ANÁLISIS METALÚRGICO DE FRAGMENTOS DE UN BROCHE DE CINTURÓN: SIGLO VI - CASTILTIERRA (SEGOVIA)

ANTONIO BALLESTER
Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica
Facultad de Ciencias Químicas - Universidad Complutense

El Departamento de Antigüedades Medievales está atendiendo la restauración de numerosos objetos procedentes de la necrópolis visigoda de Castiltierra (Segovia). El programa se desarrolla satisfactoriamente, aunque con cierta lentitud, por los técnicos restauradores del M.A.N. debido a la complejidad de las piezas y a la escasez de profesionales de la plantilla de Centro. Es una tarea previa a la clasificación y estudio de tan importante yacimiento, del que el M.A.N. guarda lo extraído en las excavaciones oficiales de E. Camps y J. M. de Navascués, en los años 1932-1935.

Algunos de los objetos, por hallarse excesivamente fragmentados y faltar no pocas de sus partes, son imposibles de reconstruir; pero pueden prestarse servicio a la historia por otras vías, como la aquí presentado. El Prof. Antonio Ballester, gracias a la amistad con Antonio Sánchez-Barrigué, restaurador entonces del M.A.N. y hoy en el I.C.R.B.C., aborda el análisis de unos fragmentos que pertenecieron a un broche de cinturón del tipo I de Zeiss/Santa Olalla, procedente de la necrópolis segoviana. Sus resultados son esclarecedores y creemos contribuyen a sostener la teoría de la existencia de obradores móviles que elaboraban los objetos de adorno góticos sin la necesidad de grandes recursos técnicos.

MATERIALES

Los materiales de partida fueron varios fragmentos de un broche de cinturón, el mayor de los cuales era de aproximadamente 5 x 7 cm. El estado de conservación era muy deficiente y en todos los fragmentos se podían distinguir claramente dos materiales metálicos de distinta naturaleza: una primera aleación constituyendo la base del broche y los distintos elementos del mismo, y una segunda actuando como material de aporte para la unión (soldadura) entre las partes anteriores.

Las dos aleaciones se encontraban muy oxidadas. La base y demás elementos del broche estaban recubiertos de una pintura de color variable, aunque con especial predominio de los colores verdes, pardos e incluso dorados; correspondientes a los distintos grados e intensidades de oxidación del cobre y de sus aleaciones, latones y broncees. Sin embargo, el elemento de unión entre las anteriores partes era de color gris, característico del plomo o de sus aleaciones. En este caso, la oxidación produjo un gran deterioro e incluso la pérdida de la unión entre las distintas partes del broche.

Para los análisis correspondientes se seleccionaron varias muestras representativas de cada uno de los fragmentos disponibles.

TÉCNICAS ANALÍTICAS Y DE OBSERVACIÓN

El análisis químico y metalúrgico de los distintos fragmentos se realizó utilizando tanto la metalografía óptica como la electrónica de barrido (S.E.M.) y las energías dispersivas de rayos X (E.D.S.).

Para realizar los correspondientes análisis se eligieron de los fragmentos originales algunas muestras que, cuando la técnica de observación lo requería, fueron embutidas en una resina de solidificación rápida y posteriormente desbastadas y pulidas mediante las técnicas convencionales de metalografía. El ataque para la observación de la microestructura se realizó con disolución alcohólica de cloruro de hierro (III).

Los productos de corrosión (pátinas) sobre las piezas se observaron por S.E.M. y E.D.S. Estas muestras fueron recubiertas por una película de oro o grafito antes de ser analizadas.

Todos los análisis por E.D.S. fueron semicuantitativos y sobre superficies de 2-3 mm²; siempre que la naturaleza y dimensiones de los productos a analizar lo permitieran.

CARACTERÍSTICAS Y NATURALEZA DE LOS PRODUCTOS DE OXIDACIÓN

Se estudiaron utilizando las técnicas de S.E.M. y E.D.S. Se debe distinguir entre el metal base de que estuvo construido el broche y el metal de aporte para la soldadura de las distintas partes del mismo.
Un aspecto general del mismo, a pocos aumentos, se puede ver en la figura 5. Se detecta un gran deterioro de esta parte del broche debido a su oxidación. Su análisis indicó un alto contenido en plomo y estaño, pero también en oxígeno (fig. 6). En una nueva micrografía (fig. 7), a más aumentos, se puede observar con detalle el proceso de degradación de este material de aporte.

