NAHUAL: A Next-Generation Near Infrared Spectrograph for the GTC

E. L. Martín,1 E. Guenther,2 C. del Burgo,3,4 F. Rodler,5 C. Álvarez,5 C. Baffa,6 V. J. S. Béjar,5 J. A. Caballero,7 R. Deshpande,8 P. Esparza,9 M. López Morales,10 A. Moitinho,11 D. Montes,7 M. M. Montgomery,8 E. Pallé,5 R. Tata,8 L. Valdivielso,5 and M. R. Zapatero Osorio1

Abstract. The extension of the highly successful Doppler technique into the near-infrared (0.9-2.5 μm) is opening new parameter domains for extra-solar planet searches in terms of ages and masses of the primary stars. Here we present the current status of NAHUAL, a next generation near-infrared spectrograph for the 10.4-meter Gran Telescopio Canarias (GTC). Among its observing modes, it includes a hyper-stable high-resolution capability aimed at high-precision Doppler measurements of cool stars in the near-infrared. The sticky question of the best wavelength calibration for the near-infrared is addressed in the last section of this paper.

1. Rationale

In less than two decades, more than 400 exoplanets and hundreds of brown dwarfs (BDs) and planetary mass objects (3-13 Jupiter mass free floating objects) have been identified. In addition, we have witnessed a revolution in the field of debris disk studies. Indeed extended surveys have identified about 300 stars that harbor debris dust, shedding light into the frequency of planetesimal formation (the building blocks of planets) and allowing the characterization of extra-solar planetesimal belts. Although a very interesting picture of this rich zoology is emerging, several important questions remain to be answered,

1Centro de Astrobiología (CAB-CSIC), Ctra. Ajalvir km. 4, Torrejón de Ardoz, Madrid, Spain
2Thuringer Landessternwarte, Tautenburg, Germany
3School of Cosmic Physics, Dublin Institute of Advance Studies, Ireland
4UNINOVA-CA3, Campus da Caparica, Caparica, Portugal
5Instituto de Astrofísica de Canarias, La Laguna, Spain
6Arcetri Observatory, Firenze, Italy
7Universidad Complutense de Madrid, Spain
8University of Central Florida, Physics Dept., Orlando, FL, USA
9Universidad de La Laguna, Facultad de Química Inorgánica, La Laguna, Spain
10Carnegie Institution, Washington D.C., USA
11Fac. de Ciencias, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa, Portugal
for example: What is the diversity of planetary systems, including long period planets (beyond the reach of radial velocity (RV) and transit surveys) and exotic systems? What is their dynamical evolution? What are the properties of exoplanets (orbits, masses and atmospheric properties)? What are the frequencies and properties of planetesimal belts and what are the implications for the frequency of terrestrial planet formation, for the habitability of the planetary systems and for water delivery into the terrestrial planet region? How common are Earth-like planets?

These, and other related questions, are of critical importance from an astrobiological point of view because they can help us place the evolution of the Solar System and the establishment of basic habitability conditions on at least one of its planets, the Earth, into perspective. Studies of extrasolar planets have revealed an astonishing diversity of masses, semi-major axes and eccentricities, from the short period hot Jupiters, to planets in very elongated orbits, to planetary systems with multiple Jupiter-mass planets, to the super Earth mass planets with orbital periods of a few days (Butler et al. 2006; Udry & Santos 2007). According to a recent report from the ExoPlanet Task Force (ExoPTF), organized jointly by the National Science Foundation and NASA (http://www.nsf.gov/mps/ast/exoptf.jsp), planet studies in the next decade must address three compelling questions: (1) What are the characteristics of Earth-mass/Earth-size planets in the habitable zone around nearby, bright stars? (2) What is the architecture of planetary systems? And (3), how do planets and planetary systems form? ExoPTF recommends that the near-term highest priority be given to improving RV precision and providing more telescope time to intensify RV studies with the goal of detecting (several) Earth mass planets around bright stars.

Very recently, a new population of low-mass planets in the Uranus to sub-Neptune mass range (5-21 Earth masses) with orbital periods of a few days, called super Earth mass planets, has been detected by the RV surveys (Mayor et al. 2009). The precision of these surveys has improved from 3-10 m/s before \(\sim 2003 \) to \(\sim 1 \) m/s afterwards. So far, a total of \(\sim 20 \) such planets have been announced among \(\sim 200 \) bright stars searched for super Earth mass planets, mostly using state-of-the-art high-resolution cross-dispersed echelle optical spectrographs such as HARPS at the ESO 3.6-m telescope and HIRES at the 10-m W. M. Keck Observatory. These discoveries usually require \(\sim 30-100 \) observations with \(\sim 1 \) m/s precision, since their velocity amplitudes are extremely small (a few m/s).

