras, el contacto íntimo con alimentos de tipo graso, a veces caliente, puede favorecer la extracción de los aditivos al alimento, lo que hace necesario su control estricto en ambas matrices. Debido a su gran incidencia, los ésteres derivados del ácido ftálico (PEs) se encuentran relacionados en la lista de contaminantes prioritarios de la Environmental Protection Agency de Estados Unidos (E.P.A.) (6) lo que justifica la elección de dichos compuestos para su estudio en esta Memoria.

En cuanto a su toxicidad, algunas publicaciones (7) advierten sobre la posible acumulación de estos derivados en el tejido adiposo humano, habiéndose detectado efectos neuróticos, hepatotóxicos y embriotóxicos tanto "in vitro" como "in vivo", en animales (8). En términos de toxicidad aguda, puede citarse como ejemplo, el valor, de la dosis letal media oral en ratas, que es $LD_{50} = 8.0 \text{ g/Kg}$ para el ftalato de di-*n*-butilo (DBP).

I.1.1.-MIGRACION ENVASE-ALIMENTO

Si bien los polímeros utilizados en la fabricación de envases para alimentos poseen una elevada inercia química y difícilmente pueden migrar al alimento, no ocurre lo mismo con los distintos componentes minoritarios del plástico, los cuales pueden pasar con relativa facilidad a través del polímero e incorporarse al producto envasado. Dicha migración, por sus implicaciones tecnológicas y toxicológicas, ha sido estudiada por diversos autores (9,10), viniendo regulada por distintas legislaciones. Como ejemplos pueden citarse la Resolución de 4 de noviembre de 1982, de la Subsecretaría de Sanidad, en la que se aprueba la lista positiva de sustancias destinadas a la fabricación de compuestos macromoleculares, así como la relación de migraciones máximas en pruebas de cesión de algunos componentes de los plásticos (11), y las Directivas Comunitarias 82/711/CEE (12) y 85/572/CEE (13), que establecen respectivamente las condiciones en que deben realizarse las pruebas de migración y la lista de simuladores para las mismas.

En estas legislaciones, el empleo de "listas positivas" garantiza el uso

exclusivo como aditivos para los plásticos en contacto con alimentos, de aquellos compuestos químicos que se consideran exentos de peligro a efectos sanitarios. Para dichos compuestos se ha establecido un límite convencional de concentración, aceptado internacionalmente, que fija en 60 ppm la migración global de aditivos máxima permitida, existiendo además límites particulares de migración específica para cada aditivo en concreto.

Este tipo de interacción envase-alimento depende de las condiciones de uso (tiempo, temperatura), de las características del alimento, del efecto barrera del envase y de la relación área/volumen entre el contenido y el envase, pero además responde a leyes físicas ajustables a modelos matemáticos que permiten predecir los resultados prácticos sin necesidad de largos y costosos ensayos. Debido a esta última razón es por lo que la mayor parte de las legislaciones alimentarias basan el control sobre la migración en la utilización de medios o disolventes de naturaleza simple, que simulan la acción del alimento y permiten evaluar más fácilmente tanto la migración global como la específica (4). Como ejemplos puede citarse el agua destilada, como medio modelo para alimentos líquidos o sólidos con líquido de gobierno de pH>5, el ácido acético al 3% en agua como simulador de estos mismos alimentos a pH<5, el heptano o el aceite de girasol para alimentos grasos o aceites, y las disoluciones acuosas de etanol en concentración similar a la del producto, para el control de las bebidas alcohólicas.

En el caso particular de los ésteres de tipo ftalato, su tendencia a la migración ha sido extensamente evaluada en los envases de plasma o sangre empleados en los equipos de transfusión y diálisis (7), si bien existen relativamente pocos estudios acerca de la migración envase-alimento. Como ejemplos cabe citar en primer lugar las investigaciones de Kampouris (14) sobre distintos tipos de aceites, en las que se demuestra una alta contaminación por ftalato de di-*n*-butilo (DBP) y ftalato de di-*n*-octilo (DOP) procedente de los envases de PVC, así como, más recientemente (7), los resultados publicados sobre

el análisis de DBP y ftalato de di-2-etilhexilo (DEHP) en una gran variedad de alimentos envasados, que indican una contaminación media al nivel de 1 a 3 μ g g⁻¹ de DBP aproximadamente, en el 80-100% de muestras analizadas de embutido, queso, patatas fritas y sopas deshidratadas, así como al nivel de 0.1 μ g g⁻¹ en el 50% de las muestras de leche pasteurizada.

I.2.- CARACTERISTICAS GENERALES DE LOS ANTIOXIDANTES

Los alimentos, principalmente los que poseen un alto contenido en grasas, participan en procesos oxidativos que pueden ocasionar una pérdida de su valor nutricional (degradación oxidativa de las vitaminas), originar la aparición de aromas desagradables (enranciamiento), o incluso la formación de compuestos tóxicos (peróxidos) (15). Con el fin de asegurar el mantenimiento de la calidad de dichos alimentos y de limitar su deterioro durante períodos más largos de tiempo, en la actualidad se emplean diversos procedimientos para inhibir, reducir o retardar la oxidación. Uno de estos procedimientos consiste en la adición de antioxidantes, que son compuestos químicos capaces de actuar en contra de la oxidación de los lípidos por diferentes mecanismos, el principal de los cuales consiste en interrumpir las reacciones en cadena producidas durante dicha oxidación, al eliminar los radicales libres formados. Es evidente, pues, que para comprender la forma de actuación de estos aditivos, es necesario conocer, al menos, los aspectos principales del proceso de oxidación de las grasas.

I.2.1.- MECANISMOS DE ACCION DE LOS ANTIOXIDANTES FENOLICOS

La autooxidación o enranciamiento oxidativo de los lípidos es un proceso autocatalítico que transcurre por formación de radicales libres (16). Una vez producido el primer radical, su reactividad con el oxígeno provoca la rápida

7

formación de peróxidos e hidroperóxidos. Estos compuestos, a su vez, pueden producir más radicales libres, originándose una reacción en cadena, cuyo mecanismo simplificado consta de las tres etapas que se indican en el siguiente esquema:

a) Iniciación: $HR \longrightarrow R' + H'$ $HOOR \longrightarrow RO' + 'OH$ $2 HOOR \longrightarrow RO' + ROO' + H_2O$ b) Propagación: $R' + O_2 \longrightarrow ROO'$ $ROO' + HR \longrightarrow HOOR + R'$ $RO' + HR \longrightarrow ROH + R'$ $HR + 'OH \longrightarrow R' + H_2O$ c) Terminación: R' + R' ROO' + RO' ROO' + ROO' RO' + RO' RO' + RO' RO' + RO'

donde HR representa la matriz lipídica

La cinética de formación y descomposición de peróxidos e hidroperóxidos da origen a que, tras un período de inducción más o menos prolongado, tenga lugar la aparición de productos secundarios de la oxidación, responsables de la detección organoléptica de la rancidez. Es por ello por lo que, para prevenir la oxidación de los lípidos es preciso evitar la formación de los primeros radicales libres. Así, los antioxidantes más comunes (fenólicos o de tipo I) desarrollan su acción en este sentido, de acuerdo con alguno de los posibles mecanismos resumidos en el siguiente esquema:

$$R' + HA \longrightarrow HR + A'$$

$$RO' + HA \longrightarrow ROH + A'$$

$$ROO' + HA \longrightarrow HOOR + A'$$

$$R' + A' \longrightarrow RA$$

$$RO' + A' \longrightarrow ROA$$

$$A' + X \longrightarrow compuesto estable$$

donde HA representa el antioxidante

De este modo, la adición de estos compuestos a los alimentos supone un incremento del período de inducción que puede evaluarse cuantitativamente realizando medidas del índice de peróxidos a distintos intervalos de tiempo.

1.2.2.- TIPOS DE ANTIOXIDANTES FENOLICOS

Existen antioxidantes fenólicos naturales, como los tocoferoles, que son los responsables de una mayor resistencia a la oxidación de las grasas y aceites de origen vegetal frente a los triglicéridos puros y de aquéllas frente a las grasas - animales. La estructura de los cuatro tocoferoles principales es la siguiente:

designándose como α , β , γ o δ según el número y la posición de los grupos metilo en el anillo aromático.

Además, como aditivos, se utilizan antioxidantes fenólicos sintéticos, de los que los más frecuentes son los relacionados en la Tabla I.

Tabla I.- Antioxidantes fenólicos más frecuentes

10

El empleo de estos aditivos en los alimentos viene, al igual que ocurría en el caso de los plastificantes, regulado por diversas legislaciones. Así, por ejemplo, cabe citar la reglamentación del Ministerio de Sanidad y Consumo (17), del año 1986, en la que se establecen las listas positivas de aditivos alimentarios, clasificándose estos compuestos de acuerdo con el código E de la Comunidad Económica Europea, siendo los correspondientes a los antioxidantes fenólicos más comunes los que se han señalado en la Tabla I. Según puede observarse en dicha tabla, el antioxidante TBHQ presenta un código H, que corresponde a su designación por la reglamentación española existente en 1983 (18), tratándose de un aditivo autorizado en nuestro país sin código asignado por la Comunidad.

Por otra parte, las concentraciones máximas permitidas de antioxidantes en alimentos también se recogen en las reglamentaciones técnico-sanitarias de diferentes países, aunque varían en función del tipo de producto al que se añaden, de acuerdo con su mayor o menor contenido en grasa. Así, por ejemplo, en Estados Unidos se admite su presencia hasta un límite fijado en 200 mg Kg⁻¹ para aceites, y de 50 mg Kg⁻¹ en cereales para desayuno (19). Estas concentraciones corresponden generalmente al contenido de antioxidantes totales y se basan en los resultados obtenidos a través de ensayos de toxicidad crónica en animales.

Con el fin de adecuar el nivel de concentración de estos aditivos a los límites establecidos, en muchas ocasiones se emplean mezclas de antioxidantes en las que uno de ellos ejerce un efecto sinérgico sobre el otro, lo que permite, además de reducir su contenido, disminuir costes. Así, en la práctica se emplean preparados comerciales ("shortenings"), que contienen combinaciones de antioxidantes capaces de cubrir necesidades concretas. Por ejemplo, es conocido el efecto sinérgico del BHA, sobre el BHT y sobre el PG, así como el que ejercen otros antioxidantes no fenólicos, como el ácido ascórbico o el ácido cítrico sobre los anteriores. Una mezcla muy utilizada es la propuesta por American Meat Institute Fondation (AMIF), que contiene un 20% de BHA, un 6% de PG y un 4% de ácido cítrico en propilenglicol (20).

A la hora de establecer el control sobre los niveles de concentración de antioxidantes fenólicos debe tenerse en cuenta que estos compuestos pueden aparecer en un determinado alimento no sólo como consecuencia de su adición intencionada, sino también debido a su empleo como aditivos en los plásticos de los envases que lo contienen, de los que pueden migrar con relativa facilidad al producto. Los aspectos generales de la migración envase-alimento se han considerado anteriormente en el apartado correspondiente a los plastificantes. En el caso de los antioxidantes fenólicos, debido a su volatilidad, este fenómeno se produce en mayor grado y es, incluso, aprovechado con fines tecnológicos. Así, por ejemplo, la adición de BHT a alimentos secos con bajo contenido en lípidos, como es el caso de los cereales para el desayuno, se realiza indirectamente, incorporándolo al material de empaquetado, del que migra lentamente, lo que asegura el mantenimiento de la calidad del producto durante un período más largo de tiempo (15). Por otro lado, la utilización de estos compuestos como aditivos de los plásticos tiene una especial importancia, desde el punto de vista alimentario, en el caso de las gomas de mascar, que están constituídas mayoritariamente por la denominada "goma base", que es una mezcla de polímeros: polietileno y poliisobutileno entre otros, a los que se añaden plastificantes y antioxidantes fenólicos en concentraciones muy diversas (21).

Finalmente, los aspectos relativos a la toxicidad de estos antioxidantes han sido estudiados por diversos autores (22,23), existiendo cierta controversia, principalmente, en el caso del BHA y el BHT, sobre sus posibles efectos nocivos a largo plazo (24). Así, por ejemplo, Brannen, en 1975, demostraba claramente la interacción de estos compuestos con las enzimas y los lípidos de los organismos vivos, y alertaba acerca de su potencial efecto patológico y carcinogenético y sobre su influencia en la reproducción (22). Sin embargo, los valores de la dosis letal media, determinados por administración oral en ratones, son relativamente elevados, correspondiendo a 2000 mg Kg⁻¹ y 1040 mg Kg⁻¹ para el BHA y el BHT, respectivamente. Por otro lado, al igual que en el resto de los aditivos alimentarios, la inclusión de éstos en las listas positivas implica una evaluación exhaustiva de los riesgos que supone su ingestión, sólo a través de la cuál es posible establecer la dosis diaria admisible (IDA), que es la dosis máxima sin efecto, determinada en animales de experimentación (en la especie más sensible), expresada en mg Kg⁻¹ de peso corporal y dividida por un factor de seguridad, que frecuentemente es cien.

I.- INTRODUCCIÓN

I.3.- ANTECEDENTES BIBLIOGRÁFICOS

.

I.- INTRODUCCIÓN

I.3.1.- DETERMINACIÓN DE PLASTIFICANTES DERIVADOS DEL ÁCIDO FTÁLICO

El análisis de plastificantes es necesario para controlar no sólo la calidad de los materiales poliméricos a los que se añaden, sino también la migración de estos aditivos hacia los alimentos envasados en plásticos. Es por ello por lo que la mayor parte de los métodos establecidos para su determinación se han evaluado por aplicación a alguno de estos tipos de muestras, siendo además los plastificantes de tipo ftalato, por su mayor incidencia, los analizados más frecuentemente.

En las Tablas II-V se han resumido los métodos encontrados en la bibliografía para estos compuestos. Se ha tomado como base la técnica empleada, especificándose, en lo posible, el tratamiento seguido, así como las características analíticas más relevantes, tales como el nivel de concentración, el tipo de muestra y la forma de llevar a cabo la medida de la propiedad analítica. Por otra parte, en cada una de las técnicas se ha seguido un orden cronológico para la elaboración de dichas tablas.

MÉTODOS CROMATOGRÁFICOS

Las diferentes técnicas cromatográficas han sido las más utilizadas para el análisis de plastificantes. Así, por ejemplo, dentro de la cromatografía líquida sobre soporte plano destacan métodos en capa fina, (TLC), para la separación de diversos ftalatos con detección en el UV (31,32). Los procedimientos en columna, tanto convencionales como de alta resolución se basan en el empleo de soportes sólidos como gel de sílice (38) y de fases ligadas (RP-18, ODS-3) para la separación en fase inversa de estos compuestos (40,53). Los disolventes utilizados como fase móvil son muy diversos: el éter de petróleo y sus mezclas con éter etílico; el heptano y sus mezclas con éter, 2-propanol y CHCl₃, o el hexano y sus mezclas con éter, acetona y CH₂Cl₂ son ejemplos de eluyentes empleados en la separación preparativa y "clean up" de estos compuestos en sus mezclas (41,43,45).
Por otro lado, los métodos de HPLC se basan en el empleo de otras fases móviles, generalmente mezclas de metanol/acetonitrilo o acetonitrilo/agua para la separación en fase inversa por elución en gradiente (44,50).

En lo que se refiere a los detectores, destaca el empleo de la absorción UV a diferentes longitudes de onda (35), existiendo también algunas aplicaciones con detección IR (43, 49) y por RMN (42).

La cromatografía de gases es la técnica utilizada más frecuentemente para el análisis de los plastificantes de tipo ftalato. Los procedimientos descritos implican generalmente la extracción de los analitos empleando diversos disolventes (57,62,68) y el "clean up" previo mediante cromatografía líquida, utilizando columnas de florisil o alúmina (64,27). La separación se realiza de acuerdo con distintas posibilidades, utilizándose columnas empaquetadas con fases estacionarias del tipo OV-7 (55), SP 2100 ó SE 30 sobre diversos soportes (7,65) o absorbentes como el Tenax (82). Más recientemente se han empleado columnas capilares de sílice fundida del tipo WCOT, recubiertas con Durabond DB-5 (73,85).

En cuanto al empleo de reacciones de derivatización, únicamente se ha encontrado un método basado en la formación de derivados acetilados con anhídrido acético (90).

Finalmente, los detectores más utilizados son el de captura electrónica (ECD) y de ionización en llama (FID). El empleo de la espectrometría de masas (MS) amplía las posibilidades de reconocimiento de estos compuestos y sus derivados isoméricos.

Además de los ya comentados, se han utilizado otros métodos cromatográficos, como por ejemplo la cromatografía micelar electrocinética (MEKC), empleando un medio electroforético fosfato-borato en presencia de dodecilsulfato sódico (96), y la cromatografía de fluídos supercríticos, utilizando una columna capilar y CO_2 como fase móvil (50).

MÉTODOS NO CROMATOGRÁFICOS

Los métodos espectrofotométricos y fluorimétricos para la determinación de ftalatos son relativamente escasos: se han encontrado en la bibliografía algunos procedimientos basados en la medida de la absorción de radiación en el UV (97,98), o en la región IR (100), así como un método basado en la reacción de DBP con resorcinol y medida de la emisión de fluorescencia a alta temperatura (79).

Por último, los métodos electroquímicos utilizados para la determinación de estos aditivos se basan en su reducción en diferentes medios y en la determinación polarográfica de la señal obtenida a valores de potencial bastante negativos empleando las técnicas de corriente continua (101,106) o diferencial de impulsos (102,103).

19

TABLA II.- METODOS CROMATOGRAFICOS PARA LA DETERMINACION DE PLASTIFICANTES DERIVADOS DEL ACIDO FTALICO Cromatografía en Capa Fina (TLC) y en Papel (PC)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETEC.	REF.
Leche	DOP	extracción con éter de petróleo, sep. en alúmina con éter de petróleo/éter etílico ó CH ₃ Cl/ McOH/H ₂ O; trat. con I ₂	80 mg/L	IR	(25)
PVC	DBP, DOP, dioctil sebacato, dioctil adipato.	extracción con H₂O, HOAc, 10% EtOH y éter	-	-	(26)
-	DMP, DEP, DisoBP, DOP, DEHP	separación en gel de sílice	0.2-0.5 μg	-	(27)
Alimentos en conserva y refrescos	DBP y DOP	extracción con CHCl ₃ , "clean up" con alúmina y clución con 15 mL de Me ₂ CO al 5% en hexano; sep. en gel de sílice con CH ₂ Cl ₂ /EtOH; reacc. con ácido fosfomolíbdico	-	Espectrof.	(28)
Envases de alimentos	DBP, DOP, DEHP y dioctil scbacato	extracción con éter; sep. en gel de sílice con isooctano/EtOAc; reacc. con yodo y timol en H_2SO_4 o luz UV	-	Espectrof.	(29)
Agua	éstercs ftálicos	HPTLC, extracción en una columna de C ₈ ligada en gel de sílice	-	-	(30)
Alimentos y muestras ambientales	ésteres ftálicos	separación en gel de sílice con hexano/Me ₂ O (3:1)	0.2-1 μg (LD)	UV	(31)
Airc y agua	DBP y DOP	absorción en etanol y extracción con CHCl ₃ del DBP y con hexano el DOP. Fase móvil: CH_2Cl_2 , dicloroctano o benceno	-	UV (235 nm)	(32)

TABLA II.- METODOS CROMATOGRAFICOS PARA LA DETERMINACION DE PLASTIFICANTES DERIVADOS DEL ACIDO FTALICO Cromatografía Líquida (HPLC y LC)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETEC.	REF.
Polictileno, policstireno.	plastificantes y otros aditivos	-	-	-	(33)
PVC	ésteres ftálicos	-	-	-	(34)
Botellas de PVC	ésteres ftálicos	migración en distintos disolventes	- .	UV de longi- tud de onda variable	(35)
Aguas	ftalatos	ultramicro HPLC sobre columnas de ODS	2-28 ng	UV (235 nm)	(36)
-	DBP y DEP	sep. en LiChroprep Si 60 con n-heptano/EtAcO	10 mg	UV	(37)
-	ésteres ftálicos	separación en gel de sílice	*	•	(38)
Aceite de cacahuete	DMP y DEHP	columna de μ -Styragel, fase móvil: THF		UV (245 nm)	(39)
-	DBP y DEHP	separación en LiChrosorb RP-18 Elución en gradiente con MeOH/agua	50 ng	UV (233 nm)	(40)
Aire	ésteres ftálicos	separación en columna de florisil, elución con éter/éter de petróleo 50% (v/v)	-		(41)
	Ftalatos, adipatos, fosfatos.	HPLC en fasc inversa	*	IR, RMN y MS	(42)
-	DMP y otros	separación en gel de sílice con heptano y/o éter, 2-propanol y CHCl ₃	-	IR	(43)
Chocolate	DBP	Filtración en gel y sep. sobre Spherisorb ODS con agua/ CH ₃ CN en gradiente	0.5 ppm (LD)	UV Fluoresc.	(44)

TABLA II.-METODOS CROMATOGRAFICOS PARA LA DETERMINACION DE
PLASTIFICANTES DERIVADOS DEL ACIDO FTALICO
Cromatografía Líquida (HPLC y LC) (cont.)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETEC.	REF.
Accite de maiz	16 éstercs ftá- licos	"clean-up" con 1 g de florisil Eluyentes: mezclas de hexano, hexano/éter, hexano/acetona y hexano/CH ₂ Cl ₂	-	-	(45)
-	DMP, DEP	fase estacionaria obtenida por electrosíntesis de un polímero conductor sobre partículas de carbón vítreo	-	UV (275 nm)	(46)
-	DMP, DEP, DBP	sep. en Whatman Partisil 5-ODS- 3 con McOH-CH ₃ CN-2 propanol- H ₂ O	160-260 ррт	UV (224 nm)	(47)
Plásticos utili- zados en envasa- do de alimentos	Aditivos de los plásticos	sep. en Nucleosil 50	-	UV (254 nm)	(48)
Plásticos de uso farmaceútico	Aditivos de los plásticos	filtración en gel y sep. por HPLC	-	IR	(49)
Leche de vaca y preparados para bebés	DEHP	mezcla de la muestra con 10% de gel de sílice activado; extracc. con $CH_2Cl_2/MeOH$ (99:1); columna C_{18} y elución con CH_3CN/H_2O (9:1)	110 ppb (LD)	UV	(50)
-	ésteres ftálicos	sep. en fase normal y fase inversa	-	-	(51)
-	ésteres ftálicos	filtración en gel y sep. en colum- na de LiChrospher y gel de sílice	-	conductim.	(52)
	DMP, DEP, DBP, DEHP	sep. en Whatman Partisil-5 ODS- 3 con MeOH/CH3CN/2propanol /H2O; resoluc. de picos solapados	160-260 ppm	UV	(53)
-	DEP	sep. en C_{18} con MeOH/H ₂ O	2 mg/mL	PDA (255,225 nm)	(54)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETEC.	REF.
Alimentos	DBP y DEHP	"Clean up" en florisil con éter etílico en éter de petróleo; sep. en columna empaquetada con Corning GLC-110 recubierto con OV-7	0.1-0.5 µg/g	ECD	(55)
Pescado	DBP y DEHP	extracción con n-hexano; fraccionamiento en CL; sep. en XE-60 sobre Chromosorb W con He	0.1-0.5 ppm	FID	(56)
PVC	plastificantes	Extracc. cn THF c inyección directa	-	-	(57)
Sal y azúcar	DBP y DEHP	extracción en Soxhlet con hexano durante 3 horas; sep. en Celite 545 AW con N_2	0.1 y 0.5 ppm en sal 25 y 50 ppb en azúcar respect.	FID ECD	(58)
Queso y mantequilla	DMP, DBP, DEP	-	30 ppm	-	(59)
Aguas	ésteres ftálicos	extracción con éter de petróleo o con éter etílico, tratamiento con mercurio o saponificación	0.5 ng (LD)	ECD	(60)
Salsa dc soja, ketchup, jamón, leche y mahonesa	DBP y DOP	extracción por destilación a vapor y posteriormente con éter	-	ECD FID	(61)
Pescado	DBP y DEHP	extracción con éter/hexano (1:4)	0.07 y 0.05 ppm resp.	-	(62)
Aguas, sedimentos y alimentos	microcontami- nantes org.	-		MS	(63)
Alimentos	ésteres ftálicos	"Clean up" en columna de florisil recubierta con AgNO ₃ ; sep. de pesticidas clorados	-	-	(64)

TABLA II.- METODOS CROMATOGRAFICOS PARA LA DETERMINACION DE PLASTIFICANTES DERIVADOS DEL ACIDO FTALICO Cromatografía de Gases (GC)

TABLA II.- METODOS CROMATOGRAFICOS PARA LA DETERMINACION DE PLASTIFICANTES DERIVADOS DEL ACIDO FTALICO Cromatografía de Gases (GC) (cont.)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETEC.	REF.
Fluidos biológicos	ésteres ftálicos	columna capilar SE-30, resolución de mezclas de orto, meta y para isómeros	-	FID	(65)
-	7 ésteres ftálicos	distinción de isómeros mediante ionización química con CH ₄ ; sep. en Chromosorb Q con He en gradiente de temperatura	-	CI-MS	(66)
PVC blando	ésteres ftálicos	hidrólisis con NaOH y sep. en Carbowax 20M o Sc30 con N ₂ y Chromosorb W como soporte	-	FID	(67)
Hucvos dc pollo	DBP y DEHP	extracción con CHCl ₃ /MeOH; sep. en SE-52 sobre Chromosorb W con N ₂	0.01 ppm (clara) 1.0 ppm (ycma) (LD)	FID	(68)
Leche y mantequilla	DEHP, DOP y DBP	extracción con éter de petróleo, purificación con CH_3CN y "clean- up" en microcolumna de gel de sílice; sep. en OW-17 sobre gas- chrom Q con N ₂	hasta 600 ppm en leche	ECD	(69)
Carne fresca, congelada y cocinada	DEP, DBP	sep. en SE-30 sobre Chromosorb W-AW	-	IR, MS, FID	(70)
Muestras ambientales	ésteres ftálicos	fraccionamiento previo por LC con acetona/benceno	-	ECD	(71)
Pescado	DMP, DEP, DBP.	extracción con CHCl ₃ ; inyección y vaporización	pg (LD)	MS	(72)
Alimentos en conserva y refrescos	DBP y DOP	extracción con CHCl ₃ , "clean-up" con Al ₂ O ₃ y clución con 15 mL 5% de Me ₂ CO en n-hexano; sep. en Chromosorb W-HP	-	-	(27)
-	DMP, DEP, DBP, DOP	scp. cn columna WCOT (Durabond DB-5 capilar)	20-100 ng	FID	(73)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETEC.	REF.
Envases para alimentos	DBP, DOP, DEHP y dioctil sebacato	extracción con éter, sep. en SE-30 sobre Chromosorb WHP con N ₂	1.0-1.5 mg/dm²	FID	(28)
Accite de clavo	DBP	fraccionamiento previo, elución con C ₆ H ₆ , CH ₂ Cl ₂ , EtAcO y Mc ₂ CO; sep. en OV-17 con He		MS	(74)
Alimentos empaquetados	DBP y DEHP	extrace. con éter de petróleo en Soxhiet (12 horas); sep. en SP- 2100 sobre Supelcoport con N ₂ en gradiente de temperatura	0.07-2.80 μg/g	FID	(7)
Aguas, scdimen- tos, organismos de ríos	DMP, DBP, DEHP y DBP	sep. en columna de sílice fundida	0.1 ng (LD)	ECD	(75)
Pescado	contaminantes industriales	"clean-up" en florisil; sep. en OV- 101 a 130°C	~	ECD	(76)
Aguas, sedimen- tos, pescados	DBP y DEHP	"clcan-up" con H ₂ SO ₄ y hexano en florisil; sep. de PCBs en columnas SE-54 con H ₂ en gradiente	10 ng	ECD FID	(77)
-	DMP, DEP, DBP	sep. en columnas WCOT modificadas con grafito	-	MS	(78)
Grano	DBP	extracción con n-hexano	-	-	(79)
Grasa de pollo asado	DBP	destilación a vacio y disoluc. en CH_2Cl_2 ; sep. en OV-1 sobre columna de sílice fundida con H_2	82 ppb	FID	(80)
Aguas	contaminantes orgánicos	extracción liq-liq, adsorción sobre carbón activo	-	MS	(81)
Alimentos grasos	DMP, DEP, DBP y otros	absorción en Tenax a 180°C con corriente de N ₂ ; extracción con hexano; sep. en columna DB-5 de sílice fundida con He	1-10 ppm	MS	(82)

TABLA II.- METODOS CROMATOGRAFICOS PARA LA DETERMINACION DE PLASTIFICANTES DERIVADOS DEL ACIDO FTALICO Cromatografía de Gases (GC) (cont.)

Antecedentes bibliográficos

TABLA II.- METODOS CROMATOGRAFICOS PARA LA DETERMINACION DE PLASTIFICANTES DERIVADOS DEL ACIDO FTALICO Cromatografía de Gases (GC) (cont.)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETEC.	REF.
Agua potable	ésteres ftálicos	extracción con CH ₂ Cl ₂ , "clean-up" y fraccionamiento por LC; sep. en columna capilar	-	FID ECD	(83)
PVC para cmpaquetar alimentos	ésteres ftálicos	sep. en SE-30 a 215°C	-	ECD	(84)
Plásticos	DEP, DBP y otros	extracción con CHCl ₃ ; sep. en SE-30 en gradiente	-	MS	(5)
Muestras ambientales	DMP, DEP y DBP	extracción en contínuo a pH 2.0; sep. en columna DB-5 capilar	80 mg/L	MS	(85)
Agua natural	12 ésteres Itálicos	extracción con CH ₂ Cl ₂ , purificación sobre columnas de gel de sílice, y desorción con acetona/n-hexano	0.2 ppb (LD)	ECD	(86)
Aguas residuales	ésteres ftálicos	extracción con CH ₂ Cl ₂ /hexano, "clean-up" en columnas recubier- tas de alúmina	-	ECD	(87)
Bolsas de plásti- co que contie- nen soluciones parenterales	DBP, DEHP	extracción con CH ₂ Cl ₂ ; sep. en columna recubierta de metil- silicona al 5%	0.02 μg/mL	FID	(88)
Soluciones parenterales	DBP, DOP, DEHP y DEP	extracc. con ciclohexano; "clean up"en columna de gel de sílice y alúmina; elución con hexano/éter; sep. en Silar 10C sobre gas Chrom Q con Ar en gradiente	2-50 µg	FID	(89)
Agua	DBP, DEHP, DOP	extracc. con CH ₂ Cl ₂ ; acetilación con (CH ₃ CO) ₂ O; cvap.; sep. en DB-5 con He en gradiente	3.8, 2.2, 6.6 ppb (LD)	MS	(90)
Plásticos de uso farmaceútico	aditivos de los plásticos	introducción de la muestra mediante el método de espacio de cabeza	-	-	(51)

TABLA II.- METODOS CROMATOGRAFICOS PARA LA DETERMINACION DE PLASTIFICANTES DERIVADOS DEL ACIDO FTALICO Cromatografía de Gases (GC) (cont.)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETEC.	REF.
Aire	DBP	sep. cn columna Chromosorb 102	-	-	(91)
PVC	ésteres ftálicos	disoluc. en THF	-	-	(92)
Muestras ambientales	16 ftalatos	extracc. con CH ₂ Cl ₂ ; "clean-up" en florisil o alúmina; sep. en columna DB-5 6 DB-1701	6-60 ppb (LD)	ECD FID	(93)
Leche y simula- dores	DOP	extracción con n-hexano; sep. en DMXS SE-30 sobre Chromaton- N con N2	0.01 y 0.5 mg/L	FID	(94)
-	DMP, DEP	sep. en contracorriente (CCGLC)	-	-	(95)

TABLA III.- OTROS METODOS CROMATOGRAFICOS PARA LA DETERMINACION DE PLASTIFICANTES DERIVADOS DEL ACIDO FTALICO

MUESTRA	ANALITOS	TRATAMIENTO	TECNICA	DETEC.	REF.
-	DMP, DEP, DBP	sep. en SDS-tampón fosfato- borato en columna capilar de sílice fundida a 25 kV	cromatog. electrocinética micelar	PDA	(96)
Plásticos para el envasado de alimentos	aditivos de los plásticos	sep. con CO ₂ como fase móvil	SFC	FID	(50)

TABLA IV.- METODOS ESPECTROFOTOMETRICOS Y FLUORIMETRICOS PARA LA DETERMINACION DE PLASTIFICANTES DERIVADOS DEL ACIDO FTALICO

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	TECNICA	REF.
Aguas residuales	DBP	-	-	UV (225 y 275 nm)	(97)
PVC	ésteres ftálicos	determinación en THF sin extracción previa	-	UV (240 y 275 nm)	(98)
Grano	DBP	extracc. en hexano; adición de resorcinol; calentamiento a ebullición	-	Fluorim.	(79)
-	dialquil ftalatos		-	IR y UV	(99)
Botes de ketchup y envol- torios de queso	Aditivos de polímeros	-	-	IR	(100)

TABLA V.- METODOS ELECTROQUIMICOS PARA LA DETERMINACION DE PLASTIFICANTES DERIVADOS DEL ACIDO FTALICO

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	TECNICA	REF.
	DMP, DEP, DBP	medio EtOH/H ₂ O con sales de amonio cuaternario como electrólito soporte	-	polarogr. dc -1.7, -2.1 V	(101)
Aguas residuales	ftalatos	extracción con hexano, hidrólisis a ácido ftálico con KOH, extracción con EtAcO, evapora- ción y disolución del residuo en HAcO 0.1M / KCl 0.1 M	0.3 - 30 μg/L	DPP	(102)
Polimetilmeta- crilato y PVC	DBP	MeOH/H₂O (92:8) con Me₄NI 0.02 N como electrólito soporte	-	DPP -1.77, -2.06 V	(103)
-	metilmetacri- lato y DBP	reducción en DMF/tetraalquil- amonio	-	polarogr. dc y oscilográ- fica	(104)
-	DBP y DOP	saponificación con KOH, Me₄NCI y HClO₄ como electrólito soporte	-	polarogr. ac	(105)
Plásticos (acetato de celulosa, etilcelulosa)	DMP, DEP, DBP, DOP	disolución de la muestra en acetona o etanol	-	polarogr. dc	(106)
Propelente (nitroglicerina)	DMP y DBP	amalgama de cinc para eliminar la interferencia de la nitro- glicerina	-	polarogr, de	(107)

CLAVE: DMP, ftalato de dimetilo; DEP, ftalato de dietilo; DBP, ftalato de dibutilo; DOP, ftalato de dioctilo; DEHP, ftalato de di-(2-ctilhexilo); LD, límite de detección

I.3.2.- DETERMINACIÓN DE ANTIOXIDANTES FENÓLICOS EN ALIMENTOS

La determinación de este tipo de aditivos lleva consigo una serie de dificultades, derivadas principalmente de las bajas concentraciones en las que normalmente se encuentran y de la complejidad de las matrices en que están contenidos, muchas de ellas constituidas por compuestos similares químicamente a los antioxidantes, los cuales pueden ocasionar serias interferencias a la hora de llevar a cabo el análisis.

La importancia que posee el control del contenido de aditivos en alimentos ha dado lugar al desarrollo de numerosos métodos de determinación, tanto de los antioxidantes que nos ocupan, como de otros antioxidantes fenólicos.

De forma análoga a como se hizo en el Apartado anterior los métodos existentes se han recogido en las Tablas VI a IX, en las que se resumen algunas de las características analíticas de dichos métodos.

MÉTODOS CROMATOGRÁFICOS

Existen numerosos métodos cromatográficos para la determinación de antioxidantes fenólicos, que han sido aplicados a una gran variedad de muestras, fundamentalmente alimentos. Las técnicas utilizadas han sido principalmente: cromatografía en papel (PC), cromatografía en capa fina (TLC), cromatografía líquida (LC) y de alta resolución (HPLC) y cromatografía de gases (GC).

En la Tabla VI se han resumido algunos de los métodos cromatográficos encontrados en la bibliografía.

La cromatografía en papel y en capa fina, han sido empleadas para la detección y determinación semicuantitativa de antioxidantes, generalmente por

derivatización previa de dichos compuestos a especies coloreadas con reactivos como el ácido fosfomolíbdico (113, 118) o la 2,6-dicloroquinona (114-117), por medida espectrofotométrica de los mismos.

En cuanto a la cromatografía líquida de alta resolución (HPLC), destaca el empleo de sistemas en fase inversa con soporte de sílice (Partisil, μ -Porasil, Li Chrosorb) (140,154,158) o alúmina (μ -Bondapak) (138) y fases ligadas de cadena larga (C₁₈, ODS, RP-18) (141), empleándose como fases móviles mezclas de etanol, metanol o acetonitrilo con agua, o mezclas de cloruro de metileno, hexano y otros en diversas proporciones, operando en condiciones isocráticas o en gradiente (133-135).

En muchos casos es necesario un tratamiento de la muestra previo a la separación y determinación de los antioxidantes, basado generalmente en la extracción en Soxhlet, empleando n-hexano, éter de petróleo o acetonitrilo (163).

Finalmente los detectores más utilizados han sido los de absorción UV, seguidos de los fluorimétricos y los electroquímicos (EC).

Los métodos basados en el empleo de la cromatografía de gases se han aplicado a la determinación de antioxidantes fenólicos en alimentos previa extracción de los mismos en disolventes como el sulfuro de carbono, o los ya citados, acetonitrilo y n-hexano. Los procedimientos descritos, implican algunas veces la purificación del extracto, mediante "clean-up" a través de alúmina o Florisil (180), así como la transformación de estos compuestos a trimetilsililderivados (189), trifluoroacetatos (187) o heptafluorobutiratos (190).

El detector más utilizado ha sido el de ionización de llama (FID) y en algún caso, el de espectrometría de masas (MS).

31

MÉTODOS ESPECTROFOTOMÉTRICOS Y FLUORIMÉTRICOS

La formación de derivados coloreados es la base de la determinación espectrofotométrica de antioxidantes. Así, se han utilizado diversas reacciones de formación de compuestos absorbentes, por ejemplo con Fe³⁺ y 2,2'-dipiridilo, o con ácido sulfanílico diazotado (209). Por otra parte, los métodos fluorimétricos desarrollados se basan en la medida directa de la emisión de las disoluciones de antioxidantes (Tabla VII).

MÉTODOS ELECTROQUÍMICOS

Se han encontrado pocos ejemplos de aplicaciones de estos métodos a la determinación de antioxidantes (Tabla VIII). Los procedimientos descritos en la bibliografía corresponden al empleo de técnicas voltamperométricas sobre electrodos de carbono vitrificado, de pasta de carbono o modificados con ftalocianina de níquel (240,249).

En comparación con los métodos anteriormente citados, éstos permiten obtener niveles de sensibilidad similares y en algunos casos mejores que los obtenidos por cromatografía de gases o por espectrofotometría de absorción molecular.

Con el fin de aumentar la selectividad de las determinaciones electroanalíticas de antioxidantes, en ocasiones se utilizan sistemas de detección amperométricos a la salida de un cromatógrafo de líquidos, dando lugar a los métodos ya citados (Tabla VIII). Finalmente estos detectores se han aplicado a sistemas en continuo mediante FIA (242,247,248).

OTROS MÉTODOS

Además de los expuestos anteriormente, en la bibliografía consultada se han encontrado otros métodos (Tabla IX) basados en diversos tipos de valoraciones, así como cinéticos (253) y de resonancia magnética nuclear (252).

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETEC.	REF.
Aceite de soja	BHA, BHT, PG, NDGA	Disolución en éter, reacc. con ác fosfomolíbdico, sep. en fase inversa sobre papel con 80% MeOH/agua	-	Espectrof.	(108)
Aceite de sésamo	BHA, PG	Sep. en fase inversa sobre papel con dioxano al 75%	-	UV	(109)
-	BHA, PG, NDGA	Reace. con ác. fosfomolíbdico y con ác.sulfanílico diazotado, sep. sobre placa de polvo de poliamida con MeOH/acetona/agua	0.01-0.05%	Espectrof.	(110)
Leche en polvo margarina	BHA, PG, NDGA, BHT	Reacc. con Fc ³⁺ [Fe(CN) ₆] ³ , sep. sobre placa de polvo de pollamida conhexano-benceno-HOAc-DMF	0.0001- 0.005%	Espectrof.	(111)
-	BHA, BHT, PG, NDGA	Reacc. con 2,6-dicloroquinona clorimina, sep. sobre placa de gel de sílice con benceno y acetonitrilo	0.005- 0.020 <i>%</i>	Espectrof.	(112)
-	BHA, BHT, PG	Reacc. con ác. fosfomolíbdico, sep. sobre placa de alúmina con éter de petróleo/dioxano	-	Espectrof.	(113)
-	BHA, BHT, PG, NDGA	Reacc. con 2,6-dicloroquinona clorimina, sep. sobre placa de gel de sílice con CHCl ₃ /MeOH/ HOAc	0.5-1 μg	Espectrof.	(114)
Plásticos, aceites	BHT	Reacc. con 2,6-dicloroquinona clorimina, sep. sobre placa de gel de sílice con ciclohexano/EtOAc	2 ppm	Espectrof.	(115)
Mantecas, mantequillas, margarinas	BHA, BHT, PG, NDGA	Reacc. con 2,6-dicloroquinona clorimina o dianisidina, sep. sobre placa de polvo de poliamida con CH ₁ CN-hexano	semicuant.	Espectrof.	(116)

TABLA VI.-MÉTODOS CROMATOGRÁFICOS PARA LA DETERMINACIÓN DE
ANTIOXIDANTES FENÓLICOS
Cromatografía en Capa Fina (TLC) y en Papel (PC)

TABLA VI.- MÉTODOS CROMATOGRÁFICOS PARA LA DETERMINACIÓN DE ANTIOXIDANTES FENÓLICOS Cromatografía en Capa Fina (TLC) y en Papel (PC) (Cont.)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETEC.	REF.
-	BHA, BHT, PG, NDGA	Reacc. con 2,6-dicloroquinona clorimina, sep. sobre placa de Kiesel gel con benceno-HOAc	-	Espectrof.	(117)
-	BHA, BHT, PG, NDGA	Reacc. con ác. fosfomolíbdico, sep. sobre placa de gel de sílice con $CHCl_3$	-	Espectrof.	(118)
-	вна	Reacc. con β -ocimene y 2,4- dinitrofenilhidrazina	lng(LD)	Espectrof.	(119)
-	ВНА, ВНТ	Reacc. con Folin-Ciocalteau, sep. sobre placa de gel de sílice con hexano	-	Espectrof.	(120)
Plásticos, aceites	BHA,BHT, PG, NDGA	Reacc. con Folin-Ciocalteau, sep. sobre placa de gel de sílice con hexano/HOAc		Espectrof.	(121)
Aceites	ВНА	Sep. de la muestra por evaporación	0.01%	-	(122)
	BHA, BHT, PG, NDGA, TBHQ	Reacc. con Fe ³⁺ -dipiridilo, sep. sobre placa de gel de sílice con CHCl ₃ /MeOH/HOAc	-	Fluoresc.	(123)
Aceites y grasas	BHA, BHT, TBHQ	La muestra se disuelve en CHCl ₃ . Se debe filtrar la muestra antes de inyectar	LD<1ppm	UV	(124)
Grasas	BHA, PG, BHT, NDGA, TBHQ,	Reacc. con 2,6-dicloroquinona clorimida, sep. sobre placa de gel de sílice con éter de petróleo/ benceno/HOAc	-	-	(125)
Aceite de soja, tocino, pasteles	BHA, BHT, PG, NDGA	Reacc. con 2,6-dicloroquinona clorimida, sep. sobre placa de gel de sílice con benceno/éter de petróleo/HOAc	-	-	(126)

TABLA VI.-MÉTODOS CROMATOGRÁFICOS PARA LA DETERMINACIÓN DE
ANTIOXIDANTES FENÓLICOS
Cromatografía en Capa Fina (TLC) y en Papel (PC) (Cont.)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETEC.	REF.
-	Antioxidantes	Reacc. con 3,5-dicloro-p- benzoquinona clorimina, sep. sobre placa de gel de sílice con benceno, hexano/benceno 6 benceno/EtOAc/butanol	0.5%	-	(127)
-	ВНА	Reacción del BHA con N,N- dimetil-p-fenildiamina	-	Espectrof. (550 nm)	(128)
Grasas	ВНА, ВНТ	Sep. sobre placa de Kiesel gel. Extracción con butanol	-	Espectro- fotometr.	(129)
Aceites y grasas de consumo	BHA, BHT, galatos	Reacc. con N,N-dimetil-p- fenildiamina	-	-	(130)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETEC.	REF.
-	внт	Sep. en Corasil II con ciclohexano	-	UV	(131)
Grasas y aceites	BHA, BHT, PG, NDGA	Sep. en gel S-832 con THF	-	Refractom. UV, 254 nm	(132)
Aceites	BHA, BHT	Disoluc. en n-heptano, extracción con DMSO + NaCl 2M, reextracc. con éter, conc., sep., en Corasil II con n-heptano	50-100ppm	-	(120)
Aceites y grasas	BHA, BHT, galatos	Extracc. en MeOH/agua, enfriam., inyecc. directa, sep. en μ -Bondapack C ₁₈ con HOAC/MeOH en gradiente	-	UV 280 nm	(133)
Polietileno	ВНТ	Extracc. en CHCl ₃ , sep. en Partisil con CH_2Cl_2 -hexano en gradiente.	20 ng g ⁻¹ (LD)	UV (242 nm)	(134)
Grasas o tocino	BHA, BHT, PG, NDGA, TBHQ	Extracc. en CH ₃ CN, conc., diluc. en 2-propanol, sep. en Li Chro- sorb RP 18 con agua/HOAc en gradiente	16-100ppm	UV (280 nm)	(135)
Grasas y aceites	ВНА, ВНТ, ТВНQ	Disoluc. en CHCl ₃ , inyección directa, sep. en Styragel con CHCl ₃	0.2-20ppm	UV (280nm)	(124)
-	Antioxidantes	Sep. en LiChrosorb Si 60 con dioxano	-	Fluorim.	(136)
Aceites, alimentos	BHA, PG, TBHQ	Extracc. con EtOH ó MeOH, sep. en μ-Bondapak C ₁₈ con MeOH/ NH ₄ OAc O.1 M	10 ⁻¹¹ moles (LD)	Amperom. UV	(137)
Grasas, aceites	BHA,BHT, PG,TBHQ	Sep. en μ-Bondapak C ₁₈ con HOAc 1%/agua-HOAc 1%/ MeOH en gradiente	-	UV (280 nm)	(138)
	BHA, BHT, PG, NDGA	Sep. en Li Chrosorb SI 60 o RP- 18 isocrática o en gradiente, form. de benzoíl derivado	-	UV (235 nm)	(139)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETEC.	REF.
-	BHA, BHT, PG	Sep. en Partisil PXS 10/25 ODS 2 con LiClO ₄ 0.05 M en MeOH/H ₂ O	3-100 ng	UV, Fluorim., EC	(140)
Aceites, tocino	BHA, BHT, PG, NDGA, TBHQ	Disol. en hexano, extracc. en CH ₃ CN, sep. en Li Chrosorb RP- 18 en gradiente	20-200ppm	UV (280 nm)	(141)
-	2-BHA, 3-BHA	Disol. en n-hexano, sep. en Pirkle Type I-A con hexano/2-propanol	LD < 2ng	UV (288 nm)	(142)
Aceites	ВНА, ВНТ, ТВНQ	Sep. en Unisil QCP y Diasil CN con $CH_3CN-NaH_2PO_4$ 0.05M, pH=3.0	-	Amperom.	(143)
-	2-BHA 3-BHA	Scp. Hypersil ODS con CH ₃ CN/agua	-	UV (228nm)	(144)
Chocolate, sangre	Antioxidantes	Homogen., form. de benzoil deriv., paso por cartucho RP-18, elución con 2,2,4-trimetil pentano/éter/CH ₃ CN, sep. en Li Chrosorb con 2,2,4-trimetilpenta- no/éter/CH ₃ CN o en Ultrasphere ODS con CH ₃ CN/agua/t-butilme- tiléter	-	UV (230 nm)	(145)
Aceites, pescado	TBHQ	Extracc. con EtOAc, evap., disoluc. en hexano/EtOAc, fija- ción en cartucho Extrelut, elución con etil éter, sep. en LiChrosorb RP-8 con CH ₃ CN/KH ₂ PO ₄ 10 mM	-	UV (282 nm)	(146)
Aceites, mantequilla	TBHQ	Sep. en LiChrosorb NH ₂ con hexano/EtOH		UV (293 nm)	(147)
Aceite	2(3)-BHA, BHT, TBHQ	Disoluc. en hexano, extracc. en CH ₃ CN,sep en Diasil CN y Unisil QCP con CH ₃ CN-NaH ₂ PO ₄ 0.1M, pH=3.0	1-50 µg/g	Ampero., UV, Fluorim.	(148)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETEC.	REF.
-	BHT	Sep. en μ Porasil con hexano/propan-2-ol,formaciónde ciclohexadienona deriv.	0.5 ng (LD)	UV (236 nm)	(149)
Prep. comerciales	Antioxidantes	Extracc. en dioxano/agua sep. en Micro-Pak C ₁₈ con dioxano-agua	-	UV (275nm) Refractom	(150)
Poliolefinas	BHT	Extracc., sep. en C_{18} con CH_3CN-H_2O	2 ppm (LD)	UV (280 nm)	(151)
Aceites, alimentos	BHT	Sep. en Partisil ODS 3 con MeOH/H ₂ O 85 %	-	UV (280 nm)	(152)
Plásticos	внт	Extracc. en CH_3CN , sep. en ODS con $CH_3CN/H_2O/THS$ en grad.	3.1 µg	UV (280 nm) MS	(153)
Aceites, grasas	ВНА, ВНТ, ТВНQ	Sep. en µ-Porasil ó Rad-Pak Cyano con hexano-CH ₂ Cl ₂ - CH ₃ CN	< 3 ppm	UV (280 nm)	(154)
Aceite	ТВНО	Disoluc. en n-hexano, extracc. en CH ₃ CN, conc., sep. en Hypersil ODS C ₁₈ con H ₂ O/CH ₃ CN/n- butanol	5-200 μg g ⁻¹	UV (292 nm)	(155)
Plásticos	ВНТ	Extracc. en CH ₃ CN, sep. en ODS con CH ₃ CN/H ₂ O/THF en grad.	10-100 ng	UV, MS	(156)
-	BHT	Fase móvil MeOH 0.01 M/ KH ₂ PO ₄ (80:20)	-	EC 0.8;1.2 V	(157)
Soja, cacahuete, aceite de gira- sol, aceite de colza	Galatos, BHA, NDGA	Separación en Li Chrosorb DIOL	2.5 ng	UV (280nm)	(158)
Accites, grasas	BHT, BHA, galatos, TBHQ, NDGA	Extrace. con CH ₃ CN, sep. en Li Chrosorb RP-18	5 ppm (LD)	UV (280nm) Fluorimet.	(159)
Alimentos	BHA, BHT, galatos, TBHQ	Extracc. con MeOH, centrifug., sep. en Li Chrospher 100 CH- 18/2 con CH ₃ CN 30-100%- HOAc 1% en gradiente	-	UV	(160)

MUESTRA	ANALITOS	TRATAMIENTOS	NIVEL	DETEC.	REF.
Patatas fritas	внт	Extracc. en tolueno, fijación en gel (separación por tamaños), eluc. con THF, diluc. con H ₂ O- CH ₃ CN en gradiente	0.5 ppm (LD)	UV	(161)
Productos farmacéuticos	PG, BHA	Extracc. en MeOH, sep. en Resolve Spherical C ₁₈ con LiClO ₄ 0.01M con MeOH 65% pH=5.5	0.5 mg	UV (280nm) EC	(162)
Alimentos secos	PG, TBHQ, BHA, BHT, PGND	Mezcla en hexano, extracción en CH ₃ CN, conc., sep. en Supeleosil C-18 ó Ultraphere-ODS con agua-CH ₃ CN-HOAc	0.4-2.7ppm	UV (280nm)	(19)
Mantequilla, accites	ВНА, ВНТ	La muestra se coloca directamen- te en Sep-pak, se somete a un "clean-up" y se cluye con MeOH Columna Nucleosil 5 C ₁₈	6 µg/g	-	(163)
Polietileno, polipropileno	Antioxidantes y otros aditivos	Extracción con CO ₂ supercrítico y comparación con la extracc. usando un Soxhlet	-	UV	(164)
-	BHA, BHT, NDGA, galatos	Sep. en Waters 5 μ m C ₁₈ Resolve con agua/MeOH/H ₃ PO ₄ 0.01%, pH=5.5 -MeOH en gradiente	180pg 360pg	UV (280nm) EC	(165)
-	Antioxidantes	Derivatización confenil-isocianato	-	UV (230nm)	(166)
Plásticos	Antioxidantes	Scp. en Spherisorb ODS 2. Elución con CH₃CN	0.3-2 pmol	UV, EC	(167)
Alimentos, cosméticos	BHA, BHT, PG	Extracción con McOH, centrifugación, sep. en RP-18	-	Culombim.	(168)
Alimentos aceitosos	BHA	Extracc. con hexano y con MeCN Columna Shim-pak CLS-ODS	0.2 μg/g (LD)	Fluoresc. (323,298 nm)	(169)
Aceites y grasas	внт, вна	No se requiere separación ni extracción. Ultrastyrogel 100A	-	UV (280nm)	(170)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETEC.	REF.
-	BHA, BHT, PG y TBHQ	Resolución de picos solapados del PG y TBHQ mediante la 2 ⁴ derivada	-	UV (290 nm)	(171)
Aceites y grasas de consumo	TBHQ, galatos, BHA, BHT, NDGA	Separación en fase inversa, columna C ₁₈ , elución en gradiente Disolución en iso-PrOH-hexano	-	UV (280nm)	(172)
Alimentos, productos farmaceúticos y cosméticos	10 antioxidan- tes fenólicos	Extracción con MeCN	-	UV (280 nm)	(173)

TABLA VI.- MÉTODOS CROMATOGRÁFICOS PARA LA DETERMINACIÓN DE ANTIOXIDANTES FENÓLICOS Cromatografía de Gases (GC)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETECC.	REF.
Gránulos de patata	BHA, BHT	Extracc., sep. en Apiezon L	0.5-10ppm	FID	(174)
Cereales	BHA, BHT	Extracción. Di-BHA como patrón interno	-	FID	(175)
Alimentos	ВНА, ВНТ	Separación en SE-30, Di-BHA como patrón interno	-	TCD	(176)
-	ВНА, ВНТ	Separación en SE-30-Tween 80, Di-BHA como patrón interno	5-30ppm	FID	(177)
Cereales	ВНА, ВНТ	Extracción en hexano, evap., sep. en 20% DC-200-Chromosorb P	-	FID	(178) (179)
Grasas, accites	ВНА, ВНТ	Extracción en CH3CN, "clean-up" en alúmina, sep. en silicona 10%- Chromosorb P	-	-	(180)
Tocino	BHA, BHT, PG, NDGA	Extracción en vacío, sep. en 3% GE-XE-60-Gas Chrom Q, form. de trimetisilil éter (PG)	-	IR-MS	(181)
Cereales	ВНА, ВНТ	Extracción con CS ₂ , conc., sep. en Apiezon 5%-Gas Chrom Q y 10% QF-1-Gas Chrom Q, empleo de Di-BHA como patrón interno	-	-	(182)
Aceites vegetales	ВНА, ВНТ	Disol. en CS ₂ , sep. en precolumna y en DC-200 ó Carbowax 20 M- Gas Chrom Q, metilundecanoato como patrón interno	-	-	(183)
Aceites	BHT, 2-BHA, 3-BHA, PG, NDGA, TBHQ	Extracción con CH ₃ CN-etanol, "clean-up" con CH ₃ CN-etanol, "clean-up" en Florisil, form. de trimetisililéter, sep. en 3% JXR	0.05 μg (LD)	FID	(184)
Productos cárnicos	вна, внт	Extrace. con CH ₃ CN, "clean up" en alúmina, sep. en 5% GE-XE- 60 GAs Chrom Q	0.002- 0.004% (w/w)	FID	(185)
Aceites	BHA, PG, TBHQ	Form. de heptafluorobutiratos, sep. en 3% OV-3-Chromosorb WHP	-	ECD	(186)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETECC.	REF.
-	BHA, BHT	Formación de trifluoroacetatos	-	ECD	(187)
Mariscos, aceites	TBHQ	Sep. en 5% DEGS + 1% H ₃ PO ₄ - Chromosorb W	-	-	(188)
Aceites	TBHQ	Extracc. en CH ₃ CN, form. de trimetilsilil derivados, sep. en 10% Versilube F-50-Gas Chrom Q	-	-	(189)
-	вна, внт	Formacion de heptafluorobutirato y cresol (BHT)	-	ECD	(190)
Aceites	BHA, BHT, PG, NDGA	Form. de trimetisilil derivados, sep. en 10% GE-Versilube F-50- Gas Chrom Q	-	-	(191)
Aceites	вна, внт, твно	Sep. en 10% polimetafenoxileno- Tenax GC	LD 10 ppm	FID	(24)
Gránulos de patata	ВНТ, ВНА	Disolución en éter, evap. a sequedad, disoluc.en CS ₂ . Sep. en 3% OV-17, Gas Chrom Q	LD 1ng	FID	(192)
-	BHA, galatos	Formación de haloacetatos, sep. en 3% OV-101-Chromosorb G, H, P.	-	MS FID	(193)
Pescado	ésteres ftálicos y BHT	extracción con CHCl ₃	-	MS	(72)
Aceite de soja	BHA, BHT, TBHQ	Sep. en 10% polimetafenoxileno- Tenax GC	10 ppm (LD)	FID	(194)
Leche	ВНА, ВНТ, ТВНQ	Extracc. en éter de petróleo/ CH ₂ Cl ₂ , "clean-up" en Florisil con agua 15% en CH ₃ CN, form. de sililderivados (TBHQ)	-	-	(195)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETECC.	REF.
Aceites vegetales	BHA, BHT, TBHQ	Sep. en "cross-linked" 5% fenilmetilsilicona-sílice fundida capilar	-	-	(196)
Chicle	BHA, BHT	Sep. en DB-1 sílice fundida WCOT	-	-	(197)
Poliofelinas	Antioxidantes	Extracc. en CH ₂ Cl ₂ -MeOH, columna capilar sílice fundida, 2,6-di-t-butil-p-cresol como patrón interno	300ppm	FID	(198)
Pescado seco	вна, внт	Extracc. en hexano, "clean up" en Florisil, cluc. con n-hexano, eluc. con etil-éter	3.4-50.9 ppm BHA 1.2-7.3 ppm BHT	-	(199)
Grasas y aceites	BHA y BHT	Extracción con EtAcO 10% en n- hexano	- -	FID	(200)
Aceites	вна, внт	Extracc. en hexano, ads. en Celite, eluc. con acetonitrilo, paso por Sep-Pak C ₁₈ , conc., sep. en DEGS-H ₃ PO ₄	5 μg/g (LD)	~	(201)
Alimentos ahumados	ВНА, ВНТ	Sep. en OV-1-Gas Chrom Q y Se-30-Chromosorb W	-	-	(202)
Mantequilla, pescado seco	ВНТ, ВНА	Extracción con acetona o butil acetato. Columna de 10% de DC-200 con Chromosorb WAW-DMCS	-	-	(203)
Grasas	ВНА, ВНТ	Columna Apiezone-L de OV-101	-	FID	(129)
Aceite	вна, внт	Extracc. a reflujo con BuAcO	-	-	(204)
Sardinas secas	BHA, BHT	Extracción a reflujo con BuAcO	-	FID	(205)
-	Antioxidantes, plastificantes, etc.	Microcolumna de exclusión por tamaño acoplada en línea con GC	-	MS	(206)
Polímeros	Antioxidantes	-	-	MS	(207)

TABLA VII MÉTODOS DETERMIN	ESPECTROFOTOMÉTRICOS Y FLUORIMÉTRICOS PARA LA
	ACION DE ANTIOXIDANTES FENULICUS

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETECC.	REF.
Alimentos	ВНА	Extracción con EtOH 70%, reacción con 2,6-dicloroquinona	-	-	(208)
Papel	BHA	Extracción en Soxhlet, con EtOH/agua, reacción con FeCl₃- 2,2'-dipiridilo	-	522 nm	(209)
Aceites comesti- bles, copos de patata	BHA	Destilac., disolu. en EtOH 50%, reacc. con 2,6 dicloroquinona clorimina en bórax, pH 9.4	-	620 nm	(210) (211)
Aceites comesti- bles, copos de patata	BHA, BHT	Destilación, disol. en EtOH 50%, reacción con FeCl ₃ -2,2'-dipiridilo	-	515 nm	(210) (211)
Tocino	ВНТ	Disoluc. en ciclohexano, paso por columna de sílice	-	240, 320 nm	(212)
Alimentos	PG, OG y DG	Disoluc. en éter de petrólco, extracc. en agua (PG) ó MeOH (OG y DG), reacc. con tartrato ferroso	-	530 nm (PG) 550 nm (OG y DG)	(213)
Tocino	внт	Extracc. en isooctano, paso por alúmina	0.001 % (LD)	273, 283 nm	(214)
Tocino	ВНА	Extracción en CHCl ₃ /MeOH, precip. en frío	-	270, 290, 310 nm	(215)
Grasa	BHA, BHT, galatos	Separación en Silastic 181	-	306 nm (BHT)	(216)
Alimentos	внт	Destilación, disoluc. en McOH 50%, reacc. con 3,3'- dimetoxibencidina y HNO ₂ , extracc. en CHCl ₃	-	520 nm	(217)
Alimentos	ВНА, ВНТ	Reacción con 2,6-dicloroquinona clorimina (BHA) y con 3,3'- dimetoxibencidina (BHT)	20-100 μg	Colorim,	(218)
Hidrocarburos	вна, внт	Disoluc. en EtOH/agua, "clean-up" en Florisil	~	283.5 nm	(219)
Aceite	BHA, NDGA, galatos	Disolución en MeOH/EtOH		240, 250 274 nm	(220)

TABLA VII.- MÉTODOS ESPECTROFOTOMÉTRICOS Y FLUORIMÉTRICOS PARA LA DETERMINACIÓN DE ANTIOXIDANTES FENÓLICOS (Cont.)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETECC.	REF.
-	ВНТ	Reace. con 3,3'-dimetoxibencidina y HNO ₂	-	520 nm	(221)
Tocino	PG	Extracc. en CHCl ₃	0.0005 %	Fluorim. (273, 352 nm)	(222)
Tocino, cereales	ВНА	-		Fluorim.	(223)
-	Antioxidantes	Reace. con radicales peróxido, inhibición de la oxidación de hidrocarburos	-	Fluorim.	(224)
Alimentos	вна	Destilación	-	λem:323 λex:293	(225)
Polipropileno	внт		-	Espectr. derivada	(226)
Grasas, aceites	PG, BHA	Disoluc. en CCl_4 , extracc. con EtOH 50%, reacc. con P-(N- metilamino) fenol y IO_4^- 6 MnO ₄ ⁻	50-400 μg/15ml 150-170 μg/15ml	560 nm PG 510 nm BHA	(227) (228)
Aceites, grasas	BHA, PG	Reacción con 3-metilbenzo- tiazolin-2-ona y Ce(IV)	0.5-9.0 1.0-15.0 pp m	480 y 440 nm	(229)
Aceito	TBHQ	Formación de especies coloreadas con 4-aminofenazona-IO ₄ o con nitroprusiatosódico-hidroxilamina	-	490 nm 650 nm	(230)
Aceite	внт	Reacción con reactivo de Gibbs o de Ehrich	-	549 nm 542 nm Flujo parado	(231)
-	BHA BHT PG	-	0,01-0.10 0.02-0.20 0.002-0.02	304.7, 279.1, 224.4	(232)
Cacahuctes	вна, внт	Resolución quimiométrica de mezclas. 2ªderivada de los espectros y mínimos cuadrados	.	UV	(233)
Manteca	BHA BHT	Extracción con hexano	-	Espectr. derivada 311.5; 178.5 ó 180	(234)

TABLA VII.- MÉTODOS ESPECTROFOTOMÉTRICOS Y FLUORIMÉTRICOS PARA LA DETERMINACIÓN DE ANTIOXIDANTES FENÓLICOS (Cont.)

