DUAL ROLE OF INTERLEUKIN-6 IN REGULATING INSULIN SENSITIVITY IN MURINE SKELETAL MUSCLE

Iria Nieto-Vazquez¹², Sonia Fernández-Veledo¹², Cristina de Alvaro¹ and Margarita Lorenzo¹²

From ¹Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, 28040-Madrid (Spain) and ²CIBER de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM)

Address correspondence and reprint request to:
Margarita Lorenzo, Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, Complutense University, 28040-Madrid (Spain).
E-mail: mlorenzo@farm.ucm.es

Submitted 1 August 2007 and accepted 5 September 2008.

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org
IL-6 dual action on insulin sensitivity in skeletal muscle

ABSTRACT

Objective. Cytokines are elevated in various insulin-resistant states including type 2 diabetes and obesity, although the contribution of IL-6 in the induction of these diseases is controversial.

Research Design and Methods. We analyzed the impact of IL-6 on insulin action in murine primary myocytes, skeletal muscle cell lines and mice (wild-type and PTP1B-deficient).

Results. IL-6 per se increased glucose uptake by activating LKB1/AMPK/AS160 pathway. A dual effect on insulin action was observed when myotubes and mice were exposed to this cytokine: additive with short-term insulin (increased glucose uptake and systemic insulin sensitivity), but chronic exposure produced insulin resistance (impaired GLUT4 translocation to plasma membrane and defects in insulin signaling at the IRS-1 level). Three mechanisms seem to operate in IL-6-induced insulin resistance: activation of JNK1/2, accumulation of socs3 mRNA, and an increase in PTP1B activity. Accordingly, silencing JNK1/2 with either siRNA or chemical inhibitors impaired phosphorylation of IRS-1(Ser307), restored insulin signaling and normalized insulin-induced glucose uptake in myotubes. When using a pharmacological approach, LXR agonists overcome IL-6-induced insulin resistance by producing down-regulation of socs3 and ptp1b gene expression. Finally, the lack of PTP1B confers protection against IL-6-induced insulin resistance in skeletal muscle in vitro and in vivo, in agreement with the protection against the IL-6 hyperglycemic effect observed on glucose and insulin tolerance tests in adult male mice.

Conclusions. These findings indicate the important role of IL-6 in the pathogenesis of insulin resistance and further implicate PTP1B as a potential therapeutic target in the treatment of type 2 diabetes.

Abbreviations: ACC, acetyl-CoA carboxylase; AMPK, AMP-activated protein kinase; AS160, AKT substrate of 160 kDa; ERK, extracellular signal-regulated kinase; GTT, glucose tolerance tests; ITT, insulin tolerance tests; IKB, inhibitor KB; IL, interleukin; IR, insulin receptor; IRS, insulin receptor substrate; JNK, c-jun NH2 terminal kinase; LXR, liver X receptor; MAPK, mitogen-activated protein kinase; PPAR, peroxisome proliferator activated receptor; PTP, protein-tyrosine phosphatase; QPCR, real-time quantitative RT-PCR; SOCS, suppressor of cytokine signaling.
Insulin increases glucose transport in peripheral tissues by mediating translocation of the glucose transporter GLUT4 from an intracellular compartment to the plasma membrane, an effect that involves activation of phosphatidylinositol 3-kinase, AKT and some protein kinase C isoforms, as reviewed (1). Moreover, skeletal muscle has insulin-independent mechanisms to increase glucose transport, including the activation of AMP-activated protein kinase (AMPK) by stimuli such as hypoxia, ischemia, or exercise, although the precise role of AMPK in exercise-induced glucose uptake is still controversial (2). The AKT substrate of 160 kDa (AS160) has emerged as a point of convergence for both effectors of glucose transport, and seems to modulate GLUT4 trafficking (3). Because skeletal muscle accounts for the majority of glucose disposal in the body it is, therefore, the major site for suffering insulin resistance. Obesity is a risk factor for development of type 2 diabetes, due in part to the fact that adipose tissue secretes cytokines that may influence insulin sensitivity. Among these molecules, tumor necrosis factor (TNF)-α and interleukin (IL)-6 have been proposed as a link between obesity and insulin resistance because a) the majority of type 2 diabetic patients are obese, b) TNF-α and IL-6 are overexpressed in adipose tissues of obese animals and humans, and c) elevated plasma concentrations of IL-6 are detected in obese and insulin-resistant patients (4;5). We previously investigated how TNF-α treatment induces a state of insulin resistance in vivo and in vitro, at the level of insulin receptor substrate (IRS) (6;7). Accordingly, we identified the Ser307 residue in IRS-1 as a site for TNF-α-impaired insulin-signaling in myotubes, and p38-mitogen activated protein kinase (MAPK) and inhibitor KB (IKB) kinase are involved in the phosphorylation of this residue (8).

The role of IL-6 in the etiology of insulin resistance is not fully understood, and has been a matter of controversy (9). Pretreatment with IL-6 in vivo blunted the ability of insulin to suppress hepatic glucose production and to stimulate glucose uptake in skeletal muscle (10). However, other studies reported a lack of effect or a positive effect of IL-6 on whole body glucose disposal in rats and humans, respectively (11;12). Alternatively, IL-6 induced insulin resistance in hepatocytes, adipocytes, and myocytes (13-16). In addition, palmitate-induced IL-6 production led to inhibition of insulin-stimulated glucose uptake in myocytes as demonstrated by the prevention of these effects with anti-IL-6 or anti-Toll-like receptor-2 antibodies (17;18). The IL-6 protein content in adipose tissue has been negatively correlated with insulin-stimulated glucose disposal, and a chronic elevation of IL-6 is not desirable since it may compromise insulin sensitivity (5;19). Furthermore, a single polymorphism in the IL-6 gene promoter has been linked to reduced insulin sensitivity and type 2 diabetes (20).