Finalmente, en las figuras 8 y 9 se pueden observar dos micrografías, en las que se muestran sendos detalles del estado de las uniones metal-aleación de aporte y de su baja calidad metalúrgica en la actualidad. En cualquier caso, en la figura 8 aparece en la parte central, marcada MC, una banda de metal que fue la que estuvo en contacto con la aleación de soldadura y en la cual se puede detectar los cuatro elementos principales del sistema: Cu y Zn y Pb y Sn (fig. 10). Es decir, parece que la unión se produjo por un fenómeno de soldadura por fusión. A la izquierda de la fotografía se encuentra el metal base, y a la derecha, la soldadura, muy degradada.

ALEACIÓN BASE

**Composición semi cuantitativa**

El análisis de la aleación base utilizada para la fabricación del broche se realizó por E.D.S. sin utilizar patrones y, por tanto, dicho análisis debe ser considerado como semi cuantitativo, aunque con un aceptable grado de aproximación al análisis real. Los resultados mostraron que se trataba de un latón con un contenido de cobre y zinc sobre su superficie y, además, la aleación de aporte de soldadura, que en su momento mojó el metal, apareció más tarde, formando, en algunos lugares, un producto oxidado a base de plomo y estaño.
aproximado del 75% en cobre y del 24% en Zn, habiendo obtenido estos porcentajes como media de seis determinaciones distintas sobre tres muestras. Se detectaron además, pequeños contenidos de estaño, plomo, manganeso, azufre e hierro.

**Latones. Consideraciones generales**

La parte del diagrama de equilibrio cobre-zinc relativa a los latones se representa en la figura 11. Según indica el diagrama, la temperatura de fusión disminuye regularmente al aumentar el contenido en zinc. El intervalo de solidificación es reducido, lo que permite obtener aleaciones homogéneas en las que no se presenta el fenómeno de segregación. Estas particularidades son una indicación de que, en general, la aptitud para el moldeo de estas aleaciones es buena.

El diagrama Cu-Zn muestra la existencia, partiendo del cobre, de un dominio extendido de solución sólida alfa, hasta la proximidad del 40% de Zn. Esta fase existe a cualquier temperatura por debajo de la línea de solidificación. Su contenido máximo en zinc crece desde un 32,5% a 90°C hasta un 39% a 45°C, decreciendo a contracción con la temperatura. A temperatura ambiente, los latones están constituidos de una única fase alfa hasta un 33% de zinc.

Se observa también la presencia de un fase beta (para aproximadamente un 50% de zinc a 200°C y un 40 a 55% a 800°C). A temperatura ambiente, los latones están pues, constituidos de una sola fase (alfa) hasta un 33% de zinc y de una mezcla de dos fases (alfa más beta) desde el 33% hasta el 46% de zinc.

Los latones industriales comprenden un amplio campo de aleaciones de cobre y zinc, con contenidos de hasta un 50% de este último metal, con o sin la adición de relativamente pequeños porcentajes de otros elementos de los cuales los principales son el estaño, el plomo, el hierro, el manganeso, el níquel, el aluminio y el silicio.

Las aleaciones binarias cobre-zinc, que constituyen la base de todo el conjunto de la serie de los latones, se dividen en tres grupos principales. El primer grupo comprende los latones alfa, que pueden contener hasta un 39% de zinc, aunque normalmente suele estar presente un segundo constituyente metálico (la fase beta) en pequeñas proporciones y aún para contenidos de zinc más reducidos. El segundo grupo comprende los latones alfa más beta, que comienzan a formarse a partir de un 37,5% de zinc. Al aumentar el porcentaje de zinc empieza a aumentar la proporción de fase beta a expensas de la alfa, que para contenidos del orden del 46% de zinc comienza un tercer grupo de aleaciones constituidas exclusivamente por fase beta. Incrementos adicionales en el contenido de zinc, hasta aproximadamente un 50%, inician la aparición de un tercer constituyente, la fase gamma, la cual, como ya se indicó anteriormente, confiere fragilidad y limita enormemente la aplicación del material para usos estructurales.

