

	COLISIONES Ión – Ión (2)	
	t_s Tiempo de frenado: $- < \Delta v_{\parallel} > t_s = v_t$	
	Donde $<\Delta v_{\parallel}>$ es el cambio medio de velocidad de las partícula test por segundo.	S
•	Las partículas test se difunden si son mucho menos masivas que las de campo y reducen su momento con poc cambio de energía.	0
•	El tiempo de frenado es el tiempo (rms) requerido para una deflexión de 90º	
•	Si las partículas test son mucho más pesadas que las de campo, el frenado representa una pérdida de energía cinética y	
	$t_s = -v_t/(dv/dt)$	8

COLISIONESIón – Ión (4)El ángulo entre las asíntotas de la
órbita es 90° (deflexión 90°) si el
parámetro de impacto es igual a:
$$p_o = \frac{Z_t Z_f e^2}{m_t v_t^2}$$
• A esa distancia la energía potencial
es el doble de la energía cinética: $E_p = 2 Ec$ • Para tal encuentro $\Delta v_{\parallel} = v_t$ • El intervalo de tiempo
medio por partícula test
entre encuentros a menor
distancia
 $p < p_o$ es: $t_s = \frac{1}{n_f v_t \pi p_o^2} = \frac{m_t^2 v_t^3}{\pi n_f Z_t^2 Z_f^2 e^4}$ Para electrones con protones en el MI,
(Ne, T)=(1 cm⁻³, 10⁴ K), el tiempo de frenado $t_s(e, p) = t_s/100$

COLISIONESÁtomo – Átomo (1)•Estas interacciones son muy débiles ya que la nube de
electrones se solapa.
•Se comportan como esferas duras, de forma que la
sección eficaz de colisión:

$$\sigma_{nn} \approx \pi (r_1^2 + r_2^2) \rightarrow (r_{atomo} \sim 1\overline{A}) \rightarrow \sigma_{nn} \approx 10^{-15} cm^2$$
Donde r_1 y r_2 son los radios de los átomos que colisionan.El ritmo de colisiones está determinado por esta sección eficaz.El recorrido libre medio:
 $l_c \approx (n_A \sigma_{nn})^{-1} \approx \frac{10^{15}}{n_H} cm$ Siendo n_A la densidad (en número) media de átomos.

COLISI	ONE	ES L	Áton	no – Át	tomo	(2)		
•La <u>velocidad at</u> de un gas a te	<u>tómica n</u> mperatu	nedia Ira T:	$\frac{3}{2}$	$m_n v^2 =$	$k \ T$			
•El <u>tiempo de vi</u>	ida med	io:						
${1\over au_{nn}}pprox{v\over l_c}pprox$	$\left(\frac{2\ k\ 7}{3\ m_n}\right)$	$\left(\frac{1}{2}\right)^{1/2} n_n$	$\sigma_{nn} =$	7×10^{-12}	$n_{nn} T^{1/2}$	$^{\prime 2} s^{-1}$		
$ au_{nn}~=~4.5 imes 10^3~n^{-1}~T^{-1/2}~$ años								
La densidad es la magnitud importante (no la T)								
• <u>Ejemplos</u> :					1			
	n_{nn}	T(K)	$ au_{nn}$					
	1	80	500	años				
	10^{4}	10	1.7	meses				
	1	10^{4}	45	años		14		

COLISIONESIón – Átomo (3)Como la densidad de iones y átomos
es, en general, diferente no
podemos decir como en el caso de
colisiones entre átomos:
$$1/\tau_{ni} \approx v/l_v \approx v n_? \sigma_{ni}$$
Se deja fuera el término de densidad y se calcula un
coeficiente que describe el ritmo de colisiones $1/\tau_{ni} \approx v/l_v \approx v n_? \sigma_{ni}$ $k = \langle \sigma v \rangle = \pi Z e \left(\frac{2 \alpha}{\mu}\right)^{1/2} \approx 2 \times 10^{-9} cm^{+3} s^{-1}$
(k independiente de v)Ritmo por unidad de volumen: $n_i n_n < \sigma_{ni} v > cm^{-3} s^{-1}$

