On Organizing Principles of Discrete Differential Geometry. Geometry of Spheres

Yuri Suris

Technical University Munich

MISGAM Workshop “Integrable Systems in Applied Mathematics", Madrid, September 7-12, 2006
Plan of the talk

Based on joint work with A. Bobenko:
“Discrete Differential Geometry. Consistency as Integrability” (math.DG/0504358), and

- Discrete Differential Geometry
- Multidimensional Consistency Principle
- Discrete Erlangen Program
- New results on discrete curvature line parametrized surfaces in Lie, Laguerre and Möbius geometry.
Discrete Differential Geometry

- **Aim:** Development of discrete equivalents of the geometric notions and methods of differential geometry. The latter appears then as a limit of refinements of the discretization.

- **Current conclusions:** Discretizations which preserve fundamental properties of the smooth theory turn out to be also good for applications: they represent smooth shapes by discrete ones with just few elements (approximation often better then one might expect).

- **By-product:** New geometric understanding of integrability as consistency.
Surfaces and transformations

Surfaces (special classes: constant curvature, isothermic, etc.) and their transformations (Bianchi, Bäcklund, Darboux) with permutability properties: smooth vs. discrete.
Basic features of the discrete theory

- Defining geometric properties of discrete surfaces are identical with those of their transformations. Discrete master theory: surfaces and their transformations are just different coordinate slices of multidimensional nets.

- Complicated differential-geometric notions and properties are reduced to “elementary” incidence theorems.
Consistency of 2D equations

- 2D equation
 (for $x : \mathbb{Z}^2 \to X$)

- 3D consistency

$Q(x, x_1, x_{12}, x_2) = 0$
Consistency of 2D equations

- **2D equation**
 (for $x : \mathbb{Z}^2 \rightarrow \mathcal{X}$)

- **3D consistency**

\[
Q(x, x_1, x_{12}, x_2) = 0
\]
Consistency of 2D equations

- 2D equation
 (for $x : \mathbb{Z}^2 \rightarrow \mathcal{X}$)

\[
Q(x, x_1, x_{12}, x_2) = 0
\]

- 3D consistency

Yuri Suris
On organizing principles of DDG
Consistency of 2D equations

- 2D equation
 (for $x : \mathbb{Z}^2 \rightarrow \mathcal{X}$)

- 3D consistency

\[Q(x, x_1, x_{12}, x_2) = 0 \]
Message: “Consistency ⇒ Integrability” or “Consistency is Integrability” or even “Integrability is Consistency” (depending on your taste and discreteness). Why?

- Consistency ⇒ Darboux transformations
- Consistency ⇒ Lax (zero curvature) representation [Bobenko, Suris ’02], [Nijhoff ’02]
- Consistency ⇒ hierarchy of commuting equations (in smooth limit).

And:

- Consistency ⇒ Classification of integrable systems (within certain ansatz) [Adler, Bobenko, Suris ’02].

Ansatz: $Q(x, u, y, v) = 0$, Q affine with respect to all variables, square symmetry.
Classification of discrete integrable systems: 2D

\[\begin{align*}
(Q1) \quad & \alpha(x - v)(u - y) - \beta(x - u)(v - y) + \delta^2 \alpha \beta (\alpha - \beta) = 0, \\
(Q2) \quad & \alpha(x - v)(u - y) - \beta(x - u)(v - y) + \alpha \beta(\alpha - \beta)(x + y + u + v) \\
& - \alpha \beta(\alpha - \beta)(\alpha^2 - \alpha \beta + \beta^2) = 0, \\
(Q3) \quad & \sin(\alpha)(xu + vy) - \sin(\beta)(xv + uy) - \sin(\alpha - \beta)(xy + uv) \\
& + \delta^2 \sin(\alpha - \beta) \sin(\alpha) \sin(\beta) = 0, \\
(Q4) \quad & \sinh(\alpha)(xu + vy) - \sinh(\beta)(xv + uy) - \sinh(\alpha - \beta)(xy + uv) \\
& + \sinh(\alpha - \beta) \sinh(\alpha) \sinh(\beta)(1 + k^2 xyuv) = 0, \\
(H1) \quad & (x - y)(u - v) + \beta - \alpha = 0, \\
(H2) \quad & (x - y)(u - v) + (\beta - \alpha)(x + y + u + v) + \beta^2 - \alpha^2 = 0, \\
(H3) \quad & \alpha(xu + vy) - \beta(xv + uy) + \delta(\alpha^2 - \beta^2) = 0.
\end{align*} \]
Consistency of 3D equations

