# **UNIVERSIDAD COMPLUTENSE DE MADRID**

## FACULTAD DE CIENCIAS QUIMICAS Departamento de Química Orgánica



## SINTESIS DE POLIPRONIATOS A PARTIR DE FURANO

## MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Roberto Menchaca García

Bajo la dirección del doctor: Odón Arjona Loraque

Madrid, 2001

ISBN: 84-669-1833-7

# UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS QUIMICAS DEPARTAMENTO DE QUIMICA ORGANICA I



# SINTESIS DE POLIPROPIONATOS A PARTIR DE FURANO

**TESIS DOCTORAL** 

**ROBERTO MENCHACA GARCIA** 

MADRID, 2001

T 24900

# UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS QUIMICAS DEPARTAMENTO DE QUIMICA ORGANICA I



# SINTESIS DE POLIPROPIONATOS A PARTIR DE FURANO

Memoria que, para optar al grado de Doctor en Ciencias Químicas,

presenta

## **ROBERTO MENCHACA GARCIA**

DIRE

Prof. D. Odón Arjona/Loraque



MADRID, 2001

BIBLIOTECA

 Esta Memoria ha sido realizada durante los años 1996-2000 en el Departamento de Química Orgánica I de la Facultad de Ciencias Químicas, bajo la dirección del doctor D. Odón Arjona Loraque, a quien deseo expresar mi más sincero agradecimiento por la confianza depositada en mí para la realización de esta Tesis Doctoral.

Igualmente quiero agradecer al doctor D. Joaquín Plumet Ortega por su asesoramiento y constante preocupación a lo largo de estos años, sin el cual este trabajo no hubiera sido posible.

También, agradezco al Dr. Kenneth L. Rinehart de la Universidad de Illinois (Estados Unidos) la extraordinaria acogida que recibí durante la estancia predoctoral que allí realicé.

Quisiera expresar mi agradecimiento a un gran número de compañeros por el apoyo prestado durante tantos años, principalmente a Aurelio, Alberto, Carmen, Jenny, Marisa, y en especial a Rocío Medel, por su amistad sincera.

Por último, quisiera expresar mi gratitud hacia la Universidad Complutense de Madrid por la concesión de una beca predoctoral y de una ayuda para la estancia predoctoral. El trabajo que se expone a continuación ha sido publicado parcialmente en los siguientes artículos:

. .

"A Stereoselective Synthesis of Two Epimeric Polypropionate Fragments with Four Adjacent Chiral Centers from 7-Oxanorbornene Derivatives". O. Arjona, R. Menchaca, J. Plumet. *Tetrahedron Lett.* **1998**, *39*, 6753.

"The Lithium Amide Induced Rearrangement of Epoxysulfones Derived from Bicyclo[2.2.1]heptane System". O. Arjona, R. Menchaca, J. Plumet. *Tetrahedron* **2000** *56*, 3901.

"Base Promoted Rearrangement of N-Tosyl-2,3-exo-Aziridino[2,3]Norbornane". O. Arjona, R. Menchaca, J. Plumet. *Heterocycles* **2000**, en prensa.

"Building a Small Polypropionate Library. Synthesis of All Possible Stereotetrads (Building Blocks for Polyketide Synthesis) from Furan". O. Arjona, R. Menchaca, J. Plumet. J. Org. Chem. **2000**, enviado.

"Synthesis of the Cyclohexan Subunit of Baconipyrones A and B from Furan". O. Arjona, R. Menchaca, J. Plumet. Org. Lett. 2000, enviado.

## ÍNDICE

### LISTA DE ABREVIATURAS.

## CAPÍTULO I. Introducción.

| I.1. – Policétido 5             |
|---------------------------------|
| I.2. – Polipropionatos          |
| I.2.1. – Biogénesis 7           |
| I.2.2 Métodos de síntesis       |
| I.3 Objetivos y plan de trabajo |

# CAPÍTULO II. Síntesis de fragmentos de polipropionatos con cuatro centros estereogénicos contiguos (estereotetradas).

,

| II.1. – Estereotriadas                                                |  |  |  |
|-----------------------------------------------------------------------|--|--|--|
| II.2 Planes de síntesis                                               |  |  |  |
| II.2.1 1,3-sin-dimetil-estereotetradas                                |  |  |  |
| II.2.2 1,3-anti-dimetil-estereotetradas                               |  |  |  |
| II.3 Resultados                                                       |  |  |  |
| II.3.1 Síntesis de 1,3-sin-dimetil-estereotetradas                    |  |  |  |
| II.3.2 Síntesis de 1,3-anti-dimetil-estereotetradas                   |  |  |  |
| II.3.3 Síntesis del fragmento $C_1$ - $C_6$ de la discodermolida      |  |  |  |
| II.3.4 Planteamiento de la síntesis de un fragmento de polipropionato |  |  |  |
| con once centros estereogénicos                                       |  |  |  |
| II.4. – Conclusiones                                                  |  |  |  |

# CAPÍTULO III. Síntesis de un fragmento cíclico de polipropionato. Fragmento C<sub>1</sub>-C<sub>8</sub> de las baconipironas A y B.

| III.1. – Antecedentes                               |  |  |  |
|-----------------------------------------------------|--|--|--|
| III.2 Plan de síntesis                              |  |  |  |
| III.3 Resultados                                    |  |  |  |
| III.3.1 Síntesis del fragmento $C_1$ - $C_8$ de las |  |  |  |
| baconipironas A y B 73                              |  |  |  |
| III.4. – Conclusiones                               |  |  |  |

# CAPÍTULO IV. Reacción de $\alpha,\beta$ -epoxisulfonas bicíclicas

## con amiduros de litio.

| IV.1. – Introducción                                                            | 85  |  |  |
|---------------------------------------------------------------------------------|-----|--|--|
| IV.2 Reacción de $\alpha,\beta$ -epoxisulfonas bicíclicas con amiduros de litio | 91  |  |  |
| IV.3 Reacción de una aziridina bicíclica con amiduro de litio 1                 |     |  |  |
| IV.3.1. – Introducción                                                          | 110 |  |  |
| IV.3.2. – Resultados                                                            | 112 |  |  |
| IV.4. – Conclusiones                                                            | 115 |  |  |

### CAPITULO V. Parte experimental.

| V.1 Materiales y métodos generales                                              | 119 |
|---------------------------------------------------------------------------------|-----|
| V.2 Síntesis de 1,3-sin-dimetil-estereotetradas                                 | 121 |
| V.3 Síntesis de 1,3-anti-dimetil-estereotetradas                                | 141 |
| V.4 Síntesis del fragmento $C_1$ - $C_8$ de las baconipironas A y B             | 152 |
| V.5 Reacción de $\alpha, \beta$ -epoxisulfonas bicíclicas con amiduros de litio | 165 |

| APENDICE. Aislamiento y determinación de productos |  |  |  |  |
|----------------------------------------------------|--|--|--|--|
| naturales a partir de un organismo marino 183      |  |  |  |  |

**COLECCION DE ESPECTROS.** 

.

### LISTA DE ABREVIATURAS

| Ac                  | acetilo                          | L-selectri |                                                       |
|---------------------|----------------------------------|------------|-------------------------------------------------------|
|                     | . 11                             | de         | tri-sec-butilboronidruro de litio                     |
| acac                |                                  | m-CPBA     | acido m-cioroperoxibenzoico                           |
| AIBN                | 2,2'-azoisobutironitrilo         | MEM        | 2-metoxietoximetilo                                   |
| 9-BBN               | 9-borabiciclo[3.3.1]nonano       | MMPP       | monoperoxiftalato de magnesio                         |
| Bn                  | bencilo                          | Ms         | metanosulfonilo                                       |
| Boc                 | terc-butoxicarbonilo             | NMO        | N-óxido de 4-metilmorfolina                           |
| Bz                  | benzoilo                         | NOE        | efecto nuclear Overhauser                             |
| CSA                 | ácido canforsulfónico            | PCC        | clorocromato de piridinio                             |
| CoA                 | coenzimaA                        | Piv        | trimetilacetilo                                       |
| DBU                 | 1,8-diazabiciclo[5.4.0]undec-7-  | PMB        | <i>p</i> -metoxibencilo                               |
|                     | eno                              |            |                                                       |
| DCC                 | 1,3-diciclohexilcarbodiimida     | psi        | libras por pulgada cuadrada                           |
| DCM                 | 4-(dicianometilen)-2-metil-6-(4- | pyr        | piridina                                              |
|                     | dimetilaminoestiril)-4H-pirano   |            |                                                       |
| DDQ                 | 2,3-diciano-5,6-dicloro-1,4-     | RMN        | resonancia magnética nuclear                          |
|                     | benzoquinona                     |            |                                                       |
| DEAD                | azodicarboxilato de dietilo      | t. a.      | temperatura ambiente                                  |
| DET                 | tartrato de dietilo              | TBDPS      | terc-butildifenilsililo                               |
| DIBALH              | hidruro de diisobutilaluminio    | TBS        | terc-butildimetilsililo                               |
| DIPT                | tartrato de diisopropilo         | Tf         | trifluorometanosulfonilo                              |
| DMAP                | 4-dimetilaminopiridina           | THF        | tetrahidrofurano                                      |
| DMF                 | N, N-dimetilformamida            | TMEDA      | N, N, N', N'-tetrametiletilendi                       |
|                     |                                  |            | amina                                                 |
| DMPU                | 1,3-dimetil-3,4,5,6-tetrahidro-  | TMS        | trimetilsililo                                        |
|                     | 2(1H)-pirimidinona               |            |                                                       |
| DMSO                | dimetilsulfóxido                 | Tol        | tolueno                                               |
| e. d.               | exceso diastereomérico           | TPAP       | perrutenato de tetra-N-propil                         |
| e. e.               | exceso enantiomérico             | TPSCI      | amonio<br>cloruro de triisopropilbenceno<br>sulfonilo |
| Ipc <sub>2</sub> BH | diisopinocanfeilborano           | Τs         | <i>p</i> -toluensulfonilo                             |
| LDA                 | diisopropilamiduro de litio      | p-TsOH     | ácido p-toluensulfónico                               |
| LHMDS               | hexametildisilaziduro de litio   |            |                                                       |

**NOTA:** Las referencias bibliográficas aparecen numeradas a pie de página cada vez que se nombran. La revisión bibliográfica alcanza hasta el 15 de noviembre de 2000.

## CAPÍTULO I

- I.1. Policétidos.
- I.2. Polipropionatos.
  - I.2.1. Biogénesis.
  - I.2.2. Métodos de síntesis.
- I.3. Objetivos y plan de trabajo.

#### I. - Introducción.

#### I.1. - Policétidos.

Los policétidos constituyen una familia de productos naturales, algunos de ellos estructuralmente complejos y que exhiben un amplio espectro de propiedades biológicas. Dentro de este grupo se encuentran compuestos con actividades antibiótica, antitumoral, antifúngica, antiparasitaria e inmunomoduladora entre otras.<sup>1</sup>

El interés que despierta esa variedad de propiedades biológicas conjuntamente con el alto grado de complejidad estructural que estos sistemas poseen, ha motivado el hecho de que los policétidos macrólidos hayan sido y continuen siendo el centro de un constante interés sintético desde hace más de dos décadas.<sup>2</sup>

Los esfuerzos encaminados a diseñar las síntesis totales de estas moléculas se revelan de una extraordinaria importancia ya que, por una parte, permiten proporcionar cantidades necesarias de un compuesto determinado para ensayos biológicos y farmacológicos. Por otra parte posibilitan la preparación de análogos no naturales que podrían ser usados para determinar el mecanismo de acción biológica del producto natural mejorando, en su caso, las prestaciones farmacológicas del mismo. Por último, también permitirían confirmar, y en algunos casos determinar, la estereoquímica de dichas estructuras lo cual no es siempre posible mediante el empleo de técnicas espectroscópicas y cristalográficas.

<sup>&</sup>lt;sup>1</sup> a) O'Hagan, D. "The Polyketide Metabolites". Ellis Harwood, Chichester, **1991**. b) O'Hagan, D. *Nat. Prod. Rep.* **1992**, *9*, 447. c) O'Hagan, D. *Nat. Prod. Rep.* **1993**, *10*, 593. d) Simpson, T. J. *Chem. Ind.* **1995**, 407. e) Hopwood, D. A. *Chem. Rev.* **1997**, *97*, 2465. f) Katz, L. *Chem. Rev.* **1997**, *97*, 2557. g) Khosla, Ch. *Chem. Rev.* **1997**, *97*, 2577. h) Simpson, T. J. *Top. Curr. Chem.* **1998**, *162*, 83. i) Comprehensive Natural Products Chemistry. Vol. 1. Sankawa, V. Vol. Ed., Barton, D. H. R.; Nakanishi, K.; Meth-Cohn, O. Gen. Eds. Elsevier, **1999**.

<sup>&</sup>lt;sup>2</sup> a) Paterson, I.; Mansuri, M. M. Tetrahedron 1985, 41, 3569. b) Mulzer, J. Angew. Chem. Int. Ed. Engl. 1991, 30, 1452. c) Paterson, I. Pure Appl. Chem. 1992, 64, 1281. c) Stürmer, R.; Ritter, K.; Hoffmann, R. W. Angew. Chem. Int. Ed. Engl. 1993, 32, 101. d) Norcross, R. D.; Paterson, I. Chem. Rev. 1995, 95, 2041.

Moléculas como la rifamicina S,<sup>3</sup> la caliculina  $A^4$  y la swinholida  $A^5$  constituyen ejemplos representativos del amplio estudio sintético a que esta familia de productos naturales ha sido sometida (Figura 1).



Figura 1

#### I.2. - Polipropionatos

<sup>&</sup>lt;sup>3</sup> a) Nagaoka, H.; Rutsch, W.; Schmid, G.; Lio, H.; Johnson, M. R.; Kishi, Y. J. Am. Chem. Soc. **1980**, 102, 7962, 7965. b) Kishi, Y. Pure Appl. Chem. **1981**, 53, 1163. c) Nagaoka, H.; Kishi, Y. Tetrahedron **1981**, 37, 3873. d) Chêvenert, R.; Rose, Y. S. J. Org. Chem. **2000**, 65, 1707.

<sup>&</sup>lt;sup>4</sup> a) Evans, D. A.; Gage, J. R.; Leighton, J. L. J. Am. Chem. Soc. **1992**, 114, 9434. b) Tanimato, N.; Gerritz, S. W.; Sawabe, A.; Noda, T.; Filla, S. A.; Masamune, S. Angew. Chem. Int. Ed. Engl. **1994**, 33, 673. c) Smith III, A. B.; Friestad, G. K.; Duan, J. J. -W.; Barbosa, J.; Hull, K. G.; Iwashima, M.; Qiu, Y.; Spoors, G.; Bertounesque, E.; Salvatore, B. A. J. Org. Chem. **1998**, 63, 7596.

<sup>&</sup>lt;sup>5</sup> a) Paterson, I.; Yeung, K. -S.; Ward, R. A.; Cumming, J. G.; Smith, J. D. J. Am. Chem. Soc. **1994**, 116, 9391. b) Paterson, I.; Yeung, K.; Ward, R. A.; Smith, J. D.; Cumming, J. G.; Lamboley, S. Tetrahedron **1995**, 51, 9467. c) Nicolaou, K. C.; Ajito, K.; Patron. A. P.; Khatuya, H.; Richter, P. K.; Bertinato, P. J. Am. Chem. Soc. **1996**, 118, 3059.

Dentro de la familia de los policétidos, muchos de estos compuestos son denominados genéricamente polipropionatos.<sup>6</sup> Esta denominación pone de manifiesto la existencia de un origen biosintético común a partir de unidades de propionato y, en menor extensión, de unidades de acetato,<sup>7</sup> por medio de sucesivas condensaciones de tipo aldólico (véase apartado 1.2.1.).

Todos ellos se caracterizan por poseer en su estructura cadenas acíclicas en las cuales se alternan grupos metilo e hidroxilo ordenados en una determinada secuencia estereoquímica (Figura 2).



Figura 2

#### I.2.1. - Biogénesis.

Las semejanzas estructurales y estereoquímicas que existen entre muchos policétidos macrólidos sugieren un origen biosintético al menos similar para todos con independencia de su fuente natural. Por ejemplo, la biosíntesis de las denticulatinas A y B se efectua a partir de unidades de propionato que se van ensamblando sucesivamente.<sup>8</sup> Estos dos compuestos son aislados a partir de moluscos marinos del género *Siphonaria denticulata* y comparten un origen biosintético común con antibióticos macrólidos tales como la eritromicina<sup>9</sup> y la monensina,<sup>10</sup> que derivan del metabolismo bacteriano (Figura 3).

<sup>&</sup>lt;sup>6</sup> a) Masamune, S.; Mc Carthy, P. A. "Macrolide Antibiotics: Chemistry, Biology and Practice". Omura, S. Ed. Academic Press, **1984**. b) "Macrolides: Chemistry, Pharmacology and Clinical Uses". Brysker, A. J.; Butzler, J. P.; Neu, H. C.; Tulkens, P. M. Eds. Anette Blackwell, Paris, **1993**. c) O'Hagan, D. *Nat. Prod. Rep.* **1995**, *12*, 1. d) Dutton, C. J.; Banks, B. J.; Cooper, C. B. *Nat. Prod. Rep.* **1995**, *12*, 165.

<sup>&</sup>lt;sup>7</sup> Para aspectos generales, véase: a) Cane, D. E. Science **1990**, 263, 338. b) Staunton, J. Angew. Chem. Int. Ed. Engl. **1991**, 30, 1302. c) Robinson, J. A. "Progress in Natural Products Chemistry". Vol 58, p 1-81. Herz, W.; Kirby, G. W.; Steglich, W.; Tamm, C. Eds. Springer, **1991**.

<sup>&</sup>lt;sup>8</sup> Manker, D. C.; Garson, M. J.; Faulkner, D. J. J. Chem. Soc., Chem. Commun. 1988, 1061.

<sup>&</sup>lt;sup>9</sup> Cane, D. E.; Hasler, H.; Taylor, P. B.; Liang, T. -C. *Tetrahedron* **1983**, *39*, 3449.

<sup>&</sup>lt;sup>10</sup> a) Cane, D. E.; Hasler, H.; Liang, T. -C. J. Am. Chem. Soc. **1982**, 104, 7274. b) Sood, G. R.; Ashworth, D. M.; Ajaz, A. A.; Robinson, J. A. J. Chem. Soc., Perkin Trans. 1 **1988**, 3183.



Figura 3

Como ejemplo de secuencia biogenética razonablemente bién conocida, se puede citar el caso de la eritromicina. Esta es un antibiótico macrólido producido por bacterias del tipo *Streptomyces erythreus* que se emplea para el tratamiento de infecciones bacterianas resistentes a la penicilina. El mecanismo de biosíntesis de la eritromicina ha sido ampliamente estudiado<sup>11</sup> y permite ilustrar uno de los modos en que la condensación de las distintas unidades de propionato puede ocurrir en la Naturaleza (Esquema 1). La enzima policétido-sintetasa (PKS) es la encargada de ir ensamblando las sucesivas unidades de propionato a partir de propionil coenzima A hasta producir el fragmento de trece unidades 1. En el proceso de elongación también participan otras enzimas como cetoreductasas y deshidrogenasas. Finalmente, una

<sup>&</sup>lt;sup>11</sup> a) Mann, J. "Chemical Aspects of Biosynthesis". Oxford University Press, **1994**, p 30. b) Brown, M. J. B.; Cortés, J.; Cutter, A. L.; Leadlay, P. F.; Staunton, J. J. Chem. Soc., Chem. Commun. **1995**, 1517. c) Cortés, J.; Wiesmann, K. E. H.; Roberts, G. A.; Brown, M. J. B.; Staunton, J.; Leadlay, P. F. Science **1995**, 268, 1487. d) Pieper, R.; Luo, G.; Cane, D. E.; Khosla, Ch. J. Am. Chem. Soc. **1995**, 117, 11373. e) Kao, C. M.; Luo, G.; Katz, L.; Cane, D. E.; Khosla, Ch. J. Am. Chem. Soc. **1996**, 118, 9184. f) Jacobsen, J. R.; Hutchinson, C. R.; Cane, D. E.; Khosla, Ch. Science **1997**, 277, 367.

enzima tioesterasa provoca la liberación de esta cadena que cicla formando la macrolactona 6desoxieritronolida B, precursora de la eritromicina A.



**Esquema** 1

#### I.2.2. - Métodos de síntesis.

Se han desarrollado un amplio número de metodologías que permiten el acceso a los distintos fragmentos de polipropionatos y que aseguran un estricto control de la estereoquímica en estos sistemas. De entre ellas resumiremos las siguientes estrategias como más relevantes.

a) métodos basados en la reacción aldólica y sus variantes asimétricas. Aproximación biomimética.

b) métodos basados en la adición diastereo- y enantioselectiva de compuestos crotilmetálicos a aldehidos.

c) métodos basados en reacciones pericíclicas.

d) métodos basados en el empleo de carbohidratos como materiales de partida.

e) métodos basados en la apertura de epóxidos.

f) métodos basados en el empleo de precursores oxabicíclicos.

## a) Métodos basados en la reacción aldólica y sus variantes asimétricas. Aproximación biomimética.

De entre todas las metodologías sintéticas que permiten acceder a polipropionatos las más empleadas son las que conllevan un estereocontrol acíclico, y la más importante de ellas es, sin duda, la condensación aldólica asimétrica<sup>12</sup> entre un aldehido y un equivalente sintético de propionato seguida de la reducción estereoselectiva del grupo carbonilo (Esquema 2).<sup>13</sup>



<sup>&</sup>lt;sup>12</sup> a) Bach, T. Angew. Chem. Int. Ed. Engl. **1994**, 33, 417. b) Franklin, A. S.; Paterson, I. Contemporary Org. Synth. **1994**, 1, 317. c) Mukaiyama, T.; Kobayashi, S. Org. React. **1995**, 46, 1. d) Mukaiyama, T. Aldrichimica Acta **1996**, 29, 59. e) Takayama, S.; Mc. Garvey, G. J.; Wong, C. H. Chem. Soc. Rev. **1997**, 26, 407. f) Cowden, C. J.; Paterson, I. Org. React. **1997**, 51, 1. g) Nelson, S. G. Tetrahedron: Asymmetry **1998**, 9, 357. h) Mahrwald, R. Chem. Rev. **1999**, 99, 1095. i) Rassu, G.; Zanardi, F.; Battistini, L.; Casiraghi, G. Synlett **1999**, 1333. j) Denmark, S. E.; Stavenger, R. A.; Wong, K. -T.; Su, X. J. Am. Chem. Soc. **1999**, 121, 4982.

<sup>&</sup>lt;sup>13</sup> a) Walkup, R. D.; Kahl, J. D.; Kane, R. D. J. Org. Chem. 1998, 63, 9113. b) Paterson, I.; Cowden, C. J.; Woodrow, M. D. Tetrahedron Lett. 1998, 39, 6037. c) Paterson, I.; Arnott, E. A. Tetrahedron Lett. 1998, 39, 7185. d) Paterson, I.; Yeung, K. -S.; Watson, Ch.; Ward, R. A.; Wallace, P. A. Tetrahedron 1998, 54, 11935. e) Roush, W. R.; Dilley, G. J. Tetrahedron Lett. 1999, 40, 4955. f) Esteve, C.; Ferreró, M.; Romea, P.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1999, 40, 5079. g) Esteve, C.; Ferreró, M.; Romea, P.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1999, 40, 5079. g) Esteve, C.; Ferreró, M.; Romea, P.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1999, 40, 5079. g) Esteve, C.; Ferreró, M.; Romea, P.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1999, 40, 5079. g) Esteve, C.; Ferreró, M.; Romea, P.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1999, 40, 5079. g) Esteve, C.; Ferreró, M.; Romea, P.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1999, 40, 5079. g) Esteve, C.; Ferreró, M.; Romea, P.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1999, 40, 5079. g) Esteve, C.; Ferreró, M.; Romea, P.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1999, 40, 5079. g) Esteve, C.; Ferreró, M.; Romea, P.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1999, 40, 5079. g) Esteve, C.; Ferreró, M.; Romea, P.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1999, 40, 5079. g) Esteve, C.; Ferreró, M.; Romea, P.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1999, 40, 5079. g) Esteve, C.; Ferreró, M.; Romea, P.; Urpí, F.; Vilarrasa, J. Tetrahedron Lett. 1999, 40, 5079. g) Esteve, C.; Ferreró, M.; Romea, P.; Urpí, F.; Vilarrasa, J.; Scott, J. P. J. Chem. Soc., Perkin Trans. 1 1999, 1003. k) Delas, Ch.; Szymoniak, J.; Lefrank, H.; Möise, C. Tetrahedron Lett. 1999, 40, 1121, 1123. l) Paterson, I.; Lombart, H. -G.; Allerton, Ch. Org. Lett. 1999, 1, 19. m) Paterson, I.; Doughly, V. A.; Mc Leod, M. D.; Trieselmann, T. Angew. Chem. Int. Ed. Engl. 2000, 39, 1308.

Para lograr el control de la estereoquímica absoluta y relativa en estos procesos se han empleado un gran número de reactivos o auxiliares quirales en uno o ambos fragmentos a unir, o bien ácidos de Lewis quirales que actúan como catalizadores en condensaciones de tipo Mukaiyama.<sup>14</sup>

La aplicación iterativa de esta metodología constituye una aproximación biomimética a estos compuestos. Paterson<sup>15</sup> ha empleado este método para acceder a cadenas de polipropionatos que no se encuentran presentes en compuestos naturales (Esquema 3). La condensación aldólica enantioselectiva entre el aldehido 2 y el enolato de boro derivado de la cetona quiral 3 permitió obtener, después de la reducción con LiBH<sub>4</sub> y protección de los grupos hidroxilos formados, el fragmento de polipropionato 4 que contiene cuatro centros estereogénicos. La desprotección del grupo bencilo seguida de oxidación de Swern condujo a la formación de un nuevo compuesto carbonílico 5 sobre el cual se realizará la siguiente condensación aldólica con otro equivalente del compuesto 3. El empleo repetido de esta secuencia sintética condujo al fragmento de polipropionato 6 con doce centros estereogénicos.

<sup>&</sup>lt;sup>14</sup> a) Paterson, I.; Channon, J. A. Tetrahedron Lett. 1992, 33, 797. b) Paterson, I.; Perkins, M. V. Tetrahedron 1996, 52, 1811. c) Szymoniak, J.; Lefrank, H.; Möise, C. J. Org. Chem. 1996, 61, 3926. d) Paterson, I.; Mc Leod, M. D. Tetrahedron Lett. 1997, 38, 4183. e) Grieco, P. A.; Speake, J. D.; Yeo, S. K.; Miyashita, M. Tetrahedron Lett. 1998, 39, 1125. f) Rychnovsky, S. D.; Sinz, Ch. J. Tetrahedron Lett. 1998, 39, 6811. g) Calter, M. A.; Guo, X.; J. Org. Chem. 1998, 63, 5308. h) Kiyooka, S.; Shahid, K. A.; Hena, M. A. Tetrahedron Lett. 1999, 40, 6447. i) Hayakawa, H.; Miyashita, M. J. Chem. Soc., Perkin Trans. 1 1999, 3399. j) Watanabe, H.; Watanabe, H.; Bando, M.; Kido, M.; Kitahara, T. Tetrahedron 1999, 55, 9755.
<sup>15</sup> Paterson, I.; Scott, J. P. Tetrahedron Lett. 1997, 38, 7441, 7445.



Esquema 3

No obstante, la preparación de cadenas de polipropionatos por medio de estas síntesis biomiméticas lineales posee algunas limitaciones al ser requeridas varias etapas de síntesis con el fín de obtener el nuevo sintón para la posterior adición del equivalente sintético de propionato.

En todo caso, el empleo combinado de la reacción aldólica con otro tipo de procesos,<sup>16</sup> así como su uso iterativo en sistemas soportados en fase sólida,<sup>17</sup> ha permitido el acceso a muy diferentes cadenas de polipropionatos.

<sup>&</sup>lt;sup>16</sup> a) Lu, L.; Chang, H. -Y.; Fang, J. -M. J. Org. Chem. **1999**, 64, 843. b) Delas, Ch.; Möise, C. H. Synlett **2000**, 251.

<sup>&</sup>lt;sup>17</sup> a) Reggelin, M.; Brenig, V. Tetrahedron Lett. **1996**, 37, 6851. b) Kobayashi, S.; Wakabayashi, T.; Yasuda, M. J. Org. Chem. **1998**, 63, 4868. c) Reggelin, M.; Brenig, V.; Welcker, R. Tetrahedron Lett. **1998**, 39, 4801. d) Gennari, C.; Ceccarelli, S.; Piarulli, U.; Aboutayab, K.; Donghi, M.; Paterson, I. Tetrahedron **1998**, 54, 14999. e) Hanessian, S.; Ma, J.; Wang, W. Tetrahedron Lett. **1999**, 40, 4631. f) Paterson, I.; Donghi, M.; Gerlach, K. Angew. Chem. Int. Ed. Engl. **2000**, 39, 3315.

# b) Métodos basados en la adición diastereo- y enantioselectiva de compuestos crotil-metálicos a aldehidos.

La adición de compuestos crotil-metálicos a aldehidos genera dos centros estereogénicos contiguos (Esquema 4). La estereoquímica *sin* o *anti* de los aductos formados depende de varios factores (geometría de la olefina, metal empleado, presencia o no de ácidos de Lewis, etc.).<sup>18</sup>



#### Esquema 4

Dado que los aductos formados (X: CH<sub>2</sub>) pueden ser transformados en los correspondientes  $\alpha$ -metil- $\beta$ -hidroxialdehidos (X: O) por ruptura oxidativa del doble enlace C-C, esta metodología es sintéticamente equivalente a la reacción aldólica.

Así, la reacción entre el (Z)-crotiltrifluorosilano 7 con  $\beta$ -hidroxi- $\alpha$ -metilaldehidos quirales ha sido empleada por Roush para la síntesis de fragmentos de polipropionatos con cinco centros estereogénicos contiguos (Esquema 5).<sup>19</sup> El aldehido de partida 8 fué preparado a partir de 9 por bishidroxilación catalítica del doble enlace con OsO<sub>4</sub> seguida de ruptura oxidativa con NaIO<sub>4</sub>. El tratamiento de 8 con (Z)-crotiltrifluorosilano permitió acceder a las estereopentadas 10 y 11.

<sup>&</sup>lt;sup>18</sup> a) Sato, K.; Kira, M.; Sakurai, H. J. Am. Chem. Soc. **1989**, 111, 6429. b) White, J. D.; Porter, W. J.; Tiller, T. Synlett **1993**, 535. c) Chemler, Sh. R.; Roush, W. R. J. Org. Chem. **1998**, 63, 3800 d) Taylor, R. E.; Gavarri, J. P.; Hearn, B. R. Tetrahedron Lett. **1998**, 39, 9361. c) Marshall, J. A.; Grant, Ch. M. J. Org. Chem. **1999**, 64, 8214.

<sup>&</sup>lt;sup>19</sup> Chemler, S. R.; Roush, W. R. Tetrahedron Lett. 1999, 40, 4643.



Esquema 5

#### c) Métodos basados en reacciones pericíclicas.

Las reacciones pericíclicas también han sido empleadas en la obtención de fragmentos de polipropionatos al transcurrir con una estereoselectividad generalmente predecible.<sup>20</sup> De entre ellas, las cicloadiciones [4+2] han sido usadas como etapas clave en la síntesis de varios productos naturales con estructura de polipropionato.

A modo de ejemplo, la cicloadición hetero-Diels-Alder promovida por ácidos de Lewis del aldehido ópticamente puro **12** con 1-metoxi-3-(trimetilsililoxi)-1,3-butadieno, (dieno de Danishefsky), permitió la formación del aducto **13**, que fué posteriormente funcionalizado para obtener el fragmento de polipropionato **14**, molécula clave en las síntesis totales de las epotilonas A y B (Esquema 6).<sup>21</sup>

<sup>&</sup>lt;sup>20</sup> a) Myles, D. C.; Danishefsky, S. J. J. Org. Chem. **1990**, 55, 1636. b) Myles, D. C.; Yang, G. Tetrahedron Lett. **1994**, 35, 2503. c) Rigby, J. H.; Fales, K. R. Tetrahedron Lett. **1998**, 39, 5717.

<sup>&</sup>lt;sup>21</sup> Meng, D.; Bertinato, P.; Balog, A.; Su, D. -Sh.; Kamenecka, T.; Sorensen, E. J.; Danishefsky, S. J. J. Am. Chem. Soc. **1997**, 119, 10073.



# d) Métodos basados en el empleo de carbohidratos como materiales de partida.

El empleo de estas moléculas como precursores se debe en gran medida a su fácil accesibilidad en forma ópticamente pura y bajo coste económico. Su utilización ha permitido el acceso a varios productos naturales con estructura total o parcial de polipropionato.<sup>22</sup>

En general, la metodología consiste en la manipulación de los centros estereogénicos y las funcionalidades originales en el compuesto de partida enantioméricamente puro, a menudo sobre el anillo de furanosa o piranosa para, posteriormente, por medio de una reacción de apertura obtener la estructura deseada.

Así, la D-glucosa fue una de las moléculas precursoras utilizadas en la síntesis total de la bafilomicina A realizada por K. Toshima.<sup>23</sup> La funcionalización de la misma permitió acceder al

<sup>&</sup>lt;sup>22</sup> a) Chen, S. -H.; Horvath, R. F.; Joglar, J.; Fisher, M. J.; Danishefsky, S. J. J. Org. Chem. **1991**, 56, 5834. b) Eshelman, J. E.; Epps, J. L.; Kallmerten, J. Tetrahedron Lett. **1993**, 34, 749, 753.

<sup>&</sup>lt;sup>23</sup> Toshima, K.; Jyojima, T.; Yamaguchi, H.; Noguchi, Y.; Yoshida, T.; Murase, H.; Nakata, M.; Matsamura, Sh. J. Org. Chem. 1997, 62, 3271.

derivado 1  $5^{24}$  a partir del cual se obtuvo 16, el fragmento C<sub>18</sub>-C<sub>25</sub> de dicho producto natural (Esquema 7).



Esquema 7

#### e) Métodos basados en la apertura de epóxidos.

Esta estrategia se basa en la epoxidación asimétrica de alcoholes alílicos desarrollada por Sharpless<sup>25</sup> y que ha sido ampliamente utilizada para la introducción estereoselectiva de heteroátomos en sistemas acíclicos. A continuación, la apertura regioselectiva del anillo oxiránico genera el fragmento de polipropionato.<sup>26</sup>

<sup>&</sup>lt;sup>24</sup> Toshima, K.; Misawa, M.; Ohta, K.; Tatsuta, K.; Kinoshita, M. Tetrahedron Lett. 1989, 30, 6417.

<sup>&</sup>lt;sup>25</sup> Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. **1987**, 109, 5765.

<sup>&</sup>lt;sup>26</sup> a) Murphy, P. J.; Procter, G. Tetrahedron Lett. **1990**, 31, 1059. b) Watanabe, H.; Kitahara, T. Tetrahedron Lett. **1998**, 39, 8313. c) Jung, M. E.; Lee, W. S.; Sun, D. Org. Lett. **1999**, 1, 307. c) Hayakawa, H.; Miyashita, M. J. Chem. Soc., Perkin Trans. 1 **1999**, 3399.

De este modo, por epoxidación asimétrica del alcohol alílico 17 empleando (+)diisopropil tartrato como ligando quiral se accedió al epóxido 18 de forma mayoritaria. El tratamiento del mismo con un cianocuprato de alto orden permitió acceder al triol 19 que constituye la subunidad C<sub>7</sub>-C<sub>13</sub> de la zincoforina (Esquema 8).<sup>27</sup>



zincoforina



#### f) Métodos basados en el empleo de precursores oxabicíclicos.

Una alternativa a los procedimientos descritos anteriormente consiste en el empleo de precursores oxabicíclicos sobre los cuales es posible la introducción de grupos hidroxilo y metilo con total estereocontrol, dando lugar finalmente a la correspondiente secuencia de polipropionato por medio de las transformaciones adecuadas.

Son varios los ejemplos recogidos en la bibliografía sobre la utilización de derivados oxabicíclicos en la preparación de polipropionatos. Cronológicamente, la primera síntesis fue la

<sup>&</sup>lt;sup>27</sup> Marshall, J. A.; Palovich, M. R. J. Org. Chem. 1998, 63, 3701.

realizada por J. D. White<sup>28</sup> a partir de una 8-oxabiciclo[3.2.1]octanona, resultado de la cicloadición entre el acetal derivado del 2-acetilfurano y el catión oxialilo, obtenido a su vez a partir de la 2,4-dibromopentan-3-ona por reacción con el par Zn-Cu<sup>29</sup> (Esquema 9). La apertura del puente oxigenado se realizó por saponificación del resto acetato, obtenido por reacción de Baeyer-Villiger con formación de la correspondiente hidroxicicloheptanona. Tras la correcta localización de los grupos metilo e hidroxilo, la ozonolisis del doble enlace enólico condujo a la lactona de Prelog-Djerassi, que es un producto de degradación de varios antibióticos naturales a la vez que un importante intermedio de síntesis.<sup>30</sup>



<sup>28</sup> White, J. D.; Fukuyama. Y. J. Am. Chem. Soc. 1979, 101, 226.

<sup>&</sup>lt;sup>29</sup> Hoffmann, H. M. R. Angew. Chem. Int. Ed. Engl. 1984, 23, 1.

<sup>&</sup>lt;sup>30</sup> Martin, S. F.; Guinn. D. E. Synthesis 1991, 245.

Posteriormente, J. S. Yadav<sup>31</sup> ha descrito la obtención del fragmento  $C_{19}$ - $C_{27}$  de la rifamicina S partiendo asimismo de derivados del 8-oxabiciclo[3.2.1]octano. Tras funcionalizar el biciclo en forma ópticamente pura mediante una hidroboración asimétrica, su reducción con LiAlH<sub>4</sub> condujo a un fragmento acíclico de cinco centros estereogénicos que se homologó en dos carbonos más por medio de una olefinación, una epoxidación asimétrica de Sharpless y tratamiento con dimetilcuprato de litio (Esquema 10).



<sup>&</sup>lt;sup>31</sup> a) Rama Rao, A. V.; Yadav, J. S.; Vidyasagar. V. J. Chem. Soc., Chem. Commun. **1985**, 55. b) Yadav, J. S.; Rao, C. S.; Chandrasekhar, S.; Rama Rao, A. V. TetrahedronLett. **1995**, 36, 7717.

A partir de los mismos precursores, M. Lautens ha preparado el fragmento  $C_{21}$ - $C_{27}$  de la rifamicina  $S^{32}$  así como el fragmento  $C_{17}$ - $C_{23}$  de la ionomicina.<sup>33</sup> En el primer caso, la apertura del puente oxigenado tuvo lugar por medio de la adición estereoselectiva de MeLi al doble enlace, mientras que en el segundo ejemplo se utilizó DIBALH (Esquema 11). El doble enlace de cada uno de los cicloheptenoles resultantes se ozonizó para dar lugar a los productos finales. Aunque estas secuencias se han llevado a cabo a partir de compuestos *meso*, se han dado los primeros pasos para realizar estas aperturas en forma quiral.<sup>34</sup> Empleando un precursor oxabicíclico similar, A. M. Montaña ha descrito también la síntesis de la citada subunidad  $C_{17}$ - $C_{23}$  de la ionomicina.<sup>35</sup>

<sup>&</sup>lt;sup>32</sup> Lautens, M.; Belter. R. K. Tetrahedron Lett. 1992, 33, 2617.

<sup>&</sup>lt;sup>33</sup> Lautens, M.; Chiu, P.; Colucci. J. T. Angew. Chem. Int. Ed. Engl. 1993, 32, 281.

<sup>&</sup>lt;sup>34</sup> a) Lautens, M.; Gajda, C.; Chiu. P. J. Chem. Soc., Chem. Commun. **1993**, 1193. b) Lautens, M.; Chiu, P.; Ma, S.; Rovis. T. J. Am. Chem. Soc. **1995**, 117, 532.

<sup>&</sup>lt;sup>35</sup> a) Montaña, A. M.; García, F.; Grima, P. M. *Tetrahedron* **1999**, *55*, 5483. b) Montaña, A. M.; García, F.; Grima, P. M. *TetrahedronLett.* **1999**, *40*, 1375.



Esquema 11

P. Vogel ha utilizado derivados 7-oxanorbornénicos fácilmente accesibles en forma ópticamente pura empleando el 2,4-dimetilfurano como dieno ("azúcares desnudos de la segunda generación"), y que han servido de precursores para la preparación de varias cadenas de polipropionatos conteniendo de cuatro a once centros estereogénicos.<sup>36,37</sup> Así, por ejemplo, se han preparado sulfonas 7-oxanorbornénicas, cuyo tratamiento con LiAlH<sub>4</sub> proporcionó los correspondientes productos de apertura (Esquema 12). Por posterior desulfonilación y ruptura del doble enlace se llegó a fragmentos de polipropionatos con cuatro centros estereogénicos.<sup>38</sup>



Esquema 12

El mismo autor ha desarrollado también una nueva estrategia consistente en la utilización de una cadena aquiral poliinsaturada para su conversión en polipropionatos por medio de la introducción quimio- y estereoselectiva de grupos hidroxilo y metilo.<sup>39</sup> La cicloadición del 2,2'- etilidén-bis-(3,5-dimetilfurano) con un equivalente de bromopropinoato de metilo condujo a un derivado 7-oxanorbornadiénico que fué transformado en una cadena de polipropionato de seis centros estereogénicos (Esquema 13). A destacar en esta secuencia el proceso de apertura del

<sup>&</sup>lt;sup>36</sup> a) Kernen, P.; Vogel. P. Tetrahedron Lett. **1993**, 34, 2473. b) Sevin, A. -F.; Vogel. P. J. Org. Chem. **1994**, 59, 5920. c) Kernen, P.; Vogel. P. Helv. Chim. Acta **1995**, 78, 301.