MUESTRA	ANALITOS	TRATAMIENTO	NIVEL	DETECC.	REF.
Accites	внт	Reacción con Fe(III)-2,4,6- tripiridil-s-triazina o cloruro de trifeniltetrazolio	0.5-4 10-100 (µg/mL)	590 nm 480 nm	(235)
Aceite	ВНА	Formación de especies coloreadas por reacción con Fe(III)-2,4,6- tripiridil-s-triazina o cloruro de trifeniltetrazolio	-	-	(236)

TABLA VIII.- MÉTODOS ELECTROQUÍMICOS PARA LA DETERMINACIÓN DE ANTIOXIDANTES FENÓLICOS

MUESTRA	ANALITO	OS TRATAMIENTO	TECNICA	NIVEL	CONDIC.	REF.
Aceites vegetales	Antioxidan	. Disolución en EtOH/benceno, adición de H_2SO_4 0.12 M	LSV	0.001 %	C vitrif.	(237)
Patatas fritas	ВНТ	Extracción en acetonitrilo	DPV	LD 0.4 ppm	-	(238)
Aceites transform.	ВНТ	Disoluc. en hexano, fijación en alúmina, eluc. con CH ₃ CN, adic. de Bu ₄ NOH	DPV	40 ppm (LD)	+1.15 V (ECS) Pt	(239)
Alimentos, sangre	Antioxidan.	-	DPV	-	C vitrif. (rotatorio)	(240)
Patatas deshidratadas	ВНА, ВНТ	Extracción con benceno, evaporae. a 5 ml aprox. Pot. de pico 0.74 y 1.05 V respectiv.	DPV	0.2 y 1.5 p p m respect	-	(192)
Aceites vegetales	ТВНО	Disoluc. en tolueno/EtOH, adic. de HOAc/AcO ⁻	DPP	0.005- 0.02%	-0.05 V (ECS)	(241)
Bebidas, vitaminas	ВНА	Disolución en EtOH/PO ₄ ³⁻ , pre- concentración a 0.0 V ó a circuito abierto, cambio de medio, limpieza a 0.75 V	DPV/FIA Redisoluc.	2x10 ⁻⁸ M (LD)	0.40 V (Ag/AgCl) Pasta C "Thin layer"	(242)
Cera de jojoba, aceite de girasol	BHA, BHT y tocoferoles	-	LSV, DPV	-	M	(243)
-	ВНТ	Mecanismo de oxidación MeOH/NaMeO (1:1)	CV	-	-	(244)
Productos farmacéuticos	BHA	-	FIA	40 µg	-	(245)
-	BHA, NADH	Limpieza del electrodo con alúmina y onda cuadrada	DPV y CV	•	-	(246)
-	ВНТ, ВНА, ТВНQ	Electrodo de Pt sobre membrana intercambiadora de iones. Sin electrólito soporte, medio CH ₃ CN	FIA	280-291 mg (LD)	Amperom. microelect.	(247)

TABLA VIII.- MÉTODOS ELECTROQUÍMICOS PARA LA DETERMINACIÓN DE ANTIOXIDANTES FENÓLICOS (Cont.)

MUESTRA	ANALITOS	TRATAMIENTO	TECNICA	NIVEL	CONDIC.	REF.
Aceite de maiz, éter etílico	ВНА, ВНТ	Disoluc. en hexano, extracc. en CH ₃ CN, evap., disoluc. en MeOH/HClO ₄ 0.1M	FIA	2.5 ppb (BHA) 6.0 ppb (BHT) (LD)	C vitrif. +0.80 V (BHA) +1.05 V (BHT) GCE "Wall-jet"	(248)
Dietil éter estabilizado	ВНТ	Electrodo de pasta de carbono modificado con ftalocianina de niquel	DPP	0.17 mg/L (LD)	+0.8 V	(249)

TABLA IX.- OTROS MÉTODOS PARA LA DETERMINACIÓN DE ANTIOXIDANTES FENÓLICOS

MUESTRA	ANALITOS	TRATAMIENTO	TECNICA	NIVEL	DETECC.	REF.
	NDGA	Empleo de disolución de 2,4,6- tri-t-butilfenoxi (radical) como valorante.	Valoración fotométrica	~ 10 ⁻⁸ moles (LD)	λ 625 nm	(250)
-	PG	Precipitación con Hg(II) en exceso	Valoración complexo- metrica	-	-	(251)
-	2-BHA 3-BHA	Disoluc. en CCl ₄	RMN	0.2 mg	-	(252)
-	внт	emulsiones acuosas de un antioxidante caroteno y un lípido	Cinético	-	espectrof.	(253)
-	-	-	Cinético	-	espectrof.	(254)
Poliolefinas	9 antiox.	Fase móvil CO ₂ 6 10% MeOH- CO ₂	SFC	-	UV	(255)

CLAVE: BHA, 2-(3)-t-butil-4-metoxifenol; BHT, 2,6-di-t-butil-4-metilfenol; TBHQ, 2-t-butilhidroquinona; PG, galato de propilo, DG, galato de dodecilo; NDGA, ácido nordihidroguayarético; LD, límite de detección

I.4.- ASPECTOS DE INTERÉS RELATIVOS A LOS MEDIOS DISPERSOS

Actualmente son numerosas las ramas de la Química interesadas en los denominados medios dispersos o medios organizados. Dichos medios, disoluciones micelares, emulsiones y microemulsiones, se caracterizan fundamentalmente por el empleo de moléculas particulares denominadas tensoactivos, agentes de superficie o surfactantes.

Los tensoactivos son sustancias orgánicas de cadena esencialmente lineal cuyas moléculas presentan una parte polar y otra no polar. La parte polar o hidrofílica de la molécula puede estar cargada, dando lugar a los llamados tensoactivos catiónicos (por ejemplo, CTAB) o aniónicos (jabones, detergentes de cadenas sulfonadas), o puede estar formada por cadenas de polioxietileno dando lugar a los denominados tensoactivos no iónicos (por ejemplo, Triton). Además, existen los llamados tensoactivos anfolíticos que se comportan como catiónicos, aniónicos o no iónicos dependiendo del pH de la disolución (betaínas, lecitinas, etc.). La parte polar o hidrofóbica de la molécula está compuesta, normalmente, por una cadena alifática hidrocarbonada, si bien hay un gran número de tensoactivos con grupos hidrofóbicos aromáticos. La naturaleza dual, parte polarparte no polar de estas moléculas, es la responsable de los fenómenos de actividad superficial, micelización y solubilización (256).

I.4.1.- DISOLUCIONES MICELARES

Las disoluciones o sistemas micelares, de apariencia translúcida o transparente, se obtienen cuando la concentración del tensoactivo es superior a un determinado valor denominado concentración micelar crítica (CMC) (257,258). En estas disoluciones, las moléculas de tensoactivo forman agregados moleculares de dimensiones coloidales denominados micelas, con diámetros comprendidos entre 50 y 150 Å, en equilibrio con los respectivos monómeros. En la Figura 1 se

muestra una representación convencional de una micela iónica formada por dodecilsulfato sódico y de una micela no iónica de Triton-405.

Experimentalmente la CMC se determina por la aparición de un punto de inflexión en la representación de alguna propiedad física de la disolución en función de la concentración de tensoactivo. Es importante considerar que el cambio en las propiedades físicas en las cercanías de la CMC se produce en un margen estrecho de concentración, más que en un punto concreto (259).

En la estructura de las micelas iónicas se diferencian tres partes: a) el núcleo central de la micela, que está constituido por las partes hidrofóbicas de las moléculas de tensoactivo y cuyo diámetro varía de 2 a 6 nm dependiendo del tensoactivo, y b) la capa de Stern, formada por las partes polares aniónicas o catiónicas y por los contraiones asociados; esta capa tiene unas décimas de nanometro de espesor, y se caracteriza por tener un campo eléctrico muy intenso debido a que posee menos contraiones que cabezas polares (Figura 1a); c) la capa de Gouy-Chapman, de algunas decenas de nanometro, constituída por el volumen de disolución perturbado eléctricamente por la micela (258). Para micelas no iónicas la estructura es esencialmente la misma, excepto que no existe la capa de Stern, y que contiene bucles de cadenas polioxietilénicas hidratadas (Figura 1b) (260).

Una de las propiedades más importantes de los tensoactivos, relacionada con la formación de micelas, es su capacidad de solubilización, o disolución espontánea de una sustancia, sólida, líquida o gaseosa, por interacción reversible con las micelas de un tensoactivo en un disolvente, para formar una disolución isotrópica, estable termodinámicamente, en la que la sustancia solubilizada presenta una reducida actividad termodinámica. La importancia de este fenómeno, desde el punto de vista práctico, es la posibilidad de disolver sustancias en disolventes en que son normalmente escasamente solubles (260).

Figura 1.- Representación convencional (a) de una micela iónica de dodecil sulfato sódico, y (b) de una micela no iónica de Triton X-405

La posición exacta en la cual ocurre la solubilización dentro de la micela varía con la naturaleza del material solubilizado, reflejando el tipo de interacción existente entre el tensoactivo y el compuesto solubilizado. Los lugares donde se solubiliza el compuesto pueden ser los siguientes (Figura 2): 1) sobre la superficie de la micela, es decir, en la interfase micela-disolvente; 2) entre las cabezas de los grupos hidrofílicos (tensoactivos no iónicos); 3) en la parte exterior de la capa de Stern (entre los grupos hidrofílicos y los primeros átomos de carbono de los grupos hidrofóbicos); 4) más profundamente en la capa de Stern, y 5) en el centro de la micela (260).

51

Figura 2.- Localización de la solubilización de compuestos en la micela formada por tensoactivos: (a) iónico y (b) no iónico.

La moléculas hidrocarbonadas alifáticas y alicíclicas, así como las moléculas que no estén polarizadas o no sean fácilmente polarizables, son solubilizadas en el centro de la micela. Los hidrocarburos polarizables (benceno, isopropilbenceno) son solubilizados, en sales de amonio cuaternarias, en la zona más profunda de la capa de Stern o en el interior de la micela; en las micelas no iónicas el benceno puede solubilizarse entre las cadenas polioxietilénicas de los grupos hidrofílicos. Para las grandes moléculas polares, como alcoholes de cadena larga o colorantes, la solubilización ocurre en la capa de Stern con las cabezas polares orientadas hacia los grupos polares del tensoactivo; la profundidad de la penetración de la sustancia solubilizada depende de la relación parte polar-parte no polar; en micelas no iónicas estos compuestos se solubilizan en las proximidades de los grupos oxietilénicos de la cadena del tensoactivo. Las pequeñas moléculas polares se solubilizan en la parte externa de la capa de Stern

52

o en la superficie de la micela por adsorción; en micelas no iónicas la solubilzación de estas sustancias se localiza entre las cadenas polioxietilénicas del tensoactivo (260).

Si se representa la cantidad de sustancia, insoluble en un disolvente, solubilizada en medio micelar frente a la concentración de tensoactivo (Figura 3), se observa que dicha cantidad es muy pequeña para concentraciones inferiores a la CMC del tensoactivo, pero que aumenta rápidamente una vez alcanzada ésta. Este hecho indica que la solubilización es un fenómeno micelar (260).

concentración de tensoactivo

Figura 3.- Representación de la cantidad de sustancia solubilizada en función de la concentración de tensoactivo.

Esta capacidad de solubilización ha supuesto, en electroanálisis, una gran ventaja sobre la utilización de medios hidroalcohólicos o disolventes orgánicos, dado que, de este modo, es posible solubilizar en medio acuoso compuestos orgánicos escasamente solubles en agua, con las ventajas que ello conlleva como
el mantenimiento de la conductividad del electrólito en disolución acuosa, la posibilidad de preparar fácilmente patrones o el hecho de no ser necesarios electrodos de referencia especiales. (261).

I.4.2.- MEDIOS EMULSIONADOS

La emulsificación, formación de emulsiones a partir de dos fases líquidas inmiscibles, es probablemente la propiedad más versátil de los agentes tensoactivos para aplicaciones prácticas, por lo cual ha sido ampliamente estudiada.

Una emulsión es una mezcla mecánica de dos líquidos insolubles o parcialmente solubles el uno en el otro. Mediante un aporte de energía, uno de los dos líquidos se encuentra disperso en el otro en forma de pequeñas gotículas. La estabilidad de la emulsión puede variar desde unos pocos minutos hasta algunos años. Según el tamaño de las partículas dispersas se distinguen dos tipos de emulsiones: las macroemulsiones, en las que el diámetro de la gota dispersa se encuentra comprendido entre 0.2 y 50 μ m, y las microemulsiones, para las que dicho diámetro se sitúa entre 0.20 y 0.01 μ m. A simple vista, el aspecto de una emulsión viene determinado por el tamaño de las partículas dispersas que la constituyen. Así, son de apariencia lechosa aquellas emulsiones en las que su diámetro es del orden de 1 μ m; blanco-azuladas, cuando se encuentran en el intervalo de 1 a 0.1 μ m, y entre 0.1 y 0.05 μ m son de un color gris semitransparente. Por consiguiente, las macroemulsiones son opacas y las microemulsiones son transparentes o semitransparentes (256).

Por otro lado, en una emulsión pueden distinguirse dos fases: la interna o dispersa, en forma de gotitas, y la externa o continua, que constituye la matriz. Pueden distinguirse dos tipos de emulsiones dependiendo de la naturaleza de la fase dispersa: aceite-agua (O/W) en la terminología anglosajona y agua-aceite (W/O) (Figura 4). El primer tipo corresponde a aquellas dispersiones de un líquido inmiscible en agua, en una fase acuosa. En ellas, el "aceite" constituye la fase discontinua, mientras que la fase continua es la acuosa. Las del segundo tipo están constituidas por gotículas de agua en suspensión en el aceite.

Figura 4.- Representación de los dos tipos de emulsiones

Para que una emulsión sea relativamente estable es necesaria la adición de un tercer componente al sistema denominado agente emulsificante. En general, las emulsiones O/W se forman con agentes emulsificantes que son más solubles en fase "agua" que en fase "aceite", mientras que las emulsiones W/O se forman mediante agentes emulsificantes más solubles en la fase "aceite". Las emulsiones O/W y W/O no están en equilibrio termodinámico la una con la otra, sino que una de ellas es normalmente más estable que la otra para un agente emulsificante en particular, a una concentración dada y en una condiciones determinadas. De este modo, una puede convertirse en la otra cambiando dichas condiciones, fenómeno conocido como inversión de la emulsión (260).

Como agentes emulsificantes se han venido utilizando los tensoactivos, debido a las características particulares de estas moléculas comentadas anteriormente. Estos actúan adsorbiéndose en la interfase líquido-líquido, formando una película interfacial orientada cuyas funciones dentro de la emulsión son (260):

A) Reducir la tensión interfacial entre los dos líquidos inmiscibles y, consecuentemente, la inestabilidad termodinámica del sistema resultante, debido al aumento del área interfacial entre las dos fases.

B) Disminuir la velocidad de coalescencia de las partículas líquidas dispersas (asociación espontánea de partículas pequeñas para formar otras grandes) formando una barrera mecánica estérica y/o eléctrica alrededor de ellas. Las barreras estérica y eléctrica inhiben la aproximación de unas partículas a otras y la barrera mecánica aumenta la resistencia de las gotas dispersas al choque mecánico.

Es de suponer que exista una cierta relación entre el tipo de tensoactivo y su mecanismo de actuación en las emulsiones formadas. En los tensoactivos iónicos, la porción hidrófila de las moléculas posee carga eléctrica, manifestándose entonces el efecto estabilizante de éstos, por mecanismos de repulsión de cargas. El tensoactivo, adsorbido en la superficie de la gota dispersa, se encuentra formando una capa monomolecular, y da origen a su vez, debido a su carga eléctrica, a una doble capa que contiene la porción cargada del tensoactivo y los contraiones que lo rodean (Figura 5a). Por otro lado los tensoactivos no iónicos polioxietilados son solubles en agua debido a la formación de enlaces de hidrógeno entre moléculas de disolvente y átomos de oxígeno de la función éter de la cadena polioxietilada. En consecuencia, se puede explicar la orientación de estas moléculas de tensoactivo al adsorberse en la interfase, extendiéndose la cadena polioxietilada hacia la fase acuosa, mientras que la cadena hidrocarbonada lo hace hacia la fase orgánica (Figura 5b)

El tamaño de las partículas dispersas que constituyen la emulsión influyen sobre la estabilidad de la misma. En efecto, este sistema constituido por aporte de energía tiene tendencia a separarse en dos fases líquidas, bien sea por floculación, bien sea por formación de nata. El fenómeno de floculación es la asociación de dos o más partículas pequeñas que conservan su individualidad, mientras que la formación de nata es la unión de las gotitas bajo la acción del empuje de Arquímedes. Estas dos etapas son reversibles y una ligera agitación vuelve a formar la emulsión. La coalescencia, que tiene lugar más o menos rápidamente después de cada una de las dos etapas precedentes (Figura 6), es la asociación espontánea de las partículas pequeñas en una más gruesa. La coalescencia es irreversible y se necesitará un nuevo aporte de energía para volver a formar la emulsión.

Por otro lado, decir que una microemulsión está constituída igualmente por dos líquidos insolubles el uno en el otro y por un tensoactivo o, en la mayoría de los casos, por una mezcla constituída por un tensoactivo y por un cotensoactivo (un alcohol o una amina), pero que, a diferencia de las macroemulsiones, la simple mezcla de los constituyentes en determinadas proporciones produce, sin ningún aporte de energía, una disolución monofásica, límpida y perfectamente estable con el tiempo.

Finalmente, las posibilidades que ofrece la utilización de disoluciones micelares y de emulsiones en electroanálisis son enormes. Así, en las primeras

Figura 5.- Distribución en la interfase de una onda de a) un tensoactivo aniónico, y b) un tensoactivo no iónico polihidroxilado.

Figura 6.- Etapas de la separación de una emulsión en sus dos fases, aceite y agua

es posible solubilizar compuestos difícilmente solubles en agua, obteniéndose medios acuosos en los que se evitan o minimizan algunos problemas prácticos asociados con el empleo de disolventes orgánicos en este campo. Entre éstos cabe destacar su toxicidad, la necesidad de emplear disolventes de elevada pureza y en consecuencia caros, así como los electrólitos soporte y los electrodos de referencia especiales que se requieren. Estos problemas pueden evitarse también trabajando con emulsiones del tipo aceite/agua, las cuales pueden ser preparadas para estudios electroanalíticos a partir del analito disuelto en un pequeño volumen de disolvente orgánico, y añadiendo una gran cantidad de agua, un electrólito soporte apropiado y un tensoactivo como agente emulsificante. Aportando una cierta cantidad de energía en forma de agitación ultrasónica, se obtienen emulsiones predominantemente acuosas, cuyo estudio no requiere, por tanto, el empleo de electrodos de referencia especiales ni es necesaria la purificación de los disolventes orgánicos utilizados.

Por otra parte, esta metodología es particularmente interesante desde un punto de vista práctico, puesto que la extracción con disolventes orgánicos es el tratamiento usual de la muestra cuando se desea determinar analitos orgánicos, y estos analitos pueden ser extraídos selectivamente de la muestra en disolventes orgánicos que sean capaces de formar emulsiones.

I.5.- TÉCNICAS ELECTROANALÍTICAS UTILIZADAS

Las técnicas utilizadas para llevar a cabo el estudio electroanalítico de los plastificantes y antioxidantes tratados en esta Memoria han sido: polarografía de muestreo de corriente o tast, polarografía diferencial de impulsos, voltamperometría de barrido lineal, voltamperometría diferencial de impulsos, voltamperometría cíclica y voltamperometría de onda cuadrada. De todas ellas existen excelentes monografías y libros de texto (262-265). A continuación se describen brevemente los aspectos más interesantes desde el punto de vista analítico de la voltamperometría de onda cuadrada por tratarse de una técnica de utilización más reciente.

I.5.1- CARACTERÍSTICAS GENERALES DE LA VOLTAMPEROMETRÍA DE ONDA CUADRADA.

La denominada voltamperometría de onda cuadrada (SWV) es una técnica electroanalítica compleja y poderosa que requiere un ordenador para su implementación. La forma de onda característica de esta técnica voltamperométrica (Figura 7) combina una modulación de onda cuadrada de gran amplitud con una forma de onda en escalera. La corriente neta resultante (Δi en la Figura 8), que es una verdadera señal diferencial, puede obtenerse a elevadas velocidades de barrido de potencial. Los voltamperogramas con forma de pico que se obtienen proporcionan una sensibilidad excelente y una minimización de la corriente de fondo (266).

Para una reacción simple y reversible, la función de corriente normalizada depende sólo de la secuencia de potencial aplicada al electrodo, independientemente del tiempo. De este modo se cumple que:

 $\mathbf{i} = [\mathbf{n} \mathbf{F} \mathbf{A} \mathbf{D}^{1/2} \mathbf{C}^* / \sqrt{\pi} \mathbf{t}_p] \Psi (\Delta \mathbf{E}_s, \mathbf{E}_{sw})$

Figura 7.- Forma de onda característica de SWV donde: τ = Periodo (Tiempo de repetición del impulso), t_p = Anchura del impulso; ΔE_p = Cambio en el potencial del impulso; ΔE_s = Altura del salto; E_s = Potencial de modulación de Onda Cuadrada

Figura 8.- Corrientes directa e inversa medidas en los puntos 1 y 2 (Ψ_1 y Ψ_2) (Figura 7) y corriente neta ($\Delta \Psi$). Ψ representa la función de corriente normalizada

En la ecuación anterior, i es la corriente medida en cada impulso, n es el número de electrones transferidos, F es la constante de Faraday, A es el área del

61

electrodo, D es coeficiente de difusión del reactivo, C' es la concentración del mismo en el seno de la disolución y t_p es la anchura del impulso (la mitad del período) de la escalera.

La curva Ψ_1 (Figura 8) corresponde a la corriente medida en el punto 1 (Figura 7), la curva Ψ_2 a la corriente medida en el punto 2, e $\Delta \Psi$ corresponde a la corriente neta, Δ_i . Las corrientes Ψ_1 y Ψ_2 tienen cualitativamente el mismo poder de diagnóstico que las corrientes directa e inversa en voltamperometría cíclica. La curva corriente neta-potencial, Δ_i vs. E, es simétrica alrededor del potencial de onda media y la altura de pico es proporcional a la concentración.

Supuesta una reacción inicial de reducción: Ox + ne⁻ \Rightarrow Red, la amplitud de la modulación de onda cuadrada (E_{sw}) es tan grande (50/n mV en la Figura 7) que los impulsos inversos causan la reoxidación del producto producido en los impulsos directos para volver a dar Ox, resultando una corriente anódica. Por tanto, la corriente neta es más grande que la corriente directa o que la corriente inversa, puesto que representa la diferencia entre ellas. Al disminuir la magnitud de E_{sw} disminuye la corriente de pico sin que aumente significativamente la resolución. Por otra parte, el aumento de E_{sw} por encima de 50/n mV ensancha el pico sin que se produzca un aumento significativo en la altura de pico, es decir, en la sensibilidad. Así, independientemente de τ (el período de la forma de onda) o de ΔE_{s} , la sensibilidad y la resolución óptima se obtienen para $E_{sw} = 50/n$ mV para un proceso reversible. Esta relación se cumple también para técnicas como la voltamperometría diferencial de impulsos.

La corriente depende de $t_p^{-1/2}$ o de f^{1/2}, de tal manera que, al aumentar la frecuencia de onda cuadrada, f, aumenta la corriente de pico y, por consiguiente la sensibilidad. Sin embargo, ciertas frecuencias son preferibles a otras; así, la operación a 30 Hz tiende a rechazar el ruido ubicuito de 60 Hz. Por otra parte, el empleo de frecuencias mucho más altas (>1000 Hz) requiere una cuidadosa

atención al diseño de la célula y a la electrónica del instrumento. De este modo, el uso de una frecuencia aproximada de 200 Hz representa un compromiso razonable entre la mayor sensibilidad y la operación estable del instrumento para el trabajo analítico más o menos de rutina.

63

Es importante destacar como una de las ventajas más interesantes de la voltamperometría de onda cuadrada la posibilidad de barrer el margen de potencial de interés a una elevada velocidad, cuando se escogen adecuadamente los parámetros experimentales. Puesto que la velocidad de barrido efectiva es $\Delta E_s / \tau$, el tiempo requerido para barrer un intervalo de potencial, ΔE_r , será exactamente $\tau(\Delta E_r / \Delta E_s)$, lo que significa que pueden conseguirse tiempos experimentales muy cortos empleando frecuencias moderadas. Por ejemplo, para $\Delta E_s = 10 \text{ mV y f} = 200 \text{ Hz}$, la velocidad de barrido efectiva es de 2 V s⁻¹ o lo que es igual, el tiempo que se requiere para barrer 500 mV es de tan sólo 0.25 s. Esta ventaja hace de esta técnica una herramienta muy útil en los estudios de cinética electroquímica. Por otra parte, su empleo permite el barrido del margen de potencial escogido con una sóla gota cuando se utiliza el electrodo gotero de mercurio o un electrodo de gota estático de mercurio. Así, en polarografía de onda cuadrada, con un tiempo de goteo controlado de 6 s, se puede iniciar el barrido a los 5.5 s y registrar un barrido de potencial completo de 1 V por gota, empleando los parámetros citados anteriormente, mientras que el mismo experimento requeriría 100 gotas o 600 s, mediante DPP. Empleando una amplitud del impulso de 50/n mV para ambas técnicas, y una frecuencia de onda cuadrada de 200 Hz, la relación de las corrientes de pico sería de 5.6 a 1, es decir, se consigue un 560% de aumento de la sensibilidad.

La mayor rapidez de barrido de la voltamperometría de onda cuadrada y la necesidad de trabajar bajo control por ordenador para la elección flexible de los parámetros hace posible llevar a cabo experimentos idénticos repetidamente y promediar los resultados, con el fin de aumentar la relación señal/ruido. Adicionalmente, la capacidad de barrido rápido de esta técnica permite observar cambios en la respuesta voltamperométrica en tiempos no destructivos, debidos por ejemplo, al modo de presentación del analito, como ocurre en FIA y en HPLC con detección electroquímica.

Por otra parte, el esquema de medida diferencial de la corriente que se lleva a cabo en esta técnica permite que la corriente neta presente un excelente rechazo de las corrientes de fondo, que como es conocido son, a menudo, el factor crítico que determina los límites de detección. La gran ventaja de la voltamperometría de onda cuadrada es la discriminación de toda corriente que sea fundamentalmente independiente del potencial. La corriente neta de onda cuadrada tampoco es sensible a las corrientes que provienen del transporte de masa convectivo, como es el caso de las fluctuaciones de señal debidas a los cambios de caudal en la detección en HPLC.

Finalmente decir que cuando la reacción electródica es totalmente irreversible, es decir cuando $k\sqrt{\tau} < <1$ (donde k es una constante de velocidad efectiva para la transferencia de carga con unidades de s^{-1/2} y τ es el período de onda cuadrada), la función de corriente de pico diferencial disminuye hasta un valor mínimo, E_p se desplaza hacia valores más negativos (para una reducción) y la anchura del pico aumenta hasta un valor máximo. La pérdida de sensibilidad que ésto representa depende de la elección adecuada de los parámetros típicos de onda cuadrada, si bien puede generalizarse que la corriente irreversible de onda cuadrada no será nunca menor que la corriente correspondiente a diferencial de impulsos.

I.6.- OBJETIVO Y PLAN DE TRABAJO

El trabajo realizado se enmarca dentro de la línea de investigación del Grupo de Electroquímica Analítica de este Departamento acerca del desarrollo de métodos electroanalíticos para la determinación de compuestos orgánicos de interés, fundamentalmente en muestras de alimentos.

Tanto los plastificantes empleados como aditivos de los plásticos que están en contacto con los alimentos, objeto de estudio en este trabajo, como los antioxidantes añadidos a los alimentos con el fin de aumentar su estabilidad, son compuestos orgánicos escasamente solubles en agua, por lo que se han utilizado medios micelares y emulsiones del tipo aceite-agua para desarrollar los métodos electroanalíticos, y de este modo aprovechan las ventajas inherentes a estos sistemas, las cuales han sido comentadas en el apartado 1.4.2.

La metodología de trabajo implica, en primer lugar la elección del tensoactivo que disuelva al analito y que proporcione los mejores resultados desde el punto de vista analítico, fundamentalmente por lo que se refiere a la sensibilidad y selectividad. Se establecerán, seguidamente, las condiciones experimentales de utilización del tensoactivo, para, a continuación, proceder a estudiar, desde un punto de vista electroanalítico, el proceso o procesos electródicos implicados.

En caso de no estar fijado por otros condicionamientos de trabajo, el efecto del pH sobre parámetros de la respuesta electroquímica tales como el potencial de onda media o de pico y la corriente límite o de pico es un elemento esencial en el estudio del proceso electródico. Las características de estos procesos pueden establecerse aplicando las mismas técnicas y criterios electroquímicos empleados normalmente en disoluciones convencionales. El conjunto de estos resultados, permitirá, en ocasiones, proponer los mecanismos

de la reacción electroquímica estudiada.

El último paso del estudio electroanalítico sistemático consistirá, claro está, en el establecimiento de las características analíticas del método o métodos desarrollados, márgenes de linealidad de los calibrados obtenidos, precisión y límites de determinación y detección.

Este plan de trabajo para el estudio de los procesos electródicos es completamente análogo al que se pretende desarrollar en los medios emulsionados del tipo aceite-agua.Como es obvio, en estos medios el primer paso ha de consistir en elegir el disolvente orgánico adecuado para formar las emulsiones, para lo que se procurará escoger aquel disolvente o mezcla de disolventes que resulte ser más apropiado para la extracción del analito de las muestras en que se desea determinar y, naturalmente, que sea capaz de formar dichas emulsiones.

Se estudiarán algunas variables de la emulsión tales como el volumen de fase orgánica, el porcentaje de tensoactivo según dicho volumen o el tiempo de emulsificación, para una vez optimizadas, seguir la metodología de trabajo mencionada y, finalmente, establecer las características analíticas de los métodos de determinación puestos a punto en este medio.

Por último se aplicarán los métodos desarrollados a la determinación de estos compuestos orgánicos en diferentes muestras de alimentos, intentando que el empleo de los medios organizados permita simplificar los procedimientos de preparación y tratamiento de la muestra antes de proceder a la medida electroquímica de la propiedad analítica, eliminando, en los casos en los que sea posible, algunas etapas usuales en el proceso analítico general.

II.- PARTE EXPERIMENTAL

II.1.- INSTRUMENTACION

En este apartado se describen los aparatos y electrodos utilizados en el trabajo desarrollado en esta Memoria.

II.1.1.- APARATOS

- Polarógrafo Metrohm E 506 equipado con un soporte polarográfico Metrohm E 505.
- Potenciostato EG&G Versastat con Software de Análisis Electroquímico mod. 250.
- Potenciostato EG&G PARC 273 con Software de Análisis Electroquímico mod. 270.
- pH-metro de precisión Metrohm E 510.
- Termostato de circulación de agua P-Selecta.
- Cubeta de ultrasonidos P-Selecta Ultrasons.
- Centrifugadora P-Selecta
- Rotavapor P-Selecta.
- Agitador mecánico Griffin

II.1.2.- ELECTRODOS Y CELULAS DE TRABAJO

Electrodos:

- Electrodos indicadores:
 - * Electrodo gotero de mercurio Metrohm EA 1019/2 equipado con un capilar 6.1230.000
 - * Electrodo de mercurio EG&G PARC 303 A en la modalidad de gota colgante equipado con un capilar G0199

- * Electrodo estático de disco de carbono vitrificado (0.3 cm de diámetro) Metrohm 6.0804.010
- * Electrodo rotatorio de disco de carbono vitrificado (0.3 cm de diámetro) Metrohm 6.1204.000
- * Electrodo de malla de platino utilizado en los estudios culombimétricos a potencial controlado.
- Electrodos de referencia:
 - * Electrodo de calomelanos saturado Ingold 10.303.3000
 - * Electrodo de Ag/AgCl EG&G PARC G0159
- Electrodos auxiliares:
 - * Electrodo de punta de platino.
 - * Electrodo de barra de grafito.
- Para realizar las medidas de pH se ha empleado un electrodo combinado Metrohm AG 9100

Células:

- Células electroquímicas de doble pared Metrohm EA 876-20
- Células electroquímicas EG&G PARC G0057

II.2.- REACTIVOS

- Plastificantes: Ftalato de dimetilo (Aldrich) Ftalato de dietilo (M&G) y Ftalato de dibutilo (Panreac). - Antioxidantes: BHA (Sigma) TBHQ (Aldrich, 97% de pureza).

- Tensoactivos:

no iónicos: Triton X-405, Pluronic F-68 (Serva) catiónicos: Hyamina 1622, Hyamina 2389, Hyamina 3500 (Serva), cloruro de hexadecilpiridinio (Fluka), bromuro de cetiltrimetilamonio (Serva) aniónicos: sal sódica del ácido pentanosulfónico (Serva), Dodecilsulfato sódico (Carlo Erba).

- Disolventes orgánicos: acetato de etilo, acetonitrilo, éter etílico, n-hexano (Carlo Erba).

- Reactivos inorgánicos: ácido bórico, ácido fosfórico, ácido acético (Carlo Erba).

 Otros productos: alúmina (Metrohm 6.2802.00); florisil 60 mesh, calidad para análisis de pesticidas (Carlo Erba), activado 12 horas en horno a 675 °C y en estufa a 120 °C dos horas antes de usarlo.

Todos los reactivos utilizados han sido de calidad para análisis.

Se ha trabajado con agua ultrapura obtenida mediante un sistema Millipore Milli- Q.

II.3.- PROCEDIMIENTOS EXPERIMENTALES

II.3.1.- PREPARACIÓN DE LAS DISOLUCIONES PATRON

Disoluciones patrón de plastificantes:

Las disoluciones patrón de cada plastificante se prepararon mediante pesada directa de la cantidad adecuada del compuesto para obtener una concentración final de 1.0×10^{-2} mol L⁻¹ en acetonitrilo o acetato de etilo. A partir de éstas se prepararon disoluciones de menor concentración, para trabajar en medio emulsionado, por dilución de los patrones en acetato de etilo con la mezcla apropiada de disolventes éter etílico:acetato de etilo de forma que la relación final sea 1:9.

Disoluciones patrón de antioxidantes:

Los patrones para trabajar en medio micelar se prepararon mediante pesada directa de la cantidad adecuada del antioxidante de manera que la concentración final sea 1.0×10^{-3} mol L⁻¹ y 5.0×10^{-4} mol L⁻¹, para TBHQ y BHA respectivamente y disolviéndose en Pluronic F-68 al 1% mediante agitación ultrasónica durante 5 minutos. Las disoluciones de menor concentración se obtuvieron a partir de las anteriores mediante dilución con agua y agitación ultrasónica durante 2 minutos.

Las disoluciones patrón necesarias para trabajar en medio emulsionado se prepararon mediante pesada directa del compuesto para obtener una concentración final de 1.0×10^{-3} mol L⁻¹ utilizando como disolvente acetato de etilo (BHA, TBHQ) o una mezcla n-hexano:acetato de etilo (99+1) (TBHQ). Los patrones de menor concentración se prepararon por dilución apropiada con el disolvente o mezcla de disolventes indicados

Disolución reguladora de pH:

Se empleó disolución reguladora Britton-Robinson para cubrir el margen de pH entre 1.5 y 12.0, preparada a partir de una mezcla de ácido acético, ácido bórico y ácido fosfórico, 0.2 M en cada componente. Esta disolución se utilizó también como electrólito soporte. El valor de pH deseado se ajustó por adición de gotas de una disolución de NaOH 2M a una alícuota de 25 mL de dicha mezcla.

Disoluciones de tensoactivos:

Se prepararon disoluciones de tensoactivos al 1% (p/v) en agua.

II.3.1.1.- PREPARACION DE LAS DISOLUCIONES MICELARES

Para preparar las disoluciones analíticas en medio micelar se añade a un matraz de 50 mL y en este orden, el volumen apropiado de disolución patrón de plastificante o antioxidante, la cantidad de tensoactivo adecuada para obtener la concentración requerida en cada experimento y 25 mL de disolución de electrólito soporte, enrasando finalmente con agua destilada e introduciendo el matraz en el baño ultrasónico durante 1 minuto.

II.3.1.2.- PREPARACION DE LAS EMULSIONES ACEITE/AGUA

Para preparar las emulsiones, se añade a un matraz de 50 mL la cantidad necesaria de disolución patrón del compuesto a estudiar en el disolvente orgánico apropiado, el volumen conveniente de disolvente orgánico para conseguir la concentración deseada y 25 mL de disolución reguladora Britton-Robinson, se enrasa a 50 mL con agua destilada y por último se agita manualmente y se introduce en una cubeta de ultrasonidos durante 3 minutos.

Antes de la obtención de cada voltamperograma se efectúa un barrido de potencial mediante la aplicación de un programa de potencial de onda cuadrada desde +0.9 hasta -0.9 V (amplitud, 50 mV; altura del salto, 1.0 mV; frecuencia, 50 Hz) sobre el electrodo de carbono vitrificado sumergido en una disolución del electrólito soporte. Además diariamente se pule el electrodo con alúmina en polvo de 0.3 μ m.

Cuando se emplea dicho electrodo para la determinación de BHA en muestras de goma de mascar, el electrodo se pulió primero con alúmina, aplicándose después el barrido de potencial de onda cuadrada antes de cada medida.

II.3.3.- OBTENCIÓN DE LOS POLAROGRAMAS Y VOLTAMPEROGRAMAS

Las disoluciones y emulsiones obtenidas en el apartado anterior, se trasvasan a la célula electroquímica y se desoxigena burbujeando argón a través de las mismas durante 5 minutos en el caso de la determinación de TBHQ y durante 20 minutos cuando se estudiaron los ésteres ftálicos. Obviamente no fue necesario la desoxigenación cuando se estudió el proceso de oxidación BHA. Seguidamente se registran los polarogramas o los voltamperogramas en las condiciones experimentales que se detallan en cada apartado a $(20\pm1)^{\circ}$ C.

II.3.4.- DETERMINACIÓN DE FTALATO DE DIMETILO Y FTALATO DE DIETILO EN LECHE MEDIANTE POLAROGRAFIA DIFERENCIAL DE IMPULSOS

Se introducen en un mezclador 50 mL de leche, el volumen adecuado de disolución patrón de cada plastificante y 75 mL de una mezcla de éter etílico y acetato de etilo en la relación (1:9). Se homogeneiza la mezcla a 18500 r.p.m. durante 30 segundos y se transfiere a seis tubos de centrífuga de 35 mL. Seguidamente se lava varias veces el mezclador con pequeñas porciones de la mezcla de disolventes las cuales se adicionan también a los tubos. Tras centrifugar la mezcla a 4000 r.p.m. durante 20 minutos, se separan las dos fases obtenidas y se transfiere la orgánica a un matraz de fondo redondo. Sobre la fase acuosa se lleva a cabo una segunda extracción con 75 mL de la mezcla orgánica antes mencionada, uniendo la fase orgánica así obtenida a la anterior y concentrándolas hasta unos 10 mL en un rotavapor. A continuación, se hace pasar esta fase orgánica a través de una columna rellena de 18 cm x 1.3 cm de diámetro interno conteniendo 1.2 g de florisil y 2.4 g de sulfato sódico anhidro (la columna fue lavada previamente con 10 mL de la mezcla orgánica éter etílico:acetato de etilo (1:9) para compactar el relleno). Se procedió a eluir con 10 mL de la mezcla de disolventes a un caudal de 3 ml min⁻¹. El eluato se recoge en un matraz de fondo redondo de 100 mL y se concentra hasta unos 2 mL en un rotavapor. Finalmente se añaden 1.5 mL de disolución de Hyamina 1622 al 0.5% y 25 mL de disolución reguladora Britton-Robinson 0.2 M de pH 10.0, se trasvasa la mezcla a un matraz de 50 mL, se enrasa con agua destilada, se agita manualmente y se sumerge el matraz en un baño de ultrasonidos durante 3 minutos, agitando manualmente cada minuto. La emulsión así obtenida se transfiere a la célula electroquímica, registrándose los polarogramas mediante la técnica diferencial de impulsos. La determinación se lleva a cabo empleando el método de adiciones estándar, añadiendo sucesivamente 50 μ L (hasta 200 μ L) de una disolución patrón del ftalato correspondiente en éter etílico:acetato de etilo (1:9). No fue necesario

introducir la célula en el baño de ultrasonidos después de cada adición para homogeneizar la emulsión, siendo suficiente con agitar la emulsión magnéticamente mientras que se llevaba a cabo la desoxigenación.

II.3.5.- DETERMINACIÓN DE BHA EN GOMA DE MASCAR MEDIANTE VOLTAMPEROMETRÍA DIFERENCIAL DE IMPULSOS SOBRE UN ELECTRODO DE CARBONO VITRIFICADO

Se pesan exactamente alrededor de 5 g de muestra, previamente troceada, y se introducen en un Erlenmeyer de 100 mL. Se añaden 50 mL de acetato de etilo, se tapa el matraz y se agita durante 12 horas en un agitador mecánico. Se introduce la mezcla en un congelador durante 2 horas, con el fin de que se produzca la precipitación de la goma base. Se toman 2 mL del sobrenadante y se prepara la emulsión añadiendo 3 mL de disolución de Pluronic F-68 al 1% y 25 mL de disolución reguladora Britton-Robinson de pH 2.0, registrándose los voltamperogramas correspondientes mediante voltamperometría diferencial de impulsos. La determinación de BHA se realiza por aplicación del método de adiciones estándar, mediante adiciones de 27 a 135 μ g de BHA a partir de una disolución patrón 3.0x10⁻³ mol L⁻¹ del antioxidante en acetato de etilo.

II.3.6.- DETERMINACIÓN DE TBHQ EN ACEITES MEDIANTE POLAROGRAFIA DIFERENCIAL DE IMPULSOS

Se pesan exactamente alrededor de 25 g de aceite en un vaso de precipitados de 50 mL, añadiéndose 5.0 mL de disolución patrón de TBHQ de 500 mg L⁻¹ en n-hexano: acetato de etilo (99+1). La muestra de aceite enriquecida se transfirió cuantitativamente a un matraz aforado de 100 mL, lavando con la mezcla de disolventes, mezclando los lavados y enrasando con dicha mezcla. Una alícuota de 1.0 mL de esta disolución se transfiere a un matraz aforado de 50 mL

que contiene 25 mL de disolución reguladora Britton-Robinson 0.2 M pH 8.0 y 2.0 mL de Pluronic F-68 al 5%, enrasándose con agua destilada. Se introduce el matraz en un baño de ultrasonidos durante 10 minutos, agitando manualmente cada minuto. La emulsión así obtenida se transfiere a la célula electroquímica y se registran los polarogramas tras desoxigenar la disolución mediante burbujeo con argón durante 5 minutos. Se aplica el método de adiciones estándar para la determinación del TBHQ añadiendo desde 25.0 hasta 125 μ g de TBHQ a partir de una disolución patrón de 500 mg L⁻¹ de TBHQ en n-hexano:acetato de etilo (99+1), midiéndose en todos los casos la intensidad obtenida frente a la corriente de fondo.

II.3.7.- DETERMINACIÓN DE TBHQ EN PALOMITAS DE MAÍZ MEDIANTE VOLTAMPEROMETRÍA DE ONDA CUADRADA SOBRE UN ELECTRODO DE GOTA COLGANTE DE MERCURIO

Se trituran en un mortero de ágata entre 20 y 30 g de palomitas de maíz y se pesan exactamente alrededor de 2 g. Se introducen en un erlenmeyer de 100 mL al que se adicionan 50 mL de acetato de etilo y 25 μ L de una disolución patrón de TBHQ 0.025 mol L⁻¹ en acetato de etilo. La mezcla se agita durante 3 minutos en un agitador mecánico y se prepara la emulsión transfiriendo 2.0 mL del sobrenadante junto con 2.0 mL de disolución de Pluronic F-68 al 1% y 25 mL de disolución reguladora Britton-Robinson 0.2 M de pH 9.0 a un matraz de 50 mL, enrasando con agua destilada y sumergiéndolo en un baño de ultrasonidos durante 3 minutos. La determinación del TBHQ se realiza mediante voltamperometría de onda cuadrada, empleando el método de adiciones estándar, que implicó la adición, a 5.0 mL de la disolución analítica, de 0.42 a 2.10 μ g del antioxidante, a partir de una disolución patrón del mismo en acetato de etilo.

III. RESULTADOS Y DISCUSIÓN

. .

III.1.- ESTUDIO ELECTROANALÍTICO DE LOS PLASTIFICANTES FTALATO DE DIMETILO, DE DIETILO Y DE DIBUTILO MEDIANTE TÉCNICAS POLAROGRÁFICAS EN MEDIOS MICELARES Y EMULSIONADOS

III.1.1.- ESTUDIOS PREVIOS EN MEDIOS ACETONITRILO Y ACETONITRILO/AGUA

Con objeto de comparar los resultados obtenidos en los medios dispersos utilizados, se realizaron algunos ensayos previos, mediante polarografía diferencial de impulsos, en medio acetonitrilo y en disoluciones acuosas preparadas a diferentes valores de pH que contenían diversas proporciones de este disolvente.

Empleando una concentración 4.0×10^{-5} mol L⁻¹ de cada uno de los plastificantes en acetonitrilo, se observó, en cada caso, la aparición de un pico de reducción bien definido. Por ejemplo, para el ftalato de dibutilo (DBP), el pico aparece a -2.32 V, siendo su intensidad de 0.18 μ A. Por otro lado, cuando se utiliza una proporción del 4% de acetonitrilo en agua, es posible observar la aparición del pico de reducción a pH neutro o básico, si bien la intensidad es mayor en este último medio. En estas condiciones, y a pH 10.0, el DBP muestra un pico de reducción menos intenso ($i_p = 55$ nA), aunque éste aparece desplazado hacia un potencial menos negativo ($E_p = -1.71$ V). Como se pondrá de manifiesto en esta Memoria, estos picos de reducción tanto en acetonitrilo puro como en acetonitrilo-agua poseen una menor potencialidad analítica (menor sensibilidad, mayor anchura y potenciales más negativos) que los obtenidos tanto en disoluciones micelares como en emulsiones aceite/agua.

III.1.2.- DISOLUCIONES MICELARES

La adición de un tensoactivo apropiado a las disoluciones acetonitrilo: agua mencionadas anteriormente dio lugar a aumento considerable de la intensidad del pico de reducción obtenido mediante polarografía diferencial de impulsos, lo que justifica el estudio polarográfico en medio micelar de los plastificantes objeto de esta Memoria. Así, por ejemplo, las corrientes de pico obtenidas para ftalato de dimetilo y de dibutilo a una concentración de 4.0x10⁻⁵ mol L⁻¹ en presencia de Hyamina 1622 a pH 10.0 son aproximadamente dos veces y nueve veces mayores que las obtenidas en ausencia del tensoactivo. Además, los potenciales de pico son menos negativos y los picos son más estrechos en presencia de Hyamina 1622. Estos efectos son debidos probablemente a un aumento de la constante de velocidad heterogénea para la reducción de los ésteres del ácido ftálico cuando se halla presente un tensoactivo adecuado.

Para realizar este estudio, se ha procedido, en primer lugar, a elegir el tensoactivo más adecuado, estudiándose seguidamente y de modo sistemático las diferentes variables que afectan a la señal de reducción obtenida. Posteriormente se ha determinado la naturaleza de la corriente límite controlante de los procesos de reducción polarográfica y finalmente se han establecido las características analíticas del método desarrollado.

III.1.2.1.-Elección del tensoactivo

Este estudio se ha llevado a cabo mediante polarografía diferencial de impulsos, debido a las mejores características analíticas de esta técnica. En todos los casos se ha empleado una amplitud del impulso (ΔE) de -50 mV.

Con el fin de escoger el tensoactivo más adecuado desde el punto de vista analítico se realizaron ensayos con distintos tensoactivos catiónicos (Hyamina 1622, Hyamina 2389, Hyamina 3500 y cloruro de hexadecilpiridinio), aniónicos (pentanosulfonato sódico y dodecil sulfato sódico) y no iónicos (Pluronic F-68 y Triton X-405), todos ellos solubles en agua, a tres valores diferentes de pH, 4.0, 7.0 y 10.0 (ó 9.0 en el caso del ftalato de dibutilo), utilizando una concentración de plastificante de 4.0×10^{-5} mol L⁻¹

Los resultados obtenidos para los tres plastificantes se resumen en las Tablas X, XI y XII, en las que se incluyen una serie de observaciones sobre los picos obtenidos para cada compuesto empleando cada uno de los tensoactivos mencionados anteriormente.