Las propiedades de estos tres grupos de aleaciones difieren considerablemente. Los latones alfa son semejantes el cobre en sus características de tenacidad y facilidad de trabajo en frío. Al incrementar el contenido en zinc, la resistencia aumenta gradualmente, la aleación sigue siendo dúctil y puede endurecerse por trabajo en frío y aplanarse mediante recocido, de la misma forma que el cobre. De manera general, los latones alfa son muy adecuados para las operaciones de conformado en frío.

A continuación se detallan algunos aspectos concretos relacionados con los latones alfa.

La fase alfa es, por tanto, maleable en frío y también lo es en caliente, si no contiene plomo, y tanto más cuanto mayor es el contenido en cobre. Sus propiedades están lógicamente, condicionadas por su contenido más o menos importante en zinc. En general, en los latones alfa obtenidos para su deformación, el tamaño de grano es un factor de calidad importante:

- No debe ser demasiado grande para evitar el fenómeno llamado "piel de naranja" o rugosidad que se produce como consecuencia de la deformación.
- Debe ser lo suficientemente grande para permitir las deformaciones requeridas en cada caso.

El tamaño de grano recristalizado, que puede controlarse, viene definido por la acidez previa, la temperatura de recocado y la duración del mismo. Como se ha indicado, el zinc aumenta la resistencia mecánica del cobre en esta...
do recocado y este efecto es más marcado cuando el material posee acritud.

Las aleaciones con un contenido parecido, aunque menor, a la aquí estudiada, entre un 15 y un 20% en zinc, son peculiares por su color, muy próximo al del oro, teniendo al mismo tiempo una gran maleabilidad. Con la acritud, el alargamiento disminuye menos rápidamente que con contenidos de zinc menores, pues es posible realizar deformaciones en frío más acentuadas (embutición, plegado, barido, etc.). Son también relativamente insensibles a la corrosión. Debido a su coloración, estos latones se han utilizado siempre en bisutería y decoración. Aunque su aptitud para la deformación y resistencia a la corrosión han sido adecuadas estas aleaciones para numerosas aplicaciones industriales. Cuando el porcentaje de zinc crece desde el 15 al 20%, hay menos capacidad de deformación en caliente y más en frío.

Las aleaciones con un 28% en zinc se corresponden con un máximo de resistencia a la tracción y límite elástico. Por otra parte, su maleabilidad es netamente superior a la de aleaciones algo más pobres en zinc y, por tanto, estos latones unen a sus características mecánicas elevadas, una excelente aptitud para su deformación en frío.

Volviendo a los aspectos de corrosión, importantes en las muestras estudiadas, los latones con contenidos en zinc entre el 15 y el 36% tienen una resistencia a la corrosión sensiblemente inferior a la de aleaciones con menos Zn. Esto es debido a una corrosión selectiva típica de los latones, la descincificación, tanto más intensa cuanto más elevado es el contenido en aleante. Junto a este tipo de deterioro existe otra corrosión, denominada estacional, también muy importante. A continuación se describen ambas.

**Descincificación.** Se manifiesta por una porosidad más o menos importante y por una modificación del color en la zona corroída que pasa del amarillo, de los latones, al rojo, del cobre. Aunque en algunos casos se ha pensado en un ataque selectivo del zinc (sobre todo en los latones ricos en este metal), el mecanismo del proceso parece ser el siguiente: primero, el cobre y el zinc se disuelven simul-
Fig. 13. Micrografía óptica del latón pulido y atacado. x 600

Fig. 14. Micrografía SEM del latón, mostrando distintas inclusiones sobre la matriz metálica.

táneamente; a continuación, el cobre se redepota in situ, mientras que los productos de corrosión del zinc permanecen en solución o precipitan si son insolubles. En la zona atacada, el latón inicial se sustituye por una masa esponjosa de cobre.