<sup>&</sup>lt;sup>37</sup> El mismo autor ha desarrollado otras metodologías conducentes a la obtención de cadenas polipropiónicas, véase: a) Roulet, J. M.; Puhr, G.; Vogel, P. *Tetrahedron Lett.* **1997**, *38*, 6201. b) Fernández, T.; Suárez, D.; Sordo, J. A.; Monnat, F.; Rovers, E.; De Castro, A. E.; Schenk, K.; Vogel, P. J. Org. Chem. **1998**, *63*, 9490.

<sup>&</sup>lt;sup>38</sup> a) Bialecki, M.; Vogel. P. Tetrahedron Lett. **1994**, 35, 5213. b) Bialecki, M.; Vogel. P. Helv. Chim. Acta **1995**, 78, 325.

<sup>&</sup>lt;sup>39</sup> a) Marchionni, C.; Vogel, P.; Roversi. P. *Tetrahedron Lett.* **1996**, *37*, 4149. b) Ancerewicz, J.; Vogel. P. *Helv. Chim. Acta* **1996**, *79*, 1393.

puente oxigenado, que transcurrió por adición  $S_N2'$  de Me<sub>2</sub>CuLi sobre una enona. El anillo furánico restante puede experimentar a continuación una segunda cicloadición para construir un nuevo sistema 7-oxanorbornénico, aunque este procedimiento aún necesita ser optimizado.



Esquema 13

La síntesis asimétrica de un fragmento de 7 átomos de carbono presente en las moléculas de forboxazol y (-)-discodermolida también ha sido descrita partiendo de un precursor oxabicíclico (Esquema 14).<sup>40</sup> Así, la reducción diastereoselectiva de la cetona **20** y posterior protección como éteres bencílicos de los alcoholes resultantes, permitió la obtención de la

<sup>&</sup>lt;sup>40</sup> Misske, A. M.; Hoffmann, H. M. R. Tetrahedron 1999, 55, 4315.

mezcla racémica de 21 y 22. La hidroboración asimétrica seguida de una oxidación de Baeyer-Villiger condujo a las lactonas (-)-23 y (-)-24, fácilmente separables por cromatografía en columna. Finalmente, a partir de ambos compuestos se obtuvieron, respectivamente, el fragmento  $C_{20}$ - $C_{26}$ , (+)-25, de los forboxazoles A y B y el fragmento  $C_1$ - $C_7$ , (+)-26, de la discodermolida.



Esquema 14

.

`

En la bibliografía también se describen otras metodologías que han sido empleadas para acceder a sistemas polipropiónicos, si bien tienen un uso más restringido.<sup>41</sup>

Una de estas estrategias consiste en la elongación simultanea de la cadena en ambas direcciones para efectuar después un proceso de desimetrización en los extremos.<sup>42</sup> Así, por ejemplo, a partir del dieno simétrico 27 se obtuvo el compuesto 28 por medio de una serie de transformaciones destinadas a la elongación simultanea de la cadena. A continuación, se realizó el proceso de enantiodiferenciación por medio de una acetalización cinética empleando *d*-mentona y ácido trifluorometanosulfónico como catalizador. Finalmente, a partir del compuesto 29 resultante del proceso anterior, se accedió al fragmento C<sub>19</sub>-C<sub>27</sub> 30 de la rifamicina S (Esquema 15).<sup>43</sup>

<sup>&</sup>lt;sup>41</sup> a) Carretero, J. C.; Domínguez, E. J. Org. Chem. **1993**, 58, 1596. b) Carretero, J. C.; Domínguez, E. *Tetrahedron* **1994**, 50, 7557. c) Hanessian, S.; Wang, W.; Gai, Y.; Olivier, E. J. Am. Chem. Soc. **1997**, 119, 10034. d) Smith III, A. B.; Cho, Y. S.; Friestad, G. K. *Tetrahedron Lett.* **1998**, 39, 8765. e) Tullis, J. S.; Vares, L.; Kann, N.; Norrby, P. -O.; Rein, T. J. Org. Chem. **1998**, 63, 8284. f) Ward, D. E.; Guo, Ch.; Sasmal, P. K.; Man, Ch. C.; Sales, M. Org. Lett. **2000**, 2, 1325. g) Hunt, K. W.; Grieco, P. A. Org. Lett. **2000**, 2, 1717.

<sup>&</sup>lt;sup>42</sup> a) Magnuson, S. R. Tetrahedron 1995, 51, 2167. b) Perkins, M. V.; Sampson, R. A. Tetrahedron Lett. 1998, 39, 8367.

<sup>43</sup> Harada, T.; Kagamihara, Y.; Tanaka, S.; Sakamoto, K.; Oku, A. J. Org. Chem. 1992, 57, 1637.



Me b

rifamicina S

Esquema 15

#### I.3. - Objetivos y plan de trabajo.

El objetivo de la presente Memoria radica en la preparación de distintos tipos de cadenas polipropiónicas utilizando para ello precursores 7-oxanorbornénicos que se obtienen a partir del furano *vía* cicloadición Diels-Alder con los dienófilos apropiados.

En el capítulo II se lleva a cabo la síntesis de todos los isómeros posibles de los fragmentos de polipropionato que poseen cuatro centros estereogénicos contiguos (estereotetradas), a partir de los cicloaductos **31** y **32** (Esquema 16).



Esquema 16

En el capítulo III se realiza la síntesis de un fragmento cíclico con estructura de polipropionato como es el fragmento  $C_1$ - $C_8$  33 de las baconipironas A y B, a partir del cicloaducto 31 (Esquema 17).



baconipirona A, R=Me baconipirona B, R=H



Esquema 17

En el capítulo IV se realiza un estudio de la reacción entre varias  $\alpha,\beta$ -epoxisulfonas bicíclicas y distintos amiduros de litio. Este estudio viene motivado por el hallazgo de una transformación novedosa ( $\alpha,\beta$ -epoxisulfona-enona) que fué utilizada como etapa clave para la síntesis de varias de las estereotetradas obtenidas en el capítulo II (Esquema 18).

Esquema 18
# CAPÍTULO II

- II.1. Estereotriadas.
- II.2. Planes de síntesis.

II.2.1. - 1,3-sin-dimetil-estereotetradas.

II.2.2. - 1,3-anti-dimetil-estereotetradas.

# II.3. - Resultados

- II.3.1. Síntesis de 1,3-sin-dimetil-estereotetradas.
- II.3.2. Síntesis de 1,3-anti-dimetil-estereotetradas.
- II.3.3. Síntesis del fragmento C<sub>1</sub>-C<sub>6</sub> de la discodermolida.
- II.3.4. Planteamiento de la síntesis de un fragmento de polipropionato

con once centros estereogénicos.

II.4. - Conclusiones.

II. - Síntesis de fragmentos de polipropionato con cuatro centros estereogénicos contiguos (estereotetradas).

#### II.1. - Estereotriadas

En 1987, R. W. Hoffmann<sup>44</sup> postuló que un compuesto polipropiónico podría ser analizado en función de las subunidades de tres centros estereogénicos consecutivos o estereotriadas que contuviera. De este modo, la síntesis de estos productos naturales consistiría en la preparación de bloques individuales conteniendo las estereotriadas A-D (Figura 4) convenientemente funcionalizadas en ambos extremos, para luego incorporarlas como unidades en la molécula objetivo.



Figura 4

Esta metodología presenta varios aspectos ventajosos. Por una parte, se trata de un proceso convergente. Además, posibilita la síntesis de análogos no naturales de cualquier cadena polipropiónica y, eventualmente, la determinación de secuencias de estereoquímicas desconocidas.

El problema que plantearía esta aproximación sintética se pone de manifiesto cuando las distintas subunidades deben ser ensambladas. Esta dificultad se superaría si los extremos del fragmento están adecuadamente funcionalizados de modo que se pueda ejercer un control de la estereoquímica de los nuevos centros quirales que se crean en la región de unión. En la literatura se recogen numerosos ejemplos que ilustran las estrategias seguidas para resolver este problema.<sup>45</sup>

<sup>44</sup> Hoffmann, R. W. Angew. Chem. Int. Ed. Engl. 1987, 26, 489.

<sup>&</sup>lt;sup>45</sup> a) Hannessian, S.; Wang, W.; Gay, Y.; Olivier, E. J. Am. Chem. Soc. **1997**, 119, 10034. b) Evans, D. A.; Kim, A. S.; Metternich, R.; Novack, V. J. J. Am. Chem. Soc. **1998**, 120, 5921. c) Marshall, J. A.; Johns, B.

## II.2. - Planes de Síntesis.

Pese a haber sido descrita la preparación de todas las estereotriadas posibles utilizando distintas metodologías, la síntesis de las estereotetradas análogas ha recibido relativamente poca atención.<sup>46</sup>

Por ello, el primer objetivo de este capítulo reside en la preparación de todas las estereotetradas isómeras posibles convenientemente funcionalizadas en ambos extremos y utilizando como materiales de partida precursores 7-oxanorbornénicos derivados del furano por medio de cicloadiciones de tipo Diels-Alder (Figura 5).<sup>47</sup> Cabe destacar que el acceso a dichos precursores en forma enantioméricamente pura ha sido previamente descrito (véase más adelante), lo que permite realizar la síntesis de los fragmentos de polipropionato objetivo en forma asimismo enantioméricamente pura.



Figura 5

A efectos de sistematización, hemos dividido el conjunto de todos los posibles isómeros en dos grupos según la relación estereoquímica (sin o anti) que existe entre sus grupos metilo.

#### II.2.1. - 1,3-sin-dimetil-estereotetradas.

En la Figura 6 se representan las posibles 1,3-sin-dimetil-estereotetradas E-H, indicándose sólo uno de los enantiómeros en cada caso.

A. J. Org. Chem. 1998, 63, 7885. d) Hu, T.; Takenaka, N.; Panek, J. S. J. Am. Chem. Soc. 1999, 121, 9229. e) Marshall, J. A.; Johns, B. A. J. Org. Chem. 2000, 65, 1501.

<sup>&</sup>lt;sup>46</sup> a) Hoffmann, R. W.; Dahmann, G.; Andersen, M. W. Synthesis 1994, 629. b) Chevenert, R.; Courchesne, G. Tetrahedron: Asymmetry 1995, 6, 2093. c) Domon, L.; Vogeleisen, F.; Uguen, D. TetrahedronLett. 1996, 37, 2773. d) Bonini, C.; Chiummiento, L.; Funicello, M.; Marconi, L.; Righi, G. Tetrahedron: Asymmetry 1998, 9, 2559. e) Breit, B.; Zahn, K. Tetrahedron Lett. 1998, 39, 1901. f) Hannessian, S.; Ma, J.; Wang, W. Tetrahedron Lett. 1999, 40, 4627. g) Hannessian, S.; Ma, J.; Wang, W. Tetrahedron Lett. 1999, 40, 4627. g) Hannessian, S.; Ma, J.; Wang, W. Tetrahedron Lett. 1999, 40, 4631. h) Marshall, J. A.; Fitzgerald, R. N. J. Org. Chem. 1999, 64, 4477. i) Marshall, J. A.; Manson, K. J. Org. Chem. 2000, 65, 630.

<sup>&</sup>lt;sup>47</sup> Vogel, P.; Cossy, J.; Plumet, P.; Arjona, O. Tetrahedron 1999, 55, 13521.



(P, P'=grupos protectores)

#### 1,3-sin-dimetil-estereotetradas

# Figura 6

El plan de síntesis propuesto para la construcción de estos fragmentos de polipropionato queda reflejado en el Esquema 19.

,

•



Esquema 19

Como producto de partida emplearemos la cetona **34** sintetizada a partir del aducto **31** proveniente de la reacción de cicloadición Diels-Alder entre el furano y el 2-acetoxiacrilonitrilo. Dicho cicloaducto puede ser obtenido en forma enantioméricamente pura siguiendo el procedimiento previamente descrito en la bibliografía.<sup>48</sup> La estereoquímica del grupo metilo en posición 2 de **34** será la misma que ocupará dicho sustituyente en las cuatro estereotetradas **E**-**H**. La reducción estereocontrolada del grupo carbonilo y posterior elaboración de la molécula, permitirá obtener las sulfonas 7-oxanorbornénicas **35** y **36** (Esquema 19, operación a). El control de la estereoselectividad en la reducción del grupo carbonilo permitirá fijar la

<sup>&</sup>lt;sup>48</sup> a) Vieira, E.; Vogel, P. Helv. Chim. Acta **1983**, 66, 1865. b) Vogel, P.; Fattori, D.; Gasparini, F.; Le Drian, C. Synlett **1990**, 173.

continuación, la apertura alquilativa empleando MeLi del puente oxigenado<sup>49</sup> en los compuestos **35** y **36** seguida de un proceso de desulfonilación (Esquema 19, operación b) posibilitará la obtención de los derivados ciclohexénicos **37** y **38**. La estereoquímica del grupo metilo en posición 4 y del grupo hidroxilo resultante de la apertura quedarán fijados debido a la naturaleza *sin* con respecto al puente oxigenado de este tipo de procesos alquilativos. De este modo quedará establecida la relación *sin* entre ambos sustituyentes metílicos. Por último, la ozonolisis del doble enlace (operación c) y la inversión de la estereoquímica del grupo hidroxilo en posición 3 (operación d) permitirán disponer de las cuatro estereotetradas deseadas.

#### II.2.2. - 1,3-anti-dimetil-estereotetradas.

En la Figura 7 se representan las posibles 1,3-*anti*-dimetil-estereotetradas I-L, indicándose sólo uno de los enantiómeros en cada caso.



(P, P'=grupos protectores)

#### 1,3-anti-dimetil-estereotetradas

#### Figura 7

En nuestro grupo de investigación se habían sintetizado con anterioridad los fragmentos de polipropionato K y L (P: TBS y P': Bz) partiendo del cicloaducto **32**.<sup>50</sup> En este trabajo, y

<sup>49</sup> Arjona, O.; de la Pradilla, R. F.; de Dios, A.; Plumet, J.; Viso, A. J. Org. Chem. 1994, 59, 3906.

<sup>&</sup>lt;sup>50</sup> Aceña, J. L.; Arjona, O.; León, M.; Plumet, J. Tetrahedron Lett. 1996, 37, 8957.

partiendo del mismo material de partida, realizaremos la síntesis de las estereotetradas I y J (P: Bn y P': Bz) de acuerdo con el plan de síntesis que se resume a continuación (Esquema 20).



Esquema 20

Como se ha indicado, el producto de partida será el aducto Diels-Alder **32** proveniente de la cicloadición entre el furano y el ácido acrílico y la vinil sulfona **40** será el intermedio clave a partir del cual se obtendrán los fragmentos deseados. La vinil sulfona **40** se preparará a partir de la sulfona 7-oxanorbornénica **39** por medio de una apertura alquilativa del puente oxigenado empleando MeLi. Debido a la naturaleza *sin* de dicho proceso alquilativo, la estereoquímica del grupo metilo entrante y del grupo hidroxilo procedente de la apertura del puente oxigenado quedarán establecidas y serán las de los mismos grupos en posiciones 2 y 3 de los productos finales I y J (Esquema 20, operación b). La estereoquímica del sustituyente metílico en posición 4 en las estereotetradas I y J vendrá determinada por la del grupo carboxílico en el compuesto de partida **32** (relacionada a su vez con la del grupo metilo en el compuesto **39** por medio de la transformación a). La transformación de la vinil sulfona **40** en la enona **41** (Esquema 20, operación c), generará este segundo intermedio clave. La reducción estereocontrolada de su grupo carbonilo (Esquema 20, operación d), y la ozonolisis del doble enlace (Esquema 20, operación e) permitirán la obtención del fragmento I. Una etapa adicional de inversión de la configuración estereoquímica del grupo hidroxilo previamente formado, posibilitará el acceso a la restante estereotetrada J (Esquema 20, operación f).

#### II.3. - Resultados

## II.3.1. - Síntesis de 1,3-sin-dimetil-estereotetradas.

Siguiendo el plan de síntesis expuesto con anterioridad, en primer lugar se procedió a la síntesis de la cetona 7-oxanorbornénica 43, según el procedimiento previamente descrito en la bibliografía (Esquema 21).51





La cicloadición catalizada por ZnI<sub>2</sub> entre el furano y el 2-acetoxiacrilonitrilo seguida de la adición de cloruro de fenilsulfenilo al cicloaducto formado 31, condujo a la formación de 42, cuya hidrólisis alcalina proporcionó la cetona 43 en tres etapas reactivas a partir de furano y con un 85% de rendimiento global.

El paso siguiente consistió en la metilación en posición contigua al grupo carbonilo de 43. Para ello se ensayaron varios agentes básicos, indicándose los resultados obtenidos en la Tabla 1. El empleo de t-BuOK como base condujo mayoritariamente a la recuperación de la cetona de partida. Junto a ésta se obtuvo el producto procedente de la doble metilación 44 y una mínima cantidad de la cetona monometilada deseada 34 (entrada 1). El aumento del número de

<sup>&</sup>lt;sup>51</sup> a) Black, K. A.; Vogel, P. Helv. Chim. Acta 1984, 67, 1612. b) Black, K. A.; Vogel, P. J. Org. Chem. **1986**, *51*, 5341.

equivalentes de base o una disminución de la temperatura de la reacción provocó la obtención de 44 como producto mayoritario (entradas 2 y 3).

| PhS 4   | $3$ $3$ $Ch_{1,1}$ $Me$ $+$ $PhS$ $34$ $+$      | PhS 44                      |
|---------|-------------------------------------------------|-----------------------------|
| entrada | condiciones                                     | <b>4 3:3 4:4 4</b> <i>a</i> |
| 1       | <i>t</i> -BuOK (1.5 equiv.), IMe, 0°C a t. a.   | 6:1:2                       |
| 2       | <i>t</i> -BuOK (2-5 equiv.), IMe, 0°C a t. a.   | 0:0:1                       |
| 3       | <i>t</i> -BuOK (1.5 equiv.), IMe, -78°C a t. a. | 1:0:2                       |
| 4       | LHMDS (1.2 equiv.), IMe, -78°C a t. a.          | 1.1:1:0                     |

Tabla 1. Ensayos de la metilación de la cetona 43.

.....

<sup>a</sup> proporción en peso de los productos aislados por cromatografía.

Finalmente, el tratamiento de **43** con LHMDS y posterior adición de IMe condujo, tras considerable experimentación variando el tiempo y la temperatura de reacción, a la cetona **34** con un 40% de rendimiento, recuperándose un 45% del producto de partida (entrada 4). De esta manera se pudo minimizar la aparición de subproductos indeseados. Además, el hecho de haberse conseguido llevar a cabo esta reacción a escala multigramo sin que se apreciaran variaciones en los rendimientos anteriormente reseñados permitió disponer de las cantidades necesarias de la cetona metilada **34** para poder acometer la síntesis de las estereotetradas.

La estereoquímica *exo* del grupo metilo en la cetona **34** quedó confirmada por la no existencia de acoplamiento entre los protones H-3 y H-4 ( $J_{3,4}=0$  Hz). A partir de esta observación se puede deducir que el protón H-3 se dispone en posición *endo* (Figura 8).



 $J_{3,4} = 0$  Hz

Figura 8

El siguiente paso de reacción consistió en la reducción estereocontrolada del grupo carbonilo en la cetona **34** previamente obtenida. De acuerdo con lo expuesto en el plan de síntesis, cada uno de los alcoholes **45** y **46** resultantes de la reducción conducirán a un par de estereotetradas (véase Esquema 19).

Con el objetivo de poder disponer selectivamente de ambos alcoholes **45** y **46**, se ensayaron diferentes condiciones modificando el agente reductor, la temperatura y el disolvente (Tabla 2).

Tabla 2. Estereoquímica en la reducción de la cetona 34.



| entrada | condiciones                                     | <b>4 5:4 6</b> <sup>a</sup> | Rdto. global (%) |
|---------|-------------------------------------------------|-----------------------------|------------------|
| 1       | NaBH4, MeOH, -20 °C                             | 4.6 : 1                     | 85               |
| 2       | NaBH4, MeOH, CeCl3, -78 °C                      | 1:1                         | 80               |
| 3       | L-Selectride, THF, -78 °C                       | 1:2                         | 46               |
| 4       | BH <sub>3</sub> ·SMe <sub>2</sub> , THF, t. a.  | 1:3                         | 85               |
| 5       | BH <sub>3</sub> ·SMe <sub>2</sub> , THF, -78 °C | 1:1                         | 78               |

<sup>a</sup> proporción en peso de los productos aislados por cromatografía

El alcohol **45**, con el grupo hidroxilo en disposición *endo* se pudo conseguir de forma altamente estereoselectiva mediante el empleo de NaBH<sub>4</sub> en MeOH a -20 °C (entrada 1), mientras que el empleo de BH<sub>3</sub>·SMe<sub>2</sub> a temperatura ambiente (entrada 4) nos permitió acceder, con buen rendimiento, al alcohol **46** *exo* como producto mayoritario. Ambos alcoholes fueron fácilmente separados mediante cromatografía en columna.

La diferente disposición del grupo hidroxilo unido al carbono 2 en ambos compuestos se dedujo de los valores de las constantes de acoplamiento observadas en el espectro de resonancia magnética nuclear de protón (Figura 9).



Figura 9

En el alcohol 45 el protón H-1 aparece como doblete (J= 4.8 Hz) acoplado con el protón en disposición *exo* H-2. Por el contrario, en el alcohol 46 dicho protón H-1 aparece como un singlete al no existir acoplamiento con el protón H-2 que ahora está en disposición *endo* y, por tanto, con un ángulo diedro H1-C1-C2-H2 próximo a 90°.

Las sulfonas vinílicas **51** y **52** fueron sintetizadas a partir de los alcoholes **45** y **46** respectivamente en tres pasos de reacción (Esquema 22), consistentes en la protección del grupo hidroxilo como éter bencílico, la oxidación del grupo fenilsulfenilo a fenilsulfonilo empleando MMPP y finalmente la deshidrocloración usando DBU.



La transformación de la sulfona vinílica **51** en el derivado ciclohexénico **55** se llevó a cabo en tres etapas sintéticas (Esquema 23). En primer lugar, la apertura regio- y estereoselectiva del puente oxigenado de **51** empleando MeLi a -78°C condujo a **53**. Las etapas siguientes consistieron en un proceso de desulfonilación<sup>52</sup> para acceder a **54**, seguido de benzoilación con BzCl, lo que condujo al benzoato **55**.

El proceso más problemático fué la desulfonilación de **53**. Para ello se ensayaron varios métodos. Así, el empleo de amalgama de sodio al 6% en las condiciones de Julia,<sup>53</sup> permitió obtener el compuesto **54** con un 50% de rendimiento, detectándose además la aparición de subproductos debidos a isomerizaciones parciales del doble enlace junto a desoxigenaciones alílicas, habituales en este tipo de sistemas.<sup>54</sup> Alternativamente, el empleo de SmI<sub>2</sub><sup>55</sup> como reactivo condujo al ciclohexenol **54** con un 65% de rendimiento, sín que se detectaran en este caso los subproductos antes mencionados.

<sup>&</sup>lt;sup>52</sup> Para una excelente revisión sobre reacciones de desulfonilación, véase: Nájera, C.; Yus, M. Tetrahedron 1999, 55, 10547.

<sup>&</sup>lt;sup>53</sup> a) Julia, M.; Paris, J. -M. Tetrahedron Lett. **1973**, 4833. b) Kocienski, P. J. Chem. Ind. **1981**, 548.

<sup>54</sup> Simpkins, N. S. Tetrahedron Lett. 1987, 28, 989.

<sup>&</sup>lt;sup>55</sup> a) Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. **1980**, 102, 2693. b) Keck, G. E.; Savin, K. A.; Weglarz, M. A. J. Org. Chem. **1995**, 60, 3194.



Esquema 23

De modo alternativo, se ensayó un procedimiento indirecto consistente en la sustitución radicálica con *n*-Bu<sub>3</sub>SnH en presencia de AIBN,<sup>56</sup> seguida de tratamiento del estannano **56** con MeONa en MeOH (Esquema 24). En este caso no se obtuvo el producto de desulfonilación **54** deseado. Sin embargo, hay que indicar que el estannano **56** puede ser utilizado en reacciones de acoplamiento tipo Stille con haluros o triflatos vinílicos o arílicos en presencia de Pd<sup>o</sup>.<sup>57</sup> Ello permitiría la incorporación de otro sistema oxabicíclico susceptible de ser funcionalizado y, tras una etapa final de ozonolisis, acceder a una cadena de polipropionato más compleja. Por el momento, el rendimiento con que se obtiene **56** es demasiado bajo y esta transformación deberá ser optimizada.



Para acceder al derivado ciclohexénico diastereomérico 60 fué necesario invertir el orden de los pasos de reacción, debido a que todos los intentos de desulfonilación ensayados sobre la ciclohexenil sulfona 57 obtenida por apertura alquilativa con MeLi sobre 52, proporcionaron

<sup>&</sup>lt;sup>56</sup> a) McCarthy, J. R.; Huber, E. W.; Le, T. -B.; Laskovics, F. M.; Matthews, D. *Tetrahedron* **1996**, *52*, 45.

<sup>&</sup>lt;sup>57</sup> a) Stille, J. K. Angew. Chem. Int. Ed. Engl. **1986**, 25, 508. b) Mitchell, T. N. Synthesis **1992**, 803.

únicamente rendimientos del 5-10% del compuesto **58**. Invirtiendo la secuencia reactiva, es decir, efectuando la benzoilación previa de **57** seguida de la desulfonilación sobre el benzoato **59** empleando amalgama de sodio, se llegó al compuesto **60** con un rendimiento moderado del 57% en la etapa de desulfonilación (Esquema 25).



Finalmente, se procedió a realizar la ozonolisis no simétrica en las condiciones de Schreiber<sup>58</sup> sobre los compuestos **55** y **60**, lo que permitió obtener las estereotetradas **61** y **62** (Esquema 26).

<sup>&</sup>lt;sup>58</sup> a) Schreiber, S. L.; Claus, R. E.; Reagan, J. *Tetrahedron Lett.* **1982**, 23, 3867. b) Claus, R. E.; Schreiber, S. L. Org. Synth. **1986**, 64, 150. Para algunas aplicaciones, véase: c) Hayes, R.; Wallace, T. W. *Tetrahedron Lett.* **1990**, 31, 3355. d) Arjona, O.; Domenech, A. M.; Plumet, J. J. Org. Chem. **1993**, 58, 7929.



#### Esquema 26

Recientemente, Fuchs ha realizado la ozonolisis directamente sobre el doble enlace de las sulfonas vinílicas ciclohexénicas **63** y **64** para obtener los compuestos **65** y **66**, respectivamente (Esquema 27).<sup>59</sup> Con ello se genera una cadena acíclica diferenciada en ambos extremos. Al intentar estas condiciones de ozonolisis sobre las sulfonas vinílicas **53** y **57** no se han obtenido, por el momento, los resultados deseados. No obstante, se continua trabajando en este sentido ya que de poderse realizar la ruptura del doble enlace directamente sobre las sulfonas vinílicas se eliminaría con ello la etapa de desulfonilación.



Esquema 27

<sup>&</sup>lt;sup>59</sup> Hentemann, M.; Fuchs, P. L. Org. Lett. 1999, 1, 355.

La síntesis de las dos restantes estereotetradas con estereoquímica relativa *sin* entre sus dos grupos metilo requeriría obviamente llevar a cabo un proceso de inversión estereoquímica sobre alguno de los intermedios sintéticos de la secuencia anterior a nivel de grupo hidroxilo precursor del mismo grupo en posición contigua al resto formilo (véase Esquema 19).

El ensayo de dicho proceso de inversión sobre el ciclohexenol **54** se llevó a cabo utilizando la reacción de Mitsunobu (Tabla 3).<sup>60</sup> Desafortunadamente, el empleo de condiciones de reacción estándar (PPh<sub>3</sub>, DEAD, RCOOH) sólo condujo a la recuperación íntegra del producto de partida utilizando como ácidos carboxílicos los ácidos fórmico, benzoico y *p*nitrobenzoico (entrada 1). El empleo de una temperatura de reacción diferente (entrada 2) tampoco condujo al producto final deseado. La utilización de *n*-Bu<sub>3</sub>P en lugar de PPh<sub>3</sub> condujo al aislamiento del dieno **68** junto con la recuperación del producto de partida (entradas 3 y 4). Por último, el empleo de PMe<sub>3</sub> condujo al ciclohexeno deseado **67** con un rendimiento del 88% (entrada 5).

Si bien durante la realización de esta secuencia sintética no existían ejemplos anteriores sobre el uso de la trimetilfosfina en un proceso de Mitsunobu, otros grupos de investigación han empleado posteriormente este reactivo para invertir la configuración en alcoholes impedidos estéricamente.<sup>61</sup>

<sup>&</sup>lt;sup>60</sup> a) Mitsunobu, O. Synthesis 1981, 1. b) Hughes, D. L. Org. React. 1992, 42, 335.

<sup>&</sup>lt;sup>61</sup> a) Falconer, R. A.; Jablonkai, I.; Toth, I. *Tetrahedron Lett.* **1999**, 40, 8663. b) Falck, J. R.; Lai, J. Y.; Cho, S. -D.; Yu, J. *Tetrahedron Lett.* **1999**, 40, 2903.

| Me      | OH<br>Me<br>H<br>OBn<br>54<br>1.5 equiv. DEAD, RCOOH<br>PR' <sub>3</sub> , Tol | $Me \qquad Me \qquad Me \qquad Me \qquad Me \qquad H \qquad $ |
|---------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| entrada | condiciones                                                                    | <b>5 4:6 7:6 8</b> <i>a</i>                                                                                                           |
| 1       | PPh <sub>3</sub> , DEAD, RCOOH, t. a.                                          |                                                                                                                                       |
|         | (R: H, Ph, $p$ -NO <sub>2</sub> -C <sub>6</sub> H <sub>4</sub> )               | 1:0:0                                                                                                                                 |
| 2       | PPh3, DEAD, PhCOOH, 0°C                                                        | 1:0:0                                                                                                                                 |
| 3       | n-Bu <sub>3</sub> P, DEAD, PhCOOH, t. a.                                       | 3:0:1                                                                                                                                 |
| 4       | n-Bu <sub>3</sub> P, DEAD, PhCOOH, 0°C                                         | 3.5:0:1                                                                                                                               |
| 5       | PMe <sub>3</sub> , DEAD, PhCOOH, t. a.                                         | 0:1:0                                                                                                                                 |

Tabla 3. Inversión de la configuración en el ciclohexenol 54.

<sup>a</sup> proporción en peso de los productos aislados por cromatografía

La estereoquímica del derivado ciclohexénico 67 quedó confirmada por las medidas de sus constantes de acoplamiento comparadas con las del benzoato epímero 55 (véase Esquema 23). En el compuesto 67, los valores de las constantes de acoplamiento entre los protones H-5 y H-6 ( $J_{5,6}$ = 7.6 Hz), y entre H-4 y H-5 ( $J_{4,5}$ = 6.2 Hz) indican una disposición relativa axialaxial entre ambas parejas de protones. Por otra parte, el valor de la constante de acoplamiento  $J_{3,4}$ = 6.2 Hz indica que el protón H-3 se dispone de forma axial. Para el caso del compuesto 55, los valores de las constantes de acoplamiento,  $J_{4,5}$  y  $J_{5,6}$  ( $J_{4,5}$ = $J_{5,6}$ = 2.0 Hz) indican una disposición relativa axial-ecuatorial para ambas parejas de protones. Ello, unido a la disposición axial-axial existente entre los protones H-3 y H-4 ( $J_{3,4}$ = 6.4 Hz), permiten confirmar que el protón H-5 se orienta de forma ecuatorial en esta molécula (Figura 10).



Figura 10

La inversión estereoquímica antes mencionada se llevó a cabo también utilizando una ruta alternativa consistente en la formación del triflato **69**, a partir del compuesto **54**, y posterior tratamiento con benzoato potásico para dar lugar al producto de sustitución **67**. No obstante el rendimiento con el que se llegó al compuesto **67** fué demasiado bajo, detectándose mayoritariamente subproductos procedentes de la aromatización del compuesto de partida (Esquema 28).



Para la obtención del derivado ciclohexénico 71, precursor de la cuarta estereotetrada con estereoquímica *sin* entre sus grupos metilo, se procedió a realizar la inversión de Mitsunobu sobre la sulfona ciclohexénica 57 empleando PMe<sub>3</sub>, obteniéndose el benzoato 70 con un rendimiento del 49%. La desulfonilación de 70 con amalgama de sodio permitió acceder a 71 con un rendimiento del 46% (Esquema 29).



Esquema 29

Finalmente, mediante la ozonolisis de 67 y 71 en las condiciones ya empleadas con anterioridad, se obtuvieron las estereotetradas 72 y 73, respectivamente (Esquema 30).



Esquema 30

Nuestro siguiente objetivo consistió en la síntesis en forma enantioméricamente pura de las cuatro estereotetradas anteriormente obtenidas. Para ello se obtuvo previamente el cicloaducto de partida ópticamente puro, (+)-74, a partir del furano y (-)-2canfaniloxiacrilonitrilo, siguiendo el método descrito previamente por P. Vogel.<sup>62</sup> En el

<sup>&</sup>lt;sup>62</sup> a) Vieira, E.; Vogel, P. Helv. Chim. Acta **1983**, 66, 1865. b) Vogel, P.; Fattori, D.; Gasparini, F.; Le Drian, C. Synlett **1990**, 173.

Esquema 31 se ilustran de manera resumida todas las etapas y rendimientos de la secuencia sintética empleada.



Esquema 31

Cabe destacar que mediante el procedimiento de resolución óptica empleado es posible también acceder al enantiómero del cicloaducto (+)-74, con lo cual se podría disponer de los cuatro enantiómeros de las estereotetradas (+)-61, (+)-62, (-)-72 y (+)-73.

# II.3.2. - Síntesis de las 1,3-anti-dimetil-estereotetradas.

Previamente a la discusión de nuestros propios resultados, comentaremos brevemente la síntesis de las estereotetradas **82** y **83**, obtenidas con anterioridad en nuestro grupo de investigación (Esquema 32).<sup>63</sup>



La sulfona vinílica **39** se obtuvo en cinco pasos de reacción (46% de rendimiento global) a partir del cicloaducto **32**. La apertura regio- y estereoselectiva con MeLi permitió

63 Aceña, J. L.; Arjona, O.; León, M.; Plumet, J. Tetrahedron Lett. 1996, 37, 8957.

acceder al compuesto **76** cuyo grupo hidroxilo libre fué protegido como sililenol éter. El paso clave de esta síntesis consistió en la isomerización vinil-alil sulfona<sup>64</sup> promovida por LDA lo cual condujo a la sulfona **78**. La transformación de la sulfona alílica **78** en el alcohol alílico **79** se consiguió por bis-hidroxilación del doble enlace con OsO<sub>4</sub> seguida de un proceso de olefinación de Julia.<sup>65</sup> A continuación, la protección de **79** como benzoato, la transformación en el epímero **81** mediante un proceso de inversión de Mitsunobu y la ozonolisis final de ambos compuestos, **80** y **81**, permitió acceder a las estereotetradas **82** y **83**.

Para la síntesis de las dos restantes estereotetradas decidimos partir de la sulfona ciclohexénica **7 6**.<sup>66</sup> El paso clave de este proceso consistió en la transformación de esta sulfona en la enona **84** (Figura 11).



Figura 11

Para ello se siguió la secuencia descrita en el Esquema 33. La epoxidación nucleófila de **76** con *terc*-butilperóxido de litio (*t*-BuOOLi),<sup>67</sup> seguida de protección del grupo hidroxilo libre como éter bencílico, condujo a la  $\alpha,\beta$ -epoxisulfona **86**. Su reacción con MgBr<sub>2</sub>·OEt<sub>2</sub><sup>68</sup> permitió obtener una mezcla de las bromocetonas **87** y **88** en proporción **87/88**: 2.2:1 y con un 85% de rendimiento global. Por último, la mezcla de ambas bromocetonas se sometió a tratamiento con CaCO<sub>3</sub><sup>69</sup> en DMF a reflujo proporcionando la enona **84** con un rendimiento

<sup>&</sup>lt;sup>64</sup> a) Magnus, P. M. Tetrahedron 1977, 33, 2019. b) Trost, B. M. Bull. Chem. Soc. Jpn. 1988, 61, 107. c) Inomata, K.; Hirata, T.; Suhara, H.; Kinoshita, H.; Kotake, H.; Senda, H. Chem. Lett. 1988, 2009. d) Lee, S. W.; Fuchs, P. L. Tetrahedron Lett. 1991, 32, 2861. e) Domínguez, E.; Carretero, J. C. Tetrahedron Lett. 1993, 34, 5803. f) Trost, B. M.; Ghadiri, M. R. Bull. Soc. Chim. Fr. 1993, 433. g) Fox, J. M.; Morris, C. M.; Smyth, G. D.; Whitham, G. M. J. Chem. Soc., Perkin Trans. 1 1994, 731. h) Marot, C.; Rollin, P. Tetrahedron Lett. 1994, 35, 8377.

<sup>&</sup>lt;sup>65</sup> a) Julia, M.; Paris, J. -M. Tetrahedron Lett. **1973**, 4833. b) Kocienski, P. J. Chem. Ind. **1981**, 548.

<sup>&</sup>lt;sup>66</sup> Arjona, O.; Menchaca, R.; Plumet, J. *Tetrahedron Lett.* **1998**, *39*, 6753.

<sup>&</sup>lt;sup>67</sup> Clark, C.; Hermans, P.; Meth-Cohn, O.; Moore, C.; Taljaard, H. C.; van Vuuren, G. J. Chem. Soc., Chem. Commun. **1986**, 1378.

<sup>&</sup>lt;sup>68</sup> Durst, T.; Tin, K. -C.; de Reinach-Hirtzbach, F.; Decesare, J. M.; Ryan, M. D. Can. J. Chem. **1979**, *57*, 258.

<sup>&</sup>lt;sup>69</sup> Arjona, O.; Aceña, J. L.; Plumet, J. J. Org. Chem. 1997, 62, 3360.



relativamente bajo (32%). El cambio del disolvente por dimetilacetamida o la variación de la temperatura de la reacción no trajo consigo aumento del rendimiento en **84**.

La asignación estereoquímica de ambas bromocetonas **87** y **88** se llevó a cabo de acuerdo con sus valores de constantes de acoplamiento (Figura 12). En la cetona **87**, el protón H-6 posee una constante de acoplamiento ( $J_{5,6}$ = 10.3 Hz) con uno de los protones H-5 típica de una disposición 1,2-*trans*-diaxial entre ellos, de lo que se deduce que el bromo se dispone de manera ecuatorial. Por otra parte el valor de la constante de acoplamiento ( $J_{2,3}$ = 4.0 Hz) indica una disposición relativa ecuatorial-axial entre ambos protones H-2 y H-3, mientras que la disposición relativa axial-axial entre los protones H-3 y H-4 se infiere a partir del valor de la constante de acoplamiento, en el compuesto **88** se puede deducir la disposición ecuatorial del bromo a partir de la relación 1,2-*trans*-diaxial existente entre H-6 y uno de los protones H-5 ( $J_{5,6}$ = 12.8 Hz). En este caso, los valores de las constantes de acoplamiento  $J_{2,3}$  y  $J_{3,4}$  confirman la disposición ecuatorial de H-2, H-3 y H-4.



Figura 12

En este punto, especulamos con la posibilidad de que la transformación de **86** en la enona **84** pudiera ser realizada en un único paso de reacción, combinando dos procesos bien conocidos: la apertura nucleófila del anillo oxiránico en  $\alpha$ , $\beta$ -epoxisulfonas<sup>70</sup> (Figura 13, transformación **A-B**) y la transformación de epóxidos en alcoholes alílicos promovida por amiduros de litio<sup>71</sup> (Figura 13, transformación **C-D**).



Figura 13

<sup>&</sup>lt;sup>70</sup> a) Barone, A. D.; Suitman, D. L.; Watt, D. S. J. Org. Chem. 1978, 43, 2066. b) Taylor, E. C.; Maryanoff, C. A.; Stonicki, J. S. J. Org. Chem. 1980, 45, 2512. c) Adamczyk, M.; Dolence, E. K.; Watt, D. S.; Christy, M. R.; Reibenspies, J. H.; Anderson, O. P. J. Org. Chem. 1984, 49, 1378. d) Thanf, T. T.; Laborde, M. A.; Olesker, A.; Luckacs, G. J. Chem. Soc. Chem., Commun. 1988, 1581. e) Simpkins, N. S. "Sulphones in Organic Synthesis". Tetrahedron Organic Series. Vol 10. Pergamon, 1993.

<sup>&</sup>lt;sup>71</sup> Crandall, J. K.; Apparu, M. Org. React. 1983, 29, 345.

Esta suposición quedó confirmada cuando, tras considerable experimentación, el tratamiento de **86** con LDA en éter-hexano proporcionó la enona **84** con un 65% de rendimiento junto a un 3% de la ciclohexanona **89** (Esquema 34). Las condiciones de reacción que se indican son críticas para el éxito de la transformación. Por ejemplo, el empleo de THF como disolvente sólo condujo a la recuperación de la epoxisulfona de partida inalterada.



Esquema 34

Dado lo relativamente novedoso de esta transformación epoxisulfona-enona, la reacción será objeto de estudio más detallado en el capítulo IV.

#### NOTA

Habiéndose concluido la redacción de esta Memoria nos ha llamado la atención una publicación de O'Brien *et al.*<sup>72</sup> en la cual llevan a cabo una reacción de transposición diastereoselectiva de un óxido de ciclohexeno empleando amiduros de litio como bases, en una síntesis estereocontrolada de 4-desoxiconduritoles.

Los autores establecen y demuestran que "la transposición de óxidos de ciclohexeno a alcoholes alílicos transcurre *via* abstracción por parte de la base de un protón que es *cis* y pseudoaxial respecto al epóxido.