A partir de los datos contenidos en dichas Tablas puede deducirse que, en general, los medios básicos son los más adecuados para los tensoactivos ensayados. Por otra parte, y también de un modo general puede afirmarse que los tensoactivos catiónicos son los que proporcionan una mejor respuesta, resultando ser, de entre ellos, la Hyamina 1622 el más apropiado teniendo en cuenta características análiticas tales como la forma del pico de reducción, sensibilidad, anchura de pico, reproducibilidad, corriente de fondo, y efecto del tensoactivo sobre la señal de reducción del compuesto.

En la Figura 9 se muestran los polarogramas obtenidos para cada plastificante en las disoluciones micelares formadas con este tensoactivo, así como los correspondientes a las disoluciones del fondo.

III.1.2.2.- Influencia de la concentración de tensoactivo sobre los parámetros de la respuesta polarográfica

Una vez elegido el tensoactivo se procedió a estudiar la influencia de su concentración, en el intervalo comprendido entre el 0.01% y el 0.03% (p/v), sobre las características del pico de reducción de cada plastificante en

TABLA X

Características de los polarogramas obtenidos mediante DPP en presencia de distintos tensoactivos: ftalato de dimetilo, 4.0×10^{-5} mol L⁻¹; tensoactivo, 0.010 %; disolución reguladora Britton-Robinson 0.1 M; $\Delta E = -50$ mV

Tensoactivo	pH	i _p , μA	E _p , V_	Observaciones
Hyamina 1622	4.0	-	-	Aparece un pequeño hombro
	7.0	0.35	-1.592	Pico bien definido
	10.0	0.63	-1.592	Pico bien definido
Hyamina 2389	4.0	-	-	Aparece un pequeño hombro
	7.0	0.25	-1.568	Pico muy próximo a la reducción del medio
	10.0	0.62	-1.568	Pico bien definido
Hyamina 3500	4.0	-	-	No aparece pico de reducción
	7.0	-	-	No aparece pico de reducción
	10.0	0.52	-1.584	Pico bien definido
Cloruro de	4.0	-	-	No aparece pico de reducción
hexadecilpiridinio	7.0	0.11	-1.576	Aparece un pequeño hombro
	10.0	0.39	-1.680	Pico bien definido de baja sensibilidad
Triton X-405	4.0	-	-	No aparece pico de reducción
	7.0	0.06	-1.688	Aparece un pequeño hombro
	10.0	0.28	-1.688	Pico de baja sensibilidad. Alta corriente residual.
Pluronic F-68	4.0	-	-	No aparece pico
	7.0	0.13	-1.688	Pico muy próximo a la reducción del medio
	10. 0	0.40	-1.688	Pico ancho bien definido
Pentanosulfonato sódico	10.0	0.42	-1.688	Aparece un pico ancho poco reproducible

TABLA XI Características de los polarogramas obtenidos mediante DPP en presencia de distintos tensoactivos: ftalato de dietilo, 4.0×10^{-5} mol L⁻¹; tensoactivo, 0.015 %; disolución reguladora Britton-Robinson 0.1 M; $\Delta E = -50 \text{ mV}$

Tensoactivo	<u>pH</u>	i _p , μΑ	E _p , V	Observaciones
Hyamina 1622	4.0	0.25	-1.444	Pico bien definido
	7.0	0.36	-1.560	Pico bien definido
	10.0	0.56	-1.588	Pico bien definido
Hyamina 2389	4.0	-	-	Aparece un pequeño hombro
	7.0	0.11	-1.560	Pico muy próximo a la reducción del medio
	10.0	0.44	-1.568	Pico bien definido
Hyamina 3500	4.0	0.10	-1.464	Aparece un pico muy próximo a la reducción
	7.0	0.23	-1.576	Pico bien definido
	10.0	0.39	-1.584	Pico bien definido
Cloruro de hexadecilpiridinio	4.0	-	-	No aparece pico
	7.0	0.04	-1.664	Aparece un pequeño pico
	10.0	0.18	-1.712	Pico bien definido de baja sensibilidad
Pentanosulfonato sódico	4.0	-	-	No aparece pico
	7.0	0.12	-1.688	Aparece un pico poco sensible
	10.0	0.25	-1.736	Pico ancho y de baja sensibilidad.
Laurilsulfato sódico	4.0	-	-	No aparece pico
	7.0	0.09	-1.710	Pico muy próximo a la reducción del medio
	10.0	0.19	-1.712	Pico bien definido
Pluronic F-68	4.0	-	-	No aparece pico
	7.0	-	-	Pico no medible dada su proximidad a la
	10.0	-	-	Pico no medible dada su proximidad a la
Triton X-405	4.0	-	-	No aparece pico
	7.0	-	-	El fondo presenta un pico a -1.712 V que
	10.0		-	El fondo presenta un pico a -1.712 V que solapa con el del plastificante

87

TABLA XII

Características de los polarogramas obtenidos mediante DPP en presencia de distintos tensoactivos: ftalato de dibutilo, $4.0x10^{-5}$ mol L⁻¹; tensoactivo, 0.015 %; disolución reguladora Britton-Robinson 0.1 M; $\Delta E = -50$ mV

Tensoactivo	<u>рН</u>	і _р , <u>µ</u> А	E _p , V	Observaciones
Hyamina 1622	4.0	0.35	-1.452	Aparece un pequeño hombro
	7.0	0.48	-1.584	Pico bien definido
	9.0	0.57	-1.608	Pico bien definido
Hyamina 2389	4.0	-	-	Aparece un pequeño hombro
	7.0	0.15	-1.590	Pico muy próximo a la reducción del medio
	9.0	0.32	-1.5%	Pico bien definido
Hyamina 3500	4.0	0.24	-1.488	Pico bien definido de pequeña sensibilidad
	7.0	0.28	-1.608	Pico bien definido
	9.0	0.38	-1.616	Pico bien definido
Cloruro de hexadecilpiridinio	4.0	-	-	No aparece pico
	7.0	0.20	-1,648	Aparece un pequeño hombro
	9.0	0.22	-1.744	Pico bien definido de baja sensibilidad
Triton X-405		-	-	No aparece pico a ningún pH
Pluronic F-68		-	-	No aparece pico a ningún pH
Lauril sulfato sódico		~	-	No aparece pico a ningún pH

89

Figura 9.- Polarogramas en diferencial de impulsos de (a) ftalato de dimetilo, 4.0x10⁻⁵ mol L⁻¹, 0.015% Hyamina 1622, pH 10.0, (b) ftalato de dietilo, 4.0x10⁻⁵ mol L⁻¹, 0.015% Hyamina 1622, pH 10.0 y (c) ftalato de dibutilo, 4.0x10⁻⁵ mol L⁻¹, 0.020% Hyamina 1622, pH 8.0. Disolución reguladora Britton-Robinson 0.1 M. (-----) polarogramas correspondientes a las disoluciones de fondo. ΔE=-50 mV, v=10 mV s⁻¹
concentración 4.0x10⁻⁵ mol L⁻¹. Las medidas se han realizado a pH 10.0 en el caso los ftalatos de dimetilo y de dietilo; sin embargo, en el caso del ftalato de dibutilo, debido a que no es posible obtener picos estables con el tiempo a este valor de pH, se han llevado a cabo a pH 8.0.

Los resultados obtenidos se recogen en la Tabla XIII y se representan en la Figura 10. Como puede observarse, en todos los casos, la corriente de pico aumenta con la concentración de Hyamina hasta un valor máximo a partir del cual tiende a disminuir. En lo que respecta al potencial de pico, éste se desplaza hacia valores menos negativos a medida que aumenta el porcentaje de tensoactivo.

El valor máximo de la intensidad de pico se obtiene para una concentración de Hyamina 1622 del 0.015% (p/v) en el caso de los ftalatos de dimetilo y de dietilo mientras que es del 0.020% (p/v) para el ftalato de dibutilo, eligiéndose éstos como valores óptimos para posteriores estudios.

TABLA XIII

Influencia de la proporción de Hyamina 1622 sobre los valores de i_p y E_p de los tres plastificantes en concentración 4.0x10⁻⁵ mol L⁻¹; v = 10 mV s⁻¹; $\Delta E = -50$ mV; $t_g = 0.4$ s.

	Ftalato de dimetilo		Ftalato de dietilo		Ftalato de dibutilo	
Hyamina 1622, %	i _p , μΑ	E _p , V	i _p , μΑ	E _p , V	i _p , μΑ	E _p , V
-	0.38	-1.680	0.25	-1.728	-	
0.010	0.63	-1.584	0.54	-1.608	0.34	-1.612
0.015	0.71	-1.568	0.56	-1.576	0.46	-1.572
0.020	0.71	-1.548	0.52	-1.556	0.50	-1.560
0.025	0.68	-1.536	0.45	-1.544	0.46	-1.540
0,030	0.64	-1.528	0.39	-1.536	0.39	-1.536

91

Figura 10.- Efecto del porcentaje de Hyamina 1622 sobre la corriente de pico mediante polarografía diferencial de impulsos. (●) ftalato de dimetilo, pH 10.0 (▲) ftalato de dietilo, pH 10.0 y (■) ftalato de dibutilo, pH 8.0 en concentración 4.0x10⁻⁵ mol L⁻¹, disolución reguladora Britton-Robinson 0.1 M, ΔE=-50 mV, v=10 mV s⁻¹

III.1.2.3.- Influencia del pH

El efecto del pH sobre la respuesta polarográfica de los ésteres de tipo ftalato estudiados se ha evaluado utilizando como electrólito soporte disoluciones 0.1 M de regulador Britton-Robinson y una concentración $4.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$ de plastificante, en un intervalo de pH comprendido entre 1.5 y 11.0.

Empleando la técnica de polarografía de de muestreo de corriente (tast) y concentraciones de plastificante comprendidas entre $1.0x10^{-5}$ y $4.0x10^{-5}$ mol L⁻¹ se obtienen ondas mal definidas a valores de pH inferiores a 6. Dichas ondas muestran, a concentraciones más altas de analito, un hombro en la región de la corriente límite, probablemente debido a procesos de adsorción sobre la gota de mercurio, imposibilitando, de este modo, las medidas exactas de los valores de i_L y de $E_{1/2}$.

Por otro lado, mediante polarografía diferencial de impulsos es posible observar la aparición de picos de reducción bien definidos en todo el margen de pH estudiado, empleando una concentración de plastificante de 4.0×10^{-5} mol L⁻¹. Por consiguiente, se eligió esta técnica para realizar el estudio de la influencia del pH sobre i_p y E_p, empleando las siguientes condiciones experimentales: velocidad de barrido de potencial, 10 mV s⁻¹, tiempo de goteo, 0.4 s y amplitud del impulso, ΔE , -50 mV.

92

Los resultados obtenidos para cada uno de los plastificantes se recogen en la Tabla XIV y se encuentran representados en las Figuras 11, 12 y 13.

Figura 11.- Efecto del pH sobre E_p (▲) e i_p (●), mediante polarografía diferencial de impulsos: ftalato de dimetilo 4.0x10⁻⁵ mol L⁻¹, 0.015% Hyamina 1622, disolución reguladora Britton-Robinson 0.1 M, ΔE=-50 mV, v=10 mV s⁻¹

93

Figura 12.- Efecto del pH sobre E_p (▲) e i_p (●), mediante polarografía diferencial de impulsos: ftalato de dietilo 4.0x10⁻⁵ mol L⁻¹, 0.015% Hyamina 1622, disolución reguladora Britton-Robinson 0.1 M, ΔE=-50 mV, v=10 mV s⁻¹

Figura 13.- Efecto del pH sobre E_p (▲) e i_p (●), mediante polarografía diferencial de impulsos: ftalato de dibutilo 4.0x10⁻⁵ mol L⁻¹, 0.020% Hyamina 1622, disolución reguladora Britton-Robinson 0.1 M, ΔE=-50 mV, v=10 mV s⁻¹

94

Como puede observarse, los potenciales de pico de los tres compuestos se desplazan hacia valores más negativos conforme aumenta el pH hasta un determinado valor a partir del cual dicho desplazamiento es mucho menor. Este comportamiento indica la existencia de un proceso de protonación previo a la reducción polarográfica de los plastificantes (264). Las representaciones del potencial de pico en función del pH muestran dos tramos lineales de diferente pendiente, cuyos puntos de intersección son 6.4, 7.3 y 7.1 para los ftalatos de dimetilo, dietilo y dibutilo, respectivamente. En cuanto a las representaciones de la intensidad de pico frente al pH, se observa en todos los casos un ligero aumento de la corriente con el pH, para valores de pH ácidos, siendo este incremento mucho más acusado en medio básico.

El hábito de dichas representaciones permite deducir que tanto la forma ácida como la forma básica correspondiente a cada uno de los ftalatos son electroactivas y que la reducción de la forma básica no implica un equilibrio ácido-base previo al proceso de reducción. Por otra parte, sólo se observa un pico de reducción en todo el intervalo de pH estudiado, lo que indica que la forma básica se reduce a un potencial que no es más negativo que el potencial de la forma ácida a pH>7. Por otra parte, el brusco cambio observado en las alturas de los picos desde medios ácidos a básicos sugiere que, en todos los casos, el número de electrones involucrados en la reducción de las formas ácida y básica de los ftalatos no es el mismo. La forma de estas representaciones indica que el número de electrones implicado debe ser mayor para la forma básica, lo que se discutirá posteriormente.

Teniendo en cuenta que la sensibilidad del pico obtenido aumenta a medida que lo hace el pH, los pH básicos resultan ser más adecuados para propósitos analíticos. Sin embargo, aunque a pH 11.0 se obtiene, en todos los casos, una mayor corriente de pico, en estas condiciones se observa una disminución de la señal con el tiempo, lo que probablemente es debido a la hidrólisis de los ésteres del tipo ftalato en medio básico. Por el contrario, a pH 10.0 los ftalatos de dimetilo y de dietilo dan lugar a señales reproducibles con el

TABLA XIV

Influencia del pH sobre i_p y E_p mediante polarografía diferencial de impulsos. Concentración 4.0x10⁻⁵ M; Britton-Robinson 0.1 M; v = 10 mV s⁻¹; $t_g = 0.4$ s.

	Ftalato de dimetilo		Ftalato de dietilo		Ftalato de dibutilo	
pH	i _p , μΑ	E _p , V	i _p , μΑ	E _p , V	i _p , μΑ	E _p , V
1.4	0.17	-1.355	0.15	-1.340	0.20	-1.330
2.0	0.18	-1.380	0.17	-1.368	0.22	-1.360
3.0	0.20	-1.416	0.20	-1.412	0.25	-1.400
4.0	0.26	-1.448	0.23	-1.440	0.28	-1.440
5.0	0.28	-1.488	0.26	-1.480	0.29	-1.485
6.0	0.36	-1.530	0.29	-1,532	0.31	-1.529
7.0	0.41	-1,544	0.34	-1.560	0.37	-1.570
8.0	0.43	-1.544	0.38	-1.568	0.44	-1.584
9.0	0.50	-1.552	0.40	-1.576	0.47	-1.588
10.0	0.74	-1.560	0.50	-1.584	0.54	-1.588
11.0	0.82	-1.564	0.74	-1.584	0.84	-1.600

tiempo al menos durante un intervalo de 60 min. En el caso del ftalato de dibutilo, se observaron diferencias significativas para los valores de i_p con el tiempo incluso a pH 10.0 y 9.0, pero sí que se consiguió una buena reproducibilidad entre 10 y 60 minutos (valores de RSD menores del 3%) trabajando a pH 8.0. En consecuencia, se ha elegido como pH de trabajo un valor de 10.0 para los ftalatos de dimetilo y de dietilo, y de 8.0 para el ftalato de dibutilo.

III.1.2.4.- Naturaleza de la corriente límite de los procesos de reducción polarográfica

Las corrientes límites que se observan sobre el electrodo gotero de mercurio pueden ser de naturaleza difusiva, cinéticas, catalíticas o de adsorción (265). Con el propósito de determinar cuál es la naturaleza de la corriente límite del proceso de reducción de los plastificantes estudiados en esta Memoria, se ha investigado, mediante polarografía de de muestreo de corriente, la influencia de la altura corregida del depósito de mercurio sobre la intensidad límite, en cada uno de los casos.

La altura considerada en estos estudios es la altura corregida, h_{corr} , que representa la altura del depósito de mercurio que contribuye efectivamente a determinar las características del capilar. Esta altura se calcula restando al valor medio de la altura del depósito, h, la altura equivalente a la presión que se opone a la salida de mercurio por el capilar, h_b , la cual viene dada por la expresión:

$$h_b = 3.1/(mt)^{1/3}$$

Por tanto, la altura corregida del depósito de mercurio queda definida por:

$$h_{corr} = h - h_{b} = h - 3.1/(mt)^{1/3}$$

Los valores de h_b utilizados para la determinación de h_{corr} fueron el promedio de tres medidas a diferentes alturas del depósito de mercurio mediante polarografía normal de corriente continua. Aunque la velocidad de flujo del mercurio, m, y el tiempo de goteo, t, varían con la presión de mercurio, el producto mt permanece constante, y por lo tanto h_b presenta un valor similar para todas las alturas utilizadas. El valor obtenido de h_b fue de 1.61 a los pH escogidos en el apartado anterior para cada uno de los tres ftalatos estudiados.

La técnica utilizada en este estudio ha sido la polarografía de de muestreo de corriente, empleando concentraciones de 8.0×10^{-5} , 4.0×10^{-5} y 2.0×10^{-5} mol L⁻¹ para los ftalatos de dimetilo, dietilo y dibutilo respectivamente. El criterio seguido para dilucidar el tipo de corriente que controla el proceso de reducción, consiste en calcular el valor de la pendiente de la recta que se obtiene al representar log i_L frente a log h_{corr}. Si la corriente límite está controlada por difusión, dicha pendiente debe tener un valor próximo a 0.67, deducido de la ecuación de Ilkovic. Los resultados obtenidos se recogen en las Tablas XV, XVI y XVII.

97

TABLA XV

Influencia de la altura del depósito de mercurio sobre i_L en polarografía de de muestreo de corriente. Ftalato de dimetilo, 8.0×10^{-6} mol L⁻¹ en el medio micelar formado por Hyamina 1622, 0.015%; Britton-Robinson 0.1 mol L⁻¹, pH 10.0; v = 10 mV s⁻¹; t_g = 0.4 s.

h, cm	h _{corr} , cm	log h _{corr}	i _L , μΑ	$\log i_L$
40.5	38.9	1.59	0.078	-1.108
45.5	43.9	1.64	0.087	-1.060
50.5	48.9	1.69	0.096	-1.018
55.5	53.9	1.73	0.099	-1.004
60.5	58.9	1.77	0.102	-0.991
65.5	63.9	1.80	0.108	-0.966
70.5	68.9	1.84	0.114	-0.943
75.5	73.9	1.87	0.120	-0.920

TABLA XVI

Influencia de la altura del depósito de mercurio sobre i_L en polarografía de de muestreo de corriente. Ftalato de dietilo, 4.0×10^{-5} mol L⁻¹ en el medio micelar formado por Hyamina 1622, 0.015%; Britton-Robinson 0.1 mol L⁻¹, pH 10.0; v=10 mV s⁻¹; t_g=0.4 s.

h, cm	h _{corr} , cm	log h _{corr}	i _L , μΑ	log i _L	
40.5	38.9	1.59	0.270	-0.569	
45.5	43.9	1.64	0.300	-0.523	
50.5	48,9	1.69	0.320	-0.495	
55.5	53.9	1.73	0.340	-0.468	
60.5	58.9	1.77	0.365	-0.438	
65.5	63.9	1.80	0.380	-0.420	
70.5	68.9	1.84	0.408	-0.389	
75.5	73.9	1.87	0.435	-0.361	

TABLA XVII

Influencia de la altura del depósito de mercurio sobre i_L en polarografía de de muestreo de corriente. Ftalato de dibutilo, 2.0×10^{-5} mol L⁻¹, en el medio micelar formado por Hyamina 1622, 0.020%; Britton-Robinson 0.1 mol L⁻¹, pH 8.0; v = 10 mV s⁻¹; $t_g = 0.4$ s.

h, cm	h _{corr} , cm	log h _{corr}	i _L , μΑ	log i _L
40.5	38.9	1.59	0.125	-0.903
45.5	43.9	1.64	0.130	-0.886
50.5	48.9	1.69	0.145	-0.839
55.5	53.9	1.73	0.155	-0.810
60.5	58.9	1.77	0.160	-0.796
65.5	63.9	1.80	0.175	-0.757
70.5	68.9	1.84	0.185	-0.737
75.5	73.9	1.87	0.192	-0.720

Las características de las representaciones de log i_L frente a log h_{corr} se recogen en la Tabla XVIII. Como se deduce de los resultados obtenidos, las pendientes de las representaciones lineales varían entre 0.65 y 0.71, lo que sugiere que las corrientes límites de los plastificantes estudiados están controladas por difusión.

99

TABLA XVIII

Características de las representaciones del log i_L frente al log h_{corr} en polarografía tast.

Plastificante	Pendiente	Coeficiente correlación	
Ftalato de dimetilo	0.65	0.992	
Ftalato de dietilo	0.71	0.997	
Ftalato de dibutilo	0.70	0.993	

III.1.2.5.- Estudio de la reversibilidad de los procesos de reducción

El establecimiento del grado de reversibilidad de un proceso de reducción electroquímico se puede realizar mediante la aplicación de diversos criterios. A continuación se presentan los utilizados en este trabajo para establecer el tipo de proceso al que obedece la reducción polarográfica de cada plastificante. Las técnicas utilizadas han sido polarografía de de muestreo de corriente, polarografía diferencial de impulsos y voltamperometría cíclica sobre un electrodo de gota colgante de mercurio.

III.1.2.5.1.- Voltamperometría cíclica

En la Figura 14 se muestran los voltamperogramas cíclicos sobre un electrodo de gota colgante de mercurio de los tres plastificantes, así como los

Figura 14.- Voltamperogramas cíclicos sobre electrodo de gota colgante de mercurio de (a) ftalato de dimetilo, 1.0x10⁻⁴ mol L⁻¹, 0.015% Hyamina 1622 pH 10.0, (b) ftalato de dietilo, 2x10⁻⁴ mol L⁻¹, 0.015% Hyamina 1622, pH 10.0 y (c) ftalato de dibutilo, 4.0x10⁻⁵ mol L⁻¹, disolución reguladora Britton-Robinson 0.1 M, v=50 mV s⁻¹

correspondientes a las disoluciones de fondo, registrados a una velocidad de 50 mV s⁻¹.

Como puede observarse, los tres ftalatos presentan un sólo pico de reducción. En el barrido inverso no aparece ningún pico de oxidación en el margen de potencial estudiado, lo cual sugiere un comportamiento totalmente irreversible del proceso de reducción de los tres plastificantes.

III.1.2.5.2.- Polarografía de de muestreo de corriente

Los criterios aplicados mediante esta técnica fueron el análisis logarítmico de los polarogramas y el criterio $E_{3/4}$ - $E_{1/4}$.

Las disoluciones de cada plastificante se prepararon en disolución reguladora Britton-Robinson 0.1 M y se trabajó con un tiempo de goteo de 0.4 segundos.

III.1.2.5.2.1.- Análisis logarítmico de los polarogramas

ı.

La ecuación para un sistema rápido, a 25°, viene dada por la expresión:

$$E = E_{1/2} - (0.059/n) \log (i/(i_L-i))$$

donde E es el potencial aplicado, en V; $E_{1/2}$ es el potencial de onda media, en V; n es el número de Faradays de electricidad por mol de reactivo; i es la corriente producida para cada potencial aplicado en μ A, e i_L es la corriente límite de difusión en μ A. En consecuencia, la representación de -E frente al log (i/(i_L-i)), para un proceso reversible a 25°C, controlado por difusión, debería dar como resultado una recta con una pendiente igual a 59.1/n mV (265). + TT / O

Para obtener mejores resultados se ha construido el diagrama logarítmico a partir de un polarograma registrado a tal efecto, de manera que permita realizar medidas exactas en la porción ascendente de la onda polarográfica.

Los datos correspondientes a los ftalatos de dimetilo, dietilo y dibutilo, trabajando a concentraciones de plastificante comprendidas entre $1.0x10^{-5}$ y $2.0x10^{-5}$ mol L⁻¹ y a tres valores de pH diferentes (4.0, 8.0 y 10.0) se recogen en las Tablas XIX-XXVII y se representan en las Figuras 15-17.

Como puede observarse en estas Figuras, los diagramas logarítmicos presentan un comportamiento lineal. Las ecuaciones de las rectas obtenidas son:

* pri 4.0	
Ftalato de dimetilo: E = $-1.487 - 0.0518 \log (i/(i_L-i))$	r = 0.9998
Ftalato de dietilo: $E = -1.475 - 0.0460 \log (i/(i_L-i))$	r = 0.9997
Ftalato de dibutilo: E = $-1.430 - 0.0400 \log (i/(i_L-i))$	r = 0.9997
* pH 8.0	
Ftalato de dimetilo: E = -1.580 - 0.0310 log $(i/(i_L-i))$	r = 0.996
Ftalato de dietilo: $E = -1.595 - 0.0336 \log (i/(i_L-i))$	r = 0.9997
Ftalato de dibutilo: E = $-1.590 - 0.0335 \log (i/i_L-i)$	r = 0.990
* pH 10.0	
Ftalato de dimetilo: E = -1.585 - 0.0280 log (i/i_L-i))	r = 0.998
Ftalato de dietilo: $E = -1.600 - 0.0246 \log (i/i_L-i))$	r = 0.996
Ftalato de dibutilo: E = -1.583 - 0.0317 log $(i/(i_L-i))$	r = 0.997

En todos los casos, los valores de las pendientes obtenidos son apreciablemente mayores, en valor absoluto, que los previstos para procesos reversibles que impliquen el número de electrones que se indicará posteriormente en cada caso. Este comportamiento indica la no reversibilidad del proceso de reducción de cada uno de los plastificantes sobre el electrodo gotero de mercurio.

TABLA XIX

103

Análisis logarítmico del polarograma de reducción del ftalato de dimetilo mediante polarografía de de muestreo de corriente. Concentración 2.0x10⁻⁵ M, medio micelar formado por Hyamina 1622, 0.015%; Britton-Robinson 0.1 M, pH 4.0; v = 10 mV s⁻¹; t_g = 0.4 s; i_L = 118 nA

.

E, V	i, nA	log i/i _L -i	E, V	i, nA	log i/i _L -i
-1.432	9	-1.08	-1.472	39	-0.30
-1.434	10	-1.03	-1.474	42	-0.26
-1.436	11	-0.99	-1.476	44	-0.23
-1.438	12	-0.95	-1.478	46	-0.19
-1.440	13	-0.91	-1.480	49	-0.15
-1.442	14	-0.87	-1.482	51	-0.11
-1.444	15	-0.84	-1.484	54	-0.08
-1.446	16	-0.79	-1.486	56	-0.04
-1,448	18	-0.75	-1.488	59	0.00
-1.450	19	-0.72	-1.490	62	0.04
-1.452	20	-0.68	-1.492	64	0.08
-1.454	22	-0.63	-1.494	67	0.12
-1.456	23	-0.61	-1.496	70	0.16
-1.458	25	-0.56	-1.498	72	0.20
-1.460	27	-0.53	-1.500	75	0.24
-1.462	29	-0.49	-1.502	78	0.28
-1.464	31	-0.45	-1.504	80	0.33
-1.466	33	-0.41	-1.506	83	0.37
-1.468	35	-0.38	-1.508	85	0.41
-1.470	37	-0.34	-1.510	87	0.44
		1			

TABLA XX

Análisis logarítmico del polarograma de reducción del ftalato de dimetilo mediante polarografía de de muestreo de corriente. Concentración 2.0×10^{-5} M, medio micelar formado por Hyamina 1622, 0.015%; Britton-Robinson 0.1 M, pH 8.0; v = 10 mV s⁻¹; t_g = 0.4 s; i_L = 141 nA

E, V	i, nA	log i/i _L -i	E, V	i, nA	log i/i _L -i
-1.524	2	-1.84	-1.560	23	-0.70
-1.528	2	-1.74	-1.562	26	-0.65
-1.530	3	-1.66	-1.564	30	-0.57
-1.532	3	-1.59	-1.566	33	-0.51
-1.534	4	-1.53	-1.568	36	-0.46
-1.536	5	-1.43	-1.570	42	-0.37
-1.538	5	-1.39	-1.572	46	-0.31
-1.540	6	-1.32	-1.574	51	-0.25
-1.542	7	-1.25	-1.576	56	-0.18
-1.544	8	-1.19	-1.578	60	-0.12
-1.546	10	-1.12	-1.580	65	-0.07
-1.548	11	-1.07	-1.582	72	0.02
-1.550	12	-1.01	-1.584	78	0.09
-1.552	14	-0.96	-1.586	83	0.16
-1.554	16	-0.89	-1.588	89	0.24
-1.556	18	-0.82	-1.590	96	0.33
-1.558	21	-0.76	-1.592	101	0.41

TABLA XXI

Análisis logarítmico del polarograma de reducción del ftalato de dimetilo mediante polarografía de de muestreo de corriente. Concentración 1.0×10^{-5} M, medio micelar formado por Hyamina 1622, 0.015%; Britton-Robinson 0.1 M, pH 10.0; v=10 mV s⁻¹; t_g=0.4 s; i_L = 124 nA

E, V	i, nA	log i/i _L -i	E, V	i, nA	log i/i _L -i
-1.540	4	-1.51	-1.588	64	0.03
-1.544	4	-1.47	-1.592	80	0.25
-1.548	6	-1.27	-1.596	85	0.34
-1.554	9	-1.12	-1.600	96	0.54
-1.556	10	-1.06	-1.604	101	0.65
-1.560	14	-0.90	-1.608	108	0.83
-1.564	17	-0.78	-1.612	114	1.06
-1.568	24	-0.61	-1.616	115	1.12
-1.572	29	-0.52	-1.620	119	1.38
-1.576	40	-0.32	-1.624	119	1.40
-1.580	44	-0.26	-1.628	120	1.51
-1.584	59	-0.04			

Figura 15.- Análisis logarítmico mediante polarografía dc de muestreo de corriente del ftalato del dimetilo, (a) pH 4.0, (b) pH 8.0 y (c) pH 10.0, 0.015% Hyamina 1622, disolución reguladora Britton-Robinson 0.1 M, v=10 mV s⁻¹; t_g=0.4 s

TABLA XXII

107

Análisis logarítmico del polarograma de reducción del ftalato de dietilo mediante polarografía de de muestreo de corriente. Concentración 2.0×10^{-5} M, medio micelar formado por Hyamina 1622, 0.015%; Britton-Robinson 0.1 M, pH 4.0; v=10 mV s⁻¹; t_g=0.4 s; i_L = 144 nA

E, V	i, nA	log i/i _L -i	E, V	i, nA	log i/i _L -i
-1.416	7	-1.31	-1.464	51	-0.25
-1.420	8	-1.22	-1.468	58	-0.17
-1.424	10	-1.10	-1.472	64	-0.09
-1.428	13	-1.01	-1.476	72	0.00
-1.432	15	-0.93	-1.480	80	0.10
-1.436	18	-0.85	-1.484	86	0.17
-1.440	22	-0.75	-1.488	93	0.26
-1.444	25	-0.67	-1.492	99	0.34
-1.448	30	-0.58	-1.496	106	0.44
-1.452	34	-0.50	-1.500	112	0.55
-1.456	39	-0.43	-1.504	118	0.65
-1.460	46	-0.33	-1.508	121	0.72

108

Análisis logarítmico del polarograma de reducción del ftalato de dietilo mediante polarografía de de muestreo de corriente. Concentración 2.0×10^{-5} M, medio micelar formado por Hyamina 1622, 0.015%; Britton-Robinson 0.1 M, pH 8.0; v=10 mV s⁻¹; t_g=0.4 s; i_L = 145 nA

E, V	i, nA	log i/i _L -i	E, V	i, nA	log i/i _L -i
-1.552	7	-1,26	-1.576	30	-0.57
-1.554	8	-1.20	-1.578	34	-0.51
-1.556	9	-1.18	-1.580	37	-0.46
-1.558	10	-1.11	-1.582	41	-0.40
-1.560	12	-1.02	-1.584	46	-0.33
-1.562	14	-0.97	-1.586	50	-0.28
-1.564	15	-0.92	-1.588	55	-0.21
-1.566	17	-0.86	-1.590	60	-0.15
-1.568	19	-0.81	-1.592	65	-0.09
-1.570	22	-0.75	-1.594	70	-0.02
-1.572	25	-0.68	-1.596	76	0.05
-1.574	28	-0.62	-1.598	81	0.11

TABLA XXIV

Análisis logarítmico del polarograma de reducción del ftalato de dietilo mediante polarografía de de muestreo de corriente. Concentración 2.0×10^{-5} M, medio micelar formado por Hyamina 1622, 0.015%; Britton-Robinson 0.1 M, pH 10.0; v = 10 mV s⁻¹; t_g = 0.4 s; i_L = 180 nA

E, V	i, nA	log i/i _L -i	E, V	i, nA	log i/i _L -i
-1.572	10	-1.23	-1.596	65	-0.25
-1.574	12	-1.14	-1.598	77	-0.12
-1.576	15	-1.06	-1.600	85	-0.05
-1.578	17	-0.98	-1.602	95	0.05
-1.580	21	-0.87	-1.604	100	0.10
-1.582	24	-0.80	-1.606	112	0.22
-1.584	30	-0.70	-1,608	117	0.27
-1.586	34	-0.63	-1.610	128	0.39
-1.588	40	-0.54	-1.612	135	0.50
-1.590	46	-0.46	-1.614	141	0.56
-1.592	52	-0.38	-1.616	150	0.70
-1.594	61	-0.29			

Figura 16.- Análisis logarítmico mediante polarografía dc de muestreo de corriente del ftalato de dietilo, (a) pH 4.0, (b) pH 8.0 y (c) pH 10.0, 0.015% Hyamina 1622, disolución reguladora Britton-Robinson 0.1 M, v=10 mV s⁻¹; t_g=0.4 s

TABLA XXV

111

Análisis logarítmico del polarograma de reducción del ftalato de dibutilo mediante polarografía de de muestreo de corriente. Concentración 2.0×10^{-5} M, medio micelar formado por Hyamina 1622, 0.020%; Britton-Robinson 0.1 M, pH 4.0; v=10 mV s⁻¹; t_g=0.4 s; i_L = 90 nA

E, V	i, nA	log i/i _L -i	E, V	i, nA	log i/i _L -i
-1.380	6	-1.15	-1.420	32	-0.25
-1.384	7	-1.09	-1.424	38	-0.15
-1.388	9	-0.95	-1.428	43	-0.04
-1.392	10	-0.88	-1.432	48	0.06
-1.396	13	-0.78	-1.436	54	0.18
-1.400	15	-0.70	-1.440	58	0.27
-1.404	18	-0.60	-1.444	64	0.38
-1.408	21	-0.52	-1.448	69	0.52
-1.412	25	-0.42	-1.452	74	0.67
-1.416	28	-0,33			

TABLA XXVI

Análisis logarítmico del polarograma de reducción del ftalato de dibutilo mediante polarografía de de muestreo de corriente. Concentración 2.0×10^{-5} M, medio micelar formado por Hyamina 1622, 0.020%; Britton-Robinson 0.1 M, pH 8.0; v=10 mV s⁻¹; t_g=0.4 s; i_L = 137 nA

E, V	i, n A	log i/i _L -i	E, V	i, nA	log i/i _L -i
-1.528	2	-1.73	-1.564	16	-0.88
-1.532	3	-1.60	-1.568	19	-0.78
-1.536	4	-1.50	-1.572	23	-0.68
-1.540	5	-1.42	-1.576	28	-0.58
-1.544	6	-1.35	-1.580	34	-0.47
-1.548	7	-1.23	-1.584	41	-0.36
-1.552	9	-1.14	-1.588	49	-0.26
-1.556	11	-1.06	-1.592	59	-0.12
-1.560	13	-0.96			,

TABLA XXVII

Análisis logarítmico del polarograma de reducción del ftalato de dibutilo mediante polarografía de de muestreo de corriente. Concentración 2.0x10⁻⁵ M, medio micelar formado por Hyamina 1622, 0.020%; Britton-Robinson 0.1 M, pH 10.0; v = 10 mV s⁻¹; t_g = 0.4 s; i_L = 176 nA

E, V	i, nA	log i/i _t -i	E, V	i, nA	log i/i _L -i
-1.550	7	-1.31	-1.574	31	-0.60
-1.552	8	-1.27	-1.576	35	-0.54
-1.554	9	-1.20	-1.578	40	-0.47
-1.556	10	-1.14	-1,580	44	-0.41
-1.558	12	-1.08	-1.582	49	-0.35
-1.560	13	-1.01	-1.584	54	-0.29
-1.562	16	-0.96	-1.586	60	-0.22
-1.564	17	-0,90	-1.588	66	-0.15
-1.566	19	-0,83	-1.590	73	-0.08
-1,568	22	-0.77	-1.592	80	-0.02
-1.570	25	-0.71	-1.594	86	0.05
-1.572	28	-0.66	-1.596	94	0.13
			4		

Figura 17.- Análisis logarítmico mediante polarografía dc de muestreo de corriente del ftalato de dibutilo, (a) pH 4.0, (b) pH 8.0 y (c) pH 10.0, 0.020% Hyamina 1622, disolución reguladora Britton-Robinson 0.1 M, v=10 mV s⁻¹; t_g=0.4 s

III.1.2.5.2.2.- CRITERIO E_{3/4} - E_{1/4}

Este criterio se basa en la medida de los valores de $E_{3/4}$ y $E_{1/4}$ en los polarogramas registrados mediante polarografía de de muestreo de corriente (obtenidos en el apartado anterior para la realización del análisis logarítmico), siendo dichos potenciales aquellos para los cuales la corriente es igual a 3/4 y 1/4, respectivamente, de la corriente límite de difusión. Si se aplica la ecuación de Nernst para ambos potenciales a 25°C, se tiene que (263):

115

$$E_{3/4} - E_{1/4} = -0.0564/n V$$

Por lo tanto, un proceso electródico reversible debe cumplir esta expresión.

Los resultados obtenidos se recogen en la Tabla XXVIII, pudiendo extraerse conclusiones análogas a las del apartado anterior.

TABLA XXVIII

Criterio $E_{3/4}$ - $E_{1/4}$ mediante polarografía de de muestreo de corriente en medio micelar

Plastificante	рН	E _{3/4} , V	E _{1/4} , V	E _{3/4} - E _{1/4} , V
Ftalato de	4.0	-1.512	-1.463	-0.049
dimetilo	8.0	-1.594	-1,566	-0.028
	10.0	-1.600	-1.574	-0.026
Ftalato de	4.0	-1.498	-1.452	-0.046
dietilo	8.0	-1.590	-1.560	-0.030
	10.0	-1.612	-1.590	-0.022
Ftalato de	4.0	-1.448	-1.408	-0.040
dibutilo	8.0	-1.588	-1,558	-0.030
	10.0	-1.597	-1.570	-0.027

III.1.2.6.- Determinación del parámetro an_a

La ecuación de una onda polarográfica, catódica e irreversible, para un proceso controlado por difusión, a 25°C, viene dada por la expresión (265):

116

$$E = E_{1/2} - (0.0542/\alpha n_s) \log (i/(i_L-i))$$

siendo,

$$E_{1/2} = (0.05915/\alpha n_{\rm a}) \log(1.349 \ k_{\rm f}^{\circ} \tau^{1/2}/D^{1/2})$$

donde i es la corriente medida al final de la vida de la gota; n_a es el número de electrones implicados en la etapa controlante de la velocidad del proceso de reducción; τ es el tiempo de goteo (tast); D es el coeficiente de difusión de la especie electroactiva; α es el coeficiente de transferencia electrónica, y k^o_f la constante de velocidad para la reacción electródica a E = 0 en la escala de potencial utilizada.

La representación de -E frente al log $(i/(i_L-i))$ dará como resultado una recta con pendiente igual a $0.0542/\alpha n_a$ V y una ordenada en el origen igual a $E_{1/2}$. Por lo tanto, a partir de los valores de la pendiente de la recta obtenida en el diagrama logarítmico se puede determinar el parámetro αn_a .

Por otra parte, también es posible hallar el valor de αn_a a partir de los potenciales para los cuales la corriente es igual a 3/4 y 1/4 de la corriente límite de difusión, es decir, $E_{3/4} - E_{1/4}$ mediante la relación (263):

$$E_{3/4} - E_{1/4} = -0.05172/\alpha n_a V$$

Por último, es posible el cálculo de αn_a en polarografía de de muestreo de corriente mediante el método de las pendientes de Tafel (262), que consiste en

la representación del log i frente a E para valores medidos en el pie de la onda polarográfica, debiéndose obtener una curva para la cual la pendiente del tramo lineal está dada, a 25°C, por:

117

$$d(\log i)/dE = -\alpha n_a/0.05915$$

Las representaciones del log i frente al potencial para cada uno de los plastificantes, a los tres pH estudiados se recogen en las Figuras 18-20

En la Tabla XXIX se recogen los valores de αn_a obtenidos mediante la aplicación de estos criterios.

TABLA XXIX

Valores de αn_a obtenidos para los procesos de reducción de los ftalatos de dimetilo, dietilo y dibutilo en disoluciones micelares formadas con Hyamina 1622

		Análisis Logarítmico	Criterio $E_{3/4} - E_{1/4}$	Log i vs. E
Plastificante	pН	αn_a	an _a	αn_{a}
Ftalato de dimetilo	4.0 8.0 10.0	1.05 1.70 1.95	1.06 1.80 1.97	1.14 1.60 1.85
Ftalato de dietilo	4.0 8.0 10.0	1.17 1.61 2.20	1.12 1.72 2.22	1.25 1.54 2.20
Ftalato de dibutilo	4.0 8.0 10.0	1.21 1.62 1.88	1.30 1.71 1.92	1.22 1.65 1.85

Como puede observarse los valores obtenidos son consistentes con un intercambio de cuatro electrones en los procesos de reducción de los ftalatos (suponiendo $\alpha = 0.5$) a pH 10.0, dando lugar probablemente a la formación de ftalida (102). Sin embargo en medio ácido, parece ser que son sólo dos los

Figura 18.- Dependencia del log i frente a E del ftalato de dimetilo, (a) pH 4.0, (b) pH 8.0 y (c) pH 10.0, 0.015% Hyamina 1622, disolución reguladora Britton-Robinson 0.1 M, v=10 mV s⁻¹; t_g=0.4 s

Figura 19.- Dependencia del log i frente a E del ftalato de dietilo, (a) pH 4.0, (b) pH 8.0 y (c) pH 10.0, 0.015% Hyamina 1622, disolución reguladora Britton-Robinson 0.1 M, v=10 mV s⁻¹; t_g=0.4 s

Figura 20.- Dependencia del log i frente a E del ftalato de dibutilo, (a) pH 4.0, (b) pH 8.0 y (c) pH 10.0, 0.020% Hyamina 1622, disolución reguladora Britton-Robinson 0.1 M, v=10 mV s⁻¹; t_g=0.4 s

electrones implicados en los procesos electródicos. Estos resultados concuerdan con el comportamiento observado en el estudio de la variación de la corriente de pico con el pH, de donde se podía deducir que el número de electrones involucrados en la reducción de la forma básica de la especie electroactiva (el éster no protonado) era mayor que el implicado cuando la especie electroactiva es la forma ácida. De hecho, la corriente de pico medida a pH 10.0 es aproximadamente el doble que la obtenida a pH 4.0 para los tres ftalatos.

III.1.2.7.- Características analíticas de los métodos desarrollados mediante polarografía diferencial de impulsos

En este apartado se han calculado las características analíticas de los métodos de determinación de los tres plastificantes, basados en su reducción polarográfica sobre el electrodo gotero de mercurio mediante la técnica diferencial de impulsos. Así, se han obtenido los intervalos de linealidad de los calibrados para los tres ftalatos, se ha calculado la precisión, en términos de la desviación estándar relativa, y la sensibilidad, expresada en función de las pendientes de los calibrados, así como los límites de detección y determinación. Los polarogramas se registraron a una velocidad de 10 mV s⁻¹, con amplitud del impulso de -50 mV y un tiempo de goteo de 0.4 s.

Las características analíticas de los calibrados están recogidas en la Tabla XXX. Cabe destacar la desviación de la linealidad observada en el caso del ftalato de dibutilo a concentraciones superiores a 5.0x10⁻⁵ mol L⁻¹, efecto típico de procesos en los que intervienen fenómenos de adsorción sobre la superficie del electrodo.

Con objeto de estudiar la precisión de los métodos polarográficos desarrollados, se ha calculado la desviación estándar, s, y la desviación estándar

TABLA XXX

Características de los calibrados obtenidos mediante polarografía diferencial de impulsos en el medio micelar formado con Hyamina 1622 para los ftalatos de dimetilo, dietilo y dibutilo; pH 10.0 para ftalato de dimetilo y de dietilo y pH 8.0 para ftalato de dibutilo

	Margen de linealidad (mol L ⁻¹)	ŕ	Pendiente $(\mu A L mol^{-1})$	Ordenada en el origen (µA)
Ftalato de	1.0x10 ⁻⁶ - 1.0x10 ⁻⁵	0.999	$(1.8 \pm 0.1) \times 10^4$	0.005 ± 0.004
dimetilo	1.0x10 ⁻⁵ - 1.0x10 ⁻⁴	0.9996	$(1.9 \pm 0.0) \times 10^4$	-0.03 ± 0.03
Ftalato de dietilo	6.0x10 ⁻⁷ - 1.0x10 ⁻⁶ 1.0x10 ⁻⁶ - 1.0x10 ⁻⁵ 1.0x10 ⁻⁵ - 1.0x10 ⁻⁴	0.992 0.999 0.999	$(1.1 \pm 0.2) \times 10^4$ $(1.5 \pm 0.1) \times 10^4$ $(1.2 \pm 0.1) \times 10^4$	-0.001 ± 0.001 0.00 ± 0.01 0.02 ± 0.04
Ftalato de	1.0x10 ⁻⁶ - 1.0x10 ⁻⁵	0.999	$(1.1 \pm 0.1) \times 10^4$	-0.002 ± 0.003
dibutilo	1.0x10 ⁻⁵ - 5.0x10 ⁻⁵	0.996	$(1.2 \pm 0.2) \times 10^4$	0.01 ± 0.05

relativa, RSD ($(s/C_m)x100$). Para ello se han llevado a cabo las medidas correspondientes a diez alícuotas de cada plastificante a los niveles de concentración que se indican en la Tabla XXXI.

Como criterio para establecer el límite de determinación se ha aplicado el sugerido por la IUPAC (268):

Límite de determinación = 10 s

donde s es la desviación estándar, en unidades de concentración, obtenida para el blanco. Debido a que los polarogramas del blanco no presentan ninguna señal de reducción medible, los límites de determinación se han calculado tomando como estimador del valor de s el correspondiente a una concentración de analito situada en la parte inferior del margen de linealidad más bajo de los obtenidos para cada plastificante y que se especifica en la tabla XXXI. Por último, los límites de detección se han calculado a partir de la expresión (269):

Límite de detección = $3 s_b/m$

donde m es la pendiente respectiva del calibrado inferior del compuesto considerado y s_b es la desviación estándar (en intensidades).

TABLA XXXI

Características analíticas de los métodos mediante d.p.p. para la determinación de los ésteres ftálicos en medio micelar

Plastificante	pН	RSD %	Límite de determinación mol L ⁻¹	Límite de detección mol L ⁻¹
Ftalato de dimetilo	10.0	*3.9	^ª 5.5x10 ^{−7}	*1.8x10 ⁻⁷
Ftalato de dietilo	10.0	⁶ 6.9 °1.6	[▶] 5.3x10 ⁻⁷	^b 1.6x10 ⁻⁷
Ftalato de dibutilo	8.0	^d 5.0 °2.0	^d 1.6x10 ⁻⁶	^d 4.7x10 ⁻⁷

Niveles de concentración utilizados:

^a 1.0x10⁻⁶ mol L⁻¹ ^b 8.0x10⁻⁷ mol L⁻¹ ^c 4.0x10⁻⁵ mol L⁻¹ ^d 3.0x10⁻⁶ mol L⁻¹

Para enjuiciar los valores de la desviación estándar relativa obtenidos se ha tomado el criterio establecido por Currie (270) que fija el valor límite en el 10%. Como puede apreciarse, todos los valores obtenidos son considerablemente menores que este valor, lo que pone de manifiesto la precisión de los métodos desarrollados.

Por lo que respecta a los límites de determinación y de detección, éstos son apreciablemente menores para el ftalato de dimetilo y de dietilo que para el ftalato de dibutilo, lo cual se debe a la disminución de sensibilidad que se produce al trabajar a un pH menor en el caso de este último ftalato.

III.1.3.- EMULSIONES ACEITE/AGUA

III.1.3.1.- Elección del disolvente orgánico

Como ya se ha puesto de manifiesto anteriormente, la determinación de plastificantes en muestras tales como alimentos o materiales plásticos utilizados para el envasado de alimentos, implica su extracción en disolventes orgánicos siendo el éter etílico uno de los disolventes más utilizado para este fin (271). Sin embargo, las emulsiones formadas únicamente con éter etílico no resultan ser adecuadas, ya que la gran volatilidad de este disolvente ocasiona pérdidas por evaporación cuando se aplica el procedimiento experimental descrito en el apartado II.3.1.2. Por otra parte, el acetato de etilo es un disolvente muy empleado en nuestro equipo de investigación para formar emulsiones del tipo aceite/agua, debido a su utilidad para la extracción de diferentes analitos en diversos tipos de muestras (272,273). Por ello se ha decidido trabajar con una mezcla de éter etílico y acetato de etilo para formar las emulsiones aceite/agua utilizando Hyamina 1622 como agente emulsificante.

III.1.3.2.- Optimización de las variables experimentales de la emulsión

En este apartado se han optimizado las variables experimentales de las emulsiones formadas, mediante polarografía diferencial de impulsos, estudiando el efecto que sobre la intensidad de pico y el potencial de pico de los ftalatos, tienen variables como la proporción de tensoactivo, la proporción de los disolventes orgánicos utilizados, el volumen de fase orgánica y el tiempo de emulsificación.

Teniendo en cuenta que los tensoactivos actúan formando una película en torno a las gotas dispersas, parece lógico que un determinado volumen de fase orgánica necesite una proporción mínima para dar lugar a una emulsión estable. Al mismo tiempo, un mayor volumen de fase orgánica requerirá una mayor
proporción de tensoactivo para formar la emulsión estable. Por otra parte, la proporción relativa de ambos disolventes debe influir de manera importante en la emulsión obtenida. Por tanto, teniendo en cuenta la interrelación existente entre estas tres variables, se realizó el estudio de su influencia conjuntamente.

Las disoluciones se prepararon siguiendo la metodología expuesta en el apartado II.3.1.2 de esta Memoria. Los polarogramas se registraron utilizando una velocidad de barrido de 10 mV s⁻¹, una amplitud del impulso de -50 mV y un tiempo de goteo de 0.4 s. La concentración empleada fue de 4.0×10^{-5} mol L⁻¹ y tiempo de emulsificación fue de 3 min.

Los resultados obtenidos al variar la proporción de éter y acetato de etilo, la proporción de tensoactivo y el volumen de fase orgánica se recogen en las Tablas XXXII, XXXIII y XXXIV. Como puede observarse, en todos los casos, el volumen de fase orgánica no tiene una influencia apreciable sobre los valores de i_p y Ep en el margen de volúmenes de 1.0 a 3.0 mL (no es posible obtener emulsiones estables utilizando volúmenes mayores de disolvente orgánico), para cualquier proporción de disolventes y de tensoactivo, habiéndose utilizado para estudios subsiguientes un volumen de fase orgánica de 2.0 mL.

Por otra parte, el potencial de pico de los tres ftalatos se desplaza ligeramente hacia potenciales menos negativos al aumentar la proporción de tensoactivo.

Por lo que respecta a los valores de i_p , en el caso de los ftalatos de dimetilo y de dietilo se obtiene la máxima sensibilidad cuando se emplea una proporción de tensoactivo de 0.015%, tendiendo a disminuir ligeramente a partir de dicho valor, por lo que se ha escogido esta concentración de tensoactivo como óptima para el estudio de estos dos plastificantes. La intensidad de pico del ftalato de dibutilo presenta un máximo cuando se emplea un 0.020% de Hyamina

翻

1622, eligiéndose este valor para estudios posteriores.

En cuanto a la proporción relativa de éter etílico y acetato de etilo, se escogió el valor 1:9 ya que, aunque al aumentar la proporción de éter etílico se observa un ligero aumento de la sensibilidad, ésta viene acompañada de una menor reproducibilidad de las medidas, debido probablemente a pérdidas por evaporación de este disolvente.