On the other hand, skeletal muscle also secretes IL-6. After exercise, IL-6 plasma levels rise due to increased local production in muscle, and this increase may enhance substrate metabolism and whole body glucose homeostasis (21-23). In this regard, an impaired ability to exercise and to oxidize fatty acids was observed in the IL-6 knockout mouse at 3 months of age and, by age 9 months, these mice were obese and insulin-intolerant (24;25). IL-6’s role seems to be anti-inflammatory in such physiological situations. Accordingly, in this study we have evaluated the impact of IL-6 treatment on insulin sensitivity in skeletal muscle cells depending on the duration of exposure.

Nuclear receptors comprise a superfamily of related proteins which act as transcription factors for target genes involved in glucose
and lipid metabolism. These proteins are activated by naturally produced lipids as well as by synthetic compounds, some of which display insulin sensitizing effects and anti-inflammatory properties (26). Thus, the effectiveness of different nuclear receptor agonists to overcome IL-6-induced insulin resistance has also been evaluated in this work.

Protein-tyrosine phosphatase (PTP1B) acts as a physiological negative regulator of insulin, which increases expression in muscle and adipose tissue of obese and diabetic humans and rodents (27;28). In this regard, transgenic overexpression of PTP1B in muscle decreased glucose uptake (29), meanwhile ablation of PTP1B specifically in this tissue improved systemic insulin sensitivity when on a high-fat diet (30). Furthermore, mice lacking PTP1B also exhibit increased insulin sensitivity under both dietary or polygenic insulin resistance (31;32). We recently found up-regulation of PTP1B by TNF-α, and protection against insulin resistance by this cytokine in mice and cells lacking PTP1B (6;7). Accordingly, our final goal was to investigate whether PTP1B-deficiency confers protection against insulin resistance by IL-6.

RESEARCH DESIGN AND METHODS

Materials. Insulin, AICAR, wortmannin, TTNPB, phytanic acid, rosiglitazone and antibody anti-β-ACTIN were from Sigma-Aldrich (St. Louis, MO); PD169316, PD98059 and Compound C were from Calbiochem-Novabiochem (La Jolla, CA); SP600125 and GW501516 were from Alexys (Switzerland); IL-6 was from Roche Diagnostics (Indianapolis, IN); T0901317 was from Cayman (Ann Arbor, MI); WY14643 was from Biomol (Plymouth, UK). GW3965 was kindly provided by A Castrillo (Universidad de Gran Canaria, Spain). Culture media and sera were from Invitrogen (Paisley, UK). Autoradiographic films and 2-deoxy-D[1-3H]-glucose (11.0 Ci/mmol) were from GE Healthcare (Rainham, UK). Antibodies against GLUT1 and GLUT4 were from Chemicon (Tamacula, CA); against total and phosphorylated AKT(Ser473), AMPKα(Thr172), extracellular signal-regulated kinase (ERK)1/2(Thr202/Tyr204), p38MAPK(Thr180/Tyr182), and c-jun NH2 terminal kinase (JNK)1/2(Thr183/Tyr185) were from Cell Signaling (Beverly, MA); against IRS-1, IRS-2, P-IRS-1(Ser307), PTP1B, SH-PTP2, PP2A and acetyl-CoA carboxylase (ACC)(Ser79) were from Upstate Biotechnology (Lake Placid, NY, USA); against P-Tyr “sc-508”, P-LKB1(Ser431) “sc-28465”, caveolin-1 “sc-894” and IKB-α “sc-371” were from Santa Cruz (Palo Alto, CA); against phosphorylated AS160(Thr642) were from Biosource (Camarillo, CA). All other reagents used were of the purest grade available.

Cell culture. Primary-myoblasts were obtained from neonatal rat limbs, as previously described (8). Both rat neonatal-myoblasts and mouse C2C12-myoblasts (from ATCC) were cultured in 10% horse serum-DMEM at 37ºC and 5% CO2. After reaching confluence, cells were cultured for 4-days in 2% horse serum-DMEM until differentiation into multi-nucleated myotubes. Finally, myotubes were cultured overnight in serum-free, low glucose (1000 mg/L)-DMEM at 37ºC and 5% CO2. After reaching confluence, cells were cultured for 4-days in 2% horse serum-DMEM until differentiation into multi-nucleated myotubes. Glucose uptake was measured during the last 10min of culture by incorporation of 2-deoxy-glucose into cells, and expressed as percentage of stimulation over basal (control=100) as previously described (8). Cells were submitted to
IL-6 dual action on insulin sensitivity in skeletal muscle

subcellular fractionation for plasma membrane and internal membrane isolation, before immunoblotting with GLUT4, GLUT1 and caveolin-1 antibodies (8). Myoblasts seeded on glass coverslips were differentiated, fixed and permibilized before incubation with anti-GLUT4 antibody followed by detection with a fluorescein-conjugated secondary antibody.

Immunoprecipitation and Western-blot. Equal amounts of protein from cell lysates were immunoprecipitated at 4°C with antibodies against IRSs, as previously described (7). Cellular proteins and immune complexes were submitted to SDS-PAGE, transferred to Immobilon membranes and blocked (7). Immunoreactive bands were visualized using the enhanced chemiluminescence (ECL-Plus) Western-blot protocol (Amersham).

Transient transfection with siRNA. Mouse JNK1/2 and AMPKα1/α2 siRNAs and control (RISCfree) siRNA were purchased from Dharmacon (Lafayette, CO). C2C12-myotubes were transfected with 50 nM of siRNAs using Dharmafect 3 reagent. After 48 h of transfection, cell lysates were collected and further analyzed.