En el caso descrito por estos autores, a partir del epóxido I es posible la obtención de los alcoholes alílicos II y III, a través de las conformaciones IV y V, en las que se han señalado los protones susceptibles de abstracción por la base de acuerdo con la premisa establecida más arriba.

<sup>&</sup>lt;sup>72</sup> Kee, A.; O'Brien, P.; Pilgram, Ch. D.; Watson, S. J. Chem. Soc., Chem. Commun. 2000, 1521.



Empleado como base el compuesto VI (racémico), la relación de alcoholes II y III en función del disolvente es la siguiente:

| Entrada | Disolvente   | II:III |
|---------|--------------|--------|
| 1       | THF          | 32:68  |
| 2       | éter         | ≥98:2  |
| 3       | ciclopentano | ≥98:2  |

Estos resultados se interpretan en el sentido de que en presencia de un disolvente coordinante como el THF, la proporción de la conformación reactiva V es significativa, mientras que el uso de disolventes menos coordinantes desplazan el equilibrio hacia la conformación quelatada IV.

En nuestro caso, y de acuerdo con la premisa de partida, la única conformación reactiva será VII, que se beneficia del efecto de quelación y que estará favorecida en un disolvente poco coordinante (Et<sub>2</sub>O-hexano, rdto. 65%) mientras que en un disolvente coordinante lo estará mucho menos (THF, rdto. 0%). Por lo tanto, estos datos apuntan a un curso de reacción para el proceso consistente en una  $\beta$ -eliminación a través de la conformación quelatada VII.



Una vez obtenida la enona 84, la secuencia sintética continuó como se indica a continuación. La reducción de 84 en las condiciones de Luche<sup>73</sup> permitió acceder al alcohol

<sup>73</sup> Gemal, A.; Luche, J. L. J. Am. Chem. Soc. 1981, 103, 5454.

alílico 90 como único producto de reacción. Su protección como benzoato empleando BzCl condujo al compuesto 91. Por otro lado, la inversión de Mitsunobu realizada sobre 90 generó el benzoato epímero 92 (Esquema 35).



Esquema 35

La estereoquímica de los benzoatos **91** y **92** quedó confirmada por comparación de los valores de sus correspondientes constantes de acoplamiento y por experimentos NOE (Figura 14). En el compuesto **91**, el valor de la constante de acoplamiento entre los protones H-5 y H-6 ( $J_{5,6}$ = 8.8 Hz) indica una disposición relativa 1,2-*trans*-diaxial entre ellos.La disposición ecuatorial de H-4 puede deducirse del valor de la constante de acoplamiento entre este protón y H-5 ( $J_{4,5}$ = 3.3 Hz), mientras que la disposición relativa axial-ecuatorial entre H-3 y H-4 queda confirmada a partir del valor de  $J_{3,4}$  =5.5 Hz. De manera análoga, para el benzoato **92**, y a partir de los correspondientes valores de las constantes de acoplamiento, se puede deducir la disposición axial de los protones H-5 y H-6 y la ecuatorial para los protones H-3 y H-4. Por otra parte, la irradiación del protón H-3 de **91** condujo a un incremento del 11% en la intensidad de la señal correspondiente a H-5 pero no provocó variación en la intensidad de la señal del protón H-6. Esto confirma la disposición *trans*-diaxial entre H-3 y H-6.



Figura 14

Por último, la ozonolisis no simétrica en las condiciones habituales previamente descritas, permitió acceder a los dos últimos fragmentos de polipropionato, las estereotetradas 93 y 94, a partir de los correspondientes benzoatos 91 y 92, respectivamente (Esquema 36).





Pese a haberse empleado sustratos racémicos para la síntesis de los cuatro fragmentos con disposición relativa *anti* entre sus grupos metilo, en la bibliografía se recoge la preparación de ambos enantiómeros del cicloaducto de partida **32** por resolución óptica empleando (+) ó (-)- $\alpha$ -metilbencilamina.<sup>74</sup> Con esto sería posible acceder a los ocho posibles enantiómeros de las cuatro estereotetradas sintetizadas.

<sup>&</sup>lt;sup>74</sup> Ogawa, S.; Iwasawa, Y.; Nose, T.; Suami, T.; Ohba, S.; Ito, M.; Saito, Y. J. Chem. Soc., Perkin Trans. 1 1985, 903.

# II.3.3. - Síntesis del fragmento C<sub>1</sub>-C<sub>6</sub> de la discodermolida.

En este apartado se pone de manifiesto la utilidad práctica de la síntesis de los fragmentos de polipropionato anteriormente expuesta, como un instrumento que posibilita la obtención de fragmentos de productos naturales pertenecientes al grupo de los polipropionatos. Un primer ejemplo lo va a constituir la síntesis del sistema de  $\gamma$ -lactona que constituye el fragmento C<sub>1</sub>-C<sub>6</sub> de la discodermolida.

La discodermolida (Figura 15) es un policétido de origen marino que se aisló por primera vez en 1991 a partir de una esponja del género *Discodermia dissoluta*.<sup>75</sup> La discodermolida exhibe una potente actividad como inhibidor de la mitosis con un mecanismo de acción similar al del taxol (paclitaxel),<sup>76</sup> esto es, promoviendo la formación de microtúbulos. Este producto natural inhibe no sólo el crecimiento *in vitro* del cáncer de mama en células humanas, sino que también es un potente inhibidor de varias lineas de células cancerígenas resistentes a otros tipos de fármacos. Por todo ello, la discodermolida ha sido objeto de amplios estudios sintéticos en los últimos años.<sup>77</sup>



discodermolida

Figura 15

<sup>&</sup>lt;sup>75</sup> a) Gunasekera, S. P.; Gunasekera, M.; Longley, R. E.; Schulte, G. K. J. Org. Chem. **1990**, 55, 4912. b) Gunasekera, S. P.; Gunasekera, M.; Longley, R. E.; Schulte, G. K. J. Org. Chem. **1991**, 56, 1346.

<sup>&</sup>lt;sup>76</sup> Schiff, P. B.; Frant, J.; Horwitz, S. B. Nature 1979, 277, 665.

<sup>&</sup>lt;sup>77</sup> a) Nerenberg, J. B.; Hung, D. T.; Somers, P. K.; Schreiber, S. L. J. Am. Chem. Soc. **1993**, *115*, 12621.
b) Smith III, A. B.; Qiu, Y.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. **1995**, *117*, 12011. c) Hung, D. T.; Nerenberg, J. B.; Schreiber, S. L. J. Am. Chem. Soc. **1996**, *118*, 11054. d) Harried, S. S.; Yang, G.; Strawn, M. A.; Myles, D. C. J. Org. Chem. **1997**, *62*, 6098. e) Marshall, J. A.; Johns, B. A. J. Org. Chem. **1998**, *63*, 7885. f) Smith III, A. B.; Kaufman, M. D.; Beauchamp, T. J.; LaMarche, M. J.; Arimoto, H. Org. Lett. **1999**, *1*, 1823. g) Paterson, I.; Florence, G. J.; Gerlach, K.; Scott, J. P. Angew. Chem. Int. Ed. Engl. **2000**, *39*, 377. h) Smith III, A. B.; Beauchamp, T. J.; LaMarche, M. J.; Kaufman, M. D.; Qiu, Y.; Arimoto, H.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. **2000**, *122*, 8654.

Como hemos indicado, nuestro objetivo consistió en la síntesis del fragmento  $C_1$ - $C_6$  de la discodermolida. Para ello partimos del ciclohexenol **90**, uno de los intermedio sintéticos empleados en la obtención de las 1,3-*anti*-dimetil-estereotetradas (véase Esquema 35). La ozonolisis en ausencia de MeOH efectuada sobre **90** condujo directamente, al estar el grupo hidroxilo libre, a la lactona **95** que posee la misma estructura que el citado fragmento (Esquema 37).



Cabe destacar que la estereotetrada **72**, anteriormente sintetizada (véase Esquema 30), presenta la misma disposición relativa en sus centros quirales que el fragmento  $C_{15}$ - $C_{19}$  del citado compuesto (Figura 16).



72



discodermolida

Figura 16

# II.3.4. - Planteamiento de la síntesis de un fragmento de polipropionato con once centros estereogénicos.

El siguiente objetivo a abordar consiste en la preparación de un fragmento de polipropionato de once centros estereogénicos por unión de dos de las estereotetradas previamente sintetizadas (Figura 17) y empleando para ello herramientas de estereocontrol acíclico para controlar la estereoquímica de los nuevos centros estereogénicos creados a consecuencia de la unión.



Figura 17

El análisis retrosintético para la obtención del fragmento de polipropionato 101 se expone en el esquema 38. Como material de partida se empleará el compuesto 96, que se obtendrá a partir del ciclohexenol 54 (Véase Esquema 23) por protección del grupo hidroxilo. A partir de 96 y variando las condiciones del proceso de ozonolisis,<sup>78</sup> se accedería a las estereotetradas 97 y 98 (Esquema 38, operaciones a y b). La hidrólisis del éster 98 en condiciones neutras empleando LiI,<sup>79</sup> seguida de la adición de etil litio al ácido resultante,<sup>80</sup> conduciría a la formación de la cetona 99 (Esquema 38, operación c). De acuerdo con los resultados obtenidos por Evans<sup>81</sup> y Paterson,<sup>82</sup> cabe esperar que por tratamiento de la etilcetona 99 con (*c*-Hex)<sub>2</sub>BCl se genere el enolato *E*, cuya condensación aldólica con el aldehido 97, conduzca mayoritariamente al aldol *anti-sin* 100 (Esquema 38, operación d). El enolato ataca por la cara *si* del aldehido y en el estado de transición **M**, el grupo voluminoso R' se dispone

<sup>&</sup>lt;sup>78</sup> Claus, R. E.; Schreiber, S. L. Org. Synth. 1986, 64, 150.

<sup>&</sup>lt;sup>79</sup> a) Elsinger, F.; Schreiber, J.; Eschenmoser, A. Helv. Chim. Acta 1960, 43, 113. b) Mc Murry, J. E.;

Wong, G. B. Synth. Commun. 1972, 2, 389. c) Mc Murry, J. Org. React. 1976, 24, 187.

<sup>&</sup>lt;sup>80</sup> a) Jorgenson, M. J. Org. React. **1970**, 18, 1. b) Rubottom, G. M.; Kim, Ch. -W. J. Org. Chem. **1983**, 48, 1550.

<sup>&</sup>lt;sup>81</sup> Evans, D. A.; Horward, P. Ng.; Clark, S.; Rieger, D. L. Tetrahedron 1992, 48, 2127.

<sup>&</sup>lt;sup>82</sup> a) Paterson, I.; Hulme, A. N.; Wallace, D. J. TetrahedronLett. **1991**, 32, 7601. b) Paterson, I. Pure Appl. Chem. **1992**, 64, 1821.

alejado del ligando pseudo-axial unido al boro. Finalmente, la reducción empleando Me<sub>4</sub>NBH(OAc)<sub>3</sub><sup>83</sup> proporcionará el 1,3-*anti* diol **101** (Esquema 3, operación e).



Esquema 38

La ozonolisis no simétrica en las condiciones descritas por Schreiber posee la ventaja añadida de permitirnos disponer de diferentes tipos de funcionalización en los extremos de la cadena creada por ruptura del doble enlace (Esquema 39).

<sup>&</sup>lt;sup>83</sup> a) Evans, D. A.; Chapman, K. T.; Carreira, E. M. J. Am. Chem. Soc. **1988**, 110, 3560. b) Paterson, I.; Goodman, J. M.; Isaka, M. Tetrahedron Lett. **1989**, 30, 7121.



Esquema 39

A partir de un compuesto de tipo 102, el tratamiento con ozono en presencia de un alcohol y de bicarbonato de sodio conduce a la formación del alcoxihidroperoxo-aldehido 103. El empleo de NaHCO<sub>3</sub> evita la formación del acetal a partir del aldehido. A partir de 103, la deshidratación del hidroperóxido formado empleando anhidrido acético y piridina o trietilamina, conduce al oxoéster 104. Esta variante ha sido la que hemos empleado hasta ahora para acceder a las estereotetradas. Por otra parte, si la ozonolisis se realiza en ausencia de NaHCO<sub>3</sub> pero adicionando ácido *p*-toluensulfónico, se obtiene entonces el derivado acetálico 105. La deshidratación, al igual que antes, genera el éster acetálico 106, mientras que la neutralización del medio ácido empleando NaHCO<sub>3</sub> y posterior reducción con sulfuro de dimetilo conducirá al aldehido 107. Estas dos últimas variantes del proceso de ozonolisis de Schreiber serán las que emplearemos para acceder a los fragmentos 97 y 98 de nuestra secuencia sintética.

Así, el primer paso consistió en la protección del grupo hidroxilo de 54 como silil enol éter en previsión de los problemas que, en sucesivas etapas, podría generar la protección como

benzoato que hasta ahora habíamos venido utilizando (véase Esquema 23). De este modo, a partir de **54** y por reacción con triflato de *terc*-butildimetilsililo se obtuvo el compuesto **108** (Esquema 40).



Esquema 40

La etapa siguiente consistirá en la obtención de las estereotetradas **109** y **110** a partir de **108** basándonos en las ideas expuestas en el esquema 39. En este momento nos encontramos optimizando las condiciones de reacción del proceso de ozonolisis sobre sustratos modelo ya que el cambio de grupos protectores ha provocado que en todos los ensayos de ozonolisis realizados sobre **108**, se obtengan mezclas complejas y subproductos de aromatización (Esquema 41).



Esquema 41

# II.4. - Conclusiones.

En este capítulo se ha descrito la síntesis de todos los fragmentos de polipropionato que poseen cuatro centros quirales contiguos (estereotetradas). Para ello se ha desarrollado una ruta sintética estereodivergente utilizando como materiales de partida derivados 7-oxanorbornénicos, fácilmente accesibles a partir de furano por medio de cicloadiciones de tipo Diels-Alder. Dada la posibilidad de acceder a las moléculas precursoras en forma enantioméricamente pura, la obtención de ambos enantiómeros de las estereotetradas objetivo es viable. No obstante, en este trabajo sólo se han obtenido en forma enantioméricamente pura las 1,3-sin-dimetil-estereotetradas.

A modo de ejemplo de aplicación de las estereotetradas anteriormente sintetizadas se ha obtenido el fragmento  $C_1$ - $C_6$  de la discodermolida y se han explorado los primeros pasos para la obtención de un fragmento de polipropionato con un mayor número de centros estereogénicos por unión de dos de dichas moléculas.

# CAPÍTULO III

- III.1. Antecedentes.
- III.2. Plan de síntesis.
- III.3. Resultados

III.3.1. - Síntesis del fragmento  $C_1$ - $C_8$  de las baconipironas A y B.

III.4. - Conclusiones.
III. - Síntesis de un fragmento de cíclico de polipropionato. Fragmento  $C_1$ - $C_8$  de las baconipironas A y B.

## III.1 - Antecedentes.

En 1989 Faulkner<sup>84</sup> publicó el aislamiento de las baconipironas A-D (Figura 18) a partir de moluscos pulmonados del género *Simphonaria baconi*. La estructura de la baconipirona B fué establecida por análisis de difracción de rayos X, mientras que la asignación estructural de las restantes baconipironas se llevó a cabo mediante comparación de sus datos espectroscópicos con los de la baconipirona B.





sinfonarina A, R=Me sinfonarina B, R=H

baconipirona C, R=Me baconipirona D, R=H

Figura 18

Todas las baconipironas contienen una subunidad tetrasustituida de  $\gamma$ -pirona con una cadena polipropiónica unida a ella. En las baconipironas A y B la subunidad de  $\gamma$ -pirona, portando un resto polipropiónico oxidado, se une a través de una función éster a una  $\beta$ -

<sup>84</sup> Manker, C. D.; Faulkner, D. J.; Stout, J. T.; Clardy, J. J. Org. Chem. 1989, 54, 5371.

hidroxiciclohexanona altamente funcionalizada. En las baconipironas C y D, la misma subunidad se conecta a la posición *beta* de una  $\beta$ -hidroxi-1,5-dicetona cíclica por medio de idéntica funcionalidad.

Se ha sugerido que las baconipironas A y B deriven de las baconipironas C y D, respectivamente, por medio de una ciclación de tipo aldólica. También se ha propuesto que estas moléculas pudieran tener un mecanismo biosintético muy similar al de las estructuras referibles, sinfonarinas A y B (Figura 18).<sup>85</sup>

Hay que indicar, sin embargo, que en un estudio posterior realizado por Davies-Coleman<sup>86</sup> sobre *S. baconi* no se detectaron las baconipironas. Ello podría sugerir que estos compuestos son artefactos generados a partir de un precursor desconocido durante el proceso de aislamiento.

Las baconipironas han sido objeto de varios estudios sintéticos. En concreto, Paterson ha descrito la primera síntesis total de la baconipirona C, lo que ha servido para establecer de manera inequívoca la estereoquímica absoluta de esta molécula.<sup>87</sup> Así, a partir de la cetona enantioméricamente pura (**R**)-111 y por medio de una condensación aldólica empleando (c-Hex)<sub>2</sub>BCl, se obtuvo el fragmento 112 que posee tres centros estereogénicos. Por otro lado, a partir de la tricetona 113 se consiguió, en primer lugar, la formación de la subunidad de  $\gamma$ pirona por ciclación empleando PPh<sub>3</sub> y CCl<sub>4</sub>. A continuación y por medio de una serie de transformaciones entre las que cabe destacar una condensación aldólica catalizada por Sn II se obtuvo el fragmento 114. Finalmente, la reacción de esterificación entre 112 y 114 condujo, previa desprotección, a la baconipirona C (Esquema 42).

<sup>&</sup>lt;sup>85</sup> Hochlowski, J. E.; Coll, J. C.; Faulkner, D. J.; Biskupiak, J. E.; Ireland, C. M.; Zheng, Q. -T.; He, C. -H.; Clardy, J. J. Am. Chem. Soc. **1984**, 106, 6748.

<sup>&</sup>lt;sup>86</sup> a) Davies-Coleman, M. T.; Garson, M. J. Nat. Prod. Rep. **1998**, 15, 477. b) Brecknell, D. J.; Collet, L. A.; Davies-Coleman, M. T.; Garson, M. J.; Jones, D. D. Tetrahedron **2000**, 56, 2497.

<sup>&</sup>lt;sup>87</sup> a) Paterson, I.; Franklin, A. S. *Tetrahedron Lett.* **1994**, *35*, 6925. b) Paterson, I.; Chen, D. Y.; Aceña, J. L.; Franklin, A. S. Org. Lett. **2000**, *2*, 1513.



### Esquema 42

# III.2. - Plan de Síntesis.

Nuestro objetivo consiste en llevar a cabo la síntesis de la subunidad  $C_1$ - $C_8$  de las baconipironas A y B, que constituye la porción ciclohexánica de las mismas. Para ello se diseñó el plan de síntesis expuesto en el Esquema 43.



Esquema 43

Como material de partida emplearemos la cetona  $\alpha$ -metilada **34**, el mismo precursor utilizado para acceder a las 1,3-*sin*-dimetil-estereotetradas. La protección del grupo carbonilo como etilén acetal seguida de la posterior elaboración de la molécula permitirá obtener la sulfona 7-oxanorbornénica **115** (Esquema 43, operación a). Mediante un proceso similar al comentado en el capítulo anterior, la apertura alquilativa del puente oxigenado seguida de un proceso de adición 1,4 de un grupo metilo a la sulfona vinílica resultante, permitirá acceder al compuesto **116** (Esquema 43, operación b). La oxidación del grupo hidroxilo a cetona y posterior adición nucleófila de un equivalente del grupo etilo a **121** conducirá al compuesto **117** (Esquema 43, operaciones c y d). Finalmente, la transformación de la funcionalidad sulfona en un resto hidroxilo y desprotección final del grupo carbonilo generará la molécula deseada **33** (Esquema 43, operación e).

#### III.3. - Resultados

### III.3.1. - Síntesis del fragmento C<sub>1</sub>-C<sub>8</sub> de las baconipironas A y B.

El primer paso consistió en la protección del grupo carbonilo de la cetona de partida **34** como el correspondiente derivado cetálico **118**. El empleo de las condiciones habituales para efectuar este proceso (etilénglicol, ácido *p*-toluensulfónico, reflujo)<sup>88</sup> sólo condujo, en condiciones bastante enérgicas de reacción, a la obtención de un 60% del producto final deseado, junto con la recuperación de parte del material de partida. Ello podría ser debido al impedimento estérico que el grupo metilo ejerce a la entrada del reactivo. Sin embargo, el empleo del *bis*-trimetilsilil derivado del etilénglicol en presencia de triflato de trimetilsililo, permitió la protección del grupo carbonilo como 1,3-dioxolano en condiciones apróticas y de manera casi cuantitativa (Esquema 44).<sup>89</sup>



Esquema 44

A partir del compuesto **118** y mediante una secuencia parecida a la ya empleada en la síntesis de las 1,3-*sin*-dimetil-estereotetradas, se obtuvo el compuesto **120**. La oxidación del grupo fenilsulfenilo de **118** a fenilsulfonilo empleando MMPP y la deshidrocloración de **119** mediante el uso de DBU condujo a la sulfona 7-oxanorbornénica **115**. La apertura regio- y estereoselectiva del puente oxigenado con MeLi permitió obtener la sulfona ciclohexénica **120** (Esquema 45).

<sup>88</sup> Crimmins, M. T.; DeLoach, J. A. J. Am. Chem. Soc. 1986, 108, 800.

<sup>&</sup>lt;sup>89</sup> a) Tsunoda, T.; Suzuki, M.; Noyori, R. *Tetrahedron Lett.* **1980**, 21, 1357. b) Hwu, J. R.; Wetzel, J. M. J. Org. Chem. **1985**, 50, 3946. c) Hwu, J. R.; Leu, L. -C.; Robl, J. A.; Anderson, D. A.; Wetzel, J. M. J. Org. Chem. **1987**, 52, 188.



Esquema 45

El paso siguiente consistió en la adición conjugada de MeLi a la sulfona ciclohexénica 120,<sup>90</sup> lo cual permitió acceder a la sulfona 116 como único estereoisómero. Dicha sulfona 116 también fué obtenida directamente a partir de la sulfona vinílica 7-oxanorbornénica 115 por tratamiento con MeLi, si bién el rendimiento fué sensiblemente inferior (Esquema 46).



La oxidación del grupo hidroxilo libre de **116** en las condiciones de Swern<sup>91</sup> condujo a la cetona **121**, que por tratamiento con bromuro de etilmagnesio dió lugar al producto de adición nucleófila **117**, nuevamente como único estereoisómero (Esquema 47).

<sup>90</sup> Hardinger, S. A.; Fuchs, P. L. J. Org. Chem. 1987, 52, 2739.

<sup>&</sup>lt;sup>91</sup> Mancuso, A. J.; Swern, D. Synthesis 1981, 165.



Esquema 47

Obviamente la adición conjugada al doble enlace de **120** y la adición nucleófila al grupo carbonilo de **121**, se han producido por la cara *alfa* menos impedida estéricamente.

La estereoquímica del compuesto **116** quedó establecida por medio de experimentos H-H COSY, experimentos NOE y por los valores de las constantes de acoplamiento (Figura 19). Los valores de la constante de acoplamiento entre los protones H-5 y H-6 ( $J_{5,6}$ = 11.7 Hz) indican una disposición 1,2-*trans*-diaxial entre ellos. Asimismo, el valor de la constante de acoplamiento entre los protones H-4 y H-5 ( $J_{4,5}$ = 3.2 Hz) permiten deducir que H-4 se dispone de forma ecuatorial. Finalmente, los experimentos NOE permitieron confirmar la estereoquímica propuesta para **116**. Así, cuando se irradió H-5, se observó un aumento de un 7% en la intensidad de la señal correspondiente a H-4, pero no provocó variación alguna en la intensidad de la señal de H-6. Esto último confirma la disposición 1,2-*trans*-diaxial entre los protones H-5 y H-6.



J<sub>4,5</sub>= 3.2 Hz J<sub>5,6</sub>= 11.7 Hz

Figura 19

Asimismo, la estereoquímica del alcohol terciario 117 se determinó por experimentos NOE. La irradiación de H-2 condujo a un incremento del 5% en la intensidad de la señal correspondiente al metileno del sustituyente etilo, lo cual permite descartar que exista una disposición 1,2-*trans*-diaxial entre ambos sustituyentes. Por otra parte, la irradiación anterior no provocó variación en la intensidad de la señal correspondiente al grupo hidroxílico (Figura 20).



117

Figura 20

La etapa siguiente consistió en la desulfonilación oxidativa de **117** para obtener la cetona **123**. Para ello se emplearon un gran número de métodos descritos en la bibliografía sin que se obtuvieran los resultados deseados. Así, el tratamiento del α-sulfonil carbanión generado a partir de la sulfona **117** empleando distintos reactivos, tales como BTSP (Me<sub>3</sub>SiOOSiMe<sub>3</sub>),<sup>92</sup> MoOPH (MoO<sub>5</sub>.Py.HMPA)<sup>93</sup> y MoOPD (MoO<sub>5</sub>.Py.DMPU)<sup>94</sup> entre otros,<sup>95</sup> no condujo a la cetona deseada. También se intentaron métodos alternativos como la metilenación de Julia<sup>96</sup> para obtener el alqueno exocíclico **124** y posteriormente realizar una ozonolisis reductora que nos permitiese acceder al compuesto **125**. Por último, se ensayaron las mismas condiciones

<sup>&</sup>lt;sup>92</sup> a) Cookson, P. G.; Davies, A. G.; Fazal, N. J. Organomet. Chem. **1975**, 99, C31. b) Hwu, J. R. J. Org. Chem. **1983**, 48, 4433.

<sup>&</sup>lt;sup>93</sup> a) Mimoun, M.; Seree de Roch, L.; Sajus, L. Bull. Soc. Chim. Fr. 1969, 1481. b) Vedejs, E.; Engler, D. A.; Telschow, J. E. J. Org. Chem. 1978, 43, 188. c) Little, R. D.; Myong, S. O. Tetrahedron Lett. 1980, 21, 3339.

<sup>&</sup>lt;sup>94</sup> a) Anderson, J. C.; Smith, S. C. Synlett **1990**, 107. b) Hara, O.; Takizawa, J.; Yamatake, T.; Makino, K.; Hamada, Y. Tetrahedron Lett. **1999**, 40, 7787.

<sup>&</sup>lt;sup>95</sup> a) Davis, F. A.; Wei, J.; Sheppard, A. C.; Gubernick, S. *Tetrahedron Lett.* **1987**, 28, 5115. b) Chemla, F.; Julia, M.; Uguen, D. *Bull. Soc. Chim. Fr.* **1993**, 130, 547. c) Chemla, F.; Julia, M.; Uguen, D. *Bull. Soc. Chim. Fr.* **1994**, 131, 639.

<sup>96</sup> De Lima, C.; Julia, M.; Verpeaux, J. -N. Synlett 1992, 133.

pero protegido el alcohol terciario de **117** como sililenoléter. En todos los casos, sin embargo, al someter a **122** a las condiciones de reacción antes reseñadas sólo se llegó, como mejor resultado, a la recuperación del producto de partida (Esquema 48).





Cabe destacar que, en los casos antes comentados, y conjuntamente con la recuperación del producto de partida, se obtuvo un subproducto procedente de la oxidación del anillo aromático del grupo fenilsulfonilo, cuya estructura no ha sido determinada.

Afortunadamente, el tratamiento de la sulfona **117** con LDA seguido de la oxidación empleando oxígeno molecular<sup>97</sup> condujo a la cetona deseada **123** si bien con un rendimiento moderado (Esquema 49).

<sup>97</sup> Yamada, S.; Nakayama, K.; Takayama, H. Tetrahedron Lett. 1984, 25, 3239.



Una vez obtenida la cetona **123** se procedió a la reducción estereocontrolada de su grupo carbonilo empleando diborano, con lo que se obtuvo el alcohol **126**. Finalmente el empleo de CeCl<sub>3</sub>·7H<sub>2</sub>O en presencia de NaI<sup>98</sup> permitió la conversión del 1,3-dioxolano en la molécula objetivo **33**, el fragmento C<sub>1</sub>-C<sub>8</sub> de las baconipironas A y B (Esquema 50).



La estereoquímica del alcohol **126** procedente de la reducción de **123**, se dedujo a partir de los valores de las constantes de acoplamiento obtenidas en el espectro de resonancia magnética nuclear de protón y quedó comprobada por medio de cálculos AM1 (Figura 21).<sup>99</sup> Experimentalmente se obtuvo una constante de acoplamiento entre los protones H-2 y H-3,  $J_{2,3}$ = 7.3 Hz, típica de una disposición 1,2-*trans*-diaxial entre ellos. Los cálculos realizados ponen de manifiesto que, para ambos alcoholes **126** y **127**, los confórmeros **126-II** (-208.5 Kcal/mol) y **127-II** (-210.8 Kcal/mol) poseen una menor estabilidad que **126-I** (-212.8 Kcal/mol) y **127-I** (-214.6 Kcal/mol) respectivamente, debido probablemente al impedimento estérico existente entre los dos grupos metilo cuando se disponen de modo axial. Teniendo en

<sup>&</sup>lt;sup>98</sup> Marcantoni, E.; Nobili, F. J. Org. Chem. 1997, 62, 4183.

<sup>&</sup>lt;sup>99</sup> Agradecemos al Dr. Aurelio García Csákÿ, de nuestro grupo de investigación, la realización de estos cálculos. Hyperchem 3.0, Autodesk Inc., 1992.

cuenta que en el confórmero **126-I**, a diferencia de lo que sucede en **127-I**, los protones H-2 y H-3 se disponen de modo 1,2-*trans*-diaxial, se llega a la conclusión de que la reducción con diborano procedió de modo totalmente estereoselectivo para dar el alcohol **126**. Este hecho podría justificarse por una posible coordinación del átomo de boro del agente reductor con el átomo de óxigeno del grupo hidroxilo en la cetona de partida **123**, lo que dirigiría el ataque axial del reductor y, por consiguiente, la estereoquímica del proceso.



Figura 21

Previamente a la ruta sintética que hemos descrito se ensayó una secuencia diferente partiendo también de la sulfona vinílica **120** (véase Esquema 45). En este caso, la epoxidación nucleófila de la sulfona vinílica generaría la  $\alpha$ , $\beta$ -epoxisulfona **128** (Esquema 51, operación a), en un proceso cuya estereoquímica vendría controlada por la del grupo hidroxilo homoalílico. A continuación la oxidación del grupo hidroxilo libre a cetona, seguido de adición de bromuro de etilmagnesio, conduciría a la formación del alcohol terciario **129** (Esquema 51, operación b). El paso clave de esta síntesis consistiría en la apertura alquilativa del anillo oxiránico con salida del grupo fenilsulfonilo para formar la cetona **123** (Esquema 51, operación c). Por último, la reducción estereocontrolada del grupo carbonílico y la desprotección del dioxolano conduciría al producto final **33** (Esquema 51, operación d).



Esquema 51

Así, la epoxidación nucleófila de 120 empleando t-BuOOLi condujo a la  $\alpha,\beta$ epoxisulfona 128. La oxidación del grupo hidroxilo libre de 128 en las condiciones de Swern, seguida de la adición nucleófila de bromuro de etilmagnesio a la cetona resultante 130 dió lugar a 129. Pese a intentarse la optimización de este proceso por medio del control de la temperatura y la reducción del número de equivalentes de reactivo, el alcohol terciario 129 se obtuvo con un rendimiento moderado del 56% debido posiblemente a la aparición de subproductos generados por el ataque simultaneo del reactivo de Grignard al anillo oxiránico y al grupo carbonilo (Esquema 52).



Esquema 52

A continuación se ensayó, infructuosamente, la apertura alquilativa del anillo oxiránico de 129 para acceder a la cetona 123. De este modo, el empleo de Me<sub>2</sub>CuLi, MeLi/BF<sub>3</sub>·OEt<sub>2</sub>, MeLi/CuBr·SMe<sub>2</sub> ó del cuprato de alto orden Me<sub>2</sub>Cu(CN)Li<sub>2</sub>,<sup>100</sup> no condujo al compuesto deseado recuperándose en todos los casos el producto de partida inalterado. Cabe destacar que en la bibliografía tampoco se recoge ningún ejemplo de un proceso de esta naturaleza en  $\alpha$ , $\beta$ epoxisulfonas. Tampoco, tras la protección del grupo hidroxilo libre de 129, se obtuvo la cetona deseada al ensayar las condiciones antes mencionadas sobre el compuesto 131 (Esquema 53).



Esquema 53

# **III.4.** - Conclusiones

En este capítulo se ha descrito la síntesis de la subunidad ciclohexánica presente en las baconipironas A y B en 15 etapas de reacción a partir de furano. Dado que el fragmento restante de ambos productos naturales ha sido previamente obtenido,<sup>101</sup> se abre la posibilidad de la síntesis total de las baconipironas A y B.

Como etapas clave de esta síntesis cabe citar la apertura alquilativa de la sulfona 7oxanorbornénica **115** y la desulfonilación oxidativa de **117** que permitió la sustitución del grupo fenilsulfonilo por una funcionalidad oxigenada.

<sup>&</sup>lt;sup>100</sup> Lipshutz, B. H. Synthesis 1987, 325.

<sup>&</sup>lt;sup>101</sup> Paterson, I.; Chen, D. Y.; Aceña, J. L.; Franklin, A. S. Org. Lett. 2000, 2, 1513.

# **CAPÍTULO IV**

- IV.1. Introducción.
- IV.2. Reacción de  $\alpha, \beta$ -epoxisulfonas bicíclicas con amiduros de litio.
- IV.3. Reacción de una aziridina bicíclica con amiduro de litio.

IV.3.1. - Introducción.

IV.3.2. - Resultados.

IV.4. - Conclusiones.

# IV. - Reacción de $\alpha$ , $\beta$ -epoxisulfonas bicíclicas con amiduros de litio.

### IV.1. - Introducción

Los epóxidos constituyen una familia importante de compuestos heterocíclicos, ampliamente reconocidos como intermedios sintéticos de utilidad.<sup>102</sup>

En particular, la reacción entre epóxidos y amiduros de litio ha sido objeto de un buen número de estudios,<sup>103</sup> desde que Cope la consideró por primera vez,<sup>104</sup> debido a su interés tanto desde el punto de vista teórico como sintético. Asimismo, la versión quiral de la reacción ha sido extensamente considerada.<sup>105</sup> No obstante, y a pesar de los esfuerzos realizados en el estudio de esta reacción, muchos aspectos concernientes a los mecanismos por los que puede transcurrir no están totalmente esclarecidos.

Cuando un epóxido es sometido a tratamiento con amiduro de litio, el sistema puede evolucionar a través de dos mecanismos diferentes según tenga lugar un proceso de  $\alpha$ - 6  $\beta$ eliminación (Esquema 54). Las propiedades del disolvente (polaridad, carácter complejante, etc.) y las características estructurales del epóxido de partida, unido a la naturaleza del amiduro de litio empleado (dependiente de la estructura de la amina y del disolvente utilizado en su

<sup>&</sup>lt;sup>102</sup> a) Rao, A. W.; Pannikar, S. K. Tetrahedron 1983, 39, 2325. b) Gorzinski-Smith, J. Synthesis 1984, 629.
c) Bartòk, M.; Lang, K. L. "Small Ring Heterocycles". Part 3. A. Hassner Ed. J. Wiley, 1985. p 1-152. d) Ostovic, D.; Bruice, C. T. Acc. Chem. Research 1992, 25, 314. e) Taylor, S. K. Org. Prep. Proc. Int. 1992, 24, 245. f) de Bont, J. A. M. Tetrahedron: Asymmetry. 1993, 4, 1331. g) Burns, Ch. J. "Saturated Oxygen Heterocycles". Contemporary Organic Synthesis, 1994, 1, 23. h) Besse, P.; Veschambre, H. Tetrahedron 1994, 50, 8885. i) Katsuki, T. Coord. Chem. Rev. 1995, 140, 189-214. j) Wubbolts, M. G.; Noordwan, R.; van Beilen, J. B.; Witholt, B. Rec. Trav. Chim. Pays Bas. 1995, 114, 139. k) Burns, Ch. J. "Saturated Oxygen Heterocycles". Contemporary Organic Synthesis, 1995, 2, 189. l) Kauffmann, T. Synthesis 1995, 745. m) Burns, Ch. J. "Saturated Oxygen Heterocycles". Contemporary Organic Synthesis, 1995, 2, 189. l) Kauffmann, T. Synthesis 1995, 3, 229. n) Darensbourgh, D. J.; Hotcamp M. W. Coord. Chem. Rev. 1996, 153, 155. ñ) Katsuki, T.; Martin, V. S. Org. React. 1996, 48, 1. o) Linker, T. Angew. Chem. Int. Ed. Engl. 1997, 36, 2060. p) Tokunaga, M.; Larrow, J. P.; Kakiuchi, F.; Jacobsen, E. N. Science 1997, 276, 936. q) Elliot, M. C. J. Chem. Soc., Perkin Trans. 1 1998, 4175.

<sup>&</sup>lt;sup>103</sup> a) Crandall, J. K.; Apparu, M. Org. React. **1983**, 29, 345. b) Mordini, A.; Ben Rayana, E.; Margot, C.; Schlosser, M. Tetrahedron **1990**, 46, 2401. c) Satoh, T. Chem. Rev. **1996**, 96, 3303.

<sup>&</sup>lt;sup>104</sup> a) Cope, A. C.; Trumbull, P. A.; Trumbull, E. R. J. Am. Chem. Soc. **1958**, 80, 2844. b) Cope, A. C.; Brown, M.; Petree, H. E. J. Am. Chem. Soc. **1958**, 80, 2852. c) Cope, A. C.; Brown, M.; Lee, H. H. J. Am. Chem. Soc. **1958**, 80, 2855.

<sup>&</sup>lt;sup>105</sup> a) Cox, P. J.; Simpkins, N. S. Tetrahedron: Asymmetry 1991, 2, 1. b) Hodgson, D. M.; Gibbs, A. R.; Lee, G. P. Tetrahedron 1996, 52, 14361. c) O'Brien, P. J. Chem. Soc., Perkin Trans. 1 1998, 1439. d)
Södergren, M. J.; Andersson, P. G. J. Am. Chem. Soc. 1998, 120, 10760. e) Asami, M.; Ogawa, M.; Inoue, S. Tetrahedron Lett. 1999, 40, 1563. f) de Sousa, S. E.; O'Brien, P.; Steffens, H. C. Tetrahedron Lett. 1999, 40, 8423. g) Nilsson Lill, S. O.; Arvidsson, P. I.; Ahlberg, P. Tetrahedron: Asymmetry 1999, 10, 265.

preparación), determinarán finalmente el tipo de mecanismo por el que transcurrirá la reacción.<sup>106</sup>

La metalación directa del anillo oxiránico ( $\alpha$ -eliminación) genera especies carbenoides<sup>107</sup> que pueden evolucionar de varias maneras. Entre ellas, las más comunes son la inserción transanular en un enlace C-H vecino para producir alcóxidos saturados<sup>108</sup> y la inserción transanular en un enlace C-H adyacente para generar enolatos<sup>109</sup> o alcóxidos alílicos,<sup>110</sup> entre otras.<sup>111</sup> Por otra parte, la  $\beta$ -eliminación es el proceso normalmente implicado en la formación de alcoholes alílicos (Esquema 54),<sup>112</sup> de manera que estos últimos compuestos podrían formarse a partir de un epóxido por cualquiera de las dos vías comentadas.



<sup>&</sup>lt;sup>106</sup> a) Ramírez, A.; Collum, D. B. J. Am. Chem. Soc. **1999**, 121, 11114. b) Morgan, K. M.; Gronert, S. J. Org. Chem. **2000**, 65, 1461, y referencias citadas en estos artículos.

<sup>&</sup>lt;sup>107</sup> a) Boche, G.; Bosold, F.; Lohrenz, J. C. W.; Opel, A.; Zulauf, P. *Chem. Ber.* **1993**, *126*, 1873. b) Satoh, T. *Chem. Rev.* **1996**, *96*, 3303. c) Doris, E.; Dechoux, L.; Miokowski, Ch. Synlett **1998**, 337. d) Baumgartner, T.; Gudat, D.; Nieger, M.; Niecke, E.; Schiffer, T. J. Am. Chem. Soc. **1999**, *121*, 5953.

<sup>&</sup>lt;sup>108</sup> a) Apparu, M.; Barrelle, M. *Tetrahedron* **1978**, *34*, 1541. b) Hodgson, D. M.; Lee, G. P.; Marriot, R. E.; Thompson, A. J.; Wisedale, R.; Witherington, J. J. Chem. Soc., Perkin Trans. 1 **1998**, 2151.

<sup>&</sup>lt;sup>109</sup> a) Thies, R. W.; Chiarello, R. H. J. Org. Chem. **1979**, 44, 1342. b) Yanagisawa, A.; Yasue, K.; Yamamoto, Y. J. Chem. Soc., Chem. Commun. **1994**, 2103. c) Hodgson, D. M.; Robinson, L. A.; Jones, M. L. Tetrahedron Lett. **1999**, 40, 8637.

<sup>&</sup>lt;sup>110</sup> a) Cope, A. C.; Berchtold, G. A.; Peterson, P. E.; Sharman, S. H. J. Am. Chem. Soc. **1960**, 82, 6370. b) Morgan, K. M.; Gajewski, J. J. J. Org. Chem. **1996**, 61, 820.

<sup>&</sup>lt;sup>111</sup> a) Crandall, J. K.; Lin, H. L. C. J. Am. Chem. Soc. **1967**, 89, 4526. b) Loshe, P.; Loner, H.; Acklin, P.; Sternfeld, F.; Pfaltz, A. Tetrahedron Lett. **1991**, 32, 615.

<sup>&</sup>lt;sup>112</sup> a) Crandall, J. K.; Apparu, M. Org. React. **1983**, 29, 345. b) Morgan, K. M.; Gajewski, J. J. J. Org. Chem. **1996**, 61, 820.