Although the sample of super Earths is still scarce, the observed properties show different trends with respect to the known giant planets. Unlike the giant planets, whose frequency scales as the square of the host-star metallicity (Gonzalez 2006), the super Earth frequency seems to weakly depend on the host-star metallicity. Also, the 3-day orbital period pile up observed for giant planets (Marcy et al. 2005) does not appear to be present for super Earths. These early results indicate that they may belong to a new planet population whose formation and evolution may be very different from that of the giant planets. For instance, they may be formed without accumulating a substantial amount of gaseous material, unlike the gas giant planets. In other words, they may be terrestrial rocky planets. Their lower masses may make them less capable of opening up gaps in protoplanetary disks, so they may have undergone a very
different migration history than the gas giants, and some may have been formed in-situ.

Most (>80%) of the nearby stars and brown dwarfs are significantly cooler and less massive than the Sun. They have spectral types M, L, and T, corresponding to effective temperatures in their photospheres ranging from 3800 to 600K (“ultra-cool dwarfs”). They are very faint at optical wavelengths because the bulk of their luminosity is emitted at infrared wavelengths. Current strategies to search for exoplanets are focused in the optical wavelength domain, but it is very inefficient to observe ultra-cool dwarfs in the optical. As a consequence, exoplanet searches around ultra-cool dwarfs are limited to a small number of targets due to the large amount of telescope time needed to observe them.

A new generation of high-resolution near-infrared spectrographs capable of extending accurate Doppler measurements from the optical into the near-infrared (NIR) domain is currently under study (Martin et al. 2005; Oliva et al. 2004; Ramsey et al. 2008). To detect rocky planets in the habitable region around M dwarfs, the required RV precision is about 1 m/s, whereas it will take a precision of 10 cm/s to reach a similar science goal around G-type stars. GIANO for the Telescopio Nazionale Galileo in La Palma is the most advanced project (Oliva et al. 2004). It is a cross-dispersed echelle spectrograph providing a spectral resolution up to 46,000 and a very high spectral stability to measure RV with an accuracy of few m/s (better than 10 m/s). A reference spectrograph with very-high accuracy in the visible range is HARPS at the ESO 3.6-m telescope in La Silla, having a measured short-term stability of 0.2 m/s during one night, and a long-term stability of ∼1 m/s, these values being the present limit of standard technologies. Despite of the fact that HARPS only has one highly specialized observing mode, it is one of the most demanded instruments at ESO.

Infrared RV monitoring has been carried out for intrinsically red objects such as pre-main sequence stars, red giants, very low-mass stars and brown dwarfs. For example, Huélamo et al. (2008) used VLT/CRIRES to monitor TW Hya for 6 nights and reported an rms dispersion of 35 m/s, which did not confirm the presence of a short-period giant planet around this young star. CRIRES has also been used to follow a red giant for 5 hours with a RV accuracy of 20 m/s (Seifahrt & Käufl 2008) and some nearby late-M dwarfs during 6 months with an accuracy of 5 m/s (Bean et al. 2010). IRTF/CSHELL has been used to obtain RV measurements for a sample of young stars and reached a precision of 100 m/s (Prato et al. 2008). Gemini-South/PHOENIX was utilized during 5 nights to monitor a sample of L dwarfs and obtain rms dispersion of 300 m/s (Blake et al. 2007). Using Keck/NIRSPEC, Martin et al. (2006) obtained a dispersion of 110 m/s for the dM8 vB10 over 1 hour, and a dispersion of 360 m/s for the bdM9.5 LP944-20 over 6 nights. The same instrumental setup was used by Zapatero Osorio et al. (2007) to infer an rms dispersion of 500 m/s for a T4.5 dwarf over several days; and by the same team (Zapatero Osorio et al. 2009) to report a dispersion of 300 m/s for vB10 over seven years. The latter paper hinted at RV variability in VB10 in accordance with astrometric observations that indicated the presence of a giant planet around this star (Pravdo & Shaklan 2009), and make use of PHOENIX models that have provided good fits to T dwarf NIRSPEC spectra (del Burgo et al. 2009). However, a revisit of that data using deconvolution techniques has not confirmed the RV variability of VB10.
and does not support the presence of a giant planet around it (F. Rodler et al., in preparation).