Real-time quantitative RT-PCR (QPCR) assays. DNaseI-treated RNA was reverse transcribed into cDNA, before performing the PCR assay for ptp1b and suppressor of cytokine signaling (socs)3 gene expression using the Taqman Gene Expression Assays from Applied Biosystems, as previously described (6). The results are given as percentage over control (untreated cells) after normalizing mRNA to 18S rRNA expression.

PTP1B activity. Cells were lysed after culture in phosphate-free-DMEM, as previously described (7). PTP1B activity was assessed by malachite green and p-nitrophenylphosphate hydrolysis assays by dephosphorylation of a phosphopeptide (RRLIEDEAEpYARG) from Upstate Biotechnology.

Glucose and insulin tolerance tests, and preparation of muscle extracts. Wild-type and whole-body PTP1B-deficient male mice (12 weeks-old) were treated for 3, 24 or 48h with IL-6 (0.8 μg/g body wt, injected intraperitoneally) or vehicle (100 μl PBS-0.1% BSA). Glucose tolerance tests (GTT) were performed on 24h-fasted mice after an intraperitoneal injection of glucose (2 g/kg body wt), and insulin tolerance tests (ITT) on fed animals that had received an intraperitoneal injection of insulin (1 IU/kg body wt), as previously described (7). Glucose concentration (mg/dL) was determined in tail blood samples using an automatic analyzer (Accucheck from Roche). Mice treated or not with IL-6 were subjected to anaesthesia, muscle samples from hind-legs were removed prior and after insulin stimulation and immediately processed (7). All animal experimentation described in this study was conducted in accord with accepted standards of human animal care.

Data analysis. Results are means ± S.E. from 4 to 10 independent experiments. Comparisons between 2 groups were made by Student’s t-test (Fig. 1 and 6). One-way ANOVA was used in Fig. 2A, B and Fig. 5C. Two-way ANOVA was used in Fig. 2D, F; Fig. 3; Fig. 4 and Fig. 5A. Differences between groups were considered statistically significant when P values <0.01.

RESULTS

IL-6 increases glucose uptake by activation of the LKB1/AMPK/AS160 pathway in myotubes. We investigated the impact of treatment with IL-6 on glucose uptake, and the signaling pathways elicited by this cytokine in C2C12-myotubes. IL-6 treatment increased glucose uptake by 40% at 3h, and this effect was maintained for 24h (Fig. 1A), with optimal stimulatory effect at 20 ng/ml (Fig. 1B). IL-6 treatment activated AMPK for 24h with a peak of phosphorylation at 3-6h, but failed to activate AKT (Fig. 1C).
Moreover, IL-6 also induced phosphorylation of JNK1/2, p38MAPK and ERK1/2 for 24h, and activated the degradation of IKB-α between 3 and 24h, with total levels of these proteins and β-ACTIN remaining unchanged.

To investigate the signaling pathways involved in the induction of glucose uptake by IL-6, we blocked AMPK, JNK1/2 and AKT by the use of chemical inhibitors and siRNA (Fig. 1D). The stimulatory effect of IL-6 at 3h on glucose uptake was completely impaired by Compound C, an inhibitor of AMPK activity that did not preclude its phosphorylation (33), but was not impaired by wortmannin or SP600125, inhibitors of AKT and JNK1/2, respectively. Moreover, when AMPKα was knockdown with siRNA, IL-6 failed to activate glucose uptake, an effect that was not observed with JNK1/2 or control siRNA. These data seem to indicate that activation of glucose uptake by IL-6 is dependent on the activation of AMPK. Accordingly, we further explored the mechanism by which IL-6 activates AMPK by examining LKB1, an upstream activator, and ACC and AS160, downstream targets (2) (Fig. 1E). IL-6 treatment for 3h produced the sequential phosphorylation of LKB1, AMPK, ACC and AS160 in C2C12-cells, and phosphorylation of ACC and AS160 was prevented by Compound C. When AMPKα was knockdown with siRNA, a robust 80% reduction of AMPK protein was detected and, therefore, phosphorylation of AMPK, ACC and AS160 by IL-6 was completely impaired.

Short-term IL-6 treatment displays an additive effect with insulin on glucose uptake but chronic-treatment with this cytokine causes insulin resistance in myotubes. We explored whether the duration of exposure to IL-6 was affecting insulin-stimulated glucose uptake in C2C12-myotubes. Pretreatment with IL-6 for 3h and stimulation with insulin for 30min resulted in an additive effect on glucose uptake that was not observed after treatment with the cytokine for 6h (Fig. 2A). However, insulin did not further stimulate glucose uptake after chronic treatment (24h) with IL-6, and this inhibitory effect was dose-dependent and maximal at 20 ng/ml (Fig. 2B). In parallel, the phosphorylation of AKT by insulin detected in cells pretreated with IL-6 for 3h was impaired at 24h (Fig. 2C). AKT phosphorylation was detected as early as after 5min of insulin stimulation and remained increased at least for 30min, the time required for optimal translocation of GLUT4 to the plasma membrane (supplementary Figure S1). Insulin decreased the activation of AMPK by IL-6 at 24h, but not at 3h. AS160 was phosphorylated by IL-6 and insulin, individually, and when combined, an additive effect was produced at 3h of IL-6 treatment. In contrast, complete inhibition of AS160-phosphorylation was observed at 24h. These results indicate a reciprocal negative-crosstalk in the signaling pathways elicited by insulin and IL-6 under chronic treatment with the cytokine.