Los experimentos de marcaje isotópico con deuterio han permitido determinar en ciertos casos la regio- y estereoquímica de los procesos de eliminación. Por ejemplo, para el epóxido derivado del ciclohexeno, estudios teóricos y experimentales han demostrado que en presencia de amiduros de litio la reacción evoluciona a través de un mecanismo de *sin-β*-eliminación para producir el 2-ciclohexenol.<sup>113</sup> Un incremento de la polaridad del disolvente sólo implica que, para algunos epóxidos ciclohexánicos sustituidos, la estereoquímica de la  $\beta$ -eliminación varíe de *sin a anti*. En el caso del epóxido derivado del ciclopenteno, la reacción con amiduros de litio transcurre a través de un mecanismo de  $\alpha$ -eliminación para producir un intermedio carbenoide si el proceso se lleva a cabo en disolventes no polares o a través de un mecanismo de  $\beta$ -eliminación cuando se emplean disolventes polares.<sup>114</sup> Este cambio de mecanismo de reacción también ha sido observado en otros epóxidos derivados de ciclos de tamaño medio (Esquema 55).



<sup>&</sup>lt;sup>113</sup> a) Thummel, R. P.; Rickborn, B. J. Am. Chem. Soc. **1970**, 92, 2064. b) Kissel, C. L.; Rickborn, B. J. Org. Chem. **1972**, 37, 2060.

<sup>&</sup>lt;sup>114</sup> a) Hodgson, D. M.; Gibbs, A. R. Tetrahedron Lett. **1997**, 38, 8907. b) Hodgson, D. M.; Gibbs, A. R.; Drew, M. G. B. J. Chem. Soc., Perkin Trans. 1 **1999**, 3579.

Así, en presencia de benceno como disolvente, el tratamiento de 132 con LDA conduce a la obtención de los productos 133 y 134 formados a partir de un mecanismo de  $\alpha$ eliminación. La diferente proporción en que se obtienen 133 y 134 se debe a la existencia de un efecto isotópico cinético primario ( $k_H/k_D$ : 3.3±0.5) calculado para la velocidad de abstracción del protón en *alfa* al anillo oxiránico. Por otra parte, en presencia de un disolvente de mayor polaridad como el HMPA los productos 134 y 135 se forman a partir de un mecanismo de  $\beta$ -eliminación (Esquema 55a).<sup>115</sup> Como ya se había señalado anteriormente, el alcohol alílico 134 pudo haberse formado por ambas vías de reacción. De un modo análogo, a partir del epóxido 136 derivado del cicloocteno se forman los compuestos 137 (resultante de un mecanismo de  $\beta$ -eliminación) y 138 proveniente de la  $\alpha$ -eliminación y posterior inserción transanular, lo que sucede cuando se emplea un disolvente de mayor polaridad (Esquema 55b).

En el caso de epóxidos bicíclicos, la rigidez estructural determina el hecho de que no sea factible un mecanismo de  $\beta$ -eliminación ya que, en este caso, se generaría un doble enlace inestable en un átomo de carbono cabeza de puente. En su lugar se detectan productos derivados de la inserción transanular o cetonas cuya presencia es consistente con un mecanismo de  $\alpha$ -eliminación.

Crandall estudió la transformación del *exo*-2,3-epoxibiciclo[2.2.1]heptano **139** en nortriciclanol **142a** en presencia de dietilamiduro de litio (Esquema 56a).<sup>116</sup> El mecanismo de reacción implica la formación del carbeno **141a** a partir de la especie **140** formada por metalación reversible del anillo oxiránico. La posterior inserción del carbeno en el enlace C-H opuesto conduce al alcohol **142a**. Este mecanismo también ha quedado establecido en función de varios experimentos de inserción transanular.<sup>117</sup> Así, el compuesto **143**, por reacción con dietilamiduro de litio, conduce a la formación del alcohol **144** (Esquema 56b). Para otros epóxidos bicíclicos también se han obtenido resultados similares.<sup>118</sup>

<sup>&</sup>lt;sup>115</sup> Morgan, K. M.; Gajewski, J. J. J. Org. Chem. 1996, 61, 820.

<sup>&</sup>lt;sup>116</sup> a) Crandall, J. K. J. Org. Chem. **1964**, 29, 2830. b) Crandall, J. K.; Crawley, L. C.; Banks, D. B.; Lin, L. C. J. Org. Chem. **1971**, 36, 510. c) Crandall, J. K.; Crawley, L. C. Org. Synth. **1973**, 5317.

<sup>&</sup>lt;sup>117</sup> a) Neff, J. R.; Nordlander, E. J. Tetrahedron Lett. **1971**, *12*, 499. b) Hodgson, D. M.; Robinson, L. A. J. Chem. Soc., Chem. Commun. **1999**, 309.

<sup>&</sup>lt;sup>118</sup> a) Corey, E. J.; Glass, R. S. J. Am. Chem. Soc. **1967**, 89, 2600. b) Crandall, J. K.; Apparu, M. Org. React. **1983**, 29, 345.



En los casos donde el proceso de inserción transanular del carbeno en un enlace C-H presenta restricciones importantes, el sistema evoluciona hacia la formación de las correspondientes cetonas.

Así, por ejemplo, en el compuesto **145**, ambos hidrógenos *endo* han sido reemplazados por grupos metilo lo cual dificulta severamente la reacción de inserción transanular. Por ello, en presencia del amiduro de litio sólo se obtiene la norbornanona **146** sin que se detecten productos de inserción en el enlace C-H del grupo metilo o en el enlace C-CH<sub>3</sub> (Esquema 57a). Por otra parte, el proceso de inserción es bastante sensible a la distancia que existe entre el epóxido litiado y el enlace transanular C-H. Ello se pone de manifiesto en la reacción del compuesto **147** con LDA, donde se obtiene mayoritariamente la cetona **148**. Pese a que el esqueleto bicíclico del material de partida es algo más flexible que el del epóxido **139** derivado del norborneno, apenas se obtiene el producto **149** proveniente de la inserción, debido a que en el compuesto **147** la distancia entre el centro reactivo y el enlace transanular C-H es ahora mayor (Esquema 57b).<sup>119</sup>

<sup>&</sup>lt;sup>119</sup> a) Crandall, J. K.; Crawley, L. C.; Banks, D. B.; Lin, L. C. J. Org. Chem. **1971**, 36, 510. b) Afarinkia, K.; Mahmood, F. Tetrahedron Lett. **2000**, 41, 1287.



Por otra parte, en la bibliografía existen escasas referencias relativas a un estudio análogo efectuado en epóxidos bicíclicos monosustituidos en presencia de amiduros de litio y el efecto que dicha sustitución podría tener en el curso de reacción. Así, por ejemplo, la reacción estudiada por McDonald entre el cloroepóxido **150** y dietilamiduro de litio conduce principalmente al nortriciclanol **142a** y la nortriciclanona **153a** (Esquema 58).<sup>120</sup> La formación del compuesto mayoritario es explicada, según los autores, por metalación directa del anillo oxiránico para generar el anión **151** que, por pérdida de anión cloruro, evoluciona al  $\alpha$ cetocarbeno **152a**. Finalmente, un proceso de inserción transanular conduciría a la formación de la nortriciclanona **153a**. Paralelamente, para explicar el orígen de **142a**, se plantea como hipótesis la ruptura reductora del enlace C<sub>2</sub>-Cl inducida por el amiduro de litio, la cual conduciría a la formación del anión **154** que a su vez evolucionaría al carbeno **141a**. Cabe señalar que los autores descartan la posibilidad de que el nortriciclanol **142a** se forme a partir de la nortriciclanona **153a** por un proceso de reducción. Este hecho, en contraposición con nuestros resultados, será comentado más adelante.

<sup>&</sup>lt;sup>120</sup> a) McDonald, R, M.; Steppel, R. N.; Cousins, R. C. J. Org. Chem. **1975**, 40, 1694. b) Lewars, E.; Siddiqi, S. J. Org. Chem. **1985**, 50, 135.



# IV.2. - Reacción de $\alpha$ , $\beta$ -epoxisulfonas bicíclicas con amiduros de litio.

En el apartado II.4. comentamos brevemente la reacción entre la epoxisulfona ciclohexánica 86 con LDA para producir la enona 84 de manera mayoritaria junto a la ciclohexanona 89 (Esquema 59). Dado que éste constituye el primer ejemplo de un proceso en el cuál se hace reaccionar una  $\alpha, \beta$ -epoxisulfona con un amiduro de litio, decidimos realizar un estudio más profundo con el objetivo de determinar la influencia del sustituyente fenilsulfonilo en el curso de reacción y las posibles diferencias que pudieran existir con respecto a los sustratos análogos sin sustitución.



Para ello se eligió un esqueleto bicíclico para las epoxisulfonas objeto de estudio ya que la rigidez estructural de estos compuestos desfavorecería considerablemente uno de los cursos de reacción ( $\beta$ -eliminación).

Así, las  $\alpha, \beta$ -epoxisulfonas **156a-c** de partida fueron preparadas por epoxidación nucleófila de las sulfonas vinílicas **155a-c** con *t*-BuOOLi de acuerdo con el procedimiento habitual (Esquema 60).<sup>121</sup>



### Esquema 60

Previamente se sintetizaron las sulfonas vinílicas **155a-c** según se describe en el esquema 61. La sulfona vinílica **155a** se obtuvo en 3 etapas de reacción consistentes en la adición de cloruro de fenilsulfonilo al doble enlace del norborneno de partida, oxidación con MMPP del grupo fenilsulfenilo a fenilsulfonilo y finalmente la deshidrocloración sobre **157** empleando DBU.<sup>122</sup> Por lo que respecta a la sulfona vinílica **155b**, ésta se obtuvo a partir del cicloaducto **158**,<sup>123</sup> obtenido a su vez por reacción Diels-Alder entre el furano y *E*-1,2-bis-(fenilsulfonil)etileno. La hidrogenación catalítica del doble enlace de **158** y eliminación de uno de los grupos fenilsulfonilo empleando *t*-BuOK condujo a **155b**. Por último, la sulfona vinílica 7-azanorbornénica **155c** se obtuvo siguiendo el procedimiento descrito por Simpkins.<sup>124</sup> Así, la hidrogenación catalítica del cicloaducto **160** obtenido por reacción Diels-Alder entre el pirrol N-protegido **159** y el *p*-(toluensulfonil)acetileno permitió acceder a **155c** con un rendimiento del 86% (Esquema 61).

<sup>&</sup>lt;sup>121</sup> Clark, C.; Hermans, P.; Meth-Cohn, O.; Moore, C.; Taljaard, H. C.; van Vuuren, G. J. Chem. Soc., Chem. Commun. 1986, 1378.

<sup>122</sup> Hopkins, P. B.; Fuchs, P. L. J. Org. Chem. 1978, 43, 1208.

<sup>123</sup> De Lucchi, O.; Lucchini, V.; Pasquatto, L.; Modena, G. J. Org. Chem. 1984, 49, 596.

<sup>&</sup>lt;sup>124</sup> a) Giblin, G. M. P.; Jones, C. D.; Simpkins, N. S. J. Chem. Soc., Perkin Trans. 1 1998, 3689. b) Giblin, G. M. P.; Jones, C. D.; Simpkins, N. S. Tetrahedron Lett. 1998, 39, 1021, 1023.





La reacción de las epoxisulfonas **156a-c** con LDA y dietilamiduro de litio a -78°C y utilizando éter como disolvente condujeron, en cada caso, a la formación de los correspondientes nortriciclanoles **142a-c** y nortriciclanonas **153a-c** junto con los compuestos **161a-f**, formalmente resultantes de la condensación aldólica de una cetona de tipo RCOCH<sub>3</sub> a las respectivas nortriciclanonas. Cabe destacar que la formación de estos aldoles no había sido observada con anterioridad para el caso de otros epóxidos bicíclicos con o sin sustitución.

En la Tabla 4 se recogen los rendimientos con que se obtuvieron los productos finales en cada caso, a partir de la reacción de cada epoxisulfona de partida **156a-c** con LDA (R: Me) o dietilamiduro de litio (R: H).



# Tabla 4. Reacción de las epoxisulfonas 156a-c con amiduros de litio.

<sup>a</sup>La relación de equivalentes en todos los casos fué **156**: (CH<sub>3</sub>CHR)<sub>2</sub>NLi, 1:5. La concentración de **156** fué 0.1 M en éter salvo en el caso de **156c**, para el que la concentración fué 0.03 M debido a la menor solubilidad de este compuesto en éter. <sup>b</sup>Rendimiento en producto aislado. Los rendimientos indicados son el resultado de tres experimentos independientes. <sup>c</sup>Rendimiento en producto aislado. Los rendimientos indicados son el resultado de dos experimentos independientes.

La determinación estructural del nortriciclanol **142a** y de la nortriciclanona **153a**, derivados de la epoxisulfona norbornénica **156a**, se realizó por comparación con los datos espectroscópicos recogidos en la bibliografía.<sup>125</sup> La determinación estructural de los restantes alcoholes **142b-c** y cetonas **153b-c**, derivadas de las epoxisulfonas 7-oxa y 7azanorbornenicas, se realizó por resonancia magnética nuclear de protón, carbono-13 y por espectroscopía de masas.

<sup>&</sup>lt;sup>125</sup> Mc. Donald, R. N.; Steppel, R. N.; Cousins, R. C. J. Org. Chem. 1975, 40, 1694.

Sin embargo, al no existir antecedentes en la bibliografía sobre la formación de aldoles análogos a los obtenidos por nosotros en la reacción anteriormente comentada, el análisis y la identificación de los compuestos **161a-f** (Figura 22) requirió del empleo combinado de técnicas de resonancia magnética nuclear mono- y bidimensionales, así como de la espectroscopía de masas.



161e, X: NBoc

161d, X: O 161f, X: NBoc

Figura 22

Así, por ejemplo, en el espectro de protón (<sup>1</sup>H-RMN) de la  $\beta$ -hidroxi-metilcetona **161a** se observa una señal a 2.72 ppm que integra para dos protones y que posee una multiplicidad de doblete, correspondiente a los protones del grupo metileno unido directamente al grupo carbonilo. También aparece una señal a 2.19 ppm como singlete y que integra para los tres protones del grupo metilo de la molécula. Por otra parte, en el espectro de protón del  $\beta$ -hidroxialdehido **161b**, además de la señal correspondiente al protón de aldehido (9.99 ppm) se observa un doblete a 2.70 ppm correspondiente a los dos protones del grupo metileno unido a dicha funcionalidad (Figura 23).



161a

2.19 ppm (s, 3 H, CH<sub>3</sub>) 2.72 ppm (d, 2 H, *J*= 2.5 Hz, C<u>H</u><sub>2</sub>COCH<sub>3</sub>)



161b

2.70 ppm (d, 2 H, J= 1.8 Hz, CH<sub>2</sub>COCH<sub>3</sub>) 9.99 ppm (s, 1 H, CHO)

Figura 23

Para obtener una distribución más precisa de los productos obtenidos anteriormente, los productos finales de las reacciones de **156a** y **156b** con LDA en las condiciones antes

reseñadas fueron sometidos a análisis por cromatografía de gases acoplada a espectrometría de masas (GC-MS). Los resultados obtenidos se muestran en la Tabla 5. Las pequeñas diferencias existentes entre las relaciones de los productos finales obtenidas por esta técnica y las deducidas a partir del aislamiento de dichos compuestos por cromatografía en gel de sílice pueden deberse a la posible descomposición de los productos finales en el proceso de purificación.

Tabla 5. Análisis de los productos obtenidos por reacción de 156a-b con LDA.

|            | RELACION DE PRODUCTOS 142:153:161 |                                   |  |
|------------|-----------------------------------|-----------------------------------|--|
| Reacción   | GC-MS                             | Cromatografía (SiO <sub>2</sub> ) |  |
| 156a + LDA | 1: 0.13: 1.3 <i>a</i>             | 1: 0: 0.81 <i>a</i>               |  |
| 156b + LDA | 4.5: 1: 1.2 <sup>b, c</sup>       | 5.20: 1: 1.15 <sup>b</sup>        |  |

<sup>a</sup> Relación 142a: 153a: 161a. <sup>b</sup> Relación 142b: 153b: 161c. <sup>c</sup> También se detectaron trazas del compuesto dimérico 167b. Véase más adelante (Tabla 6).

A la vista de los resultados obtenidos en la reacción entre las epoxisulfonas **156a-c** con los amiduros de litio, se propuso el siguiente curso de reacción para explicar la formación de los compuestos finales identificados.

En primer lugar, la base abstrae el protón directamente unido al anillo oxiránico ( $\alpha$ eliminación) para generar el carbanión 162 que evoluciona al  $\alpha$ -cetocarbeno 152 por eliminación del anión arilsulfonilo. A continuación, se produce un proceso de inserción intramolecular del carbeno en el enlace C-H opuesto, análogo a los ya comentados en el apartado IV.1, formándose de este modo las nortriciclanonas 153a-c (Esquema 62).



Esquema 62

A continuación, la adición nucleófila de un segundo equivalente del amiduro de litio a las cetonas **153a-c** conduciría a **163a-f** que por un proceso de transferencia 1,3 de hidruro provocaría la formación del intermedio **141a-c** y de la imina **164a-b**. La reacción de condensación iminoaldólica, promovida por el amiduro de litio, entre la imina **164a-b** y un equivalente de la cetona **153a-c**, conduciría a la formación del intermedio de reacción **165a-f**. Finalmente la hidrólisis permitiría la formación de **142a-c** y **161a-f** a partir de **141a-c** y **165a-f** respectivamente (Esquema 63).



Esquema 63

La capacidad del LDA, así como de otros amiduros de litio, para provocar la reducción de cetonas no enolizables es un proceso conocido que transcurre a través de un mecanismo de transferencia de hidruro análogo al de una reducción de tipo Meerwein-Ponndorf-Verley.<sup>126</sup> Para poseer esta capacidad reductora, la amida debe tener al menos un átomo de hidrógeno en posición *beta*. Como consecuencia de esta reducción, el amiduro de litio es oxidado a la correspondiente imina (Esquema 64a). No obstante, también se ha sugerido que dicha reducción pudiera transcurrir, al menos en algunos casos, por medio de un mecanismo basado

<sup>&</sup>lt;sup>126</sup> a) Kowalski, C.; Creary, X.; Rollin, A. J.; Burke, M. C. J. Org. Chem. **1978**, 43, 2601. b) Takeda, K.; Ohnishi, Y.; Koizumi, T. Org. Lett. **1999**, 1, 237.

en una transferencia monoelectrónica.<sup>127</sup> Los resultados obtenidos en nuestro caso y en concreto el aislamiento de los compuestos **161a-f**, parecen avalar el mecanismo de transferencia de hidruro. También existen evidencias que justifican el que la imina resultante del proceso de transferencia de hidruro pueda ser desprotonada en presencia de un amiduro de litio y el anión resultante actúe como nucleófilo.<sup>128</sup> Así, el tratamiento de la imina **164a** con LDA y posterior adición de benzofenona, condujo a la formación de la  $\beta$ -hidroxi imina **166** (Esquema 64b).





Un camino de reacción alternativo que también podría conducir a la formación de los alcoholes **142a-c**, implicaría la reducción del enlace C-S en las epoxisulfonas de partida **156a**c, por parte del amiduro de litio y la evolución del epoxianión resultante siguiendo el mecanismo propuesto por Crandall (Esquema 56a). Pese a que este proceso de desulfonilación está descrito para la reacción de sulfonas con naftalenuro de litio, el curso de la reacción en presencia de amiduros de litio parece ser diferente.<sup>129</sup>

<sup>&</sup>lt;sup>127</sup> a) Scott, L. T.; Carlin, K. J.; Schultz, T. H. Tetrahedron Lett. **1978**, 19, 4637. b) Ashby, E. C. Pure Appl. Chem. **1980**, 52, 545.

<sup>&</sup>lt;sup>128</sup> a) Wittig, G.; Schmidt, H. -J.; Renner, H. Chem. Ber. **1962**, 95, 2377. b) Majewski, M.; Gleave, D. M. J. Organomet. Chem. **1994**, 470, 1.

<sup>&</sup>lt;sup>129</sup> Simpkins, N. S. "Sulfones in Organic Synthesis". Tetrahedron Organic Series. Vol 10. p 357. Pergamon Press, **1993**.

Para confirmar el mecanismo de reacción propuesto se realizaron de forma independiente dos experimentos. En primer lugar, la reacción de las epoxisulfonas **156a-c** con bis-(trimetilsilil)amiduro de litio (LHMDS) condujo únicamente a la formación de las correspondientes cetonas **153a-c** con rendimientos moderados junto con cantidades variables del material de partida (Esquema 65). La ausencia en el LHMDS de un ión hidruro transferible impidió la posterior evolución de las cetonas **153a-c** formadas de acuerdo con el curso de reacción formulado. A la vista de estos resultados se deduce que los nortriciclanoles **142a-c** no son los productos primarios en los procesos estudiados sino que derivan de las correspondientes cetonas **153a-c**. Con ello parece quedar descartado que los alcoholes **142a-c** provengan directamente de las epoxisulfonas de partida por medio de una reducción previa del enlace C-S según lo planteado por McDonald (véase Esquema 58) para el caso de los epóxidos clorados.





El segundo experimento consistió en hacer reaccionar a la nortriciclanona **153a**, previamente aislada, en las mismas condiciones de reacción que las empleadas en el caso de la epoxisulfona **156a**. De este modo, el tratamiento de **153a** con LDA en éter a -78°C condujo a la formación de **142a** (47%)y **161a** (26%) respectivamente (Esquema 66).



Esquema 66

Al llevar a cabo la reacción entre las epoxisulfonas de partida **156a-c** y LDA a temperaturas entre -15°C y 0°C se obtuvo una nueva distribución de los productos junto con la formación de un nuevo tipo de compuesto, **167a-b**, no observado en los casos anteriores (Tabla 6).

Tabla 6. Reacción de las epoxisulfonas 156a-c con LDA a -15-0°C.a



| _                                 | PRODUCTOS FINALES   |                     |                     |  |
|-----------------------------------|---------------------|---------------------|---------------------|--|
| Compuesto de partida <sup>a</sup> | Nortriciclanol 142  | Aldol 161           | Dímero 167          |  |
| 156a                              | 55% ( <b>142a</b> ) | 23% ( <b>161a</b> ) | 10% ( <b>167a</b> ) |  |
| 156b                              | 63% (1 <b>42b</b> ) | 18% ( <b>161c</b> ) | 7% (167b)           |  |
| 156c                              | 49% ( <b>142</b> c) | 15% ( <b>161e</b> ) | no observado        |  |

<sup>*a*</sup>La relación de equivalentes en todos los casos fué **156**: (CH<sub>3</sub>CHR)<sub>2</sub>NLi, 1:5. La concentración de **156** fué 0.1 M en éter salvo en el caso de **156c**, para el que la concentración fué 0.03 M debido a la menor solubilidad de este compuesto en éter.

La determinación estructural de los compuestos **167a** y **167b** se realizó de acuerdo con los espectros de resonancia magnética nuclear (protón y carbono-13) y por espectroscopía de masas. Los espectros de protón de estos compuestos guardan un gran parecido con los de los correspondientes aldoles **156a** y **156c**, pero a diferencia de estos últimos, desaparece la señal correspodiente al grupo metilo. Debido a la simetría de **167a** y **167b**, las señales de los correspondientes espectros corresponden al doble de protones (Figura 24).



Figura 24

La formación de **167a-b** puede ser explicada, mediante el mismo curso de reacción propuesto, a través de una segunda condensación iminoaldólica promovida por el amiduro de litio entre el intermedio de reacción **165a,c** (Esquema 63) y las nortriciclanonas **153a-b** (Esquema 67).



Esquema 67

Con posterioridad a los ensayos comentados se comprobó que para el caso de la reacción de la epoxisulfona **156a** con LDA a -78°C, en las mismas condiciones que se habían empleado previamente, se obtenía en primer lugar el compuesto **168**. Este compuesto evoluciona rápidamente para formar el aldol **161a** que siempre habíamos detectado como uno de los productos finales del proceso (Tabla 4). Este hecho sólo se apreció para el caso de la epoxisulfona norbornénica (X: CH<sub>2</sub>) y únicamente cuando la identificación de los productos finales de la reacción se realizó inmediatamente después de la purificación cromatográfica. De hecho, al dejar este compuesto disuelto en CDCl<sub>3</sub> durante unas horas se obtenía el aldol **161a** previamente identificado como uno de los productos finales de la reacción (Esquema 68).



### Esquema 68

La estructura del compuesto **168** se propuso tentativamente a partir de los datos obtenidos de los espectros de resonancia magnética nuclear de protón y carbono-13. Ambos aldoles **168** y **161a** poseen espectros de resonancia muy parecidos. No obstante, en el espectro de protón de **168** desaparece el singlete correspondiente al grupo metilo y en su lugar, se distingue una nueva señal correspondiente a un grupo metileno. Así, los protones H-3 aparecen como doblete de dobletes por acoplamiento entre sí (J= 3.6 Hz) y con el protón hidroxílico (J= 7.3 Hz). Por otra parte, los protones H-5 poseen la misma multiplicidad al acoplarse entre sí (J= 4.4 Hz) y con H6 (J= 7.6 Hz). No obstante, los espectros de RMN obtenidos para el compuesto **168** poseen una mala resolución, que va mejorando a medida que se transforma en el aldol **161a** (Figura 25).



168

2.14 ppm (dd, *J*= 7.6, 4.4 Hz, 2 H5) 2.68 ppm (dd, *J*= 7.3, 3.6 Hz, 2 H3)

Figura 25

Teniendo en cuenta este nuevo resultado, un camino de reacción razonable para justificar la formación de **168** sería el siguiente: A partir del intermedio **165a** (Esquema 63) se genera la  $\beta$ -alcoxi imina **169** vía apertura intramolecular del anillo ciclopropánico inducida por la base. El carbanión resultante del proceso de apertura intramolecular se protonaría, por ejemplo, a partir de la diisopropilamina que se va produciendo en el propio medio de reacción. Por último, la hidrólisis de **169** conduciría al compuesto **168** (Esquema 69).



En la bibliografía se recogen pocos ejemplos sobre la apertura del anillo ciclopropánico en sistemas referibles y, fundamentalmente, ello sucede en medio ácido.<sup>130</sup> Así, la adición de una amina secundaria catalizada por ácido *p*-toluensulfónico, ó la adición de ácido acético a la nortriciclanona **153a** conduce a la formación de las norbornanonas **170** y **171** respectivamente (Esquema 70a). El único ejemplo encontrado de apertura en medio básico lo constituye la adición nucleófila de MeONa al anillo ciclopropánico de **172**, que a su vez se encuentra conjugado con un grupo éster, para obtener la mezcla de **173** y **174** (Esquema 70b).<sup>131</sup>

<sup>130</sup> a) Meinwald, J.; Crandall, J. K. J. Am. Chem. Soc. 1966, 88, 1292. b) Bindra, J. S.; Grodski, A.; Schaaf, T. K.; Corey, E. J. J. Am. Chem. Soc. 1973, 95, 7522. c) Takano, S.; Iwata, H.; Ogasawara, K. Heterocycles 1978, 9, 845. d) Cook, A. G.; Wesner, L. R.; Folk, S. L. J. Org. Chem. 1997, 62, 7205. e) Lautens, M.; Blackwell, J. Synthesis 1998, 537.

<sup>&</sup>lt;sup>131</sup> Meinwald, J.; Crandall, J. K. J. Am. Chem. Soc. 1966, 88, 1292.



A continuación, vamos a intentar establecer una explicación mecanística para la transformación que sufre **168** para formar **161a**, si bien por el momento carecemos de datos experimentales suficientes que puedan corroborar esta hipótesis (Esquema 71). En nuestra opinión, en primer lugar ocurriría la protonación del grupo carbonilo, probablemente debida al carácter ácido de la gel de sílice o a trazas de ácido presentes en los disolventes empleados durante la hidrólisis de la reacción. A continuación, y por asistencia del grupo hidroxilo, tendría lugar la salida de un resto enólico para generar el catión **175a**, que experimentaría una transformación σ-asistida proporcionando **175b**.<sup>132</sup> Finalmente, la captura de un protón por parte de una base generaría el sistema tricíclico **161a** de forma irreversible. El mecanismo propuesto deja abiertas dos interrogantes. Por una parte, carecemos de una explicación razonable sobre la especie reactiva implicada en el proceso por el cual, la especie carbocatiónica **175b** evolucionaría a **161a**. Cabe destacar que en la bibliografía se recoge un ejemplo relacionado donde los autores tampoco logran dar una respuesta satisfactoria para este proceso.<sup>133</sup> Tampoco el curso de reacción propuesto justifica *a priori* el hecho de que no

<sup>&</sup>lt;sup>132</sup> Vogel, P. "Carbocation Chemistry". Cap. 7. p 281-291. Elsevier, 1985.

<sup>&</sup>lt;sup>133</sup> Bégué, J. P.; Charpentier-Morize, M.; Pardo, C.; Sansoulet, J. Tetrahedron 1978, 34, 293.

detectemos los compuestos análogos a 168 en los casos de los derivados 7-oxa y 7azanorbornénicos, respectivamente.



### Esquema 71

Este curso de reacción, sin embargo, está de acuerdo con que, a diferencia de lo que ocurre para la cetona tricíclica **168**, los compuestos **176** y **177** exhiben un comportamiento normal habiendo sido sintetizados en diferentes ocasiones (Esquema 72).<sup>134</sup> Esto último podría significar que el orígen de la inestabilidad radica en la presencia simultanea de ambos grupos funcionales en la misma molécula



Esquema 72

Con vistas a intentar esclarecer el curso de reacción propuesto en el Esquema 71, se realizaron una serie de experimentos sobre el compuesto **168**. En primer lugar, se intentó atrapar el carbocatión que se formaría durante el proceso descrito. El tratamiento de **168** con MeOH y trazas de HCl únicamente condujo al aldol **161a**. Sin embargo, el tratamiento del mismo compuesto de partida con NaI y trazas de ácido sulfúrico utilizando acetona como
disolvente permitió obtener una mezcla de los compuestos 161a, 178 y 179 con unos rendimientos respectivos del 53, 12 y 26% (Esquema 73).



En principio, la formación del derivado iodado **179** podría constituir un elemento en favor del mecanismo propuesto, al poderse haber formado *via* atrapamiento del intermedio carbocatiónico **180** (Esquema 74) por el ión yoduro. Cabe señalar que al someter, de manera independiente, al aldol **161a** a las mismas condiciones de reacción antes comentadas, no se observó ningun tipo de evolución recuperándose el material de partida como único producto identificable.



#### Esquema 74

También se intentaron otras transformaciones sobre el compuesto 168. Así, por ejemplo, la reducción empleando LiAlH<sub>4</sub> condujo a una mezcla equimolecular de los 1,3-dioles 181 y 182. No obstante, y dado el hecho de que dichos productos también se obtuvieron al someter al aldol 168 a las mismas condiciones de reacción, este resultado no aporta ninguna información ya que pudo haber ocurrido la isomerización de 168 a 161a previa a la reducción (Esquema 75).



Como último aspecto de la reacción de epoxisulfonas bicíclicas con amiduros de litio, decidimos extender el proceso a otras epoxisulfonas 7-oxanorbornénicas, con sustitución en el esqueleto bicíclico. Para ello se prepararon las epoxisulfonas **185a-b** y **186** mediante el procedimiento habitual, por tratamiento con *terc*-butilperóxido de litio, a partir de las correspondientes sulfonas vinílicas de partida **183a-b** y **184** (Esquema 76).<sup>135</sup>





A continuación se ensayaron las condiciones habituales de reacción (5 equivalentes de LDA, -78°C) sobre el compuesto **185a** recuperándose en todos los ensayos el producto de partida inalterado. El cambio de grupos protectores tampoco mejoró estos resultados y así el tratamiento de **185b** en las mismas condiciones de reacción condujo también a la recuperación del producto de partida. El empleo de unas condiciones de reacción más enérgicas, tales como el aumento de la temperatura o del número de equivalentes de base provocó la obtención de una mezcla de productos de degradación que no han sido identificados.

Finalmente, la reacción de la epoxisulfona **186** con LDA condujo a los productos **187**, **188** y **189**, referibles a los obtenidos en el caso de la epoxisulfona **156b**, si bien los rendimientos fueron más bajos (Esquema 77).Una posible causa podría radicar en los problemas de solubilidad en éter del material de partida.

<sup>&</sup>lt;sup>135</sup> Arjona, O.; Iradier, F.; Plumet, J.; Matínez-Alcázar, M. P.; Hernández-Cano, F.; Fonseca, I. Tetrahedron Lett. **1998**, 39, 6741.



#### IV.3. - Reacción de una aziridina bicíclica con amiduro de litio.

#### IV.3.1. - Introducción.

Si bien el proceso de  $\alpha$ -eliminación para generar aniones oxiranilos y posterior inserción del carbeno resultante (o de la especie carbenoide equivalente) ha sido bastante estudiado, como ya se ha comentado para el caso de los epóxidos bicíclicos, no encontramos un estudio análogo para el caso de las aziridinas bicíclicas. Para estos compuestos, la formación de un  $\alpha$ iminocarbeno (o carbenoide) que derive de un anión aziridinilo derivado de la metalación directa en el anillo heterocíclico, no ha sido observado con anterioridad. De hecho, la bibliografía con respecto a este tipo de aniones es bastante reciente.<sup>136</sup>

En concreto, un estudio reciente realizado por O'Brien demostró, que a diferencia de lo que sucede en epóxidos derivados del ciclohexeno, las correspondientes aziridinas no son convertidas en aminas alílicas por efecto de un amiduro de litio.(Esquema 78).<sup>137</sup>



<sup>&</sup>lt;sup>136</sup> a) Tanner, D. Angew. Chem. Int. Ed. Engl. **1994**, 33, 599. b) Satoh, T. Chem. Rev. **1996**, 96, 3303. c) Vcdejs, E.; Kcndall, J. T. J. Am. Chem. Soc. **1997**, 119, 6941. d) Atkinson, R. S. Tetrahedron **1999**, 55, 1519.

<sup>137</sup> O'Brien, P.; Pilgram, C. D. Tetrahedron Lett. 1999, 40, 8427.

Un ejemplo aislado de apertura del anillo nitrogenado para generar una amina alílica por reacción con un alcóxido sódico a reflujo se ilustra en el Esquema 79. El tratamiento de la aziridina **190** con metóxido sódico en metanol condujo a una mezcla compuesta, entre otros, por la sulfonamida alílica **191**, que isomeriza en el medio básico para formar la enamida **192**, precursora de la cetona aislada **193** (Esquema 79).<sup>138</sup>



Esquema 79

En el Esquema 80 se ilustran algunos ejemplos donde el anillo de aziridina es metalado para generar un anión que posteriormente es atrapado por un electrófilo. Esta  $\alpha$ -metalación ha sido conseguida mediante el empleo de una gran variedad de bases.<sup>139</sup> Así el tratamiento de la fenilsulfonil aziridina **194** con LDA y bromuro de bencilo condujo al derivado **195**, mientras que por reacción con hidruro sódico y posterior hidrólisis con D<sub>2</sub>O, se obtuvo la aziridina deuterada **197** a partir de **196** (Esquema 80).



BIBLIOTECA

<sup>&</sup>lt;sup>138</sup> Stamm, H.; Speth, D. Chem. Ber. 1989, 122, 1795.

<sup>&</sup>lt;sup>139</sup> a) Rubottom, G. M.; Stevenson, G. R.; Chabala, J. C.; Pascucci, V. L. *Tetrahedron Lett.* **1972**, 3591. b) Reutrakul, V.; Prapansiri, V.; Panyachotipun, C. *Tetrahedron Lett.* **1984**, 25, 1949.



Un antecedente del proceso de apertura del anillo heterocíclico en aziridinas bicíclicas, lo encontramos en la reacción de **199** con bromuro de hidrógeno (Esquema 81).<sup>140</sup> La aziridina **199**, previamente obtenida a partir de la triazolina **198** por descomposición térmica, probablemente evoluciona a través de un mecanismo de tipo carbocatiónico para formar el derivado bromado **200**.



Esquema 81

#### IV.3.2. - Resultados.

Nuestro objetivo consistió en extender el estudio llevado a cabo con anterioridad sobre las epoxisulfonas, al caso de una aziridina bicíclica con vistas a detectar la presencia de un

<sup>140</sup> Tanida, H.; Tsuji, T.; Irie, T. J. Org. Chem. 1966, 31, 3941.

intermedio de reacción de tipo  $\alpha$ -iminocarbénico por medio del análisis de los productos finales de la reacción.

Existen numerosas metodologías que permiten el acceso a las aziridinas, tanto en forma racémica<sup>141</sup> como ópticamente puras.<sup>142</sup> De entre ellas elegimos la reacción de inserción, catalizada por cobre, de un nitreno en un alqueno para obtener la aziridina bicíclica **201**.<sup>143</sup> Así, a partir del norborneno y de [N-(p-toluensulfonil)imino]feniliodinano, PhI=NTs,<sup>144</sup> se obtuvo **201** con un 93% de rendimiento (Esquema 82).



#### Esquema 82

A continuación, el tratamiento de **201** con LDA en éter a -78°C empleando las condiciones habituales condujo a una mezcla compuesta por la norbornanona **202** y la *N*-tosil nortriciclilamina **203**. Los rendimientos que se señalan en el Esquema 83 son el resultado de tres experimentos independientes.



Esquema 83

La norbornanona 202 se identificó por comparación de sus datos espectroscópicos con los de una muestra del material auténtico. Por su parte, la determinación estructural de la amina

 <sup>&</sup>lt;sup>141</sup> a) Atkinson, R. S. *Tetrahedron* 1999, 55, 1519 y referencias allí citadas. b) Katritzky, A. R.; Yao, J.; Bao, W.; Qi, M.; Steel, P. J. J. Org. Chem. 1999, 64, 346.

<sup>142</sup> Osborn, H. M.; Sweeney, J. Tetrahedron: Asymmetry 1997, 8, 1693.

<sup>&</sup>lt;sup>143</sup> Evans, D. A.; Margaret, M. F.; Bilodeau, M. T. J. Am. Chem. Soc. 1994, 116, 2742.

<sup>&</sup>lt;sup>144</sup> a) Yamada, Y.; Yamamoto, T.; Okawara, M. Chem. Lett. **1975**, 361. b) Södergren, M. J.; Alonso, D. A.; Bcdekar, A. V.; Andersson, P. G. Tetrahedron Lett. **1997**, 38, 6897. c) Dauban, P.; Dodd, R. H. J. Org. Chem. **1999**, 64, 5304

**203** se realizó por comparación con los datos recogidos en la bibliografía para el caso del bencenosulfonil derivado referible.<sup>145</sup>

A la vista de estos resultados se propuso un mecanismo de reacción similar al aceptado para el caso de los epóxidos bicíclicos al ser sometidos a las mismas condiciones de reacción (Esquema 84). Así, la  $\alpha$ -desprotonación en el anillo de aziridina conduciría al anión **204** que evolucionará para formar el  $\alpha$ -iminocarbenoide **205**. La inserción transanular del mismo en un enlace C-H conduciría, después de la hidrólisis, a la amina tricíclica **203**. Por otra parte, la formación de la norbornanona **202** podría haber ocurrido a través de dos caminos de reacción. En primer lugar, por medio de la inserción del carbeno **205** en el enlace C(NTs)-H adyacente, lo que permitiría la formación del anión enamínico **206** que estaría en equilibrio con el imino carbanión. En segundo lugar, a partir de la especie carbenoide **205** y por medio de un proceso de trasferencia de hidrógeno análogo al mecanismo de Wagner-Meerwein en la química de carbocationes,<sup>146</sup> se formaría también la especie **206**. En ambos casos la hidrólisis conduciría a la formación de la *N*-tosilenamina **207**, que estaría en equilibrio con la *N*-tosilimina, que conduciría finalmente a la cetona **202**.

<sup>145</sup> Zalkow, L. H.; Calhoun, R. M. Tetrahedron Lett. 1975, 26, 2149.

<sup>&</sup>lt;sup>146</sup> Moody, Ch. J.; Whitham, G. H. "Reactive Intermediates". Oxford Chemistry Primers. Davies, S. G. Ed. p 42. Oxford, **1995**.



Esquema 84

#### IV.4. - Conclusiones

En este capítulo se ha abordado el estudio de la reacción entre varias  $\alpha$ ,  $\beta$ -epoxisulfonas bicíclicas con distintos amiduros de litio. La obtención de productos procedentes de condensaciones aldólicas (161a-f, 167a-b y 168), que no han sido observados en anteriores estudios sobre epóxidos bicíclicos, nos ha permitido proponer un curso de reacción que justifique la formación simultanea de todos los compuestos.

Por otra parte se ha extendido el estudio al caso de una aziridina bicíclica, lo que ha permitido proponer como intermedio de reacción, la existencia de una especie  $\alpha$ iminocarbenoide derivada de un anión aziridinilo por metalación directa del anillo heterocíclico.

### CAPÍTULO V

- V.1. Materiales y métodos generales.
- V.2. Síntesis de 1,3-sin-dimetil-estereotetradas.
- V.3. Síntesis de 1,3-anti-dimetil-estereotetradas.
- V.4. Síntesis del fragmento  $C_1$ - $C_8$  de las baconipironas A y B.
- V.5. Reacción de  $\alpha, \beta$ -epoxisulfonas bicíclicas con amiduros de litio.

#### V. - Parte experimental

#### V.1. - Materiales y métodos generales.

Las reacciones sensibles al aire se realizaron bajo atmósfera de argon. Los reactivos líquidos se transfirieron utilizando jeringas y a través de un septum ajustado al matraz de reacción. Las reacciones a 0 °C, -20 °C y -78 °C se realizaron utilizando un baño de agua / hielo, CCl<sub>4</sub> / hielo seco y acetona/hielo seco, respectivamente. Cuando no se hace mención de la temperatura, la reacción se llevó a cabo a temperatura ambiente.