COLISIONES Ión – Átomo (4)
El valor obtenido para k es similar para la mayoría de las reacciones ión-átomo exotérmicas como por ejemplo:	
Reacción química entre ión-átomo: $CH^+ + H_2 \rightarrow CH_2^+ + H_2$	H
Reacción de intercambio de carga: $O^+ + H \rightarrow O + H^+$	
Ejemplos: > ión-átomo $n_i = n_n = 1 \rightarrow 2 \times 10^{-9} \ cm^{-3} \ s^{-1}$ > átomo-átomo $\tau_{nn} = 500$ años $(n_n = 1; T = 80K)$ $\rightarrow 6.3 \times 10^{-11} \ s^{-1}$ $\rightarrow 6.3 \times 10^{-11} \ cm^{-3} \ s^{-1}$ en una caja de $1 \ cm^{-3}$.	
En este caso las reacciones ión-átomo son más frecuentes que las átomo-átomo en un factor 30.	8

Ecuación de Boltzmann (2)Fracción de los átomos
$$X^{(r)}$$
 excitados en el nivel j: $\frac{n_j^*(X^{(r)})}{n^*(X^{(r)})} = \left(\frac{g_{rj} e^{-E_{rj}/kT}}{\sum_k g_{rk} e^{-E_{rk}/kT}}\right)$ Distribución de los átomos o
iones en los diferentes niveles: $\frac{n_j^*(X^{(r)})}{n^*(X^{(r)})} = \frac{g_{rj}}{f_r} e^{-E_{rj}/kT}$ Función de partición para el ión $X^{(r)}$ $f_r = \sum_k g_{rk} e^{-E_{rk}/kT}$

 $\begin{aligned} & \frac{n^*(X^{(r+1)}) n_e}{n^*(X^{(r)})} = \frac{f_{r+1} f_e}{f_r} \\ & f_e = 2\left(\frac{2\pi m_e k T}{h^2}\right)^{3/2} = 4.829 \times 10^{15} T^{3/2} \\ & \text{Diferentes niveles de ionización en equilibrio termodinámico.} \end{aligned}$ Si se aproximan las funciones de partición por los primeros términos: $\frac{n^*(X^{(r+1)}) n_e}{n^*(X^{(r)})} = \frac{2 g_{r+1,1}}{g_{r,1}} \left(\frac{2\pi m_e k T}{h^2}\right)^{3/2} e^{-\phi_r/kT} \\ & \text{Energía necesaria para ionizar } X^{(r)} \\ & \text{desde el estado fundamental (j=1)} \qquad \phi_r = E_{r+1,1} - E_{r,1} \end{aligned}$

Algunas propiedades importantes del LTE (1)					
•Balance detallado:					
Núm. Transiciones j <- k = Núm. Transiciones k <- j					
 No hay cambio neto en la distribución de poblaciones Se puede expresar la probabilidad de transición de un nivel a otro en términos de la transición contraria. 					
• <u>Equivalencia LTE y ETE</u> con b _j =1 ó b _j / b _k =1					
•LTE es sólo una aproximación que vale bajo ciertas circunstancias.					
 Facilita los cálculos pero es peligrosa. La intensidad de la radiación no es como la de un BB (función de Planck) como en el caso de TE auténtico. Generalmente más débil que la indicada por la función de Planck ya que no todos los niveles están poblados. 					

 $\begin{array}{l} \text{Deficientes de Einstein} \\ \text{ELACIÓN ENTRE LOS DEFINITES DE EINSTEIN} \\ \hline \\ n_n &= \frac{g_l}{g_n} exp(h \, \nu_o / kT) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{bmatrix} = \frac{A_{nl} / B_{nl}}{(g_l \, B_{ln} / g_n \, B_{nl}) \, e^{(h \, \nu_o / kT)} - 1} \\ \text{Si} \quad J_\nu = B_\nu \quad \text{y B varía lentamente con la frecuencia (TE).} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{bmatrix} = \int_0^\infty \phi_\nu \, J_\nu \, d\nu = B_\nu \\ \text{Recuérdese} \quad \left(\int_0^\infty \phi_\nu \, d\nu = 1\right) \end{cases}$