Because mouse C2C12-myotubes did not have an efficient insulin-sensitive phenotype in term of glucose uptake (34), we explored whether chronic-treatment with IL-6 was producing insulin resistance in rat primary neonatal-myotubes, a system previously shown to be sensitive to insulin (8). Insulin stimulation significantly increased (80%) glucose uptake in neonatal myotubes (Fig. 2D). Cells pretreated with IL-6 for 24h showed a 40% higher glucose uptake than untreated cells, but under this circumstance insulin did not further stimulate glucose uptake. The expression of GLUT4 or GLUT1 was not modified by chronic-treatment with IL-6 (Fig. 2E). When examining GLUT4 translocation to the plasma membrane by Western-blot (Fig. 2F) or indirect immunofluorescence (Fig. 2G) both insulin and IL-6, individually, produced this effect,
but when cells were pretreated with IL-6 for 24h, insulin failed to translocate GLUT4.

Long-term IL-6 treatment inhibits insulin-induced glucose transport by impairing insulin-signaling at the level of the IRSs in a JNK-dependent manner. To investigate whether the sustained activation of p38MAPK, ERK1/2 or JNK1/2 by IL-6 could be contributing to insulin resistance, these pathways were blocked with chemical inhibitors as previously described (8). In the presence of inhibitors, no significant changes in insulin- or IL-6-stimulated glucose uptake were detected either in C2C12-myotubes or neonatal-myotubes (Fig. 3A and B). However, treatment with SP600125 but not with PD98059 or PD169316 completely restored insulin-stimulation of glucose uptake in the presence of IL-6 in both cell types. These data seem to indicate that although IL-6 activates several stress kinases, it is mostly JNK1/2 that contributes to the IL-6 inhibitory effect on insulin action in myocytes. This hypothesis was confirmed by the use of JNK1/2 siRNA, which completely restored insulin-stimulated glucose uptake in the presence of IL-6 (Fig. 3A).

The next step was to identify at which level IL-6 was interfering with the insulin-signaling cascade, and if that interference could be avoided when inhibiting JNK1/2. Insulin-induced tyrosine phosphorylation of IRS-1 and IRS-2 and serine phosphorylation of AKT was significantly impaired under chronic treatment with IL-6, without significant changes in the expression of these proteins (Fig. 3C and D). Moreover, IL-6 produced phosphorylation on the Ser307 residue of IRS-1 in a JNK-dependent manner (Fig. 3D). Accordingly, treatment with SP600125 completely restored phosphorylation of IRS-1 and AKT by insulin in the presence of IL-6. All these data indicate that IL-6-impaired insulin activation of IRS/AKT signaling cascades in a JNK-dependent manner, in a similar fashion as detected for glucose uptake. This hypothesis was confirmed when the JNK1/2 protein was almost completely knockdown (90%) by the use of siRNA, which totally blocked phosphorylation of IRS-1(Ser307), and re-established insulin-stimulated AKT-phosphorylation in the presence of IL-6 (Fig. 3E).

LXR agonists restore insulin action in the presence of IL-6 by down-regulation of SOCS3 and PTP1B expression. In order to overcome insulin resistance produced by chronic treatment with IL-6 we used ligand activation of nuclear receptors as a pharmacological approach (Fig. 4A). From the various compounds tested, only the liver X receptor (LXR) agonists, GW3965 and, to a lesser extent T0901317, completely restored insulin-stimulated glucose uptake in the presence of IL-6, in a similar fashion as observed with AKT phosphorylation (Fig. 4B). Furthermore, glucose uptake was not only normalized by GW3965 treatment, but in fact improved greatly, by increasing GLUT4 protein content (Fig. 4B), as previously detected in brown adipocytes (6).

Induction of SOCS3 has been proposed as a mechanism for IL-6-induced insulin resistance (16). Accordingly, we determined the accumulation of socs3 mRNA by QPCR in cells cultured in the presence of IL-6, with or without GW3965 or SP600125, compounds that restored insulin action in the presence of the cytokine. The expression of socs3 increased by 40% and 90% after 3h and 6h of IL-6 treatment, respectively (data not shown), although maximal accumulation (4-fold) was detected at 24h (Fig. 4C). Up-regulation of SOCS3 by IL-6 was completely impaired by GW3965, and partially by SP600125.

Because activation of PTP1B can contribute to TNF-α-insulin resistance (6;7), we determined whether IL-6 treatment was modulating PTP1B expression. We did not detect changes in PTP1B expression by IL-6
treatment at 3 or 6h (data not shown), but at 24h a significant increase on \textit{ptp1b} mRNA accumulation and activity was observed (Fig. 4D and E). However, IL-6 effects on PTP1B expression and activity were completely prevented by treatment with GW3965 or SP600125.

PTP1B-deficient myocytes do not develop insulin resistance to glucose uptake by IL-6. Because IL-6 up-regulated PTP1B expression, we decided to explore whether the lack of PTP1B might confer protection against IL-6-induced insulin resistance (Fig. 5A). Wild-type myocytes displayed insulin resistance to glucose uptake by chronic IL-6 treatment in a similar fashion as C2C12-myotubes or neonatal myotubes (Fig. 2A and D). However, insulin was able to stimulate glucose uptake in PTP1B\(^{-/-}\) myocytes regardless the presence of IL-6. Moreover, in wild-type myocytes, insulin resistance was detected in terms of tyrosine phosphorylation of IR and IRS-1 and serine phosphorylation of AKT (Fig. 5B and C). However, PTP1B-deficient cells displayed activated insulin signaling regardless of the presence or absence of IL-6. Furthermore, IL-6 increased the protein content of PTP1B in wild-type cells, although the content of other phosphatases, such as SH-PTP2 or PP2A, remained unaltered.