Los disolventes utilizados se purificaron por destilación: THF y Et<sub>2</sub>O sobre Na y benzofenona, CH<sub>3</sub>CN, CH<sub>2</sub>Cl<sub>2</sub>, DMF, *i*-Pr<sub>2</sub>NH, Et<sub>2</sub>NH, piridina, tolueno y Et<sub>3</sub>N sobre CaH<sub>2</sub>, y MeOH sobre Mg y I<sub>2</sub>.

La purificación de los crudos de reacción se llevó a cabo por cromatografía en columna utilizando gel de sílice E. Merck 230-400 mesh, y como eluyente el indicado en cada caso. La detección de los productos de reacción se realizó mediante cromatografía en capa fina (Kiesegel 60F-254), utilizando espectroscopía UV (254 nm) e inmersión en disolucion ácida de vainillina, ácido fosfomolíbdico al 10% en etanol o disolución básica de KMnO4.

Los puntos de fusión se midieron en un tubo capilar, utilizando un aparato Büchi 512 o Gallenkamp.

Los espectros de resonancia magnética nuclear de protón (<sup>1</sup>H RMN) y de carbono 13 (<sup>13</sup>C RMN) se realizaron en aparatos Brüker AM-300 ó Varian VXR-300S, utilizando CDCl<sub>3</sub>, CD<sub>3</sub>OD o C<sub>6</sub>D<sub>6</sub> como disolventes, y tetrametilsilano o el propio disolvente deuterado como referencia interna. Los desplazamientos químicos se expresan en partes por millón (ppm). En cada caso se utilizaron las siguientes abreviaturas: s, singlete; d, duplete; t, triplete; m, multiplete; ax, axial; ec, ecuatorial; n, endo; x, exo.

Los espectros de infrarrojo (IR) se realizaron en aparatos Perkin-Elmer 781 ó 257. Se indican las bandas características en cm<sup>-1</sup>.

Las rotaciones específicas,  $[\alpha]_D$ , se han medido en un polarímetro Perkin-Elmer 241, en células de cuarzo de un decímetro de longitud, a las concentraciones y disolventes que en cada caso se indican.

Los análisis elementales se realizaron en el servicio de microanálisis de la Universidad Complutense de Madrid.

El análisis de los productos de reacción empleando cromatografía de gases con detección por espectrometría de masas (GC-MS) se realizó en un cromatógrafo de gases HP5890 Serie II acoplado a un espectrómetro de masas de cuadrupolo HP5989A.

V.2. - Síntesis de 1,3-sin-dimetil-estereotetradas.

## V.2.1. - Síntesis de (+)-5-*endo*-cloro-6-*exo*-(fenilsulfenil)-3-*exo*-metil-7-oxabiciclo[2.2.1]heptan-2-ona, 34.

A una disolución de HMDS (2.73 ml, 13.20 mmol) en 13 ml de THF enfriada a 0°C, se añadieron gota a gota 8.25 ml (13.20 mmol) de *n*-BuLi. Después de agitar durante 20 minutos, la disolución se enfrió a -78°C y se añadieron 2.8 g (11 mmol) de (+)- $43^{147}$  disueltos en 33 ml de THF. La mezcla de reacción se agitó durante 1 hora a -78°C y, a continuación, se añadieron 2.07 ml (33 mmol) de IMe. Se dejó subir lentamente la temperatura hasta 0°C y se agitó durante 3 horas. Pasado este tiempo, la reacción se hidrolizó con disolución acuosa saturada de NaCl y la fase acuosa se extrajo con éter. El conjunto de las fases orgánicas se secaron sobre MgSO<sub>4</sub> y, tras filtración, el disolvente se evaporó a presión reducida. La purificación mediante cromatografía en columna (hexano:AcOEt, 15:1) permitió aislar (+)-**34** (1182 mg, 40%) como un sólido blanco, recuperándose 1260 mg (45%) del material de partida (+)-**43**.

Datos de (+)-34:

 $[\alpha]^{25}_{D} + 193.9^{\circ} (0.05 \text{ M}, \text{CH}_2\text{Cl}_2)$ 

Ch., Me

 $R_{f}$ = 0.40 (hexano:AcOEt, 6:1). Pf: 95-96 °C.

IR (KBr): 2980, 1720, 1370, 1150.

<sup>1</sup>H RMN (250 MHz, CDCl<sub>3</sub>): 1.28 (d, 3 H, *J*= 7.4 Hz, Me), 2.86 (q, 1 H, *J*= 7.4 Hz, H-3n), 3.42 (d, 1 H, *J*= 4.0 Hz, H-6), 4.23-4.26 (m, 2 H, H-1, H-5), 4.56 (dd, 1 H, *J*= 5.1, 1.1 Hz, H-4), 7.30-7.38 (m, 3 H, 3 Har), 7.43-7.46 (m, 2 H, 2 Har)

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 13.5, 41.9, 54.9, 60.9, 85.1, 85.4, 128.1, 129.5, 131.9, 137.1, 210.0.

<sup>&</sup>lt;sup>147</sup> a) Black, K. A.; Vogel, P. Helv. Chim. Acta **1984**, 67, 1612. b) Black, K. A.; Vogel, P. J. Org. Chem. **1986**, 51, 5341.

**Microanálisis**: Calculado para C<sub>13</sub>H<sub>13</sub>O<sub>2</sub>ClS: C, 58.10; H, 4.84. Encontrado: C, 58.01; H, 4.67.

V.2.2. - Síntesis de (+)-5-endo-cloro-6-exo-(fenilsulfenil)-3-exo-metil-7-oxabiciclo[2.2.1]heptan-2-endo-ol, 45, y (+)-5-endo-cloro-6-exo-(fenilsulfe nil)-3-exo-metil-7-oxabiciclo[2.2.1]heptan-2-exo-ol, 46.

Procedimiento A: A una disolución de (+)-34 (1300 mg, 4.84 mmol) en MeOH (24 ml) enfriada a -20°C, se añadieron 366 mg (9.68 mmol) de NaBH<sub>4</sub> y se dejó que la mezcla de reacción alcanzase lentamente la temperatura ambiente. Después de agitar durante 3 horas, se hidrolizó con agua-hielo, se extrajo con CH<sub>2</sub>Cl<sub>2</sub> y las fases orgánicas se secaron sobre MgSO<sub>4</sub>. Tras eliminación del disolvente a presión reducida, el crudo de reacción se purificó mediante cromatografía en columna (hexano:AcOEt, 10:1) aislándose 917 mg de (+)-45 (70%) como un aceite incoloro y 197 mg de (+)-46 (15%) como un sólido blanco.

Procedimiento B: A una disolución de (+)-34 (500 mg, 1.86 mmol) en THF (9 ml), se añadieron 0.44 ml (4.65 mmol) de BH<sub>3</sub>·SMe<sub>2</sub>. La mezcla de reacción se agitó durante 1 hora y posteriormente fué hidrolizada con disolución acuosa al 5% de NaHCO<sub>3</sub>, se extrajo con AcOEt y las fases orgánicas se secaron sobre MgSO<sub>4</sub>. La purificación del crudo de reacción mediante cromatografía en columna permitió aislar 107mg de (+)-45 (21%) y 321 mg (64%) de (+)-46.

Datos de (+)-45:

 $[\alpha]^{25}D + 84.8^{\circ} (0.06 \text{ M}, \text{CH}_2\text{Cl}_2).$ 

 $R_{f} = 0.33$  (hexano:AcOEt, 4:1).

IR (CCl<sub>4</sub>): 3600-3200, 2960, 1470, 1310.

<sup>1</sup>**H RMN** (250 MHz, CDCl<sub>3</sub>): 1.16 (d, 3 H, *J*= 7.3 Hz, Me), 1.99 (m, 1 H, OH), 2.36 (qd, 1 H, *J*= 7.3, 2.9 Hz, H-3n), 3.91 (m, 1 H, H-2), 4.02 (d, 1 H, *J*= 4.0 Hz, H-6), 4.08-4.14 (m, 2 H, H-4, H-5), 4.33 (d, 1 H, *J*= 4.8 Hz, H-1), 7.21-7.34 (m, 3 H, 3 Har), 7.41-7.45 (m, 2 H, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 18.5, 38.7, 49.9, 62.6, 79.6, 86.1, 87.0, 126.9, 129.1, 130.4, 134.7.

**Microanálisis**: Calculado para C<sub>13</sub>H<sub>15</sub>O<sub>2</sub>ClS: C, 57.67; H, 5.54. Encontrado: C, 57.79; H, 5.66.

Datos de (+)-46:

 $[\alpha]^{25}D + 78.7^{\circ} (0.04 \text{ M}, \text{CH}_2\text{Cl}_2).$ 

 $R_{f} = 0.20$  (hexano: AcOEt, 4:1). Pf: 128-129 °C.

IR (KBr): 3620, 2980, 1580, 1050.

<sup>1</sup>H RMN (250 MHz, CDCl<sub>3</sub>): 1.07 (d, 3 H, *J*= 7.3 Hz, Me), 1.78 (d, 1 H, *J*= 9.8 Hz, OH), 2.83 (quint, 1 H, *J*= 7.3 Hz, H-3n), 3.06 (d, 1 H, *J*= 4.6 Hz, H-6), 3.91 (t, 1 H, *J*= 4.6 Hz, H-5), 3.97 (dd, 1 H, *J*= 9.8, 7.3 Hz, H-2), 4.13 (dd, 1 H, *J*= 4.6, 1.1 Hz, H-4), 4.25 (s, 1 H, H-1), 7.28-7.37 (m, 3 H, 3 Har), 7.42-7.46 (m, 2 H, 2 Har).

<sup>13</sup>C RMN (62.5 MHz, CDCl<sub>3</sub>): 11.9, 36.3, 54.5, 61.3, 74.9, 85.5, 89.7, 127.7, 129.3, 131.8, 137.4.

**Microanálisis**: Calculado para C<sub>13</sub>H<sub>15</sub>O<sub>2</sub>ClS: C, 57.67; H, 5.54. Encontrado: C, 57.76; H, 5.62.

# V.2.3. - Síntesis de (+)-2-endo-(benciloxi)-5-endo-cloro-6-exo-(fenil sulfenil)-3-exo -metil-7-oxabiciclo[2.2.1]heptano, 47.

A una disolución de (+)-45 (720 mg, 2.66 mmol) en THF (25 ml) enfriada a 0°C, se añadieron secuencialmente 160 mg (4.0 mmol) de NaH (dispersión mineral al 60%), 0.63 ml (5.32 mmol) de BrBn y 98 mg (0.27 mmol) de TBAI. Se dejó que la mezcla de reacción alcanzace lentamente la temperatura ambiente y se agitó durante 12 horas. Pasado este tiempo, se hidrolizó con agua, se extrajo con éter y las fases orgánicas se secaron sobre MgSO<sub>4</sub>. La eliminación del disolvente a presión reducida seguida de cromatografía en columna

(hexano:AcOEt, 15:1) permitió acceder a 959 mg de (+)-47 como un aceite incoloro. Rendimiento: 100%.

Datos de (+)-47:

 $[\alpha]^{25}_{D}$  +48.1° (0.03 M, CH<sub>2</sub>Cl<sub>2</sub>).

 $R_{f} = 0.33$  (hexano:AcOEt, 8:1).

IR (CCl<sub>4</sub>): 2980, 1600, 1560, 1300.

Chu, Me ths ''OBn

<sup>1</sup>**H RMN** (250 MHz, CDCl<sub>3</sub>): 1.14 (d, 3 H, J= 7.3 Hz, Me), 2.51 (qd, 1 H, J= 7.3, 3.3 Hz, H-3), 3.61 (dd, 1 H, J= 4.8, 3.3 Hz, H-2), 4.00 (d, 1 H, J= 4.8 Hz, H-6), 4.07 (t, 1 H, J= 4.8 Hz, H-5), 4.13 (d, 1 H, J= 4.8 Hz, H-4), 4.41 (d, 1 H, J= 4.8 Hz, H-1), 4.43 (sist. AB, 2 H,  $J_{AB}$ = 11.9 Hz, CH<sub>2</sub>Ph), 7.27-7.42 (m, 10 H, 10 Har).

<sup>13</sup>C RMN (62.5 MHz, CDCl<sub>3</sub>): 19.1, 33.6, 50.7, 62.4, 72.3, 85.0, 86.4, 87.0, 126.9, 127.4, 127.8, 128.5, 129.0, 129.1, 130.7, 137.8.

**Microanálisis**: Calculado para C<sub>20</sub>H<sub>21</sub>O<sub>2</sub>ClS: C, 66.57; H, 5.82. Encontrado: C, 66.68; H, 5.40.

V.2.4. - Síntesis de (+)-2-*exo*-(benciloxi)-5-*endo*-cloro-6-*exo*-(fenilsulfenil)-3-*exo*-metil-7-oxabiciclo[2.2.1]heptano, 48.

Según el procedimiento descrito en el apartado V.2.3, a partir de 500 mg (1.85 mmol) de (+)-46 se obtuvieron 600 mg de (+)-48 como un aceite incoloro. Rendimiento: 90%. Datos de (+)-48:

 $[\alpha]^{25}_{D}$  +46.0° (0.03 M, CH<sub>2</sub>Cl<sub>2</sub>).

 $R_{f} = 0.29$  (hexano:AcOEt, 8:1).

IR (CCl<sub>4</sub>): 2980, 1470, 1360, 1210.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.14 (d, 3 H, J= 7.3 Hz, Me), 2.89 (quint, 1 H, J= 7.3 Hz, H-3), 3.03 (d, 1 H, J= 4.0 Hz, H-6), 3.69 (d, 1 H, J= 7.3 Hz, H-2), 3.95 (t, 1 H, J= 4.0 Hz, H-5), 4.07 (s, 1 H, H-1), 4.17 (d, 1 H, J= 4.0 Hz, H-4), 4.40 (sist. AB, 2 H,  $J_{AB}$ = 11.8 Hz, C<u>H</u><sub>2</sub>Ph), 7.25-7.50 (m, 10 H, 10 Har). <sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 18.9, 30.9, 62.7, 72.3, 76.6, 82.0, 84.1, 85.5, 127.0, 127.3, 127.5, 127.8, 128.5, 129.1, 129.2, 130.8, 132.3, 134.1.

**Microanálisis**: Calculado para C<sub>20</sub>H<sub>21</sub>O<sub>2</sub>ClS: C, 66.57; H, 5.82. Encontrado: C, 66.40; H, 5.75.

# V.2.5. - Síntesis de (+)-2-endo-(benciloxi)-5-endo-cloro-6-exo-(fenil sulfonil)-3-exo -metil-7-oxabiciclo[2.2.1]heptano, 49.

A una disolución de (+)-47 (959 mg, 2.66 mmol) en MeOH (27 ml) enfriada a 0°C, se añadieron 3.87 g (6.65 mmol) de MMPP y se dejó que la mezcla de reacción alcanzase lentamente la temperatura ambiente. Después de agitar durante 12 horas, el crudo de reacción se hidrolizó con disolución acuosa saturada de NaHCO<sub>3</sub> y se concentró a presión reducida. El residuo fué disuelto en agua y se extrajo con AcOEt. El conjunto de fases orgánicas se secaron sobre MgSO<sub>4</sub> y, tras filtración, el disolvente se eliminó a presión reducida. El producto se purificó mediante cromatografía en columna (hexano:AcOEt, 5:1), obteniéndose 1023 mg de (+)-49 como un sólido blanco (Rendimiento: 98%).

Datos de (+)-49:

 $[\alpha]^{25}_{D} + 98.3^{\circ} (0.03 \text{ M}, \text{CH}_2\text{Cl}_2).$ 

 $R_{f} = 0.30$  (hexano:AcOEt, 4:1). Pf: 99-100 °C.

IR (KBr): 2950, 1590, 1340, 1150.

<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.10 (d, 3 H, J= 7.1 Hz, Me), 2.38 (qd, 1 H, J= 7.1, 3.3 Hz, H-3), 3.65 (dd, 1 H, J= 4.8, 3.3 Hz, H-2), 3.99 (d, 1 H, J= 5.2 Hz, H-6), 4.14 (d, 1 H, J= 5.2 Hz, H-4), 4.42 (s, 2 H, CH<sub>2</sub>Ph), 4.44 (t, 1 H, J= 5.2 Hz, H-5), 5.04 (d, 1 H, J= 4.8 Hz, H-1), 7.26-7.40 (m, 5 H, 5 Har), 7.60 (t, 2 H, J= 7.7 Hz, 2 Har), 7.70 (t, 1 H, J= 7.8 Hz, 1 Har), 7.94 (d, 2 H, J= 7.8 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 18.6, 36.8, 56.1, 67.7, 72.3, 79.7, 85.3, 86.7, 127.6, 128.0, 128.5, 128.7, 129.5, 134.2, 137.1, 137.9.



**Microanálisis**: Calculado para C<sub>20</sub>H<sub>21</sub>O<sub>4</sub>ClS: C, 61.15; H, 5.35. Encontrado: C, 61.10; H, 5.41.

V.2.6. - Síntesis de (+)-2-*exo*-(benciloxi)-5-*endo*-cloro-6-*exo*-(fenil sulfonil)-3-*exo*-metil-7-oxabiciclo[2.2.1]heptano, 50.

Según el procedimiento descrito en el apartado V.2.5, a partir de 533 mg (1.48 mmol)

de (+)-48 se obtuvieron 569 mg de (+)-50 como un sólido blanco. Rendimiento: 98%.

Datos de (+)-50:

 $[\alpha]^{25}D + 23.0^{\circ} (0.02 \text{ M}, \text{CH}_2\text{Cl}_2).$ 

 $R_f = 0.23$  (hexano:AcOEt, 4:1). Pf: 133-134 °C.

IR (KBr): 2980, 1610, 1480, 750.

<sup>1</sup>**H RMN** (300 MHzCDCl<sub>3</sub>): 1.10 (d, 3 H, J= 7.3 Hz, Me), 2.79 (quint, 1 H, J= 7.3 Hz, H-3), 3.01 (d, 1 H, J= 4.9 Hz, H-6), 3.68 (d, 1 H, J= 7.3 Hz, H-2), 4.16 (d, 1 H, J= 4.9 Hz, H-4), 4.22 (t, 1 H, J= 4.9 Hz, H-5), 4.57 (sist. AB, 2 H,  $J_{AB}$ = 12.2 Hz, CH<sub>2</sub>Ph), 5.00 (s, 1 H, H-1), 7.26-7.39 (m, 5H, 5 Har), 7.60 (t, 2 H, J= 7.8 Hz, 2 Har), 7.68-7.73 (m, 1 H, 1 Har), 7.91 (d, 2 H, J= 7.6 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 12.4, 36.6, 55.4, 71.9, 72.4, 80.7, 81.5, 85.3, 127.4, 127.8, 128.5, 128.8, 129.5, 134.4, 137.4, 137.6.

**Microanálisis**: Calculado para C<sub>20</sub>H<sub>21</sub>O<sub>4</sub>ClS: C, 61.15; H, 5.35. Encontrado: C, 61.05; H, 5.38.

V.2.7. - Síntesis de (+)-6-*endo*-(benciloxi)-2-(fenilsulfonil)-5-*exo*metil-7-oxabiciclo[2.2.1]hept-2-eno, 51.

A una disolución de 820 mg (2.09 mmol) de (+)-49 en 10 ml de CH<sub>2</sub>Cl<sub>2</sub> enfriada a 0°C, se añadieron 0.47 ml (3.14 mmol) de DBU gota a gota. Se agitó durante 2 horas a esta



temperatura y posteriormente se hidrolizó con disolución acuosa 0.5 N de HCl. La extracción empleando  $CH_2Cl_2$ , el secado de la fase orgánica sobre MgSO<sub>4</sub> y la purificación mediante cromatografía en columna (hexano:AcOEt, 5:1), permitieron aislar 595 mg de (+)-51 como un sólido blanco. Rendimiento: 80%.

Datos de (+)-51:

 $[\alpha]^{25}_{D}$  +47.1° (0.03 M, CH<sub>2</sub>Cl<sub>2</sub>).

 $R_{f} = 0.30$  (hexano:AcOEt, 2:1). Pf: 110-111 °C.

IR (KBr): 2980, 1580, 1350, 1210.

<sup>1</sup>**H RMN** (250 MHz, CDCl<sub>3</sub>): 1.17 (d, 3 H, J= 7.3 Hz, Me), 1.60 (qd, 1 H, J= 7.3, 2.4 Hz, H-5), 3.68 (dd, 1 H, J= 4.0, 2.5 Hz, H-6), 4.46 (sist. AB, 2 H,  $J_{AB}$ = 12.1 Hz, CH<sub>2</sub>Ph), 4.56 (d 1 H, J= 1.7 Hz, H-4), 5.15 (d, 1 H, J= 4.0 Hz, H-1), 7.19 (d, 1 H, J= 1.8 Hz, H-3), 7.28-7.34 (m, 5H, 5 Har), 7.48 (t, 2 H, J= 7.8 Hz, 2 Har), 7.58 (t, 1 H, J= 7.7 Hz, 1 Har), 7.94 (d, 2 H, J= 7.8 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 18.3, 39.3, 60.4, 79.5, 82.9, 86.1, 127.4, 127.6, 127.7, 128.0, 128.4, 129.0, 133.5, 137.8, 139.3, 145.7.

**Microanálisis**: Calculado para C<sub>20</sub>H<sub>20</sub>O<sub>4</sub>S: C, 67.41; H, 5.62. Encontrado: C, 67.43; H, 5.66.

## V.2.8. - Síntesis de (-)-6-exo-(benciloxi)-2-(fenilsulfonil)-5-exo-metil-7-oxabiciclo[2.2.1]hept-2-eno, 52.

Según el procedimiento descrito en el apartado V.2.7, a partir de 510 mg (1.30 mmol) de (+)-50 se obtuvieron 324 mg de (-)-52 como un sólido blanco. Rendimiento: 70%.

Datos de (-)-52:

 $[\alpha]^{25}$ <sub>D</sub> -47.3° (0.01 M, CH<sub>2</sub>Cl<sub>2</sub>).

 $R_{f} = 0.32$  (hexano:AcOEt, 2:1). Pf: 103-104 °C.

IR (KBr): 2980, 1600, 1370, 1110.

<sup>1</sup>H RMN (250 MHz, CDCl<sub>3</sub>): 1.13 (d, 3 H, J= 7.0 Hz, Me), 2.07 (quint, 1 H, J= 7.0 Hz, H-5), 3.75 (d, 1 H, J= 7.0 Hz, H-6), 4.58 (sist. AB, 2 H,  $J_{AB}$ = 12.1 Hz, CH<sub>2</sub>Ph), 4.67 (d, 1 H, J= 1.5 Hz, H-4), 4.84 (s, 1 H, H-1), 7.13 (d, 1 H, J= 1.5 Hz, H-3), 7.32-7.39 (m, 5 H, 5 Har), 7.54 (t, 2 H, J= 8.1 Hz, 2 Har), 7.62 (t, 1 H, J= 7.9 Hz, 1 Har), 7.86 (d, 2 H, J= 8.0 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 13.7, 35.5, 58.1, 78.8, 82.1, 85.7, 127.5, 127.7, 127.9, 128.5, 128.6, 129.1, 134.0, 138.0, 139.2, 146.9.

**Microanálisis**: Calculado para C<sub>20</sub>H<sub>20</sub>O<sub>4</sub>S: C, 67.41; H, 5.62. Encontrado: C, 67.56; H, 5.58.

V.2.9. - Síntesis de(+)-(1S, 2R, 3S, 6S)-3-(benciloxi)-5-(fenilsulfonil)-2,6-dimetilciclohex-4-en-1-ol, 53.

A una disolución de 290 mg (0.81 mmol) de (+)-51 en 6 ml de THF enfriada a -78°C, se añadieron 1.53 ml (2.44 mmol) de MeLi. Después de agitar 1 hora a -78°C, la reacción se hidrolizó con agua, se extrajo con AcOEt y, tras secar sobre MgSO<sub>4</sub>, el disolvente se eliminó a presión reducida. El producto se purificó mediante cromatografía en columna (hexano:AcOEt, 2:1), obteniéndose 279 mg (92%) de (+)-53 como un sólido blanco.

Datos de (+)-53:

 $[\alpha]^{25}_{D}$  +91.4° (0.01 M, CH<sub>2</sub>Cl<sub>2</sub>).

 $R_{f} = 0.48$  (hexano:AcOEt, 1:1). Pf: 118-119 °C.

IR (KBr): 3400-3200, 3050, 1590, 1350.

<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.12 (d, 3 H, J= 7.0 Hz, Me-C6), 1.17 (d, 3 H, J= 6.9 Hz, Me-C2), 1.65 (m, 1 H, OH), 1.83 (quintd, 1 H, J= 7.0, 3.0 Hz, H-2), 2.61 (qd, 1 H, J= 7.0, 3.0 Hz, H-6), 3.77 (m, 1 H, H-1), 4.12 (dt, 1 H, J= 7.0, 3.0 Hz, H-3), 4.64 (sist. AB, 2 H,  $J_{AB}$ = 11.4 Hz, CH<sub>2</sub>Ph), 7.16 (t, 1 H, J= 3.0 Hz, H-4), 7.26-7.37 (m, 5 H, 5 Har), 7.50-7.61 (m, 3 H, 3 Har), 7.85 (d, 2 H, J= 7.9 Hz, 2 Har).



<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 14.2, 21.0, 36.1, 39.7, 60.4, 71.8, 75.5, 127.4, 127.7, 127.9, 128.1, 128.5, 129.1, 133.5, 137.6, 138.9, 140.5.

**Microanálisis**: Calculado para C<sub>21</sub>H<sub>24</sub>O<sub>4</sub>S: C, 67.74; H, 6.45. Encontrado: C, 67.85; H, 6.53.

V.2.10. - Síntesis de (-)-(1S, 2R, 3R, 6S)-3-(benciloxi)-5-(fenilsulfo nil)-2,6-dimetilciclohex-4-en-1-ol, 57.

Según el procedimiento descrito en el apartado V.2.9., a partir de 150 mg (0.42 mmol) de (-)-52 se obtuvieron 141 mg de (-)-57 como un aceite incoloro. Rendimiento: 90%.

Datos de (-)-57:

 $[\alpha]^{25}_{D}$  -107.6° (0.01 M, CH<sub>2</sub>Cl<sub>2</sub>).

 $R_{f} = 0.43$  (hexano:AcOEt, 1:1).

IR (CCl<sub>4</sub>): 3650, 1600, 1470, 1110.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.10 (d, 3 H, J= 7.0 Hz, Me-C6), 1.26 (d, 3 H, J= 7.0 Hz, Me-C2), 1.83-1.89 (m, 1 H, H-2), 2.57 (q, 1 H, J= 7.1 Hz, H-6), 3.10 (d, 1 H, J= 9.2 Hz, OH), 3.62 (m, 1 H, H-1), 4.08 (t, 1 H, J= 4.8 Hz, H-3), 4.69 (sist. AB, 2 H,  $J_{AB}$ = 12.1 Hz, CH<sub>2</sub>Ph), 7.29 (dd, 1 H, J= 4.8, 2.2 Hz, H-4), 7.33-7.40 (m, 5 H, 5 Har), 7.52 (t, 2 H, J= 7.7 Hz, 2 Har), 7.60 (t, 1 H, J= 7.6 Hz, 1 Har), 7.79 (d, 2 H, J= 7.7 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 13.8, 15.0, 37.1, 38.0, 72.8, 73.9, 74.2, 127.5, 127.9, 128.3, 128.6, 129.2, 133.2, 135.7, 137.3, 140.6, 145.3.

**Microanálisis**: Calculado para C<sub>21</sub>H<sub>24</sub>O<sub>4</sub>S: C, 67.74; H, 6.45. Encontrado: C, 67.90; H, 6.52.

V.2.11. - Síntesis de (+)-(1R, 2R, 3R, 6R)-3-(benciloxi)-2,6-dimetil ciclohex-4-en-1-ol, 54.



Procedimiento A: A una disolución de 190 mg (0.51 mmol) de (+)-53 en 5 ml de MeOH, se añadieron 290 mg (2.04 mmol) de Na<sub>2</sub>HPO<sub>4</sub>. La reacción se enfrió a -20°C y se añadieron 510 mg de amalgama de sodio al 6% recientemente preparada y finamente dividida. Se agitó durante 30 minutos a esta temperatura y, a continuación, se añadieron otros 510 mg de amalgama de sodio. Se dejó que la temperatura de la mezcla de reacción alcanzase lentamente  $0^{\circ}$ C, y se agitó 2 horas a esta temperatura. La reacción se hidrolizó con disolución acuosa saturada de NH<sub>4</sub>Cl, se extrajo con éter, y la fase orgánica se secó sobre MgSO<sub>4</sub>. Tras eliminación del disolvente a presión reducida, el crudo se purificó mediante cromatografía en columna (hexano:AcOEt, 15:1), obteniéndose 59 mg de (+)-54 como un aceite incoloro. Rendimiento: 50%.

*Procedimiento B*: A un matraz previamente flameado bajo árgon conteniendo 1261 mg (8.39 mmol) de Sm disueltos en 8 ml de THF, se añadieron 1818 mg (6.48 mmol) de 1,2diiodoetano disuelto en 8 ml de THF, y se agitó vigorosamente la mezcla de reacción hasta que adquirió un color azul oscuro. A continuación, se adicionaron 49 ml de THF, 0.49 ml (4.03 mmol) de DMPU y finalmente 300 mg (0.81 mmol) de (+)-53 disuelto en 4 ml de THF. Después de agitar durante 3 horas, la reacción se hidrolizó con agua y extrajo con éter. Las fases orgánicas se lavaron con disolución acuosa 0.5 N de HCl, se secaron sobre MgSO<sub>4</sub> y el disolvente se eliminó a presión reducida. Después de purificar el producto mediante cromatografía en columna, se obtuvo (+)-54 (122 mg, 65%) como un aceite incoloro.

Datos de (+)-54:

 $[\alpha]^{25}_{D} + 235.6^{\circ} (0.01 \text{ M}, \text{CH}_2\text{Cl}_2).$ 

 $R_{f} = 0.49$  (hexano:AcOEt, 2:1).

IR (CCl<sub>4</sub>): 3600, 3300, 1650, 1290.

<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.08 (d, 3 H, J= 7.3 Hz, Me-C6), 1.19 (d, 3 H, J= 7.0 Hz, Me-C2), 1.59 (m, 1 H, OH), 1.89 (quintd, 1 H, J= 7.0, 1.5 Hz, H-2), 2.44-2.48 (m, 1 H, H-6), 3.74 (m, 1 H, H-1), 3.89 (dd, 1 H, J= 7.0, 2.5 Hz, H-3), 4.59 (sist. AB, 2 H,  $J_{AB}$ = 11.4 Hz, CH<sub>2</sub>Ph), 5.48 (dd, 1 H, J= 9.9, 1.5 Hz, H-5), 5.88 (dd, 1 H, J= 9.9, 2.5 Hz, H-4), 7.26-7.38 (m, 5 H, 5 Har).



<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 15.5, 16.7, 36.2, 40.2, 65.3, 70.9, 75.3, 126.9, 127.7, 127.9, 128.3, 128.6, 140.9.

**Microanálisis**: Calculado para C<sub>15</sub>H<sub>20</sub>O<sub>2</sub>: C, 77.59; H, 8.62. Encontrado: C, 77.40; H, 8.50.

V.2.12. - Síntesis de (+)-(3R, 4S, 5R, 6R)-3-(benciloxi)-5-(benzoiloxi)-4,6-dimetil ciclohex-1-eno, 55.

A una disolución de 41 mg (0.18 mmol) de (+)-54 en 2 ml de  $CH_2Cl_2$  enfriada a 0°C, se añadieron sucesivamente 0.03 ml (0.35 mmol) de piridina y 0.04 ml (0.35 mmol) de BzCl. Se dejó que la mezcla de reacción alcanzase la temperatura ambiente y se agitó durante 12 horas. Pasado este tiempo, la reacción se hidrolizó con disolución acuosa 0.5 N de HCl, se extrajo con  $CH_2Cl_2$  y el conjunto de fases orgánicas se secaron sobre MgSO<sub>4</sub>. Tras eliminación del disolvente a presión reducida, el crudo se purificó mediante cromatografía en columna (hexano:AcOEt, 20:1), obteniéndose 44 mg de (+)-55 como un aceite incoloro. Rendimiento: 74%.

Datos de (+)-55:

 $[\alpha]^{25}_{D} + 146.5^{\circ} (0.01 \text{ M}, \text{CH}_2\text{Cl}_2).$ 

 $R_{f} = 0.30$  (hexano:AcOEt, 4:1).

IR (CCl<sub>4</sub>): 3020, 2870, 1740, 1200.



<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 0.97 (d, 3 H, J= 7.3 Hz, Me-C6), 1.10 (d, 3 H, J= 6.4 Hz, Me-C4), 2.13 (quintd, 1 H, J= 6.4, 2.0 Hz, H-4), 2.63 (m, 1 H, H-6), 4.00 (ddd, 1 H, J= 6.4, 2.1, 1.5 Hz, H-3), 4.62 (sist. AB, 2 H,  $J_{AB}$ = 11.7 Hz, CH<sub>2</sub>Ph), 5.50 (t, 1 H, J= 2.0 Hz, H-5), 5.54 (dt, 1 H, J= 10.3, 1.5 Hz, H-1), 5.96 (dd, 1 H, J= 10.3, 2.1 Hz, H-2), 7.33-7.46 (m, 7 H, 7 Har), 7.54 (t, 1 H, J= 7.3 Hz, 1 Har), 8.07 (d, 2 H, J= 7.3 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 11.2, 19.1, 30.2, 36.5, 73.6, 75.1, 80.3, 126.4, 126.5, 128.7, 129.8, 130.7, 134.9, 135.4, 136.5, 137.3, 139.0, 170.4.

**Microanálisis**: Calculado para C<sub>22</sub>H<sub>24</sub>O<sub>3</sub>: C, 78.57; H, 7.14. Encontrado: C, 78.40; H, 6.89.

V.2.13. - Síntesis de (1S\*, 2R\*, 3S\*, 6S\*)-3-(benciloxi)-5-(tri-*n*-butilestannil)-2,6-dimetilciclohex-4-en-1-ol, 56.

A una disolución de 83 mg (0.22 mmol) de **53** en 4 ml de tolueno se añadieron 0.12 ml (0.45 mmol) de *n*-Bu<sub>3</sub>SnH y una punta de espátula de AIBN. La mezcla se calentó a reflujo durante 4 horas. La reacción se hidrolizó con disolución acuosa al 10% de KF y después de agitar durante 12 horas, el crudo se extrajo con  $CH_2Cl_2$  y se dejó secar sobre MgSO<sub>4</sub>. Tras la eliminación del disolvente a presión reducida, el producto se purificó mediante cromatografía en columna (hexano:AcOEt, 2:1), obteniendo 23 mg de **56** como un aceite incoloro. Rendimiento: 20%

Datos de 56:

 $R_f = 0.48$  (hexano:AcOEt, 1:1). IR (CCl<sub>4</sub>): 3650, 1580, 1410, 1090.



<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 0.86 (t, 9 H, J= 6.8 Hz, 3 CH<sub>2</sub>C<u>H<sub>3</sub></u>), 1.17 (d, 3 H, J= 7.1 Hz, Me-C2), 1.17-1.28 (m, 12 H, 6 CH<sub>2</sub>), 1.26 (d, 3 H, J= 6.9 Hz, Me-C6), 1.36-1.45 (m, 6 H, 3 CH<sub>2</sub>), 2.23 (m, 1 H, H-2), 2.82 (qd, 1 H, J= 6.9, 2.5 Hz, H-6), 3.65 (d, 1 H, J= 9.6 Hz, OH), 3.98 (dd, 1 H, J= 8.5, 3.1 Hz, H-3), 4.03 (ddd, 1 H, J= 9.6, 3.6,2.5 Hz, H-1), 4.56 (sist. AB, 2 H,  $J_{AB}$ = 11.7 Hz, C<u>H<sub>2</sub></u>Ph), 5.81 (d, 1 H, J= 3.1 Hz, H-4), 7.29-7.46 (m, 5 H, 5 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 9.4, 12.5, 15.6, 23.1, 27.3, 29.6, 35.1, 36.2, 56.4, 68.6, 73.1, 127.3, 128.5, 129.1, 132.5, 139.6, 144.5.

V.2.14. - Síntesis de (-)-(3R, 4S, 5S, 6S)-3-(benciloxi)-5-(benzoiloxi)-1-(fenilsulfonil)-4,6-dimetilciclohex-1-eno, 59.

Según el procedimiento descrito en el apartado V.2.12., a partir de 101 mg (0.27 mmol) de (-)-57 se obtuvieron 116 mg de (-)-59 como un sólido blanco. Rendimiento: 90%.

Datos de (-)-59:

 $[\alpha]^{25}$ <sub>D</sub> -59.6° (0.01 M, CH<sub>2</sub>Cl<sub>2</sub>).

 $R_{f}=0.20$  (hexano:AcOEt, 4:1). Pf: 92-93 °C.

PhO<sub>2</sub>S OBz OBz Me Me OBz OBn

**IR** (KBr): 1720, 1580, 1470, 1150.

<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.10 (d, 3 H, J= 7.3 Hz, Me-C6), 1.15 (d, 3 H, J= 7.1 Hz, Me-C4), 2.40 (qd, 1 H, J= 7.1, 2.9 Hz, H-4), 2.93-3.01 (m, 1 H, H-6), 4.25 (td, 1 H, J= 3.0, 2.0 Hz, H-3), 4.69 (s, 2 H, CH<sub>2</sub>Ph), 5.27 (dd, 1 H, J= 5.1, 3.0 Hz, H-5), 7.29 (d, 1 H, J= 2.0 Hz, H-2), 7.34-7.52 (m, 7 H, 7 Har), 7.59-7.67 (m, 4 H, 4 Har), 7.85 (d, 2 H, J= 6.8 Hz, 2 Har), 8.00 (d, 2 H, J= 7.1 Hz, 2 Har)

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 12.0, 14.1, 33.9, 35.7, 72.2, 72.8, 73.9, 127.5, 127.7, 128.2, 128.4, 129.1, 129.2, 129.7, 130.1, 132.9, 133.2, 133.7, 137.7, 141.3, 142.0, 171.8.
Microanálisis: Calculado para C<sub>28</sub>H<sub>28</sub>O<sub>5</sub>S: C, 70.59; H, 5.88. Encontrado: C, 70.50; H, 5.83.

## V.2.15. - Síntesis de (-)-(3S, 4S, 5R, 6R)-3-(benciloxi)-5-(benzoiloxi)-4,6-dimetilciclohex-1-eno, 60.

Según el procedimiento descrito en el apartado V.2.11. (Procedimiento A), a partir de 45 mg (0.094 mmol) de (-)-59 se obtuvieron 18 mg de (-)-60 como un aceite incoloro. Rendimiento: 57%.

#### Datos de (-)-60:

 $[\alpha]^{25}_{D}$  -11.5° (0.02 M, CH<sub>2</sub>Cl<sub>2</sub>).

 $R_{f} = 0.22$  (hexano:AcOEt, 4:1).

IR (CCl<sub>4</sub>): 1730, 1320, 1050, 840.



<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.07 (d, 3 H, J= 6.0 Hz, Me-C6), 1.18 (d, 3 H, J= 5.7 Hz, Me-C4), 2.23 (qdd, 1 H, J= 5.7, 3.3, 1.2 Hz, H-4), 2.56-2.64 (m, 1 H, H-6), 3.92 (dd, 1 H, J= 3.3, 2.6 Hz, H-3), 4.65 (sist. AB, 2 H,  $J_{AB}$ = 7.6 Hz, CH<sub>2</sub>Ph), 5.38 (dd, 1 H, J= 3.0, 1.2 Hz, H-5), 5.63 (dt, 1 H, J= 6.8, 1.2 Hz, H-1), 6.07 (ddd, 1 H, J= 6.8, 2.6, 1.7 Hz, H-2), 7.21-7.36 (m, 7 H, 7 Har), 7.47 (t, 1 H, J= 5.3 Hz, 1 Har), 8.07 (d, 2 H, J= 5.4 Hz, 2 Har). <sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 15.3, 18.8, 36.0, 36.4, 72.9, 73.8, 84.9, 126.5, 126.9, 127.4, 128.9, 129.9, 133.3, 135.5, 136.7, 138.4, 139.5, 173.3.

**Microanálisis**: Calculado para C<sub>22</sub>H<sub>24</sub>O<sub>3</sub>: C, 78.57; H, 7.14. Encontrado: C, 78.46; H, 7.06.

V.2.16. - Síntesis de (+)-(2S, 3S, 4R, 5S)-5-(benciloxi)-3-(benzoiloxi)-2,4-dimetil-6-oxohexanoato de metilo, 61.

A una disolución de (+)-55 (10 mg, 0.030 mmol) en 4 ml de CH<sub>2</sub>Cl<sub>2</sub> y 1 ml de MeOH, se le añadieron 14 mg (0.16mmol) de NaHCO<sub>3</sub> y la mezcla de reacción se enfrió a -78 °C. Se burbujeó O<sub>3</sub> durante 40 minutos y a continuación se diluyó con benceno. Tras filtración, el disolvente se evaporó a presión reducida y el residuo se diluyó en 1 ml de CH<sub>2</sub>Cl<sub>2</sub>. A continuación, se añadieron 0.01 ml (0.12 mmol) de piridina y 0.014 ml (0.15 mmol) de Ac<sub>2</sub>O. La mezcla de reacción se agitó durante 24 horas y pasado este tiempo el disolvente se evaporó a presión reducida. El crudo de reacción se purificó mediante cromatografía en columna (hexano:AcOEt, 6:1), obteniéndose 8 mg de (+)-61 (67%) como un sólido blanco. Datos de (+)-61:

 $[\alpha]^{25}D + 13.0^{\circ} (0.03 \text{ M}, \text{CH}_2\text{Cl}_2).$ 

 $R_{f} = 0.31$  (hexano:AcOEt, 4:1).