Corrosión estacional. Es una fisuración intercristalina por la acción combinada de esfuerzos mecánicos y de agentes corrosivos específicos. El mecanismo no es perfectamente conocido, aunque se han determinado bastante exactamente las condiciones bajo las cuales se produce. Los principales factores a tener en cuenta son: la composición química del material, la existencia de tensiones internas en el mismo, el ambiente corrosivo y las variaciones bruscas de temperatura.

Estudio metalográfico

Como es sabido, este estudio suministra información sobre la estructura interna del material, que lógicamente depende de la composición de la aleación, pero también de los tratamientos térmicos o mecánicos a que pueda haber sido sometido. Esta información, por tanto, es valiosa para poder especular sobre los procesos de fabricación utilizados y sobre su historia tecnológica.

El estudio metalográfico por microscopía óptica muestra una distribución más o menos homogénea de cristales monofásicos (figs. 12 y 13), equiaxiales, con un tamaño medio correspondiente al ASTM 7. Evidentemente, esta distribución es la correspondiente a la fase alfa, estable, según el diagrama de equilibrio de la figura 11, hasta composiciones del orden del 35% en zinc.

Sobre la superficie de las muestras analizadas se detectaron inclusiones como las mostradas en las figuras 14 y 15, obtenidas en el microscopio electrónico de barrido. Después de su análisis por E.D.S., se concluyó que estaban formadas por azufre y manganeso (fig. 16), tratándose posiblemente de un sulfuro de manganeso que, por otra parte, es muy común en los latones, incluso en los fabricados actualmente con medios muy perfeccionados.

Fig. 15. Micrografía SEM del latón, mostrando distintas inclusiones sobre la matriz metálica.

Fig. 16. Análisis por EDS de las inclusiones mostradas en las figs. 14 y 15.
Fig. 17. Micrografía SEM del efecto de la corrosión sobre la superficie del latón.

Fig. 18. Micrografía SEM del efecto de la corrosión sobre la superficie del latón.

Fig. 19. Análisis por EDS de los productos de corrosión sobre la superficie del latón.

Fig. 20. Micrografía SEM del efecto de la corrosión sobre la superficie del latón.

Fig. 21. Análisis por EDS del material utilizado para soldar.

Fig. 22. Diagrama de equilibrio plomo-estañ.
Fig. 23. Micrografía SEM de la aleación utilizada para soldar.

Fig. 24. Análisis por SEM de la fase más clara mostrada en la fig. 23.

Fig. 25. Análisis por SEM de la fase más oscura mostrada en la fig. 23.

Fig. 26. Micrografía SEM de la interfase de unión entre el latón y el metal utilizado para soldar.

Fig. 27. Detalle ampliado de la fig. 26.

Fig. 28. Mapa de rayos X de la distribución del plomo en la soldadura de la fig. 27.
Adicionalmente, en la figura 15 se puede observar la distribución y el tamaño de los granos constitutivos del material analizado, revelándose perfectamente los defectos (maclas y planos de deslizamiento) en los mismos. En la figura 14 aparecen las anteriores inclusiones alineadas en una determinada dirección, que en este caso era paralela a la superficie libre del material. Una y otra situación indican que el material debió ser sometido a un intenso tratamiento mecánico para conformarlo adecuadamente. Esto hizo desaparecer la estructura de cola una vez solidificado el material y además generó la distribución de granos, más o menos equitativas, observadas en las figuras anteriores con una gran acumulación de defectos en su estructura cristalina.

En ningún caso se detectaron defectos de cola, muy comunes en piezas obtenidas con medios rudimentarios, desde un punto de vista técnico. Esto quedaría justificado con lo expresado en el párrafo anterior. es decir, el material sufrió una gran deformación en frío, lo que dio lugar al alargamiento de los defectos de cola y a su desaparición posterior por soldadura entre las paredes del defecto.

En función de lo expresado, el latón del broche debió ser obtenido por cola y moldeo. La estructura correspondiente debió estar formada por grandes granos columnares que alentados a la temperatura adecuada condujeron a la formación de otros granos recristalizados de dimensiones más pequeñas. En este estado, el material todavía debía tener bastantes defectos de cola. Después su trabajo en frío, para obtener las formas adecuadas, produjo una gran acumulación de energía en la red cristalina y un aumento de su resistencia mecánica, apareciendo numerosos defectos en la misma. Éstos se manifestaron a través de las bandas de deslizamiento que se pusieron de manifiesto con el ataque con cloruro férrico y que, ya se ha comentado, aparecieron claramente durante el estudio metalográfico.