TABLA XXXII

Influencia de la concentración de Hyamina 1622, de la proporción relativa de disolventes orgánicos y del volumen de fase orgánica sobre i_p y E_p del ftalato de dimetilo. Concentración 4.0x10⁻⁵ mol L⁻¹, pH 10.0

Acetato de etilo:éter etílico	Hyamina 1622, %	Volumen de fase o rgánica, mL	i _p , μΑ	E _p , V
9:1	0.005	1.0 2.0 3.0	0.55 0.55 0.57	-1.604 -1.616 -1.604
	0.010	1.0 2.0 3.0	0.63 0.63 0.64	-1.592 -1.600 -1.596
	0.015	1.0 2.0 3.0	0.68 0.69 0.69	-1.572 -1.570 -1.568
	0.020	1.0 2.0 3.0	0.65 0.66 0.67	-1.560 -1.560 -1.552
	0.025	1.0 2.0 3.0	0.66 0.62 0.64	-1.544 -1.550 -1.540

Acetato de etilo:éter etílico	Hyamina 1622, %	Volumen de fase orgánica, mL	i _p , μΑ	E _p , V
1:1	0.005	1.0 2.0 3.0	0.55 0.53 0.55	-1.608 -1.616 -1.604
	0.010	1.0 2.0 3.0	0.60 0.61 0.63	-1.592 -1.600 -1.584
	0.015	1.0 2.0 3.0	0.69 0.71 0.72	-1.572 -1.568 -1.564
	0.020	1.0 2.0 3.0	0.66 0.69 0.70	-1.560 -1.552 -1.550
	0.025	1.0 2.0 3.0	0.60 0.63 0.67	-1.552 -1.536 -1.538
1:9	0.005	1.0 2.0 3.0	0.59 0.57 0.59	-1.600 -1.604 -1.598
	0.010	1.0 2.0 3.0	0.64 0.62 0.68	-1.592 -1.596 -1.594
	0.015	1.0 2.0 3.0	0.70 0.72 0.73	-1.572 -1.568 -1.564
	0.020	1.0 2.0 3.0	0.66 0.69 0.72	-1.552 -1.552 -1.538
	0.025	1.0 2.0 3.0	0.66 0.67 0.70	-1.544 -1.532 -1.528

TABLA XXXII (Continuación)

TABLA XXXIII

Influencia de la concentración de Hyamina 1622, de la proporción relativa de disolventes orgánicos y del volumen de fase orgánica sobre i_p y E_p del ftalato de dietilo. Concentración 4.0×10^{-5} mol L⁻¹, pH 10.0

Acetato de etilico	Hyamina	Volumen de fase	i _p , μΑ	E _p , V
	1 622, %	orgánica, mL		
9:1	0.005	1.0 2.0 3.0	0.41 0.39 0.39	-1.608 -1.608 -1.602
	0.010	1.0 2.0 3.0	0.48 0.50 0.46	-1.600 -1.600 -1.596
	0.015	1.0 2.0 3.0	0.60 0.58 0.59	-1.592 -1.592 -1.584
	0.020	1.0 2.0 3.0	0.62 0.60 0.59	-1.568 -1.568 -1.568
	0.025	1.0 2.0 3.0	0.59 0.55 0.53	-1.552 -1.556 -1.556
1:1	0.005	1.0 2.0 3.0	0.44 0.46 0.43	-1.612 -1.616 -1.612
	0.010	1.0 2.0 3.0	0.55 0.53 0.52	-1.600 -1.600 -1.600
	0.015	1.0 2.0 3.0	0.60 0.62 0.60	-1.576 -1.576 -1.572
	0.020	1.0 2.0 3.0	0.65 0.65 0.59	-1.556 -1.556 -1.556
	0.025	1.0 2.0 3.0	0.58 0.55 0.53	-1.540 -1.544 -1.544

Acetato de etilo:éter etílico	Hyamina 1622, <i>%</i>	Volumen de fase orgánica, mL	i _p , μΑ	E _p , V
1:9	0.005	1.0 2.0 3.0	0.42 0.42 0.42	-1.608 -1.604 -1.604
	0.010	1.0 2.0 3.0	0.53 0.53 0.51	-1.596 -1.596 -1.596
	0.015	1.0 2.0 3.0	0.60 0.60 0.64	-1.572 -1.568 -1.568
	0.020	1.0 2.0 3.0	0.58 0.58 0.56	-1.568 -1.568 -1.568
	0.025	1.0 2.0 3.0	0.58 0.58 0.55	-1.544 -1.544 -1.544

TABLA XXXIII (Continuación)

TABLA XXXIV

Influencia de la concentración de Hyamina 1622, de la proporción relativa de disolventes orgánicos y del volumen de fase orgánica sobre i_p y E_p del ftalato de dibutilo. Concentración 4.0x10⁻⁵ mol L⁻¹, pH 8.0

Acetato de etilo:éter etílico	Hyamina 1622, <i>%</i>	Volumen de fase orgánica, mL	i _p , μΑ	E _p , V
9:1	0.010	1.0 2.0 3.0	0.28 0.28 0.31	-1.600 -1.600 -1.596
	0.015	1.0 2.0 3.0	0.42 0.40 0.40	-1.564 -1.568 -1.560
	0.020	1.0 2.0 3.0	0.46 0.44 0.46	-1.548 -1.550 -1.548
	0.025	1.0 2.0 3.0	0.44 0.42 0.43	-1.528 -1.530 -1.532
	0.030	1.0 2.0 3.0	0.37 0.38 0.37	-1.520 -1.524 -1.528
1:1	0.010	1.0 2.0 3.0	0.28 0.29 0.32	-1.600 -1.600 -1.596
	0.015	1.0 2.0 3.0	0.44 0.44 0.46	-1.560 -1.564 -1.560
	0.020	1.0 2.0 3.0	0.49 0.49 0.49	-1.544 -1.544 -1.540
	0.025	1.0 2.0 3.0	0.48 0.45 0.47	-1.528 -1.536 -1.532
	0.030	1.0 2.0 3.0	0.43 0.39 0.42	-1.520 -1.520 -1.520

Acetato de etilo:éter etílico	Hyamina 1622, %	Volumen de fase orgánica, mL	i _p , μΑ	E _p , V
1:9	0.010	1.0	0.27	-1.600
***	010-0	2.0	0.29	-1.596
		3.0	0.30	-1.596
	0.015	1.0	0.43	-1.568
		2.0	0.46	-1.560
		3.0	0.46	-1.560
	0.020	1.0	0.53	-1.540
		2,0	0.50	-1.532
		3.0	0.50	-1.540
	0.025	1.0	0.51	-1.528
		2.0	(),49	-1.528
		3.0	0.45	-1.524
	0.030	1.0	0.43	-1.520
		2.0	().42	-1.520
		3.0	0.45	-1.516

TABLA XXXIV (Continuación)

Por otra parte, la formación de emulsiones requiere un aporte de energía, que en este trabajo se ha realizado mediante agitación ultrasónica. La cantidad de energía aportada es función del tiempo de aplicación de las ondas ultrasónicas, por lo que se ha estudiado el tiempo de agitación (tiempo de emulsificación) con el fin de obtener su valor óptimo. El criterio utilizado para la elección de este tiempo es el basado en la medida de i_p y en la reproducibilidad de dichas medidas. Las condiciones experimentales son las mismas que en el apartado anterior.

En las Tablas XXXV, XXXVI y XXXVII se recogen los valores de la intensidad de pico para tiempos de emulsificación de 1, 3 y 5 minutos, obtenidas a diferentes tiempos de espera (tiempo transcurrido desde que se retira el matraz que contiene la emulsión de la cubeta de ultrasonidos hasta que se registra el polarograma).

Como puede observarse, la intensidad de pico es prácticamente independiente, en las condiciones experimentales utilizadas, del tiempo de emulsificación y del tiempo de espera. Incluso realizando las medidas dos o tres horas después de formada la emulsión, los resultados siguen siendo reproducibles. Estos ponen de manifiesto que las emulsiones formadas presentan una gran estabilidad, lo que las hace muy adecuadas para la consecución de los objetivos mencionados en esta Memoria. Por otra parte, el burbujeo de nitrógeno, para desoxigenar la emulsión no produce en ningún caso la "rotura" de la misma.

A la vista de estos resultados, se ha escogido un tiempo de emulsificación de 3 minutos para estudios posteriores.

TABLA XXXV

Influencia del tiempo de emulsificación y el tiempo de espera sobre la intensidad de pico. Ftalato de dimetilo, 4.0×10^{-5} mol L_{.1}, medio emulsionado formado por Hyamina 1622, 0.015%; Britton-Robinson 0.1 M, pH 10.0

Tiempo de espera, minutos	Tiempo	i _p , μA de emulsifica	ción, min
	1	2	3
20	0.665	0.665	0.665
30	0.660	0.665	0.665
40	0.660	0.665	0.665
50	0.660	0.665	0.665
60	0.660	0.665	0.665

TABLA XXXVI

Influencia del tiempo de emulsificación y el tiempo de espera sobre la intensidad de pico. Ftalato de dietilo, 4.0x10⁻⁵ mol L⁻¹, medio emulsionado formado por Hyamina 1622, 0.015%; Britton-Robinson 0.1 M, pH 10.0

Tiempo de espera, minutos	i_p , μA Tiempo de emulsificación, min				
<u>, , , , , , , , , , , , , , , , , , , </u>	1	2	3		
20	0.440	0.445	0.445		
30	0.440	0.445	0.445		
40	0.445	0.445	0.445		
50	0.440	0.445	0.445		
60	0.445	0.445	0.445		

TABLA XXXVII

Influencia del tiempo de emulsificación y el tiempo de espera sobre la intensidad de pico. Ftalato de dibutilo, 4.0x10⁻⁵ mol L⁻¹, medio emulsionado formado por Hyamina 1622, 0.015%; Britton-Robinson 0.1 M, pH 8.0

Tiempo de espera, minutos	i _p , μA Tiempo de emulsificación, min				
A	1	2	3		
20	0.440	0.445	0.440		
30	0.445	0.445	0.445		
40	0.440	0.445	0.445		
50	0.440	0.445	0.445		
60	0.440	0.440	0.445		

III.1.3.3.- Influencia del pH

La influencia del pH sobre la respuesta polarográfica de los plastificantes objeto de estudio se ha evaluado utilizando como electrólito soporte disoluciones 0.1 M de regulador Britton-Robinson, en un intervalo de pH comprendido entre 1.5 y 11.0.

Las técnicas utilizadas han sido polarografía de muestreo de corriente o tast y polarografía diferencial de impulsos. Ahora las ondas registradas mediante polarografía de de muestreo de corriente están mejor definidas que las obtenidas en el medio micelar, lo que ha permitido utilizar esta técnica, sugiriendo a su vez una menor adsorción de los analitos sobre la superficie del electrodo.

III.1.3.3.1.- Polarografía de de muestreo de corriente

Los resultados obtenidos mediante polarografía de muestreo de corriente se han representado en las Figuras 21, 22 y 23 utilizando los datos experimentales que se muestran en la Tabla XXXVIII. Las concentraciones de plastificante empleadas han sido 4.0×10^{-5} , 6.0×10^{-5} y 2.0×10^{-5} mol L⁻¹ para los ftalatos de dimetilo, dietilo y dibutilo, respectivamente.

Puede observarse un desplazamiento de los potenciales de onda media de los tres compuestos hacia valores más negativos conforme aumenta el pH hasta un determinado valor permaneciendo prácticamente constante para valores superiores. Este desplazamiento de potencial indica, al igual que ocurre en medio micelar empleando polarografía diferencial de impulsos, la existencia de una reacción química de tipo ácido-base acoplada al proceso electródico (264). Las representaciones de $E_{1/2}$ en función del pH muestran dos regiones lineales bien diferenciadas, con puntos de intersección a pHs de 6.4, 6.7 y 7.3 para los ftalatos de dimetilo, dietilo y dibutilo, respectivamente. Los valores de la intensidad límite

TABLA XXXVIII

Influencia del pH sobre $i_L y E_{1/2}$ mediante polarografía de de muestreo de corriente en medio emulsionado. Britton-Robinson 0.1 M; $v=10 \text{ mV s}^{-1}$; $t_g=0.4 \text{ s}.$

	Ftala dim	ato de letilo	Ftala die	to de tilo	Ftala dibu	to de utilo
pН	i _L , μΑ	E _{1/2} , V	i _L , μΑ	E _{1/2} , V	i _L , μΑ	E _{1/2} , V
2.0	0.35	-1.440	0.46	-1.392	0.13	-1.316
3.0	0.36	-1.464	0.46	-1.438	0.16	-1.364
4.0	0.36	-1.496	0.47	-1.464	0.17	-1.416
5.0	0.37	-1.536	0.48	-1.512	0.20	-1.452
6.0	0.37	-1.576	0.49	-1.556	0.25	-1.508
7.0	0.37	-1.584	0.49	-1.574	0.28	-1.556
8.0	0.37	-1.592	0.50	-1.576	-	-1.588
9.0	0.40	-1.596	0.52	-1.582	-	-1.600
10.0	0.45	-1.600	0.65	-1.586	-	-1.604
11.0	0.45	-1 .604	0.70	-1.592	-	-1.608

no sufren variaciones importantes a pH ácidos, aumentando la corriente conforme aumenta la basicidad del medio. En el caso del ftalato de dibutilo a pH superiores a 7.0 se obtiene una onda muy próxima a la barrera de reducción, dando lugar a medidas poco precisas de la intensidad límite. Al igual que en el medio micelar, de la forma de dichas representaciones puede deducirse que la forma ácida y básica correspondiente a cada uno de los ftalatos son electroactivas y que la reducción de la forma básica no involucra un equilibrio ácido-base previo al proceso de reducción. Por otra parte, sólo se observa una onda de reducción en todo el intervalo de pH estudiado, lo que indica que a los valores de pH ácidos la forma básica se reduce a un potencial menos negativo que la forma ácida.

137 Estudio polarográfico: medio emulsionado

Figura 21.- Efecto del pH sobre E_p (▲) e i_p (●), mediante polarografía dc de muestreo de corriente en medio emulsionado: ftalato de dimetilo 4.0x10⁻⁵ mol L⁻¹, 0.015% Hyamina 1622, disolución reguladora Britton-Robinson, 0.1 M, v=10 mV s⁻¹, t_g=0.4 s.

.....

Figura 22.- Efecto del pH sobre E_p (▲) e i_p (●), mediante polarografía de de muestreo de corriente en medio emulsionado: ftalato de dietilo 6.0x10⁻⁵ mol L⁻¹, 0.015% Hyamina 1622, disolución reguladora Britton-Robinson, 0.1 M, v=10 mV s⁻¹, t_g=0.4 s.

Figura 23.- Efecto del pH sobre E_p (▲) e i_p (●), mediante polarografía de de muestreo de corriente en medio emulsionado: ftalato de dibutilo 2.0x10⁻⁵ mol L⁻¹, 0.020% Hyamina 1622, disolución reguladora Britton-Robinson, 0.1 M, v=10 mV s⁻¹, t_g=0.4 s.

III.1.3.3.2.- Polarografía diferencial de impulsos

Se ha estudiado el comportamiento electroquímico de los plastificantes empleando la técnica de polarografía diferencial de impulsos, a diferentes pH en el intervalo 2.0 a 11.0 en presencia de disolución reguladora Britton-Robinson 0.1 M. Los resultados obtenidos se encuentran recogidos en la Tabla XXXIX y representados en las Figuras 24, 25 y 26. Las concentraciones empleadas han sido $4.0x10^{-5}$, $6.0x10^{-5}$ y $2.0x10^{-5}$ mol L⁻¹ para los ftalatos de dimetilo, dietilo y dibutilo, respectivamente.

En dichas representaciones se aprecia que el potencial de pico tiene el mismo comportamiento frente al pH que el potencial de onda media en polarografía tast, observándose nuevamente dos tramos lineales de pendientes diferentes cuyos puntos de intersección son 6.2, 6.5 y 7.7 para los ftalatos de dimetilo, dietilo y dibutilo, respectivamente. En cuanto a la intensidad de pico,

en medio ácido ésta va incrementándose paulatinamente al aumentar el pH, mientras que en medio alcalino, el crecimiento de i_p con el pH es más brusco. Estos resultados son muy similares a los obtenidos en el medio micelar, indicando que en ambos medios, micelar y emulsionado, utilizando Hyamina 1622 como agente emulsificante, existe un equilibrio de protonación previo a la etapa de reducción polarográfica de los plastificantes estudiados.

TABLA XXXIX

Influencia del pH sobre i_p y E_p mediante polarografía diferencial de impulsos en medio emulsionado. Britton-Robinson 0.1 M; v=10 mV s⁻¹; $t_g = 0.4$ s.

	Ftala dim	to de etilo	Ftala die	ito de tilo	Ftala dibu	to de utilo
pH	i _p , μΑ	E _p , V	i _p , μΑ	E _p , V	i _p , μΑ	E _p , V
2.0	0.183	-1.400	0.355	-1.368	0.200	-1.344
3.0	0.225	-1.440	0.365	-1.416	0.240	-1.372
4.0	0.250	-1.472	0.410	-1.440	0.250	-1.416
5.0	0.270	-1.512	0.410	-1.504	0.270	-1.436
6.0	0.310	-1.544	0.495	-1.532	0.300	-1.500
7.0	0.345	-1.556	0.580	-1.548	0.360	-1.532
8.0	0.360	-1.560	0.620	-1.548	0.44 0	-1.568
9.0	0.400	-1.568	0.690	-1.552	0.500	-1.576
10.0	0.680	-1.576	0.950	-1.564	0.550	-1.580
11.0	0.790	-1.576	1.125	-1,568	0.620	-1.584

Al igual que en el medio micelar, en las emulsiones aceite/agua se obtiene una mayor sensibilidad trabajando en medio básico. Sin embargo, aunque a pH 11.0 la corriente de pico es la mayor en todos los casos, se produce una disminución de la señal con el tiempo, probablemente debido a la hidrólisis de los ésteres del tipo ftalato en medio fuertemente básico. Por el contrario, a pH 10.0 los ftalatos de dimetilo y de dietilo dan lugar a señales reproducibles con el tiempo al menos durante 60 min. En cambio, en el caso del ftalato de dibutilo, y análogamente a lo observado en las disoluciones micelares, hasta pH 8.0 no se obtuvieron medidas de i_p que permanecen prácticamente constantes con el tiempo entre 20 y 60 minutos. A la vista de los resultados, se ha elegido como pH de trabajo un valor de 10.0 para los ftalatos de dimetilo y de dietilo, y de 8.0 para el ftalato de dibutilo. En la Figura 27 se muestran los polarogramas obtenidos para cada uno de los plastificantes estudiados, así como los correspondientes a las disoluciones de fondo en el medio emulsionado formado por 2 mL de éter etílico y acetato de etilo en la proporción 1:9 a los pHs óptimos de trabajo.

Figura 24.- Efecto del pH sobre E_p (▲) e i_p (●), mediante polarografía diferencial de impulsos en medio emulsionado: ftalato de dimetilo 4.0x10⁻⁵ mol L⁻¹, 0.015% Hyamina 1622, disolución reguladora Britton-Robinson 0.1 M, ΔE=-50 mV, v=10 mV s⁻¹

计计算机 化化合物

Figura 25.- Efecto del pH sobre E_p (▲) e i_p (●), mediante polarografía diferencial de impulsos: ftalato de dietilo 6.0x10⁻⁵ mol L⁻¹, 0.015% Hyamina 1622, disolución reguladora Britton-Robinson 0.1 M, ΔE=-50 mV, v=10 mV s⁻¹

Figura 26.- Efecto del pH sobre E_p (▲) e i_p (●), mediante polarografía diferencial de impulsos en medio emulsionado: ftalato de dibutilo 2.0x10⁻⁵ mol L⁻¹, 0.020% Hyamina 1622, disolución reguladora Britton-Robinson 0.1 M, ΔE=-50 mV, v=10 mV s⁻¹

Figura 27.- Polarogramas en diferencial de impulsos de (a) ftalato de dimetilo, 4.0x10⁻⁵ mol L⁻¹, 0.015% Hyamina 1622, pH 10.0, (b) ftalato de dietilo, 4.0x10⁻⁵ mol L⁻¹, 0.015% Hyamina 1622, pH 10.0 y (c) ftalato de dibutilo, 4.0x10⁻⁵ mol L⁻¹, 0.020% Hyamina 1622, pH 8.0, en medio emulsionado formado por 2 mL de éter etílico/acetato de etilo (1:9), disolución reguladora Britton-Robinson 0.1 M, (----) polarogramas correspondientes a las disoluciones de fondo; ΔE=-50 mV, v=10 mV s⁻¹

III.1.3.4.- Naturaleza de la corriente límite de los procesos de reducción

Este estudio se ha llevado a cabo con el propósito de determinar cuál es el tipo de corriente límite (de difusión, catalítica, cinética o de adsorción) que se produce en la reducción polarográfica de los ftalatos estudiados en el medio emulsionado formado por la mezcla éter etílico: acetato de etilo en la proporción 1:9 empleando Hyamina 1622 como agente emulsificante. Para ello se ha estudiado mediante polarografía de de muestreo de corriente la influencia sobre la corriente límite de los siguientes parámetros:

III.1.3.4.1.- Efecto de la altura corregida del depósito de mercurio

El criterio elegido para estudiar la influencia de h_{corr} sobre i_L , y por tanto dilucidar el tipo de corriente que controla el proceso de reducción de los plastificantes, es calcular el valor de la pendiente de la recta que se obtiene al representar log i_L frente al log h_{corr} ; si la corriente límite está controlada por difusión dicha pendiente debe tener un valor próximo a 0.67, deducido de la ecuación de Ilkovic, como ya se indicó en el apartado III.1.2.4.

Los valores de h_b obtenidos fueron el promedio de tres determinaciones a diferentes alturas del depósito de mercurio mediante polarografía normal de corriente continua. El valor de h_b obtenido fue de 1.61 para cada uno de los compuestos estudiados.

Las concentraciones utilizadas fueron: ftalato de dimetilo y de ftalato de dietilo 4.0×10^{-5} mol L⁻¹ y 3.0×10^{-5} mol L⁻¹ en el caso del ftalato de dibutilo, y los valores de pH los escogidos en el apartado anterior. Las condiciones experimentales fueron las mismas que las empleadas en el medio micelar: velocidad de barrido de potencial de 10 mV s⁻¹ y tiempo de goteo de 0.4 s.

Los resultados obtenidos se muestran en las Tablas XL, XLI y XLII.

TABLA XL

Influencia de la altura del depósito de mercurio sobre i_L en polarografía de de muestreo de corriente. Ftalato de dimetilo, 4.0×10^{-5} mol L⁻¹ en medio emulsionado formado por 2.0 mL de éter etílico/acetato de etilo (1:9), 0.015% de Hyamina 1622 y regulador Britton-Robinson 0.1 M de pH 10.0; v = 10 mV s⁻¹; $t_e = 0.4$ s.

h, cm	h _{corr} , cm	log h _{corr}	i _L , μΑ	log i _L
40.5	38.9	1.59	0.340	-0.468
45.5	43.9	1.64	0.350	-0.456
50.5	48.9	1.69	0.380	-0.420
55.5	53.9	1.73	0.420	-0.377
60.5	58.9	1.77	0.440	-0.356
65.5	63.9	1.80	0.460	-0.337
70.5	68.9	1.84	0.490	-0.310
75.5	73.9	1.87	0.520	-0.284

TABLA XLI

Influencia de la altura del depósito de mercurio sobre i_L en polarografía de de muestreo de corriente. Ftalato de dietilo, 4.0×10^{-5} mol L⁻¹ en medio emulsionado formado por 2.0 mL de éter etílico/acetato de etilo (1:9), 0.015% de Hyamina 1622 y regulador Britton-Robinson 0.1 M de pH 10.0; v = 10 mV s⁻¹; $t_g = 0.4$ s.

h, cm	h _{con} , ст	$\log h_{corr}$	i _L , μΑ	log i _L
40.5	38.9	1.59	0.255	-0.590
45.5	43.9	1.64	0.285	-0.540
50.5	48.9	1.69	0.308	-0.510
55.5	53.9	1.73	0.330	-0.480
60.5	58.9	1.77	0.360	-0.440
65,5	63.9	1.80	0.375	-0.430
70.5	68.9	1.84	0.398	-0.400
75.5	73.9	1.87	0.413	-0.380

TABLA XLII

Influencia de la altura del depósito de mercurio sobre i_L en polarografía de de muestreo de corriente. Ftalato de dibutilo, 3.0×10^{-5} mol L⁻¹ en medio emulsionado formado por 0.020% de Hyamina 1622, 2.0 mL de éter etílico/acetato de etilo (1:9), y regulador Britton-Robinson 0.1 M de pH 8.0; v = 10 mV s⁻¹; $t_g = 0.4$ s.

h, cm	h _{corr} , cm	$\log h_{corr}$	i _L , μΑ	log i _L
40.5	38.9	1.59	0.162	-0.790
45.5	43.9	1.64	0.171	-0.767
50.5	48.9	1,69	0.189	-0.723
55.5	53.9	1.73	0.201	-0.697
60.5	58.9	1.77	0.213	-0.672
65.5	63.9	1.80	0.228	-0.642
70.5	68.9	1.84	0.243	-0.614
75.5	73.9	1.87	0.252	-0.600

Las características de las representaciones de log i_L frente a log h_{corr} se recogen en la Tabla XLIII.

TABLA XLIII

Características de las representaciones del log $i_{I,}$ frente al log h_{corr} en polarografía tast en medio emulsionado.

Plastificante	Pendiente	Coeficiente correlación
Ftalato de dimetilo	0.69	0.995
Ftalato de dietilo	0.74	0.997
Ftalato de dibutilo	0.71	0.998

Como se deduce de los resultados obtenidos, las pendientes de las rectas varían entre 0.69 y 0.74, lo que sugiere que las corrientes límites de los plastificantes estudiados están controladas por difusión.

III.1.3.4.2.- Influencia de la concentración de plastificante sobre la corriente límite

Otro de los criterios utilizado para dilucidar la naturaleza de la corriente límite ha consistido en estudiar la influencia de la concentración de la especie electroactiva objeto de estudio sobre la intensidad límite de reducción correspondiente.

Para ello, se realizaron curvas de calibrado para cada plastificante mediante polarografía de de muestreo de corriente en los intervalos de concentración que se especifican a continuación. Los resultados se recogen en la Figura 28. Las ecuaciones y coeficientes de correlación de estos calibrados son los siguientes:

- * Ftalato de dimetilo: $1.0 \times 10^{-5} 10.0 \times 10^{-5} \text{ mol } \text{L}^{-1}$ pH 10.0 $i_{\text{L}}(\mu\text{A}) = (-0.01 \pm 0.05) + (1.3 \pm 0.2) \times 10^{4} \text{ C} \text{ (mol } \text{L}^{-1})$ r = 0.999
- * Ftalato de dietilo: $1.0x10^{-5} 10.0x10^{-5} \text{ mol } \text{L}^{-1}$ pH 10.0 $i_{\text{L}}(\mu\text{A}) = (-0.02 \pm 0.05) + (8.4 \pm 0.8)x10^3 \text{ C (mol }^{-1})$ r = 0.997
- * Ftalato de dibutilo: $1.0 \times 10^{-5} 4.0 \times 10^{-5} \text{ mol } L^{-1}$ pH 8.0 $i_L(\mu A) = (-0.04 \pm 0.03) + (9 \pm 1) \times 10^3 \text{ C} \pmod{L^{-1}}$ r = 0.997

Como se puede apreciar, existe una relación lineal entre la corriente límite y la concentración de los ftalatos de dimetilo y de dietilo en los márgenes de concentraciones estudiados. Esta dependencia con la concentración confirma que las ondas correspondientes a estos dos compuestos están controladas por difusión.

Figura 28.- Influencia de la concentración de plastificante sobre i_L mediante polarografía de de muestreo de corriente, en el medio emulsionado formado por 2.0 mL de éter etílico/acetato de etilo (1:9), disolución reguladora Britton Robinson 0.1 M: (a) ftalato de dimetilo, 0.015% Hyamina 1622, pH 10.0, (b) ftalato de dietilo, 0.015% Hyamina 1622, pH 10.0 y (c) ftalato de dibutilo, 0.020% Hyamina 1622, pH 8.0; v=10 mV s⁻¹, t_g=0.4 s.

Por lo que respecta al ftalato de dibutilo se observa una desviación de la linealidad para concentraciones superiores a 4.0×10^{-5} mol L⁻¹, lo que sugiere que, para concentraciones altas de dicho compuesto la onda de reducción no es únicamente de naturaleza difusiva presentando el comportamiento típico de los procesos donde existe adsorción.

III.1.3.5.- Estudio de la reversibilidad de los procesos de reducción

A continuación se presentan los criterios utilizados para establecer el grado de reversibilidad de los procesos de reducción polarográfica de cada uno de los compuestos estudiados en esta parte de la Memoria.

Se han utilizado las técnicas polarográficas de corriente continua de muestreo de corriente y diferencial de impulsos, así como voltamperometría cíclica sobre un electrodo de gota colgante de mercurio.

III.1.3.5.1.- Voltamperometría cíclica

En la Figura 29 se muestran los voltamperogramas cíclicos sobre un electrodo de gota colgante de mercurio de los tres plastificantes a una velocidad de 50 mV s⁻¹. Las concentraciones de analito empleadas han sido $2.0x10^{-4}$ mol L⁻¹ para los ftalatos de dimetilo y de dietilo y $4.0x10^{-5}$ mol L⁻¹ para el ftalato de dibutilo.

Como puede observarse, los voltamperogramas presentan un solo pico de reducción, no apareciendo en el barrido inverso pico de oxidación alguno en el margen de potencial estudiado, lo cual indica, al igual que sucedía en medio micelar, que de los procesos de reducción de estos compuestos presentan un comportamiento totalmente irreversible.

III.1.3.5.2.- Polarografía dc de muestreo de corriente

Mediante esta técnica los criterios aplicados fueron el análisis logarítmico de los polarogramas y el criterio $E_{3/4}$ - $E_{1/4}$ en las condiciones experimentales de velocidad de barrido de potencial 10 mV s⁻¹ y tiempo de goteo 0.4 s.

III.1.3.5.2.1.- Análisis logarímico de los polarogramas

Del mismo modo que en el apartado III.1.2.5.2 correspondiente al medio micelar, se han obtenido las representaciones del potencial frente al $log(i/(i_L-i))$ a diferentes pH para cada uno de los compuestos en el medio emulsionado utilizado, a partir de los polarogramas registrados de forma que permitan realizar medidas exactas en la porción ascendente de la onda polarográfica.

Los datos obtenidos se exponen en las Tablas XLIV-LII y se representan en las Figuras 30-32. En todos los casos se obtienen representaciones lineales. Las ecuaciones de las rectas obtenidas a los diferentes pH para cada uno de los compuestos estudiados son las siguientes:

* pH 4.0

Ftalato de dimetilo: $E = -1.488 - 0.0548 \log (i/(i_L-i))$ r = 0.9998Ftalato de dietilo: $E = -1.456 - 0.0537 \log (i/(i_L-i))$ r = 0.9996Ftalato de dibutilo: $E = -1.401 - 0.0479 \log (i/(i_L-i))$ r = 0.9997

* pH 7.0

Ftalato de dimetilo:	: E =	$-1.580 - 0.0337 \log (i/(i_L-i))$	r =	0.9994
Ftalato de dietilo:	E =	-1.590 - 0.0336 log $(i/(i_L-i))$	L =	0.9992
Ftalato de dibutilo:	E =	-1.579 - 0.0345 log (i/i _L -i))	r =	0.9996

* pH 10.0

Ftalato de dimetilo: $E = -1.594 - 0.0271 \log (i/i_L-i))$ r = 0.9996Ftalato de dietilo: $E = -1.600 - 0.0250 \log (i/i_L-i))$ r = 0.9991Ftalato de dibutilo: $E = -1.578 - 0.0320 \log (i/(i_L-i))$ r = 0.9980

Figura 29.- Voltamperogramas cíclicos sobre electrodo de gota colgante de mercurio de (a) ftalato de dimetilo, 1.0x10⁻⁴ mol L⁻¹, 0.015% Hyamina 1622 pH 10.0, (b) ftalato de dietilo, 2x10⁻⁴ mol L⁻¹, 0.015% Hyamina 1622, pH 10.0 y (c) ftalato de dibutilo, 4.0x10⁻⁵ mol L⁻¹, en medio emulsionado formado por 2.0 mL de éter etílico acetato de etilo (1:9) y disolución reguladora Britton-Robinson 0.1 M, v=50 mV s⁻¹

Si suponemos que el número de electrones involucrados en el proceso de reducción es el mismo que en medio micelar, las pendientes obtenidas, en todos los casos, son sustancialmente mayores, en valor absoluto, que las teóricas para procesos reversibles, lo que sugiere que el proceso de reducción de cada uno de los plastificantes en el medio emulsionado en estudio presenta un comportamiento irreversible. Como puede apreciarse, estos resultados son comparables a los obtenidos en el medio micelar.

TABLA XLIV

Análisis logarítmico del polarograma de reducción del ftalato de dimetilo mediante polarografía de de muestreo de corriente. Concentración 2.0×10^{-5} mol L⁻¹, medio emulsionado formado por Hyamina 1622, 0.015%, 2.0 mL de éter etílico/acetato de etilo (1:9) y regulador Britton-Robinson 0.1 M, pH 4.0; v = 10 mV s⁻¹; t_g=0.4 s. i_L = 160 nA

E, V	i, nA	log i/i _L -i	E, V	i, nA	log i/i _L -i
-1.436	16	-0.95	-1.472	54	-0.29
-1.438	17	-0.91	-1,474	57	-0.25
-1.440	19	-0.87	-1.476	60	-0.22
-1.442	20	-0.83	-1.478	64	-0.18
-1.444	22	-0.80	-1.480	67	-0.14
-1.446	24	-0.75	-1.482	70	-0.11
-1.448	26	-0.7 1	-1.484	73	-0.07
-1.450	28	-0.67	-1.486	78	-0.02
-1.452	29	-0.65	-1.488	80	0.00
-1.454	32	-0.60	-1.490	84	0.04
-1.456	33	-0.58	-1.492	88	0.08
-1.458	36	-0.54	-1.494	91	0.12
-1.460	38	-0.50	-1.496	94	0.15
-1,462	41	-0.46	-1.498	97	0.19
-1.464	43	-0.44	-1.500	101	0.23
-1.466	45	-0.40	-1.502	104	0.27
-1,468	48	-0.36	-1.504	107	0.31
-1.470	51	-0.33			
			1		

TABLA XLV

Análisis logarítmico del polarograma de reducción del ftalato de dimetilo mediante polarografía de de muestreo de corriente. Concentración 2.0×10^{-5} mol L⁻¹, medio emulsionado formado por Hyamina 1622, 0.015%, 2.0 mL de éter etílico/acetato de etilo (1:9) y regulador Britton-Robinson 0.1 M, pH 8.0; v=10 mV s⁻¹; t_g=0.4 s. i_L = 158 nA

E, V	i, nA	log i/i _L -i	E, V	i, nA	log i/i _L -i
-1.530	5	-1.48	-1.562	34	-0.56
-1.532	5	-1.44	-1.564	37	-0.51
-1.534	6	-1.37	-1.566	41	-0.45
-1.536	7	-1.30	-1.568	45	-0.39
-1.538	8	-1.24	-1.570	50	-0.33
-1.540	9	-1.19	-1.572	55	-0.27
-1.542	10	-1.15	-1.574	60	-0.21
-1.544	12	-1.07	-1.576	69	-0.11
-1.546	14	-1.01	-1.578	71	-0.09
-1.548	15	-0.96	-1.580	77	-0.02
-1.550	17	-0.90	-1.582	83	0.04
-1.552	20	-0.84	-1.584	89	0.11
-1.554	22	-0.79	-1.586	95	0.18
-1.556	24	-0.75	-1.588	101	0.25
-1.558	27	-0.68	-1.590	107	0.32
-1.560	31	-0.61			

TABLA XLVI

Análisis logarítmico del polarograma de reducción del ftalato de dimetilo mediante polarografía de de muestreo de corriente. Concentración 4.0×10^{-5} mol L⁻¹, medio emulsionado formado por Hyamina 1622, 0.015% y 2.0 mL de éter etílico/acetato de etilo (1:9) y regulador Britton-Robinson 0.1 M, pH 10.0; v = 10 mV s⁻¹; t_g=0.4 s. i_L = 556 nA

E, V	i, nA	log i/i _L -i	E, V	i, nA	log i/i _L -i
-1.552	14	-1.56	-1.584	166	-0.37
-1.556	22	-1.36	-1.588	190	-0.24
-1.560	28	-1.25	-1.592	254	-0.07
-1.564	40	-1.11	-1.596	272	0.03
-1.568	52	-0.96	-1.600	312	0.17
-1.572	74	-0.81	-1.604	390	0.37
-1.576	92	-0.67	-1.608	396	0.49
-1.580	118	-0.54	-1.612	458	0.67

Figura 30.- Análisis logarítmico mediante polarografía de de muestreo de corriente del ftalato de dimetilo en medio emulsionado formado por 0.015% de Hyamina 1622, 2.0 mL de éter etílico/acetato de etilo (1:9) y regulador Britton-Robinson 0.1 M de (a) pH 4.0, (b) pH 8.0 y (c) pH 10.0, v=10 mV s⁻¹; t_g=0.4 s

TABLA XLVII

Análisis logarítmico del polarograma de reducción del ftalato de dietilo mediante polarografía de de muestreo de corriente. Concentración 2.0×10^{-5} mol L⁻¹, medio emulsionado formado por Hyamina 1622, 0.015%, 2.0 mL de éter etílico/acetato de etilo (1:9) y regulador Britton-Robinson 0.1 M, pH 4.0; v=10 mV s⁻¹; t_g=0.4 s. i_L = 169 nA

E, V	i, nA	log i/i _L -i	E, V	i, nA	log i/i _{1.} -i
-1.382	6	-1.38	-1.436	49	-0.38
-1.384	7	-1.33	-1.438	52	-0.36
-1.386	8	-1.29	-1.440	55	-0.31
-1.390	10	-1.21	-1.442	58	-0.28
-1.394	11	-1.15	-1.444	62	-0.24
-1.398	13	-1.09	-1.446	66	-0.19
-1.400	14	-1.04	-1.450	72	-0.13
-1.402	16	-0.99	-1.452	76	-0.08
-1.404	16	-0.97	-1.454	80	-0.05
-1.406	17	-0.95	-1.456	84	-0.01
-1.408	19	-0.91	-1.458	88	0.03
-1.410	20	-0.87	-1.460	91	0.07
-1.412	22	-0.83	-1.462	95	0.11
-1.414	23	-0.80	-1.464	99	0.15
-1.416	25	-0.75	-1.466	103	0.19
-1.418	27	-0.72	-1.468	106	0.23
-1.420	30	-0.68	-1.470	109	0.26
-1.422	31	-0.64	-1.472	113	0.30
-1.424	34	-0.60	-1.474	117	0.35
-1.426	37	-0.56	-1.476	120	0.38
-1.428	39	-0.52	-1.478	122	0.42
-1.430	42	-0.48	-1.480	123	0.47
-1.432	45	-0.44	-1.482	130	0.51

TABLA XLVIII

Análisis logarítmico del polarograma de reducción del ftalato de dietilo mediante polarografía de de muestreo de corriente. Concentración 2.0×10^{-5} mol L⁻¹, medio emulsionado formado por Hyamina 1622, 0.015%, 2.0 mL de éter etílico/acetato de etilo (1:9) y regulador Britton-Robinson 0.1 M, pH 8.0; v=10 mV s⁻¹; t_g=0.4 s. i_L = 165 nA

E, V	i, nA	log i/i _L -i	E, V	i, nA	log i/i _L -i
-1.534	4	-1.55	-1.568	31	-0.64
-1.536	5	-1.48	-1.570	34	-0.59
-1.538	6	-1.42	-1.572	37	-0.53
-1.540	7	-1.37	-1.574	41	-0.48
-1.542	7	-1.32	-1.576	45	-0.43
-1.544	8	-1.28	-1.578	49	-0.38
-1.546	9	-1.24	-1.580	54	-0.31
-1.548	10	-1.17	-1.582	58	-0.26
-1.550	12	-1.11	-1.584	64	-0.20
-1.552	13	-1.05	-1.586	70	-0.14
-1.554	15	-1.00	-1.588	76	-0.07
-1.556	16	-0.95	-1.590	82	-0.01
-1.558	19	-0.89	-1.592	88	0.05
-1.560	20	-0.85	-1.594	93	0.11
-1.562	22	-0.81	-1.596	100	0.18
-1.564	25	-0.75	-1.598	105	0.24
-1.566	28	-0.69	-1.600	112	0.32

TABLA XLIX

Análisis logarítmico del polarograma de reducción del ftalato de dietilo mediante polarografía de de muestreo de corriente. Concentración 2.0×10^{-5} mol L⁻¹, medio emulsionado formado por Hyamina 1622, 0.015%, 2.0 mL de éter etílico/acetato de etilo (1:9) y regulador Britton-Robinson 0.1 M, pH 10.0; v=10 mV s⁻¹; t_g= 0.4 s. i_L = 195 nA

E, V	i, nA	log i/i _L -i	E, V	i, nA	log i/i _L -i
-1.560	4	-1.69	-1.592	56	-0.39
-1.562	6	-1.52	-1.594	65	-0.30
-1.564	6	-1.50	-1.596	70	-0.25
-1.566	8	-1.36	-1.598	81	-0.15
-1.568	9	-1.33	-1.600	86	-0.10
-1.570	12	-1.20	-1.602	95	-0.02
1.572	13	-1.16	-1.604	103	0.05
-1,574	16	-1.04	-1.606	112	0.13
-1.576	18	-0.98	-1.608	121	0.21
-1.578	23	-0.88	-1.610	132	0.32
-1.580	25	-0.83	-1.612	140	0.41
-1.582	31	-0.72	-1.614	150	0.52
-1.584	34	-0.67	-1.616	156	0.60
-1.586	42	-0.56	-1.618	164	0.72
-1.588	45	-0.52	-1.620	168	0.79
-1.590	55	-0.40			

Figura 31.- Análisis logarítmico mediante polarografía dc de muestreo de corriente del ftalato de dietilo en medio emulsionado formado por 0.015% de Hyamina 1622, 2.0 mL de éter etílico/acetato de etilo (1:9) y regulador Britton-Robinson 0.1 M de (a) pH 4.0, (b) pH 8.0 y (c) pH 10.0, v=10 mV s⁻¹; t_g=0.4 s

TABLA L

Análisis logarítmico del polarograma de reducción del ftalato de dibutilo mediante polarografía de de muestreo de corriente. Concentración 2.0×10^{-5} mol L⁻¹, medio emulsionado formado por Hyamina 1622, 0.015%, 2.0 mL de éter etílico/acetato de etilo (1:9) y regulador Britton-Robinson 0.1 M, pH 4.0; v=10 mV s⁻¹; t_g=0.4 s. i_L = 123 nA

E, V	i, nA	log i/i _L -i	E, V	i, nA	log i/i _L -i
-1.340	7	-1.24	-1.382	34	-0.42
-1.342	7	.1.19	-1.384	36	-0.38
-1.344	8	-1.14	-1.386	38	-0.34
-1.348	9	-1.10	-1.388	41	-0.30
-1.350	10	-1.06	-1.390	44	-0.25
-1.352	11	-1.00	-1.392	46	-0.22
-1.354	12	-0.97	-1.394	49	-0.18
-1.356	13	-0.94	-1.396	52	-0.14
-1.358	14	-0.88	-1.398	55	-0.10
-1.360	15	-0.86	-1.400	58	-0.05
-1.362	16	-0.83	-1.402	61	-0.01
-1.364	17	-0.79	-1.404	64	0.04
-1.366	19	-0.74	-1.406	68	0.10
-1.368	20	-0.7 1	-1.408	71	0.14
-1.370	22	-0.67	-1.410	75	0.19
-1.372	23	-0.63	-1.412	79	0.25
-1.374	25	-0.58	-1 .41 4	82	0.30
-1.376	28	-0.53	-1.416	85	0.36
-1.378	29	-0.51	-1.418	88	0.41
-1.380	31	-0.46	-1.420	91	0.46

TABLA LI

Análisis logarítmico del polarograma de reducción del ftalato de dibutilo mediante polarografía de de muestreo de corriente. Concentración 2.0×10^{-5} mol L⁻¹, medio emulsionado formado por Hyamina 1622, 0.015%, 2.0 mL de éter etílico/acetato de etilo (1:9) y regulador Britton-Robinson 0.1 M, pH 8.0; v = 10 mV s⁻¹; t_g=0.4 s. i_L = 137 nA

E, V	i, nA	log i/i _L -i	E, V	i, nA	log i/i _{1.} -i
-1.532	5	-1.38	-1.558	26	-0.62
-1.534	6	-1.30	-1.560	29	-0.56
-1.536	7	-1.24	-1.562	33	-0.50
-1.538	8	-1.18	-1.564	36	-0.45
-1.540	10	-1.10	-1.566	40	-0.38
-1.542	11	-1.06	-1.568	44	-0.32
-1.544	12	-1.02	-1.570	48	-0.27
-1.546	13	-0.96	-1.572	52	-0.21
-1.548	15	-0.89	-1.574	57	-0.14
-1.550	17	-0.83	-1.576	62	-0.08
-1.552	19	-0.78	-1.578	67	-0.02
-1.554	21	-0.73	-1.580	72	0.05
-1.556	24	-0.67			
TABLA LII

Análisis logarítmico del polarograma de reducción del ftalato de dibutilo mediante polarografía de de muestreo de corriente. Concentración 2.0×10^{-5} mol L⁻¹, medio emulsionado formado por Hyamina 1622, 0.015%, 2.0 mL de éter etílico/acetato de etilo (1:9) y regulador Britton-Robinson 0.1 M, pH 10.0; v=10 mV s⁻¹; t_g=0.4 s. i_L = 238 nA

ı

E, V	i, nA	log i/i _L -i	E, V	i, nA	log i/i _L -i
-1.548	27	-0.89	-1.576	103	-0.12
-1.550	30	-0.84	-1.578	111	-0.06
-1.552	33	-0.79	-1.580	121	0.01
-1.554	37	-0.74	-1.582	130	0.08
-1.556	41	-0.68	-1.584	136	0.13
-1.558	46	-0.62	-1.586	147	0.21
-1.560	50	-0.57	-1.588	156	0.28
-1.562	55	-0.52	-1.590	165	0.35
-1.564	61	-0.47	-1.592	172	0.41
-1.566	66	-0.42	-1.594	180	0.49
-1.568	73	-0.36	-1.596	187	0.56
-1.570	79	-0.30	-1.598	194	0.64
-1.572	87	-0.24	-1.600	200	0.72
-1.574	94	-0.18	-1.602	205	0.79

Figura 32.- Análisis logarítmico mediante polarografía dc de muestreo de corriente del ftalato de dibutilo en medio emulsionado formado por 0.020% de Hyamina 1622, 2.0 mL de éter etílico/acetato de etilo (1:9) y regulador Britton-Robinson 0.1 M de (a) pH 4.0, (b) pH 8.0 y (c) pH 10.0, v=10 mV s⁻¹; t_g=0.4 s

III.1.3.5.2.2.- Criterio E_{3/4} - E_{1/4}

Los valores de $E_{3/4}$ y $E_{1/4}$ se calcularon a partir de los polarogramas utilizados para realizar el análisis logarítmico. Los resultados obtenidos se encuentran recogidos en la siguiente tabla:

TABLA LIII

Criterio $E_{3/4}$ - $E_{1/4}$ mediante polarografía tast en medio emulsionado

Plastificante	pH	E _{3/4} , V	E _{1/4} , V	E _{3/4} - E _{1/4} , V
Ftalato de	4.0	-1.512	-1.462	-0.050
dimetilo	8.0	-1.594	-1.566	-0.028
	10.0	-1.608	-1.583	-0.025
Ftalato de	4.0	-1.480	-1.430	-0.050
dietilo	8.0	-1.604	-1.574	-0.030
	10.0	-1.613	-1.589	-0.024
Ftalato de	4.0	-1.420	-1.380	-0.040
dibutilo	8.0	-1.594	-1.562	-0.032
	10.0	-1.596	-1.568	-0.028

Nuevamente, los valores de $E_{3/4} - E_{1/4}$ no coinciden con los teóricos a partir de la ecuación $E_{3/4} - E_{1/4} = -0.0564/n$ para un proceso reversible que implique el número de electrones propuesto en el apartado III.1.2.6, confirmándose, por tanto, también por este criterio, la no reversibilidad de los procesos de reducción en el medio emulsionado de los compuestos estudiados.

III.1.3.6.- Determinación del parámetro αn_a

Como se describió en el apartado III.1.2.6, es posible la determinación del parámetro cinético αn_a de los procesos de reducción en estudio mediante la aplicación de diversos criterios. Así se ha calculado este parámetro a partir de las pendientes obtenidas en el análisis logarítmico de los polarogramas de los plastificantes (apartado III.1.3.5.2.1), a partir de la diferencia $E_{3/4}$ - $E_{1/4}$, y mediante el método de las pendientes de Tafel, representando log i frente a E para valores de i medidos en el pie de la onda polarográfica. Estas representaciones se recogen en las Figuras 33-35. Los valores de αn_a obtenidos empleando estos tres criterios están recogidos en la Tabla LIV.

Como puede apreciarse los valores de αn_a calculados sugieren conclusiones similares a las comentadas para las disoluciones micelares, indicando por consiguiente que los procesos de reducción de los ftalatos en las emulsiones aceite/agua formadas son similares a los observados en las disoluciones micelares.

Figura 33.- Dependencia del log i frente a E del ftalato de dimetilo en medio emulsionado formado por 0.015% de Hyamina 1622, 2.0 mL de éter etílico/acetato de etilo (1:9) y regulador Britton-Robinson 0.1 M de (a) pH 4.0, (b) pH 8.0 y (c) pH 10.0, v=10 mV s⁻¹; t_g=0.4 s

Figura 34.- Dependencia del log i frente a E del ftalato de dietilo en medio emulsionado formado por 0.015% de Hyamina 1622, 2.0 mL de éter etílico/acetato de etilo (1:9) y regulador Britton-Robinson 0.1 M de (a) pH 4.0, (b) pH 8.0 y (c) pH 10.0, v=10 mV s⁻¹; t_g=0.4 s

Figura 35.- Dependencia del log i frente a E del ftalato de dibutilo en medio emulsionado formado por 0.020% de Hyamina 1622, 2.0 mL de éter etílico/acetato de etilo (1:9) y regulador Britton-Robinson 0.1 M de (a) pH 4.0, (b) pH 8.0 y (c) pH 10.0, v=10 mV s⁻¹; t_g=0.4 s

TABLA LIV

Valores de αn_a para los procesos de reducción de los ftalatos de dimetilo, dietilo y dibutilo en emulsiones aceite/agua formados con 2.0 mL de éter etílico/acetato de etilo (1:9), Hyamina 1622 y regulador Britton Robinson 0.1 M

		Análisis Logarítmico	Criterio E _{3/4} - E _{1/4}	log i vs E
<u>Plastificante</u>	pH	αn _a	αn_a	αn_a
Ftalato de dimetilo	4.0 8.0 10.0	1.08 1.70 2.00	1.03 1.85 2.07	1.17 1.70 2.03
Ftalato de dietilo	4.0 8.0 10.0	1.01 1.63 2.17	1.03 1.72 2.14	1.09 1.51 2.09
Ftalato de dibutilo	4.0 8.0 10.0	1.13 1.57 1.85	1.30 1.60 1.82	1.15 1.42 1.88

III.1.3.7.- Determinación de los coeficientes de difusión

La corriente límite de un proceso controlado por difusión, mediante polarografía de de muestreo de corriente, viene dada por la ecuación:

$$i_{d} = 708 \text{ n } D^{1/2} \text{ C } m^{2/3} \tau^{1/6}$$

pudiendo determinarse el coeficiente de difusión, D, de la especie electroactiva a partir de la pendiente de las curvas de calibrado, obtenidas por dicha técnica. En el apartado III.1.3.4.2 se presentaron los calibrados correspondientes a cada plastificante a partir de los cuales se obtienen los valores de tales pendientes.

En la Tabla LV se recogen dichos valores, así como los de los coeficientes de difusión de los tres plastificantes, asumiendo un intercambio de cuatro

electrones para cada uno de ellos en el medio de trabajo, y utilizando un tiempo de goteo de 0.4 segundos y una velocidad del caudal de mercurio de 3.10 mg s⁻¹

TABLA LV

Coeficientes de difusión obtenidos a partir de los calibrados por polarografía de de muestreo de corriente en el medio emulsionado formado por Hyamina 1622, 0.015%, 2.0 mL de éter etílico/acetato de etilo y Britton-Robinson 0.1 M.

Plastificante	pН	P, μ A L mmol ⁻¹	n	D, $cm^2 s^{-1}$
Ftalato de dimetilo	10.0	12.4	4	5.7x10 ⁻⁶
Ftalato de dietilo	10.0	8.3	4	2.6x10 ⁻⁶
Ftalato de dibutilo	8.0	9.1	4	2.9x10 ⁻⁶

III.1.3.8.- Características analíticas de los métodos desarrollados mediante polarografía diferencial de impulsos

En este apartado se presentan las curvas de calibrado obtenidas mediante polarografía diferencial de impulsos en el medio emulsionado formado por Hyamina 1622 como agente emulsificante y una mezcla de éter y acetato de etilo (1:9) como fase orgánica. Asimismo, se han calculado las características analíticas del método desarrollado a partir de las curvas de calibrado obtenidas mediante esta técnica. Los polarogramas se registraron a una velocidad de barrido de 10 mV s⁻¹, con amplitud del impulso de -50 mV y un tiempo de goteo de 0.4 s.

Las representaciones de i_p frente a la concentración de cada uno de los ftalatos son lineales en los márgenes de concentración que se muestran en la Tabla LVI

TABLA LVI

Características de los calibrados obtenidos mediante polarografía diferencial de impulsos en el medio emulsionado formado por Hyamina 1622, 2.0 mL de éter etílico/acetato de etilo (1:9) y regulador Britton-Robinsos 0.1 M, para los ftalatos de dimetilo, dietilo y dibutilo; pH 10.0 para ftalato de dimetilo y de dietilo y pH 8.0 para ftalato de dibutilo

	Margen de linealidad (mol L ⁻¹)	r	Pendiente (µA L mol ⁻¹)	Ordenada en el origen (μ A)
Ftalato de dimetilo	4.0x10 ⁻⁷ - 1.0x10 ⁻⁶ 1.0x10 ⁻⁶ - 1.0x10 ⁻⁵ 1.0x10 ⁻⁵ - 1.0x10 ⁻⁴	0.995 0.999 0.9997	$(1.7 \pm 0.1) \times 10^4$ $(1.6 \pm 0.0) \times 10^4$ $(1.6 \pm 0.0) \times 10^4$	-0.001 ± 0.001 -0.002 ± 0.004 -0.007 ± 0.020
Ftalato de dietilo	7.0x10 ⁻⁷ - 1.0x10 ⁻⁶ 1.0x10 ⁻⁶ - 1.0x10 ⁻⁵ 1.0x10 ⁻⁵ - 1.0x10 ⁻⁴	0.999 0.999 0.999	$(1.2 \pm 0.1) \times 10^4$ $(1.20 \pm 0.03) \times 10^4$ $(1.2 \pm 0.1) \times 10^4$	0.002 ± 0.001 0.00 ± 0.00 -0.02 ± 0.04
Ftalato de dibutilo	2.0x10 ⁻⁶ - 1.0x10 ⁻⁵ 1.0x10 ⁻⁵ - 5.0x10 ⁻⁵	0.997 0.997	$(9.4 \pm 0.5) \times 10^3$ $(1.0 \pm 1.1) \times 10^4$	-0.007 ± 0.003 0.03 ± 0.04

Al igual que sucedía en medio micelar, para el ftalato de dibutilo se observa una desviación de la linealidad a concentraciones superiores a 5.0×10^{-5} mol L⁻¹. Este efecto es típico de procesos en los que intervienen fenómenos de adsorción en la superficie del electrodo.

Las características analíticas de los métodos basados en estos calibrados se recogen en la Tabla LVII. El criterio utilizado para establecer la precisión del método polarográfico, así como los utilizados para calcular el límite de determinación y de detección, se ha expuesto en el apartado III.1.2.8. Como puede observarse en dicha tabla, los valores de RSD son, en todos los casos menores del 10%, lo cual pone de manifiesto, al igual que en el medio micelar, la considerable precisión del método empleado. Como también puede observarse, el método desarrollado para el ftalato de dibutilo es menos sensible que los desarrollados para los otros dos ftalatos, como era de esperar debido a la menor corriente de pico obtenida a pH 8.0 en comparación con pH 10.0.

TABLA LVII

Características analíticas del método d.p.p. para la determinación de los ésteres ftálicos en medio emulsionado

Plastificante	рН	RSD %	Límite de determinación mol L ⁻¹	Límite de detección mol L ⁻¹	
Ftalato de dimetilo	10.0	*5.6	^a 3.7x10 ⁻⁷	^a 1.1x10 ⁻⁷	
Ftalato de dietilo	10.0	^b 2.8	^b 2.2x10 ⁻⁷	^b 6.7x10 ⁻⁸	
Ftalato de dibutilo	8.0	°6.9 ^d 2.5	°2.1x10 ⁻⁶	°7.4x10 ⁻⁷	

Niveles de concentración utilizados:

^a 7.0x10⁻⁷ mol L^{-1} ^b 8.0x10⁻⁷ mol L^{-1} ^c 4.0x10⁻⁶ mol L^{-1} ^d 8.0x10⁻⁶ mol L^{-1}

III.1.3.9.- Estudio de interferencia de los ftalatos entre sí

En este apartado se ha procedido a estudiar, mediante polarografía diferencial de impulsos, la influencia de la presencia de los demás plastificantes

sobre los valores de i_p y E_p de cada uno de los compuestos estudiados.

Para ello se han formado todas las mezclas posibles entre estos tres analitos, fijando en 2.0×10^{-5} mol L⁻¹ la concentración del plastificante a determinar, y variando en el intervalo $5.0 \times 10^{-7} - 2.0 \times 10^{-5}$ mol L⁻¹ la concentración del plastificante considerado como interferente. Las condiciones experimentales empleadas fueron las siguientes: velocidad de barrido de potencial 10 mV s⁻¹, tiempo de goteo 0.4 s y amplitud del impulso -50 mV; el pH de trabajo ha sido el elegido con anterioridad para cada plastificante (10.0 para los ftalatos de dimetilo y de dietilo y 8.0 para el ftalato de dibutilo).

Los potenciales de pico de los plastificantes estudiados están lo suficientemente próximos como para observar, en todas las mezclas binarias y a todas las concentraciones de interferente utilizadas, la presencia de un único pico de reducción cuyo potencial va desplazándose muy ligeramente hacia el valor del potencial de pico del interferente a medida que aumenta la concentración de éste.

Por lo que respecta a las intensidades de pico se observa, como era previsible, en todos los casos, un aumento de la misma a medida que aumenta la concentración del compuesto considerado como interferente, obteniéndose errores relativos inferiores al 10% para relaciones molares interferente:ftalato a determinar 0.1:1, excepto en el caso de la medida del pico correspondiente al ftalato de dietilo en presencia de ftalato de dibutilo donde se produce un error relativo del 12%, dicha relación molar. Además, los errores aumentan considerablemente a medida que aumenta dicha relación molar.

En las Tablas LVIII, LIX y LX se presentan los resultados experimentales, así como los errores en la determinación obtenidos en cada caso.