IR (CCl<sub>4</sub>): 2840, 2780, 1720, 1310.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.03 (d, 3 H, J= 7.3 Hz, 1 Me), 1.24 (d, 3 H, J= 7.0 Hz, 1 Me), 2.56-2.62 (m, 1 H, H-4), 3.06 (qd, 1 H, J= 7.0, 3.6 Hz, H-2), 3.72 (s, 3 H, OMe), 3.82 (m, 1 H, H-5), 4.50 (sist. AB, 2 H,  $J_{AB}$ = 10.8 Hz, CH<sub>2</sub>Ph), 5.51 (dd, 1 H, J= 9.0, 3.6 Hz, H-3), 7.24-7.56 (m, 7 H, 7 Har), 7.59 (t, 1 H, J= 7.1 Hz, 1 Har), 8.03 (d, 2 H, J= 6.9 Hz, 2 Har), 9.72 (d, 1 H, J= 1.0 Hz, H-6).

<sup>13</sup>C RMN (62.5 MHz, CDCl<sub>3</sub>): 14.9, 21.2, 29.7, 37.5, 41.1, 51.8, 73.4, 83.4, 127.9, 128.2, 128.4, 128.5, 129.8, 130.1, 133.0, 136.1, 166.5, 177.0, 194.3.

**Microanálisis**: Calculado para C<sub>23</sub>H<sub>26</sub>O<sub>6</sub>: C, 69.35; H, 6.53. Encontrado: C, 69.31; H, 6.48.

V.2.17. - Síntesis de (+)-(2S, 3S, 4R, 5R)-5-(benciloxi)-3-(benzoiloxi)-2,4-dimetil-6-oxohexanoato de metilo, 62.

Según el procedimiento descrito en el apartado V.2.16., a partir de 18 mg (0.053 mmol) de (-)-60 se obtuvieron 13 mg de (+)-62 como un aceite incoloro. Rendimiento: 61%.

Datos de (+)-62:

 $[\alpha]^{25}_{D}$  +19.3° (0.03 M, CH<sub>2</sub>Cl<sub>2</sub>).

 $R_{f} = 0.26$  (hexano:AcOEt, 4:1).

**IR** (CCl<sub>4</sub>): 2980, 2780, 1720, 1200.

<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.08 (d, 3 H, J= 6.7 Hz, 1 Me), 1.20 (d, 3 H, J= 6.6 Hz, 1 Me), 2.00-2.05 (m, 1 H, H-4), 2.99-3.06 (m, 1 H, H-2), 3.69 (s, 3 H, OMe), 3.74 (dd, 1 H, J= 5.2, 1.3 Hz, H-5), 4.62 (sist. AB, 2 H,  $J_{AB}$ = 8.0 Hz, CH<sub>2</sub>Ph), 5.54 (dd, 1 H, J= 5.9, 2.9



Hz, H-3), 7.32-7.51 (m, 7 H, 7 Har), 7.60 (t, 1 H, J= 6.9 Hz, 1 Har), 8.11 (d, 2 H, J= 6.9 Hz, 2 Har), 9.54 (d, 1 H, J= 1.3 Hz, H-6).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 11.2, 17.6, 31.1, 33.1, 47.6, 52.3, 69.9, 82.4, 129.5, 129.7, 129.9, 133.0, 133.2, 136.9, 137.5, 138.6, 168.5, 173.2, 199.5.

**Microanálisis**: Calculado para C<sub>23</sub>H<sub>26</sub>O<sub>6</sub>: C, 69.35; H, 6.53. Encontrado: C, 69.30; H, 6.46.

### V.2.18. - Síntesis de (+)-(3R, 4S, 5S, 6R)-3-(benciloxi)-5-(benzoiloxi)-4,6-dimetilciclohex-1-eno, 67.

Procedimiento A: A una disolución de 25 mg (0.11 mmol) de (+)-54 en 1 ml de tolueno, se adicionaron sucesivamente, 0.16 ml (0.16 mmol, solución 1 M en THF) de PMe<sub>3</sub>, 20 mg (0.16 mmol) de BzOH y 0.025 ml (0.16 mmol) de DEAD. La reacción se agitó durante 12 horas y a continuación se concentró a presión reducida. La purificación mediante cromatografía en columna (hexano:AcOEt, 10:1) permitió aislar 32 mg (88%) de (+)-67 como un aceite incoloro.

Procedimiento B: A una disolución de 133 mg (0.57 mmol) de **54** en 6 ml de CH<sub>2</sub>Cl<sub>2</sub> enfriada a 0°C se añadieron 0.09 ml (1.15 mmol) de piridina y 0.14 ml (0.86 mmol) de Tf<sub>2</sub>O. A los 30 minutos la reacción se hidrolizó con disolución acuosa al 5% de NaHCO<sub>3</sub>, se extrajo con CH<sub>2</sub>Cl<sub>2</sub> y las fases orgánicas se secaron sobre MgSO<sub>4</sub>. La purificación mediante cromatografía en columna (hexano:AcOEt, 8:1) permitió obtener 48 mg de **69** como un aceite incoloro (Rendimiento: 23%). A continuación, este se disolvió en 2 ml de THF y se añadieron 32 mg (0.20 mmol) de KOBz. La mezcla se agitó durante 6 horas. Pasado este tiempo, se hidrolizó con disolución acuosa saturada de NaCl, se extrajo con éter y las fases orgánicas se secaron sobre MgSO<sub>4</sub>. La purificación mediante cromatografía en columna (hexano:AcOEt, 10:1) permitió obtener 3 mg de **67** como un aceite incoloro. Rendimiento: 7%. Datos de (+)-67:

 $[\alpha]^{25}D + 50.6^{\circ} (0.01 \text{ M}, CH_2Cl_2)$ 

 $R_{f} = 0.48$  (hexano:AcOEt, 2:1).

**IR** (CCl<sub>4</sub>): 2860, 1730, 1440, 1050.

<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.02 (d, 3 H, J= 4.7 Hz, Me-C6), 1.06 (d, 3 H, J= 4.2 Hz, Me-C4), 2.13 (tq, 1 H, J= 6.2, 4.2 Hz, H-4), 2.53-2.61 (m, 1 H, H-6), 3.91 (ddd, 1 H, J= 6.2, 2.0, 1.2 Hz, H-3), 4.61 (sist. AB, 2 H,  $J_{AB}$ = 7.5 Hz, CH<sub>2</sub>Ph), 4.89 (dd, 1 H, J= 7.6, 6.2 Hz, H-5), 5.61 (dt, 1 H, J= 6.8, 1.2 Hz, H-2), 5.84 (dt, 1 H, J= 6.8, 2.0 Hz, H-1), 7.29-7.38 (m, 7 H, 7 Har), 7.48 (t, 1 H, J= 6.5 Hz, 1 Har), 8.09 (d, 2 H, J= 6.5 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 14.0, 18.1, 37.2, 40.6, 70.7, 78.5, 80.4, 127.7, 127.9, 128.4, 128.6, 129.7, 130.2, 132.6, 133.0, 136.1, 138.4, 166.5.

**Microanálisis**: Calculado para C<sub>22</sub>H<sub>24</sub>O<sub>3</sub>: C, 78.57; H, 7.14. Encontrado: C, 78.41; H, 7.04.

Datos de 69:

 $R_{f} = 0.23$  (hexano:AcOEt, 2:1).

IR (CCl<sub>4</sub>): 2980, 1450, 1410, 1140.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.09 (d, 3 H, J= 7.3 Hz, Me-C6), 1.16 (d, 3 H, J= 7.1 Hz, Me-C4), 2.32 (m, 1 H, H-4), 2.87 (qdd, 1 H, J= 7.3, 4.3, 3.2 Hz, H-6), 4.00 (dd, 1 H, J= 8.9, 1.5 Hz, H-3), 4.65 (sist. AB, 2 H,  $J_{AB}$ = 12.1 Hz, CH<sub>2</sub>Ph), 5.48 (m, 1 H, H-5), 5.66 (dd, 1 H, J= 10.5, 3.2 Hz, H-1), 5.98 (dd, 1 H, J= 10.5, 1.5 Hz, H-2), 7.25-7.41 (m, 5 H, 5 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 13.8, 16.1, 31.3, 33.2, 62.6, 73.8, 77.7, 80.5, 127.3, 128.5, 128.7, 129.6, 137.3, 138.5.

V.2.19. - Síntesis de (-)-(3R, 4S, 5R, 6S)-3-(benciloxi)-5-(benzoiloxi)-1-(fenilsulfonil)-4,6-dimetilciclohex-1-eno, 70.



138

Según el procedimiento descrito en el apartado V.2.18 (Procedimiento A), a partir de 161 mg (0.43 mmol) de (-)-57 se obtuvieron 101 mg de (-)-70 como un aceite incoloro. Rendimiento: 49%.

Datos de (-)-70:

 $[\alpha]^{25}$ <sub>D</sub> -46.5° (0.02 M, CH<sub>2</sub>Cl<sub>2</sub>).

 $R_{f} = 0.26$  (hexano:AcOEt, 4:1).

IR (CCl<sub>4</sub>): 2980, 1730, 1580, 1210.



<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.00 (d, 3 H, J= 5.3 Hz, Me-C6), 1.22 (d, 3 H, J= 5.0 Hz, Me-C4), 2.53 (sext, 1 H, J= 5.0 Hz, H-4), 3.04 (m, 1 H, H-6), 4.35 (dd, 1 H, J= 5.0, 2.3 Hz, H-3), 4.41 (sist. AB, 2 H,  $J_{AB}$ = 7.5 Hz, C<u>H</u><sub>2</sub>Ph), 5.65 (dd, 1 H, J= 7.6, 5.1 Hz, H-5), 7.13 (d, 1 H, J= 2.3 Hz, H-2), 7.30-7.43 (m, 7 H, 7 Har), 7.53-7.63 (m, 6 H, 6 Har), 7.86 (d, 2 H, J= 4.9 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 11.0, 19.3, 31.1, 32.0, 49.2, 68.1, 75.1, 125.7, 127.5, 127.7, 128.3, 128.8, 129.0, 133.2, 133.8, 137.5, 137.6, 137.8, 139.5, 140.1, 146.9, 173.1.
Microanálisis: Calculado para C<sub>28</sub>H<sub>28</sub>O<sub>5</sub>S: C, 70.59; H, 5.88. Encontrado: C, 70.47; H, 5.80.

V.2.20. - Síntesis de (+)-(3S, 4S, 5S, 6R)-3-(benciloxi)-5-(benzoiloxi)-4,6-dimetilciclohex-1-eno, 71.

Según el procedimiento descrito en el apartado V.2.11 (Procedimiento A), a partir de 70 mg (0.15 mmol) de (-)-70 se obtuvieron 23 mg de (+)-71 como un aceite incoloro. Rendimiento: 46%.

Datos de (+)-71:

 $[\alpha]^{25}D + 15.8^{\circ} (0.02 \text{ M}, \text{CH}_2\text{Cl}_2)$ 

 $R_{f} = 0.48$  (hexano:AcOEt, 4:1).

IR (CCl<sub>4</sub>): 2960, 1730, 1470, 1150.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 0.95 (d, 3 H, J= 7.3 Hz, Me), 1.20 (d, 3 H, J= 7.1 Hz, Me), 1.67 (m, 1 H, H-6), 2.47 (m, 1 H, H-4), 3.87 (dd, 1 H, J= 3.9, 1.2 Hz, H-3), 4.43 (sist. AB, 2 H,  $J_{AB}$ = 11.9 Hz, CH<sub>2</sub>Ph), 5.67 (ddt, 1 H, J= 15.8, 3.9, 1.2 Hz, H-2), 5.78 (m, 1 H, H-5), 5.79 (dt, 1 H, J= 15.8, 1.2 Hz, H-1), 7.28-7.36 (m, 5 H, 5 Har), 7.48-7.61 (m, 3 H, 3 Har), 7.86 (dt, 2 H, J= 8.3, 1.7 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 13.2, 18.2, 25.9, 33.1, 66.6, 74.5, 81.3, 127.5, 129.8, 129.9, 130.1, 135.9, 136.8, 137.5, 138.3, 144.0, 146.3, 170.0.

**Microanálisis**: Calculado para C<sub>22</sub>H<sub>24</sub>O<sub>3</sub>: C, 78.57; H, 7.14. Encontrado: C, 78.49; H, 7.10.

V.2.21. - Síntesis de (-)-(2S, 3R, 4R, 5S)-5-(benciloxi)-3-(benzoiloxi)-2,4-dimetil-6-oxohexanoato de metilo, 72.

Según el procedimiento descrito en el apartado V.2.16., a partir de 21 mg (0.062 mmol) de (+)-67 se obtuvieron 16 mg de (-)-72 como un aceite incoloro. Rendimiento: 64%.

Datos de (-)-72:

 $[\alpha]^{25}$ <sub>D</sub> -10.4° (0.02 M, CH<sub>2</sub>Cl<sub>2</sub>).

 $R_{f} = 0.33$  (hexano:AcOEt, 4:1).

MeO OBzOBn

IR (CCl<sub>4</sub>): 2840, 2780, 1750, 1200.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 0.88 (d, 3 H, J= 6.1 Hz, Me-C4), 1.21 (d, 3 H, J= 5.7 Hz, Me-C2), 2.04-2.16 (m, 1 H, H-4),2.88 (qd, 1 H, J= 5.7, 3.0 Hz, H-2), 3.70 (s, 3 H, OMe), 4.13 (dd, 1 H, J= 4.5, 1.5 Hz, H-5), 4.58 (sist. AB, 2 H,  $J_{AB}$ = 8.1 Hz, CH<sub>2</sub>Ph), 5.72 (dd, 1 H, J= 5.1, 3.0 Hz, H-3), 7.32-7.49 (m, 7 H, 7 Har), 7.60 (t, 1 H, J= 5.7 Hz, 1 Har), 7.98 (d, 2 H, J= 5.7 Hz, 2 Har), 9.67 (d, 1 H, J= 1.0 Hz, H-6).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 15.2, 19.2, 28.5, 31.3, 45.2, 52.3, 76.3, 85.1, 128.1, 129.5, 129.6, 130.4, 133.8, 134.2, 135.1, 135.3, 167.9, 175.3, 201.3.

**Microanálisis**: Calculado para C<sub>23</sub>H<sub>26</sub>O<sub>6</sub>: C, 69.35; H, 6.53. Encontrado: C, 69.23; H, 6.38.

V.2.22. - Síntesis de (+)-(2S, 3R, 4R, 5R)-5-(benciloxi)-3-(benzoiloxi)-2,4-dimetil-6-oxohexanoato de metilo, 73.

Según el procedimiento descrito en el apartado V.2.16, a partir de 18 mg (0.053 mmol) de (+)-71 se obtuvieron 11 mg de (+)-73 como un aceite incoloro. Rendimiento: 52%.

Datos de (+)-73:

 $[\alpha]^{25}_{D} + 35.2^{\circ} (0.01 \text{ M}, \text{CH}_2\text{Cl}_2).$ 

 $R_{f} = 0.36$  (hexano:AcOEt, 4:1).

**IR** (CCl<sub>4</sub>): 2760, 1720, 1370, 1150.

Me Me

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.07 (d, 3 H, J= 7.1 Hz, Me), 1.24 (d, 3 H, J= 6.4 Hz, Me), 2.63 (m, 1 H, H-4), 3.00 (m, 1 H, H-2), 3.68 (s, 3 H, OMe), 3.79 (ddd, 1 H, J= 4.8, 3.0, 1.6 Hz, H-5), 4.63 (Sist. AB, 2 H,  $J_{AB}$ = 11.2 Hz, C<u>H</u><sub>2</sub>Ph), 5.53 (dd, 1 H, J= 3.2, 1.8 Hz, H-3), 7.30-7.37 (m, 7 H, 7 Har), 7.56 (t, 1 H, J= 6.6 Hz, 1 Har), 7.87 (dd, 2 H, J= 6.6, 1.6 Hz, 2 Har), 9.59 (d, 1 H, J= 1.6 Hz, H-6).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 16.4, 17.3, 31.3, 34.7, 41.9, 53.2, 71.6, 86.9, 128.8, 129.7, 129.8, 130.1, 132.9, 133.8, 136.8, 138.3, 166.8, 179.8, 205.1.

**Microanálisis**: Calculado para C<sub>23</sub>H<sub>26</sub>O<sub>6</sub>: C, 69.35; H, 6.53. Encontrado: C, 69.18; H, 6.42.

V.3. - Síntesis de las 1,3-anti-dimetil-estereotetradas.

V.3.1. - Síntesis de (1S\*,2R\*,3R\*,4S\*,6S\*)-1-(fenilsulfonil)-2,4dimetil-7-oxabiciclo[4.1.0]heptan-3-ol, 85.

A una disolución de 0.10 ml (0.77 mmol) de t-BuOOH (disolución al 80% en  $(t-BuO)_2$ ) en 1.5 ml de THF enfriada a -78 °C se añadieron 0.48 ml (0.77 mmol) de *n*-BuLi. A los 15 minutos se añadieron 1.03 mg (0.39 mmol) de **76** disueltos en 1.5 ml de THF. Se dejó subir la temperatura, y a las 12 horas la reacción se hidrolizó con disolución acuosa saturada de NaCl. El crudo se extrajo con Et<sub>2</sub>O, se dejó secar sobre MgSO<sub>4</sub> y el disolvente se evaporó a vacío. El producto se purificó por cromatografía en columna (hexano:AcOEt, 1:1), obteniéndose 100 mg de **85** como un aceite transparente. Rendimiento: 92%.

Datos de 85:

 $R_{f} = 0.16$  (hexano:AcOEt, 2:1).

IR (CHCl<sub>3</sub>): 3600-3300, 1460, 1160, 700.

<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 0.55 (d, 3 H, J= 7.0 Hz, 1 Me), 0.88 (d, 3 H, J= 5.9 Hz, 1 Me), 1.49-1.63 (m, 2 H, H-4, H-5ec), 1.83-1.90 (m, 1 H, OH), 2.21 (q, 1 H, J= 11.0 Hz, H-5ax), 2.96 (quint, 1 H, J= 6.8 Hz, H-2), 3.31-3.39 (m, 1 H, H-3), 3.76 (s, 1 H, H-6), 7.55 (t, 2 H, J= 7.7 Hz, 2 Har), 7.67 (t, 1 H, J= 7.3 Hz, 1 Har), 7.88 (d, 2 H, J= 7.7 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 7.7, 16.9, 25.7, 31.4, 32.0, 56.8, 73.6, 75.1, 129.2, 129.3, 134.4, 136.1.

**Microanálisis**: Calculado para C<sub>14</sub>H<sub>18</sub>O<sub>4</sub>S: C, 59.57; H, 6.38. Encontrado: C, 59.48; H, 6.30.

V.3.2. - Síntesis de (1S\*, 2R\*, 3R\*, 4S\*, 6S\*)-3-(benciloxi)-1-(fenilsulfonil)-2,4-dimetil-7-oxabiciclo[4.1.0]heptano, 86.



A una disolución de **85** (94 mg, 0.33 mmol) en 3.5 ml de THF enfriada a 0 °C, se añadieron sucesivamente 20 mg (0.50 mmol, dispersión mineral al 60%) de NaH, 0.08 ml (0.67 mmol) de BrBn y 12.3 mg (0.03 mmol) de TBAI. Se dejó subir la temperatura y a las 12 horas la reacción se hidrolizó con agua. El crudo se extrajo con AcOEt, se dejó secar sobre MgSO<sub>4</sub> y el disolvente se evaporó a vacío. El producto se purificó por cromatografía en columna (hexano:AcOEt, 5:1), obteniéndose 119 mg de **86** como un sólido blanco. Rendimiento: 96%.

Datos de 86:

 $R_{f} = 0.20$  (hexano: AcOEt, 10:1). Pf: 95-96 °C.

IR (KBr): 2830, 1580, 1340, 1270.

PhO<sub>2</sub>S''''Me

<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 0.58 (d, 3 H, J= 6.9 Hz, 1 Me), 0.93 (d, 3 H, J= 6.3 Hz, 1 Me), 1.53-1.68 (m, 2 H, H-4, H-5ec), 2.23 (dd, 1 H, J= 11.0, 4.0 Hz, H-5ax), 3.08-3.22 (m, 2 H, H-2, H-3), 3.78 (s, 1 H, H-6), 4.48 (sist. AB, 2 H,  $J_{AB}$ = 11.4 Hz, CH<sub>2</sub>Ph), 7.29-7.34 (m, 5H, 5 Har), 7.60 (tt, 2 H, J= 7.0, 1.5 Hz, 2 Har), 7.72 (tt, 1 H, J= 7.0, 1.5 Hz, 1 Har), 7.92 (d, 2 H, J= 7.0 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 7.9, 17.3, 25.0, 28.3, 32.7, 57.1, 71.3, 75.2, 80.6, 127.7, 128.4, 129.2, 129.5, 134.4, 136.2, 136.7, 137.9.

**Microanálisis**: Calculado para C<sub>21</sub>H<sub>23</sub>O<sub>4</sub>S: C, 67.92; H, 6.20. Encontrado: C, 68.03; H, 6.36.

V.3.3. - Síntesis de (2*R*\*, 3*R*\*, 4*S*\*, 6*R*\*)-3-(benciloxi)-6-bromo-2,4dimetilciclohexan-1-ona, 87, y (2*R*\*, 3*R*\*, 4*S*\*, 6*S*\*)-3-(benciloxi)-6-bromo-2,4-dimetilciclohexan-1-ona, 88.

A una suspensión de 73 mg (0.28 mmol) de  $MgBr_2 \cdot OEt_2$  en 1.2 ml de  $Et_2O$ , se añadieron 70 mg (0.19 mmol) de **86** disueltos en 1.5 ml de  $Et_2O$  y la mezcla se agitó durante 6 horas. Pasado este tiempo, la reacción se hidrolizó con disolución acuosa saturada de NaCl y se extrajo con éter. Las fases orgánicas se dejaron secar sobre MgSO<sub>4</sub> y el disolvente se evaporó a presión reducida. La purificación del crudo se llevó a cabo mediante cromatografía en columna (hexano:AcOEt, 4:1), obteniéndose 35 mg (59%) de **87** y 16 mg (26%) de **88** como aceites incoloros.

Datos de 87:

 $R_{f} = 0.48$  (hexano:AcOEt, 4:1).

IR (CHCl<sub>3</sub>): 3020, 1730, 1570, 1100.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.15 (d, 3 H, J= 6.9 Hz, Me-C2), 1.16 (d, 3 H, J= 7.0 Hz, Me-C4), 1.77 (dd, 1 H, J= 13.9, 10.2 Hz, H-5ax), 2.24 (quintd, 1 H, J= 7.0, 1.8 Hz, H-4), 2.54 (dd, 1 H, J= 13.9, 5.6 Hz, H-5ec), 3.21 (qd, 1 H, J=6.9, 4.0 Hz, H-2), 3.35 (dd, 1 H, J= 7.0, 4.0 Hz, H-3), 4.44 (sist. AB, 2 H,  $J_{AB}$ = 11.8 Hz, CH<sub>2</sub>Ph), 4.67 (dd, 1 H, J= 10.3, 5.7 Hz, H-6), 7.25-7.33 (m, 5 H, 5 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 11.5, 18.1, 32.2, 39.2, 44.7, 50.4, 71.1, 83.9, 127.5, 127.8, 128.4, 137.7, 203.7.

**Microanálisis**: Calculado para C<sub>15</sub>H<sub>19</sub>O<sub>2</sub>Br: C, 57.88; H, 6.11. Encontrado: C, 57.96; H, 6.06.

Datos de **88**:

 $R_{f} = 0.50$  (hexano:AcOEt, 4:1).

IR (CHCl<sub>3</sub>): 2840, 1730, 1580, 1380.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.18 (d, 3 H, J= 6.6 Hz, Me-C2), 1.20 (d, 3 H, J= 7.7 Hz, Me-C4), 2.25-2.40 (m, 2 H, H-4, H-5ec), 2.62 (td, 1 H, J= 12.8, 4.8 Hz, H-5ax), 2.82 (qd, 1 H, J= 6.6, 2.8 Hz, H-2), 3.62 (td, 1 H, J=2.8, 1.1 Hz, H-3), 4.50 (sist. AB, 2 H,  $J_{AB}$ = 11.9 Hz, C<u>H</u><sub>2</sub>Ph), 4.73 (dd, 1 H, J= 12.8, 5.9 Hz, H-6), 7.26-7.42 (m, 5 H, 5 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 11.7, 15.9, 31.7, 40.0, 44.8, 52.8, 71.2, 86.1, 127.5, 128.3, 136.5, 137.9, 200.9.

**Microanálisis**: Calculado para C<sub>15</sub>H<sub>19</sub>O<sub>2</sub>Br: C, 57.88; H, 6.11. Encontrado: C, 57.91; H, 5.99.



Br Me OBn V.3.4. - Síntesis de  $(4S^*, 5R^*, 6R^*)$ -5-(benciloxi)-4,6-dimetilciclohex-2-en-1-ona, 84, y  $(2R^*, 3R^*, 4S^*)$ -3-(benciloxi)-2,4-dimetilciclohexan-1-ona, 89.

Procedimiento A: Una suspensión de 312 mg de CaCO<sub>3</sub> (3.12 mmol) en 13 ml de DMF se calentó a 150 °C y se le añadieron, gota a gota, 194 mg (0.62 mmol) de una mezcla de las  $\alpha$ bromocetonas 87 y 88 disueltas en 4 ml de DMF. La mezcla de reacción se agitó durante 45 minutos a esta temperatura. Después de enfriar hasta temperatura ambiente, se hidrolizó con agua, se extrajo con éter y el conjunto de fases orgánicas se secaron sobre MgSO<sub>4</sub>. Tras filtración, el disolvente se evaporó a presión reducida y el crudo se purificó mediante cromatografía en columna (hexano:AcOEt, 10:1), obteniéndose 84 (46 mg, 32%) como un aceite incoloro.

Procedimiento B: A una disolución de diisopropilamina (0.09 ml, 0.63 mmol) en 1 ml de éter enfriada a -78 °C, se añadieron gota a gota 0.40 ml de *n*-BuLi (0.64 mmol) y la disolución resultante se agitó durante 20 minutos. Pasado este tiempo, se añadieron 47 mg (0.13 mmol) de **86** disueltos en 1.3 ml de éter. Se dejó que la mezcla de reacción alcanzase lentamente la temperatura ambiente y se puso a reflujo durante 3 horas. Después de hidrolizar con agua, se extrajo con éter y las fases orgánicas se secaron sobre MgSO<sub>4</sub>. La evaporación del disolvente a presión reducida seguida de cromatografía en columna empleando la misma mezcla de eluyentes que en el procedimiento anterior, permitió acceder a **84** (19 mg, 65%), conjuntamente con **89** (1 mg, 3%), ambos como aceites incoloros.

Datos de 84:

 $R_{f} = 0.43$  (hexano:AcOEt, 4:1).

IR (CHCl<sub>3</sub>): 3040, 1670, 1470, 1140.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.17 (d, 3 H, J= 7.1 Hz, Me-C6), 1.22 (d, 3 H, J= 7.0 Hz, Me-C4), 2.71 (m, 1 H, H-4), 2.85 (qd, 1 H, J= 7.1, 4.0 Hz, H-6), 3.56 (dd, 1 H, J= 6.9, 4.0 Hz, H-5), 4.52 (sist. AB, 2 H,  $J_{AB}$ = 11.4 Hz, C<u>H</u><sub>2</sub>Ph), 5.93 (dd, 1 H, J= 10.1, 2.1 Hz, H-2), 6.66 (dd, 1 H, J= 10.1, 3.1 Hz, H-3), 7.29-7.37 (m, 5 H, 5 Har).
**13C RMN** (62.5 MHz, CDCl<sub>3</sub>): 10.6, 17.0, 33.5, 43.3, 71.1, 82.3, 127.4, 127.9, 128.3, 128.5, 137.9, 151.9, 202.1.

**Microanálisis**: Calculado para C<sub>15</sub>H<sub>18</sub>O<sub>2</sub>: C, 78.26; H, 7.83. Encontrado: C, 78.14; H, 7.74.

Datos de 89:

 $R_{f} = 0.20$  (hexano:AcOEt, 5:1).



IR (CHCl<sub>3</sub>): 2980, 1650, 1200, 840.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.01 (d, 3 H, J= 6.9 Hz, 1 Me), 1.11 (d, 3 H, J= 6.8 Hz, 1 Me), 1.26-1.43 (m, 2 H), 2.05-2.46 (m, 3 H), 2.59-2.65 (m, 1 H), 3.40 (dd, 1 H, J= 7.5, 6.3 Hz, H-3), 4.52 (sist. AB, 2 H,  $J_{AB}$ = 1.7 Hz, C<u>H</u><sub>2</sub>Ph), 7.32-7.35 (m, 5 H, 5 Har).

<sup>13</sup>C RMN (62.5 MHz, CDCl<sub>3</sub>): 10.2, 13.7, 18.3, 19.3, 31.3, 37.5, 72.1, 127.3, 127.4, 128.3, 128.4, 203.6.

**Microanálisis**: Calculado para C<sub>15</sub>H<sub>20</sub>O<sub>2</sub>: C, 77.59; H, 8.62. Encontrado: C, 77.46; H, 8.50.

V.3.5. - Síntesis de (1S\*, 4S\*, 5R\*, 6S\*)-5-(benciloxi)-4,6-dimetil ciclohex-2-en-1-ol, 90.

A una disolución de CeCl<sub>3</sub>·7H<sub>2</sub>O (566 mg, 1.49 mmol) disuelto en 3 ml de MeOH enfriada a -78 °C, se añadieron 43 mg (1.12 mmol) de NaBH<sub>4</sub> y se agitó durante 30 minutos. Pasado este tiempo, se adicionaron 172 mg (0.75 mmol) de **84** disueltos en 4.5 ml de MeOH y se dejó que la mezcla de reacción alcanzase lentamente la temperatura ambiente. Después de agitar durante 3 horas, la reacción se hidrolizó con disolución acuosa de HCl 0.5 N y se extrajo con éter. El conjunto de fases orgánicas se secaron sobre MgSO<sub>4</sub> y, tras filtración, el disolvente se evaporó a presión reducida. La purificación mediante cromatografía en columna (hexano:AcOEt, 10:1) permitió acceder a **90** (140.5 mg, 81%) como un aceite incoloro. Datos de 90:

 $R_f = 0.23$  (hexano:AcOEt, 5:1). IR (CHCl<sub>3</sub>): 3600-3300, 1650, 1380, 1150.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 0.99 (d, 3 H, J= 7.3 Hz, 1 Me), 1.17 (d, 3 H, J= 7.0 Hz, 1 Me), 2.03 (m, 1 H, H-6), 2.54 (m, 1 H, H-4), 2.65 (d, 1 H, J= 10.3 Hz, OH), 3.39 (m, 1 H, H-5), 3.87 (dt, 1 H, J= 10.3, 5.1 Hz, H-1), 4.50 (sist AB, 2 H,  $J_{AB}$ = 11.4 Hz, C<u>H</u><sub>2</sub>Ph), 5.63 (dd, 1 H, J= 10.0, 5.0 Hz, H-2), 5.88 (ddd, 1 H, J= 10.0, 4.5, 1.5 Hz, H-3), 7.29-7.37 (m, 5 H, 5 Har).

<sup>13</sup>C RMN (62.5 MHz, CDCl<sub>3</sub>): 12.9, 18.3, 32.8, 33.2, 67.9, 71.8, 83.8, 127.6, 127.7, 128.4, 128.9, 130.9, 137.3.

**Microanálisis**: Calculado para C<sub>15</sub>H<sub>20</sub>O<sub>2</sub>: C, 77.59; H, 8.62. Encontrado: C, 77.40; H, 8.56.

V.3.6. - Síntesis de (3S\*, 4R\*, 5R\*, 6S\*)-5-(benciloxi)-3-(benzoiloxi)-4,6-dimetilciclohex-1-eno, 91.

A una disolución de 90 (15 mg, 0.06 mmol) en 1 ml de  $CH_2Cl_2$  enfriada a 0°C, se añadieron, sucesivamente, 0.01 ml (0.13 mmol) de piridina y 0.015 ml (0.13 mmol) de BzCl. Después de agitar durante 12 horas, la reacción fué hidrolizada con disolución acuosa de HCl 0.5 N y se extrajo con  $CH_2Cl_2$ . Las fases orgánicas se secaron sobre MgSO<sub>4</sub> y, tras filtración, el disolvente se evaporó a presión reducida. El crudo se purificó mediante cromatografía en columna (hexano:AcOEt, 15:1), obteniéndose 21.7 mg de 91 como un aceite incoloro. Rendimiento: 100%.

Datos de 91:

 $R_{f}$ = 0.50 (hexano:AcOEt, 10:1). IR (CHCl<sub>3</sub>): 2980, 1750, 1470, 1200.



<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.05 (d, 3 H, J= 7.0 Hz, 1 Me), 1.11 (d, 3 H, J= 7.0 Hz, 1 Me), 2.35-2.46 (m, 1 H, H-6), 2.79-2.85 (m, 1 H, H-4), 3.35 (dd, 1 H, J= 8.8, 3.3 Hz, H-5), 4.56 (sist. AB, 2 H,  $J_{AB}$ = 11.4 Hz, CH<sub>2</sub>Ph), 5.54 (d, 1 H, J= 12.0 Hz, H-2), 5.64 (dt, 1 H, J= 12.0, 2.2 Hz, H-1), 5.69 (dd, 1 H, J= 5.5, 2.3 Hz, H-3), 7.30-7.56 (m, 7 H, 7 Har), 7.66-7.69 (m, 1 H, 1 Har), 8.05-8.19 (m, 2 H, 2 Har).

<sup>13</sup>C RMN (62.5 MHz, CDCl<sub>3</sub>): 7.5, 18.0, 29.7, 32.7, 70.9, 72.8, 81.9, 124.2, 127.8, 128.8, 129.6, 130.6, 131.4, 132.9, 134.5, 135.3, 138.5, 162.3.

**Microanálisis**: Calculado para C<sub>22</sub>H<sub>24</sub>O<sub>3</sub>: C, 78.57; H, 7.14. Encontrado: C, 78.49; H, 7.10.

### V.3.7. - Síntesis de (3*R*\*, 4*R*\*, 5*R*\*, 6*S*\*)-5-(benciloxi)-3-(benzoiloxi)-4,6-dimetilciclohex-1-eno, 92.

A una disolución de 12 mg (0.052 mmol) de **90** en tolueno (1 ml), se le añadieron sucesivamente 27 mg (0.10 mmol) de PPh<sub>3</sub>, 13 mg (0.10 mmol) de BzOH y 0.02 ml (0.10 mmol) de DEAD. La reacción se agitó durante 12 horas y el disolvente se evaporó a presión reducida. El crudo de reacción se purificó mediante cromatografía en columna (hexano:AcOEt, 15:1) para obtener 12.3 mg de **92** como un aceite incoloro. Rendimiento: 71%.

Datos de **92**:

 $R_{f} = 0.45$  (hexano:AcOEt, 10:1).

**IR** (CHCl<sub>3</sub>): 2980, 1750, 1380, 1150.

<sup>1</sup>**H RMN** (250 MHz, CDCl<sub>3</sub>): 1.04 (d, 3 H, J= 7.3 Hz, 1 Me), 1.14 (d, 3 H, J= 7.0 Hz, 1 Me), 2.33-2.45 (m, 2 H, H-4, H-6), 3.49 (dd, 1 H, J= 7.7, 3.7 Hz, H-5), 4.56 (sist AB, 2 H,  $J_{AB}$ = 11.8 Hz, CH<sub>2</sub>Ph), 5.36 (t, 1 H, J= 3.0 Hz, H-3), 5.74 (m, 2 H, H-1, H-2), 7.28-7.47 (m, 7 H, 7 Har), 7.54-7.60 (m, 1 H, 1 Har), 7.98-8.01 (m, 2 H, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 11.1, 18.0, 32.7, 33.9, 70.8, 74.0, 79.8, 121.5, 122.2, 124.3, 127.6, 128.0, 128.3, 129.6, 130.4, 132.9, 136.9, 167.0.



**Microanálisis**: Calculado para C<sub>22</sub>H<sub>24</sub>O<sub>3</sub>: C, 78.57; H, 7.14. Encontrado: C, 78.41; H, 7.03.

#### V.3.8. - Síntesis de (2*R*\*, 3*S*\*, 4*R*\*, 5*R*\*)-3-(benciloxi)-5-(benzoiloxi)-2,4-dimetil-6-oxohexanoato de metilo, 93.

A una disolución de **91** (26 mg, 0.077 mmol) en 4 ml de  $CH_2Cl_2$  y 1 ml de MeOH, se le añadieron 36 mg (0.42 mmol) de NaHCO<sub>3</sub> y la mezcla de reacción se enfrió a -78 °C. Se burbujeó O<sub>3</sub> durante 40 minutos y a continuación se diluyó con benceno. Tras filtración, el disolvente se evaporó a presión reducida y el residuo se diluyó en 1 ml de  $CH_2Cl_2$ . A continuación, se añadieron 0.025 ml (0.31 mmol) de piridina y 0.036 ml (0.39 mmol) de Ac<sub>2</sub>O. La mezcla de reacción se agitó durante 24 horas y pasado este tiempo el disolvente se evaporó a presión reducida. El crudo de reacción se purificó mediante cromatografía en columna (hexano:AcOEt, 8:1), obteniéndose 25 mg de **93** (81%) como un sólido blanco.

Datos de 93:

 $R_f = 0.48$  (hexano:AcOEt, 5:1). Pf: 113-114 °C.

IR (KBr): 2840, 1740, 1580, 1220.

<sup>1</sup>**H RMN** (250 MHz, CDCl<sub>3</sub>): 1.14 (d, 3 H, J= 6.8 Hz, 1 Me), 1.24 (d, 3 H, J= 7.0 Hz, 1 Me), 2.64-2.76 (m, 2 H, H-2, H-4), 3.71 (s, 3 H, OMe), 4.15 (dd, 1 H, J= 10.0, 2.4 Hz, H-3), 4.45 (s, 2 H, C<u>H</u><sub>2</sub>Ph), 5.26 (d, 1 H, J= 1.9 Hz, H-5), 7.23-7.64 (m, 7 H, 7 Har), 7.75-7.80 (m, 1 H, 1 Har), 8.05-8.10 (m, 2 H, 2 Har), 9.30 (s, 1 H, H-6).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 15.0, 20.9, 29.6, 39.7, 40.7, 52.1, 72.9, 80.7, 127.7, 128.3, 128.7, 129.9, 130.1, 133.6, 134.5, 137.4, 171.2, 176.6, 196.1.

**Microanálisis**: Calculado para C<sub>23</sub>H<sub>26</sub>O<sub>6</sub>: C, 69.35; H, 6.53. Encontrado: C, 69.28; H, 6.45.

V.3.9. - Síntesis de (2R\*, 3S\*, 4R\*, 5S\*)-3-(benciloxi)-5-(benzoiloxi)-2,4-dimetil-6-oxohexanoato de metilo, 94.

Según el procedimiento descrito en el apartado V.3.8., a partir de 11 mg (0.033 mmol) de 92 se obtuvieron 10 mg de 94 como un aceite incoloro. Rendimiento: 77%.

Datos de 94:

 $R_{f} = 0.26$  (hexano:AcOEt, 5:1).



IR (CCl<sub>4</sub>): 2780, 1750, 1380, 1110.

<sup>1</sup>**H RMN** (250 MHz, CDCl<sub>3</sub>): 1.08 (d, 3 H, J= 6.8 Hz, Me-C4), 1.27 (d, 3 H, J= 7.3 Hz, Me-C2), 2.46-2.52 (m, 1 H, H-4), 2.80 (qd, 1 H, J= 7.2, 2.9 Hz, H-2), 3.71 (s, 3 H, OMe), 3.97 (dd, 1 H, J= 9.8, 2.9 Hz, H-3), 4.36 (sist. AB, 2 H,  $J_{AB}$ = 10.7 Hz, CH<sub>2</sub>Ph), 5.70 (d, 1 H, J= 2.4 Hz, H-5), 7.24-7.53 (m, 7 H, 7 Har), 7.62-7.67 (m, 1 H, 1 Har), 8.06-8.13 (m, 2 H, 2 Har), 9.61 (s, 1 H, H-6).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 9.4, 17.3, 29.7, 36.9, 41.0, 52.0, 74.9, 80.5, 128.1, 128.4, 128.6, 129.9, 133.5, 135.5, 136.4, 137.5, 166.1, 176.5, 198.5.

**Microanálisis**: Calculado para C<sub>23</sub>H<sub>26</sub>O<sub>6</sub>: C, 69.35; H, 6.53. Encontrado: C, 69.26; H, 6.41.

V.3.10. - Síntesis de (3*R*\*,4*S*\*,5*R*\*,6*R*\*)-4-(benciloxi)-3,5-dimetil-6formil-tetrahidropiran-2-ona, 95.

A una disolución de 90 (23 mg, 0.1 mmol) en 20 ml de  $CH_2Cl_2$ , se añadieron 46 mg (0.54 mmol) de NaHCO<sub>3</sub> y la mezcla de reacción se enfrió a -78 °C. Se burbujeó O<sub>3</sub> durante 50 minutos y, tras filtración, el disolvente se evaporó a presión reducida. El residuo se diluyó en 2 ml de  $CH_2Cl_2$  y se le añadieron 0.03 ml (0.40 mmol) de piridina y 0.05 ml (0.49 mmol) de Ac<sub>2</sub>O. La mezcla de reacción se agitó durante 24 horas y pasado este tiempo el disolvente se evaporó a presión reducida. El crudo de reacción se purificó mediante cromatografía en columna (hexano:AcOEt, 6:1), obteniéndose 16 mg de 95 (61%) como un aceite incoloro.

Datos de 95:

 $R_{f} = 0.49$  (hexano:AcOEt, 2:1).

IR (CCl<sub>4</sub>): 2780, 1730, 1580, 1200.