All of the previous work has made use of spectrographs that are not stabilized and do not have specific tools for high-precision RV calibrations. It has been demonstrated by those authors that calibrations using telluric absorption lines and/or ThAr emission arcs can provide an accuracy down to 20 m/s and perhaps even 10 m/s. To improve this level of precision, the use of gas cells has been proposed (Martin et al. 2005; Mahadevan & Ge 2009) and is starting to be implemented (Ramsey et al. 2008; Bean et al. 2010). However, there are many issues involved in the future development of a new generation of high-precision near-infrared spectrographs that can yield accurate RV measurements that are comparable to the state-of-the-art in the optical. In the next section we will mention of some those issues and in the rest of the paper we will deal with the two main wavelength calibration options.

2. Current Status of NAHUAL

In September 2008, the fifth NAHUAL science meeting\(^1\) was held in the dream Island of Fuerteventura, and the following optimal spectrograph for accurate NIR RV work was defined:

- Hyper-stabilization in pressure and temperature. No moving parts. The main problem with this requirement is to stabilize the spectrograph when operating at cryogenic temperatures.

- High quality detector with cosmetics, read-out noise and dark current comparable with CCDs.

- Accurate and simultaneous wavelength calibration. Probably more than one method should be used in the near-infrared. In the optical regime, two different wavelength reference systems are used: ThAr and an absorption cell. More recently the laser-comb method (Murphy et al. 2007) has been investigated in the laboratory but it has not been fully implemented yet for RV surveys. Moreover, it has been proven to work only in a narrow wavelength range.

- High enough spectral resolution to resolve the spectral lines; simulations indicated that a resolving power of at least 60,000 would be adequate for late-M dwarfs, and broad spectral coverage to maximize the amount of Doppler information in each spectrum.

- Homogeneous illumination of the spectrograph entrance. With HARPS image scrambling is used for this purpose. The image scrambler contains one optical system to transform the light at the exit of the optical fibre into parallel light, and another system that the re-injects the light into a second fibre. At the exit of the second fibre there is another optical system that changes the f-ratio to the one of the spectrograph.

\(^1\)http://www.ucm.es/info/Astrof/nahual/index.html
In January 2010, a one year contract was signed between the NAHUAL team and Grantecan. The latter institution has provided funding for a one year conceptual design study. This concept will include the high-resolution hyper-stable mode, which will be fiber-fed. It will also include a mid-resolution multi-object mode (resolving power between 10,000 and 20,000). The cost envelope for the whole instrument is estimated at 6 million euros and the GTC would be accepting it by 2016.

3. What Wavelength Calibration in the Near-Infrared?

The main difference between the two currently used main wavelength calibration modes is that the spectral lines of the gas absorption cell are superimposed onto the spectrum of the star, whereas in the ThAr-method there are two beams: one containing the spectrum of the star, the other the calibration lamp. The ThAr-method works only if the internal variation of the shift between the two spectra is smaller than the desired accuracy of the RV-measurements. The mechanical requirements and the optical design of both systems are thus quite different.

In all cases the RV-accuracy that can be reached in the IR also depends on the quality of the IR detectors and the optical design of the spectrograph. Experiments have shown that a regular pattern on detector (like even-odd effect) has strong effects on accuracy. The optical design has to be made in such a way that the astrometric distortions can be calibrated with as high as possible a number of references lines.

In order to minimise the shift of the two spectra in the case of the ThAr-method, the light of the star and the light of the calibration lamp are fed into the spectrograph via fibres. In order to avoid that tracking errors of the telescope induce shifts of the spectra, instruments like HARPS use double image scramblers in addition to fibres. We will discuss these devices in more detail below.

A second disadvantage is that in principle two fibres are required: one for the starlight, a second for the ThAr lamp. Thus, the orders have to be sufficiently well separated, which requires a large dispersion of the cross-disperser, and the format of the detector has to be wide enough.

A third important issue is the number of spectral lines per wavelength interval. RV-measurements are essentially determinations of the position of lines on the detector. This means that it is possible to measure the “astrometric” distortion on the detector with sufficient accuracy if the number of lines available is sufficiently high. The atlas of Kerber et al. (2008) lists about 1500 ThAr-lines in the near-infrared domain. This number sets a strong constraint on the optical design. It is required to calibrate the distortions to an accuracy that the wavelength calibration has an error of the order of 1 m/s or less.