Estos datos permiten deducir que no puede realizarse la determinación simultánea de estos plastificantes en las condiciones de trabajo especificadas.

-

TABLA LVIII

Efecto de la presencia de los ftalatos de dietilo y dibutilo, sobre la corriente de pico del ftalato de dimetilo mediante polarografía diferencial de impulsos en medio emulsionado formado por Hyamina 1622, 2.0 mL de éter etílico: acetato de etilo 1:9 y Britton-Robinson 0.1 M de pH 10.0. Ftalato de dietilo 2.0×10^{-5} mol L⁻¹

Interferente	$C_{Interferente}, M$	i _p , μΑ	€,%
Ftalato de dietilo	-	0.320	-
	5.0x10 ⁻⁷	0.331	5.5
	1.0x10 ⁻⁶	0.333	6.2
	2.0x10 ⁻⁶	0.341	8.7
	5.0x10 ⁻⁶	0.354	13
	1.0×10^{-5}	0.384	22
	2.0x10 ⁻⁵	0.564	>50
		0 320	-
Filato de	- 5 0x10-7	0.320	0
albutilo	1.0x10 ⁻⁶	0.325	3.7
	2.0x10 ⁻⁶	0.333	6.2
	5.0x10 ⁻⁶	0.347	10
	1.0x10 ⁻⁵	0.373	19
	2.0x10 ⁻⁵	0.520	>50

• error relativo referido a la concentración

TABLA LIX

Efecto de la presencia de los ftalatos de dimetilo y de dibutilo sobre la corriente de pico del ftalato de dietilo mediante polarografía diferencial de impulsos en medio emulsionado formado por Hyamina 1622, 2.0 mL de éter etílico:acetato de etilo 1:9 y regulador Britton-Robinson 0.1 M de pH 10.0. Ftalato de dietilo 2.0×10^{-5} mol L⁻¹

Interferente	C _{Interferente} , M	i _p , μΑ	ε, %
Ftalato de dimetilo	-	0.220	-
	5.0x10 ⁻⁷	0.220	0
	1.0x10 ⁻⁶	0.227	2.9
	2.0x10 ⁻⁶	0.235	6.2
	5.0x10 ⁻⁶	0.250	12
	1.0x10 ⁻⁵	0.279	24
	2.0x10 ⁻⁵	0.528	>50
Ftalato de dibutilo	-	0.220	-
	5.0x10 ⁻⁷	0.220	0
	1.0x10 ⁻⁶	0.229	3.7
	2.0x10 ⁻⁶	0.248	12
	5.0x10 ⁻⁶	0.260	17
	1.0×10^{-5}	0.287	28
	2.0x10 ⁻⁵	0.340	50

• error relativo referido a la concentración

TABLA LX

Efecto de la presencia de los ftalatos de dimetilo y dietilo sobre la corriente de pico del ftalato de dibutilo mediante polarografía diferencial de impulsos en medio emulsionado formado por Hyamina 1622, 2.0 mL de éter etílico:acetato de etilo 1:9 y regulador Britton-Robinson 0.1 M de pH 8.0. Ftalato de dibutilo 2.0×10^{-5} mol L⁻¹

Interferente	$C_{interference}, M$	i _p , μΑ	ε*, %
Ftalato de dimetilo	-	0.230	-
	5.0x10 ⁻⁷	0.235	2.5
	1.0x10 ⁻⁶	0.240	5.0
	2.0 x10 ⁻⁶	0.250	10
	5.0x10 ⁻⁶	0.281	25
	1.0x10 ⁻⁵	0.350	>50
	-	-	-
Ftalato de dietilo	5.0x10 ⁻⁷	0.230	-
	1.0x10 ⁻⁶	0.230	5.5
	2.0x10 ⁻⁶	0.241	8.0
	5.0x10 ⁻⁶	0.246	22
	1.0x10 ⁻⁵	0.328	49
Ftalato de dietilo	5.0x10 ⁻⁷ 1.0x10 ⁻⁶ 2.0x10 ⁻⁶ 5.0x10 ⁻⁶ 1.0x10 ⁻⁵	0.230 0.230 0.241 0.246 0.328	5.5 8.0 22 49

* error relativo referido a la intensidad

Por otra parte, se ha estudiado la interferencia que sobre los tres ftalatos anteriores ejerce el ftalato de dioctilo, plastificante utilizado muy frecuentemente en el procesado de PVC. Este compuesto presenta un pequeño pico de reducción a -1.62 V y -1.58 V a pH 10.0 y 8.0 respectivamente. La baja señal correspondiente a este compuesto da lugar a que no se observe interferencia (errores relativos menores del 5%) con el pico de los tres ftalatos mencionados incluso cuando la relación ftalato de dioctilo:compuesto a determinar es 20:1.

A modo de extensión de este estudio de interferencias se ha abordado la posibilidad de llevar a cabo la determinación global de dos de los ftalatos estudiados, el de dietilo y el de dibutilo mediante polarografía diferencial de impulsos en el medio emulsionado empleado. El pH de trabajo ha sido de 8.0 ya que, como ya se comentó anteriormente, a pH 10.0 no se obtienen medidas estables con el tiempo de la intensidad de pico correspondiente al ftalato de dibutilo.

Para ello, en primer lugar, se ha obtenido el calibrado para el ftalato de dietilo a este pH. La representación de i_p frente a la concentración es lineal en el intervalo $2.0x10^{-6} - 1.0x10^{-5}$ mol L⁻¹ con un coeficiente de correlación de 0.9994. La pendiente obtenida fue $(9.6 \pm 0.4)x10^3 \mu A L mol^{-1}$ y la ordenada en el origen $-0.017 \pm 0.022 \mu A$. Estos valores concuerdan bien con los obtenidos para el ftalato de dibutilo a pH 8.0 en el mismo margen de concentración (ver Tabla LVI), lo que sugiere la viabilidad de la determinación global de estos dos ftalatos a dicho valor de pH.

Con el fin de verificar esta posibilidad se prepararon diez disoluciones conteniendo mezclas de los dos ftalatos de manera que la concentración global final de ftalatos era $1.0x10^{-5}$ ó $4.0x10^{-6}$ mol L⁻¹. Las concentraciones de cada uno de los plastificantes en la mezcla variaba en los intervalos $3.0x10^{-6} - 1.0x10^{-5}$ ó $1.0x10^{-6} - 4.0x10^{-6}$ mol L⁻¹ respectivamente. Se analizaron cinco muestras de cada nivel de concentración global por interpolación tanto en el calibrado del ftalato de dietilo como en el del ftalato de dibutilo a pH 8.0 (cada muestra se replicó 5 veces). Los resultados medios obtenidos fueron: $(1.0 \pm 0.1) \times 10^{-5} \mod L^{-1} y$ (4.3 ± 0.4)×10⁻⁶ mol L⁻¹ cuando se extrapolaron las muestras sobre el calibrado del ftalato de dietilo mientras que usando el calibrado del ftalato de dibutilo fueron de (9.3 ± 0.3)×10⁻⁶ mol L⁻¹ y (3.5 ± 0.4)×10⁻⁶ mol L⁻¹. Los intervalos de confianza se calcularon para un nivel de significación de 0.05. En las Tablas LXI y LXII se recogen los resultados obtenidos experimentalmente. Estos resultados confirman que la determinación global de ambos ftalatos a pH 8.0 es factible, y que, con este fin, es más apropiado utilizar el calibrado del ftalato de dietilo.

TABLA LXI

Determinación global de los ftalatos de dietilo y de dibutilo utilizando como calibrado el correspondiente al ftalato de dietilo en medio emulsionado formado por Hyamina 1622, 2.0 mL de éter etílico: acetato de etilo 1:9 y regulador Britton-Robinson 0.1 M de pH 8.0

C _{total} , M	C _{DEP} , M	C _{DBP} , M	i _p , μA*	C*total encontrada	ε*, %
1.0x10 ⁻⁵	1.0x10 ⁻⁵		0.081	1.02x10 ⁻⁵	2
	7.0x10 ⁻⁶	3.0x10 ⁻⁶	0.080	1.01x10 ⁻⁵	1
	5.0x10 ⁻⁶	5.0x10 ⁻⁶	0.081	1.02x10 ⁻⁵	2
	3.0x10 ⁻⁶	7.0x10 ⁻⁶	0.082	1.03×10^{-5}	3
	-	1.0x10 ⁻⁵	0.085	1.05×10^{-5}	5
4.0x10 ⁻⁶	4.0x10 ^{.6}	-	0.022	4.05×10^{-6}	1.2
	3.0x10 ⁻⁶	1.0x10 ⁻⁶	0.022	4.05x10 ⁻⁶	1.2
	2.0x10 ⁻⁶	2 .0x10 ⁻⁶	0.023	4.22x10 ⁻⁶	5.5
	1.0x10 ⁻⁶	3.0x10 ⁻⁶	0.026	4.53x10 ⁻⁶	13
	-	4.0x10 ^{.6}	0.029	4.79x10 ⁻⁶	20

valor medio de cinco determinaciones

TABLA LXII

Determinación total de los ftalatos de dietilo y de dibutilo utilizando como calibrado el correspondiente al ftalato de dibutilo en medio emulsionado formado por Hyamina 1622, 2.0 mL de éter etílico:acetato de etilo 1:9 y regulador Britton-Robinson 0.1 M de pH 8.0

C _{total} , M	C _{DEP} , M	С _{DBP} , М	i _p , μA*	$C_{total \ encontrada}$	€*, %
1.0x10 ⁻⁵	1.0x10 ⁻⁵	-	0.0802	9.24x10 ⁻⁶	6.4
	7.0x10 ⁻⁶	3.0x10 ⁻⁶	0.0782	9.06x10 ⁻⁶	7.4
	5.0x10 ⁻⁶	5.0x10 ⁻⁶	0.0798	9.10x10 ⁻⁶	6.4
	3.0x10 ⁻⁶	7.0x10 ⁻⁶	0.0816	9,30x10 ⁻⁶	5.3
	-	1.0x10 ⁻⁵	0.0866	9.70x10 ⁻⁶	2.1
4.0x10 ⁻⁶	4.0×10^{-6}	-	0.0230	3.20x10 ⁻⁶	23
	3.0x10 ⁻⁶	1.0x10 ⁻⁶	0.0234	3.24x10 ⁻⁶	23
	2.0x10 ⁻⁶	2.0x10 ⁻⁶	0.0254	3.45x10 ⁻⁶	19
	1.0x10 ⁻⁶	3.0x10 ⁻⁶	0.0278	3.71x10 ⁻⁶	11
	-	4.0x10 ⁻⁶	0.0307	4.01x10 ⁻⁶	4.2

* valor medio de cinco determinaciones

III.1.3.11.- Determinación de ftalato de dimetilo y ftalato de dietilo en leche mediante polarografía diferencial de impulsos

En este apartado se va a proceder a la aplicación de los métodos polarográficos desarrollados en el medio emulsionado a la determinación individual de los ftalatos de dimetilo y de dietilo en muestras de leche, alimento en el cual pueden estar presentes por la posible migración del plastificante a partir del plástico utilizado en su envase (7).

Para ello se han realizado estudios de recuperación a dos niveles de concentración 1.0×10^{-5} mol L⁻¹ y 1.0×10^{-6} mol L⁻¹ (que equivalen a 1.9 y 0.19 mg L⁻¹ de leche y a 2.2 y 0.22 mg L⁻¹ de leche para el ftalato de dimetilo y el ftalato de dietilo respectivamente), ambos situados dentro de los intervalos dinámicos de concentración estudiados para los dos compuestos. Las condiciones experimentales utilizadas han sido: velocidad de barrido de potencial, 10 mV s⁻¹; amplitud del impulso, -50 mV; tiempo de goteo, 0.4 s. El procedimiento experimental utilizado se ha descrito en el apartado II.3.4 de la presente Memoria.

En primer lugar se obtuvieron los polarogramas del fondo, es decir, se aplicó el procedimiento experimental a una muestra de leche a la que no se le había añadido el plastificante considerado, observándose en los polarogramas correspondientes (Figuras 36 y 37) la ausencia de picos de reducción en el intervalo de potencial estudiado.

Cuando se realizaron estos estudios añadiendo plastificante a la muestra de leche antes de la adición del disolvente extractante, los polarogramas muestran un único pico de reducción correspondiente al plastificante considerado, lo que indica la ausencia de interferencias por parte de cualquier otro componente de la muestra. En todos los casos, se ha utilizado el método de adiciones estándar con objeto de minimizar el efecto matriz, exponiéndose en las Tablas LXIII y LXIV los resultados obtenidos a partir de cinco muestras de cada nivel de concentración para la recuperación de los dos plastificantes por separado. Los intervalos de confianza reseñados en dichas tablas se calcularon para un nivel de significación del 0.05. En las Figuras 36 y 37 se muestran los polarogramas obtenidos en dichos estudios de recuperación para los dos niveles de concentración estudiados en cada caso, así como los correspondientes a los fondos respectivos. Como puede apreciarse, la recuperación media es ligeramente mayor para el nivel de concentración superior.

Figura 36.- Polarogramas en diferencial de impulsos en medio emulsionado formado por Hyamina 1622 0.015%, 2.0 mL de éter etílico: acetato de etilo (1:9) y regulador Britton-Robinson 0.1 M de pH 10.0. (----) Muestra no enriquecida; (----) ftalato de dimetilo añadido: (a) 1.9 mg L⁻¹ y adiciones sucesivas de 50 μL de disolución patrón de ftalato de dimetilo 1.0x10⁻² mol L⁻¹ y (b) 0.19 mg L⁻¹ y adiciones sucesivas de disolución patrón de ftalato de dimetilo 1.0x10⁻³ mol L⁻¹

Figura 37.- Polarogramas en diferencial de impulsos en medio emulsionado formado por Hyamina 1622 0.015%, 2.0 mL de éter etílico: acetato de etilo (1:9) y regulador Britton-Robinson 0.1 M de pH 10.0. (----) Muestra no enriquecida; (----) ftalato de dietilo añadido: (a) 2.2 mg L⁻¹ y adiciones sucesivas de 50 μL de disolución patrón de ftalato de dietilo 1.0x10⁻² mol L⁻¹ y (b) 0.19 mg L⁻¹ y adiciones sucesivas de disolución patrón de ftalato de dimetilo 1.0x10⁻³ mol L⁻¹

Estos resultados demuestran la validez de los métodos propuestos para la determinación de estos dos plastificantes en muestras de leche y las recuperaciones obtenidas son las normales para la determinación de trazas de compuestos orgánicos en muestras de alimentos.

TABLA LXIII

Estudios de recuperación de ftalato de dimetilo en leche mediante polarografía diferencial de impulsos en medio emulsionado.

			- ,		
	1.9		0.19		
	encontrado mg L ^{.1}	recuperación %	encontrado mg L ^{.1}	recuperación %	
1	1.8	95	0.14	74	
2	1.6	84	0.15	79	
3	1.6	84	0.13	68	
4	1.8	95	0.13	68	
5	1.8	95	0.13	68	
6	1.7	89	0.14	74	
Media	1.7 ± 0.1	90 ± 6	0.14 ± 0.01	72±5	

Muestra Ftalato de dimetilo añadido (mg L⁻¹ de leche)

TABLA LXIV

Estudios de recuperación de ftalato de dietilo en leche mediante polarografía diferencial de impulsos en medio emulsionado.

Muestra	Ftalato de dietilo añadido (mg L^{-1} de leche)				
		2.2	0.22		
	encontrado mg L ⁻¹	recuperación %	encontrado mg L ^{.1}	recuperación %	
1	1.95	89	0.196	89	
2	2,13	97	0.190	86	
3	1 .98	90	0.187	85	
4	2.00	91	0.190	86	
5	2.09	95	0.186	85	
Media	2.0 ± 0.1	92±4	0.19 ± 0.01	86±2	

III.2.- ESTUDIO ELECTROANALÍTICO DE LOS ANTIOXIDANTES 2-<u>tert</u>-BUTIL-4-METOXIFENOL (BHA) Y <u>tert</u>-BUTIL HIDROQUINONA (TBHQ) EN MEDIOS MICELARES Y EMULSIONADOS

.

La segunda parte de esta Memoria está dedicada al estudio del comportamiento electroquímico en oxidación en medios micelares y en emulsiones aceite/agua de dos antioxidantes fenólicos ampliamente utilizados en la industria alimentaria: 2-*tert*-butil-4-metoxifenol (BHA) y *tert*-butil hidroquinona (TBHQ).

III.2.1.- DETERMINACIÓN VOLTAMPEROMÉTRICA DE 2-tert-BUTIL-4-METOXIFENOL (BHA)

III.2.1.1.- DISOLUCIONES MICELARES

La escasa solubilidad del BHA en agua nos ha llevado a desarrollar un nuevo método voltamperométrico, basado en su oxidación sobre un electrodo de carbono vitrificado, para la determinación de este antioxidante en un medio micelar.

III.2.1.1.1.- Elección del tensoactivo

Con el fin de elegir el tensoactivo más adecuado para lograr la solubilización del BHA y permitir su estudio voltamperométrico, se ha estudiado el efecto que varios de estos agentes: catiónicos (Hyamina 1622 y CTAB), aniónicos (laurilsulfato sódico y ácido pentanosulfónico) y no iónicos (Triton X-405 y Pluronic F-68), causan sobre la respuesta obtenida mediante voltamperometría diferencial de impulsos sobre un electrodo estático de carbono vitrificado a diferentes valores de pH. En todos los casos se obtuvo también el voltamperograma del fondo (sin BHA), con el objeto de observar la posible presencia de picos propios del tensoactivo en el intervalo de potencial barrido.

Los resultados obtenidos se muestran en la Tabla LXV. Según puede apreciarse, el BHA presenta, en todos los medios estudiados, o bien un pico ancho o bien dos picos muy cercanos a pH 4.0, y dos picos a pH 7.0 y 10.0, que están mejor resueltos en medio básico.

TABLA LXV

Voltamperometría diferencial de impulsos sobre electrodo estático de carbono vitrificado en disoluciones micelares. BHA, 1.0x10⁻⁴ mol L⁻¹; tensoactivo, 0.1%; Britton-Robinson 0.1M

Tensoactivo	<u>рН</u>	i _p , μΑ	E, V	Observaciones	
Hyamina 1622	4.0	0.538 0.064	0.538 0.622	Un pico. La parte descendente solapa con un segundo pico peor definido. Aparece un	
	7.0	0.300	0.400 0.685	pequeño pico del fondo a ~0.7 V. Un pico y un hombro pico a potenciales más positivos. Aparece un pequeño pico del fondo a ~0.6 V	
	10.0	0.750 0.136	0.165 0.700	Dos picos separados, el primero mucho mejor definido. Pequeño pico en el fondo a ~0.3 V.	
CTAB	4.0	0.542	0.513 0.621	Dos picos solapados.	
	7.0	0.312	0.352	Dos picos mal definidos.	
	10.0	0.705 0.092	0.152 0.600	Dos picos separados, el primero de ellos mejor definido.	
Laurilsulfato sódico	4.0	1.100	0.480	Dos picos muy próximos, el primero muy	
	7.0	0.500	0.376 0.506	Baja reproducibilidad.	
	10.0	0.510	0.172 0.490	Baja reproducibilidad.	
Pentanosulfonato sódico	4.0	1.020	0.493	Un pico muy ancho. Baja reproducibilidad.	
	7.0	0.720	0.358	Un pico y un hombro a un potencial más	
	10.0	0.857 0.115	0.148 0.579	Dos picos separados. Baja reproducibilidad.	
Triton X-405	4.0	0.850	0.515	Dos picos muy próximos. Pequeño pico en el fondo a ~0.8 V	
	7.0	0.641 0.074	0.368 0.544	Dos picos próximos.	
	10.0	0.680 0.128	0.150 0.570	Dos picos separados. Pequeño pico en el fondo a ~0.4 V.	
Pluronic F-68	4.0	1.100	0.495	Un pico muy bien definido.	
	7.0	0.700	0.360	Dos picos próximos.	
	10.0	0.800 0.163	0.154 0.580	Dos picos bien definidos.	

Atendiendo a las características analíticas de las respuestas correspondientes a la oxidación del BHA en estos medios, incluyendo sensibilidad, señal del fondo y reproducibilidad, se ha escogido el Pluronic F-68 como el tensoactivo más adecuado para estudios subsiguientes. Además, dada la mayor sensibilidad del pico que aparece a potenciales menos positivos, se ha escogido éste para dichos estudios.

III.2.1.1.2.- Influencia de la concentración de tensoactivo sobre los parámetros de la respuesta voltamperométrica

Con objeto de elegir la concentración óptima de tensoactivo, se han registrado los voltamperogramas de disoluciones de BHA preparadas en presencia de distintas proporciones de Pluronic F-68, en el intervalo comprendido entre el 0.02 y 0.20 % (w/v). La técnica empleada ha sido, por proporcionar una mayor sensibilidad, la voltamperometría diferencial de impulsos.

Para una concentración de BHA $1.0x10^{-5}$ mol L⁻¹, no se ha observado variación significativa en la intensidad del pico de oxidación, en todo el intervalo de concentraciones de tensoactivo estudiado, lo cual se atribuye a la total solubilización del antioxidante en el medio micelar formado por Pluronic F-68, incluso a las proporciones inferiores.

Debido a la escasa solubilidad del BHA en agua, no ha sido posible estudiar las disoluciones en presencia de concentraciones de tensoactivo por debajo de la ya indicada, ya que no es posible disponer de disoluciones patrón adecuadas. Con el fin de asegurar la solubilización del BHA en las disoluciones analíticas, se ha elegido una proporción del 0.06% (w/v) para estudios posteriores. La concentración molar correspondiente a dicha proporción, teniendo en cuenta el peso molecular aproximado del tensoactivo, 8350, es 7.1×10^{-5} M. Esta baja concentración minimiza su posible adsorción sobre la superficie del electrodo.

190

III.2.1.1.3.- Comportamiento voltamperométrico mediante la técnica de barrido lineal sobre un electrodo de disco rotatorio de carbono vitrificado

III.2.1.1.3.1.- Influencia del pH sobre $E_{1/2}$ e i_L

Para una concentración de BHA de 2.0×10^{-5} mol L⁻¹ y empleando una velocidad de rotación de 2000 revoluciones por minuto, el BHA muestra una onda de oxidación bien definida a pH 1.5 y 2.0. Esta onda se desdobla gradualmente a medida que aumenta el pH y, a partir de pH 5.0, pueden observarse dos ondas claramente definidas, cuyos potenciales de onda media se van separando a medida que el pH se hace mayor (Figura 38). Además, y también a partir de pH 5.0, aparece una tercera onda mejor definida a medida que el pH aumenta, cuyo potencial de onda media es aproximadamente 1.0 V.

Los valores obtenidos para $E_{1/2}$ e i_L correspondientes a la primera y segunda onda, en el intervalo de pH estudiado (1.5 - 11.0) están recogidos en la Tabla LXVI y aparecen representados en la Figura 39. Como puede observarse, los valores de $E_{1/2}$ para la onda que aparece a valores de pH inferiores a 5.0 se ajustan muy bien a la recta formada por los valores del potencial de onda media correspondientes a la onda que se produce a potenciales menos positivos cuando aparecen las dos ondas mencionadas (pH>5). La disminución del valor de $E_{1/2}$ a medida que aumenta el pH es lineal (r=0.9997) con una pendiente de -0.057 V. Este comportamiento indica que los protones están implicados en el proceso de oxidación electroquímica y que éste es más fácil en medio básico.

Por otro lado, los valores de $E_{1/2}$ para la onda que se desarrolla a potenciales más positivos en el intervalo de pH 5.0 - 11.0 muestran tan sólo una ligera disminución a medida que aumenta el pH.

Por lo que respecta a la intensidad límite, la correspondiente a la onda que aparece a potenciales menos positivos permanece prácticamente constante en el intervalo de pH comprendido entre 5.0 y 11.0. Los valores de i_L global para las dos ondas consideradas a pH>5.0 son asimismo similares a los de la única onda que se observa en medios más ácidos, y aproximadamente el doble de la mencionada en primer lugar, lo que indica que el número de electrones implicado en la oxidación global del BHA es el mismo en todo el intervalo de pH considerado.

Figura 38.- Voltamperogramas de barrido lineal sobre un electrodo de disco rotatorio carbono vitrificado en el medio micelar formado por 0.06% de Pluronic F-68 y regulador Britton-Robinson 0.1M; 2000 rev. min⁻¹; 1, pH 1.5; 2, pH 3.0; 3, pH 5.0; 4, pH 7.0; 5, pH 9.0; 6, pH 11.0.

TABLA LXVI

Influencia del pH en voltamperometría de barrido lineal sobre electrodo rotatorio de carbono vitrificado en el medio micelar formado por Pluronic F-68. BHA, 2.0x10⁻⁵ mol L⁻¹; PLuronic F-68, 0.08%; velocidad de rotación del electrodo 2000 rpm; velocidad de barrido 50 mV s⁻¹.

	E _{1/2} , V		i _L	, μA
pН	1ª onda	2ª onda	1ª onda	onda global
1.5	0.618	-	2.41	
2.0	0.59 1	-	2.26	
3.0	0.558"	-	-	2.24
4.0	0 .4 86ª	-	-	2.21
5.0	0.420	0.579	1.30	2.31
6.0	0.368	0.545	1.22	2.22
7.0	0.313	0.530	1.21	2.25
8.0	0.256	0.513	1.11	2.07
9.0	0.200	0.477	1.07	2.03
10.0	0.131	0.487	1.21	2.18
11 .0	0.077	0.482	1.19	2.19

^a se observa una onda global

Con objeto de trabajar en las condiciones de mejor sensibilidad y de una mayor simplicidad, se ha elegido 2.0 como pH de trabajo para los estudios subsiguientes.

193

Figura 39.- Influencia del pH sobre E_{1/2} e i_L mediante voltamperometría de barrido lineal sobre electrodo rotatorio de carbono vitrificado en el medio micelar formado por 0.06% de Pluronic F-68 y regulador Britton-Robinson 0.1M: (▲) y (Δ), E_{1/2} e i_L de la primera onda; (●) y (o), E_{1/2} de la segunda onda y corriente global, respectivamente.

III.2.1.1.3.2.- Efecto de la velocidad de rotación del electrodo sobre la intensidad límite

Este estudio se ha realizado en el intervalo de 500 a 3000 revoluciones por minuto y para concentraciones de BHA comprendidas entre $1.0x10^{-5}$ y $6.0x10^{-5}$ mol L⁻¹. Los resultados obtenidos se muestran en la Tabla LXVII y en la Figura 40 se han representado los valores de i_L frente a $\omega^{1/2}$, donde ω es la velocidad angular del electrodo expresada en segundos⁻¹ ($2\pi N$, donde N es el número de revoluciones por segundo). Como puede observarse, tiene lugar un aumento de la altura de la onda al aumentar la velocidad de rotación del electrodo. Las representaciones de i_L en función de $\omega^{1/2}$ dan lugar a líneas rectas con coeficientes de correlación comprendidos entre 0.992 y 0.999, lo que indica que la corriente límite está probablemente controlada por difusión en el intervalo de concentraciones ensayado.

TABLA LXVII

Influencia de la velocidad de rotación del electrodo sobre la intensidad límite en disoluciones micelares. BHA, 1.0×10^{-5} - 6.0×10^{-5} mol L⁻¹; Pluronic F-68, 0.06%; disolución reguladora Britton-Robinson 0.1 M, pH 2.0; v=50 mV s⁻¹

N, rps	$\omega^{1/2}, s^{-1/2}$	1.0x10 ⁻⁵	2.0x10 ⁻⁵	3.0x10 ⁻⁵	4.0x10 ⁻⁵	5.0x10 ⁻⁵	6.0x10 ⁻⁵
8.33	7.24	0.55	1.05	1.57	2.15	2.60	3.26
16.67	10.23	0.67	1.48	2.08	3.03	3.80	4.43
25.00	12.53	0.84	1.60	2.64	3.57	4.32	5.38
33.33	14.47	0.96	1.95	2.96	3.96	5.10	5.95
41.67	16.18	1.06	2.23	3.20	4.36	5.32	6.58
50.00	17.72	1.15	2.44	3.62	4.86	5.86	7.10

 i_L , μA para BHA, mol L⁻¹

Figura 40.- Influencia de la velocidad de rotación del electrodo sobre la intensidad límite en disoluciones micelares; Pluronic F-68, 0.06% y regulador Britton-Robinson 0.1 M de pH 2.0; v = 50 mV s⁻¹; (o), 1.0x10⁻⁵ mol L⁻¹; (m), 2.0x10⁻⁵ mol L⁻¹; (A), 3.0x10⁻⁵ mol L⁻¹; (♦), 4.0x10⁻⁵ mol L⁻¹; (*), 5.0x10⁻⁵ mol L⁻¹; (●), 6.0x10⁻⁵ mol L⁻¹

III.2.1.1.3.3.- Influencia de la concentración sobre la intensidad límite

Utilizando los datos que se recogen en la Tabla LXVII se han representado los valores de i_L en función de la concentración de BHA en el intervalo comprendido entre 1.0×10^{-5} y 6.0×10^{-5} mol L⁻¹ (Figura 41). Como puede apreciarse para cada una de las velocidades de rotación estudiadas, dichas representaciones son también lineales con valores de r entre 0.998 y 0.999, lo que

195

permite verificar el cumplimiento de la ley de Fick, que establece que la intensidad de las corrientes de difusión es proporcional a la concentración de la especie que difunde hacia el electrodo. Por consiguiente, estos datos confirman que la corriente límite de oxidación del BHA sobre un electrodo rotatorio de carbono vitrificado, en el medio micelar formado con Pluronic F-68, es de naturaleza difusiva para los niveles de concentración estudiados.

Figura 41.- Influencia de la concentración de BHA sobre la intensidad límite en disoluciones micelares; Pluronic F-68, 0.06% y regulador Britton-Robinson 0.1 M de pH 2.0; v=50 mV s⁻¹; (o), 500 rpm; (III), 1000 rpm; (Δ), 1500 rpm; (♦), 2000 rpm; (★), 2500 rpm; (●), 3000 rpm

III.2.1.1.3.4.- Análisis logarítmico de los voltamperogramas

Para realizar este estudio se ha registrado especialmente un voltamperograma sobre el electrodo rotatorio de carbono vitrificado de manera que se puedan realizar medidas exactas de la intensidad en la porción ascendente de la onda de oxidación. Las condiciones experimentales utilizadas han sido: velocidad de rotación del electrodo, 2000 rpm; velocidad de barrido de potencial, 50 mV s^{-1} . Los resultados obtenidos empleando una disolución de BHA 2.0x10⁻⁵ mol L⁻¹ en medio Britton-Robinson 0.1 M de pH 2.0 y 0.06% de Pluronic F-68 se muestran en la Tabla LXVIII, habiéndose representado en la Figura 42.

La pendiente de la parte lineal de la representación del potencial frente al log $(i/(i_L-i))$ (r=0.990) es 0.058 V, considerablemente mayor de 0.0295 V que es el valor teórico para un sistema rápido a 25°C tomando como dos el número de electrones involucrados en el proceso, hecho que se comprobará más adelante mediante culombimetría a potencial controlado. Por consiguiente, puede establecerse que el proceso de oxidación del BHA en este medio es irreversible.

El valor de $(1-\alpha)n_a$ obtenido a partir de la pendiente de la recta obtenida en el análisis logarítmico del voltamperograma es de 0.98, el cual es consistente con un intercambio de dos electrones en el proceso de oxidación global del BHA, análogo al observado para otros fenoles sustituidos (274).

Este valor de $(1-\alpha)n_{\pi}$ concuerda apreciablemente con el obtenido (0.99) a partir de la pendiente de la parte lineal de la representación de E frente al log i (Figura 43) para valores de la intensidad medidos al pie de la onda voltamperométrica utilizada para la realización del análisis logarítmico (representación de Tafel).
_

TABLA LXVIII

Análisis logarítmico del voltamperograma sobre electrodo rotatorio de carbono vitrificado. Concentración 2.0×10^{-5} mol L⁻¹, medio micelar formado por Pluronic F-68, 0.06%, Britton-Robinson 0.1 M, pH 2.0; N=2000 rpm; v=50 mV s⁻¹; i_L = 2.37 μ A

E, V	i, μA	log i/i _L -i	-E, V	i, μA	log i/i _{1.} -i
0.540	0.209	-1.014	0.574	0.681	-0.394
0.542	0.221	-0.988	0.576	0.725	-0.356
0.544	0.237	-0.955	0.578	0.771	-0.317
0.546	0.254	-0.920	0.580	0.816	-0.279
0.548	0.272	-0.887	0.582	0.861	-0.243
0.550	0.293	-0.851	0.584	0.909	-0.206
0.552	0.314	-0.817	0.586	0.956	-0.170
0.554	0.337	-0.780	0.588	1.005	-0.133
0.556	0.363	-0.742	0.590	1.052	-0.098
0.558	0.390	-0.706	0.592	1.096	-0.065
0.560	0.421	-0.666	0.594	1.141	-0.032
0.562	0.451	-0.628	0.596	1.186	0.007
0.564	0.486	-0.588	0.598	1.224	0.028
0.566	0.520	-0.551	0.600	1.266	0.059
0.568	0.559	-0.510	0.602	1.307	0.090
0.570	0.598	-0.472	0.604	1.347	0.119
0.572	0.640	-0.432			

Figura 42.- Análisis logarítmico del voltamperograma de oxidación del BHA 2.0x10⁻⁵ mol L⁻¹ en el medio micelar formado por 0.06% de Pluronic F-68 y regulador Britton-Robinson 0.1 M de pH 2.0, mediante la técnica de barrido lineal sobre electrodo rotatorio de carbono vitrificado.

Figura 43.- Dependencia del log i frente al potencial del BHA 2.0x10⁻⁵ mol L⁻¹ en el medio micelar formado por 0.06% de Pluronic F-68 y regulador Britton-Robinson 0.1 M de pH 2.0

III.2.1.1.4.- Culombimetría a potencial controlado

El número de electrones puesto en juego en la oxidación del BHA se determinó por culombimetría a potencial controlado, mediante la aplicación de la ecuación (262):

$$n^{\circ}e^{-} = \frac{Q}{n F}$$

donde Q es la cantidad de electricidad consumida durante la electrólisis, n es el número de moles iniciales de la especie electroactiva, n[°] e⁻ es el número de electrones, y F es la constante de Faraday, 96487 C/mol e⁻.

Las culombimetrías se llevaron a cabo utilizando como ánodo una malla de platino y como cátodo un electrodo de platino separado del ánodo mediante una placa porosa, inmersos en 50 mL de una disolución $1.0x10^{-4}$ mol L⁻¹ del antioxidante en el medio micelar formado con Pluronic F-68 al 0.06%. La disolución se agitó magnéticamente durante toda la experiencia. Las medidas culombimétricas de los fondos correspondientes se llevaron a cabo por separado y se restaron de las muestras. El potencial aplicado correspondió en todos los casos a un valor situado en la zona de la corriente límite de oxidación de dicho antioxidante.

Se realizaron experiencias a dos valores de pH diferentes: pH 2.0 cuyos voltamperogramas muestran una sóla onda de oxidación, y pH 10.0, donde se observa la presencia de dos ondas de oxidación bien definidas, aplicando en este caso bien un potencial situado en la meseta de la primera onda o bien un potencial situado en la meseta de la segunda, con objeto de obtener el número de electrones implicados en la oxidación global a ese pH.

Los resultados obtenidos, así como los potenciales fijados en cada caso, se resumen en la Tabla LXIX

TABLA LXIX

Determinación del número de electrones involucrados en el proceso de oxidación del BHA en medio micelar, utilizando un macroelectrodo de platino

pН	$E_{aplicado}$, V	Q _{bha} , C	n° e'
2.0	0.785	1.04	2.16
10.0	0.297	0.61	1.12
10.0	0.667	1.05	2.20

Los resultados obtenidos demuestran que la única onda de oxidación obtenida a pH 2.0 involucra dos electrones, mientras que cada una de las dos ondas observadas a pH 10.0 implica el intercambio de un electrón.

En todas las discusiones y conclusiones que se harán en este capítulo se asumirá que el número de electrones intercambiados en la oxidación electroquímica del BHA es el mismo empleando un electrodo de platino que empleando un electrodo de carbono vitrificado.

III.2.1.1.5.- Comportamiento voltamperométrico mediante la técnica de barrido lineal sobre un electrodo estacionario de carbono vitrificado

III.2.1.1.5.1.- Influencia del pH sobre E_p e i_p

Este estudio se ha realizado en el intervalo de pH comprendido entre 1.5 y 11.9, en medio Britton-Robinson 0.1 M, y aplicando una velocidad de barrido de potencial de 20 mV s⁻¹. Los resultados obtenidos aparecen representados en la Figura 44 y se recogen en la Tabla LXX.

TABLA LXX

Influencia del pH en voltamperometría de barrido lineal sobre electrodo estático de carbono vitrificado en disoluciones micelares. BHA, $4.0x10^{-5}$ mol L⁻¹; Pluronic F-68, 0.08%; velocidad de barrido 20 mV s⁻¹.

	E _p , V		i _p ,	μA
pH	1 ^{er} pico	2° pico	1 ^{er} pico	2° pico
1.5	0.616		0.82	
2.0	0.592	•	0.73	-
3.0	0.538	0.661	0.64	-
4.0	0.490	0.615	0.61	-
5.0	0.422	0.608	0.48	0.08
6.0	0.352	0.580	0.50	0.11
7.0	0.298	0.528	0.54	0.13
8.0	0.244	0.534	0.61	0.11
9.0	0.184	0.500	0.53	0.12
10.0	0.120	0.496	0.58	0.17
11.0	0.072	0.505	0.61	0.06
11.9	0.032	0.484	0.48	0.15
6.0 7.0 8.0 9.0 10.0 11.0 11.9	0.352 0.298 0.244 0.184 0.120 0.072 0.032	0.580 0.528 0.534 0.500 0.496 0.505 0.484	0.50 0.54 0.61 0.53 0.58 0.61 0.48	0.11 0.13 0.11 0.12 0.17 0.06 0.15

Figura 44.- Influencia del pH sobre E_p e i_p mediante voltamperometría de barrido lineal sobre electrodo estacionario de carbono vitrificado en el medio micelar formado por 0.06% de Pluronic F-68 y regulador Britton-Robinson 0.1M: (▲) y (Δ), E_p e i_p del primer pico; (●) y (o), E_p del segundo pico.

Los voltamperogramas para BHA 4.0×10^{-5} mol L⁻¹ muestran un único pico de oxidación bien desarrollado a pH 1.5 y 2.0. A valores de pH superiores aparece un segundo pico peor definido y un pequeño hombro a potenciales más positivos. La representación de los potenciales del primer pico de oxidación frente al pH da lugar a una recta (r = 0.9994) de pendiente -0.058 V. La disminución del potencial de pico observada conforme aumenta el pH demuestra, nuevamente, la intervención de los protones en el proceso de oxidación de este antioxidante, pudiendo deducirse, si se asume que el número de electrones que interviene es de dos, que es uno el número de protones intercambiados en la reacción electródica, confirmando los resultados obtenidos utilizando un electrodo rotatorio de carbono vitrificado.

III.2.1.1.5.2.- Efecto de la velocidad de barrido de potencial sobre E_p e i_p

La dependencia de la corriente de pico y del potencial de pico con la velocidad de barrido de potencial se examinó para una concentración de BHA de 6.0×10^{-5} mol L⁻¹ a pH 2.0. Los resultados obtenidos se muestran en la Tabla LXXI y aparecen representados en la Figura 45.

La representación de i_p frente a la raíz cuadrada de la velocidad de barrido de potencial es lineal (r=0.999) en el intervalo 5-200 mV s⁻¹; sin embargo, se desvía de la linealidad para velocidades de barrido superiores, obteniéndose corrientes de pico mayores que las esperadas para una representación lineal de i_p frente v^{1/2} en el margen de velocidades de barrido 350-2000 mV s⁻¹. En este intervalo, la función i_p/v permanece prácticamente constante (véase Tabla LXXI) lo que sugiere la adsorción del BHA sobre la superficie del electrodo de carbono vitrificado.

Por otro lado, los valores del potencial de pico se hacen más positivos a medida que aumenta la velocidad en ese mismo intervalo.

TABLA LXXI

Influencia de la velocidad de barrido sobre i_p en medio micelar. BHA, 6.0x10⁻⁵ mol L⁻¹; Pluronic F-68, 0.06%; disolución reguladora Britton-Robinson 0.1 M de pH 2.0

v, mV s ⁻¹	$v^{1/2}$, mV ^{1/2} s ^{-1/2}	i _p , μΑ	E, V	i_p/v , $\mu A mV^{-1} s$
5	2.24	0.453	0.582	0.090
10	3.16	0.639	0.584	0.064
20	4.47	0.772	0.590	0.038
50	7.07	1.550	0.588	0.031
100	10.00	2.291	0.596	0.023
200	14.14	3.321	0.610	0.017
350	18.70	5.179	0.620	0.015
500	22.36	7.053	0.639	0.014
750	27.39	9.516	0.645	0.013
1000	31.62	13.26	0.646	0.013
1500	38.73	17.74	0.646	0.012
2000	44.72	22.21	0.668	0.011

Figura 45.- Variación de i_p con la raíz cuadrada de la velocidad de barrido mediante voltamperometría de barrido lineal sobre electrodo estacionario de carbono vitrificado en el medio micelar formado por 0.06% de Pluronic F-68 y regulador Britton-Robinson 0.1M de pH 2.0

III.2.1.1.6.- Voltamperometría cíclica

El estudio electroquímico mediante voltamperometría cíclica se ha realizado, empleando un electrodo de carbono vitrificado y con disoluciones de BHA $6.0x10^{-5}$ mol L⁻¹ en presencia de Pluronic F-68 al 0.06% y a pH 2.0 y pH 11.0 en medio Britton-Robinson 0.1 M y con una velocidad de barrido de 50 mV s⁻¹. En la Figura 46 se muestran algunos de los voltamperogramas obtenidos en medio ácido.

Según se observa en la Figura 46a, en la que se representan los voltamperogramas cíclicos correspondientes a dos barridos de potencial consecutivos, el primero de ellos muestra un pico de oxidación (pico A), a un potencial $E_p = +0.600$ V y aparecen dos pequeños picos catódicos, próximos entre sí (picos B y B'), a potenciales de +0.084 V y +0.010 V, respectivamente, mientras que se obtiene un nuevo pico de oxidación a +0.400 V (pico C) en el transcurso del segundo barrido de potencial. Los picos B y B' pueden atribuirse a la reducción de algún producto de oxidación del BHA, ya que, como se observa en la Figura 46b, no aparecen cuando el barrido anódico se invierte a un valor del potencial anterior a la aparición del pico A en el barrido inicial de potencial.

Por otro lado, el pico C tampoco está presente en el voltamperograma de la Figura 46b, por lo que debe corresponder a la oxidación del producto generado en la reducción anterior. La posición de este pico, a un valor del potencial 200 mV inferior al del pico A, que aparece a continuación en el voltamperograma, indica que el responsable del pico C es un nuevo producto distinto del BHA.

Teniendo en cuenta estos resultados parece claro que debe existir una reacción química subsiguiente a la oxidación electroquímica inicial del BHA, siendo el producto de esta reacción el responsable de la aparición de los picos catódicos y, a partir de ellos, del pico de oxidación C. Por consiguiente, puede proponerse el siguiente mecanismo en el proceso de oxidación electroquímica:

Figura 46.- Voltamperogramas cíclicos del BHA 6.0x10⁻⁵ mol L⁻¹ en disolución micelar formada por 0.06% de Pluronic F-68 y regulador Britton-Robinson 0.1 M de pH 2.0; v=50 mV s⁻¹:
(a) — primer barrido; ----- segundo barrido; (b) ----- primer barrido hasta +0.80 V; ---- primer barrido hasta +0.30 V

Los datos que aparecen en la bibliografía consultada, sobre el comportamiento electroquímico de estos fenoles (274) indican que los iones fenoxonio formados en el proceso de oxidación anódica actúan como intermediarios reactivos, siendo capaces de dar lugar a distintos productos por reacción con los agentes nucleófilos del medio. Así, en presencia de agua, los fenoles que poseen un grupo metoxi en posición 2- ó 4-, tal como ocurre en el caso del BHA, dan lugar a la formación de p-benzoquinonas, a través del ión fenoxonio correspondiente, según el esquema anterior.

Como puede observarse, la reacción descrita para el BHA debe conducir a la formación de tert-butil-p-benzoquinona (TBQ). Debido a que este compuesto es el producto de la oxidación de la tert-butil-hidroquinona (TBHO), otro antioxidante estudiado en esta Memoria, con el fin de explicar la forma del voltamperograma cíclico obtenido y de demostrar el mecanismo responsable de la aparición de los picos ya indicados, se registró el voltamperograma cíclico del TBHQ en las mismas condiciones experimentales que para el BHA (Figura 47) y se comparó con el mostrado en la Figura 46a. Puede observarse en dicho voltamperograma la presencia de un pico de oxidación y otro de reducción. comprobándose que el pico de oxidación del TBHQ aparece a un potencial que coincide con el correspondiente al pico C observado en el segundo barrido para el BHA, lo que confirma la secuencia de reacciones propuesta. Además, el potencial del pico presente en el barrido de reducción del TBHQ coincide también con los picos de reducción B ó B' que aparecen en el voltamperograma cíclico del BHA, lo cual sugiere que al menos uno de estos picos debe corresponder a la reducción de la TBQ formada como un producto de la oxidación del BHA.

Figura 47.- Voltamperogramas cíclicos en disolución micelar formada por 0.06% de Pluronic F-68 y regulador Britton-Robinson 0.1 M de pH 2.0; ----- BHA 6.0x10⁻⁵ mol L⁻¹; ---- TBHQ 6.0x10⁻⁵ mol L⁻¹; v=50 mV s⁻¹

III.2.1.1.7.- Comportamiento voltamperométrico mediante la técnica diferencial de impulsos sobre un electrodo estacionario de carbono vitrificado

III.2.1.1.7.1.- Influencia del pH sobre E_p e i_p

Se ha estudiado el comportamiento electroquímico del BHA mediante la técnica voltamperométrica diferencial de impulsos a diferentes valores de pH en el intervalo comprendido entre 1.5 y 11.0 empleando disolución reguladora

Britton-Robinson 0.1 M y una concentración de BHA de 4.0×10^{-5} mol L⁻¹ y 0.06% de Pluronic F-68. Las condiciones experimentales utilizadas han sido: velocidad de barrido de potencial, 10 mV s⁻¹ y amplitud del impulso 50 mV.

En la Figura 48 se muestran algunos de los voltamperogramas obtenidos a diferentes pH y en la Tabla LXXII se recogen los valores de la intensidad y el potencial obtenidos, representándose dichos datos frente al pH en la Figura 49. Como era de esperar, aparece un único pico de oxidación entre pH 1.5 y 5.0, pero a valores de pH superiores se observan dos picos en el margen de potencial barrido.

La variación del potencial del primer pico de oxidación con el pH es análoga a las obtenidas por aplicación de las técnicas voltamperométricas consideradas anteriormente, obteniéndose una representación lineal (r = 0.9993) con una pendiente de -0.056, confirmándose una vez más que, al ser dos el número de electrones implicados en el proceso de oxidación del BHA, es uno el número de protones puestos en juego en dicho proceso.

Una vez más, también es a pH 2.0 donde se ha observado la relación señal/fondo más elevada, por lo que las características analíticas del método desarrollado mediante esta técnica (más sensible que las anteriores) se han establecido a dicho valor de pH.

Figura 48.- Voltamperogramas en diferencial de impulsos del BHA 4.0x10⁻⁵ mol L⁻¹ en disolución micelar formada por 0.06% de Pluronic F-68 y regulador Britton-Robinson 0.1 M; ΔE=50 mV; 1, pH 1.5; 2, pH 3.0; 3, pH 5.0; 4, pH 7.0; 5, pH 8.0; 6, pH 10.0 y 7, pH 11.0

TABLA LXXII

Influencia del pH mediante voltamperometría diferencial de impulsos sobre electrodo estático de carbono vitrificado. BHA, 4.0x10⁻⁵ mol L⁻¹; Pluronic F-68, 0.06%; regulador Britton-Robinson 0.1 M; velocidad de barrido 10 mV s^{-1.}

	E _p , V		i _p ,	μA
pН	1 ^{er} pico	2° pico	1 ^{er} pico	2° pico
1.5	0.565		1.160	
2.0	0.542	-	1.070	-
3.0	0.497	-	1.030	-
4.0	0.455	-	0.929	-
5.0	0.400	-	0.778	-
6.0	0.355	*	0.628	-
7.0	0.297	0.503	0.621	0.114
8.0	0.248	0.490	0.471	0.143
9.0	0.165	0.473	0.471	0.128
1 0.0	0.100	0.480	0.685	0.221
11.0	0.029	0.500	0.714	0.257

Figura 49.- Influencia del pH sobre E_p e i_p mediante voltamperometría diferencial de impulsos sobre electrodo estacionario de carbono vitrificado en el medio micelar formado por 0.06% de Pluronic F-68 y regulador Britton-Robinson 0.1 M: (▲) y (△), E_p e i_p del primer pico; (●) y (o), E_p e i_p del segundo pico

III.2.1.1.7.2.- Influencia de la amplitud del impulso aplicado

Para la realización de este estudio se registraron los voltamperogramas correspondientes a distintos valores de la amplitud del impulso, ΔE , aplicado al electrodo indicador. Se ha empleado una concentración de BHA de 4.0×10^{-5} mol L⁻¹.

Los resultados obtenidos se resumen en la Tabla LXXIII. Como puede observarse, la intensidad de la corriente aumenta al aumentar el valor de ΔE . La representación de ip frente a ΔE aparece en la Figura 50, donde se aprecia una desviación de la linealidad para valores altos de la amplitud, lo que es lógico para sistemas no reversibles. En cuanto a la anchura del pico a la semialtura no se observaron variaciones importantes para los valores relativamente bajos de la amplitud. Se elige un valor de 50 mV para los estudios analíticos posteriores.

Tabla LXXIII.- Influencia de la amplitud del impulso sobre i_p en medio micelar. BHA, 4.0x10⁻⁵ mol L⁻¹; Pluronic F-68, 0.06%; Britton-Robinson 0.1 M de pH 2.0

ΔE, mV	i _p , μΑ	E _p , V	ω _{1/2} , V
10	0.262	0.569	0.079
20	0.489	0.670	0.086
30	0.680	0.567	0.079
40	0.903	0.555	0.094
50	1.180	0.552	0.086
60	1.320	0.543	0.088
70	1.520	0.535	0.088
80	1.620	0.523	0.090
90	1.620	0.518	0.108
100	1.640	0.512	0.120

Figura 50.- Influencia de la amplitud del impulso sobre la i_p del BHA 4.0x10⁻⁵ mol L⁻¹ en medio micelar formado por Pluronic F-68, 0.06%; Britton-Robinson 0.1 M de pH 2.0

III.2.1.1.8.- Características analíticas del método desarrollado mediante voltamperometría diferencial de impulsos

En las condiciones experimentales mencionadas anteriormente, las representaciones de la corriente de pico frente a la concentración de BHA son lineales en los intervalos de concentración que aparecen en la Tabla LXXIV, donde se recogen también, además de los coeficientes de correlación, los valores respectivos de las pendientes y de las ordenadas en el origen.

Como puede apreciarse en la Figura 51 la linealidad se pierde para concentraciones superiores a 5.0×10^{-5} mol L⁻¹ del antioxidante, lo que sugiere la adsorción del mismo a altas concentraciones sobre la superficie del electrodo de carbono vitrificado.

TABLA LXXIV

Características analíticas de los calibrados para la determinación de BHA mediante voltamperometría diferencial de impulsos en medio micelar formado con 0.06% de Pluronic F-68 y regulador Britton-Robinson 0.1 M de pH 2.0

Intervalo lineal, mol L ⁻¹	1.0x10 ⁻⁶ -10.0x10 ⁻⁶	$1.0 \times 10^{-5} - 5.0 \times 10^{-5}$
Coeficiente de correlación, r	0.999	0.999
Pendiente, $\mu A L mol^{-1}$	$(3.7 \pm 0.1) \times 10^4$	$(2.9 \pm 0.3) \times 10^4$
Ordenada en el origen, μA	0.009 ± 0.008	0.09 ± 0.09

Las características analíticas del método voltamperométrico basado en el calibrado inferior mencionado anteriormente son las siguientes:

- desviación estándar relativa del 5.3% para un nivel de concentración de 5.0×10^{-6} mol L⁻¹ (n=10)

- límite de determinación (de acuerdo con el criterio 10 x desviación estándar) de 1.3×10^{-6} mol L⁻¹

- límite de detección de 3.9×10^{-7} mol L⁻¹, definido como $3s_b/m$, donde m es la pendiente del calibrado y s_b es la desviación estándar (n=10) de las señales obtenidas a partir de una concentración 1.0×10^{-6} mol L⁻¹ de BHA, tomadas como estimador de la desviación estándar del blanco.

Figura 51.- Calibrados para la determinación de BHA mediante voltamperometría diferencial de impulsos en el medio micelar formado con 0.06% de Pluronic F-68 y regulador Britton-Robinson 0.1 M de pH 2.0; v=10 mV s⁻¹; ΔE=50 mV

III.2.1.2.- EMULSIONES ACEITE/AGUA

Como se puso de manifiesto en el apartado I.4.2, la determinación de BHA en las diferentes muestras en que puede estar presente, particularmente en alimentos, requiere su extracción previa en disolventes orgánicos, por lo que la posibilidad de llevar a cabo un estudio electroanalítico basado en su proceso de oxidación sobre un electrodo de carbono vitrificado en emulsiones del tipo aceite/agua resulta interesante con objeto de poder eliminar o simplificar alguna etapa del proceso analítico general y desarrollar métodos adecuados para su determinación en tales muestras.

El acetato de etilo ha sido utilizado como disolvente extractante del BHA en distintas muestras y, además, ha sido empleado con éxito en nuestro equipo de investigación para formar emulsiones aceite/agua y desarrollar diversos métodos electroanalíticos de determinación de compuestos orgánicos de interés (272,273). Por ello, se ha decidido formar dichas emulsiones con este disolvente, empleando Pluronic F-68 como agente emulsificante.

III.2.1.2.1.- Optimización de las variables experimentales de la emulsión

En este apartado se ha estudiado la influencia de la proporción del tensoactivo, del volumen de fase orgánica, así como del tiempo de emulsificación empleado, sobre la señal de oxidación del BHA, obtenida mediante voltamperometría diferencial de impulsos, para una concentración de 1.0×10^{-5} mol L⁻¹ y a un valor de pH de 2.0.

III.2.1.2.1.1.- Influencia de la proporción del tensoactivo

Se ha estudiado la influencia de la concentración de tensoactivo, variando la concentración de Pluronic F-68 en el intervalo de 0.02 a 0.20 % (w/v).

Al igual que ocurría en medio micelar, la variación de la concentración de agente emulsificante no produce diferencias significativas en la intensidad del pico de oxidación del BHA, por lo que se ha elegido el mismo porcentaje de tensoactivo, 0.06%, que en medio micelar para estudios posteriores.

III.2.1.2.1.2.- Influencia del volumen de fase orgánica

Con objeto de elegir el volumen óptimo de disolvente orgánico para la preparación de emulsiones aceite/agua de BHA en presencia de Pluronic F-68 como agente emulsificante, se han obtenido los correspondientes voltamperogramas en el intervalo de 0.5 a 4.0 mL de acetato de etilo.

Análogamente a lo obsrvado con la proporción de Pluronic y para 5 minutos de tiempo de emulsificación, no se observan diferencias significativas en la intensidad de pico ni en el potencial del pico de oxidación, en todo el intervalo estudiado. Los resultados obtenidos se muestran en la Tabla LXXV.

TABLA LXXV

Influencia del volumen de acetato de etilo sobre la intensidad y el potencial de pico del BHA en emulsiones del tipo aceite/agua

Acetato de etilo, mL	i _p , μΑ	E_{p}, V
0.5	0.295	0.566
1.0	0.280	0.559
1.5	0.266	0.554
2.0	0.270	0.556
2.5	0.288	0.553
3.0	0.308	0.546
3.5	0.292	0.551
4.0	0.288	0.556

Sin embargo, a partir de un volumen de 4.0 mL de acetato de etilo, es necesario aumentar el tiempo de agitación manual y ultrasónico, disminuyendo apreciablemente la estabilidad de la emulsión formada.