Modulation of insulin sensitivity by IL-6 in mice: a lack of PTP1B prevents chronic effects of IL-6. Our last step was to study whether IL-6 might modulate insulin sensitivity \textit{in vivo} in a similar fashion as observed \textit{in vitro}. Accordingly, GTT and ITT were performed in wild-type male mice treated for various times with IL-6 (Fig. 6A). An improvement in GTT was observed in mice treated for 3h with IL-6. However, pronounced and sustained hyperglycemia was found in mice treated with IL-6 for 48h. No effect was observed at 24h. Regarding ITT, an increase in insulin sensitivity was observed in mice at 3h of IL-6 treatment, without change at 24h. However, impairment of the hypoglycemic effect of insulin was produced at 48h (Fig. 6A). The fact that PTP1B-deficient mice showed normal glucose tolerance and insulin sensitivity after 48h with IL-6 (Fig. 6B) indicates that the lack of PTP1B might protect against systemic insulin resistance by chronic-treatment with this cytokine. Finally, when we studied the impact of treatment with IL-6 in insulin signaling in skeletal muscle, again a dual effect was found. At short-term (3h) IL-6 activates AMPK without affecting AKT phosphorylation by insulin. Separately, IL-6 and insulin activate the phosphorylation of AS160, and together this effect was additive (Fig. 6C). In contrast, chronic treatment (48h) with IL-6 completely impaired insulin-induced AKT phosphorylation without changes in the amount of total AKT protein in wild-type mice (Fig. 6D). However, skeletal muscle from PTP1B-deficient mice showed insulin-stimulated phosphorylation of AKT regardless of the presence of IL-6. Moreover, an enhancement of PTP1B protein content in muscle was found in IL-6 treated wild-type mice. Altogether, these results seem to indicate that the absence of PTP1B in mice confers protection against systemic and muscular insulin resistance by the chronic-presence of IL-6.

DISCUSSION

IL-6 has been described as a pro-inflammatory cytokine that can contribute to insulin resistance in peripheral tissues when overproduced by adipose tissue (14). However, IL-6 is also expressed by skeletal muscle during exercise, with positive metabolic effects that can modulate insulin action.(12;23). So far, the data regarding the impact of IL-6 in muscle insulin sensitivity are highly controversial. Accordingly, in this study we explored the hypothesis that IL-6 effects in skeletal muscle cells may depend on the duration of exposure. Although IL-6 per
In skeletal muscle, IL-6 dual action on insulin sensitivity was observed: short-term IL-6 treatment was additive to insulin on activating glucose uptake and AS160 phosphorylation, which resulted in an improvement on glucose tolerance and insulin sensitivity in mice, whereas chronic exposure produced insulin resistance both in vitro and in vivo.

IL-6 activates glucose uptake in a dose-dependent manner regardless of the time of treatment as a consequence of GLUT4 translocation to the plasma membrane in C2C12-myotubes and neonatal-myotubes, in a similar fashion as reported in L6-cells and human skeletal muscle strips, respectively (12;35). We observed that IL-6 induces the sequential phosphorylation of LKB1, AMPK, and AS160. LKB1 was phosphorylated by IL-6 at Ser431, although the state of phosphorylation of this kinase did not significantly affect LKB1 catalytic activity or its cellular location, as described (36). Furthermore, direct inhibition of AMPK activity with either Compound C or siRNA, in the presence of IL-6, blocked phosphorylation of AS160 and impeded glucose uptake. Activation of AMPK by IL-6 was previously observed in skeletal muscle, while diminished AMPK activity was found in muscle from the IL-6 knockout mice (24). Moreover, deficiency of LKB1 in skeletal muscle was reported to prevent AMPK activation and glucose uptake during contraction (37), although muscle contraction activates AMPK by a mechanism independent of direct activation of LKB1 (38). However, recent observations indicate that activation of AMPK by cytokines such as adiponectin involves activation of LKB1 in C2C12-cells (39).

Short-term (3h) pretreatment with IL-6 followed by acute insulin stimulation produced an additive increase in glucose uptake in C2C12-myotubes. This increase is a consequence of the activation of AMPK and AKT by IL-6 and insulin, respectively, and is additive to AS160 phosphorylation, as observed both in C2C12-cells and in skeletal muscle, in agreement with other reports (3;12;40). Moreover, an improvement in GTT and ITT was observed in mice treated for 3h with IL-6. This situation can mimic the positive effect of IL-6 on insulin sensitivity when released from muscle after exercise (21-24), as schematized in Fig. 7. Chronic-exposure (24h) to IL-6 impaired insulin-stimulated glucose uptake and GLUT4 translocation in both C2C12- and neonatal myotubes. Accordingly, insulin-stimulated IRS-1 and AKT phosphorylation was inhibited by IL-6. Moreover, no phosphorylation of AMPK or AS160 were detectable, a fact that indicates a reciprocal negative crosstalk in the signaling pathways elicited by insulin and IL-6 under chronic treatment with the cytokine. Furthermore, IL-6 treatment for 48h also impaired insulin signaling in skeletal muscle in vivo, and caused systemic insulin resistance as observed from GTT and ITT. This situation imitates the chronic elevation of IL-6 that causes insulin resistance when secreted by adipose tissue in obesity (5;19). This dual behavior of IL-6 in insulin-stimulated glucose uptake has been previously observed in human skeletal muscle cells (40), meanwhile inhibition of insulin signaling by IL-6 was reported in C2C12-cells (15). Reconciliation of our observation of systemic and muscular insulin resistance in mice treated with IL-6 for 48h with the maturity-onset obesity and insulin-intolerance phenotype developed by IL-6 deficient mice (25) is not a simple matter. Accordingly, a very recent paper describes reduced body weight under chronically elevated IL-6 levels (41). However, these mice also show impaired insulin-stimulated glucose uptake by skeletal muscle, in agreement with our data. Furthermore, a marked inflammation was observed in the liver, an organ whose contribution to the development of insulin resistance by IL-6 cannot be ruled out (41).
The molecular mechanism underlying IL-6-mediated insulin resistance could involve activation of pro-inflammatory kinases, SOCSs and phosphatases (6;7;16;42). In this regard, activation of JNK1/2, accumulation of socs3 mRNA, and increases in ptp1b mRNA and activity were detected in murine myotubes. We found that chronic IL-6-treatment produced phosphorylation of IRS-1 at the residue Ser307, in a JNK-dependent manner, in a similar fashion as that described in other insulin-resistant states such as hyperinsulinemia (43) and TNF-α-treatment (8). Accordingly, inhibition of JNK1/2 completely restored insulin-stimulated glucose uptake and insulin signaling in the presence of IL-6. Moreover, IL-6 up-regulated SOCS3, which could bind to IR on a key residue for the recognition of IRS-1, inhibiting its phosphorylation (16;44). Furthermore, we found for the first time that IL-6 increased PTP1B expression and activity, in line with recent observations of overexpression of PTP1B associated with TNF-α-induced insulin resistance (7;45). The fact that SP600125 blocked the accumulation of socs3 and ptp1b mRNA by IL-6 seems to indicate that activation of JNK1/2 could be involved in the regulation of these genes, in agreement with the proposed role of JNK in SOCS3 induction by IL-4 (46). Accordingly, IL-6 impairs insulin signaling at the level of IRS-1 by three mechanisms that involve a) serine phosphorylation by JNK, b) impairment of tyrosine phosphorylation by SOCS3 and c) tyrosine dephosphorylation by PTP1B (Fig. 7).

