

Línea de HI 21 cmTemperatura de spin• Temperatura de spin (T de excitación)
describe la población relativa de los niveles.• La T de spin es también la T cinética. $T_s = T_k$ • Coeficiente de excitación colisional para transiciones entre n y l: $C_{nl} \equiv C_{n \rightarrow l} = n \gamma_{nl} = n_n < \sigma_{nl} v >$ $C_{ln} \equiv C_{l \rightarrow n} = C_{nl} \frac{g_n}{g_l} exp\left(\frac{-h \nu}{k T_k}\right)$ $< \sigma_{nl} v >$ Sección eficaz para colisiones $n \rightarrow l$ a velocidad v γ_{nl} (cm⁻³ s⁻¹) ritmo de transiciones por unidad de volumen.

Línea de HI 21 cm	Ritmo de colisiones				
Para distribuciones maxwellianas de velocidad a temperatura Tk el <u>ritmo de colisiones</u> por unidad de volumen:					
$\gamma_{nl} = rac{4}{\sqrt{\pi}} \left(rac{\mu}{2 \ k \ T_k} ight)^{3/2} \int_0^{3/2}$	$^{\infty} dv \; \sigma_{nl}(v) \; v^3 \; exp\left(rac{-\mu \; v^2}{2 \; k \; T_k} ight)$				
Recordemos que las colisiones					
entre átomos neutros	$\gamma_{nl} \sim 10^{-11} - 10^{-10}$				
átomo - ión	$\gamma_{nl}\sim 10^{-9}$				
	8				

Línea de HI 21 cm
Si conocemos
$$\gamma_{nl}$$
, A_{nl} , $T_k \neq n$
Se puede calcular $n_n \neq n_l$ a través de las ecuaciones
de balance detallado.
Suponemos $n = n_{tot} = n_n + n_l$ (HI en el estado fundamental)
 $n_l (\gamma_{nl} n) = n_n (\gamma_{nl} n + A_{nl})$
 $\frac{n_n}{n} = \frac{(g_n/g_l) \exp[-h \nu/(k T_k)]}{1 + (g_n/g_l) \exp[-h \nu/(k T_k)] + (n_{crit}/n)}$

Línea de HI 21 cm Poblaci	iones de los niveles		
<u>Densidad crítica</u> : $n_{crit} = A_{nl} / \gamma_{nl}$			
Si $n \gg n_{crit}$ las poblaciones de los niveles n y l están termalizadas a la temperatura Tk.			
$n \gg n_{crit} \Rightarrow \left(rac{n_n}{n_l} ight)_{term} = \left(rac{g_n}{g_l} ight) ext{ }$	$cp\left(rac{-h \ u}{k \ T_k} ight)$		
Si $n \ll n_{crit}$ las transiciones radiativas c transición colisional $l o n$ va seguida de radiativa espontánea.	dominan y cada desexcitación		
$n \ll n_{crit} \Rightarrow \left(\frac{n_n}{n_l}\right) = \left(\frac{n}{n_{crit}}\right) \left($	$\left(\frac{n_n}{n_l}\right)_{term}$ 10		

Línea de HI 21 cmIntensidad de la líneaFlujo de la línea proporcional a la población del nivel superior y a la
probabilidad de la transición radiativa espontánea.
$$Flujo \propto A_{nl} n_n = \begin{cases} n < n_{crit} \Rightarrow \propto A_{nl} n^2 \\ n > n_{crit} \Rightarrow \propto A_{nl} n \end{cases}$$
Para la línea HI 21cm,
llamando a los niveles 1 y 0, $\frac{N_1}{N_0} = \frac{g_1}{g_0} exp \left\{ -\frac{h \nu_{10}}{k T_s} \right\}$ $T_0 = \frac{h \nu_{10}}{k} = 0.0682 K$ $T_s \gg T_0 \Rightarrow \frac{N_1}{N_0} = \frac{g_1}{g_0} = 3$

Línea de HI 21 cmIntensidad de la línea
$$\underline{\mathsf{Spesor}} \circ \mathsf{ptico:} \quad d\tau_{\nu} = -k_{\nu}(s) d\left(\frac{s}{cm}\right)$$
$$d\tau_{\nu} = -5.49 \times 10^{-19} \left(\frac{N_H}{cm^{-3}}\right) \left(\frac{T_s(s)}{K}\right)^{-1} \left(\frac{\phi(v)}{s \ km^{-1}}\right) d\left(\frac{s}{cm}\right)$$
St St se independiente de s a lo largo de la línea de observación,
$$\int_{-\infty}^{\infty} \tau_{\nu} d\left(\frac{v}{km \ s^{-1}}\right) = 5.49 \times 10^{-19} \left(\frac{T_s}{K}\right)^{-1} \int_{0}^{\infty} \frac{N_H(s)}{cm^{-3}} d\left(\frac{s}{cm}\right)$$

Línea de HI 21 cmIntensidad de la líneaDensidad de columna:
$$\frac{N_H}{cm^{-2}} = \int_0^\infty \frac{N_H(s)}{cm^{-3}} d\left(\frac{s}{cm}\right) =$$
 $= 1.822 \times 10^8 \left(\frac{T_s}{K}\right) \int_{-\infty}^\infty \tau_{\nu} d\left(\frac{v}{km s^{-1}}\right)$ N_H/cm^{-2} Número de átomos en una columna de base 1 cm² y
atura la distancia observador - fuente.