En consecuencia, se ha escogido un volumen de 2.0 mL de acetato de etilo para estudios posteriores, manteniéndose la proporción del tensoactivo en un 0.06% (w/v).

III.2.1.2.1.3.- Tiempo de emulsificación

Por último, se ha estudiado la influencia del tiempo de emulsificación sobre la señal de oxidación del BHA en el intervalo comprendido entre 3 y 10 minutos. De nuevo, no se observan variaciones significativas en la intensidad y el potencial de pico en todo el intervalo de tiempo de emulsificación estudiado, habiéndose elegido un valor de 5 minutos para estudios subsiguientes.

III.2.1.2.2.- Influencia del pH

El estudio de la influencia del pH sobre la señal de oxidación del BHA en el medio emulsionado formado con acetato de etilo y Pluronic F-68 se ha realizado mediante voltamperometría de barrido lineal y diferencial de impulsos como técnicas electroanalíticas.

III.2.1.2.2.1.- Voltamperometría de barrido lineal sobre electrodo estático de carbono vitrificado

La concentración de BHA utilizada en este estudio ha sido de 4.0×10^{-5} mol L⁻¹. Los resultados obtenidos se recogen en la Tabla LXXVI y están representados en la Figura 52. A modo de ejemplo, en la Figura 53 se muestran algunos de los voltamperogramas obtenidos trabajando a distintos valores de pH.

TABLA LXXVI

Influencia del pH mediante voltamperometría de barrido lineal sobre un electrodo estático de carbono vitrificado en emulsiones aceite/agua formadas con acetato de etilo y Pluronic F-68 0.06%: BHA, 4.0×10^{-5} mol L⁻¹; v = 50 mV s⁻¹

pH	E _p , V		i _p ,	μA
	1 ^{er} pico	2° pico	1 ^{er} pico	2° pico
1.5	0.646		1.25	-
2.0	0.592	-	1.07	-
3.0	0.560	-	0.91	-
4.0	0.480	0.642	0.50	0.12
5.0	0.432	0.623	0.57	0.13
6.0	0.368	0.600	0.67	0.13
7.0	0.318	0.568	0.81	0.14
8.0	0.240	0.552	0.87	0.25
9.0	0.204	0.550	0.91	0.17
10.0	0.133	0.542	1 .09	0.29
11.0	0.107	0.542	1.07	0.53

Como puede apreciarse, el BHA presenta un comportamiento similar al observado en medio micelar. Los voltamperogramas presentan dos picos de oxidación, estando el primero de ellos mejor definido. Nuevamente se produce un desplazamiento del potencial de pico hacia valores más positivos conforme disminuye el pH. En la representación del potencial correspondiente al primer pico de oxidación frente al pH se observa la existencia de un único tramo rectilíneo (r=0.998) de pendiente igual a -0.058 V, lo que pone de manifiesto que

en el proceso de oxidación del BHA en el medio emulsionado aceite/agua participan los protones, como ocurría en medio micelar.

El potencial correspondiente al segundo pico de oxidación del BHA no presenta variaciones significativas, como puede apreciarse de la Figura 52.

Por lo que respecta a la sensibilidad de la señal obtenida, al igual que sucedía en el medio micelar, a pH 1.5 - 2.0 se obtiene los mayores valores de la intensidad, disminuyendo su valor hasta pH 5.0, a partir del cual vuelve a aumentar ligeramente.

Figura 52.- Influencia del pH sobre E_p e i_p mediante voltamperometría de barrido lineal sobre electrodo estacionario de carbono vitrificado en emulsiones aceite/agua formadas por 2.0 mL de acetato de etilo y 0.06% de Pluronic F-68 y regulador Britton-Robinson 0.1M: (▲) y (△), E_p e i_p del primer pico; (●) y (o), E_p e i_p del segundo pico.

Figura 53.- Voltamperogramas de barrido lineal sobre un electrodo estacionario de carbono vitrificado en emulsiones aceite/agua formadas con 2.0 mL de acetato de etilo, 0.06% de Pluronic F-68 y regulador Britton-Robinson 0.1 M; a, pH 1.5; b, pH 2.0; c, pH 3.0; d, pH 4.0; e, pH 6.0; f, pH 8.0; g, pH 9.0; h, pH 10.0; v=50 mV s⁻¹

III.2.1.2.2.2.- Voltamperometría diferencial de impulsos sobre electrodo estático de carbono vitrificado

Asimismo, se ha llevado a cabo el estudio de la influencia del pH sobre la señal de oxidación del BHA mediante la técnica diferencial de impulsos. Se ha trabajado con una concentración de BHA de $1.0x10^{-5}$ mol L⁻¹ y las condiciones experimentales han sido: amplitud del impulso de 50 mV y velocidad de barrido de potencial de 10 mV s⁻¹.

Los resultados obtenidos se resumen en la Tabla LXXVII y se representan en la Figura 54.

De nuevo, se obtienen resultados similares a los ya comentados con las disoluciones micelares. Así, la representación de i_p frente al pH da lugar a una recta (r = 0.997) de pendiente -0.057 V, demostrando, una vez más, la participación de los protones en el proceso de oxidación del BHA.

Por otra parte, en la representación de i_p frente al pH se observa una disminución de la sensibilidad conforme aumenta el pH hasta un valor de 8 aumentando ligeramente de nuevo a pH superiores. Al igual que ocurría en las disoluciones micelares, la relación señal/fondo máxima se obtuvo a pH 2.0, por lo que se escogió este valor para llevar a cabo los estudios subsiguientes.

0.0

12.0

TABLA LXXVII

Influencia del pH mediante voltamperometría diferencial de impulsos sobre un electrodo estático de carbono vitrificado en emulsiones aceite/agua formadas con acetato de etilo y 0.06% de Pluronic F-68; BHA, 1.0×10^{-5} mol L⁻¹; v=10 mV s⁻¹; ΔE =50 mV

	pH	E _p	E_{p}, V $i_{p}, \mu A$		μA
		1 ^{er} pico	2° pico	1 ^{er} pico	2° pico
	1.5	0.601		0.220	-
	2.0	0.570	-	0.215	-
	3.0	0.530	-	0.181	-
	4.0	0.470	-	0.128	-
	5.0	0.420	0,554	0.118	0.029
	6.0	0.357	0.531	0.117	0.025
	7.0	0.313	0.505	0.087	0.023
	8.0	0.260	0.503	0.079	0.026
	9.0	0.198	0.515	0.102	0.057
	10.0	0.107	0.499	0.103	0.036
	11 .0	0.051	0.506	0.126	0.088
μA	0.40				
	0.30 -		•		- 0.6
	0.20 -			•	- 0. 4 ▲
	0.10 -		۸ ۵ 0 0		o 0.2

ĺρ,

0.00 -

0

2.0

4.0

6.0

pН

T

8.0

10.0

III.2.1.2.3.- Voltamperometría cíclica

Los voltamperogramas cíclicos correspondientes a una concentración 4.0×10^{-5} mol L⁻¹ de BHA en el medio emulsionado formado a pH 2.0 (Figura 55) son similares a los obtenidos en medio micelar. Así, en el primer ciclo se observa un único pico de oxidación a 0.610 V y dos picos en el de reducción a 0.145 V y 0.064 V.

Dada la similitud de los resultados obtenidos en los dos medios estudiados, cabe deducir que las conclusiones obtenidas anteriormente para las disoluciones micelares son también válidas para las emulsiones del tipo aceite/agua formadas con acetato de etilo y Pluronic F-68.

Figura 55.- Voltamperograma cíclico en medio emulsionado formado con acetato de etilo, Pluronic F-68 y regulador Britton-Robinson de pH 2.0; BHA, 4.0x10⁻⁵ mol L⁻¹; v=50 mV s⁻¹

III.2.1.2.4.- Análisis logarítmico de los voltamperogramas obtenidos mediante voltamperometría de barrido lineal sobre un electrodo de disco rotatorio de carbono vitrificado

Las condiciones experimentales utilizadas en este estudio han sido: concentración de BHA, $2.0x10^{-5}$ mol L⁻¹; pH, 2.0; velocidad de rotación del electrodo, 2000 rpm; velocidad de barrido de potencial, 50 mV s⁻¹.

En la Tabla LXXVIII se recogen los resultados obtenidos y se representan en la Figura 56. La representación de E frente a log $(i/(i_L-i))$ proporciona una recta (r=0.9995) de ecuación:

$$E = 0.585 + 0.0533 \log (i/(i_L-i))$$

cuya pendiente, 0.0533 V, es considerablemente mayor del valor 0.0295 V teórico para un sistema reversible, si se supone que el número de electrones involucrados en la oxidación del BHA es de dos, es decir, el mismo que se ha determinado en medio micelar. Esta diferencia indica, de nuevo, que el proceso de oxidación del BHA en medio emulsionado presenta un comportamiento irreversible. A partir de dicha pendiente se ha calculado el valor del parámetro $(1-\alpha)n_a$, obteniéndose 1.09. Este parámetro ha sido también calculado a partir de la representación de Tafel (Figura 57), con un valor de 0.99.

TABLA LXXVIII

Análisis logarítmico del BHA 2.0×10^{-5} mol L⁻¹ a pH 2.0 en medio emulsionado formado con acetato de etilo y Pluronic F-68: ω 2000 rpm; v=50 mV s⁻¹; i_L = 1.95 μ A

E, V	i, μA	log i/i _L -i	E, V	i, μA	log i/i _L -i
0.530	0.175	-1.006	0.562	0.519	-0.440
0.532	0.186	-0.977	0.564	0.553	-0.402
0.534	0.199	-0.944	0.566	0.590	-0.363
0.536	0.212	-0.914	0.568	0.628	-0.323
0.538	0.227	-0.880	0.570	0.668	-0.283
0.540	0.242	-0.849	0.572	0.708	-0.244
0.542	0.259	-0.815	0.574	0.750	-0.204
0.544	0.278	-0.779	0.576	0.792	-0.165
0.546	0.298	-0.744	0.578	0.834	-0.126
0.548	0.319	-0.709	0.580	0.876	-0.088
0.550	0.342	-0.672	0.582	0.918	-0.051
0.552	0.367	-0.635	0.584	0.959	-0.014
0.554	0.394	-0.596	0.586	0.999	0.021
0.556	0.422	-0.559	0.588	1.037	0.055
0.558	0.453	-0.519	0.590	1.075	0.089
0.560	0.485	-0.480			

Figura 56.- Análisis logarítmico del voltamperograma de oxidación del BHA 2.0x10⁻⁵ mol L⁻¹ en medio emulsionado formado con acetato de etilo, Pluronic F-68 y regulador Britton-Robinson de pH 2.0, mediante la técnica de barrido lineal sobre electrodo rotatorio de carbono vitrificado.

Figura 57.- Dependencia del log i frente al potencial del BHA 2.0x10⁻⁵ mol L⁻¹ en medio emulsionado formado con acetato de etilo, Pluronic F-68 y regulador Britton-Robinson de pH 2.0.

Como puede apreciarse, los resultados obtenidos por ambos métodos concuerdan entre sí dentro del límite del error experimental, siendo además consistentes con los obtenidos en medio micelar, demostrándose así que pueden extraerse ahora conclusiones análogas a las comentadas en las disoluciones micelares, con respecto al comportamiento voltamperométrico en oxidación del BHA en las emulsiones aceite/agua formadas.

230

III.2.1.2.5.- Características analíticas del método desarrollado mediante voltamperometría diferencial de impulsos

Se han establecido las características analíticas del método de determinación de BHA en el medio emulsionado en cuestión basado en su oxidación voltamperométrica sobre un electrodo estático de carbono vitrificado mediante la técnica diferencial de impulsos. Así, se han obtenido los intervalos de linealidad de los correspondientes calibrados, se ha calculado la precisión, en términos de desviación estándar relativa, y la sensibilidad, expresada en función de las pendientes de los calibrados, así como los límites de detección y determinación.

En la Tabla LXXIX se recogen los resultados obtenidos, representándose los calibrados en la Figura 58. Los voltamperogramas se registraron a una velocidad de barrido de 10 mV s⁻¹ y con una amplitud del impulso de 50 mV.

Como puede observarse, el calibrado obtenido en el intervalo 1.0×10^{-5} - 10.0×10^{-5} mol L⁻¹ se desvía de la linealidad para concentraciones superiores a 5.0×10^{-5} mol L⁻¹, lo que se atribuye, al igual que sucedía en medio micelar, a la adsorción del analito sobre la superficie del electrodo.

TABLA LXXIX

Características analíticas de la determinación de BHA mediante voltamperometría diferencial de impulsos en el medio emulsionado formado con acetato de etilo y Pluronic F-68

Intervalo lineal, mol L ⁻¹	1.0x10 ⁻⁶ -10.0x10 ⁻⁶	1.0x10 ⁻⁵ - 5.0x10 ⁻⁵
Coeficiente de correlación, r	0.999	0.998
Pendiente, $\mu A L mol^{-1}$	$(3.7 \pm 0.1) \times 10^4$	$(3.9 \pm 0.4) \times 10^4$
Ordenada en el origen, μA	-0.008 ± 0.007	-0.009 ± 0.1
Límite de detección, mol L^{1}	^{a)} 2.5x	10-7
Límite de determinación, mol L-1	^{a)} 8.5x	10-7
RSD, % (n=10)	^{b)} 4.	5

Niveles de concentración: ^{a)} $1.0x10^{-6}$ mol L⁻¹ ^{b)} $5.0x10^{-6}$ mol L⁻¹

Figura 58.- Calibrados para la determinación de BHA mediante voltamperometría diferencial de impulsos en el medio emulsionado formado con acetato de etilo, Pluronic F-68 y regulador Britton-Robinson de pH 2.0; V = 10 mV s⁻¹; ΔE = 50 mV

III.2.1.2.6.-Estudio de interferencias mediante voltamperometría diferencial de impulsos

En este apartado se ha procedido a estudiar, mediante voltamperometría diferencial de impulsos sobre electrodo estático de carbono vitrificado, la influencia que sobre los valores de i_p y E_p del BHA, ejerce la presencia de diferentes sustancias presentes comúnmente en mezclas de antioxidantes comerciales (*tert*-butilhidroxitolueno, BHT; *tert*-butilhidroquinona, TBHQ; ácido cítrico; ácido ascórbico; galato de propilo, PG y propilenglicol).

Este estudio se ha realizado fijando la concentración de BHA en $5.0x10^{-6}$ mol L⁻¹ y variando la del compuesto considerado como interferente. En primer lugar, se obtuvieron los voltamperogramas correspondientes a cada uno de estos compuestos en las condiciones de trabajo empleadas para la determinación de BHA en el medio emulsionado. Así, los voltamperogramas de disoluciones que contenían ácido cítrico o propilenglicol no presentan pico de oxidación alguno en todo el intervalo de potencial barrido (0.00 - 1.00 V). Sin embargo, el BHT, el TBHQ, el ácido ascórbico y el PG muestran picos de oxidación bien definidos a 0.46, 0.33, 0.49 y 0.43 V respectivamente (Figura 59). La proximidad entre los potenciales de pico para el BHT y el ácido ascórbico con el correspondiente al BHA (0.53 V), da lugar a que sólo se observe un único pico global de oxidación cuando se registran los voltamperogramas correspondientes a mezclas 1:1 de BHT y BHA y de ácido ascórbico y BHA.

Por el contrario, se pueden observar dos picos en los voltamperogramas correspondientes a mezclas de BHA con PG o con TBHQ (Figura 60).

A continuación se procedió a evaluar el grado de interferencia sobre la determinación del BHA de cada uno de los otros compuestos ensayados.

Figura 59.- Voltamperogramas en diferencial de impulsos en emulsiones formadas con acetato de etilo y Pluronic F-68 en disolución reguladora Britton-Robinson 0.1 M de pH 2.0.
a: 1, TBHQ 5.0x10⁻⁶ mol L⁻¹ y 2, galato de propilo 5.0x10⁻⁵ mol L⁻¹; b: 1, Acido ascórbico 5.0x10⁻⁵ mol L⁻¹ y 2, BHT 5.0x10⁻⁶ mol L⁻¹. (----) BHA 5.0x10⁻⁶ mol L⁻¹

Figura 60.- Voltamperogramas en diferencial de impulsos en emulsiones formadas con acetato de etilo y Pluronic F-68 en disolución reguladora Britton-Robinson 0.1 M de pH 2.0.
1, TBHQ 5.0x10⁻⁵ mol L⁻¹ + BHA 5.0x10⁻⁶ mol L⁻¹
2, Acido ascórbico 5.0x10⁻⁵ mol L⁻¹ + BHA 5.0x10⁻⁶ mol L⁻¹
3, PG 5.0x10⁻⁶ mol L⁻¹ + BHA 5.0x10⁻⁶ mol L⁻¹

De este modo, y como era de esperar, el ácido cítrico y el propilenglicol no interfieren incluso para una relación BHA:interferente de 1:200.

Por otro lado, la presencia de TBHQ afecta a la señal del BHA para una relación TBHQ:BHA de 10:1 o mayor; por ejemplo, se obtuvo un error relativo del 9.7% para una relación TBHQ:BHA de 20:1. Esto es debido a que elevadas concentraciones de TBHQ producen un pico de oxidación muy intenso cuya parte descendente solapa con el pico del BHA provocando un aumento de la señal debida a este antioxidante.

235

En el caso del galato de propilo, éste presenta un pico de oxidación muy intenso en el medio emulsionado empleado y, por consiguiente, se produce el mismo efeto comentado para el TBHQ, pero que ahora se pone de manifiesto para una relación PG:BHA más pequeña que la indicada en el párrafo anterior. Así, el PG afecta a la señal del BHA para relaciones PG:BHA superiores a 3:1.

Por otra parte, el BHT causa un gran ensuciamiento de la superficie del electrodo de carbono vitrificado, probablemente debido a procesos de adsorción sobre dicha superficie, lo que origina que se produzcan errores relativos superiores al 5% incluso para una relación BHT:BHA de 0.1:1.

Finalmente, para una mezcla de ácido ascórbico y BHA en la proporción 5:1 aparece un hombro correspondiente al ácido ascórbico que afecta a la forma del pico del BHA, de manera que si se mide la altura del pico de oxidación registrado se obtiene un error relativo del 10%.

III.2.1.2.7.- Determinación de BHA en goma de mascar mediante voltamperometría diferencial de impulsos

En este capítulo se va a proceder a la aplicación del método voltamperométrico desarrollado mediante diferencial de impulsos en las emulsiones aceite/agua formadas a la determinación de BHA en una muestra comercial de goma de mascar que contiene una cantidad desconocida de este antioxidante.

El procedimiento experimental utilizado se ha descrito en el apartado II.3.4 de esta Memoria. Los voltamperogramas obtenidos, tras aplicar dicho procedimiento experimental, presentan un único pico de oxidación en el intervalo de potenciales barrido (Figura 61a) que debe corresponder al BHA ya que aparece al mismo potencial que cuando se trabaja con patrones. No se

Figura 61.- Voltamperogramas en diferencial de impulsos obtenidos para la determinación de BHA en goma de mascar. Medio emulsionado formado con acetato de etilo, Pluronic F-68 y regulador Britton-Robinson 0.1 M de pH 2.0 a: 1, disolución de la muestra; 2-6, sucesivas adiciones de 27 μ g de BHA y b: 1, disolución de la muestra + 27 μ g de BHA; 2-5, adiciones sucesivas de 27 μ g de BHA

observaron interferencias por parte de otras sustancias presentes en la muestra, por lo que se llevó a cabo el análisis directo de varias alícuotas del extracto en acetato de etilo, aplicando el método de adiciones estándar con el fin de minimizar el efecto matriz. En la Figura 61a se muestran, asimismo, los voltamperogramas obtenidos tras las sucesivas adiciones realizadas de una disolución patrón de BHA en acetato de etilo.

En la Tabla LXXX se resumen los resultados obtenidos para cinco determinaciones de BHA. El intervalo de confianza reseñado en dicha Tabla se ha calculado para un nivel de significación de 0.05. El valor medio encontrado, 0.20 ± 0.02 mg, concuerda bien con la cantidad de antioxidante que puede esperarse en este tipo de muestras (275).

TABLA LXXX

Determinación de BHA en muestras de goma de mascar comercial mediante voltamperometría diferencial de impulsos en medio emulsionado: disolución reguladora Britton-Robinson 0.1 M, pH 2.0; Pluronic F-68, 0.06%; $\Delta E = 50$ mV; t_{95%} = 2.776)

MUESTRA	BHA encontrado, mg g ⁻¹ de muestra
1	0.19
2	0.22
3	0.18
4	0.22
5	0.20
Media	0.20 ± 0.02

Con el fin de evaluar la precisión del método propuesto para determinar BHA en goma de mascar, se llevaron a cabo estudios de recuperación después de añadir una cantidad conocida de BHA a la muestra y seguir el procedimiento descrito en el apartado II.3.4. Los voltamperogramas obtenidos, en este caso se muestran en la Figura 61b.

Como puede apreciarse en la Tabla LXXXI las recuperaciones obtenidas son, en todos los casos superiores al 95%, con una recuperación media del 99%. La desviación estándar relativa fue del 2.6% y el intervalo de confianza de $\pm 3\%$ para un nivel de significación de 0.05.

TABLA LXXXI

Estudios de recuperación de BHA en muestras de goma de mascar mediante voltamperometría diferencial de impulsos en medio emulsionado: disolución reguladora Britton-Robinson 0.1 M, pH 2.0; Pluronic F-68, 0.06%; $\Delta E = 50$ mV; $t_{95\%} = 2.776$)

Muestra	^a BHA, mg g ^{.1}			Recuperación, %
	Añadido	Total		
		Teórico	Experimental	-
1	0.135	0.335	0.342	102
2	0.135	0.335	0.340	99
3	0,135	0.335	0.340	101
4	0.135	0.335	0.324	97
5	0.135	0.335	0.322	96

^a Concentración en la muestra de goma de mascar

En conclusión, se ha demostrado que la determinación voltamperométrica de BHA en un medio emulsionado formado con acetato de etilo y Pluronic F-68

239

es adecuada para la cuantificación rápida de este antioxidante en muestras de alimentos, teniendo en cuenta que la emulsificación directa del extracto del analito de la muestra permite llevar a cabo dicha determinación sin necesidad de una etapa previa de evaporación del disolvente orgánico utilizado como extractante. Este hecho implica obviamente una importante mejora en la sencillez y rapidez del método desarrollado con respecto a otros métodos, evitando también posibles pérdidas de analito en dicha etapa de evaporación lo que se traduce en mejores recuperaciones.

III.2.2.- ESTUDIO ELECTROANALÍTICO DE LA tert-BUTIL HIDROQUINONA (TBHQ)

El último capítulo de esta Memoria va a estar dedicado a un estudio electroanalítico del antioxidante fenólico TBHQ en distintos medios organizados, empleando para ello diversas técnicas polarográficas y voltamperométricas, aprovechando la señal de oxidación obtenida para este antioxidante sobre un electrodo de mercurio. Al igual que en los casos anteriores el uso de medios micelares y de emulsiones aceite/agua permitirá llevar a cabo estudios en medios predominantemente acuosos y, además, la emulsificación directa de alícuotas de determinadas muestras va a permitir en algunos casos la determinación de TBHQ sin necesidad de una etapa previa de separación con disolventes orgánicos.

III.2.2.1.- DETERMINACIÓN POLAROGRÁFICA DE TBHQ EN DISOLUCIONES MICELARES

III.2.2.1.1.- Elección del tensoactivo

El estudio polarográfico en medio micelar se ha iniciado con la elección del tensoactivo que resulte más adecuado desde el punto de vista analítico (sensibilidad y selectividad). Para ello se realizaron ensayos con diferentes tensoactivos catiónicos (bromuro de tetrapropilamonio e Hyamina 2389), aniónico (dodecilsulfato sódico) y no iónicos (Triton X-405 y Pluronic F-68), todos ellos solubles en agua, empleando tres disoluciones reguladoras diferentes: ácido acético-acetato sódico de pH 4.8, fosfato diácido-fosfato monoácido de pH 7.2 y cloruro amónico-amoniaco de pH 9.2. Los resultados obtenidos mediante polarografía diferencial de impulsos se resumen en la Tabla LXXXVII.

TABLA LXXXVII

Polarografía diferencial de impulsos en disoluciones micelares empleando distintos tensoactivos. TBHQ, 4.0×10^{-5} M; tensoactivo, 0.2%; electrólito fondo: HAcO⁻/AcO⁻, pH 4.8; H₂PO₄⁻/HPO₄²⁻, pH 7.2; NH₄⁺/NH₃, pH 9.2

Tensoactivo	pН	i, <i>µ</i> A	E_{p}, V	Observaciones
Laurilsulfato sódico	4.8	0.752	+0.112	Un pico bien definido. Aparece un pico del tensoactivo próximo al del TBHO
	7.2	0.228	+0.016	Pico poco sensible
	9.2	0.328	-0.184	Pico bien definido
Triton X-405	4.8	0.400	+0.064	Pico bien definido. Aparec un pico ancho del tensoactivo cercano al del TBHO
	7.2	0.332	-0.072	El pico del tensoactivo es más sensible que el obtenido a pH 4.8
	9.2	0.296	-0.176	Un pico bien definido
Pluronic F-68	4.8	0.552	+0.068	Un pico bien definido. Un pico del
	7.2	0.276	-0.072	El pico del tensoactivo aparece a
	9.2	0.344	-0.176	Un pico muy bien definido
Bromuro de tetra- propilamonio	4.8	-	-0.080	Aparece un hombro al mismo potencial que
	7.2	-	-	No aparece pico del TBHQ
	9.2	0.264	-0.172	Pico próximo a la barrera de oxidación
Hyamina 2389	4.8	-	-	Sólo aparece un pequeño hombro
	7.2	0.272	-0.080	Pico ancho del TBHQ. Hombro del
	9.2	0.284	-0.168	Pico ancho que engloba el pico del tensoactivo

Teniendo en cuenta las características analíticas, tales como sensibilidad, relación señal/ruido y reproducibilidad de las señales de oxidación obtenidas, se ha elegido el Pluronic F-68 como el más adecuado para estudios subsiguientes.

III.2.2.1.2.- Influencia del pH

La influencia del pH sobre los valores de $E_{1/2}$ y de la corriente límite i_L , y, sobre E_p e i_p se ha examinado para una concentración de TBHQ de 4.0×10^{-5} mol L⁻¹ empleando las técnicas polarográficas de de muestreo de corriente y diferencial de impulsos respectivamente. Como electrólito soporte se ha utilizado disolución reguladora Britton-Robinson 0.1 M en el margen de pH 2.0-11.0. La concentración de Pluronic F-68 empleada ha sido, en ambos casos, del 0.04%.

III.2.2.1.2.1.- Polarografía de de muestreo de corriente

Los resultados obtenidos mediante esta técnica se recogen en la Tabla LXXXVIII y se representan en la Figura 62, donde aparecen además los valores correspondientes a las disoluciones de fondo, es decir, a aquellas que contienen el regulador y Pluronic F-68 al 0.04%.

Como puede observarse, los polarogramas registrados a valores de pH menores que 7.0 muestran una onda global que incluye la onda correspondiente al antioxidante y la del tensoactivo. A pH superiores a 7.0, se obtienen dos ondas separadas, siendo la que aparece a potenciales más negativos la que corresponde al antioxidante. Es, por tanto, la región de pH básicos la que ofrece mayor interés desde el punto de vista analítico.

La representación del potencial de onda media del TBHQ frente al pH da lugar a una línea recta de pendiente -0.055 V. Por otra parte, los valores de $E_{1/2}$ de la onda del tensoactivo permanecen prácticamente constantes en todo el margen de potencial estudiado.

Por lo que respecta a la intensidad límite, se observa un valor prácticamente constante entre pH 7.0 y 9.0 disminuyendo a pH superiores.

TABLA LXXXVIII

Influencia del pH mediante polarografía de de muestreo de corriente sobre i_L y $E_{1/2}$ del TBHQ en el medio micelar formado por Pluronic F-68 al 0.04%. Concentración, 4.0x10⁻⁵ mol L⁻¹; v = 10 mV s⁻¹; t_g=0.4 s

TB	FONDO	
E _{1/2} , V	i _L , μΑ	E _{1/2} , V
		+0.080
-	-	+0.072
-	.	+0.080
-	-	+0.056
-	-	+0.048
-0.040	0.250	+0.040
-0. 104	0.260	+0.040
-0.136	0.255	+0.040
-0.192	0.180	-
-0.2 40	0.074	-
	TB E _{1/2} , V - - - - - - - - - - - - - - - - - - -	TBHQ E _{1/2} , V i _L , μA - - - - - - - - - - - - -

Figura 62.- Influencia del pH sobre i_L, E_{1/2}, i_p y E_p: y I, E_{1/2}e i_L en polarografía dc de muestreo de corriente; o y o, E_p e i_p mediante DPP; TBHQ, 4.0x10⁻⁵ mol L⁻¹; Pluronic F-68, 0.04%; regulador Britton-Robinson 0.1 M; ⊥ y o, E_{1/2} y E_p correspondiente a disoluciones que contienen un 0.06% de Pluronic F-68

III.2.2.1.2.2.- Polarografía diferencial de impulsos

Los resultados obtenidos mediante esta técnica están recogidos en la Tabla LXXXIX. A modo de ejemplo, en la Figura 63 se muestran algunos de los polarogramas obtenidos, mientras que en la Figura 62 están representados los valores de E_p e i_p en función del pH.

TABLA LXXXIX

Influencia del pH mediante polarografía diferencial de impulsos sobre $i_p y E_p$ del TBHQ en el medio micelar formado por Pluronic F-68 al 0.04%. Concentración, 4.0x10⁻⁵ mol L⁻¹; v=10 mV s⁻¹; $\Delta E=50$ mV; t_g 0.4 s

	TBI	FONDO	
pН	E _p , V	i _p , μΑ	E _p , V
2.1	+0.230	-	+0.048
3.2	+0.155	-	+0.040
4.1	+0.100	-	+0.032
5.1	+0.032	-	+0.032
6.1	+0.000	-	+0.032
7.0	-0.072	0.276	+0.032
7.5	-0.096	0.328	-
8.1	-0.120	0.355	+0.024
8.3	-0.136	0.360	-
8.5	-0.144	0.364	-
8.8	-0.168	0.364	-
9.0	-0.176	0.364	+0.020
9.3	-0,192	0.344	+0.040
9.5	-0.200	0.328	-
9.9	-0.216	0.280	-
10.9	-0.268	0.132	

Figura 63.- Polarogramas en diferencial de impulsos en el medio micelar formado con 0.04% de Pluronic F-68 y regulador Britton-Robinson 0.1 M a diferentes valores de pH; v=10 mV s⁻¹; $\Delta E = 50$ mV; t_g=0.4 s. Como puede observarse, los polarogramas registrados a pH inferior a 4.0 presentan dos picos bien definidos, siendo el del TBHQ el que aparece a potenciales más positivos, muy próximo a la barrera de oxidación; a pH comprendidos entre 4.0 y 6.0 se observan dos picos solapados, mientras que a pH superiores a 7.0 se obtienen de nuevo dos picos bien diferenciados, siendo ahora el que aparece a potenciales menos positivos el del TBHQ.

La tendencia observada en la representación de E_p del TBHQ frente al pH demuestra, igual que en la técnica anterior, que el pico se va desplazando hacia potenciales más negativos conforme aumenta el pH. La dependencia existente entre ambos es lineal (r=0.998), obteniéndose una recta de pendiente -0.056 V, valor muy parecido al obtenido mediante polarografía dc de muestreo de corriente. Por otra parte, los potenciales de pico del tensoactivo no varían significativamente con el pH, al igual que sucedía empleando la técnica polarografía de corriente continua.

Por lo que respecta a la intensidad de pico, ésta presenta un comportamiento similar al obtenido mediante polarografía de de muestreo de corriente, siendo la intensidad de pico máxima para valores de pH comprendidos entre 8.0 y 9.0. Teniendo en cuenta la sensibilidad y la mayor separación entre el pico del analito y el del tensoactivo (que a pH superiores a 10.0 constituye la barrera de oxidación) se ha elegido un valor de pH de 9.0 como el más adecuado para propósitos analíticos.

III.2.2.1.3.- Influencia de la concentración de tensoactivo sobre i_p y E_p mediante polarografía diferencial de impulsos

Para llevar a cabo dicho estudio se han registrado los polarogramas correspondientes a disoluciones 4.0×10^{-5} mol L⁻¹ de TBHQ empleando concentraciones crecientes de Pluronic F-68 en el intervalo desde 0.004 hasta 0.20%. En la Tabla XC se recogen los resultados obtenidos, representándose en la Figura 64 la intensidad de pico frente al porcentaje de tensoactivo.

De dicha representación puede deducirse que la corriente de pico no depende de la concentración de tensoactivo presente en la disolución para valores de la misma superiores al 0.02%. Por otra parte, el potencial de pico permanece prácticamente constante para todas las concentraciones de Pluronic ensayadas.

TABLA XC

Efecto de la concentración de Pluronic F-68 sobre i_p y E_p mediante polarografía diferencial de impulsos en disoluciones micelares. TBHQ, $4.0x10^{-5}$ mol L⁻¹; v = 10 mV s⁻¹; $\Delta E = 50$ mV; $t_g = 0.4$ s

Pluronic F-68, %	i _p , μA	
0.004	0.27	
0.008	0.31	
0.016	0.32	
0.020	0.32	
0.024	0.33	
0.032	0.33	
0.04	0.33	
0.06	0.33	
0.08	0.32	
0.10	0.32	
0.20	0.32	

A la vista de los resultados, se ha elegido una concentración de Pluronic F-68 del 0.04% para estudios subsiguientes.

En las condiciones experimentales escogidas, es decir, en una disolución micelar formada con Pluronic F-68 al 0.04% y a pH 9.0, se comprobó que la señal polarográfica obtenida era estable, observándose tan solo una disminución en la intensidad de pico de aproximadamente un 5% tras 40 minutos de espera.

Figura 64.- Efecto de la concentración de Pluronic F-68 sobre i_p mediante polarografía diferencial de impulsos; TBHQ, 4.0x10⁻⁵ mol L⁻¹; regulador Britton-Robinson 0.1 M de pH 9.0

III.2.2.1.4.- Características del proceso electródico

III.2.2.1.4.1.- Determinación de la naturaleza de la corriente límite del proceso de oxidación

Con el propósito de dilucidar la naturaleza del proceso que controla la corriente límite de oxidación del TBHQ, se ha estudiado, mediante polarografía de de muestreo de corriente, la influencia sobre la intensidad límite de la altura corregida del depósito de mercurio.

El criterio utilizado para ello ha sido calcular el valor de la pendiente que se obtiene al representar log i_L frente a log h_{corr} . Si la corriente límite está controlada por difusión, dicha pendiente debe tener un valor próximo a 0.67.

Los resultados obtenidos se recogen en la Tabla XCI. La representación de dichos datos da lugar a una recta (r=0.997) de pendiente 0.71, lo que sugiere que la corriente límite está controlada por difusión.

TABLA XCI

Influencia de la altura corregida del depósito de mercurio sobre la corriente límite en polarografía de de muestreo de corriente en disolución micelar. TBHQ, 1.0×10^{-4} mol L⁻¹; Pluronic F-68, 0.04%; Britton-Robinson 0.1 M, pH 9.0; v=10 mV s⁻¹; t_g=0.4 s

_	h, cm	h _{corr} , cm	log h _{corr}	i _L , nA	log i _{r.}	
	40.5	38.9	1.590	315	2.498	_
	45.5	43.9	1.642	342	2.534	
	50.5	48.9	1.689	375	2.574	
	55.5	53.9	1.731	399	2.601	
	60.5	58.9	1.77 0	429	2.632	
	65.5	63,9	1.806	456	2.659	
	70.5	68.9	1.838	480	2.681	
	75.5	73.9	1.869	489	2.689	

III.2.2.1.4.2.- Análisis logarítmico de los polarogramas obtenidos mediante polarografía de de muestreo de corriente

Como en ocasiones anteriores, se ha obtenido un polarograma del TBHQ, registrado especialmente con el fin de que fuera posible medir exactamente la intensidad en la porción ascendente de la onda y en el pie de la misma, obteniéndose, así, los datos necesarios para realizar el análisis logarítmico de dicho polarograma.

Para realizar estas experiencias se prepararon disoluciones de TBHQ $1.0x10^{-4}$ mol L⁻¹ que contenían el 0.04% de Pluronic F-68 y regulador Britton-Robinson 0.1 M a pH 9.0, empleando un tiempo de goteo de 0.4 s y una velocidad de barrido de 10 mV s⁻¹.

En la Tabla XCII se han recogido los resultados obtenidos en la medida del polarograma citado anteriormente, habiéndose representado en la Figura 65 los valores del potencial en función del $\log(i/(i_L-i))$.

Según puede observarse en dicha Figura, el potencial depende linealmente de log($i/(i_L-i)$) (r=0.9996), siendo la pendiente de la recta obtenida igual a 0.030 V. Este valor está de acuerdo con el predicho teóricamente para un proceso reversible a 25°C, para un intercambio de dos electrones.

TABLA XCII

Análisis logarítmico del polarograma del TBHQ a pH 9.0 mediante polarografía de de muestreo de corriente en disoluciones micelares. Concentración de TBHQ, $1.0x10^{-4}$ mol L⁻¹; Pluronic F-68, 0.04%; Britton-Robinson 0.1 M a pH 9.0; v=10 mV s⁻¹; t_g=0.4 s; i_L = 0.456 μ A

E, V	i, μA	log (i/i _L -i)	E, V	i, μA	log (i/i _L -i)
-0.164	0.081	-0.666	-0.144	0.228	0.000
-0.162	0.090	-0.609	-0.142	0.243	0.057
-0.160	0.102	-0.541	-0.140	0.258	0.145
-0.158	0.114	-0.478	-0.138	0.276	0.185
-0.156	0.126	-0.418	-0.136	0.291	0.246
-0.154	0.138	-0.362	-0.134	0.306	0.310
-0.152	0.153	-0.297	-0.132	0.324	0.390
-0.150	0.171	-0.222	-0.130	0.336	0.447
-0.148	0.192	-0.138	-0.128	0.348	0.508
-0.146	0.207	-0.080			

Figura 65.- Análisis logarítmico del TBHQ en disolución micelar formada con 0.04% de Pluronic F-68 y regulador Britton-Robinson de pH 9.0. TBHQ, 4.0x10⁻⁵ mol L⁻¹; v=10 mV s⁻¹; t_g=0.4 s

III.2.2.1.4.3.- Criterio E_{3/4}-E_{1/4}

La aplicación de este criterio en la disolución micelar para el TBHQ proporciona una diferencia $E_{3/4}$ - $E_{1/4}$ de 0.029 V, valor muy próximo al de 0.028 V predicho teóricamente para un proceso de oxidación reversible que involucre dos electrones.

III.2.2.1.4.4.- Voltamperometría cíclica

En la Figura 66 se muestra el voltamperograma cíclico obtenido con un electrodo de gota colgante de mercurio, para una concentración 1.0×10^{-4} mol L⁻¹ de TBHQ, en el medio micelar empleado registrado a una velocidad de barrido de 20 mV s⁻¹.

Como puede observarse en dicha figura aparece un pico de oxidación y uno de reducción bien definidos, con una diferencia entre los potenciales de 30 mV. Por otra parte, la relación $i_{p,a}/i_{p,c}$ es de 1.15. Todos estos datos, así como el análisis logarítmico de los polarogramas y la aplicación del criterio $E_{3/4} - E_{1/4}$, sugieren que el proceso de oxidación del TBHQ sobre el electrodo de mercurio es un proceso electródico reversible que implica un intercambio de dos electrones.

Figura 66.- Voltamperograma cíclico sobre un electrodo de gota colgante de mercurio en disolución micelar formada por 0.06% de Pluronic F-68 y regulador Britton-Robinson 0.1 M de pH 9.0. TBHQ, 1.0x10⁻⁴ mol L⁻¹; v=20 mV s⁻¹

III.2.2.1.4.5.- Culombimetría a potencial controlado

El número de electrones propuesto fue confirmado mediante culombimetría a potencial controlado utilizando un cátodo de piscina de mercurio y aplicando un potencial situado en la zona de la corriente límite obtenida mediante polarografía de de muestreo de corriente (-0.054 V). La disolución de trabajo empleada fue 50 mL de TBHQ 1.0x10⁻⁴ mol L⁻¹ a pH 9.0. La carga correspondiente a la disolución reguladora Britton-Robinson empleada como electrólito fondo se restó de la correspondiente a la disolución de la correspondiente a la disolución fue de electricidad puesta en juego en la electrólisis fue de 0.96 culombios, por lo que, aplicando la ley de Faraday se obtuvo un número

de electrones implicados en el proceso de oxidación electroquímica de 1.99. Este dato concuerda asimismo con el encontrado en la bibliografía para la oxidación del TBHQ en otros medios (276).

Por otra parte, una vez conocido el número de electrones implicados en este proceso, puede calcularse el número de protones involucrados en el mismo, a partir del valor de la pendiente de la representación del potencial de onda media con el pH, -0.055 V (apartado III.2.2.1.2.1), dado que $dE_{1/2}/d(pH) = (-0.05915/n)p$, donde p es el número de protones. Obviamente este valor es también de 2, por lo que el proceso de oxidación puede esquematizarse como

TBHQ
$$\leftarrow$$
 TBQ + 2H⁺ + 2e⁻

donde TBQ es la quinona correspondiente

III.2.2.1.4.6.- Características analíticas del método desarrollado mediante polarografía diferencial de impulsos

El TBHQ puede determinarse mediante polarografía diferencial de impulsos utilizando una amplitud del impulso aplicado de 50 mV en los intervalos de concentración que aparecen recogidos en la Tabla XCIII. En la Figura 67 están representados los calibrados correspondientes, observándose linealidad en todo el intervalo estudiado. En dicha Tabla se indican, además, las características analíticas del método desarrollado en la disolución micelar formada con Pluronic F-68.

Los valores obtenidos demuestran la validez de dicho método, con una desviación estándar relativa del orden del 3%, lo que pone de manifiesto la considerable precisión del mismo.

TABLA XCIII

Características analíticas de la determinación de TBHQ en medio micelar formado con Pluronic F-68 al 0.04% mediante polarografía diferencial de impulsos, $\Delta E = 50 \text{ mV}$; v = 10 mV s⁻¹

Intervalo lineal, mol L ⁻¹	1.0x10 ⁻⁶ -1.0x10 ⁻⁵	$1.0 \times 10^{-5} \sim 1.0 \times 10^{-4}$
Coeficiente de correlación, r	0.9994	0.9999
Pendiente, $\mu A L mol^{-1}$	$(7.2 \pm 0.2) \times 10^3$	$(7.5 \pm 0.1) \times 10^3$
Ordenada en el origen, nA	- 0.6 ± 1	-0.7 ± 5
Límite de detección, mol L-1	^{в)} 2.();	×10 ⁻⁷
Límite de determinación, mol $L^{\cdot 1}$	^{a)} 6.77	×10 ⁻⁷
RSD, % (n=10)	^{b)} 3	.1

Niveles de concentración: ^{a)} $1.0x10^{-6}$ mol L⁻¹ ^{b)} $5.0x10^{-6}$ mol L⁻¹

Figura 67.- Calibrados para la determinación de TBHQ medinte DPP en medio micelar formado con Pluronic F-68 y regulador Britton-Robinson 0.1 M de pH 9.0; v=10 mV s⁻¹; ΔE=50 mV

III.2.2.2.- EMULSIONES ACEITE/AGUA

Como ya se ha comentado repetidamente la aplicación de los métodos desarrollados para el análisis de antioxidantes en muestras de alimentos implica generalmente algunas etapas previas. Así, por ejemplo, el método de la AOAC para la determinación de antioxidantes en aceites y grasas (271) recomienda la dilución de la muestra en n-hexano y una posterior extracción a partir de esta disolución con acetonitrilo.

Como también se ha establecido con anterioridad, el uso de emulsiones aceite/agua como medios de trabajo puede simplificar considerablemente estos tratamientos de la muestra, permitiendo asimismo llevar a cabo los estudios electroanalíticos en un medio predominantemente acuoso. Es por ello por lo que se han puesto a punto métodos de determinación de TBHQ en emulsiones aceite/agua, con el objetivo de aplicarlos posteriormente a la determinación de este antioxidante en diversos tipos de muestras de alimentos (distintos aceites y palomitas de maíz), aprovechando la enorme ventaja de poder llevar a cabo la determinación del analito por emulsificación directa del extracto de la muestra.

Así, por una parte, se pensó en utilizar el n-hexano como disolvente orgánico apropiado para formar dichas emulsiones, dado que, como ya se ha dicho, es el disolvente recomendado por la AOAC para la preparación de disoluciones a partir de las muestras de aceites.

Sin embargo, el TBHQ es escasamente soluble en este disolvente por lo que se pasó a preparar las emulsiones utilizando como fase orgánica una mezcla de n-hexano y una mínima cantidad de otro disolvente polar capaz de disolver más fácilmente a dicho antioxidante. El disolvente elegido para este propósito es el acetato de etilo en el cual el TBHQ es altamente soluble. Así, se ha desarrollado un método para la determinación de TBHQ en emulsiones, utilizando como fase orgánica n-hexano y acetato de etilo en una proporción 99:1, teniendo de este modo la máxima cantidad posible del disolvente recomendado. Por otra parte, otras muestras de alimentos distintas de los aceites comestibles pueden ser tratadas con otros disolventes extractantes distintos del nhexano. Así, el acetato de etilo ha demostrado su capacidad para formar microemulsiones estables (277) y, además, la solubilidad del TBHQ en este disolvente es, como ya se ha comentado, considerablemente mayor que en nhexano. Por consiguiente, se han realizado también estudios electroanalíticos en un medio emulsionado aceite/agua formado con acetato de etilo, con el fin de desarrollar un método para la determinación de este antioxidante en otros alimentos que no sean aceites comestibles, habiéndose escogido como muestra las palomitas de maíz.

III.2.2.2.1.- Emulsiones formadas con n-hexano:acetato de etilo (99:1)

III.2.2.2.1.1.- Optimización de los componentes de la emulsión

Los parámetros experimentales del medio emulsionado (concentración de tensoactivo y volumen de fase orgánica) se han optimizado mediante polarografía diferencial de impulsos, estudiando su influencia sobre la corriente de pico obtenida para el TBHQ 4.0×10^{-5} mol L⁻¹ a pH 9.0.

III.2.2.2.1.1.1.- Influencia de la proporción de tensoactivo

Se ha estudiado el efecto que sobre la señal del TBHQ produce la variación de la concentración de Pluronic F-68 en el intervalo comprendido entre 0.01 y 0.20%. Los valores obtenidos se resumen en la Tabla XCIV.

Como puede observarse no se aprecia variación significativa en los valores de la corriente de pico del TBHQ, por lo que se ha elegido la misma concentración de Pluronic F-68 que en medio micelar para estudios posteriores, es decir, el 0.04%.

TABLA XCIV

Influencia de la proporción de Pluronic F-68 sobre i_p mediante polarografía diferencial de impulsos en el medio emulsionado formado con 0.04% de Pluronic F-68, 2.0 mL de n-hexano:acetato de etilo (99:1) y regulador Britton-Robinson 0.1 M. TBHQ, 4.0x10⁻⁵ mol L⁻¹

Pluronic F-68, %	$i_p, \mu A$
0.01	0.288
0.02	0.291
0.04	0.300
0.06	0.291
0.10	0.276
0.15	0.276
0.20	0.280

III.2.2.2.1.1.2.- Influencia del volumen de disolvente orgánico

El efecto de este parámetro se ha estudiado en el intervalo comprendido entre 1.0 y 5.0 mL, utilizando una amplitud del impulso de 50 mV y un tiempo de emulsificación de 5 minutos. Se observó que esta variable no influye de forma significativa sobre la señal de oxidación del antioxidante, eligiéndose para los estudios subsiguientes un volumen de fase orgánica de 2.0 mL.

III.2.2.2.1.2.- Influencia del pH sobre i_p y E_p mediante polarografía diferencial de impulsos

La influencia del pH sobre la señal de oxidación del TBHQ se ha estudiado registrando los polarogramas de las emulsiones de TBHQ 4.0×10^{-5} mol L⁻¹. Los diferentes valores de pH, en el intervalo comprendido entre 1.5 y

11.0, se han fijado utilizando disolución reguladora Britton-Robinson 0.1 M. A modo de ejemplo, en la Figura 68 se muestran los polarogramas obtenidos a diferentes valores de pH.

Los datos obtenidos para el potencial y la intensidad de pico del TBHQ se muestran en la Tabla XCV, donde también se incluyen los valores del potencial del pico correspondiente al tensoactivo. Las condiciones experimentales utilizadas se especifican en dicha tabla.

TABLA XCV

Influencia del pH sobre mediante polarografía diferencial de impulsos sobre i_p y E_p en el medio emulsionado formado con 0.04% de Pluronic F-68, 2.0 mL de n-hexano:acetato de etilo (99:1) y regulador Britton-Robinson 0.1 M.: TBHQ, 4.0x10⁻⁵ mol L⁻¹; v=10 mV s⁻¹; t_g=0.4 s; $\Delta E=50$ mV

TB	FONDO	
E _p , V	i _p , μΑ	E _p , V
+ 0.256	0.288	+ 0.080
+0.224	0.240	+0.076
+ 0.160	0.279	+0.064
-	-	+0.064
-	-	
-	-	-
-0.064	0.249	+0.032
-0.096	0.285	+0.032
-0.132	0.297	+0.032
-0.172	0.270	+0.032
-0.200	0.114	+0.008
-0.232	0.102	-
-0.272	0.090	-
	TB E_{p}, V $+ 0.256$ $+ 0.224$ $+ 0.160$ $-$ $-$ -0.064 -0.096 -0.132 -0.172 -0.200 -0.232 -0.272	TBHQ E_p, V $i_p, \mu A$ + 0.2560.288+ 0.2240.240+ 0.1600.279

Figura 68.- Polarogramas en diferencial de impulsos en el medio emulsionado formado con 0.04% de Pluronic F-68, 2.0 mL de n-hexano:acetato de etilo (99:1) y regulador Britton-Robinson 0.1 M a diferentes valores de pH; v=10 mV s⁻¹; $\Delta E = 50$ mV; $t_g = 0.4$ s.

Los polarogramas obtenidos son cualitativamente similares a los obtenidos en medio micelar. Así, a pH inferiores a 3.0 aparecen dos picos bien definidos: el pico que aparece a potenciales más positivos corresponde al TBHQ, mientras que el primero es debido a la señal de oxidación del tensoactivo. Al aumentar el pH se observa una disminución del valor de E_p del TBHQ mientras que el del Pluronic F-68 permanece prácticamente constante, obteniéndose a pH entre 4.0 y 6.0 dos picos solapados; a pH entre 7.0 y 9.5 aparecen nuevamente dos picos, pero ahora, el de potencial más negativo es el que corresponde al antioxidante. Finalmente a pH superiores, se obtiene un único pico debido al TBHQ ya que la barrera de oxidación impide la observación de la señal del tensoactivo.

En la Figura 69 se han representado los datos de la Tabla XCV, observándose que los valores de E_p en función del pH se ajustan a una línea recta (r=0.9994) cuya pendiente es -0.056 V.

Por otra parte, por lo que respecta a la variación de la intensidad de pico del TBHQ con el pH, la representación obtenida muestra ahora un máximo bien definido a pH 8.0, por lo que se ha escogido este último valor como el más adecuado para propósitos analíticos.

III.2.2.2.1.3.- Estabilidad de la emulsión

Una vez optimizadas las variables que afectan a la emulsión, es decir, el volumen de mezcla orgánica, la concentración del agente emulsificante y el pH, y utilizando un tiempo de emulsificación de 5 minutos, con un período de desoxigenación de la disolución de 5 minutos, se comprobó la estabilidad de las emulsiones obtenidas midiendo, tras la espera de un cierto tiempo, el valor de i_p . Los resultados obtenidos revelan que la corriente permanece prácticamente constante durante al menos 45 minutos después de preparadas.

Figura 69.- Influencia del pH sobre i_p y E_p: o y •, mediante DPP en el medio emulsionado formado con 0.04% de Pluronic F-68, 2.0 mL de n-hexano:acetato de etilo (99:1) y regulador Britton-Robinson 0.1 M; v = 10 mV s⁻¹; ΔE=50 mV; t_g=0.4 s; TBHQ, 4.0x10⁻⁵mol L⁻¹
^{II}, E_p correspondiente a disoluciones que contienen 0.04% de Pluronic F-68, 2.0 mL de n-hexano:acetato de etilo (99:1)

III.2.2.2.1.4.- Características del proceso electródico

Como era de esperar, el comportamiento electroquímico del TBHQ en el medio emulsionado empleado es muy similar al que ya se ha comentado en las disoluciones micelares. Así, en la Figura 70 se muestra el voltamperograma cíclico obtenido en las emulsiones, donde, como puede observarse, se obtiene un hábito típico de los sistemas rápidos con una separación entre el pico anódico y el catódico de 34 mV y una relación entre la intensidad de pico anódica y catódica de 0.90.

Figura 70.- Voltamperograma cíclico sobre un electrodo de gota colgante de mercurio en la emulsión formada con 0.06% de Pluronic
F-68, 2.0 mL de n-hexano:acetato de etilo (99:1) y regulador Britton-Robinson 0.1 M de pH 8.0. TBHQ, 1.0x10⁻⁴ mol L⁻¹; v=20 mV s⁻¹

Por otra parte, la representación del potencial frente al log $(i/(i_L-i))$, obtenida a partir del polarograma de de muestreo de corriente para una concentración de TBHQ de 1.0×10^{-4} mol L⁻¹ (cuyos datos se muestran en la Tabla XCVI) origina una porción lineal (r=0.999) con una pendiente de 0.031 V (Figura 71). La aplicación del criterio $E_{3/4} - E_{1/4}$ proporciona un valor de 0.033 V.

Todos estos datos confirman por tanto que las características del proceso electródico comentadas en el apartado III.2.2.1.4. para las disoluciones micelares pueden ser extrapoladas a las emulsiones aceite/agua formadas con n-hexano y acetato de etilo.

264

TABLA XCVI

Análisis logarítmico del polarograma del TBHQ a pH 8.0 mediante polarografía de de muestreo de corriente en el medio emulsionado formado con 0.06% de Pluronic F-68, 2.0 mL de n-hexano:acetato de etilo (99:1) y regulador Britton-Robinson 0.1 M de pH 8.0. Concentración de TBHQ, $1.0x10^{-4}$ mol L⁻¹; v=10 mV s⁻¹; t_g=0.4 s; i_L =0.425 μ A

-0.208 0.010 -1.62 -0.170 0.140 -0.	31 25
· · · · · · · · · · · · · · · · · · ·	25
-0.206 0.012 -1.52 -0.168 0.153 -0.	
-0.204 0.015 -1.44 -0.166 0.168 -0.	19
-0.202 0.016 -1.40 -0.164 0.183 -0	.12
-0.200 0.020 -1.31 -0.162 0.200 -0	.05
-0.198 0.024 -1.23 -0.160 0.213 0	.0
-0.196 0.028 -1.16 -0.158 0.225 0.	05
-0.194 0.031 -1.10 -0.156 0.240 0.	11
-0.192 0.038 -1.01 -0.154 0.255 0.	18
-0.190 0.043 -0.95 -0.152 0.265 0.2	22
-0.188 0.050 -0.88 -0.150 0.283 0.3	30
-0.186 0.056 -0.82 -0.148 0.288 0.3	32
-0.184 0.064 -0.75 -0.146 0.300 0.3	8
-0.182 0.072 -0.69 -0.144 0.312 0.4	4
-0.180 0.082 -0.62 -0.142 0.325 0.5	i1
-0.178 0.093 -0.55 -0.140 0.337 0.5	i9
-0.176 0.105 -0.48 -0.138 0.344 0.6	3
-0.174 0.118 -0.42 -0.136 0.352 0.6	9
-0.172 0.130 -0.35	

Figura 71.- Análisis logarítmico del TBHQ en el medio emulsionado formado con 0.06% de Pluronic F-68, 2.0 mL de n-hexano: acetato de etilo (99:1) y regulador Britton-Robinson 0.1 M de pH 8.0. TBHQ, 1.0x10⁻⁴ mol L⁻¹; v=10 mV s⁻¹; t_e=0.4 s

III.2.2.2.1.5.- Características analíticas de los calibrados mediante polarografía diferencial de impulsos

Las representaciones de i_p frente a la concentración de TBHQ son lineales, aplicando una amplitud del impulso de 50 mV (Figura 72) en los intervalos de concentración que se muestran en la Tabla XCVII en la que se recogen asimismo los valores de la desviación estándar relativa y de los límites de determinación y de detección calculados para el método desarrollado.