A fourth issue are aging effects of the ThAr-lamps. It is well known that the relative intensities of the ThAr-lines change with time. In the case of blended lines, this results in wavelength shifts. It is thus required to calibrate the lamp that is being used against some wavelength reference that is known to be constant. In the case of HARPS several lamps are used that are calibrated against each other. The key point is that the Argon lines are less variable than the Thorium lines. Another issue is the cross-talk between the fibres. In the case of
HARPS, the stability is so good that the simultaneous wavelength calibration is actually not used during the night; ThAr-spectra are only taken at the beginning and at the end of the night. In this way the problem of the cross-talk of the fibres is avoided. In the infrared the cross-talk is certainly smaller.

Summary of pros and cons of the ThAr-method:

• Pro: 1 m/s, even 0.3 m/s, stability demonstrated with HARPS.
• Con: Needs at least two fibres (star and calibration, separately).
• Con: Needs image scramblers.
• Con: Age effect of lamps.
• Con: Needs very high stability because calibration and star-light are in different fibres.
• Con: Sufficient number of lines is required in the wavelength range of operation.

For the ThAr-method, we require an optical system that works efficiently in the Y, J, and H bands. Estimating the efficiency of the scramblers is very difficult. In the case of the optical spectrograph SOFIE, there are two modes: one with scrambler and one without. The difference in efficiency between these modes is a factor of 2.40±0.02. Since both modes have a 3 arcsec entrance aperture, we may estimate the efficiency of the scrambler to be 42%. A similar figure is also estimated for HARPS. However, in order to obtain a better estimate of the efficiency of an image-scrambler in the IR, a test model is required. More details can be found in Queloz et al. (1999).

For the absorption cell method, in the optical regime, an iodine cell is used. Iodine produces a very dense grid of lines in the wavelength regime between 500 and about 620 nm. For higher temperatures of the cell, the lines extend further into the red but even with a cell temperature of 200 K, the lines only extend up to about 900 nm. The RV shift is obtained by modelling the observed spectrum of the star together with the superimposed forest of absorption lines. Very high-resolution spectra of the iodine cell and of the star are convolved with the PSF of the spectrograph. The latter determined iteratively during the process. In the model, the RV of the star and the instrumental shift are free parameters that are determined when the observed spectrum is modelled. In the optical regime, the very high-resolution spectrum of the star is usually obtained by de-convolving a spectrum of that star taken without the cell. Because the instrumental shift is obtained in the same beam as the starlight, the constraints on mechanical stability are much lower. Since the iodine cells are unsuitable in the infrared, it is required to use a different gas. Laboratory development of gas cells by our team will be presented elsewhere (L. Valdivielso et al., in preparation).

The pros and cons of the absorption cell method are summarized below:

• Pro: Only one fibre needed.
• Pro: No strict need for image scramblers, although they might be helpful.
• Pro: No known aging effect.
• Pro: No need of very high mechanical stability.
• Con: Gases, which produce a dense grid of lines, are needed.
• Con: Superposition of lines makes it difficult to use the spectrum for other purposes than RV.
• Con: Throughput loss because of cell continuum absorption.
• Con: Precision better than 1 m/s not demonstrated.

To summarize, our current understanding of this problem indicates that the ThAr method could work in the Y and J-bands, while the cell absorption method could be preferable in the H and K-bands because of the insufficient density of ThAr lines at those longer wavelengths. These studies are of interest not only for NAHUAL but also for other similar projects, such as CARMENES (Quirrenbach et al. 2009). Hence, we are considering the possibility of setting up a testbed for comparison of different calibration methods in the near future. Simulations of the RV precision indicate that for late-M dwarfs (e.g., Rodler et al. (2010)) there is significant Doppler information in all the near-infrared bands, and thus calibration methods for all of them should be pursued.

Acknowledgments. This work has been supported by the Spanish Ministerio de Educación y Ciencia through grant AYA2007-67458 and by the Portuguese FCT grant PTDC/CTE-AST/68444/2006.

References
Gonzalez, G. 2006 PASP, 118, 849, 1494
Martín, E. L. et al. 2005, AN, 326, 1015
Oliva, E., Origlia, L., Maiolino, R., & Gennari, S. 2004, in Ground-based Instrumentation for Astronomy SPIE, 5492, 1274
Queloz, D., Casse, M. & Mayor, M. 1999, ASC, 185, 13
Rodler, F. et al. 2010, this volume
Udry, S. & Santos, ARA&A, 45, 397