Línea de HI 21 cmIntensidad de la líneaMedida de Hidrógeno:
Usando parsec
$$(1 pc = 3.0856 \times 10^{16} m)$$
 $\frac{HM}{cm^{-3} pc} = \int_0^\infty \frac{N_H(s)}{cm^{-3}} d\left(\frac{s}{pc}\right)$ $\frac{HM}{cm^{-3} pc} = 0.5906 \left(\frac{T_s}{K}\right) \int_{-\infty}^\infty \tau(v) d\left(\frac{v}{km s^{-1}}\right)$

Línea de HI 21 cm	Emisión y absorción
Dos nubes en el haz de la anter	าอะ
$T_l = T_s \frac{\Omega_s - \Omega_i}{\Omega_A} + T_s$	$\Gamma_s rac{\Omega_i}{\Omega_A} e^{- au_i} +$
$+ T_c(1-e^{- au_i})rac{\Omega_i}{\Omega_A} + T_c($	$(1-e^{- au_j})rac{\Omega_j}{\Omega_A}P_{nj}$
P_{nj} $T_{a}\left(\Omega_{a}-\Omega_{i}\right)/\Omega_{A}$	diagrama polar normalizado en la dirección de la nube j contribución T_c no apantallada
$T_s \left(\Omega_i/\Omega_A\right) e^{- au_i} \ T_c (1-e^{- au_i}) \left(\Omega_i/\Omega_A\right) \ T_c (1-e^{- au_i}) \ T_c (1-e^{- au_i}) \left(\Omega_i/\Omega_A\right) \ T_c (1-e^{- au_i}) \ T_c (1-e^{- au_i}) \left(\Omega_i/\Omega_A\right) \ T_c (1-e^{- au_i}) \ T_$	por nube i ($\Omega_i < \Omega_s$) idem parte apantallada em y abs interna en nube i
$I_c(1-e^{-ij})(\Sigma Z_j/\Sigma Z_A)P_{nj}$	em y abs interna en nube j 26

	ESTRUCTURA DE LA GALAXIA
Ópti	co mediante regiones HII. <u>Ventaja</u> : delinea perfectamente los brazos espirales. <u>Inconveniente</u> : extinción.
Infr	arrojo
Per	mite estudiar el polvo interestelar
Radi	io
Gas Gas	s molecular: CO ya que H ₂ difícil de trazar. s atómico: HI 21 cm
ė	Porqué HI 21 cm ?
1) 2) 3)	Constituyente fundamental del MI. MI transparente a HI 21 cm. Ubicuo.
4)	Único componente en zonas externas de la Vía Láctea.

Estructura de la Galaxia	
Lo que ya se sabía en 1961 (Oort)	
•HI concentrado en una capa delgada (lámina de ~220pc). •La lámina no sólo es delgada, es plana (desviación < 30 pc).	
•Esta lámina rota circularmente (desviaciones < 10 km/s, i.e. <5%) •Velocidad angular mayor hacia el centro.	
•Centro galáctico en Sagitario.	
•HI muestra la estructura espiral de la Galaxia.	
•Existe HI en el halo.	
	33

Propiedades de los	s componentes 'fríos' de	el MI							
Table 7.2. Simplified description of properties of cool components of the interstellar medium.									
Property	Cool atomic gas	Cold molecular gas		Diffuse dust					
Structure	Hierarchy of structures: filaments, loops, shells	Highly clumped; isolated complexes		Like cooler HI					
Density	$n(\text{HI}) \sim 0.1 - 1 \text{ cm}^{-3}$	$n({\rm H}_2) \sim 10$	$^{3}-10^{5} \mathrm{cm}^{-3}$						
Temperature	20-few hundred K (collective mean)	3-30 K		~22 K					
Filling fraction	0.2-0.8	0.01	•	>0.2					
Layer radial extent ($R_0 = 8.5 \text{ kpc}$)	3-25 kpc; warped at $R > 11$ kpc	3-7 kpc		3–7 kpc & bulge?					
Layer z extent	120 pc; thicker at $R > R_o$	60 pc	4	120 pc					
<u>Material molecular</u> : •Nubes y complejos de nubes •Confinado en un anillo de 4-7 kpc •Factor de llenado ~1% (HI 20-80%) •Complejo molecular ~50 pc o más •Masa total molecular ~1-3 x 10 ⁹ M solares (similar a HI pero más confinado)		<u>Polvo</u> : •Mapas de HI y polvo muy parecidos. •Filamentos, lazos, conchas •Cirros en IR.							
				63					