Como se puede apreciar, existe una relación lineal entre la corriente de pico y la concentración de TBHQ en todo el intervalo de concentraciones ensayado.

266

Figura 72.- Calibrados para la determinación de TBHQ mediante DPP en el medio emulsionado formado con 0.04% Pluronic F-68, 2.0 mL de n-hexano:acetato de etilo (99:1) y regulador Britton-Robinson 0.1 M de pH 8.0; v=10 mV s⁻¹; ΔE=50 mV

TABLA XCVII

Características analíticas la determinación de TBHQ en medio emulsionado formado con 0.04% de Pluronic F-68, 2.0 mL de n-hexano:acetato de etilo (99:1) mediante polarografía diferencial de impulsos, $\Delta E = 50$ mV; v = 10 mV s⁻¹

Intervalo lineal, mol L ⁻¹	$1.0 \times 10^{-6} - 10.0 \times 10^{-6}$	1.0x10 ⁻⁵ - 5.0x10 ⁻⁵
Coeficiente de correlación, r	0.9995	0.9998
Pendiente, $\mu A L mol^{-1}$	$(6.5 \pm 0.2) \times 10^3$	$(7.3 \pm 0.4) \times 10^3$
Ordenada en el origen, μA	-0.004 ± 0.001	-0.01 ± 0.02
Límite de detección, mol L ^{·1}	^{a)} 2.5x10 ⁻⁷	
Límite de determinación, mol L-1	^{a)} 8.3x10 ⁻⁷	
RSD, % (n=10)	^{b)} 3.3	

Niveles de concentración: $a^{2}2.0 \times 10^{-6} \text{ mol } L^{-1}$ $b^{5}5.0 \times 10^{-6} \text{ mol } L^{-1}$

III.2.2.2.1.6.- Estudio de interferencias mediante polarografía diferencial de impulsos

En este apartado se ha estudiado el efecto que ejerce la presencia de diferentes sustancias, que pueden estar presentes en mezclas comerciales de antioxidantes, sobre la intensidad del pico de oxidación del TBHQ. Los compuestos ensayados han sido: BHA, BHT, ácido cítrico, propil galato y propilenglicol.

Los polarogramas obtenidos para las disoluciones que contienen exclusivamente BHA, BHT, ácido cítrico o propilenglicol a pH 8.0, no presentan

picos de oxidación en el intervalo de potencial de -0.40 a 0.00 V. Por otro lado, el correspondiente al propil galato muestra un pico de oxidación bien definido a -0.072 V.

Con objeto de establecer el grado de interferencia de cada compuesto se registraron los polarogramas de disoluciones que contenían $5.0x10^{-6}$ mol L⁻¹ de TBHQ y distintas concentraciones del compuesto considerado como interferente.

Como cabía esperar, el BHA, BHT, ácido cítrico y propilenglicol no interfieren. Así, en presencia de una relación interferente:TBHQ de 100 a 1, se ha calculado la concentración del analito empleando el calibrado con patrones presentado en el apartado anterior, obteniéndose resultados que están dentro del intervalo de \pm dos veces la desviación estándar de las medidas (n=10), lo que supone errores relativos en la concentración de TBHQ del orden del 5%.

En presencia de propil galato se obtiene una señal mucho más intensa que la obtenida para el TBHQ en ausencia de interferente lo que da lugar a errores relativos crecientes a medida que aumenta su concentración. Así el error en la determinación de TBHQ en presencia de propil galato en la relación 1:1 es del 7%.

III.2.2.2.1.7.- Determinación de TBHQ en aceites comestibles mediante polarografía diferencial de impulsos

El método desarrollado para la determinación de TBHQ en el medio emulsionado formado por 2.0 mL de n-hexano/acetato de etilo en la proporción 99:1 como fase orgánica, se ha aplicado al análisis de este antioxidante en tres tipos de aceites comestibles: de oliva, de maíz y de girasol, siguiendo el procedimiento experimental especificado en el apartado II.3.5. Según las especificaciones de las etiquetas, en ningún caso las muestras analizadas contenían TBHQ. Así, en primer lugar, se comprobó la ausencia de TBHQ en las muestras
de aceite comercial registrando los polarogramas correspondientes a las emulsiones formadas a partir de dichas muestras de aceite a las que no se ha añadido TBHQ, observándose que éstos no presentan ningún pico de oxidación en todo el intervalo de potencial barrido. En la Figura 73 se presenta los polarogramas correspondientes a las emulsiones obtenidas para los aceites de maíz, de oliva y de girasol, donde se observa la ausencia de pico de oxidación (polarogramas marcados con el número 1). La adición de 50 μ L de disolución patrón de TBHQ a esta emulsión, da lugar a un pico de oxidación bien definido a -0.128 V que aumenta tras sucesivas adiciones de una disolución patrón del analito (Figura 73).

A continuación, las muestras de aceite fueron fortificadas a un nivel de concentración de 100 mg Kg⁻¹ de TBHQ, de manera que, siguiendo el procedimiento experimental descrito, el contenido final del antioxidante en la emulsión analítica es de 0.5 mg L⁻¹. Para determinar la cantidad de TBHQ recuperado se aplicó el procedimiento de adiciones estándar con objeto de minimizar el efecto matriz. En la Tabla XCVIII se recogen los resultados obtenidos para la recuperación de TBHQ en cinco muestras de cada tipo de aceite, incluyéndose también los intervalos de confianza calculados para un nivel de significación del 0.05%. Las desviaciones estándar relativas obtenidas fueron 2.3, 2.7 y 4.4% para el aceite de oliva, de maíz y de girasol respectivamente

Las recuperaciones obtenidas son las usuales en la determinación de compuestos orgánicos a niveles de trazas en muestras de alimentos. Teniendo en cuenta que en el método propuesto la muestra no requiere prácticamente ningún tipo de tratamiento, las diferencias en las recuperaciones obtenidas para los tres tipos de aceites deben atribuirse a la distinta naturaleza de las correspondiente matrices.

Figura 73.- Voltamperogramas en diferencial de impulsos obtenidos para la determinación de TBHQ en aceites comestibles. Medio emulsionado formado con n-hexano/acetato de etilo (99:1), Pluronic F-68 y regulador Britton-Robinson 0.1 M de pH 8.0:
a, aceite de maíz; b, aceite de oliva; c, aceite de girasol 1, disolución de la muestra; 2-7, sucesivas adiciones de 0.42 μg de TBHQ

TABLA XCVIII

Estudios de recuperación de TBHQ en muestras de aceites mediante polarografía diferencial de impulsos en medio emulsionado

Muestra	TBHQ encontrado, mg L ⁻¹	Recuperación, %
Aceite de oliva	0.40	80
	0.40	80
	0.40	80
	0.38	76
	0.39	78
	Media: 0.39 ± 0.01	79 ± 2
Aceite de maíz	0.36	72
	0.39	78
	0.36	72
	0.38	76
	0.37	74
	Media: 0.37 ± 0.01	74 ± 3
Aceite de girasol	0.44	88
2	0.42	84
	0.45	90
	0.46	92
	0.46	92
	Media: 0.45 ± 0.02	89 ± 4

III.2.2.2.2.- Emulsiones formadas con acetato de etilo

Como ya se ha indicado en el apartado III.2.2.2 la gran solubilidad del TBHQ en acetato de etilo y la facilidad con que se forman emulsiones estables con este disolvente, nos ha conducido a estudiar el comportamiento electroquímico del TBHQ en las emulsiones aceite/agua formadas con acetato de etilo para, posteriormente, aplicar el método desarrollado a la determinación de dicho antioxidante en muestras de palomitas de maíz.

La optimización de las variables químicas de las emulsiones formadas se ha realizado mediante polarografía diferencial de impulsos, y el tensoactivo empleado ha sido el surfactante no iónico Pluronic F-68, análogamente a las emulsiones formadas con n-hexano y acetato de etilo (99:1).

III.2.2.2.2.1.- Influencia del pH sobre i_p y E_p mediante polarografía diferencial de impulsos

El efecto del pH sobre E_p e i_p se ha estudiado empleando emulsiones de TBHQ 4.0x10⁻⁵ mol L⁻¹ que contenían un 0.04% de Pluronic F-68 y 2.0 mL de acetato de etilo como disolvente orgánico. Los distintos pH ensayados en el intervalo comprendido entre 1.5 y 11.0 se han fijado utilizando disolución reguladora Britton-Robinson 0.1 M y ajustando con NaOH al pH deseado. Como ejemplo, algunos de los polarogramas registrados aparecen recogidos en la Figura 74, donde puede observarse que dichos voltamperogramas son cualitativamente similares a los obtenidos en las emulsiones formadas con la mezcla n-hexano/ acetato de etilo. A valores de pH inferiores a 3.0, se observan dos picos de oxidación bien definidos. El pico que aparece a potenciales más positivos corresponde al TBHQ, mientras que el primer pico, cuyo valor de E_p permanece prácticamente constante en todo el intervalo de pH estudiado, es debido a la respuesta del tensoactivo. En la Tabla XCIX se recogen los valores de i_p y E_p para las señales del TBHQ, así como los potenciales de pico de la respuesta

Figura 74.- Polarogramas mediante diferencial de impulsos de TBHQ 4.0x10⁻⁵ mol L⁻¹ a diferentes valores de pH en un medio emulsionado que contiene 2.0 mL de acetato de etilo, 0.04% de Pluronic F-68 y regulador Britton-Robinson 0.1 M; a, pico del TBHQ; b, pico del Pluronic F-68; $\Delta E = 50$ mV; v = 10 mV s⁻¹; $t_g = 0.4$ s.

TABLA XCIX

Influencia del pH sobre i_p y E_p mediante polarografía diferencial de impulsos en el medio emulsionado formado con 0.04% de Pluronic F-68, 2.0 mL de acetato de etilo y regulador Britton-Robinson 0.1 M.: TBHQ, 4.0x10⁻⁵ mol L⁻¹; v = 10 mV s⁻¹; t_g = 0.4 s; ΔE = 50 mV

	TBHQ		FONDO
pH	E _p , V	i _p , μΑ	E _p , V
1.5	+0.256	0.28	+ 0.084
2.0	+0.220	0.24	+0.068
3.0	+0.160	0.27	+0.064
4.0	+0.100	-	+0.064
7.0	-0.072	0.26	+0.036
8.0	-0.128	0.31	+0.032
9.0	-0.180	0.30	+0.032
10.0	-0.228	0.26	-
11.0	-0.256	0.17	-

correspondiente al tensoactivo, incluyéndose únicamente aquellos datos cuya medida ha sido posible de realizar con una buena exactitud. La representación de estos parámetros frente al pH se muestra en la Figura 75, donde puede observarse la disminución de los valores del potencial de pico del antioxidante con el pH, ajustándose estos valores a una recta (r=0.9995) cuya pendiente es de -0.057 V. Este comportamiento da lugar a que a valores de pH comprendidos entre 4.0 y 6.0 se observen dos picos solapados en los polarogramas. A pH 7.0-8.0 se obtienen de nuevo dos picos claramente separados, aunque, ahora, el pico del TBHQ aparece a potenciales menos positivos. Finalmente, a valores de pH más básicos sólamente se observa el pico de oxidación debido al TBHQ, ya que la observación de la señal del tensoactivo está impedida por la barrera de oxidación del electrodo.

Por otra parte, y por lo que respecta a la variación de la intensidad de pico con el pH, la representación obtenida indica valores máximos de i_p a pH entre 8.0 y 9.0, escogiéndose pH 9.0 como valor óptimo para estudios subsiguientes porque la señal de oxidación del TBHQ está más separada de la barrera de oxidación que la obtenida a pH 8.0.

Figura 75.- Influencia del pH sobre i_p y E_p: o y •, mediante DPP en el medio emulsionado formado con 0.04% de Pluronic F-68, 2.0 mL de acetato de etilo y regulador Britton-Robinson 0.1 M; v=10 mV s⁻¹; ΔE=50 mV; t_g=0.4 s; TBHQ, 4.0x10⁻⁵mol L⁻¹; II, E_p correspondiente a disoluciones que contienen 0.04% de Pluronic F-68, 2.0 mL acetato de etilo

III.2.2.2.2.2. Optimización de las variables de la emulsión

III.2.2.2.2.2.1.- Influencia de la proporción de tensoactivo

Se ha estudiado el efecto que sobre i_p y E_p produce la variación de la concentración de Pluronic F-68 utilizado como agente emulsificante (Tabla C). Se ha observado que el potencial de pico permanece constante cuando la proporción de tensoactivo varía entre 0.01 y 0.15% (w/v). Por otra parte, en la Figura 76 se ha representado la variación de la intensidad de pico, apreciándose que ésta aumenta ligeramente con el porcentaje de tensoactivo hasta el 0.04%, disminuyendo a partir de dicho valor. Por ello se ha elegido un porcentaje de tensoactivo del 0.04% para estudios posteriores.

TABLA C

Influencia de la proporción de Pluronic F-68 sobre i_p mediante polarografía diferencial de impulsos en el medio emulsionado formado con 0.04% de Pluronic F-68, 2.0 mL de acetato de etilo y regulador Britton-Robinson 0.1 M. TBHQ, 4.0x10⁻⁵ mol L⁻¹

Pluronic F-68, %	i _p , μΑ
0.01	0.280
0.02	0.310
0.03	0.308
0.04	0.310
0.06	0.291
0.08	0.288
0.10	0.284
0.15	0.273

Figura 76.- Efecto de la concentración de Pluronic F-68 sobre i_p mediante polarografía diferencial de impulsos; TBHQ, 4.0x10⁻⁵ mol L⁻¹; regulador Britton-Robinson 0.1 M de pH 9.0

III.2.2.2.2.2.- Influencia del volumen de disolvente orgánico

Con objeto de elegir el volumen óptimo de disolvente orgánico para la preparación de emulsiones de TBHQ en presencia de Pluronic F-68 como agente emulsificante, se han registrado los polarogramas utilizando como fase orgánica entre 1.0 y 4.0 mL de acetato de etilo.

Al valor de pH 9.0 y para una concentración de 4.0×10^{-5} mol L⁻¹ de TBHQ no se observan variaciones significativas en la intensidad ni en el potencial del pico de oxidación en todo el intervalo estudiado (Tabla CI), cuando se emplea un tiempo de agitación ultrasónica de 3 minutos. Sin embargo, a partir de un volumen de 4.0 mL de acetato de etilo es necesario aumentar el tiempo de agitación manual y ultrasónico, disminuyendo apreciablemente la estabilidad de la emulsión formada.

278

Volumen de acetato <u>de etilo</u> , mL	i _p , μΑ	E _p , V
0.2	0.330	-0.176
0.5	0.333	-0.176
1.0	0.348	-0.176
1.5	0.333	-0.174
2.0	0.300	-0.176
2.5	0.330	-0.178
3.0	0.315	-0.176
3.5	0.321	-0.176
4.0	0.290	-0.176

TABLA CI

Por ello se ha escogido un volumen de 2.0 mL de acetato de etilo para estudios posteriores, manteniendo la proporción de tensoactivo en un 0.04% (w/v).

III.2.2.2.2.3.- Estabilidad de la emulsión

Desde el punto de vista electroanalítico interesa estudiar la estabilidad de la emulsión formada con este disolvente como una función de la reproducibilidad de la medida de la corriente de pico con el tiempo. Este estudio se ha realizado a pH 9.0 empleando una concentración de TBHQ de 4.0×10^{-5} mol L⁻¹ y un 0.04% de Pluronic F-68. Se ha observado que la corriente de pico permanece prácticamente invariable durante al menos 15 minutos, por lo que se considera que las emulsiones son estables desde el punto de vista analítico.

III.2.2.2.3.- Características del proceso de oxidación

Las características del proceso electródico se han establecido empleando las técnicas de polarografía de de muestreo de corriente y de voltamperometría cíclica sobre un electrodo de gota colgante de mercurio.

Mediante polarografía de de muestreo de corriente se han aplicado los criterios basados en el análisis logarítmico de los polarogramas y el cálculo de la diferencia $E_{3/4}$ y $E_{1/4}$. Para realizar estas experiencias se utilizaron emulsiones de TBHQ 4.0x10⁻⁵ mol L⁻¹ que contenían el 0.04% de Pluronic F-68 y regulador Britton-Robinson 0.1 M de pH 9.0, empleando un tiempo de goteo de 0.4 s y una velocidad de barrido de 10 mV s⁻¹.

En la Tabla CII se recogen los valores de las intensidades de la corriente medidas a distintos potenciales, situados en la región ascendente de la onda del polarograma correspondiente, así como los del log $(i/(i_L-i))$ calculados a partir de dichos datos.

La representación del potencial frente al log $(i/(i_L-i))$ proporciona una línea recta (r=0.9999) de pendiente igual a 0.032 V (Figura 77). Dicha pendiente está de acuerdo con el valor predicho teóricamente para un proceso rápido controlado por difusión en el que están implicados dos electrones.

Se ha calculado, asimismo, la diferencia $E_{3/4}$ - $E_{1/4}$ a partir del polarograma sobre el que se ha realizado el análisis logarítmico, obteniéndose un valor de 0.032 V, muy próximo al valor de 0.028 V predicho teóricamente para un proceso de reducción reversible que involucre dos electrones.

TABLA CII

Análisis logarítmico del polarograma del TBHQ 4.0×10^{-5} mol L⁻¹, mediante polarografía de de muestreo de corriente, en el medio emulsionado formado por acetato de etilo, Pluronic F-68 y disolución reguladora Britton-Robinson 0.1 M de pH 9.0; v=10 mV s⁻¹; t_g=0.4 s. i_L=0.218 μ A

.

E, V	i, μA	log (i/i _L -i)	E, V	i, μΑ	log (i/i _L -i)
-0.220	0.003	-1.854	-0.160	0.088	-0.164
-0.212	0.005	-1.640	-0.156	0,105	-0.030
-0.208	0.006	-1,547	-0.152	0.120	0.090
-0.204	0.008	-1.447	-0.148	0.134	0.207
-0.200	0.010	-1.328	-0.144	0.148	0.333
-0.196	0.012	-1.234	-0.140	0.162	0.465
-0.192	0.015	-1.130	-0.136	0.172	0.575
-0.188	0.019	-1.025	-0.132	0.181	0.692
-0.184	0.024	-0.906	-0.128	0.188	0.809
-0.180	0.030	-0.796	-0.124	0.195	0.938
-0.176	0.039	-0.660	-0.120	0.199	1.044
-0.172	0.050	-0.53 0	-0.116	0.203	1.154
-0.168	0.061	-0.412	-0.112	0.205	1.234
-0.164	0.075	-0.279	-0.108	0.208	1.329
				and the second	

Figura 77.- Análisis logarítmico del TBHQ en el medio emulsionado formado con 0.06% de Pluronic F-68, 2.0 mL de acetato de etilo y regulador Britton-Robinson 0.1 M de pH 9.0. TBHQ, 1.0x10⁻⁴ mol L⁻¹; v = 10 mV s⁻¹; t_g=0.4 s

La rapidez de este proceso ha quedado demostrada mediante voltamperometría cíclica. Así, en la Figura 78 se muestra el voltamperograma obtenido con un electrodo de gota colgante de mercurio, para una concentración 1.0×10^{-4} mol L⁻¹ de TBHQ, así como el correspondiente a la disolución del electrólito fondo registrados ambos a una velocidad de barrido de 50 mV s⁻¹.

Como puede observarse en dicha Figura aparecen dos picos bien definidos: uno de oxidación y uno de reducción separados 33 mV. Además, la relación $i_{p,a}/i_{p,c}$ es de 0.94, lo que indica que la oxidación del TBHQ sobre el electrodo de mercurio en el medio emulsionado indicado es un proceso electródico reversible que involucra dos electrones. También puede deducirse, a partir de la pendiente de la representación de E_p frente al pH, mencionada anteriormente, m=-0.057 que son dos los protones intercambiados, confirmándose, una vez más, el mecanismo de oxidación propuesto en medio disoluciones micelares y en las emulsiones aceite/agua formadas con n-hexano y acetato de etilo (99:1), en el que el TBHQ se oxida sobre el electrodo de mercurio a la quinona correspondiente.

Figura 78.- Voltamperograma cíclico sobre un electrodo de gota colgante de mercurio en la emulsión formada con 0.06% de Pluronic F-68, 2.0 mL de acetato de etilo y regulador Britton-Robinson 0.1 M de pH 9.0. TBHQ, 1.0x10⁻⁴ mol L⁻¹; v=20 mV s⁻¹

III.2.2.2.2.4.- Características analíticas del método desarrollado mediante polarografía diferencial de impulsos

En la Figura 79 se han representado los calibrados obtenidos para la determinación de TBHQ a pH 9.0 en el medio emulsionado utilizado, mediante polarografía diferencial de impulsos con una amplitud del impulso de 50 mV, en los intervalos de concentración que se indican en la Tabla CIII. La dependencia

Figura 79.- Calibrados para la determinación de TBHQ mediante DPP en el medio emulsionado formado con 0.04% Pluronic F-68, 2.0 mL de acetato de etilo y regulador Britton-Robinson 0.1 M de pH 9.0; v=10 mV s⁻¹; ΔE=50 mV

existente entre la intensidad de pico y la concentración es lineal para todo el margen de concentraciones ensayado. En la Tabla se incluyen también los valores de la desviación estándar relativa, así como los límites de detección y de determinación calculados. Debe resaltarse que estos límites son dos veces menores que los obtenidos en las emulsiones aceite/agua formadas con la mezcla n-hexano:acetato de etilo (99:1), y que, además, la sensibilidad obtenida es también mayor que la reportada utilizando una mezcla tolueno-etanol como medio de trabajo (241).

TABLA CIII

Características analíticas del calibrado para la determinación de TBHQ mediante polarografía diferencial de impulsos en medio emulsionado: 2 mL de acetato de etilo; Pluronic F-68, 0.04%; Britton-Robinson 0.1 M, pH 9.0. $\Delta E = 50 \text{ mV}; \text{ v} = 10 \text{ mV s}^{-1}$

Intervalo lineal, mol L ⁻¹	4.0x10 ⁻⁷ -10.0x10- ⁷	1.0x10 ⁻⁶ -10.0x10 ⁻⁶	1.0x10 ⁻⁵ -10.0x10 ⁻⁵
Coeficiente de correlación, r	0.999	0.997	0.999
Pendiente, μA L mol ⁻¹	$(8.2 \pm 0.5) \times 10^3$	$(7.2 \pm 0.4) \times 10^3$	$(7.7 \pm 0.3) \times 10^3$
Ordenada en el origen, μA	-0.0006 ± 0.0002	0.001 ± 0.002	0.01 ± 0.02
Límite de detección, mol L ⁻¹		^{a)} 1.2x10 ⁻⁷	
Límite de determinación, mol L ⁻¹		^{a)} 4.1x10 ⁻⁷	
RSD, % (n=10)		^{b)} 2.3	

Niveles de concentración: $a^{3}5.0 \times 10^{-7}$ mol L⁻¹ $b^{5}5.0 \times 10^{-6}$ mol L⁻¹

III.2.2.2.2.5.- Estudio de interferencias mediante polarografía diferencial de impulsos

Se ha estudiado la influencia que sobre la señal de oxidación del TBHQ ejerce la presencia de otras sustancias que, como ya se ha indicado anteriormente, pueden estar presentes en mezclas comerciales de antioxidantes. Así, los compuestos ensayados han sido: BHA, BHT, propil galato, propilenglicol y ácido cítrico.

Los polarogramas correspondientes a disoluciones 5.0×10^{-6} mol L⁻¹ de BHA, BHT, propilenglicol y ácido cítrico no muestran ninguna señal de oxidación en todo el intervalo de potencial barrido. Por el contrario, el galato de propilo posee un pico de oxidación a -0.12 V.

Como era de esperar, el BHT, ácido cítrico y propilenglicol no dan lugar a interferencia en la determinación del TBHQ, incluso para una relación interferente/TBHQ de 100:1. Sin embargo, cuando se lleva a cabo la determinación en presencia de BHA se produce una disminución de la señal del TBHQ, lo que supone la obtención de errores relativos negativos superiores al 10% a partir de la relación interferente/TBHQ 20:1, que puede ser debido a la modificación de los fondos obtenidos y por consiguiente a un error en la medida de las intensidades de los picos del TBHQ. Por último, el propil galato da lugar a un pico de oxidación mucho más intenso que el del TBHQ, originando un error en la determinación de este último del 9% cuando la relación molar interferente/TBHQ es 2:1.

III.2.2.2.2.6.- Voltamperometría de onda cuadrada sobre un electrodo de gota colgante de mercurio

Dado que anteriormente se ha demostrado que el proceso de oxidación del TBHQ sobre un electrodo gotero de mercurio es reversible, y teniendo en cuenta que la utilización de la voltamperometría de onda cuadrada resulta particularmente apropiada con fines analíticos para este tipo de sistemas (266), se ha decidido llevar a cabo el estudio electroanalítico mediante esta técnica en el medio emulsionado formado con acetato de etilo.

En la Figura 80 se muestran las corrientes directa, inversa y neta correspondientes a un voltamperograma obtenido por onda cuadrada, en las mismas condiciones de trabajo optimizadas mediante polarografía diferencial de impulsos (pH 9.0, Pluronic F-68 0.04% y 2.0 mL de acetato de etilo). Como puede observarse, se obtienen voltamperogramas típicos de un proceso electródico reversible (266), en los que la corriente neta es mayor que la corriente directa o la inversa.

Figura 80.- Corriente directa (d), inversa (i) y neta (n) en voltamperometría de onda cuadrada para una concentración de TBHQ 5.0x10⁻⁶ mol L⁻¹ usando un HMDE; pH 9.0; E_{sw}=30 mV; ΔE=2 mV; f=200 Hz

Se ha estudiado la influencia de las variables experimentales características de la voltamperometría de onda cuadrada: amplitud, altura del salto y frecuencia de la onda cuadrada sobre la corriente de pico del TBHQ. La concentración de TBHQ empleada para realizar estos estudios fue $1.0x10^{-5}$ mol L⁻¹

III.2.2.2.2.6.1.- Influencia de la amplitud de la onda cuadrada

En la Tabla CIV se recogen los resultados obtenidos en el estudio de la variación de la amplitud de la onda cuadrada, E_{sw} , sobre la señal de oxidación del TBHQ en un intervalo comprendido entre 10 y 100 mV. Asimismo, en la Figura 81 se muestran los voltamperogramas registrados, observándose un máximo en la resolución de la respuesta en onda cuadrada, $\Delta i_p/W_{1/2}$, donde Δi_p es la corriente neta y $W_{1/2}$ es la anchura del pico a la semialtura, para valores comprendidos entre 25-30 mV. Este resultado es el esperado para un proceso reversible que involucre un intercambio de dos electrones (266). Respecto al potencial de pico, éste se hace más negativo a medida que aumenta la amplitud. La corriente de pico neta se distorsiona para valores superiores a 40 mV, como consecuencia de producirse un ensanchamiento de la corriente inversa según puede apreciarse en la Figura 82. Teniendo en cuenta la máxima sensibilidad, así como la mayor relación $\Delta i_p/W_{1/2}$, se ha escogido una amplitud de 30 mV para estudios subsiguientes.

TABLA CIV

Influencia de la amplitud de la onda cuadrada sobre un electrodo de gota colgante de mercurio en el medio emulsionado formado con 2.0 mL de acetato de etilo, 0.04% de Pluronic F-68 y regulador Britton-Robinson 0.1 M de pH 9.0; $\Delta E_s = 1 \text{ mV}$; f=60 Hz

E _{sw} , mV	E _p , V	$\Delta i_{p}, \mu A$	W _{1/2} , mV	$\Delta i_p/W_{1/2}, \ \mu A/V$
10	-0.089	0.256	47	5.4
20	-0.092	0.435	53	8.2
25	-0.094	0.495	63	7.9
30	-0.096	0.521	66	7.9
40	-0.101	0.545	84	6.4
50	-0.112	0.561	-	-
60	-0.118	0.562	-	-
80	-0.135	0.562	-	-
100	-0.154	0.562	-	-

Figura 81.- Voltamperogramas registrados a: 1, 10; 2, 20; 3, 30; 4, 50; 5, 60; 6, 80 mV para una concentración de TBHQ de 1.0×10^{-5} mol L⁻¹ pH 9.0; E_{sw}=30 mV; $\Delta E=2$ mV; f=200 Hz

Figura 82.- Influencia de la amplitud de la onda cuadrada en la corriente de pico; TBHQ 1.0x10⁻⁵ mol L⁻¹; pH 9.0; E_{sw} =30 mV; ΔE =2 mV; f=200 Hz; (---), 60 mV; (----), 30 mV

III.2.2.2.2.6.2.- Influencia de la altura del salto

Se ha realizado el estudio de la influencia del salto de potencial, ΔE_s , sobre la corriente de pico neta del TBHQ y sobre la anchura de pico a la semialtura, a una amplitud de 30 mV y una frecuencia de 60 Hz, no observándose variaciones significativas de dichos parámetros en todo el intervalo estudiado, comprendido entre 1 y 10 mV (Tabla CV). Se ha elegido el valor de 2 mV para los estudios posteriores, dado que de esta forma se obtenían voltamperogramas bien definidos.

TABLA CV

Influencia de la altura del salto de onda cuadrada sobre un electrodo de gota colgante de mercurio, en el medio emulsionado formado por acetato de etilo, Pluronic F-68 y regulador Britton-Robinson 0.1 M de pH 9.0; $E_{sw} = 30 \text{ mV}$; f=60 Hz

ΔE_s , mV	E _p , V	$\Delta i_p, \mu A$	W _{1/2} , mV	$\Delta i_p/W_{1/2}, \mu A/V$
1	-0.102	0.527	65	8.1
2	-0.102	0.547	65	8.4
3	-0.101	0.540	64	8.5
4	-0.098	0.545	66	8.3
5	-0.100	0.548	66	8.3
7	-0.098	0.541	66	8.2
10	-0.098	0.540	67	8.0

III.2.2.2.2.6.3.- Influencia de la frecuencia de onda cuadrada

Empleando los parámetros de onda cuadrada optimizados en los apartados anteriores (E_{sw} =30 mV y ΔE_s =2 mV) así como las condiciones de trabajo empleadas en polarografía diferencial de impulsos (pH 9.0, 0.04% de Pluronic F-68 y 2.0 mL de acetato de etilo) se ha llevado a cabo el estudio de la influencia que la frecuencia de la onda cuadrada ejerce sobre la señal de oxidación del TBHQ, empleando una concentración 5.0x10⁻⁶ M del antioxidante.

Los resultados se recogen en la Tabla CVI y en la Figura 83 aparecen algunos de los voltamperogramas registrados. Como puede observarse en la representación de Δi_p frente a f^{1/2} (Figura 84) se obtiene un tramo lineal (como era de esperar teniendo encuenta las características del proceso electródico) para valores de la frecuencia comprendidos entre 20 y 200 Hz, desviándose de la linealidad para valores superiores. Por otra parte, no se observan variaciones significativas en los potenciales de pico a los valores más bajos de la frecuencia, lo que indica de nuevo que la transferencia electrónica del proceso de oxidación es rápida. La ligera variación observada a las frecuencias más elevadas sugiere que la condición de "rápido" de este proceso se comienza a perder, como es lógico, a medida que la ventana de tiempo del experimento se hace menor. Así, se ha escogido una frecuencia de 200 Hz como más apropiada con fines analíticos. Este valor de la frecuencia aparece normalmente como un compromiso razonable entre sensibilidad y un funcionamiento estable y libre de ruido del instrumento para el trabajo analítico más o menos de rutina (266).

TABLA CVI

Influencia de la frecuencia de onda cuadrada para una concentración de TBHQ de 5.0×10^{-6} mol L⁻¹ en el medio emulsionado formado con acetato de etilo, Pluronic F-68 y regulador Britton-Robinson 0.1 M de pH 9.0. E_{sw} =30 mV y ΔE_s =2 mV

f, Hz	$\Delta i_p, \mu A$	E, V
20	0.243	-0.094
30	0.323	-0.095
40	0.372	-0.093
60	0.503	-0.094
80	0.641	-0.091
100	0.788	-0.090
125	0.926	-0.087
150	1.090	-0.086
200	1.421	-0.083
250	1.657	-0.081

Figura 83.- Voltamperogramas registrados en el intervalo de frecuencias 20-200 Hz (a-h) para 5.0×10^{-6} mol L⁻¹ de TBHQ en el medio emulsionado formado por acetato de etilo, Pluronic F-68 y regulador Britton-Robinson 0.1 M de pH 9.0; $E_{sw}=30$ mV; $\Delta E_s=2$ mV

Figura 84.- Dependencia de la intensidad neta con la frecuencia para una concentración de TBHQ de 5.0×10^{-6} mol L⁻¹ en el medio emulsionado formado por acetato de etilo, Pluronic F-68 y regulador Britton-Robinson 0.1 M de pH 9.0; $\Delta E_s = 2$ mV; $E_{sw} = 30$ mV

293

III.2.2.2.2.6.4.- Características analíticas del método

Los calibrados obtenidos para la determinación de TBHQ mediante voltamperometría de onda cuadrada, se han representado en la Figura 85 (donde además se da el calibrado superior a una frecuencia de 60 Hz), habiéndose resumido en la Tabla CVII las características de dichos calibrados.

TABLA CVII

Características analíticas de la determinación de TBHQ mediante SWV medio emulsionado: 2 mL de acetato de etilo; Pluronic F-68, 0.04%; Britton-Robinson 0.1 M, pH 9.0. $E_{sw}=30$ mV; $\Delta E=2$ mV; f=200 Hz

Intervalo lineal, mol L ⁻¹	1.0x10 ⁻⁷ -10.0x10 ⁻⁷	1.0x10 ⁻⁶ -10.0x10 ⁻⁶	1.0x10 ⁻⁵ -10.0x10 ⁻⁵
Coeficiente de correlación, r	0.997	0.997	0.998
Pendiente, μA L mol ⁻¹	$(1.2 \pm 0.7) \times 10^{5}$	$(1.6 \pm 0.6) \times 10^{5}$	$(8.9 \pm 0.5) \times 10^4$
Ordenada en el origen, μA	-0.003 ± 0.004	0.03 ± 0.04	0.6 ± 0.3
Límite de detección, mol L ⁻¹		^{в)} 6.2x10 ⁻⁸	
Límite de determinación, mol L ¹		^{a)} 2.1x10 ⁻⁷	
RSD, % (n=10)		^{b)} 2.9	

Niveles de concentración: $a^33.0x10^{-7}$ mol L⁻¹ $b^31.0x10^{-6}$ mol L⁻¹

Tal como puede observarse, los valores de las pendientes obtenidos para estos calibrados son significativamente mayores que los correspondientes al método desarrollado por DPP, lo que indica como era de esperar, una mayor sensibilidad

Figura 85.- Calibrados para la determinación de TBHQ mediante voltamperometría de onda cuadrada en el medio emulsionado formado con 0.04% Pluronic F-68, 2.0 mL de acetato de etilo y regulador Britton-Robinson 0.1 M de pH 9.0; $\Delta E_s = 2 \text{ mV}$; $E_{sw} = 30 \text{ mV}$

al emplear la técnica de onda cuadrada, dada la reversibilidad del proceso de oxidación electroquímica del TBHQ. Por otra parte, los límites de determinación y de detección, calculados de acuerdo con los mismos criterios utilizados en otros apartados, empleando como estimador la desviación estándar de las señales de disoluciones (n = 10) de TBHQ $3.0x10^{-7}$ mol L⁻¹, son ahora aproximadamente dos veces menores que los obtenidos mediante polarografía diferencial de impulsos. Finalmente, el valor de la desviación estándar relativa, calculado por medida repetida de diez disoluciones al nivel de $1.0x10^{-6}$ mol L⁻¹ de TBHQ, demuestra la buena precisión del método.

III.2.2.2.2.6.5.- Estudio de interferencias

Con el fin de evaluar la aplicabilidad del método propuesto a la determinación de TBHQ en muestras de alimentos, se ha estudiado la influencia de diferentes sustancias presentes habitualmente en mezclas comerciales de antioxidantes sobre la intensidad neta de oxidación del analito. Los compuestos ensayados han sido los siguientes: BHA, BHT, propil galato, ácido ascórbico, ácido cítrico y propilenglicol. Se estudiaron proporciones de compuesto interferente a analito en el margen 1:1 - 100:1 para una concentración de TBHQ de 5.0×10^{-6} mol L⁻¹.

Los voltamperogramas de disoluciones de BHT, propilenglicol y ácido cítrico, en las condiciones de trabajo utilizadas para la determinación de TBHQ, no muestran ningún pico de oxidación en el intervalo de potencial estudiado. Además, la presencia de estos compuestos no produce ningún cambio en la forma de la corriente de pico neta del TBHQ. Por consiguiente, la determinación de TBHQ en muestras que contengan alguna de estas especies no se verá afectada por interferencias, pudiéndose calcular la concentración del antioxidante a partir del calibrado patrón o utilizando el método de adiciones estándar, si es que existe efecto matriz. Así, la concentración calculada de TBHQ a partir del calibrado mencionado anteriormente se encuentra siempre dentro del intervalo de dos veces la desviación estándar (n=10) incluso para una relación 100:1 interferente:TBHQ.

El caso del BHA presenta una anomalía interesante. Este antioxidante tampoco exhibe un pico voltamperométrico de oxidación mediante onda cuadrada. La Figura 86 muestra el voltamperograma de corriente neta para una disolución de BHA 5.0x10⁻⁵ mol L⁻¹. Sin embargo, cuando se registraron los voltamperogramas de onda cuadrada de mezclas de TBHQ con BHA, se observó un considerable aumento de la corriente de pico para el TBHQ con respecto a la obtenida en ausencia de BHA (ver también la Figura 86). Tanto la corriente directa como la inversa aumentan cuando se trabaja con dichas mezclas, pudiendo observarse un aumento significativo de la corriente incluso para una relación BHA:TBHQ 2:1. Sin embargo, este efecto no se observó cuando este estudio de interferencias se realizó mediante polarografía diferencial de impulsos (véase apartado III.2.2.2.2.5). De momento no podemos ofrecer una explicación plausible de este hecho, que pudiera deberse a un efecto sinérgico al trabajar con la mezcla, que provocara un aumento de la velocidad de la transferencia electrónica en la interfase electrodo/disolución y por tanto condujera a una mayor intensidad del pico de oxidación obtenido.

Por otra parte, el galato de propilo a una concentración de 5.0x10⁻⁶ mol L⁻¹ presenta un pico de corriente neta bien definido a un potencial de -0.046 V, que se desarrolla cerca del pico del TBHQ (-0.12 V). Así, por ejemplo, en la Figura 87 se muestra el voltamperograma obtenido para una relación de concentraciones PG:TBHQ de 1:1, donde se aprecia claramente la influencia de la presencia del PG sobre la señal del TBHQ. Se produce un aumento de la corriente de pico neta medida para el TBHQ a medida que aumenta la concentración del interferente. A título de ejemplo, para una relación PG:TBHQ 1:2 dicho aumento es del 11%.

Figura 86.- Voltamperogramas en onda cuadrada sobre HMDE en el medio emulsionado formado con acetato de etilo, Pluronic F-68 y regulador Britton-Robinson de pH 9.0:
a, BHA 5.0x10⁻⁶ mol L⁻¹; b, TBHQ 5.0x10⁻⁶ mol L⁻¹
c, BHA 5.0x10⁻⁶ mol L⁻¹ + TBHQ 5.0x10⁻⁶ mol L⁻¹
ΔE_s=2 mV; E_{sw}=30 mV; f=200 Hz

Figura 87.- Voltamperogramas en onda cuadrada sobre HMDE en el medio emulsionado formado con acetato de etilo, Pluronic F-68 y regulador Britton-Robinson de pH 9.0:
a, TBHQ 5.0x10⁻⁶ mol L⁻¹; b, PG 5.0x10⁻⁶ mol L⁻¹
c, TBHQ 5.0x10⁻⁶ mol L⁻¹ + PG 5.0x10⁻⁶ mol L⁻¹

 $\Delta E_s = 2 \text{ mV}; E_{sw} = 30 \text{ mV}; f = 200 \text{ Hz}$

Finalmente, el ácido ascórbico presenta un pico de oxidación a -0.01 V observable únicamente a concentraciones superiores a 5.0×10^{-5} mol L⁻¹. Por consiguiente, la corriente de pico neta del TBHQ a un nivel de concentración de 5.0×10^{-6} mol L⁻¹ no se ve afectada significativamente por la presencia de ácido ascórbico hasta alcanzar una relación interferente:TBHQ de 10:1. A partir de dicha relación se obtienen errores superiores al 10% en la determinación del analito a partir de la ecuación del calibrado (por ejemplo, una proporción ácido ascórbico:TBHQ de 20:1 da lugar a un error relativo del 16%).

III.2.2.2.2.6.6.- Determinación de TBHQ en palomitas de maíz

El método propuesto mediante voltamperometría de onda cuadrada se ha aplicado, en las condiciones de trabajo descritas anteriormente, a la determinación de TBHQ en muestras comerciales de palomitas de maíz contaminadas con dicho antioxidante al nivel de 50 mg Kg⁻¹. Para ello se ha utilizado el procedimiento descrito en el apartado II.3.6, obteniéndose los resultados que se resumen en la Tabla CVIII.

TABLA CVIII

Estudios de recuperación de TBHQ en palomitas de maíz mediante SWV en medio emulsionado

Muestra	TBHQ encontrado, mg Kg ⁻¹	Recuperación, %
1	47	94
2	44	88
3	48	96
4	44	88
5	44	88
Media ± st/√n	45 ± 2	91 ± 5

En primer lugar, se comprobó la ausencia de TBHQ o de especies interferentes en las muestras no contaminadas para lo cual se aplicó el procedimiento propuesto a una emulsión blanco preparada a partir de dichas muestras, sin realizar ninguna adición de TBHQ, observándose la ausencia de picos de oxidación en los voltamperogramas registrados al efecto, en el intervalo de potencial comprendido entre -0.30 y 0.00 V.

Por otro lado, las muestras contaminadas con TBHQ exhiben un pico de oxidación bien definido, cuya intensidad es proporcional a la concentración de dicho antioxidante, tal como puede observarse en la Figura 88.

Figura 88.- Voltamperogramas en onda cuadrada en medio emulsionado formado con acetato de etilo, Pluronic F-68 y regulador Britton-Robinson 0.1 M de pH 9.0 para la determinación de TBHQ en muestras de palomitas de maíz: 1, alícuota de la muestra contaminada con TBHQ al nivel de 50 mg Kg⁻¹; 2-6, adiciones sucesivas de 0.42 μg de TBHQ

Los resultados obtenidos en la recuperación de TBHQ en las cinco muestras ensayadas (Tabla CVIII) pueden considerarse satisfactorios, obteniéndose una recuperación media del 91 ± 5% y una desviación estándar relativa del 4.3% al nivel de significación de 0.05. Estos resultados ponen de manifiesto la validez del método desarrollado para la determinación de TBHQ en este tipo de muestras. Es de destacar que la emulsificación directa a partir del extracto de la muestra con acetato de etilo permite la eliminación de algunas etapas usuales de los procedimientos analíticos, tales como preconcentración, "clean-up", evaporación a sequedad, etc, lo que sin duda redunda en una mayor sencillez y rapidez del análisis, así como en la obtención de porcentajes de recuperación superiores.

IV.- CONCLUSIONES

+

•

A partir de los resultados obtenidos en el estudio electroanalítico de los plastificantes ftalato de dimetilo, de dietilo y de dibutilo, y de los antioxidantes 2-*tert*-butil-4-metoxifenol (BHA) y *tert*-butilhidroquinona (TBHQ) en medios micelares y emulsionados, así como de la aplicación de los métodos desarrollados a la determinación de estos aditivos en distintos tipos de muestras, pueden establecerse, como conclusiones las que se resumen a continuación.

De la parte primera de la Memoria dedicada al ESTUDIO ELECTROANALÍTICO DE LOS PLASTIFICANTES FTALATO DE DIMETILO, DE DIETILO Y DE DIBUTILO, se han extraído las siguientes conclusiones:

MEDIO MICELAR

- 1.- El medio micelar constituido por el tensoactivo catiónico Hyamina 1622 ha resultado, de todos los ensayados, ser el más apropiado para el estudio electroanalítico de los ftalatos de dimetilo, de dietilo y de dibutilo, teniendo en cuenta características analíticas de la respuesta polarográfica tales como la forma de los picos de reducción, sensibilidad, anchura de pico, reproducibilidad, corriente de fondo y efecto del tensoactivo. La proporción óptima a utilizar es del 0.015% (p/v) de Hyamina 1622 para las disoluciones micelares de ftalato de dimetilo y de dietilo, y del 0.020% (p/v) para las de ftalato de dibutilo.
- 2.- El estudio del efecto del pH mediante polarografía diferencial de impulsos en dicho medio micelar demuestra que:

a) Existe un proceso de protonación previo a la etapa de reducción de los plastificantes, según ponen de manifiesto los desplazamientos de los potenciales de pico de los tres compuestos hacia valores más negativos a medida que aumenta el pH.
b) Tanto la forma ácida como la forma básica de cada ftalato son electroactivas, como se deduce del hábito de las representaciones de la intensidad de pico en función del pH, si bien la reducción de la forma básica no implica un equilibrio ácido-base previo a dicho proceso de reducción.

c) El número de electrones involucrados en la reducción de las formas ácida y básica de los ftalatos no es el mismo, debiendo ser superior para la última, según se deduce del cambio brusco observado en las alturas de los picos desde medios ácidos a básicos.

d) La mayor sensibilidad y la mejor reproducibilidad de las medidas se obtienen a los valores de pH elegidos: 10.0 para los ftalatos de dimetilo y de dietilo, y 8.0 para el ftalato de dibutilo.

- 3.- Las corrientes límites de los tres ftalatos estudiados, en el medio micelar escogido anteriormente, están controladas por difusión, como se deduce de los resultados obtenidos en el estudio de la influencia de la altura corregida del depósito de mercurio sobre la intensidad límite, con valores de las pendientes de las representaciones log i_L vs. log h_{corr} de 0.65, 0.71 y 0.70 para los ftalatos de dimetilo, de dietilo y de dibutilo, respectivamente.
- 4.- Los plastificantes estudiados muestran un comportamiento totalmente irreversible, en su proceso de reducción, según se deduce de:

a) La aparición de un único pico de reducción en los voltamperogramas cíclicos obtenidos sobre un electrodo de gota colgante de mercurio.

b) Los valores de las pendientes de las representaciones de E vs. log $(i/(i_L-i))$ obtenidas en el análisis logarítmico de los polarogramas en de de muestreo de corriente.

c) Los valores de la diferencia $E_{3/4}$ - $E_{1/4}$ en los polarogramas anteriores.

d) Los valores de los parámetros αn_a obtenidos en medio micelar a pH 4.0, 8.0 y 10.0 para cada uno de los ftalatos estudiados son consistentes con el intercambio de cuatro electrones en los procesos de reducción a pH 10.0. Sin embargo, en medio ácido son sólo dos los electrones implicados.

6.- En el medio micelar formado por la Hyamina 1622 y a los valores de pH indicados, es posible llevar a cabo la determinación de los tres ftalatos a partir de sus correspondientes calibrados, en los intervalos de concentración: 1.0x10⁻⁶ - 1.0x10⁻⁴ mol L⁻¹ para el ftalato de dimetilo; 6.0x10⁻⁷ - 1.0x10⁻⁴ mol L⁻¹ para el de dietilo y 1.0x10⁻⁶ - 5.0x10⁻⁵ mol L⁻¹ para el de dibutilo; en este caso se produce la curvatura del calibrado a partir de la última concentración, lo que se atribuye a la adsorción de este ftalato sobre la superficie del electrodo de mercurio.

- Los límites de determinación y de detección alcanzados han resultado ser: 5.5×10^{-7} y 1.8×10^{-7} mol L⁻¹; 5.3×10^{-7} y 1.6×10^{-7} mol L⁻¹, y 1.6×10^{-6} y 4.7×10^{-7} mol L⁻¹, respectivamente, para los ftalatos de dimetilo, de dietilo y de dibutilo.

 Los valores de las desviaciones estándar relativas oscilan entre el 1.6 y el 6.9%, demostrando la alta precisión de los métodos desarrollados en medio micelar.

EMULSIONES ACEITE/AGUA

- 7.- El medio emulsionado formado por 2 mL de la mezcla éter etílico/acetato de etilo en la proporción 1:9 utilizando Hyamina 1622 al 0.015% como agente emulsificante y un tiempo de emulsificación de 3 minutos, ha resultado ser el más apropiado para el estudio electroanalítico de los ftalatos. En estas condiciones, las emulsiones formadas presentan gran estabilidad, obteniéndose resultados reproducibles incluso después de tres horas de preparada la emulsión.
- 8.- El estudio de la influencia del pH sobre la respuesta polarográfica de los plastificantes, en el medio emulsionado anterior, empleando las técnicas de polarografía dc de muestreo de corriente y diferencial de impulsos ha permitido apreciar, para los tres ftalatos, un comportamiento totalmente análogo al que éstos presentaban en medio micelar. Al igual que en dicho medio, teniendo en cuenta la mayor sensibilidad y mejor reproducibilidad de las medidas, los valores de pH elegidos como óptimos han sido de 10.0 para los ftalatos de dimetilo y de dietilo, y de 8.0 para el de dibutilo.
- 9.- Los estudios realizados para determinar la naturaleza de la corriente límite de los procesos de reducción de estos compuestos en las emulsiones formadas, han permitido deducir el control difusivo de la misma análogamente lo observado en las disoluciones micelares. Por otra parte, y empleando los mismos criterios que en dichas disoluciones, se ha demostrado el comportamiento totalmente irreversible de los procesos de reducción de los tres ftalatos en las emulsiones aceite/agua consideradas.
- 10.- En el medio emulsionado formado por la mezcla éter etílico/acetato de etilo (1:9), en presencia de Hyamina 1622 y a pH 4.0, 8.0 y 10.0, se han obtenido valores de los parámetros cinéticos para cada uno de los

plastificantes estudiados análogos a los obtenidos en medio micelar, lo que sugiere conclusiones similares a las comentadas anteriormente.

- 11.- A partir de las pendientes de los calibrados en medio emulsionado al pH óptimo para cada ftalato, y asumiendo un intercambio de cuatro electrones en el proceso de reducción, se han calculado los coeficientes de difusión de los tres plastificantes obteniéndose los valores: 5.7x10⁻⁶ mol L⁻¹, 2.6x10⁻⁶ y 2.9x10⁻⁶ cm² s⁻¹ para lo ftalatos de dimetilo, de dietilo y de dibutilo, respectivamente.
- 12.- La determinación de los tres plastificantes en el medio emulsionado utilizado es posible, a partir de los calibrados obtenidos, en los siguientes intervalos de concentración: ftalato de dimetilo, 4.0x10⁻⁷ 1.0x10⁻⁴ mol L⁻¹; ftalato de dietilo, 7.0x10⁻⁷ mol L⁻¹ 1.0x10⁻⁴ mol L⁻¹; ftalato de dibutilo, 2.0x10⁻⁶ 5.0x10⁻⁵ mol L⁻¹, apreciándose una desviación de la linealidad en este caso, a partir de la última concentración indicada.

- Los límites de determinación y de detección son: 3.7×10^{-7} y 1.1×10^{-7} mol L⁻¹; 2.2×10^{-7} y 6.7×10^{-8} mol L⁻¹, y 2.1×10^{-6} y 7.4×10^{-7} mol L⁻¹ para los ftalatos de dimetilo, de dietilo, y de dibutilo, respectivamente.

- Los valores de la desviación estándar relativa oscilan entre el 2.5 y el 6.9%, lo que también pone de manifiesto la alta precisión de los métodos desarrollados en medio emulsionado.

13.- El estudio de la influencia de la presencia de los demás plastificantes sobre la respuesta polarográfica de cada uno de los compuestos estudiados empleando la técnica diferencial de impulsos, ha permitido demostrar que:

a) Los potenciales de pico de los tres plastificantes están lo suficientemente

próximos para observar, en todas las mezclas binarias y a todas las concentraciones de interferente ensayadas, un único pico global de reducción.

b) Las intensidades de pico aumentan a medida que lo hace la concentración del compuesto considerado como interferente. Únicamente es posible obtener errores relativos inferiores al 10% para relaciones molares interferente:analito, 0.1:1.

Según ésto puede concluirse que en las condiciones de trabajo empleadas, no es posible realizar la determinación simultánea de estos plastificantes.

- 14.- La presencia de ftalato de dioctilo (DOP), otro plastificante utilizado frecuentemente en el procesado del PVC, no da lugar a interferencia en la determinación de los tres ftalatos estudiados (errores relativos menores del 5%) incluso cuando la relación DOP/analito es 20:1.
- 15.- La determinación global de dos de los plastificantes estudiados, el ftalato de dietilo y el de dibutilo, mediante polarografía diferencial de impulsos, en el medio emulsionado empleado, es posible a pH 8.0, utilizando el calibrado del ftalato de dietilo a dicho valor de pH. En estas condiciones, los valores medios obtenidos para la determinación (n=5) de la concentración total de ambos plastificantes a los niveles de 1.0x10⁻⁵ y 4.0x10⁻⁶ mol L⁻¹ fueron: $(1.0 \pm 0.1)x10^{-5}$ y $(4.3 \pm 0.4)x10^{-6}$ mol L⁻¹ mol L⁻¹, respectivamente.
- 16.- La aplicación de los métodos polarográficos desarrollados en el medio emulsionado, a la determinación individual de los ftalatos de dimetilo y de dietilo en muestras de leche, ha permitido obtener buenos resultados, con

recuperaciones del 90 \pm 6 % y el 72 \pm 5 % para el ftalato de dimetilo a los niveles de concentración de 1.9 y 0.19 mg L⁻¹ de leche respectivamente, y del 92 \pm 4 % y el 86 \pm 2 % para el ftalato de dietilo, a los niveles de concentración de 2.2 y 0.22 mg L⁻¹ de leche, respectivamente. Los porcentajes de recuperación obtenidos, algo superiores a los niveles más altos de concentración, son los usuales para la determinación de trazas de compuestos orgánicos en muestras de alimentos.

17.- Los resultados obtenidos anteriormente ponen de manifiesto la validez del método propuesto en emulsiones del tipo aceite/agua para la determinación de estos ftalatos en dicho tipo de muestras, debiéndose destacar la ventaja que comporta la preparación de las disoluciones analíticas por emulsificación directa de una alícuota de la muestra extraída en la mezcla de disolventes éter etílico/acetato de etilo empleada.

Con relación a la segunda parte de la Memoria, dedicada al ESTUDIO ELECTROANALÍTICO DE LOS ANTIOXIDANTES 2-tert-BUTIL-4-METOXIFENOL (BHA) Y tert-BUTILHIDROQUINONA (TBHQ), pueden establecerse las siguientes conclusiones:

Determinación voltamperométrica de 2-*tert*-butil-4-metoxifenol (BHA) A) Medio micelar

1.- El tensoactivo más adecuado para lograr la solubilización del BHA y permitir el estudio electroanalítico de su proceso de oxidación sobre un electrodo de carbono vitrificado en medio micelar ha sido el Pluronic F-68, habiéndose considerado características analíticas de la respuesta voltamperométrica tales como la sensibilidad, reproducibilidad y señal del fondo. La proporción óptima de dicho tensoactivo en las disoluciones micelares ha sido del 0.06% (p/v).

2.- El estudio de la influencia del pH sobre $E_{1/2}$ e i_L ó E_p e i_p del BHA en el medio micelar elegido, empleando diferentes técnicas voltamperométricas sobre el electrodo de carbono vitrificado, ha permitido establecer que:

a) El BHA muestra una onda de oxidación bien definida, mediante voltamperometría de barrido lineal sobre electrodo de disco rotatorio, a pH
1.5 y 2.0. Esta onda se desdobla gradualmente a medida que aumenta el pH. A partir de 5.0 aparece una tercera onda de oxidación a potenciales aún más positivos.

b) El valor del potencial de onda media para la primera onda disminuye con el pH según una recta de pendiente -0.057 V, comportamiento que sugiere que los protones están implicados en el proceso de oxidación electroquímico, y que éste es más fácil en medio básico.