When a pharmacological approach was used to ameliorate IL-6-induced insulin resistance, only the synthetic LXR agonists GW3965 and T0901317 completely restored insulin-stimulated glucose uptake, an effect that was not produced by peroxisome proliferator-activated receptor (PPAR)δ agonist, although both PPARγ and LXRβ are expressed in skeletal muscle (26;47). This is the first time that the ability of LXR agonists to ameliorate insulin resistance induced by IL-6 is documented, although PPARγ agonists have been reported to overcome such resistance in adipocytes (48). The effect produced by GW3965 on glucose uptake was parallel to a down-regulation of socs3 and ptp1b gene expression and to the recovery of insulin phosphorylation of AKT (Fig. 7). It is worth mentioning that inhibition of PTP1B activity by rosiglitazone and T0901317 was reported in skeletal muscle and brown adipocytes under insulin-resistant conditions (6;49). The mechanism of this inhibitory action is unknown, and so far no LXR response elements have been identified on the ptp1b promoter, although the expression of other genes such as matrix metalloproteinase-9 induced by cytokines was repressed by LXR activation in macrophages (50). Furthermore, recent observations from our laboratory seem to indicate that LXR agonists could exert anti-inflammatory properties antagonizing JNK activation by TNF-α in adipose tissue (unpublished data). Whether this mechanism might operate in the presence of IL-6 remains to be established.

Finally, this study demonstrates that the deficiency in PTP1B confers protection against IL-6-induced insulin resistance in skeletal muscle either in vitro or in vivo, in agreement with the protection against systemic insulin resistance observed in mice.

In conclusion, IL-6 produces a dual effect on insulin sensitivity in myocytes and skeletal muscle: additive at short-term and negative after chronic-exposure. The mechanism by which long-term IL-6 treatment causes insulin resistance involves activation of JNK1/2, expression of socs3 and activation of PTP1B. Accordingly, a decrease in ptp1b gene expression by treatment with LXR agonists or by genetic ablation confers protection against insulin resistance by this cytokine.
ACKNOWLEDGEMENTS

This work was supported by Grants BFU-2005-03054 from Ministerio de Educacion y Ciencia, Spain, and S-SAL-0159-2006 from Comunidad de Madrid, Spain. CIBER de Diabetes y Enfermedades Metabolicas Asociadas is an ISCIII project. We also acknowledge the support of COST Action BM0602 from the European Commission. We thank M Ros from Universidad Rey Juan Carlos (Madrid, Spain) for his help on QPCR determinations.
REFERENCES

9. Kristiansen, OP, Mandrup-Poulsen, T: Interleukin-6 and diabetes: the good, the bad, or the indifferent? *Diabetes* 54 Suppl 2:S114-S124, 2005

45. Zabolotny,JM, Kim,YB, Welsh,LA, Kershaw,EE, Neel,BG, Kahn,BB: Protein tyrosine phosphatase 1B (PTP1B) expression is induced by inflammation in vivo. *J Biol Chem* 2008

Fig. 1. IL-6 increases glucose uptake by activation of the LKB1/AMPK/AS160 pathway in C2C12-myotubes. (A) C2C12-myotubes were cultured for up to 24h in the absence or presence of 20 ng/ml IL-6. Glucose uptake was measured during the last 10min by incorporation of 2-deoxy-glucose into the cells. (B) Dose-response experiments were performed after IL-6 treatment for 3h. (C) Lysates from cells cultured as in panel A were analyzed by Western-blot with the corresponding antibodies against total and/or phosphorylated forms of AKT(Ser473), AMPKα(Thr172), JNK1/2(Thr183/Tyr185), ERK1/2(Thr202/Tyr204), p38MAPK(Thr180/Tyr182), IKB-α and β-ACTIN. Densitometric analysis of phosphorylated vs total AMPKα (represented by black circles) and JNK1/2 (represented by black triangles) are shown. (D) Glucose uptake was determined in cells cultured for 3h without of with 40 nM wortmannin (WT), 50 μM Compound C (CC) or 30 μM SP600125 (SP), or for 48h with 50 nM control siRNA, 50 nM siRNA against JNK1/2 or AMPKα1/α2 and then, treated for 3h with 20 ng/ml IL-6. (E) Lysates from cells cultured as in panel D were analyzed by Western-blot with the corresponding antibodies against total and/or phosphorylated forms of LKB1(Ser431), AMPKα, ACC(Ser79) and AS160(Thr642). Results in A-D are expressed as percentage of stimulation over control (100) and are means ± S.E. (n=4-10). Representative experiments out of four are shown in C and E.