ECUACIÓN DE TRANSPORTE RADIATIVO

$$\begin{split} I_{\nu}(\tau_{\nu}) &= I_{\nu}(0) \ e^{-\tau_{\nu}} + S_{\nu} \ (1 - e^{-\tau_{\nu}}) = S_{\nu} + e^{-\tau_{\nu}} \ (I_{\nu}(0) - S_{\nu}) \\ \text{Límite ópticamente delgado} & \begin{matrix} \tau \to \infty \\ \tau \to 0 \end{matrix} \Rightarrow \begin{matrix} I_{\nu} \to S_{\nu} \\ I_{\nu}(\tau_{\nu}) \to \\ I_{\nu}(0) + S_{\nu} \tau_{\nu} \end{matrix} \end{split}$$
Donde hemos usado la aproximación: $(e^{-x} \simeq 1 - x \text{ para } x \text{ pequeños})$ $\begin{matrix} \text{Si sólo hay emisión espontánea} \to \text{la intensidad aumenta con } \int j_{\nu} ds$ es decir linealmente. Si sólo hay absorción \Rightarrow la intensidad disminuye exponencialmente a) Si el espesor óptico grande, su valor no importa $I_{\nu} \to S_{\nu}$ b) Si es pequeño $(e^{-\tau} \to 1 - \tau)$ el comportamiento exponencial se convierte en lineal 51

ECUACIÓN DE TRANSPORTE RADIATIVO

• Si el medio <u>no</u> es <u>isotermo</u> y $T = T(\tau)$ la integración es más complicada.

Usando la temperatura $I_{
u}=B_{
u}(T_b)=rac{2\ h\
u^3}{c^2}\ [e^{h
u/kT_b}-1]^{-1}$

- La ecuación de transporte radiativo como propagación de Tb en el régimen de Rayleight-Jeans (R-J, $h\nu$ << kT).

$$I_{\nu}^{RJ}(T) = \frac{2 \nu^2}{c^2} k T \quad \Rightarrow \quad T_b = T_b(0) e^{-\tau_{\nu}} + T (1 - e^{-\tau_{\nu}})$$

- En este régimen $I \propto Tb$.
- Nótese que Tb no depende de la frecuencia para un cuerpo negro ya que $\tau \to \infty$ y Tb es la temperatura real del material.

53

COEFICIENTES DE EINSTEIN Y TRANSPORTE RADIATIVO

Transporte radiativo en términos de los coeficientes de Einstein

$$\frac{dI_{\nu}}{ds} = -\alpha_{\nu} I_{\nu} + j_{\nu}$$

$$\frac{dI_{\nu}}{ds} = -\frac{h \nu}{4 \pi} (n_l B_{ln} - n_n B_{nl}) \phi(\nu) I_{\nu} + \frac{h \nu}{4 \pi} n_n A_{nl} \phi(\nu)$$

·Recordando la definición de la función fuente

$$S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}} \quad \rightarrow \quad S_{\nu} = \frac{n_n A_{nl}}{n_l B_{ln} - n_n B_{nl}}$$

55

$\begin{aligned} \text{COEFICIENTES DE EINSTEIN Y TRANSPORTE RADIATIVO} \\ \text{Insporte radiativo en términos} \\ \text{de los coeficientes de Einstein} \\ \text{Iso relaciones de Einstein ligan los coeficientes:} \\ g_l B_{ln} &= g_n B_{nl} \qquad A_{nl} = \frac{2 h \nu^3}{c^2} B_{nl} \\ \text{Conociendo uno de ellos determinamos los otros dos.} \\ \text{Source a servibir:} \\ \alpha_{\nu} &= \frac{h \nu}{4 \pi} n_l B_{ln} \left(1 - \frac{g_l n_n}{g_n n_l}\right) \phi(\nu) \\ &\qquad S_{\nu} &= \frac{2 h \nu^3}{c^2} \left(\frac{g_n n_l}{g_l n_n} - 1\right)^{-1} \end{aligned}$

Transporte radiativo en términos de los coeficientes de Einstein

Ejemplos:

(a) LTE
$$(n_l/n_n) = (g_l/g_n) exp[(-h \nu_{nl})/kT]$$
 aplicable.
 $\alpha_{\nu} = \frac{h \nu}{4 \pi} n_l B_{ln} \left[1 - e^{(-h \nu_{nl})/kT}\right] \phi(\nu)$

Para determinar el coeficiente de absorción sólo necesitamos conocer un coeficiente de Einstein, el perfil de la línea y la temperatura.

Se cumple la ley de Kirchoff

$$S_{\nu} = \frac{j_{\nu}}{\alpha_{\nu}} = B_{\nu}(T)$$

57

<text><text><section-header><text><text><equation-block><equation-block><text>