Por otro lado, la intensidad límite de esta primera onda permanece prácticamente constante en el intervalo de pH comprendido entre 5.0 y 11.0. Los valores de i_L global para las dos ondas a pH>5.0 son similares a los de la única onda observada a pH más ácidos y aproximadamente el doble que la mencionada en primer lugar. Ésto indica que el número de electrones implicado en la oxidación global del BHA es el mismo en todo el intervalo de pH estudiado.

c) Los voltamperogramas del BHA en voltamperometría de barrido lineal sobre electrodo estacionario a diferentes pH muestran un único pico de oxidación a pH 1.5 y 2.0. A valores superiores aparece un segundo pico peor definido y un pequeño hombro a potenciales aún más positivos.

La variación del potencial de pico y de la intensidad de pico con el pH permite establecer conclusiones análogas a las anteriores.

d) Mediante voltamperometría diferencial de impulsos se observa un único pico entre pH 1.5 y 5.0, mientras que aparecen dos picos para valores superiores. La mejor relación señal-fondo se ha obtenido a pH 2.0.

3.- Los resultados obtenidos en el estudio de la influencia de la velocidad de rotación del electrodo y de la concentración de BHA sobre la intensidad límite mediante voltamperometría de barrido lineal sobre electrodo rotatorio de carbono vitrificado, en el intervalo de velocidades de rotación comprendido entre 500 y 3000 rev. min⁻¹, y a concentraciones 1.0x10⁻⁵ - 6.0x10⁻⁵ mol L⁻¹, sugieren que la corriente límite que controla el proceso de oxidación del BHA en medio micelar es de naturaleza difusiva.

Asimismo, la dependencia lineal observada para la intensidad de pico en voltamperometría de barrido lineal sobre electrodo estacionario, con la raíz cuadrada de la velocidad de barrido, en el intervalo de 5 a 200 mV s⁻¹, permite establecer la misma conclusión. Sin embargo, los valores de i_p se desvían de la linealidad en el margen de velocidades superiores (350 -2000 mV s⁻¹) permaneciendo la función i_p/v prácticamente constante, lo que indica la adsorción del BHA sobre la superficie del electrodo en dicho intervalo.

4.- El análisis logarítmico de los voltamperogramas obtenidos para el BHA en medio micelar, sobre el electrodo rotatorio de carbono vitrificado, demuestra que el proceso de oxidación del antioxidante en dicho medio es irreversible. Los valores del parámetro (1-α)n_a, calculados a partir de la pendiente de la gráfica E vs. log (i/(i_L-i)) y de la representación de Tafel: 0.98 y 0.99, respectivamente, son consistentes con un intercambio de dos electrones en el proceso de oxidación global del BHA. Dicho número de electrones ha sido confirmado mediante estudios culombimétricos a potencial controlado sobre un macroelectrodo de Pt a dos valores de pH:

2.0 y 10.0, demostrándose que la única onda de oxidación obtenida a pH ácido involucra dos electrones, mientras que cada una de las dos ondas obtenidas a pH 10.0 implica el intercambio de un electrón.

5.- El estudio electroquímico mediante voltamperometría cíclica del BHA en medio micelar demuestra la existencia de una reacción química subsiguiente a la oxidación electroquímica inicial del antioxidante, siendo el producto de esta reacción el responsable de la aparición de dos pequeños picos catódicos y, a partir de ellos, de un nuevo pico de oxidación en el segundo barrido de potencial.

El mecanismo del proceso de oxidación que se propone:

que da lugar a la formación de *tert*-butil-p-benzoquinona (TBQ) ha sido confirmado registrando el voltamperograma cíclico del TBHQ (producto de la reducción de la anterior) en las mismas condiciones, observándose la coincidencia entre los valores de los potenciales de pico de reducción de este compuesto y el BHA, así como del pico de oxidación del TBHQ y el que aparece en el segundo barrido para el BHA.

6.- En el medio micelar formado con Pluronic F-68 y a pH 2.0, es posible la determinación de BHA a partir de los calibrados correspondientes obtenidos mediante voltamperometría diferencial de impulsos, en el intervalo de concentraciones comprendido entre 1.0x10⁻⁶ y 5.0x10⁻⁵ mol L⁻¹,observándose desviación de la linealidad para concentraciones de antioxidante superiores a este último valor.

Los límites de detección y de determinación calculados son, respectivamente, de 3.9×10^{-7} y 1.3×10^{-6} mol L⁻¹ de antioxidante. El valor de la desviación estándar relativa, del 5.3% para un nivel de concentración de 5.0×10^{-6} mol L⁻¹ pone de manifiesto la buena precisión del método establecido.

B) Medio emulsionado

- 7.- Se ha escogido el acetato de etilo como el disolvente orgánico más apropiado para la preparación de emulsiones aceite/agua de BHA, utilizando Pluronic F-68 al 0.06%, como agente emulsificante y empleando un tiempo de emulsificación de cinco minutos.
- 8.- En el medio emulsionado así formado, el comportamiento electroquímico del BHA es similar al comentado en medio micelar, según se pone de manifiesto a partir los resultados obtenidos en el estudio de la influencia del pH mediante voltamperometría de barrido lineal y diferencial de impulsos sobre electrodo estático de carbono vitrificado, así como de los voltamperogramas cíclicos a pH 2.0 y del análisis logarítmico de los voltamperogramas de barrido lineal sobre electrodo rotatorio de carbono vitrificado. Todo ello permite establecer conclusiones análogas a las ya expuestas en dicho medio.
- 9.- Las características analíticas del método para la determinación de BHA en este medio son las siguientes: intervalos de linealidad, 1.0x10⁻⁶ 10.0x10⁻⁶ mol L⁻¹ y 1.0x10⁻⁵ 5.0x10⁻⁵ mol L⁻¹; límite de detección, 2.5x10⁻⁷ mol L⁻¹; límite de determinación, 8.5x10⁻⁷ mol L⁻¹; desviación estándar relativa, 4.5%, para un nivel de concentración 5.0x10⁻⁶ mol L⁻¹.

- 10.- La presencia de ácido cítrico y de propilenglicol en las emulsiones no interfiere en la determinación voltamperométrico de BHA, incluso para una relación BHA:interferente de 1:200. Sin embargo, la presencia de TBHQ afecta a la señal del BHA para una relación TBHQ:BHA de 10:1 ó mayor. Asimismo, el galato de propilo da lugar a interferencia para relaciones PG:BHA superiores a 3:1 y el BHT causa un gran ensuciamiento de la superficie del electrodo de carbono vitrificado, probablemente debido a su adsorción, lo que origina errores relativos superiores al 5% incluso para una relación BHT:BHA de 0.1:1. Por último, la presencia del ácido ascórbico en una relación 5:1 respecto del BHA proporciona un error relativo del 10%.
- 11.- El método desarrollado para la determinación de BHA mediante voltamperometría diferencial de impulsos en medio emulsionado de acetato de etilo y Pluronic F-68 se ha aplicado al análisis de muestras comerciales de goma de mascar que contenían una cantidad desconocida de dicho antioxidante. Los resultados obtenidos para cinco determinaciones de BHA han proporcionado un valor medio de 0.20 ± 0.02 mg, que concuerda bien con la cantidad de antioxidante que puede esperarse en este tipo de muestras. Los estudios de recuperación de cantidades conocidas de BHA añadidas a las muestras dieron lugar a un valor en la recuperación media del 99%, con una desviación estándar relativa del 2.6% y un intervalo de confianza de $\pm 3\%$ para un nivel de significación de 0.05.
- 12.- Los resultados anteriores demuestran que la determinación voltamperométrica de BHA en un medio emulsionado formado con acetato de etilo y Pluronic F-68 es adecuada para la cuantificación rápida de este antioxidante en muestras de alimentos. Puesto que la emulsificación directa del extracto del analito de la muestra permite evitar la etapa de evaporación del disolvente orgánico empleado como extractante, se obtiene una notable mejora en la sencillez y rapidez del método.

Estudio electroanalítico de la *tert*-butilhidroquinona (TBHO) A) Medio micelar

- 13.- La solubilización del TBHQ en medio micelar se ha llevado a cabo empleando el tensoactivo no iónico Pluronic F-68 con una concentración del 0.04%. Este tensoactivo es el que proporciona una mayor sensibilidad y reproducibilidad de las señales de oxidación obtenidas mediante polarografía diferencial de impulsos.
- 14.- El estudio de la influencia del pH en el medio micelar anterior ha permitido deducir que:

a) Los protones están implicados en el proceso de oxidación del TBHQ en medio micelar, como lo demuestra la dependencia lineal con el pH observada para el potencial de onda media en polarografía de de muestreo de corriente y para el potencial de pico en polarografía diferencial de impulsos.

b) El valor máximo de la intensidad límite o de la intensidad de pico se obtiene a pH comprendidos entre 8.0 y 9.0, habiéndose escogido este último como valor óptimo por ser mayor la separación entre la señal de oxidación del analito y la del tensoactivo.

- 15.- La corriente límite del proceso de oxidación del TBHQ sobre el electrodo gotero de mercurio en medio micelar está controlada por difusión, como demuestran los resultados obtenidos en el estudio de la influencia de la altura corregida del depósito de mercurio sobre la intensidad límite.
- 16.- El análisis logarítmico de los polarogramas obtenidos mediante polarografía de de muestreo de corriente, así como la aplicación del criterio E_{3/4} E_{1/4} y los voltamperogramas cíclicos registrados para el TBHQ permiten deducir

un comportamiento reversible en el proceso de oxidación de este antioxidante sobre el electrodo de mercurio, implicando el intercambio de dos electrones. Los estudios mediante culombimetría a potencial controlado sobre un macroelectrodo de mercurio confirman el número de electrones mencionado. Teniendo en cuenta el valor de la pendiente de la representación $E_{1/2}$ vs. pH, m=-0.055 V, puede deducirse asimismo que son dos los protones implicados en el proceso electródico, dando lugar a la quinona correspondiente.

17.- El TBHQ puede determinarse mediante polarografía diferencial de impulsos, en el medio micelar formado con Pluronic F-68 en los intervalos de concentración: 1.0x10⁻⁶ - 1.0x10⁻⁵ mol L⁻¹ y 1.0x10⁻⁵ - 1.0x10⁻⁴ mol L⁻¹. Los límites de detección y de determinación alcanzados son, respectivamente, 2.0x10⁻⁷ y 6.7x10⁻⁷ mol L⁻¹, con una desviación estándar relativa del 3.1% para un nivel de concentración de 5.0x10⁻⁶ mol L⁻¹.

B) Medio emulsionado

18.- Se han preparado emulsiones aceite/agua del TBHQ en dos medios orgánicos diferentes: el primero formado por la mezcla n-hexano/acetato de etilo en proporción 99:1, contiene la máxima cantidad posible del disolvente recomendado por la AOAC para la preparación de disoluciones a partir de muestras de aceites, y el segundo formado por el disolvente acetato de etilo, con el fin de desarrollar métodos para la determinación de este antioxidante en otros tipos de muestras de alimentos distintas a los aceites. En ambos casos, el agente emulsificante utilizado ha sido el Pluronic F-68 en una proporción del 0.04%, y los tiempos de emulsificación empleados han sido de 5 y 3 minutos, respectivamente.

19.- El estudio de la influencia del pH sobre la respuesta de oxidación polarográfica del TBHQ en ambos medios proporciona resultados similares a los obtenidos en el medio micelar, por lo que pueden establecerse conclusiones análogas a las ya expuestas en dicho medio.

Asimismo, las características del proceso electródico comentadas en el medio micelar pueden ser extrapoladas a los dos tipos de emulsiones aceite/agua empleadas.

20.- En el medio emulsionado formado por la mezcla n-hexano/acetato de etilo (99:1), empleando la técnica de polarografía diferencial de impulsos, se han obtenido calibrados lineales en los intervalos de concentración 1.0x10⁻⁶ - 10.0x10⁻⁶ mol L⁻¹ y 1.0x10⁻⁵ - 10.0x10⁻⁵ mol L⁻¹, con límites de detección y de determinación de 2.5x10⁻⁷ y 8.3x10⁻⁷ mol L⁻¹ de TBHQ, respectivamente. La desviación estándar relativa ha sido del 3.3%, para un nivel de concentración de 5.0x10⁻⁶ mol L⁻¹.

Las emulsiones formadas con acetato de etilo presentan una sensibilidad ligeramente superior, habiéndose obtenido calibrados lineales en los intervalos 4.0×10^{-7} - 10.0×10^{-7} mol L⁻¹, 1.0×10^{-6} - 10.0×10^{-6} mol L⁻¹ y 1.0×10^{-5} - 10.0×10^{-5} mol L⁻¹ de TBHQ. Los límites de determinación y de detección alcanzados, 1.2×10^{-7} mol L⁻¹ y 4.1×10^{-7} mol L⁻¹, respectivamente, son dos veces menores que los obtenidos en el otro medio emulsionado. Asimismo, el valor de la desviación estándar relativa, del 2.3%, para el mismo nivel de concentración, sugiere una mayor precisión del método en el medio emulsionado formado por el acetato de etilo.

21.- El estudio de interferencias sobre la señal de oxidación del TBHQ en los dos medios emulsionados empleados, por parte de otras sustancias que pudieran estar presentes en mezclas comerciales de antioxidantes, ha proporcionado resultados similares, encontrándose en ambos casos ausencia de interferencia por parte del BHT; ácido cítrico y propilenglicol. En el medio emulsionado formado por la mezcla n-hexano/acetato de etilo (99:1) no se observa tampoco interferencia por parte del BHA, si bien cuando se trabaja en la emulsión formada por el acetato de etilo, la presencia de este antioxidante, a partir de una relación BHA/TBHQ 20:1 da lugar a una disminución gradual de la señal de oxidación del analito. Este efecto se debe probablemente a la modificación de los fondos obtenidos en presencia de BHA y, por consiguiente, a un error en la medida de la intensidad de pico del TBHQ. Finalmente, en ambos medios se encuentran distintos grados de interferencia por parte del galato de propilo.

- 22.- El método desarrollado para la determinación de TBHQ en el medio emulsionado formado por la mezcla n-hexano/acetato de etilo (99:1) se ha aplicado al análisis de este antioxidante en tres tipos de aceites comestibles. Los resultados obtenidos mediante polarografía diferencial de impulsos han proporcionado porcentajes de recuperación del 79 \pm 2% en aceite de oliva, del 74 \pm 3% en aceite de maíz y del 89 \pm 4% en aceite de girasol, siendo las desviaciones estándar relativas del 2.3, 2.7 y 4.4%, respectivamente, en los tres tipos de muestras. Las recuperaciones alcanzadas son las usuales en la determinación de compuestos orgánicos a niveles trazas en muestras de alimentos.
- 23.- El empleo de la técnica de voltamperometría de onda cuadrada sobre un electrodo de gota colgante de mercurio, en el medio emulsionado formado por el acetato de etilo permite obtener valores de la corriente neta superiores a los de la corriente directa o la inversa, debido al carácter reversible del proceso de oxidación del TBHQ sobre dicho electrodo.
- 24.- La optimización de las variables experimentales características de la voltamperometría de onda cuadrada ha proporcionado los siguientes valores

para los parámetros que se indican: amplitud de la onda cuadrada, E_{sw} , 30 mV; altura del salto, ΔE_s , 2mV; frecuencia de la onda cuadrada, f, 200 Hz.

- 25.- Empleando las condiciones anteriores, se han obtenido calibrados lineales en el medio emulsionado formado con acetato de etilo en los siguientes intervalos de concentración: 1.0x10⁻⁷ -10.0x10⁻⁷ mol L⁻¹; 1.0x10⁻⁶ -10.0x10⁻⁶ mol L⁻¹ y 1.0x10⁻⁵ 10.0x10⁻⁵ mol L⁻¹, debiéndose destacar los valores considerablemente más altos de las pendientes obtenidos, respecto de las que presenta el método mediante polarografía diferencial de impulsos en el mismo medio emulsionado. Los límites de detección y de determinación han sido de 6.2x10⁻⁸ mol L⁻¹ y 2.1x10⁻⁷ mol L⁻¹, respectivamente, valores aproximadamente dos veces menores que los obtenidos mediante dpp. Finalmente, el valor de la desviación estándar relativa, 2.9%, para un nivel de concentración de 1.0x10⁻⁶ mol L⁻¹, revela la buena precisión del método.
- 26.- Los resultados obtenidos en el estudio de interferencias por parte de diferentes sustancias presentes habitualmente en mezclas comerciales de antioxidantes sobre la intensidad neta de oxidación del TBHQ por voltamperometría de onda cuadrada, son similares a los expuestos previamente en este medio mediante polarografía diferencial de impulsos. Así la presencia de BHT, propilenglicol y ácido cítrico no afecta a la señal del analito incluso para relaciones 100:1 interferente:TBHQ.

Sin embargo, la presencia de BHA origina un efecto anómalo interesante, ya que aunque dicho antioxidante no exhibe ningún pico voltamperométrico de oxidación mediante onda cuadrada, las mezclas de TBHQ y BHA muestran un considerable aumento de la corriente neta para el pico del TBHQ, incluso para una relación BHA:TBHQ 2:1. Hasta el momento no se ha encontrado explicación de este hecho, si bien pudiera deberse a un efecto sinérgico en la mezcla, que provoca un aumento de la velocidad de transferencia electrónica en la interfase electrodo/disolución, originando una mayor intensidad del pico de oxidación del antioxidante.

Por otro lado, la presencia de galato de propilo produce un aumento de la corriente de pico neta para el TBHQ a medida que aumenta la concentración de interferente, siendo éste del 11% para una relación PG:TBHQ 1:2.

Finalmente, el ácido ascórbico origina un error relativo del 16% en la determinación de TBHQ a partir de la ecuación del calibrado, cuando la relación ácido ascórbico:TBHQ es 20:1.

27.- El método propuesto mediante voltamperometría de onda cuadrada se ha aplicado a la determinación de TBHQ en muestras comerciales de palomitas de maíz contaminadas con dicho antioxidante al nivel de 50 mg Kg⁻¹. La recuperación media obtenida ha sido del 91 ± 5 %, con una desviación estándar relativa del 4.3 % al nivel de significación de 0.05. Estos resultados ponen de manifiesto la validez del método desarrollado para la determinación de TBHQ en este tipo de muestras. Es de destacar que la emulsificación directa a partir del extracto de la muestra con acetato de etilo permite la eliminación de algunas etapas tales como la preconcentración, "clean-up", evaporación a sequedad, etc., lo que sin duda redunda en una mayor sencillez y rapidez del análisis, así como en la obtención de porcentajes de recuperación superiores.

V.- BIBLIOGRAFÍA

- Bersier, P.M. y Bersier, J., Analytical Voltammetry in Pharmacy, en Wilson and Wilson's Comprehensive Analytical Chemistry, Svehla, G. ed., vol. XXVII p. 159 (1992).
- Bersier, P.M. y Bersier, J., Analytical Voltammetry in Environmental Science II Organic and Organometallic Species, en Wilson and Wilson's Comprehensive Analytical Chemistry, Svehla, G. ed., <u>Vol. XXVII</u>, p. 381 (1992).
- 3.- Kalvoda, R., Electroanalytical Methods in Chemical and Environmental Analysis, Plenum Press, 1987.
- 4.- Primo Yúfera, E., Química Agrícola III: Alimentos. Ed. Alhambra, Madrid, 1987 p. 658.
- 5.- López de Sa, A., Martínez-Castro, I. y Sanz, J., C.I.C.C., 4, 8 (1989).
- 6.- Hunt, D.F., Shabanowitz, J., Harvey, T.M. y Coates, M., Anal. Chem., 57, 525 (1985).
- 7.- Amodio Cocchieri, R., J. Food Protect., 49, 265 (1986).
- 8.- Singh, A.R., Lawrence, W.H. y Autian, J., J. Pharm. Sci., 61, 51 (1972).
- 9.- Crompton, T.R., Additive Migration from plastic into food, Pergamon Press, Oxford, 1979.
- 10.- Gracin, J.R. y Brzozowska, A., J. Plast. Film Sheeting, 1, 292 (1985).
- 11.- Resolución de 4 de noviembre de 1982., BOE nº 282 de 24 de noviembre.
- 12.- Directiva del Consejo 82/711. Diario Oficial de las Comunidades Europeas L 297/26 de 23 de octubre de 1982.
- 13.- Directiva del Consejo 85/572. Diario Oficial de las Comunidades EuropeasL 372/14 de 31 de diciembre de 1985.
- 14.- Kampouris, E.M., Polymer Eng. Sci., 16, 59 (1976).
- 15.- Fennema, O.R., ed., Principles of Food Science. Part I. Food Chemistry, Marcel Dekker, Nueva York, 1976.
- 16.- Jiménez Colmenero, F., "Antioxidantes y Sinérgicos" en Los aditivos en la alimentación: su análisis, ANQUE, Madrid, 1993.

- 17.- Ministerio de Sanidad y Consumo "Listas positivas de aditivos alimentarios". Dirección General de Salud Pública, Subdirección General de Higiene de los Alimentos, Madrid, 1986.
- 18.- Resolución de 11 de abril de 1983, BOE nº 114 de 13 de mayo de 1983.
- 19.- Page, B.D. y Charbonneau, C.F., J. Assoc.Off. Anal. Chem., 72, 259 (1989).
- 20.- The Merck Index. Eleventh Edition. Merck y Co, Inc., Rahway, N.J., (1989).
- 21.- Tessier, A.M., Linard, A., Delaveau, P. Hoffelt, J. y Gaugain, B., Z. Lebensm. Unters Forsch, 176, 12 (1983).
- 22.- Brannen, A.L., J. Assoc. Off. Anal. Chem., 52, 59 (1975).
- 23.- Barlow, S.M., Toxicological aspects of antioxidants used as food additives, en *Food Antioxidants*, Hudson, B.J.F., ed., Elsevier, Londres, 1990.
- 24.- Min, D.B., Ticknor, D. y Schweizer, D., J. Assoc. Off. Anal. Chem., 59, 378 (1982).
- 25.- Cerbulis, J. y Ard, J.S., J. Assoc. Off. Anal. Chem., 50, 646 (1967).
- 26.- Piekacz, H., Rocz. Panstw. Zakl. Hig., 24, 163 (1973); Chem. Abstr.-79:92897e (1975)
- 27.- Kaneshima, H., Ogawa, H., Yamagishi, T., Kinoshita, Y. y Mori, M., Hokkaidoritsu Eisei Kenkyusho Ho, 24, 64 (1974); Chem. Abstr.-83:56806y (1977)
- 28.- Kafedzhieva, M. y Rizov, N., *Khramit. Prom-st*, **30**, 23 (1981); Chem. Abstr.- 95:148774n (1983)
- 29.- Bognar Lendvay, Z. y Boncz, E., *Elelmez. Ip.*, **38**, 219 (1984); Chem. Abstr.- 102:77346z (1985)
- 30.- Sherma, J., Dwyer, J. y J.J. Bouvard, Am. Lab. (Fairfield, Conn), 18, 28, 30-2 (1986); Chem. Abstr.- 107:28081d (1987)
- 31.- Albert., L., Aldana, P. y Carbajal, C., Rev. Soc. Quim. Mex., 30, 143 (1986); Chem. Abstr.- 108:76380t (1988)
- 32.- Yaneva, S., Popivanova, I., Khig. Zdraveopaz, 32, 64 (1989); Chem. Abstr.- 113:51860q (1990)
- 33.- Fallick, G.J., Talarico, P.C. y McGough, R.R., Soc. Plast. Eng. Tech. Pap.,
 22, 574 (1976); Chem. Abstr.- 85:47435r (1978).

- 34.- Hellman, M.Y., J. Liq. Chromatogr., 1, 491 (1978).
- 35.- Mori, S., Anal. Chim. Acta, 108, 325 (1979).
- 36.- Takeuchi, T y Ishii, D., J. Chromatogr., 218, 199 (1981).
- 37.- Cretier, G. y Rocca, J.L., Chromatographia, 16, 32 (1982).
- 38.- Leutert, T. y Von Arx, E., J. Chromatogr. 292, 333 (1984).
- 39.- Petitjean-Jacquet, M.P. y Vergnaud, J.M., Instrum. Anal. Foods: Recent Prog. Symp. Int. Flavor Conf., 3rd, 1, 379 (1983); Chem. Abstr.- 100:4856q (1984).
- 40.- Van Vliet, H.P.M., Bootsman, Th.C., Frei, R.W. y Brinkman, U.A.Th., J. Chromatogr., 185, 483 (1979).
- 41.- Chang, L.W., Atlas, E. y Giam, C.S., Int. J. Environ. Anal. Chem., 19, 145 (1985); Chem. Abstr.- 104:55410e.
- 42.- Kem, J. y Kretzschmar, GIT-Suppl., 4, 41 (1986); Chem. Abstr.- 106:5897q (1987).
- 43.- Kříž, J., Vodička, L., Burda, J. y Adamcová, J. Chromatogr., 386, 159 (1987).
- 44.- Williams, R.A., Macraey R. y Shepherd, J. Chromatogr., 477, 315 (1989).
- 45.- López-Avila, V., Milanés, J., Dodhiwala, N.S. y Beckert, W.F., J. Chromatogr. Sci., 27, 209 (1989).
- 46.- Hailin, Ge y Wallace, G.G., Anal. Chem., 61, 2391 (1989).
- 47.- Rehana Khan, M., Ong, C.P., Li, S.F.Y. y Lee, H.K., J. Chromatogr., 513, 360 (1990).
- 48.- Dilettato, D. y Arpino, P.J., Agric. Food Chem. Consum., Proc. Eur. Conf. Food Chem., 5th, 73 (1989); Chem. Abstr.- 112:117435t (1990).
- 49.- Baylocq, D. Majcherczyk, C. y Pellerin, F., Ann. Pharm. Fr., 47, 196 (1990); Chem. Abstr.- 112:240588x (1990).
- 50.- Giust, J.A., Seipelt, C.T., Anderson, B.K. Deis, D.A. y Hinders, J.P., J. Agric. Food Chem., 38, 415 (1990); Chem. Abstr.- 112:117426r (1990).
- 51.- Ageev, A.N. y Yashin, Y.I., Zh. Anal. Khim., 44, 1632 (1989); Chem. Abstr.- 112:197495a (1990).

- 52.- Sánchez, V. y McNair, H.M., J. Chromatogr. Sci., 28, 437 (1990).
- 53.- Li, S.F.Y., Khan, M.R., Lee, H.K. y Ong, C.P., J. Liq. Chromatogr., 14, 3153 (1991).
- 54.- Remcho, V.T., McNair H.M. y Rasmussen, H., J. Chem. Education, 69, A117 (1992).
- 55.- Mayer, F.L., Stalling, D.L. y Johnson, J.L., Nature, 238, 411 (1972).
- 56.- Williams, D.T., J. Agric. Food Chem., 21, 1128 (1973).
- 57.- Lerche, J. y Moerch, J., Arch. Pharm., Sci. Ed., 1, 25 (1973); Chem. Abstr.- 70273v.
- 58.- Sato, E., Uematsu, S., Uchida, M., Fukuchi, T. y Akahori, Y., Chem. Pharm. Bull., 22, 1933 (1974).
- 59.- Rohleder, V.K. y Bruchhausen, B.V., Deut. Lebensm.-Rundsch, 68, 180 (1972); Chem. Abstr.- 77:73739x (1974).
- 60.- Mestre, R. y Chevallier, C., Ann. Falsif. Expert. Chim., 70, 101 (1970); Chem. Abstr.- 87:79446c (1979).
- 61.- Kato, K., Kawana, K., Nakaoka, T. y Wada, Y., Kanagawa-Ken Eisei Kenkyusho Kenkyu Hokoku, 4, 41 (1974); Chem. Abstr.- 85:107546q (1978).
- 62.- Ueta, T., Yamazoe, R., Mori, K. Suzuki, S., Shigekazu, S. y Totani, T., Tokyo-toritsu Eisei Kenkyusho Kenkyu Nempo, 27-1, 100 (1976); Chem. Abstr.- 87:16584a (1979).
- 63.- Mestre, R., Chevallier, C., Espinosa, C. y Cornet, R., Ann. Falsif. Expert. Chim., 70, 177 (1977); Chem. Abstr.- 87:63535v (1979).
- 64.- Suzuki, T., Ishikawa, K., Sato, N. y Sakai, K., J. Assoc. Off. Anal. Chem.,
 62, 689 (1979).
- 65.- Friocourt, M.P., Berthou, F., Picart, D., Dreano, Y. y Floch, H.H., J. Chromatogr., 172, 261 (1979).
- 66.- Addison, J.B., Analyst, 104, 846 (1979).
- 67.- Barla, F., Muanyag, 14, 330 (1977); Chem. Abstr.- 88:170955z (1980).
- 68.- Ishida, M., Suyamay, K. y Adachi, S., J. Agric. Food Chem., 29, 72 (1981).
- 69.- Leoni, V., Puccetti, G. y Lagorio, S., Nuovi Ann. Ig. Microbiol., 32, 253 (1981).

- 329
- 70.- Peterson, R.J. y Chang, S.S., J. Food Sci., 47, 1444 (1982).
- 71.- Russell, D.J. y McDuffie, B., Int. J. Environ. Anal. Chem., 15, 165 (1983); Chem. Abstr.- 99:151456y.
- 72.- Nakayama. S. Kawabe, Y., Ishiguro, T. y Takahashi, S., Nippon Kenkyo Eisei Senta Shoho, 6, 82 (1979); Chem. Abstr.- 95:55673p (1983).
- 73.- Tong, H.Y. y Karasek, F.W., Anal. Chem., 56, 2124 (1984).
- 74.- Gopalakrishnan, M.G., Madhusudanan, K.P., Narayanan, C.S. y Mathew, A.G., Lebensm.-Wiss Technol., 18, 264 (1985); Chem. Abstr.-103:213648z (1985).
- 75.- Thuren, A., Bull. Environ. Contam. Toxicol., 36, 33 (1986); Chem. Abstr.-104:103629g (1986).
- 76.- Yurawecz, M.P. y Puma, B.J., J. Assoc. Off. Anal. Chem., 69, 80 (1986).
- 77.- Thurén, A. y Södergren, Intern. J. Environ. Anal. Chem., 28, 309 (1987).
- 78.- Bruner, F., Crescentini, G., Mangani, F., Palma, P. y Xiang, M., J. Chromatogr., 399, 87 (1987).
- 79.- Novikova, E.A., Garshenin, V.F. y Abdullina, E.Kh., U.S.S.R. SU 1,314,263; Chem. Abstr.- 107:133001a (1987).
- 80.- Noleau, I. y Toulemonde, B., Lebensm.-Wiss.u.-Technol., 20, 37 (1987).
- 81.- Rivera, J., Ventura, J., Caixach, De Torres, M. y Figueras, A., Int. J. Environ. Anal. Chem., 29, 15 (1989).
- 82.- Van Lierop, J.B.H. y Van Veen, R.M., J. Chromatogr., 447, 230 (1988).
- 83.- Kang, J. y Lee, H., Huanjing Huaxue, 6, 52 (1987); Chem. Abstr.-108:62124a (1988).
- 84.- Karakaya, A. y Vural, N., Ankara Univ. Eczacilik Fak. Derg., 17, 24 (1987); Chem. Abstr.- 109:228880s (1988).
- 85.- Valkenburg, C.A., Munslow, W.D. y Butler, L.C., J. Assoc. Off. Anal. Chem., 72, 602 (1989).
- 86.- Kang, J. y Lee, H., Huanjing Kexue, 9, 49 (1988); Chem. Abstr.-110:101397 (1989)..

- 88.- Snell, R.P., J. Chromatog. Sci., 27, 524 (1989).
- 89.- Halkiewicz, J., Fresenius' Z. Anal. Chem., 335, 998 (1989).
- 90.- Alfieri, A., Crawford, G. y Ahmad, I., J. Assoc. Off. Anal. Chem., 72, 760 (1989).
- 91.- Wolska, L., Bull. Inst. Marit. Trop. Med. Gdynia, **39**, 81 (1988); Chem. Abstr.-113:64398v (1990).
- 92.- Krychkov, A.A. y Rysev, A.S., *Plast. Massy*, 1, 71 (1990); Anal. Abstr.-2E67.
- 93.- López-Avila, V., Milanes, J. y Beckert, W.F., J. Assoc. Off. Anal. Chem., 74, 793 (1991).
- 94.- Gortseva, L.V., Shutova, T.V. y Chmil, V.D., Gig Sanit, 11, 89 (1990); Chem. Abstr.- 114:100033d (1991).
- 95.- Watabe, K., Kanda, I., Sato, K. y Hobo, T., J. Chromatog., 590, 289 (1992).
- 96.- Ong, C.P., Lee, H.K. y Li, S.F.Y., J. Chromatogr., 542, 473 (1991).
- 97.- Romanenko, K.K., Metody Anal. Kontrolya Kach. Prod. Khim. Prom-sti,
 2, 30 (1978); Chem. Abstr.- 89:147436t (1980).
- 98.- Lytkina, N.N., Egorova, T.M. y Mizerovskii, L.N., Plast. Massy, 3, 58 (1983); Chem. Abstr.- 98:161689v (1983).
- 99.- Meszlenyi, G. y Sipos, M., Acta Chim. Hung., 124, 877 (1987); Chem. Abstr.- 110:23460d (1989).
- 100.- Jeanfib, J. y Galloy, A., Analusis, 18, 310 (1990).
- 101.- Whitnack, G.C. y Gantz, E.St.C., Anal. Chem., 25, 553 (1953).
- 102.- Whitnack, G.C., Reinhart, J. y Gantz, E.St.C., Anal. Chem., 27, 359 (1955).
- 103.- Bezugly, V.D. y Dmitrieva, *Khim. Prom.*, 312 (1958); Chem. Abstr.- 4018 (1959).
- 104.- Townend, J. y Macintosh, E., Analyst, 86, 338 (1961).
- 105.- Shapoval, G.S., Lipatova, T.E., Shamraeva, V.S. y Marchuk, L.V., Tezisy Dokl.-Vses. Soveshch. Polyarog., 7th, 46 (1978).

- 106.- Tanaka, K. y Takeshita, M., Anal. Chim. Acta, 166, 153 (1984).
- 107.- Basaran, B., Istanbul Tek. Univ. Bul., 34, 160 (1981); Chem. Abstr.-96:210135f (1984).
- 108.- Michell, L.C., J. Assoc. Off. Agric. Chem., 40, 909 (1957).
- 109.- Kawashiro, I. Kowato, K. y Hosogai, Shikenjo Hokoku, 77, 175 (1959).
- 110.- Davidek, J. y Pokorny, J., Z. Lebensm.-Unters.-Forsch., 115, 113 (1961).
- 111.- Coupius-Peereboom, J.M., Nature, 204, 748 (1964).
- 112.- Sahasrabudhe, M.R., J. Assoc. Off. Agric. Chem., 47, 888 (1964).
- 113.- Mathew, T.V. y Mitra, S. N., Indian J. Technol., 3, 102 (1965).
- 114.- Scheidt, S.A. y Conroy, H.W., J. Assoc. Off. Anal. Chem., 49, 807 (1966).
- 115.- Woggon, H., Uhde, W.J. y Zydek, G., Z. Lebensm.-Unters.-Forsch., 138, 169 (1968).
- 116.- Alvarez-Pino, M.I., Vinagre Leiro, J. and Schmidt-Hebbel, H., Grasas y Aceites, 20, 129 (1969).
- 117.- Van Dessel, L. and Clement, J., Zebensm.-Unters.-Forsch., 139, 146 (1969).
- 118.- Valdehita, M.T. and Vicente, M.C., An. Bromatol., 23, 107 (1969-70).
- 119.- Anet, E.F., J. Chromatogr., 63, 465 (1971).
- 120.- Phipps, A.M., J. Am. Oil. Chem. Soc., 50, 21 (1973).
- 121.- Yamaraman, S., Vasundhara, T.S. and Parihar, D.B., Mikrochim. Acta, II, 365 (1976).
- 122.- Winkelmann, W. and Montag, A., Lebensmittelchem. Gerichtl. Chem., 31, 87 (1977).
- 123.- Puyol Forn, M., Grasas y Aceites, 31, 187 (1980).
- 124.- Doeden, W.G., Bowers, R.H. y Ingala, A.C., J. Am. Oil Chem. Soc., 56, 12 (1979).
- 125.- Van Peteghem, C.H. and Dekeyser, D.A., J. Assoc. Off. Anal. Chem., 64, 1331 (1981).
- 126.- Guldborg, M., Fresenius Z. Anal. Chem., 309, 117 (1981).
- 127.- Airaudo, C.B., Gayte-Sorbier, A., Laurent, P. y Creusevav, J. Chromatogr., 314, 349 (1984).

- 128.- Komaitis, M.E. y Kapel, M., J. Am. Oil Chem. Soc., 62, 1371 (1985).
- 129.- Maslowaska, J. y Bielawski, M., Prezm. Chem., 68, 551 (1989), Chem. Abstr.- 112:137663u (1990).
- 130.- Komaitis, M.E., Grasas Aceites, 42, 420 (1991).
- 131.- Done, J.N., Kennedy, G.J. y Knox, J.H., Nature, 237, 77 (1972).
- 132.- Pokorny, S., Coupek, J. y Pokorny, J., J. Chromatogr., 71, 576 (1972).
- 133.- Hammond, K., J. Assoc. Public. Anal., 16, 17 (1978).
- 134.- Lichtenthaler, R.G. y Rantelt, F., J. Chromatogr., 149, 553 (1978).
- 135.- Page, D.B., J. Assoc. Off. Anal. Chem., 62, 1239 (1979).
- 136.- Van Niekerk, P.J. y Du Plessis, L.M., J. Chromatogr., 187, 436 (1980).
- 137.- King, W.P., Joseph, K.T. y Kissinger, P.T., J. Assoc. Off. Anal. Chem., 63, 137 (1980).
- 138.- Archer, A.W., Anal. Chim. Acta, 128, 235 (1981).
- 139.- Galensa, R. y Schaefers, F. I., Dtsch. Lebensm.-Runcsch., 78, 258 (1982).
- 140.- Masoud, A.N. y Cha, Y.N., J. High Resolution Chromatogr., 5, 299 (1982).
- 141.- Page, B.D., J. Assoc. Off. Anal. Chem., 66, 727 (1983).
- 142.- Ansari, G.A., J. Chromatogr., 262, 393 (1983).
- 143.- Sanders, T.A.B. y Coopen, P.P., Rancidity in Foods, Aplied Science, Barking, en Allen, J. C. y Hamilton, R. J. (Eds.), (1983) pp. 67-108.
- 144.- Berridge, J.C., Kent, J. y Norcott, K.M., J. Chromatogr., 285, 389 (1984)
- 145.- Galensa, R., Z. Lebensm. Unters-Forsch., 178, 475 (1984).
- 146.- Kitada, Y., et al. Hokukin Eisegaku Zasshi, 25, 209 (1984).
- 147.- Kitada, Y., et al. Bunseki Kagaku, 33, E33 (1984).
- 148.- Kitada, Y., Ueda, Y., Yamamoto, M., Shinomiya, K. y Nakazawa, H., J. Liq. Chromatogr., 8, 47 (1985).
- 149.- Mizutani, T., Tajima, K., Okino, N. y Yamamoto, K., J. Chromatogr., 333, 171 (1985)
- 150.- Rubtsova, T. A., Mel'nikova, N. A., Chereshneva, A. F. y Glushkova, L. V., Zh. Anal. Khim., 40, 721 (1985).
- 151.- Baylocq, D., Majcherczyk, C. y Pellerin, F., Ann. Pharm. Fr., 43, 329 (1985).

- 152.- Orsi, F. y Abraham Szabo, A. *Elelmiszervizsgalati Kozl*, **31**, 78 (1985), Chem. Abstr.- 103:177056v (1985).
- 153.- Vargo, J.D. y Olson, K.L., Anal. Chem., 57, 672 (1985).
- 154.- Indyk, H. y Woollard, D.C., J. Chromatogr., 356, 401 (1986).
- 155.- Asap, T. y Austin, M.A., J. Sci. Fodd Agric., 37, 1045 (1986).
- 156.- Vargo, J.D. y Olson, K.L., Anal. Chem., 353, 215 (1986).
- 157.- Horvai, G., Fekete, J., Niegreisz, Zs., Tóth, K. y Pungor, E., J. Chromatogr., 385, 25 (1987).
- 158.- Anderson, J., Van Niekerk, P.J., J. Chromatogr., 394, 400 (1987).
- 159.- Centrich, M., Alvarez, M. y Centrich, F., An. Bromatol., 40, 15 (1988).
- 160.- Dieffenbacher, A., Trisconi, M. J. y Durieux, B., Mitt. Geb. Lebensmittel.-Unters. Hyg., 80, 204 (1989).
- 161.- Williams, R.A., Macrae, R. y Shepherd, M.J., J. Chromatogr., 477, 315 (1989).
- 162.- Grosset, C., Cantin, D. y Alary, J., Analusis, 17, 409 (1989).
- 163.- Takao, C., Hokkaidoritsu Eisei Kenkyushoho, 39, 19 (1989).
- 164.- Hirata, Y. y Okamoto, Y., J. Microcolumn Sep., 1, 46 (1989).
- 165.- Grosset. D. Cantin, D., Villet, A. y Alary, J., Talanta, 37, 301 (1990).
- 166.- Baillet, A., Rakotomanga, S., Ferrier, D. y Pellerin, F., J. Chromatogr., 519, 337 (1990).
- 167.- Yagoubi, N., Baillet, A.E., Pellerin, F. y Baylocq, D., J. Chromatogr., 522, 131 (1990).
- 168.- Sarlin, F. y Cellerino, G.P., Analusis, 18, 19 (1990).
- 169.- Yamada, T., Eisei Shikensho Hokoku, 108, 109 (1990); Chem. Abstr.-115:90754u.
- 170.- Garbarino, M., Boll. Chim. Ig., Parte Sci., 41, 325 (1990).
- 171.- Muñoz de la Peña, A., Salinas, F., Galeano, T. y Guiberteau, A., Anal. Chim. Acta, 234, 263 (1990).
- 172.- Andrikopoulos, N.K., Bruescheiler, H., Felber, J. y Taeschler, C., J. Am. Oil Chem. Soc., 68, 359 (1991).

- 173.- Irache, J.M., Vega, F.A. y Ezpeleta, I., *Pharm. Acta Helv.*, **67**, 152 (1992); Chem. Abstr.- 117:97416k (1992).
- 174.- Buttery, R.G. y Stuckey, B.N., J. Agric. Food Chem., 9, 283 (1961).
- 175.- Anderson, R.H., Huntley, T.E., Schwecke, W.M. y Nelson, J.H., J. Am. Oil Chem. Soc., 40, 349 (1963).
- 176.- Anderson, R.H. y Nelson, J.H., Food Techn., 17, 95 (1963).
- 177.- Schewecke, W.M. y Nelson, J.H., J. Agric. Food Chem., 12, 86 (1964).
- 178.- Takahashi, D.M., J. Assoc. Off. Agric. Chem., 48, 694 (1965).
- 179.- Takahashi, D.M., J. Assoc. Off. Agric. Chem., 49, 704 (1966).
- 180.- Schwien, W.G., Miller. B.J. y Conroy, H.W., J. Assoc. Off. Agric. Chem., 49, 809 (1966).
- 181.- McCaulley, D.F., Fazio, T., Howard, J.W., Di Cuircio, F. y Ives, J., J. Assoc. Off. Anal. Chem., 50, 243 (1967).
- 182.- Takahashi, D.M., J. Assoc. Off. Anal. Chem., 51, 490 (1968).
- 183.- Hartman, K.T. y Rose, L.C., J. Am. Oil Chem. Soc., 47, 7 (1970).
- 184.- Stoddard, E.E., J. Assoc. Off. Anal. Chem., 55, 1081 (1972).
- 185.- Singh, J. y Lapppointe, M.R., J. Assoc. Off. Anal. Chem., 57, 804 (1974).
- 186.- Page. B.D. y Kennedy, B.P., J. Assoc. Off. Anal. Chem., 59, 1208 (1976).
- 187.- Dilli, S., y Robards, K., J. Chromatogr., 133, 363 (1977).
- 188.- Toyoda, M., Ogawa, S. Tonogai, Y., Ito, Y. e Iwaida, M., J. Assoc. Off. Anal. Chem., 63, 1135 (1980).
- 189.- Austin, R.E. y Wyatt, D.M., J. Am. Oil Chem. Soc., 57, 422 (1980).
- 190.- Maruyama, T., Murakami, C., Kahematsu, J. Am. Oil Chem. Soc., 58, 97 (1981).
- 191.- Wyatt, D.M., J. Am. Oil Chem. Soc., 58, 917 (1981).
- 192.- Beaulieu, F. y Hadziyev, J. Food Science, 47, 589 (1982).
- 193.- Bajardi, M.L., Giannola, L.I. y Giammona, G., Riv. Soc. Ital. Sci. Aliment., 11, 105 (1982).
- 194.- Min, D.B. y Scheizer, D., Journal of Food Science, 48, 73 (1983).
- 195.- Stijve, T. y Diserens, J.M., Dtsch. Lebensm.-Rundsch., 79, 108 (1983).
- 196.- Yu, L., Inoko, M. y Matsumo, T., J. Agric. Food Chem., 32, 681 (1984).

- 197.- Greenberg, M.J., Hoholick, J., Robinson, R., Kubis, K., Groce, J. y Weber, L., J. Food Sci., 49, 1622 (1984).
- 198.- Di Pasquale, G., Giambelli, L., Softientini, A. y Paiélla, R., J. High Resolut. Chromatogr., Chromatogr. Commun., 8, 618 (1985).
- 199.- Yamada, T., Nakahabe, T. y Ito, K., Kanagawa-Ken Eisei Kenkyusho Kenkyu H., 16, 51 (1986).
- 200.- Rizov, N., Kafedzhieva, M., Georgiev, G.K. y Kolarska, A., *Khranitelnoprom. Nauka*, 2, 93 (1986); Chem. Abstr.- 107:5852t.
- 201.- Yagi, M. y Ichichashi, A., Amagasaki-Shiritsu Elsei Kenkyushoho, 12, 11 (1987).
- 202.- Yamamoto, A., Saito, Y., Matsuhaga, A. y Makino, M., Shokuhin Eiseihaku Zasshi, 28, 36 (1987).
- 203.- Narita, H., Suzuki, Y., Asaoka, K., Ohmura, M., Hashimoto, K., Kitada, Y., Hashizume, K., Nagano, H., Shokuhin Eiseigaku Zasshi, 29, 47 (1988).
- 204.- Suzuki, O., Yoheyamo, S., Iimura, K., Kumozaki, K. Tanaka, A., Takeshita, A., Tajima, I., Tanabe, S. y Nagao, A., Yukagaku, **39**, 685 (1990).
- 205.- Aoyama, M., Tachibana, M., Sasaki, F., Hasabe, A., Tokyo-to Suginami-Kku Eisei Shikensho Nenpo, 7, 51 (1989); Chem. Abstr.- 112:75409e (1990).
- 206.- Cortés, H.J., Bell, B.M., Pfeiffer, C.D. y Graham, J.D., J. Microcolumn Sep., 1(6), 278 (1989); Chem. Abstr.- 115:30511c (1990).
- 207.- Egsgaard, H., Larse, E., Pedersen, W.B. y Carlsen, L., Trends Anal. Chem., 11(4), 164 (1992); Chem. Abstr.- 117:112627a (1992).
- 208.- Mahon, J.H. y Chapman, R.A., Anal. Chem., 23, 1120 (1951).
- 209.- Austin, J.J., J. Am. Oil Chem. Soc., 31, 424 (1954).
- 210.- Anglin, C., Mahon, J. y Chapman, R., J. Agric. Food Chem., 4, 1018 (1956).
- 211.- Filipic, V.J. y Ogg, C.L., J. Assoc. Off. Agric. Chem., 43, 795 (1960).
- 212.- Phillips, M.A. y Hinkel, R.D., J. Agric. Food Chem., 5, 379 (1957).
- 213.- Vos, H.J., Wessels, H. y Six, C.W., Analyst, 82, 362 (1957).
- 214.- Roos, J.B., Fleischwistschaft, 11, 667 (1959).

- 215.- Hansen, P. V., Kaufmann, F.S. y Wiedermann, L.H., J. Am. Oil Chem. Soc., 36, 193 (1959).
- 216.- Berger, K.G., Sylvester, N.D y Haines, D.M., Analyst, 85, 341 (1960).
- 217.- Szalkowski, C.R. y Garber, J.B., J. Agric. Food Chem., 10, 491 (1962).
- 218.- Sloman, K.G., Romagnoli, E.J. y Cavagnol, J.C., J. Assoc. Off. Agric. Chem., 45, 76 (1962).
- 219.- Alicino, N.J., Klein, H. C., Quattrone, J.J. y Choy, T.K., J. Agric. Food Chem., 11, 496 (1963).
- 220.- Salazar, R. y del Pozo, A., Galenia Acta, 16, 45 (1963).
- 221.- Takahashi, D.M., J. Assoc. Off. Agric. Chem., 48, 489 (1965).
- 222.- Latz, H.W. y Hurtubise, R.J., J. Agr. Food Chem., 17, 352 (1969).
- 223.- Hurtubise, R.J. y Latz, H.W., J. Agric. Food Chem., 18, 377 (1970).
- 224.- Korpukhin, O.N., Shlyapintokh, V., Rusina, J.T. y Zolotova, N.V., Zh. Anal. Khim., 18, 1021 (1963).
- 225.- Dilli, S. y Robards, K., Analyst, 102, 201 (1977).
- 226.- Saucek, J. y Jelínková, E., Analyst, 107, 623 (1982).
- 227.- Sastry, C.S., Rao, K.E., y Prasas, U.Y., Talanta, 29, 917 (1982).
- 228.- Prasad, U.V., Rao, K.E., y Sastry, C.S., Food Chem., 17, 209 (1985).
- 229.- Prasad, U.V., Divakar, T.E., Hariprasar, K. y Sastry, C.S.P., Food Chem., 25, 159 (1987).
- 230.- Prasad, U.V., Divakar, Reddy, R.V.R. y Sastry, C.S.P., J. Food Sci. Technol., 25, 42 (1988).
- 231.- Gutiérrez, M.C., Gómez-Hens, A. y Peréz-Bendito, D., Fresenius Z' Anal. Chem., 334, 344 (1989).
- 232.- Ivanovich, D., Guernet-Nivaud, E., y Guernet, M., Anal. Lett., 23, 1123 (1990).
- 233.- Vomberg, I., Anal. Chim. Hung., 127, 553 (1990); Chem. Abstr.- 114:162524y (1991).
- 234.- Guiberteau, A., Galeano, T., Salinas, F., Analusis, 19, 262 (1991).
- 235.- Sastry, C.S., Gopala Rao, S. y Sastry, B.S., J. Inst. Chem., 63, 170 (1991); Chem. Abstr.- 117:142609p (1992)

- 236.- Sastry, C.S. y Gopala Rao, S., J. Food Sci. Technol., 29, 101 (1992).
- 237.- Mc Bride, H.D. y Evans, D.H., Anal. Chem., 45, 446 (1973).
- 238.- Rifkin, S.C. y Evans, D.H., Anal. Chem., 48, 2174 (1976).
- 239.- Foley, L. y Kimmerle, F.M., Anal. Chem., 51, 818 (1979).
- 240.- Brieskorn, C.H. y Mahlmeinster, K., Z. Lebensm.-Unters Forsch, 72, 348 (1980).
- 241.- Thunyaudom Tonmanee, N. y Archer, V.S. Talanta, 29, 905 (1982).
- 242.- Wang, J. y Freiha, B.A., Anal. Chim. Acta, 154, 87 (1983).
- 243.- Baudry, A. y de Labbey, A., Cosmet. Sci. Technol. Ser., 4, 47 (1985); Chem. Abstr.- 104:115865u.
- 244.- Ohmori, H., Ueda, C., Tokuno, Y., Maeda, H. y Masui, M., Chem. Pharm. Bull., 33, 4007 (1985).
- 245.- Mazzo, D., Biffor, S.E., Forbes, K.A., Bel, C. y Brooks, M.A., J. Pharm. Biomed. Anal., 6, 271 (1988).
- 246.- Wang, J. y Lin, M.S., Anal. Chem., 60, 499 (1988).
- 247.- Kaaret, T.W. y Evans, D.H., Anal. Chem., 60, 657 (1988).
- 248.- Yáñez-Sedeño, P., Pingarrón, J.M. y Polo, L. M., Anal. Chim. Acta., 252, 153 (1991).
- 249.- Ruiz, M.A., Yáñez-Sedeño, P., Pingarrón, J.M., Electroanalysis, in press.
- 250.- Paris, J.P., Gorsuch, J.D. y Hercules, D.M., Anal. Chem., 36, 1332 (1964).
- 251.- Sedlacek, B.A., Vopr. Pitan., 23, 8 (1964).
- 252.- Boughton, O.D., Bryant, R. y Combs, C.M., J. Agric. Food Chem., 15, 751 (1967).
- 253.- Miller, H.E., J. Am. Oil Chem. Soc., 48, 91 (1971).
- 254.- Bors, W., Michel, C. y Saran, M., Biochim. Biophys. Acta, 796, 312 (1984).
- 255.- Kithinji, J.P., Bartle, K.D., Raynor, M.W., Clifford, A.A., Analyst, 115, 125 (1990).
- 256.- D. Attwood y A.T. Florence, Surfactant Systems. Their Chemistry, Pharmacy and Biology, Chapman & Hall, Londres, 1983.

- 257.- Lissant, K.J. Emulsions and emulsion technology, Marcel Dekker, Nueva York, 1978.
- 258.- Robb ED., Microemulsions, Plenum, Nueva York, 1982.
- 259.- Berthod, A., Dorsey, J.G., Analusis, 16, 75 (1988).
- 260.- Rosen, M.J., Surfactants and Interfacial Phenomena, John Wiley & Sons, Inc., Nueva York, 1978.
- 261.- Hinze, W.L., Use of Surfactant and Micellar System in Analytical Chemistry, Mittal, K.L. Ed., Solution Chemistry of Surfactant. Vol. I; Plenum Publishing Coorporation. Nueva York, 1979.
- 262.- Bard, A.J., Faulkner, L.R., Electrochemical Methods: fundamentals and Applications. John Willey & Sons, Inc., Nueva York, 1980.
- 263.- Bond, A.M., Modern Polarographic Methods in Analytical Chemistry. Elsevier Ed., Londres, 1980.
- 264.- Zuman, P., The Elucidation of Organic Electrode Processes. Academic Press Inc., Nueva york, 1969.
- 265.- Meites, L., Polarographic Techniques, 2^a Ed., Interscience Publishers, John Willey & Sons, Inc., Nueva York, 1965.
- 266.- Osteryoung, J.G. y Osteryoung, R.A., Anal. Chem., 57, 101A (1985).
- 267.- Parry, E.P., Osteryoung, R.A., Z. Anal. Chem., 37, 164 (1965).
- 268.- ACS Committee on Environmental Improvement: Principles of Environmental Analysis; Anal. Chem., 55, 2210 (1983).
- 269.- Hasebe, K., Osteryoung, J., Anal. Chem., 47, 2412 (1975).
- 270.- Liteanu, C., Rica, I., Statistical Theory and Methodology of Trace Analysis.John Wiley, Nueva York, 1980.
- 271.- Official Methods of Analysis of the Association of Official Analytical Chemist, AOAC, Arlington, VA, 14th edn., 1984.
- 272.- Pingarrón, J.M., Reviejo, A.J. y Polo, L.M., Analyst, 115, 869 (1990).
- 273.- Reviejo García, A.J., González Cortés, A., Pingarrón Carrazón, J.M. y Polo Díez, L.M., Anal. Chim. Acta, 264, 141 (1992).

- 274.- Hammerich, O. y Svensmark, B., Organic Electrochemistry, an Introduction and a Guide, Lund, H. and Baizer, M.M. (Eds.), Marcel Dekker, Nueva York, 3^e edn., 1991, p. 615-650.
- 275.- Pellerin, F; Delaveau, P; Dumitrescu, D. y Safta, F., Ann. Pharm. (Fr)., 40, 221 (1982)
- 276.- Ryba, O.; Petránek, J. y Pospisil, J., Collect. Czech. Chem. Commun., 30, 843 (1965)
- 277.- Reviejo, A.J., Samprón, A., Pingarrón, J.M. y Polo, L.M., *Electroanalysis*, 4, 111 (1992)