*P <0.01, versus absence of IL-6.
IL-6 dual action on insulin sensitivity in skeletal muscle

Figure 1.

A

B

C

D

E

Protein phosphorylation (arbitrary units)

IL-6 dual action on insulin sensitivity in skeletal muscle

Figure 1.

A

B

C

D

E

Protein phosphorylation (arbitrary units)

IL-6 dual action on insulin sensitivity in skeletal muscle
IL-6 dual action on insulin sensitivity in skeletal muscle

Fig. 2. Short-term IL-6 treatment displays an additive effect with insulin, but chronic-exposure causes insulin resistance in skeletal muscle cells. (A) Mouse C2C12-myotubes were cultured for up to 24h in the absence or presence of 20 ng/ml IL-6 prior to stimulation with 100 nM insulin for 30min. Glucose uptake was determined and results are expressed as percentage of stimulation produced by insulin over control (100). (B) Dose-response experiments were performed after IL-6 treatment for 24h, prior to stimulation with 100 nM insulin (Ins) for 30min. Results are expressed as percentage of stimulation over control (100). (C) Lysates from C2C12-myotubes cultured for up to 24h in the presence of 20 ng/ml IL-6 prior to stimulation with 100 nM insulin for 5min were analyzed by Western-blot with the corresponding antibodies against total and phosphorylated AKT, AMPKα, AS160 and β-ACTIN. Some cells were stimulated with 1 mM AICAR (A) for 30min. (D) Rat primary neonatal-myotubes were cultured for 24h in the absence or presence of 20 ng/ml IL-6 prior to stimulation with 50 nM insulin for 30min. Glucose uptake was determined and results were expressed as percentage of stimulation over control (100). (E) GLUT4 and GLUT1 protein content determined by Western-blot is also shown. (F) After subcellular fractionation, plasma and internal membrane proteins were submitted to Western-blot with anti-GLUT4 and anti-Caveolin-1 antibodies. Densitometric analysis is shown. (G) Cells were fixed and processed for indirect immunofluorescence with anti-GLUT4 antibody followed by detection with a fluorescein-conjugated secondary antibody (Magnification x40). Results in A,B,D and E are means ± S.E. (n=4-10). Representative experiments out of four are shown in C,E,F. *P <0.01
IL-6 dual action on insulin sensitivity in skeletal muscle

Figure 2.

A

Insulin-stimulated glucose uptake (% over control)

IL-6 (ng/ml)

2h 6h 24h

IL-6

-- + + +

B

Glucose uptake (% over control)

Ins IL-6 (ng/ml)

5 10 20

Ins -- + + +

C

P-AKT

AKT

P-AMPK

P-AS160

β-ACTIN

Time

30' 5' 30' 1h 3h 24h

A Ins IL-6 IL-6 + Ins

D

Glucose uptake (% over control)

Ins IL-6

-- + + +

E

GLUT1

GLUT4

IL-6

-- + + +

F

Internal membrane

Plasma membrane

GLUT4

Cav-1

Ins IL-6

-- + + +

G

CTRL IL-6

Ins IL-6 + Ins

CTRL

IL-6

Ins

IL-6 + Ins
Fig. 3. Long-term IL-6 treatment inhibits insulin-induced glucose transport by impairing insulin-signaling at the level of the IRSs in a JNK-dependent manner. (A) Mouse C2C12-myotubes were cultured for 24h in the absence or presence of 20 ng/ml IL-6 without or with 1 μM PD169316 (PD*), 20 μM PD98059 (PD) or 30 μM SP600125 (SP), 50 nM control siRNA or 50 nM siRNA against JNK1/2, and stimulated or not for 30min with 100 insulin (Ins). (B) Rat primary neonatal-myotubes were cultured as described in panel A. Glucose uptake was determined in panel A and B. Results are expressed as percentage of stimulation over control (100) and are means ± S.E. (n=10). (C-E) C2C12-myotubes were cultured in the presence of IL-6 and inhibitors or siRNA as indicated in panel A, and stimulated or not with insulin for 5min. (C) Lysates were immunoprecipitated with anti-IRS-1 or anti-IRS-2 antibodies and immunoblotted with anti-P-Tyr antibody or with the antibodies against IRSs. Densitometric analysis of phosphorylated versus total IRS-1 (black bars) and IRS-2 (white bars) are shown. (D, E) Lysates were analyzed by Western-blot with the corresponding antibodies against phosphorylated and/or total IRS-1(Ser307), AKT, AMPKα, JNK1/2 and β-ACTIN. Representative experiments out of four are shown in C,D and E. *P <0.01
IL-6 dual action on insulin sensitivity in skeletal muscle

Figure 3.