<sup>1</sup>**H RMN** (250 MHz, CDCl<sub>3</sub>): 1.06 (d, 3 H, J= 6.9 Hz, Me-C3), 1.13 (d, 3 H, J= 7.1 Hz, Me-C5), 2.35-2.51 (m, 1 H, H-5), 2.73-2.90 (m, 1 H, H-3), 3.93 (dd, 1 H, J= 7.6, 2.1 Hz, H-4), 4.59 (sist. AB, 2 H,  $J_{AB}$ = 11.2 Hz, CH<sub>2</sub>Ph), 5.06 (m, 1 H, H-6), 7.49-7.62 (m, 5 H, 5 Har), 9.22 (s, 1 H, CHO).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 17.4, 19.9, 30.7, 39.5, 55.5, 71.0, 80.1, 127.7, 129.6, 135.7, 136.2, 174.1, 201.5.

**Microanálisis**: Calculado para C<sub>15</sub>H<sub>18</sub>O<sub>4</sub>: C, 68.70; H, 6.87. Encontrado: C, 68.51; H, 6.69.

V.3.11. - Síntesis de (3R\*, 4S\*, 5R\*, 6R\*)-3-(benciloxi)-5-(*terc*-butil dimetilsililoxi)-4,6-dimetilciclohex-1-eno, 108.

A una disolución de **54** (54 mg, 0.23 mmol) en 3 ml de THF enfriada a 0°C, se adicionaron 0.1 ml (0.70 mmol) de trietilamina y 0.16 ml (0.70 mmol) de triflato de *terc*butildimetilsililo. La reacción se agitó durante 3 horas dejándose que la mezcla alcanzara la temperatura ambiente. Pasado este tiempo, se hidrolizó con disolución acuosa saturada de NaCl, se extrajo con éter y las fases orgánicas se secaron sobre MgSO<sub>4</sub>. Tras eliminar el disolvente a presión reducida, el crudo se purificó por cromatografría en columna (hexano:AcOEt, 4:1), obteniéndose 77 mg de **108** como un aceite incoloro. Rendimiento: 96%.

Datos de **108**:

 $R_{f} = 0.26$  (hexano:AcOEt, 5:1).

IR (CCl<sub>4</sub>): 2780, 1750, 1380, 1110.

<sup>1</sup>H RMN (250 MHz, CDCl<sub>3</sub>): 0.89 (d, 3 H, *J*= 4.9 Hz, Me-C4), 0.97 (d, 3 H, *J*= 5.2 Hz, Me-C6), 1.84 (q, 1 H, J= 5.2 Hz, H-6), 2.22-2.32 (m, 1 H, H-4), 3.76-3.78 (m, 1 H, H-5),



OTBS

ΌBn

Me

3.82 (dd, 1 H, J= 6.3, 1.8 Hz, H-3), 4.48 (sist AB, 2 H,  $J_{AB}$ = 7.2 Hz, C<u>H</u><sub>2</sub>Ph), 5.36 (d, 1 H, J= 6.8 Hz, H-1), 5.71 (dd, 1 H, J= 6.8, 1.8 Hz, H-2), 7.19-7.29 (m, 5 H, 5 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): -4.8, -4.5, 11.4, 18.6, 18.9, 31.3, 38.5, 70.9, 75.5, 78.6, 126.4, 127.3, 127.9, 128.6, 141.8, 148.6.

**Microanálisis**: Calculado para C<sub>21</sub>H<sub>34</sub>O<sub>2</sub>Si: C, 72.83; H, 9.83. Encontrado: C, 72.65; H, 9.79.

V.4. - Síntesis del fragmento C<sub>1</sub>-C<sub>8</sub> de las baconipironas A y B.

V.4.1. - 5-endo-cloro-2,2'-(etiléndioxi)-6-exo-(fenilsulfenil)-3-exometil-7-oxabiciclo [2.2.1]heptano, 118.

<u>Método A</u>: En un matraz provisto de Dean-Stark, se adicionaron 500 mg (1.86 mmol) de **34** disueltos en 18 ml de tolueno, 0.31 ml (5.59 mmol) de etilénglicol y una cantidad catalítica de ácido *p*-toluensulfónico. La mezcla de reacción se puso a reflujo durante 12 horas pasadas las cuales, se dejó que alcanzase la temperatura ambiente. A continuación, se diluyó con AcOEt, se lavó con disolución acuosa al 5% de NaHCO<sub>3</sub> y las fases orgánicas se secaron sobre MgSO<sub>4</sub>. El disolvente se eliminó a presión reducida y el crudo se purificó mediante cromatografía en columna (hexano:AcOEt, 10:1) obteniéndose 349 mg (60%) de **118** como un aceite incoloro y recuperándose 150 mg (30%) de la cetona metilada de partida.

<u>Método B</u>: A una disolución de triflato de trimetilsililo (0.05 ml, 0.28 mmol) en 3 ml de  $CH_2Cl_2$  a 0°C, se añadieron 1.37 ml (5.59 mmol) de 1,2-bis(trimetilsililoxi)etano. A continuación se añadió una disolución de **34** (750 mg, 2.79 mmol) en  $CH_2Cl_2$  (25 ml). Se dejó que la mezcla de reacción alcanzase la temperatura ambiente y se agitó durante 48 horas. Pasado este tiempo, la mezcla de reacción se enfrió a 0°C y se añadieron 0.06 ml de piridina. Tras 5 minutos, se hidrolizó con disolución acuosa saturada de NaHCO<sub>3</sub>, se extrajo con  $CH_2Cl_2$  y la fase orgánica se secó sobre MgSO<sub>4</sub>. La eliminación del disolvente a presión reducida y la purificación mediante cromatografía en columna (hexano:AcOEt, 10:1) permitió obtener 794 mg de **118** como un aceite incoloro. Rendimiento: 91%.

Datos de 118:

 $R_f = 0.32$  (hexano:AcOEt, 6:1).

**IR** (CCl<sub>4</sub>): 2980. 1520, 1320, 1200.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.01 (d, 3 H, J= 4.9 Hz, Me), 2.65 (q, 1 H, J= 4.9 Hz, H-3), 3.71 (dd, 1 H, J= 7.3, 3.3 Hz, H-5), 3.75-3.84 (m, 4 H, -OC<u>H<sub>2</sub>CH<sub>2</sub>O-)</u>, 3.90 (d, 1 H, J= 7.3 Hz, H-6), 3.91 (s, 1 H, H-1), 4.06 (d, 1 H, J= 3.3 Hz, H-4), 7.16-7.30 (m, 5 H, 5 Har).



**13C RMN** (75 MHz, CDCl<sub>3</sub>): 12.7, 40.1, 55.6, 64.9, 65.3, 69.7, 81.4, 86.3, 113.8, 128.5, 128.6, 129.5, 134.3.

**Microanálisis**: Calculado para C<sub>15</sub>H<sub>17</sub>O<sub>3</sub>ClS: C, 57.60; H, 5.44. Encontrado: C, 57.49; H, 5.26.

V.4.2. - 5-endo-cloro-2,2'-(etiléndioxi)-6-exo-(fenilsulfonil)-3-exometil-7-oxabiciclo [2.2.1]heptano, 119.

A una disolución de **118** (325 mg, 1.04 mmol) en MeOH (10 ml) enfriada a 0°C, se añadieron 1513 mg (2.60 mmol) de MMPP y se dejó que la mezcla de reacción alcanzase lentamente la temperatura ambiente. Después de agitar durante 12 horas, el crudo de reacción se hidrolizó con disolución acuosa saturada de NaHCO<sub>3</sub> y se concentró a presión reducida. El residuo fué disuelto, a continuación, con agua y se extrajo con AcOEt. El conjunto de fases orgánicas se secaron sobre MgSO<sub>4</sub> y, tras filtración, el disolvente se eliminó a presión reducida. El producto se purificó mediante cromatografía en columna (hexano:AcOEt, 8:1), obteniéndose 344 mg de **119** como un sólido blanco. Rendimiento: 96%.

Datos de 119:

 $R_{f} = 0.40$  (hexano: AcOEt, 2:1). Pf: 86-87 °C.

IR (KBr): 3010, 1590, 1220, 1150.



<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.05 (d, 3 H, J= 4.9 Hz, Me), 2.60 (q, 1 H, J= 4.9 Hz, H-3), 3.78-4.03 (m, 5 H, -OC<u>H<sub>2</sub>CH<sub>2</sub>O-, H-6)</u>, 4.13 (dd, 1 H, J= 3.3, 0.7 Hz, H-4), 4.35 (t, 1 H, J= 3.3 Hz, H-5), 4.57 (s, 1 H, H-1), 7.59 (t, 2 H, J= 4.8 Hz, 2 Har), 7.69 (t, 1 H, J= 4.8 Hz, 1 Har), 7.93 (d, 2 H, J= 4.8 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 12.6, 40.1, 55.5, 64.9, 65.3, 69.7, 81.3, 86.2, 113.8, 128.5, 129.4, 134.3, 137.6.

**Microanálisis**: Calculado para C<sub>15</sub>H<sub>17</sub>O<sub>5</sub>ClS: C, 52.25; H, 4.93. Encontrado: C, 52.08; H, 4.81.

V.4.3. - Síntesis de 6,6'-(etiléndioxi)-2-(fenilsulfonil)-5-*exo*-metil-7oxabiciclo[2.2.1]hept-2-eno, 115.

A una disolución de 250 mg (0.72 mmol) de **119** en 5 ml de  $CH_2Cl_2$  enfriada a 0°C, se añadieron 0.27 ml (1.81 mmol) de DBU gota a gota. Se agitó durante 2 horas a esta temperatura y posteriormente se hidrolizó con disolución acuosa 0.5 N de HCl. La extracción empleando  $CH_2Cl_2$ , el secado de la fase orgánica sobre MgSO<sub>4</sub> y la purificación mediante cromatografía en columna (hexano:AcOEt, 2:1), permitieron aislar 190 mg de **115** como un sólido blanco. Rendimiento: 85%.

Datos de 115:

 $R_{f}=0.18$  (hexano:AcOEt, 2:1). Pf: 111-112 °C.

IR (KBr): 2980, 1610, 1200, 1110.

<sup>1</sup>H RMN (250 MHz, CDCl<sub>3</sub>): 1.12 (d, 3 H, J= 7.1 Hz, Me), 1.88 (q, 1 H, J= 7.1 Hz, H-5), 3.73-4.01 (m, 4 H, -OC<u>H<sub>2</sub>CH<sub>2</sub>O-), 4.60 (s, 1 H, H-1), 4.64 (t, 1 H, J= 1.5 Hz, H-4), 7.15 (d 1 H, J= 1.5 Hz, H-3), 7.53-7.63 (m, 3 H, 3 Har), 7.93 (dd, 2 H, J= 8.2, 1.6 Hz, 2 Har). <sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 82.1, 85.9, 112.8, 128.2, 129.3, 133.8, 140.4, 146.5, 150.4. **Microanálisis**: Calculado para C<sub>15</sub>H<sub>16</sub>O<sub>5</sub>S: C, 58.44; H, 5.19. Encontrado: C, 58.25; H, 5.11.</u>

### V.4.4. - (1S\*, 2R\*, 6S\*)-3,3'-(etiléndioxi)-5-(fenilsulfonil)-2,6dimetilciclohex-4-en-1-ol, 120.

A una disolución de 285 mg (0.92 mmol) de **115** en 7 ml de THF enfriada a -78°C, se añadieron 1.73 ml (2.77 mmol) de MeLi. Después de agitar 1 hora a -78°C, la reacción se hidrolizó con agua, se extrajo con AcOEt y, tras secar sobre MgSO<sub>4</sub>, el disolvente se eliminó a



presión reducida. El producto se purificó mediante cromatografía en columna (hexano:AcOEt, 1:1), obteniéndose 285 mg (95%) de **120** como un sólido blanco.

Datos de 120:

 $R_{f} = 0.23$  (hexano:AcOEt, 1:1). Pf: 121-122 °C.

**IR** (KBr): 3650, 1600, 1320, 1150.



<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.09 (d, 3 H, J= 6.8 Hz, Me-C2), 1.10 (d, 3 H, J= 7.1 Hz, Me-C6), 2.15 (qd, 1 H, J= 6.8, 2.2 Hz, H-2), 2.50 (d, 1 H, J= 8.8 Hz, OH), 2.55 (m, 1 H, H-6), 3.69 (ddd, 1 H, J= 8.8, 3.7, 2.2 Hz, H-1), 3.93-4.19 (m, 4 H, -OC<u>H<sub>2</sub>CH<sub>2</sub>O-), 6.86 (d, 1 H, J= 2.7 Hz, H-4), 7.52-7.61 (m, 3 H, 3 Har), 7.83 (dd, 2 H, J= 8.2, 1.5 Hz, 2 Har).
<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 9.9, 15.0, 37.0, 40.8, 64.2, 66.3, 74.9, 105.8, 127.4, 129.0, 133.2, 135.8, 140.2, 143.4.
</u>

**Microanálisis**: Calculado para C<sub>16</sub>H<sub>20</sub>O<sub>5</sub>S: C, 59.26; H, 6.17. Encontrado: C, 59.09; H, 6.08.

#### V.4.5. - (1*S*\*, 2*R*\*, 4*S*\*, 5*R*\*, 6*S*\*)-3,3'-(etiléndioxi)-5-(fenilsulfonil)-2,4,6-trimetilciclohexan-1-ol, 116.

<u>Método A</u>: A una disolución de 155 mg (0.48 mmol) de **120** en 3.5 ml de THF enfriada a -78°C, se añadieron 0.90 ml (1.43 mmol) de MeLi gota a gota. La mezcla de reacción se agitó durante 2 horas permitiendo que la temperatura alcanzase lentamente -30°C. A continuación, se subió la temperatura a 0°C y la reacción se hidrolizó con disolución acuosa saturada de NH<sub>4</sub>Cl. Se dejó alcanzar la temperatura ambiente y se extrajo con CH<sub>2</sub>Cl<sub>2</sub>. Tras secar sobre MgSO<sub>4</sub>, el disolvente se eliminó a presión reducida y el producto se purificó mediante cromatografía en columna (hexano:AcOEt, 1:1), obteniéndose 132 mg (81%) de **116** como un sólido blanco.

<u>Método B</u>: A una disolución de **115** (85 mg, 0.27 mmol) en 3 ml de THF enfriada a -78°C, se añadieron 0.52 ml (0.83 mmol) de MeLi gota a gota. La mezcla de reacción se agitó durante 1 hora a esa temperatura. Pasado ese tiempo, se añadieron otros 0.52 ml (0.83 mmol) de MeLi permitiendo que la temperatura alcanzase lentamente -30°C. A continuación, se subió

la temperatura a 0°C y la reacción se hidrolizó con disolución acuosa saturada de NH<sub>4</sub>Cl. Se dejó alcanzar la temperatura ambiente y se extrajo con CH<sub>2</sub>Cl<sub>2</sub>. Tras secar sobre MgSO<sub>4</sub>, el disolvente se eliminó a presión reducida y el producto se purificó mediante cromatografía en columna (hexano:AcOEt, 1:1), obteniéndose 55 mg (59%) de **116** como un sólido blanco. Datos de **116**:

 $R_f = 0.28$  (hexano:AcOEt, 1:1). Pf: 105-106°C

IR (KBr): 3650, 1580, 1250, 1190.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 0.97 (d, 3 H, J= 7.1 Hz, Me-C2), 1.01 (d, 3 H, J= 6.8 Hz, Me-C4), 1.19 (d, 3 H, J= 7.1 Hz, Me-C6), 2.16 (qd, 1 H, J= 6.8, 3.2 Hz, H-4), 2.24 (q, 1 H, J= 7.1 Hz, H-2), 2.18-2.31 (m, 1 H, H-6), 2.82 (d, 1 H, J= 9.3 Hz, OH), 3.51-3.59 (m, 1 H, H-1), 3.59 (dd, 1 H, J= 11.7, 3.2 Hz, H-5), 3.86-4.15 (m, 4 H,-OC<u>H<sub>2</sub>CH<sub>2</sub>O-)</u>, 7.52-7.60 (m, 3 H, 3 Har), 7.87 (dd, 2 H, J= 8.1, 1.5 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 9.7, 10.6, 16.7, 33.5, 37.0, 37.6, 60.3, 64.2, 64.4, 65.8, 112.6, 127.6, 129.0, 133.1, 141.8.

**Microanálisis**: Calculado para C<sub>17</sub>H<sub>24</sub>O<sub>5</sub>S: C, 59.99; H, 7.06. Encontrado: C, 59.78; H, 6.95.

V.4.6. - (2*R*\*, 4*S*\*, 5*R*\*, 6*S*\*)-3,3'-(etiléndioxi)-5-(fenilsulfonil)-2,4,6-trimetilciclohexan-1-ona, 121.

A una disolución de 0.13 ml (1.52 mmol) de cloruro de oxalilo en 7 ml de  $CH_2Cl_2$  a -78°C, se añadieron 0.13 ml (1.86 mmol) de DMSO gota a gota. Pasados 30 minutos, se añadieron 115 mg (0.34 mmol) de **116** disueltos en 4 ml de  $CH_2Cl_2$ . La reacción se agitó 1 hora a -78°C y , a continuación, se añadieron 0.38 ml (2.70 mmol) de  $Et_3N$ . La reacción se agitó durante 12 horas permitiendo que alcanzase lentamente la temperatura ambiente. Pasado este tiempo, se hidrolizó con disolución acuosa saturada de NaCl, se extrajo con  $CH_2Cl_2$ , y la fase orgánica se secó sobre MgSO<sub>4</sub>. Tras eliminar el disolvente a presión reducida, el crudo se

purificó mediante cromatografía en columna (hexano:AcOEt, 2:1) para obtener 94 mg de 121 como un sólido blanco. Rendimiento: 82%.

Datos de 121:

 $R_{f} = 0.48$  (hexano:AcOEt, 2:1). Pf: 96-97°C.

IR (KBr): 2980, 1710, 1590, 1220.



<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.00 (d, 3 H, J= 6.3 Hz, Me-C2), 1.01 (d, 3 H, J= 6.3 Hz, Me-C6), 1.45 (d, 3 H, J= 7.1 Hz, Me-C4), 2.50 (qd, 1 H, J= 7.1, 3.9 Hz, H-4), 2.96 (qd, 1 H, J= 6.3, 1.0 Hz, H-2), 3.03 (dq, 1 H, J= 12.2, 6.3 Hz, H-6), 3.55 (dd, 1 H, J= 12.2, 3.9 Hz, H-5), 3.91-3.99 (m, 4 H, OCH<sub>2</sub>CH<sub>2</sub>O-), 7.55-7.64 (m, 3 H, 3 Har), 7.89 (dd, 2 H, J= 8.2, 1.5 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 6.5, 11.0, 12.7, 38.2, 40.8, 48.5, 65.6, 65.9, 66.1, 112.1, 127.6, 129.2, 133.5, 141.5, 205.9.

**Microanálisis**: Calculado para C<sub>17</sub>H<sub>22</sub>O<sub>5</sub>S: C, 60.35; H, 6.51. Encontrado: C, 60.28; H, 6.38.

## V.4.7. - (1*S*\*, 2*R*\*, 4*S*\*, 5*R*\*, 6*S*\*)-1-(etil)-3,3'-(etiléndioxi)-5-(fenilsulfonil)-2,4,6-trimetilciclohexan-1-ol, 117.

A una disolución de 93 mg (0.27 mmol) de **121** en 3 ml de THF a temperatura ambiente, se añadieron 1.65 ml (1.65 mmol) de bromuro de etilmagnesio (disolución 1M en THF) gota a gota. La reacción se agitó durante 4 horas. Pasado este tiempo, se hidrolizó con disolución acuosa saturada de NH<sub>4</sub>Cl, se extrajo con AcOEt, y la fase orgánica se secó sobre MgSO<sub>4</sub>. Tras eliminar el disolvente a presión reducida, el crudo se purificó mediante cromatografía en columna (hexano:AcOEt, 1:2) obteniéndose 71 mg de **117** como un sólido blanco. Rendimiento: 70%. Datos de **117**:

*R<sub>f</sub>*= 0.38 (hexano:AcOEt, 1:1). Pf: 118-119°C. **IR** (KBr): 3600-3300, 1600, 1210, 1180.



<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 0.76 (t, 3 H, J= 5.2 Hz, -CH<sub>2</sub>CH<sub>3</sub>), 0.88 (d, 3 H, J= 4.6 Hz, Me-C2), 0.96 (d, 3 H, J= 4.6 Hz, Me-C6), 1.19 (d, 3 H, J= 4.6 Hz, Me-C4), 1.58 (q, 2 H, J= 5.2 Hz, -CH<sub>2</sub>CH<sub>3</sub>), 2.12 (q, 1 H, J= 4.6 Hz, H-2), 2.27-2.32 (m, 1 H, H-4), 2.30 (dq, 1 H, J= 7.8, 4.6 Hz, H-6), 3.23 (s, 1 H, OH), 3.65 (dd, 1 H, J= 7.8, 2.3 Hz, H-5), 3.85-3.99 (m, 4 H,-OCH<sub>2</sub>CH<sub>2</sub>O-), 7.51-7.61 (m, 3 H, 3 Har), 7.88 (dd, 2 H, J= 5.1, 1.0 Hz, 2 Har). <sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 6.0, 7.9, 10.7, 12.1, 27.3, 32.6, 36.4, 37.3, 64.3, 65.4, 65.5, 65.7, 112.8, 127.4, 129.0, 133.0, 142.2.

**MIcroanálisis**: Calculado para C<sub>19</sub>H<sub>28</sub>O<sub>5</sub>S: C, 61.96; H, 7.61. Encontrado: C, 61.89; H, 7.49.

## V.4.8. - (1*S*\*, 2*R*\*, 4*S*\*, 5*R*\*, 6*S*\*)-1-(etil)-3,3'-(etiléndioxi)-5-(fenilsulfonil)-1'-(trimetilsililoxi)-2,4,6-trimetilciclohexano, 122.

A una disolución de **117** (35 mg, 0.09 mmol) en 1 ml de THF a temperatura ambiente, se añadieron 0.07 ml (0.47 mmol) de trietilamina y 0.09 ml (0.47 mmol) de triflato de trimetilsililo. La reacción se agitó durante 6 horas y, pasado este tiempo, se hidrolizó con agua. Se extrajo con éter y la fase orgánica se secó sobre MgSO<sub>4</sub>. Tras eliminar el disolvente a presión reducida, el crudo se purificó mediante cromatografía en columna (hexano:AcOEt, 1:1) obteniéndose 34 mg de **122** como un sólido blanco. Rendimiento: 81%.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 0.02 (s, 9 H, Si(CH<sub>3</sub>)<sub>3</sub>), 0.80 (t, 3 H, J = 5.8 Hz, -CH<sub>2</sub>CH<sub>3</sub>),

0.82 (d, 3 H, J= 6.8 Hz, Me-C2), 0.92 (d, 3 H, J= 6.6 Hz, Me-C4 6 Me-C6), 1.16 (d, 3 H,

Datos de 122:

 $R_{f} = 0.39$  (hexano:AcOEt, 2:1). Pf: 101-102 °C.

IR (KBr): 2980, 1580, 1310, 1200.



*J*= 7.1 Hz, Me-C4 6 Me-C6), 1.57-1.69 (m, 2 H, -C<u>H</u><sub>2</sub>CH<sub>3</sub>), 2.00 (q, 1 H, *J*= 6.8 Hz, H-2), 2.18-2.39 (m, 2 H, H-4, H-6), 3.78 (d, 1 H, *J*= 3.2 Hz, H-5), 3.74-3.94 (m, 4 H,-OC<u>H</u><sub>2</sub>C<u>H</u><sub>2</sub>O-), 7.49-7.61 (m, 3 H, 3 Har), 7.88 (dd, 2 H, *J*= 8.1, 1.5 Hz, 2 Har). <sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): -2.5, 5.1, 7.3, 10.9, 11.8, 30.3, 31.4, 33.2, 36.5, 64.3, 64.5,

65.4, 70.3, 113.1, 126.8, 129.5, 133.1, 135.3.

## V.4.9. - (2S\*, 3R\*, 4R\*, 6R\*)-5,5'-(etiléndioxi)-3-(etil)-3'-(hidroxi)-2,4,6-trimetilciclohexan-1-ona, 123.

A una disolución de 0.08 ml (0.54 mmol) de diisopropilamina en 5 ml de THF y 1 ml de DMPU a -20°C, se añadieron 0.35 ml (0.56 mmol) de *n*-BuLi (1.6 M en hexano) gota a gota. Pasados 15 minutos, se adicionaron 99 mg (0.27 mmol) de **117** disueltos en 3 ml de THF. La reacción se agitó otros 15 minutos a -20°C y, a continuación, se burbujeó oxígeno durante 1 hora, manteniéndo siempre la temperatura de reacción en -20°C. Pasado este tiempo, se hidrolizó con disolución acuosa saturada de NH<sub>4</sub>Cl, se extrajo con éter, y la fase orgánica se secó sobre MgSO<sub>4</sub>. Tras eliminar el disolvente a presión reducida, el crudo se purificó mediante cromatografía en columna (hexano:AcOEt, 4:1) para obtener 35 mg de **123** como un aceite incoloro. Rendimiento: 54%.

Datos de **123**:

 $R_{f} = 0.49$  (hexano:AcOEt, 5:1).

IR (CCl<sub>4</sub>): 3600-3300, 1720, 1470, 1210.



<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 0.70 (t, 3 H, J= 5.8 Hz, CH<sub>2</sub>C<u>H<sub>3</sub></u>), 0.79 (d, 3 H, J= 6.1 Hz, Me-C6), 0.81 (d, 3 H, J= 6.8 Hz, Me-C2), 0.96 (d, 3 H, J= 7.1 Hz, Me-C4), 1.50 (q, 2 H, J= 5.8 Hz, C<u>H<sub>2</sub></u>CH<sub>3</sub>), 1.66-1.78 (m, 2 H, H-4, H-6), 1.96 (q, 1 H, J= 6.8 Hz, H-2), 3.32 (s, 1 H, OH), 3.83-3.91 (m, 4 H, -OC<u>H<sub>2</sub>CH<sub>2</sub></u>O-).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 5.8, 8.0, 14.5, 15.0, 27.5, 29.2, 33.7, 35.9, 64.2, 65.3, 76.7, 113.8, 204.9.

**Microanálisis**: Calculado para  $C_{13}H_{22}O_4$ : C, 64.46; H, 9.09. Encontrado: C, 64.28; H, 9.03.

V.4.10. - (1*R*\*, 2*R*\*, 3*R*\*, 4*R*\*, 6*R*\*)-5,5'-(etiléndioxi)-1-(etil)-2,4,6trimetilciclohexan-1',3-diol, 126.

A una disolución de **123** (16 mg, 0.07 mmol) en 1 ml de THF a 0°C, se adicionaron 0.016 ml (0.16 mmol) de diborano gota a gota. La reacción se agitó 90 minutos a 0°C y, a continuación, se hidrolizó con disolución acuosa al 5% de NaHCO<sub>3</sub>. Se extrajo con AcOEt, y la fase orgánica se secó sobre MgSO<sub>4</sub>. Tras eliminar el disolvente a presión reducida, el crudo se purificó mediante cromatografía en columna (hexano:AcOEt, 2:1) para obtener 12 mg de **126** como un aceite incoloro. Rendimiento: 74%.

Datos de 126:

 $R_{f} = 0.12$  (hexano:AcOEt, 5:1).

IR (CCl<sub>4</sub>): 3600-3200, 2980, 1370, 1210.

<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 0.74 (t, 3 H, J= 5.2 Hz, CH<sub>2</sub>CH<sub>3</sub>), 0.86 (d, 3 H, J= 4.6 Hz, Me-C6), 0.93 (d, 3 H, J= 4.2 Hz, Me-C2), 1.17 (d, 3 H, J= 4.6 Hz, Me-C4), 1.59-1.71 (m, 2 H, CH<sub>2</sub>CH<sub>3</sub>), 2.07 (d, 1 H, J= 10.0 Hz, OH), 2.16 (q, 1 H, J= 4.6 Hz, H-6), 2.30-2.42 (m, 2 H, H-2, H-4), 3.28 (s, 1 H, OH), 3.72 (ddd, 1 H, J= 10.0, 7.3, 2.5 Hz, H-3), 3.96-4.09 (m, 4 H,-OCH<sub>2</sub>CH<sub>2</sub>O-).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 7.8, 8.6, 11.4, 13.1, 33.2, 35.2, 37.1, 39.3, 64.5, 65.3, 68.1, 72.8, 112.0.

**Microanálisis**: Calculado para C<sub>13</sub>H<sub>24</sub>O<sub>4</sub>: C, 63.93; H, 9.84. Encontrado: C, 63.80; H, 9.76.

V.4.11. - (2*R*\*, 3*R*\*, 4*R*\*, 5*R*\*, 6*R*\*)-3-(etil)-3',5-bis-(hidroxi)-2,4,6trimetilciclohexan-1-ona, 33.



A una disolución de **126** (9 mg, 0.04 mmol) en 1 ml de acetonitrilo a temperatura ambiente, se adicionaron 1 mg (0.007 mmol) de ioduro sódico y 27.9 mg (0.07 mmol) de CeCl<sub>3</sub>·7H<sub>2</sub>O. La reacción se puso a reflujo durante 3 horas y, a continuación, se retiró la calefacción permitiendo el enfriamiento de la mezcla hasta alcanzar la temperatura ambiente. La hidrólisis con disolución acuosa al 0.5N de HCl y la extracción con éter, permitieron la obtención de un crudo de reacción, previo secado de las fases orgánicas sobre MgSO<sub>4</sub> y eliminación del disolvente por evaporación a vacío. La purificación del mismo mediante cromatografía en columna (hexano:AcOEt, 2:1) condujo a 6.4 mg de **33** como un aceite incoloro. Rendimiento: 87%.

Datos de 33:

 $R_{f} = 0.19$  (hexano:AcOEt, 5:1).

IR (CCl<sub>4</sub>): 3600-3300, 2980, 1710, 1370.



<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 0.90 (t, 3 H, J= 5.0 Hz, CH<sub>2</sub>C<u>H<sub>3</sub></u>), 0.98 (d, 3 H, J= 4.2 Hz, Me-C2), 1.20 (d, 3 H, J= 4.9 Hz, Me-C6), 1.22 (d, 3 H, J= 4.2 Hz, Me-C4), 1.46-1.58 (m, 2 H, C<u>H<sub>2</sub></u>CH<sub>3</sub>), 2.54 (m, 1 H, H-4), 2.66 (q, 1 H, J= 4.2 Hz, H-2), 2.98 (s, 1 H, OH-C3), 3.06 (q, 1 H, J= 4.9 Hz, H-6), 3.37 (d, 1 H, J= 8.1 Hz, OH-C5), 3.64 (dd, 1 H, J= 8.1, 7.0 Hz, H-5).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 8.3, 11.9, 13.8, 15.2, 30.1, 32.6, 33.4, 35.4, 71.3, 74.3, 204.2.

**Microanálisis**: Calculado para C<sub>11</sub>H<sub>20</sub>O<sub>3</sub>: C, 66.00; H, 10.00. Encontrado: C, 65.89; H, 9.91.

## V.4.12. - Síntesis de (1*R*\*, 2*S*\*, 3*S*\*, 4*R*\*, 6*R*\*)-5,5'-(etiléndioxi)-1-(fenilsulfonil)-2,4-dimetil-7-oxabiciclo[4.1.0]heptan-3-ol, 128.

A una disolución de 0.52 ml (4.2 mmol) de t-BuOOH (disolución al 80% en  $(t-BuO)_2$ ) en 9 ml de THF enfriada a -78 °C se añadieron 2.60 ml (4.2 mmol) de n-BuLi. A los 15 minutos se añadieron 135 mg (0.42 mmol) de **120** disueltos en 5 ml de THF. Se dejó subir la temperatura, y a las 12 horas la reacción se hidrolizó con disolución acuosa saturada de NaCl. El crudo se extrajo con  $Et_2O$ , se dejó secar sobre MgSO<sub>4</sub> y el disolvente se evaporó a vacío. El producto se purificó por cromatografía en columna (hexano:AcOEt, 1:1), obteniéndose 133 mg de **128** como un sólido blanco. Rendimiento: 94%.

Datos de **128**:

 $R_f = 0.48$  (hexano:AcOEt, 1:1). Pf: 90-91°C.

IR (KBr): 3250, 1590, 1310, 1220.

PhO<sub>2</sub>Sin D

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.00 (d, 3 H, J= 4.6 Hz, Me-C2), 1.03 (d, 3 H, J= 4.8 Hz, Me-C4), 1.82 (d, 1 H, J= 7.9 Hz, OH), 1.89 (qd, 1 H, J= 4.6, 1.3 Hz, H-2), 2.61 (qd, 1 H, J= 4.8, 2.9 Hz, H-4), 3.46 (ddd, 1 H, J= 7.9, 2.9, 1.3 Hz, H-3), 3.79 (s, 1 H, H-6), 3.92-4.14 (m, 4 H, -OC<u>H<sub>2</sub>CH<sub>2</sub>O-), 7.55 (d, 2 H, J= 4.9 Hz, 2 Har), 7.66 (t, 1 H, J= 4.9 Hz, 1 Har), 7.89 (d, 2 H, J= 4.9 Hz, 2 Har).</u>

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 9.9, 13.9, 33.8, 41.0, 61.1, 64.3, 66.4, 74.0, 77.2, 104.7, 128.9, 129.0, 134.2, 137.5.

**Microanálisis**: Calculado para C<sub>16</sub>H<sub>20</sub>O<sub>6</sub>S: C, 56.47; H, 5.88. Encontrado: C, 56.36; H, 5.75.

V.4.13. - Síntesis de (1*R*\*, 2*S*\*, 4*S*\*, 6*R*\*)-5,5'-(etiléndioxi)-1-(fenil sulfonil)-2,4-dimetil-7-oxabiciclo[4.1.0]heptan-3-ona, 130.

Según el procedimiento descrito en el apartado V.4.6, a partir de 86 mg (0.25 mmol) de 128 se obtuvieron 84 mg de 130 como un aceite incoloro. Rendimiento: 98%.

Datos de 130:

 $R_{f} = 0.49$  (hexano:AcOEt, 1:1).

IR (CCl<sub>4</sub>): 2970, 1610, 1410, 1280.

PhO<sub>2</sub>Sin \_\_\_\_O

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 0.95 (d, 3 H, J= 6.9 Hz, Me-C4), 1.03 (d, 3 H, J= 6.6 Hz, Me-C2), 2.89 (q, 1 H, J= 6.6 Hz, H-2), 3.34 (q, 1 H, J= 6.9 Hz, H-4), 4.09 (s, 1 H, H-6), 3.92-4.17 (m, 4 H, -OC<u>H<sub>2</sub>CH<sub>2</sub>O-)</u>, 7.59 (t, 2 H, J= 7.2 Hz, 2 Har), 7.73 (t, 1 H, J= 7.2 Hz, 1 Har), 7.93 (d, 2 H, J= 7.2 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 7.4, 10.8, 41.7, 50.2, 62.1, 65.5, 66.5, 75.5, 105.4, 129.4, 129.6, 134.9, 136.8, 204.1.

**Microanálisis**: Calculado para C<sub>16</sub>H<sub>18</sub>O<sub>6</sub>S: C, 56.80; H, 5.32. Encontrado: C, 56.66; H, 5.26.

## V.4.14. - Síntesis de (1*R*\*, 2*S*\*, 3*S*\*, 4*R*\*, 6*R*\*)-3-etil-5,5'-(etiléndioxi)-1-(fenilsulfonil)-2,4-dimetil-7-oxabiciclo[4.1.0]heptan-3-ol, 129.

Según el procedimiento descrito en el apartado V.4.7, a partir de 75 mg (0.22 mmol) de **130** se obtuvieron 46 mg de **129** como un aceite incoloro. Rendimiento: 56%.

Datos de 129:

 $R_{f} = 0.32$  (hexano:AcOEt, 1:1).

IR (CCl<sub>4</sub>): 3330, 2980, 1580, 1370.



<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 0.57 (d, 3 H, J= 6.8 Hz, Me), 0.89 (d, 3 H, J= 6.8 Hz, Me), 0.91 (t, 3 H, J= 5.9 Hz, CH<sub>2</sub>CH<sub>3</sub>), 1.18 (q, 2 H, J= 5.9 Hz, CH<sub>2</sub>CH<sub>3</sub>), 1.59 (s, 1 H, OH), 2.31 (q, 1 H, J= 6.8 Hz, H-2 6 H-6), 2.97 (q, 1 H, J= 6.8 Hz, H-2 6 H-6), 3.77 (s, 1 H, H-4), 3.93-4.15 (m, 4 H, -OCH<sub>2</sub>CH<sub>2</sub>O-), 7.53-7.72 (m, 3 H, 3 Har), 7.93 (dd, 2 H, J= 7.1, 1.5 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 3.0, 5.6, 7.5, 12.4, 30.8, 35.1, 57.7, 63.2, 66.4, 71.1, 75.4, 112.1, 125.7, 127.5, 129.4, 134.5.

**Microanálisis**: Calculado para C<sub>18</sub>H<sub>24</sub>O<sub>6</sub>S: C, 58.69; H, 6.52. Encontrado: C, 58.51; H, 6.44.

V.4.15. - Síntesis de (1R\*,2S\*,3S\*,4R\*,6R\*)-3-etil-5,5'-(etiléndioxi)-1-(fenilsulfonil)-3'-(trimetilsililoxi)-2,4-dimetil-7-oxabiciclo[4.1.0]heptano, 131.

Según el procedimiento descrito en el apartado V.4.8, a partir de 56 mg (0.15 mmol) de 129 se obtuvieron 46 mg de 131 como un aceite incoloro. Rendimiento: 69%.

Datos de 131:

 $R_{f} = 0.48$  (hexano:AcOEt, 4:1).

**IR** (CCl<sub>4</sub>): 2980, 1470, 1370, 1210.



<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 0.04 (s, 9 H, Si(CH<sub>3</sub>)<sub>3</sub>), 0.75 (d, 3 H, J= 7.1 Hz, Me), 0.87 (d, 3 H, J= 7.0 Hz, Me), 0.92 (t, 3 H, J= 5.8 Hz, CH<sub>2</sub>CH<sub>3</sub>), 1.21 (q, 2 H, J= 5.8 Hz, CH<sub>2</sub>CH<sub>3</sub>), 2.23 (q, 1 H, J= 7.1 Hz, H-2 o H-4), 2.86 (q, 1 H, J= 7.0 Hz, H-2 o H-4), 3.03 (s, 1 H, OH), 3.78 (s, 1 H, H-6), 3.90-4.19 (m, 4 H, OCH<sub>2</sub>CH<sub>2</sub>O), 7.60 (m, 2 H, 2 Har), 7.75 (tt, 1 H, J= 7.0, 1.5 Hz, 1 Har), 7.95 (d, 2 H, J= 7.0 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): -5.6, 3.8, 7.6, 11.6, 19.6, 32.5, 33.9, 54.5, 64.5, 65.6, 70.8, 77.9, 115.0, 127.9, 128.3, 134.5, 136.0.

V.5. - Epoxisulfonas bicíclicas.

V.5.1. - Síntesis de 2-(fenilsulfonil)-7-oxabiciclo[2.2.1]hepten-2-eno, 155b.

A una disolución de **158** (300 mg, 0.80 mmol) en 24 ml de CH<sub>3</sub>CN, se añadieron 42 mg (0.40 mmol) de Pd-C al 10%. La mezcla se agitó durante 2 horas en un hidrogenador a una presión de 30 psi. El crudo se filtró a través de gel de sílice, empleando CH<sub>3</sub>CN como eluyente, y el disolvente se evaporó a presión reducida. De este modo se obtuvo el correspondiente producto de deshidrogenación (295 mg) como un sólido blanco sin necesidad de ser purificado adicionalmente (Rendimiento: 98%). A continuación, este producto se disolvió (253 mg, 0.67 mmol) en 15 ml de THF enfriada a -78 °C y se añadieron 87 mg (0.74 mmol) de *t*-BuOK. La mezcla de reacción se agitó a esta temperatura durante 2 horas, pasadas las cuales se hidrolizó con agua. El crudo se extrajo con AcOEt, el conjunto de las fases orgánicas se secaron sobre MgSO<sub>4</sub> y el disolvente se evaporó a presión reducida. El producto se purificó mediante cromatografía en columna (hexano:AcOEt, 5:1), obteniéndose 141 mg de **155b** como un sólido blanco. Rendimiento: 89%.

Datos de 155b:

 $R_f = 0.34$  (hexano:AcOEt, 2:1). Pf: 133-134°C.

IR (KBr): 3050, 1620, 1580, 1310.



<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.31-1.47 (m, 2 H, H-5n, H-6n), 1.80-2.04 (m, 2 H, H-5x, H-6x), 5.04 (d, 1 H, *J*= 4.1 Hz, H-1), 5.12 (dd, 1 H, *J*= 4.6, 1.7 Hz, H-4), 7.04 (d, 1 H, *J*= 1.7 Hz, H-3), 7.52-7.68 (m, 3 H, 3 Har), 7.93 (dd, 2 H, *J*= 7.8, 1.0 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 23.6, 24.2, 78.0, 79.6, 127.6, 129.3, 133.7, 138.5, 143.4, 148.0.

**Microanálisis**: Calculado para C<sub>12</sub>H<sub>12</sub>O<sub>3</sub>S: C, 61.02; H, 5.08. Encontrado: C, 60.90; H, 4.89.

# V.5.2. - Procedimiento general para la epoxidación nucleófila de las vinilsulfonas 156a-c.

A una disolución conteniendo t-BuOOH (2.2 equivalentes) en THF enfriada a -78 °C, se añadió *n*-BuLi (2.2 equivalentes) gota a gota y se agitó durante 15 minutos. A continuación, y manteniéndo la temperatura a -78 °C, se añadió una disolución de la vinilsulfona de partida (1 equivalente) en THF (10 ml/mmol de **155a-c**). Se dejó que la mezcla de reacción alcanzase lentamente la temperatura ambiente y se agitó durante 12 horas. A continuación, se hidrolizó con disolución acuosa saturada de NaCl y se extrajo con éter. La fase orgánica se secó sobre MgSO<sub>4</sub> y el disolvente se evaporó a presión reducida. El crudo se purificó mediante cromatografía en columna para obtener las correspodientes epoxisulfonas **156a-c**.