Desde el punto de vista de la corrosión, los fenómenos descritos anteriormente se detectaron fácil y frecuentemente. Así, en las figuras 17 y 18 se tienen dos ejemplos del proceso de descincificacíón. Se observa perfectamente cómo el zinc ha desaparecido de la superficie del latón, dejando el hueco correspondiente y unos productos de corrosión muy enriquecidos en cobre (fig. 19).

Por otro lado, la corrosión estacional produjo un agríctamieno intercristalino que se apareció en distintas partes de las muestras observadas (fig. 20).

METAL DE APORTE PARA LA SOLDADURA

Composición semicuantitativa

El análisis por E.D.S. del material utilizado para soldar (fig. 21) indicó que se trataba de una aleación plomo-estano, de una composición aproximada al 78-20%, con un pequeño porcentaje de azufre en su composición.

Aleaciones plomo-estano. Consideraciones generales

En la figura 22 se representa el diagrama de equilibrio plomo-estano. Para un 62% de estaño se forma una estructura eutéctica de una coltabilidad excelente. Las aleaciones de estos dos metales presentan también la característica propia del estado de formar soluciones sólidas.
con un gran número de metales y aleaciones. Es ésta una ventaja para el empleo de estas aleaciones en soldadura, pues en la superficie de contacto entre la aleación y el metal a soldar se produce una dilución parcial que permite obtener una unión resistente. De acuerdo con el anterior diagrama de estado pueden diferenciarse dos tipos de soldadura:

- La soldadura con solidificación pastosa. Tiene un gran intervalo de solidificación y puede conformarse en estado pastoso. La aleación con un 20% de estaño tiene un intervalo máximo de solidificación.

- La soldadura con punto de solidificación. Sólo existe una aleación con punto de solidificación constante: la aleación eutéctica con un 62% de estaño. Esta aleación tiene la temperatura más baja de solidificación y, por tanto, la mejor colloabilidad. No obstante, por una cuestión económica, se emplean normalmente las aleaciones con contenedores del orden del 50% de estaño.

La resistencia mecánica de estas soldaduras es ligeramente superior a la del plomo.

Estudio metalográfico

Como cabía esperar, una vez conocida la composición de la aleación y el diagrama de fases correspondientes, el material de aporte de la soldadura, una vez solidificado, dio lugar a una estructura bifásica, en la que aparecen dos fases: alfa y beta. Así, en la micrografía de la figura 23 se pueden distinguir dos fases inmiscibles entre sí: una clara, que sería la fase alfa, rica en plomo (fig. 24), y otra oscura, que sería una estructura eutéctica, con un mayor contenido en estaño que la fase alfa (fig. 25).

Por tanto, se utilizó par soldar la aleación correspondiente al grupo de aquellas que tienen solidificación pastosa y que todavía en la actualidad se usan frecuentemente en fontanería. Esa apariencia pastosa aparece al microscopio óptico en muchos de los lugares observados, ya que no se llegó a producir una adecuada separación de las fases, tal como se observa en la figura 23.

Además, en la figura 26 se observa con detalle la soldadura y la interfase entre el latón (izquierda) y la aleación de aporte (derecha). Para observar la distribución de los metales a uno y otro lado de la soldadura se hicieron los mapas de rayos X correspondientes a la zona mostrada en la figura 27, que es un detalle de la figura 26. Así, en la figura 28 se ve la distribución del plomo: en la 29, la del estaño; en la 30, la del cobre, y en la 31, la del zinc. Se puede indicar a partir de estas figuras que, independientemente de la acumulación preferente de los metales, como era de esperar, a cada lado de la soldadura, existió una difusión en ambos sentidos, permitiendo la unión entre los materiales metálicos.

SUMMARY

Described here is the procedure and results of the analysis made of the fragments of the broach of a visigothic belt of type I, using optical metallography, electronic sweeping and X radiology.

The adornment was made out of latten brass which was intended to give the appearance of gold. The various parts being joined together using soft solder.