A

![Graph A]

B

![Graph B]

C

![Graph C]

D

![Graph D]

E

![Graph E]
IL-6 dual action on insulin sensitivity in skeletal muscle

Fig. 4. LXR agonists restore insulin action in the presence of IL-6 by down-regulation of SOCS3 and PTP1B expression. (A, B) C2C12-myotubes were cultured for 24h in the presence of 20 ng/ml IL-6 with or without several nuclear receptor agonists. The ligands used were 10 μM Rosiglitazone (ROSI) as PPARγ agonist; 10 μM WY14643 as PPARα agonist, 10 μM TTNPB as retinoic acid receptor agonist; 20 μM phytanic acid (PA) as retinoid X receptor agonist; 3 μM GW501516 as PPARδ agonist, 15 μM GW3965 and 3 μM T0901317 as LXR agonists. (A) Glucose uptake was determined in cells stimulated with insulin (Ins) for 30min, and are expressed as percentage of stimulation over control (100) and are means ± S.E. (n=10). *P <0.01. (B) Cells after stimulation with insulin for 5min were analyzed by Western-blot with the corresponding antibodies against total and phosphorylated AKT, GLUT4 and GLUT1. Representative experiments out of four are shown. (C-E) C2C12-cells were cultured for 24h in the absence or presence of 20 ng/ml IL-6 with or without 15 μM GW3965 (GW) or 30 μM SP600125 (SP). Total RNA was submitted to QPCR for analysis of socs3 (C) and ptp1b (D) mRNA content, and data are expressed as % over control (untreated cells). (E) PTP1B activity was expressed as a percentage of stimulation over control cells. Results are the mean ± S.E. from four independent experiments. Statistical significance was tested and differences between values in the presence of IL-6 versus its absence are represented by (▲) and between IL-6+GW or IL-6+SP versus IL-6 by (Δ). ▲, Δ P <0.01
IL-6 dual action on insulin sensitivity in skeletal muscle

Figure 4.

A

Glucose uptake (% over control)

0 100 200 300
C In 6 ROS1 WY16413 GW501516 TMPA GW6956 T8110317
IL-6+ins

B

P-AKT
AKT
GLUT4
GLUT1

Ins
GW

- - + + +

IL-6

C

mRNA (% over control)

0 100 200 300 400 500
SP GW

- - + +

IL-6

D

mRNA (% over control)

0 100 150 200 250
SP GW

- - + +

IL-6

E

PTP1B activity (relative units)

0 50 100 150 200
SP GW

- - + +

IL-6
Fig. 5. PTP1B-deficient myocytes do not develop insulin resistance to glucose uptake by IL-6. (A) Myocytes PTP1B\(^{-/-}\) and PTP1B\(^{+/+}\) were cultured for 24h in serum-free, low-glucose medium in the absence or presence of 20 ng/ml IL-6. Then, cells were stimulated for 30min with 100 nM insulin (Ins) and glucose uptake was determined. Results were expressed as percentage of stimulation over control (100), and are the mean ± S.E. (n=10). (B) In other group of experiments, PTP1B\(^{-/-}\) and wild-type myocytes were cultured for 24h in the absence or presence of IL-6 and stimulated for 5min with insulin. Lysates were immunoprecipitated with anti-IR or anti-IRS-1 antibodies and immunoblotted with anti-P-Tyr antibody or with the antibodies against IR or IRS-1. The autoradiograms were quantified by scanning densitometry of phosphoproteins normalized to total protein. *P <0.01. (C) Lysates were submitted to Western-blot with the corresponding antibodies against phosphorylated and total AKT, and phosphatases (PTP1B, SH-PTP2 and PP2A). Representative immunoblots out of four independent experiments are shown in B and C.
Figure 5.

A

B

C

IL-6 dual action on insulin sensitivity in skeletal muscle
Fig. 6. Modulation of insulin sensitivity by IL-6 in mice: a lack of PTP1B prevents chronic effects of IL-6. Wild-type (A) and PTP1B-deficient male mice (B) were treated for 3, 24 or 48h with IL-6 (black circles) or vehicle (white circles). GTT were performed on 24h-fasted animals after a glucose challenge (2 g/kg body wt) and results were expressed as glucose concentration (mg/dL). ITT were performed on fed animals after an intraperitoneal injection of insulin (1 IU/kg body wt) and results were expressed as percentage over basal. Results are means ± S.E. of eight animals for each group. *P <0.01 versus corresponding vehicle-treated mice. Mice treated or not for 3h (C) or 48h (D) with IL-6 were subjected to anaesthesia and approximately 200 mg of muscle of one hind-leg were removed. Insulin was injected intraperitoneally, and a similar amount of muscle of the other hind-leg was removed from the mouse 15min after insulin infusion. Western-blot analysis of phosphorylated and/or total AMPK, AKT, AS160 and PTP1B in muscle lysates from wild-type and/or PTP1B-deficient mice were performed. Representative immunoblots out of four independent experiments are shown.
IL-6 dual action on insulin sensitivity in skeletal muscle

Figure 6.
Fig. 7. Dual role of IL-6 in modulating insulin sensitivity in skeletal muscle.

IL-6 *per se* increases GLUT4 translocation to the plasma membrane by activating the LKB1/AMPK/AS160 pathway. A dual effect on insulin action is observed when myotubes are exposed to this cytokine. Short-term IL-6 treatment has an additive effect with insulin on glucose uptake, mimicking the positive effect of IL-6 on insulin sensitivity when released from muscle after exercise. However, chronic-exposure (such as when secreted by obese adipose tissue) produces insulin resistance, with impaired GLUT4 translocation and defects in insulin signaling. Accordingly, IL-6 impairs insulin signaling at the level of IRS-1 by three mechanisms that involve a) serine-phosphorylation by JNK, b) impairment on tyrosine-phosphorylation by SOCS3 and c) tyrosine-dephosphorylation by PTP1B. LXR agonists and SP600125 overcome such resistance by producing down-regulation of SOCS3 and PTP1B expression and inhibition of JNK, respectively.

Figure 7.