### V.5.3. - Síntesis de 2-endo-(fenilsulfonil)biciclo[2.2.1]hepten-2-enexo-óxido, 156a.

Según el procedimiento descrito en el apartado V.5.2., a partir de 550 mg (2.35 mmol) de **155a** se obtuvieron 517 mg de **156a** como un sólido blanco. Rendimiento: 88%.

Datos de 156a:

 $R_{f} = 0.23$  (hexano:AcOEt, 4:1). Pf: 71-72°C.

IR (KBr): 3050, 1580, 1340, 1100.



<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 0.86 (dd, 1 H, *J*= 9.0, 1.2 Hz), 1.36 (s ancho, 1 H), 1.40 (m, 1 H), 1.55-1.64 (m, 2 H), 2.28 (td, 1 H, *J*= 8.9, 2.3 Hz), 2.55 (d, 1 H, *J*= 1.5 Hz, H-1 6 H-4), 2.64 (d, 1 H, *J*= 1.5 Hz, H-1 o H-4), 3.64 (s, 1 H, H-3), 7.50-7.69 (m, 3 H, 3 Har), 7.91 (dd, 2 H, *J*= 8.8, 1.9 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 23.3, 25.7, 29.9, 37.6, 38.7, 58.6, 72.5, 128.8, 129.1, 134.0, 138.7.

**Microanálisis**: Calculado para C<sub>13</sub>H<sub>14</sub>O<sub>3</sub>S: C, 62.40.15; H, 5.60. Encontrado: C, 62.31; H, 5.56.

V.5.4. - Síntesis de 2-*endo*-(fenilsulfonil)-7-oxabiciclo[2.2.1]hepten-2en-*exo*-óxido, 156b.

Según el procedimiento descrito en el apartado V.5.2., a partir de 315 mg (1.33 mmol) de **155b** se obtuvieron 330 mg de **156b** como un aceite incoloro. Rendimiento: 98%.

Datos de 156b:

 $R_{f} = 0.44$  (hexano:AcOEt, 2:1).

IR (CCl<sub>4</sub>): 2980, 1570, 1210, 860.



<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.63-1.68 (m, 1 H, H-5n o H-5x), 1.73-1.83 (m, 1 H, H-5n o H-5x), 1.85 (td, 1 H, *J*= 10.2, 4.6 Hz, H-6x), 2.55 (dd, 1 H, *J*= 10.2, 6.3 Hz, H-6n), 3.87 (s, 1 H, H-3), 4. 50 (d, 1 H, *J*= 4.4 Hz, H-4), 4.57 (d, 1 H, *J*= 4.6 Hz, H-1), 7.55-7.73 (m, 3 H, 3 Har), 7.93 (dd, 2 H, *J*= 8.4, 1.3 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 25.0, 27.8, 57.6, 71.3, 74.9, 75.3, 128.7, 129.3, 129.4, 134.6.

**Microanálisis**: Calculado para C<sub>12</sub>H<sub>12</sub>O<sub>4</sub>S: C, 57.14; H, 4.76. Encontrado: C, 57.00; H, 4.63.

V.5.5. - Síntesis de *N*-(*t*-butiloxicarbonil)-2-endo-(*p*-toluensulfonil)-7azabiciclo[2.2.1]hept-2-en-*exo*-óxido, 156c.

Según el procedimiento descrito en el apartado V.5.2., a partir de 370 mg (1.06 mmol) de 155c se obtuvieron 360 mg de 156c como un sólido blanco. Rendimiento: 93%.

#### Datos de 156c:

 $R_{f} = 0.25$  (hexano: AcOEt, 4:1). Pf: 148-149°C.

IR (KBr): 3080, 1660, 1580, 1150.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.13 (s, 9 H, 3 CH<sub>3</sub>), 1.51 (ddd, 1 H, J= 7.0, 5.9, 2.8 Hz), 1.83-2.02 (m, 2 H), 2.31-2.40 (m, 1 H), 2.44 (s, 3 H, SO<sub>2</sub>Ph-C<u>H<sub>3</sub></u>), 3.89 (s, 1 H, H-3), 4.17 (d, 1 H, J= 2.8 Hz, H-4), 4.39 (d, 1 H, J= 3.3 Hz, H-1), 7.39 (d, 2 H, J= 5.5 Hz, 2 Har), 7.81 (d, 2 H, J= 5.5 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 21.5, 23.3, 26.8, 27.6, 27.9, 57.7, 58.4, 71.5, 80.1, 128.3, 128.6, 129.7, 129.9, 156.9.

**Microanálisis**: Calculado para C<sub>18</sub>H<sub>23</sub>O<sub>5</sub>NS: C, 59.18; H, 6.30; N, 3.83. Encontrado: C, 59.01; H, 6.22; N, 3.52.

## V.5.6. - Procedimiento general para la reacción de las epoxisulfonas 156a-c con diisopropilamiduro de litio.

<u>Método A</u>: A una disolución de diisopropilamina (5 equivalentes) en éter enfriada a -78°C, se le añadió n-BuLi (5 equivalentes) gota a gota y se agitó durante 20 minutos. Pasado este tiempo, se añadió una disolución de la epoxisulfona de partida **156a-c** (1 equivalente) disuelta en éter (10 ml/mmol de producto de partida excepto para **156c**, 30 ml/mmol **156c**). La disolución amarilla resultante se agitó a -78°C durante 1 hora y, a continuación, se hidrolizó con una disolución acuosa saturada de NaCl y se extrajo con éter. La fase orgánica se secó sobre MgSO<sub>4</sub> y el disolvente se evaporó a presión reducida. La purificación mediante cromatografía en columna permitió obtener los correspodientes productos finales (ver Tabla 4).

<u>Método B</u>: A una disolución de diisopropilamina (5 equivalentes) en éter enfriada a  $-15^{\circ}$ C, se le añadió *n*-BuLi (5 equivalentes), gota a gota y durante 10 minutos. La disolución se agitó durante 20 minutos, pasados los cuales, se añadió la epoxisulfona de partida **156a-c** (1 equivalente) disuelta en éter (10 ml/mmol de producto de partida excepto para **156c**, 30



ml/mmol 3c). Se dejó que la temperatura subiese a 0°C y la reacción se agitó durante 1 hora a esta temperatura. La mezcla de reacción se hidrolizó con con agua y la fase orgánica se extrajo con éter. Tras secar sobre MgSO<sub>4</sub> y eliminar el disolvente a presión reducida, el crudo se sometió a purificación mediante cromatografía en columna para obtener los correspondientes productos finales (ver Tabla 6).

#### V.5.7. - Procedimiento general para la reacción de las epoxisulfonas 156a-c con dietilamiduro de litio.

A una disolución de dietilamina (5 equivalentes) en éter enfriada a -78°C, se le añadió *n*-BuLi (5 equivalentes) gota a gota y se agitó durante 20 minutos. Pasado este tiempo, se añadió una disolución de la epoxisulfona de partida **156a-c** (1 equivalente) disuelta en éter (10 ml/mmol de producto de partida excepto para **156c**, 30 ml/mmol **156c**). La disolución amarilla resultante se agitó a -78°C durante 1 hora y, a continuación, se hidrolizó con una disolución acuosa saturada de NaCl y se extrajo con éter. La fase orgánica se secó sobre MgSO<sub>4</sub> y el disolvente se evaporó a presión reducida. La purificación mediante cromatografía en columna permitió obtener los correspodientes productos finales (ver Tabla 4).

### V.5.8. - Procedimiento general para la reacción de las epoxisulfonas 156a-c con hexametildisilaziduro de litio (LHMDS).

A una disolución de hexametildisilazano (5 equivalentes) en éter (10 ml éter/mmol HMDS) enfriada a 0°C, se le añadió *n*-BuLi (5 equivalentes) gota a gota y se agitó durante 20 minutos. Pasado este tiempo, se añadió una disolución de la epóxisulfona de partida **156a-c** (1 equivalente) disuelta en éter (10 ml/mmol de producto de partida excepto para **156c**, 30 ml/mmol **156c**). La disolución se agitó a 0°C durante 1 hora y, a continuación, se hidrolizó con una disolución acuosa saturada de NaCl y se extrajo con éter. La fase orgánica se secó sobre MgSO<sub>4</sub> y el disolvente se evaporó a presión reducida. La purificación mediante cromatografía en columna permitió obtener los correspodientes productos finales (ver Esquema 65).

V.5.9. - Reacción de la nortriciclanona 153a con diisopropilamiduro de litio.

Según el procedimiento descrito en el apartado V.5.6. (Método A), a partir de 25 mg (0.23 mmol) de **153a** se obtuvieron 12 mg de **142a** como un sólido blanco (47%) y 10 mg de **161a** como un aceite incoloro (26%).

#### V.5.10. - Datos de triciclo[2.2.1.0<sup>2,6</sup>]heptan-3-ol, 142a.

#### Datos de 142a:

 $R_f = 0.36$  (hexano:AcOEt, 2:1). Pf: 111-112°C.

IR (KBr): 3500-3300, 2860, 1120, 970.



<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.06 (td, 1 H, J= 5.1, 1.3 Hz), 1.18 (s, 1 H), 1.21-1.25 (m, 3 H), 1.36 (dd, 1 H, J= 10.8, 1.2 Hz, H-2), 1.60 (s ancho, 1 H, OH), 1.75 (s, 1 H, H-4), 1.78 (d, 1 H, J= 10.8 Hz, H-1), 3.84 (s, 1 H, H-3).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 10.7, 13.7, 16.3, 29.4, 30.7, 35.7, 77.3.

Microanálisis: Calculado para C<sub>7</sub>H<sub>10</sub>O: C, 76.36; H, 9.09. Encontrado: C, 76.31; H, 8.91.

V.5.11. - Datos de 7-oxatriciclo[2.2.1.0<sup>2,6</sup>]heptan-3-exo-ol, 142b.

Datos de 142b:

 $R_f = 0.29$  (hexano:AcOEt, 2:1).

IR (CCl<sub>4</sub>): 3600, 2980, 1210, 1180.

<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.23 (td, 1 H, *J*= 4.1, 1.8 Hz, H-6), 1.38 (dt, 1 H, *J*= 10.7, 1.8 Hz, H-5), 1.45 (t, 1H, *J*= 4.1 Hz, H-2), 2.02 (dd, 1 H, *J*= 10.7, 0.7 Hz, H-5), 2.10-2.19 (m, 1 H, OH), 3.90 (dd, 1 H, *J*= 2.6, 1.9 Hz, H-3), 3.92 (d, 1 H, *J*= 1.9 Hz, H-4), 3.98 (t, 1 H, *J*= 4.1 Hz, H-1).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 11.8, 15.7, 29.1, 55.5, 71.8, 75.5.

Microanálisis: Calculado para C<sub>6</sub>H<sub>8</sub>O<sub>2</sub>: C, 64.28; H, 7.14. Encontrado: C, 64.10; H, 7.09.

#### V.5.12. - Datos de 7-oxatriciclo[2.2.1.0<sup>2,6</sup>]heptan-3-ona, 153b.

Datos de 153b:

 $R_{f} = 0.49$  (hexano:AcOEt, 2:1).

IR (CCl<sub>4</sub>): 2990, 1710, 1210, 1150.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 0.91 (t, 1 H, *J*= 4.1 Hz, H-6), 1.35 (dt, 1 H, *J*= 10.7, 2.2 Hz, H-5), .1.48 (td, 1 H, *J*= 4.1, 1.0 Hz, H-2), 2.27 (dd, 1 H, *J*= 10.7, 0.9 Hz, H-5), 3.93 (dd, 1 H, *J*= 2.2, 0.9 Hz, H-4), 3.95 (t, 1 H, *J*= 4.1 Hz, H-1).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 14.1, 29.5, 32.6, 54.9, 66.6, 216.7.

Microanálisis: Calculado para C<sub>6</sub>H<sub>6</sub>O<sub>2</sub>: C, 65.45; H, 5.45. Encontrado: C, 65.38; H, 5.40.

V.5.13. - Datos de (3-*exo*-hidroxitriciclo[2.2.1.0<sup>2,6</sup>]hept-3-il)propan-2ona, 161a.





Datos de 161a:

 $R_{f} = 0.30$  (hexano:AcOEt, 2:1).

IR (CCl<sub>4</sub>): 3500, 1720, 1470, 1150.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.13 (td, 1 H, *J*= 4.7, 1.0 Hz), 1.21-1.27 (m, 3 H), 1.30 (s, 1 H), 1.47 (dd, 1 H, *J*= 10.1, 1.2 Hz, H-2), 1.75 (s, 1 H, H-4), 2.09 (dd, 1 H, *J*= 10.1, 1.3 Hz, H-1), 2.19 (s, 3 H, CH<sub>3</sub>), 2.72 (d, 2H, *J*=2.5 Hz, C<u>H<sub>2</sub>COCH<sub>3</sub>), 3.43</u> (s ancho, 1 H, OH).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 11.8, 12.7, 19.8, 31.2, 31.4, 31.5, 38.4, 47.1, 82.0, 210.7.

**Microanálisis**: Calculado para C<sub>10</sub>H<sub>14</sub>O<sub>2</sub>: C, 72.29; H, 8.43. Encontrado: C, 72.15; H, 8.30.

**MS** m/z 166 (M<sup>+</sup>)

#### V.5.14. - Datos de 2-exo-hidroxitriciclo[5.2.1.0<sup>2,6</sup>]decan-4-ona, 168.

Datos de **168**:

 $R_{f} = 0.30$  (hexano:AcOEt, 2:1).

IR (CCl<sub>4</sub>): 3600–3350, 1750, 1200, 760.

<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.06-1.27 (m, 4 H), 1.40 (t, 1 H, *J*= 7.0 Hz), 1.58-1.62 (m, 1 H), 1.71 (d, 1 H, *J*= 7.6 Hz, H-6), 2.04 (d, 1 H, *J*= 7.0 Hz), 2.14 (dd, 2 H, *J*= 7.6, 4.4 Hz, 2 H-5), 2.17 (s, 1 H), 2.68 (dd, 2 H, *J*= 7.3, 3.6 Hz, 2 H-3), 3.38 (d, 1 H, *J*= 7.3 Hz, OH).
<sup>1</sup>3C RMN (75 MHz, CDCl<sub>3</sub>): 10.8, 12.9, 23.8, 24.4, 33.4, 34.8, 43.4, 48.1, 79.9, 214.5.

V.5.15. - Datos de (3-*exo*-hidroxitriciclo[2.2.1.0<sup>2,6</sup>]hept-3-il)etanal, 161b.



#### Datos de 161b:

 $R_{f} = 0.32$  (hexano:AcOEt, 2:1).

IR (CCl<sub>4</sub>): 3600, 2780, 1730, 1110.

<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.15-1.33 (m, 4 H), 1.35 (s, 1 H), 1.52 (dd, 1 H, *J*= 10.2, 1.3 Hz, H-2), 1.81 (s, 1 H, H-4), 2.02 (dd, 1 H, *J*= 10.2, 1.2 Hz, H-1), 2.48 (d, 1 H, *J*= 2.9 Hz, OH), 2.70 (d, 2 H, *J*= 1.8 Hz, CH<sub>2</sub>CHO), 9.99 (s, 1 H, CHO).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 11.9, 12.1, 20.2, 31.3, 31.5, 38.8, 48.4, 82.3, 203.1.

Microanálisis: Calculado para C<sub>9</sub>H<sub>12</sub>O<sub>2</sub>: C, 71.05; H, 7.89. Encontrado: C, 70.98; H, 7.83.

## V.5.16. - Datos de (3-*exo*-hidroxi-7-oxatriciclo[2.2.1.0<sup>2,6</sup>]hept-3il)propan-2-ona, 161c.

Datos de 161c:

 $R_{f} = 0.19$  (hexano:AcOEt, 2:1).

**IR** (CCl<sub>4</sub>): 3500, 1710, 1470, 1150.



<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.24-1.26 (m, 2 H, H-2, H-6), 1.41 (dd, 1 H, *J*= 7.2, 1.1 Hz, H-5x), 1.90 (s ancho, 1 H, OH), 2.19 (s, 3 H, CH<sub>3</sub>), 2.29 (d, 1 H, *J*=7.2 Hz, H-5n), 2.81 (sist. AB, 2 H, *J*<sub>AB</sub>= 12.2 Hz, C<u>H</u><sub>2</sub>COCH<sub>3</sub>), 3.75 (d, 1 H, *J*= 1.1 Hz, H-4), 3.83 (s, 1 H, H-1).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 12.8, 18.9, 30.2, 31.1, 45.5, 54.5, 74.3, 81.1, 211.4.

**Microanálisis**: Calculado para C<sub>9</sub>H<sub>12</sub>O<sub>3</sub>: C, 64.28; H, 7.14. Encontrado: C, 64.16; H, 7.03. **MS** *m/z* 169 (M<sup>+</sup>).

V.5.17. - Datos de (3-*exo*-hidroxi-7-oxatriciclo[2.2.1.0<sup>2,6</sup>]hept-3il)etanal, 161d. Datos de 161d:

 $R_{f} = 0.22$  (hexano:AcOEt, 2:1).

IR (CCl<sub>4</sub>): 3600-3300, 1710, 1200, 1180.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.24-1.29 (m, 2 H, H-2, H-6), 1.42 (dd, 1 H, J= 10.7, 2.2 Hz, H-5x), 1.51 (m, 1 H, OH), 2.27 (d, 1 H, J= 10.7 Hz, H-5n), 2.86 (sist. AB, 2 H,  $J_{AB}$ = 18.0 Hz, C<u>H</u><sub>2</sub>CHO), 3.79 (d, 1 H, J= 2.2 Hz, H-4), 3.94 (t, 1 H, J= 4.1 Hz, H-1), 9.98 (s, 1 H, C<u>H</u>O).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 12.9, 19.0, 30.2, 39.7, 47.0, 54.7, 74.4, 205.6.

Microanálisis: Calculado para C<sub>8</sub>H<sub>10</sub>O<sub>3</sub>: C, 62.34; H, 6.49. Encontrado: C, 62.26; H, 6.33.

V.5.18. - Datos de *N*-(*t*-butiloxicarbonil)-3-*exo*-hidroxi-7-azatriciclo [2.2.1.0<sup>2,6</sup>]hept-3-il)propan-2-ona, 161e.

Datos de 161e:

 $R_{f} = 0.24$  (hexano:AcOEt, 2:1).

IR (CCl<sub>4</sub>): 3500, 1730, 1650, 1200.



<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.45 (s, 9 H, 3 CH<sub>3</sub>), 1.57-1.59 (m, 2 H, 2 H-5), 1.99 (d, 1 H, *J*= 7.5 Hz, H-6), 2.19 (s, 3 H, COC<u>H<sub>3</sub></u>), 2.23 (d, 1 H, *J*= 7.5 Hz, H-2), 2.42 (d, 1 H, *J*= 8.6 Hz, C<u>H<sub>2</sub>COCH<sub>3</sub></u>), 2.73 (d, 1 H, *J*= 8.6 Hz, C<u>H<sub>2</sub>COCH<sub>3</sub></u>), 3.54 (m, 1 H, OH), 3.81 (m, 1 H, H-1), 3.91 (m, 1 H, H-4).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 20.3, 28.4, 29.0, 31.3, 34.7, 45.2, 50.9, 60.9, 71.7, 80.0, 155.9, 205.6.

**Microanálisis**: Calculado para C<sub>14</sub>H<sub>21</sub>O<sub>4</sub>N: C, 62.92; H, 7.86; N, 5.24. Encontrado: C, 62.81; H, 7.73; N, 5.15.

V.5.19. - Datos de *N*-(*t*-butiloxicarbonil)-3-*exo*-hidroxi-7-azatriciclo [2.2.1.0<sup>2,6</sup>]hept-3-il)etanal, 161f.

Datos de 161f:

 $R_{f} = 0.21$  (hexano:AcOEt, 2:1).

IR (CCl<sub>4</sub>): 3300, 1730, 1640, 1380.



<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.38 (s, 9 H, 3 CH<sub>3</sub>), 1.50-1.54 (m, 2 H, 2 H-5), 1.92 (d, 1 H, J= 7.0 Hz, H-6), 2.17 (d, 1 H, J= 7.0 Hz, H-2), 2.67 (sist. AB, 2 H,  $J_{AB}$ = 11.2 Hz, CH<sub>2</sub>CHO), 3.48 (m, 1 H, OH), 3.75 (m, 1 H, H-1), 3.85 (m, 1 H, H-4), 9.53 (s, 1 H, CHO).

1<sup>3</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 21.3, 28.7, 31.2, 35.1, 44.2, 48.6, 59.4, 75.2, 80.1, 156.7, 205.1.

**Microanálisis**: Calculado para C<sub>13</sub>H<sub>19</sub>O<sub>4</sub>N: C, 61.66; H, 7.51; N, 5.53. Encontrado: C, 61.60; H, 7.39; N, 5.48.

V.5.20. - Datos de 1,3-bis-(3-*exo*-hidroxitriciclo[2.2.1.0<sup>2,6</sup>]hept-3il)propan-2-ona, 167a.

Datos de 167a:

 $R_{f} = 0.18$  (hexano: AcOEt, 2:1). Pf: 87-88°C.

IR (KBr): 3600-3300, 1710, 1430, 1200.



<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.15 (td, 2 H, *J*= 4.6, 1.2 Hz), 1.20-1.28 (m, 6 H), 1.30 (d, 2 H, *J*= 1.2 Hz), 1.49 (d, 2 H, *J*= 10.0 Hz, 2 H-2), 1.76 (s, 2 H, 2 H-4), 2.07 (d, 2 H, *J*= 10.0 Hz, 2 H-1), 2.73 (d, 4 H, *J*= 2.6 Hz, C<u>H<sub>2</sub>COCH<sub>2</sub></u>), 3.32 (s ancho, 2 H, 2 OH).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 11.9, 12.9, 19.9, 31.3, 31.6, 38.6, 48.0, 82.4, 201.5.

**Microanálisis**: Calculado para C<sub>17</sub>H<sub>22</sub>O<sub>3</sub>: C, 74.45; H, 8.03. Encontrado: C, 74.36; H, 7.93.

V.5.21. - Datos de 1,3-bis-(3-*exo*-hidroxi-7-oxatriciclo[2.2.1.0<sup>2,6</sup>] hept-3-il)propan-2-ona, 167b.

Datos de **167b**:

 $R_f = 0.15$  (hexano:AcOEt, 2:1). IR (CCl<sub>4</sub>): 3500-3200, 1710, 1460, 1180.



<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.22-1.25 (m, 2 H, 2 H-6), 1.41 (dt, 2 H, J= 10.2, 1.7 Hz, 2 H-5x), 1.50 (t, 2 H, J= 4.4 Hz, 2 H-2), 1.63-1.78 (m, 2 H, 2 OH), 2.04 (d, 2 H, J= 10.2 Hz, 2 H-5n), 2.58 (sist. AB, 4 H,  $J_{AB}$ = 15.8 Hz, C<u>H<sub>2</sub>COCH<sub>2</sub></u>), 3.95 (dd, 2 H, J= 4.1, 1.7 Hz, 2 H-4), 3.99 (t, 2 H, J= 4.4 Hz, 2 H-1).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 13.0, 14.2, 15.7, 29.1, 55.6, 71.8, 75.6, 216.4.

**Microanálisis**: Calculado para C<sub>15</sub>H<sub>18</sub>O<sub>5</sub>: C, 64.75; H, 6.47. Encontrado: C, 64.61; H, 6.30.

#### V.5.22. - Reacción de 168 con yoduro de sodio en medio ácido.

A una disolución de **168** (73 mg, 0.44 mmol) en 5 ml de acetona, se añadieron 329 mg (2.20 mmol) de yoduro de sodio y una gota de ácido súlfurico. La mezcla de reacción se agitó a temperatura ambiente durante 3 horas, pasadas las cuales se hidrolizó con agua y disolución acuosa saturada de NaHCO<sub>3</sub>. La fase acuosa se extrajo con CH<sub>2</sub>Cl<sub>2</sub>, las fases orgánicas se secaron sobre MgSO<sub>4</sub> y el disolvente se eliminó a presión reducida. La purificación del crudo de reacción mediante cromatografía en columna (hexano:AcOEt, 8:1) permitió obtener **161a** (39 mg, 53%), **178** (8 mg, 12%) y **179** (34 mg, 26%), todos como aceites incoloros.

Datos de 178:

 $R_{f}$ = 0.50 (hexano:AcOEt, 2:1). IR (CCl<sub>4</sub>): 1700, 1660, 1470, 1150.

CH<sub>2</sub>COCH<sub>3</sub>

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.57 (dt, 2 H, J= 10.2, 1.5 Hz), 1.69-1.71 (m, 1 H), 2.08 (dt, 1 H, J= 10.2, 1.9 Hz), 2.10 (s, 3 H, CH<sub>3</sub>), 2.42 (t, 1 H, J= 3.9 Hz), 2.51 (sist. AB, 2 H,  $J_{AB}$ = 2.2 Hz, CH<sub>2</sub>COCH<sub>3</sub>), 2.76 (dd, 1 H, J= 4.6, 1.5 Hz), 2.82 (m, 1 H), 3.92-3.99 (m, 2 H, H-1, H-4), 6.15 (t, 1 H, J= 2.2 Hz, H-3).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 25.4, 31.1, 36.7, 39.5, 43.2, 47.9, 48.1, 117.5, 165.4, 198.2.

**Microanálisis**: Calculado para C<sub>10</sub>H<sub>14</sub>O: C, 80.00; H, 9.33. Encontrado: C, 79.96; H, 9.25. **MS** *m/z* 149 (M-1).

Datos de 179:

 $R_{f} = 0.19$  (hexano: AcOEt, 2:1).

**IR** (CCl<sub>4</sub>): 3650, 1710, 1470, 1150.



<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.31-1.36 (m, 3 H), 1.53-1.59 (m, 1 H), 1.60 (dt, 1 H, J= 12.2, 4.1 Hz), 2.03 (s, 3 H, CH<sub>3</sub>), 2.07-2.10 (m, 1 H), 2.10 (d, 1 H, J= 3.3 Hz, H-1), 2.29 (sist. AB, 2 H,  $J_{AB}$ = 10.7 Hz, CH<sub>2</sub>COCH<sub>3</sub>), 2.36-2.42 (m, 1 H, OH), 2.54 (dd, 1 H, J= 3.7, 2.3 Hz, H-4), 2.88 (ddd, 1 H, J= 5.9, 3.8, 1.7 Hz, H-2).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 22.5, 28.8, 29.9, 37.3, 38.9, 40.0, 42.2, 49.4, 71.7, 206.5.
 Microanálisis: Calculado para C<sub>10</sub>H<sub>15</sub>O<sub>2</sub>I: C, 40.82; H, 5.10. Encontrado: C, 40.70; H, 5.05.

**MS** *m*/*z* 294 (M<sup>+</sup>)

## V.5.23. - 6-endo-(benciloxi)-2-endo-(fenilsulfonil)-7-oxabiciclo[2.2.1] hept-2-en-exo-óxido, 186.

Según el procedimiento descrito en el apartado V.5.2, a partir de 600 mg (1.75 mmol) de **184** se obtuvieron 577 mg de **186** como un sólido blanco. Rendimiento: 92%.

Datos de 186:

 $R_f = 0.50$  (hexano:AcOEt, 1:1). Pf: 116-117°C. IR (KBr): 3010, 1580, 1310, 1100.



<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.43 (dd, 2 H, J= 12.8, 3.7 Hz, H-5n), 2.20 (ddd, 1 H, J= 12.8, 9.3, 5.9 Hz, H-5x), 3.86 (s, 1 H, H-3), 4.22 (ddd, 1 H, J= 9.3, 4.2, 3.7 Hz, H-6), 4.35 (d, 1 H, J= 5.9 Hz, H-4), 4.69 (d, 1 H, J= 4.2 Hz, H-1), 4.71 (sist. AB, 2 H,  $J_{AB}$ = 12.2 Hz, CH<sub>2</sub>Ph), 7.25-7.34 (m, 5 H, 5 Har), 7.49 (t, 2 H, J= 6.8 Hz, 2 Har), 7.58 (d, 1 H, J= 6.8 Hz, 1 Har), 7.88 (d, 2 H, J= 6.8 Hz, 2 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 32.4, 58.1, 73.3, 74.7, 75.5, 76.5, 80.2, 127.6, 127.9, 128.4, 128.5, 128.8, 133.8, 137.8, 138.5.

## V.5.24. - Reacción de la epoxisulfona 186 con diisopropilamiduro de litio.

Según el procedimiento general descrito en el apartado V.5.6. (Método A), a partir de 280 mg (0.78 mmol) de **186**, disueltos en 10 ml de éter y 2 ml de THF, se obtuvo una mezcla de **188** (5 mg, 3%), **187** (32 mg, 19%) y de **189** (13 mg, 3%), todos como aceites incoloros y recuperándose 25 mg del producto de patida **186** sin reaccionar.

Datos de **188**:

 $R_{f} = 0.34$  (hexano:AcOEt, 2:1).

IR (CCl<sub>4</sub>): 2960, 1710, 1580, 1210.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.51 (m, 1 H, H-6), 1.57 (t, 1 H, J= 3.3 Hz, H-2), 3.51 (dd, 1 H, J= 8.2, 0.8 Hz, H-5), 4.01 (t, 1 H, J= 3.3 Hz, H-1), 4.07 (d, 1 H, J= 8.2 Hz, H-4), 4.56 (sist. AB, 2 H,  $J_{AB}$ = 7.7 Hz, -CH<sub>2</sub>Ph), 7.30-7.34 (m, 5 H, 5 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 15.0, 16.1, 56.9, 65.3, 68.3, 85.0, 126.9, 127.6, 128.5, 128.6, 209.0.

#### Datos de **187**:

 $R_{f} = 0.5$  (hexano:AcOEt, 1:1).

IR (CCl<sub>4</sub>): 3600-3300, 1570, 1220, 1150.

<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.54 (s, 1 H, OH), 1.58 (td, 1 H, J= 2.9, 0.8 Hz, H-2), 1.68 (t, 1 H, J= 2.9 Hz, H-6), 3.77 (s, 1 H, H-5), 3.96 (t, 1 H, J= 2.9 Hz, H-1), 4.05 (t, 1 H, J= 0.8 Hz, H-3), 4.32 (d, 1 H, J= 0.8 Hz, H-4), 4.56 (sist. AB, 2 H,  $J_{AB}$ = 7.6 Hz, -CH<sub>2</sub>Ph), 7.24-7.29 (m, 5 H, 5 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 14.1, 15.7, 56.1, 70.3, 73.2, 84.0, 85.2, 127.9, 128.2, 128.3, 128.5.

Datos de 189:

 $R_f = 0.32$  (hexano:AcOEt, 1:1).

IR (CCl<sub>4</sub>): 3500, 2980, 1720, 1330.



<sup>1</sup>**H RMN** (300 MHz, CDCl<sub>3</sub>): 1.58 (s, 2 H, 2 OH), 1.63 (t, 2 H, J= 3.2 Hz, 2 H-6), 1.78 (t, 2 H, J= 3.2 Hz, 2 H-2), 2.87 (s, 4 H, C<u>H<sub>2</sub>COCH<sub>2</sub></u>), 4.00 (d, 2 H, J= 3.2 Hz, 2 H-1), 4.09 (d, 2 H, J= 1.2 Hz, 2 H-5), 4.33 (d, 2 H, J= 1.2 Hz, 2 H-4), 4.63 (sist. AB, 4 H,  $J_{AB}$ = 7.9 Hz, 2 -CH<sub>2</sub>Ph), 7.30-7.35 (m, 10 H, 10 Har).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 17.6, 21.1, 46.0, 56.9, 61.1, 73.3, 85.0, 85.4, 126.9, 128.0, 128.3, 128.6, 213.9.

#### V.5.25. - Reacción de 201 con diisopropilamiduro de litio.

Según el procedimiento descrito en el apartado V.5.6. (Método A), a partir de 194 mg (0.74 mmol) de **201** se obtuvieron 117 mg (60%) de **203** y 12 mg (15%) de la norbornanona **202**, ambos como sólidos blancos.



Datos de 203:

 $R_{f} = 0.32$  (hexano:AcOEt, 4:1).

**IR** (CCl<sub>4</sub>): 3650, 1710, 1470, 1150.

<sup>1</sup>H RMN (300 MHz, CDCl<sub>3</sub>): 1.31-1.36 (m, 3 H), 1.53-1.59 (m, 1 H), 1.60 (dt, 1 H, J= 12.2, 4.1 Hz), 2.03 (s, 3 H, CH<sub>3</sub>), 2.07-2.10 (m, 1 H), 2.10 (d, 1 H, J= 3.3 Hz, H-1), 2.29 (sist. AB, 2 H,  $J_{AB}$ = 10.7 Hz, CH<sub>2</sub>COCH<sub>3</sub>), 2.36-2.42 (m, 1 H, OH), 2.54 (dd, 1 H, J= 3.7, 2.3 Hz, H-4), 2.88 (ddd, 1 H, J= 5.9, 3.8, 1.7 Hz, H-2).

<sup>13</sup>C RMN (75 MHz, CDCl<sub>3</sub>): 22.5, 28.8, 29.9, 37.3, 38.9, 40.0, 42.2, 49.4, 71.7, 206.5.

**Microanálisis**: Calculado para C<sub>14</sub>H<sub>17</sub>O<sub>2</sub>NS: C, 63.88; H, 6.46; N, 5.32. Encontrado: C, 63.81; H, 6.36; N, 5.19.

**MS** *m*/*z* 263 (M<sup>+</sup>)
APÉNDICE

En este apartado se describe brevemente el trabajo realizado bajo la dirección del profesor Kenneth L. Rinehart en la Universidad de Illinois (Urbana-Champaign, Estados Unidos) durante el período comprendido entre abril y julio de 2000.

## Introducción.

Una de las razones principales del gran interés que despiertan los productos naturales es el de constituir la fuente principal para la búsqueda de nuevos fármacos, así como para la obtención de análogos a partir de ellos que posean una mayor eficacia y/o menor toxicidad.

En especial, la búsqueda de productos naturales a partir de organismos marinos ha sido y continua siendo muy intensa con el fín de encontrar remedio a enfermedades para las cuales, como en el caso del SIDA, no existen tratamientos satisfactorios hasta la fecha.<sup>148</sup>

Una metodología muy extendida consiste en la búsqueda guiada por bioensayos. Esta, unida al empleo de técnicas espectroscópicas, permite la identificación de compuestos que puedan estar presentes en concentraciones muy bajas en el organismo marino y que posean una actividad que los convierte en moléculas potencialmente útiles. Por otra parte, la purificación de estas pequeñas cantidades de material a partr de una matriz compleja, como lo es el extracto crudo de un organismo marino, requiere el empleo de una gran variedad de métodos de separación.

Siguiendo esta estrategia, en el grupo de investigación del profesor K. L. Rinehart se han aislado y caracterizado un gran número de compuestos con elevada actividad antitumoral y antiviral, entre otras. Entre ellos cabe detacar las didemninas<sup>149</sup> y las eictenascidinas.<sup>150</sup>

<sup>148</sup> Faulkner, D. J. Nat. Prod. Rep. 1991, 8, 97.

<sup>&</sup>lt;sup>149</sup> a) Rinehart, K. L.; Gloer, J. B.; Hughes, R. G.; Renis, H. E.; McGroven, J. P.; Swynenberg, E. B.; Strigfellow, D. A.; Kuentzel, S. L.; Li, L. H. *Science* **1981**, *212*, 933. b) Rinehart, K. L.; Kishore, V.; Nagarajan, S.; Lake, R. J.; Gloer, J. B.; Bozich, F. A.; Li, K. -M.; Maleczka, R. E.; Todsen, W. L.; Sullins, D. W.; Munro, M. H. G.; Sakai, R. J. Am. Chem. Soc. **1987**, *109*, 6846. c) Rinehart, K. L.; Kishore, V.; Bible, K. C.; Sakai, R.; Sullins, D. W.; Li, K. -M. J. Nat. Prod. **1988**, *51*, 1.

<sup>&</sup>lt;sup>150</sup> a) Rinehart, K. L.; Holt, T. G.; Fregueau, N.; Keifer, P. A.; Wilson, G. R.; Sakai, R.; Seigler, D. S. J. Nat. Prod. **1990**, 53, 771. b) Rienhart, K. L.; Holt, T. G.; Fregueau, N.; Keifer, P. A.; Li, L. H.; Martin, D. G. J. Org. Chem. **1991**, 56, 1676. c) Sakai, R. PhD Thesis, University of Illinois at Urbana-Champaign, **1991**.

## **Resultados.**

Para el presente trabajo se utilizó una esponja (29-II-98-5-1) recolectada cerca de las costas de Palau en el océano Pacífico.<sup>151</sup> Los ensayos preliminares de citotoxicidad a que fué sometida una muestra de la misma mostraron una gran actividad expresada como porcentaje de inhibición del crecimiento de células de leucemia del tipo L1210.<sup>152</sup>

A continuación, 150 gramos de la misma fueron triturados y homogenizados en una mezcla MeOH:tolueno, 3:1. La adición de una disolución acuosa 1N de NaCl permitió la separación de la mezcla en dos fases, una acuosa y otra orgánica. La fase acuosa se extrajo sucesivamente con tolueno,  $CH_2Cl_2$ , AcOEt y *n*-BuOH (Esquema 85).

<sup>151</sup> Pendiente de clasificación taxonómica.

<sup>&</sup>lt;sup>152</sup> Wilson, G. R. "Procedures for the Quick Estimation of L1210 Citotoxicity". School of Chemical Sciences, UIUC, **1991**.



Esquema 85

Las fracciones obtenidas fueron sometidas a ensayos de bioactividad, mostrándose los resultados en la Tabla 7. De acuerdo con estos datos, la actividad citotóxica se concentra principalmente en las fracciones menos polares (tolueno, CH<sub>2</sub>Cl<sub>2</sub> y AcOEt).

|            | % Actvidad citotóxica en función de la concentración de muestra <sup>a</sup> |           |          |          |
|------------|------------------------------------------------------------------------------|-----------|----------|----------|
| Fracción   | 250 μg/ml                                                                    | 125 µg/ml | 50 µg/ml | 25 µg/ml |
| tolueno    | 100                                                                          | 100       | 100      | 100      |
| $CH_2Cl_2$ | 100                                                                          | 100       | 100      | 100      |
| AcOEt      | 99                                                                           | 98        | 98       | 90       |
| n-BuOH     | 40                                                                           | 30        | 0        | 0        |
| acuosa     | 20                                                                           | 0         | 0        | 0        |

Tabla 7. Ensayos de citotoxicidad sobre las fracciones obtenidas a partir del extracto marino.

<sup>a</sup>Citotoxicidad expresada como el porcentaje de inhibición del crecimiento en células de leucemia del tipo L1210.

A continuación, se procedió al aislamiento y purificación de los compuestos presentes en las fracciones que mostraron una actividad significativa. Los pasos seguidos en este sentido quedan recogidos en el Esquema 86. Así, el empleo conjunto de técnicas cromatográficas (en gel de sílice o C-18) unido a una etapa final de purificación mediante cromatografía líquida de alta presión (HPLC), permitieron el aislamiento de cuatro compuestos (**A-D**).



En la Tabla 8 se recogen los resultados de los ensayos de citotoxicidad efectuados sobre los compuestos **A-D**.

Tabla 8. Ensayos de citotoxicidad sobre los compuestos A-D.

|           | % Actvidad citotóxica en función de la concentración de compuesto <sup>a</sup> |          |          |  |
|-----------|--------------------------------------------------------------------------------|----------|----------|--|
| Compuesto | 50 μg/ml                                                                       | 25 μg/ml | 10 µg/ml |  |
| A         | 100                                                                            | 100      | 80       |  |
| В         | 100                                                                            | 100      | 100      |  |
| С         | 100                                                                            | 99       | 70       |  |
| D         | 100                                                                            | 100      | 100      |  |

<sup>a</sup>Citotoxicidad expresada como el porcentaje de inhibición del crecimiento en células de leucemia del tipo L1210.

Para la determinación estructural de los compuestos previamente aislados se emplearon técnicas de resonancia magnética nuclear (de protón, carbono-13, bidimensionales, etc.) y de espectrometría de masas (FAB, ESI) de alta (HR) y baja (LR) resolución.

De este modo se identificaron los compuestos **B** y **C** como 2-bromoaldisina y aldisina, respectivamente (Esquema 87). Estos compuestos se aislaron con anterioridad a partir de una esponja del género *Pseudaxinyssa Cantharella*, recolectada en aguas cercanas a Nueva Caledonia.<sup>153</sup> Los datos espectroscópicos recogidos para **B** y **C** coinciden con los obtenidos por nosotros.

Compuesto B



Q



Compuesto C

2-bromoaldisina

aldisina

Esquema 87

Debido a la complejidad de las estructuras **A** y **D**, unido a la poca masa disponible, no ha sido posible la identificación total de estos compuestos. Este trabajo continua desarrollándose en el grupo de investigación del profesor K. L. Rinehart.

<sup>153</sup> a) De Nanteuil, G.; Ahond, A.; Guilhem, J.; Poupat, C.; Huu Dau, E. T.; Potier, P.; Pusset, M.; Pusset, J.; Laboute, P. *Tetrahedron* 1985, 41, 6019. b) Latypov, S.; Fernández, R.; Quiñoá, E.; Riguera, R. *Tetrahedron* 1995, 51, 1301.

**COLECCIÓN DE ESPECTROS** 

•

.















































.






















## Análisis de los productos obtenidos por reacción de la epoxisulfona 156a con LDA mediante cromatografía de gases acoplada a espectrometría de masas (GC-MS).











BIBLIOTECA