▶ 3D equation
(for $f : \mathbb{Z}^3 \to \mathcal{X}$)

▶ 4D consistency

Example of a fundamental importance: Q-nets, with all planar quadrilaterals [Doliwa, Santini '97].
Discretization Principles

- **Transformation Group Principle.** Smooth geometric objects and their discretizations belong to the same geometry, i.e. are invariant with respect to the same transformation group (discrete Klein’s Erlangen Program)

- **Consistency Principle.** Discretizations of smooth parametrized geometries can be extended to multidimensional consistent nets (Integrability)
Consistency principle can be imposed for discretization of classical geometries (Möbius, Laguerre, Lie,...):

- transformation groups of various geometries (Möbius, Laguerre, Lie,...) are subgroups of the projective transformation group preserving absolute (distinguished quadric),

- multidimensional Q-nets (projective geometry) can be restricted to an arbitrary quadric [Doliwa ’99].
Discretization of curvature lines 1: circular nets

Martin, de Pont, Sharrock, Nutbourne ['86], Bobenko ['96], Cieslinski, Doliwa, Santini ['97], Konopelchenko, Schief ['98], Akhmetishin, Krivchever, Volvovski ['99], ...

three “coordinate nets” of a discrete orthogonal coordinate system

underlying 3D system on an elementary cube → Miquel theorem
Definition. Neighboring quads touch a common cone of revolution (in particular intersect at the tip of the cone)

Conical net \Leftrightarrow circular Gauss map

Normal shift

Consistency
Curvature lines through spheres

Pencil of touching spheres

Principal directions are invariant with respect to:
- Möbius transformations
- normal shift

Curvature lines belong to Lie geometry.
Objects: oriented spheres (including points and planes)

Contact element: family of oriented spheres in oriented contact at a point; can be described by pairs \((x, P)\) with \(x \in P\)

Lie sphere transformations: map oriented spheres to oriented spheres preserving the oriented contact of sphere pairs (thus map contact elements to contact elements)
Möbius geometry:

- points are distinguished among spheres
- surfaces are considered as consisting of points:
 \[x : \mathbb{R}^2, \text{ resp. } \mathbb{Z}^2 \rightarrow \{\text{points of } \mathbb{R}^3\} . \]
- transformations: generated by inversions in spheres

Laguerre geometry:

- planes are distinguished among spheres
- surfaces are considered as envelopes of their tangent planes:
 \[P : \mathbb{R}^2, \text{ resp. } \mathbb{Z}^2 \rightarrow \{\text{planes of } \mathbb{R}^3\} . \]
- transformations: normal shift of all planes (resp. changing signed radii of all spheres) by a fixed \(c \in \mathbb{R} \), ...
Lie geometry:

- no distinguished elements
- surfaces are described by their contact elements:
 \[(x, P) : \mathbb{R}^2, \text{resp. } \mathbb{Z}^2 \rightarrow \{\text{contact elements of } \mathbb{R}^3\}\]

- transformations: generated by Möbius and Laguerre transformations

<table>
<thead>
<tr>
<th></th>
<th>distinguished</th>
<th>surfaces through</th>
<th>transformations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Möbius</td>
<td>points</td>
<td>points</td>
<td>Möbius</td>
</tr>
<tr>
<td>Laguerre</td>
<td>planes</td>
<td>tangent planes</td>
<td>normal shift ...</td>
</tr>
<tr>
<td>Lie</td>
<td>none</td>
<td>contact elements</td>
<td>Lie sphere</td>
</tr>
</tbody>
</table>

“Die Krümmungsstreifen sind in Lieinvarianter Weise dadurch ausgezeichnet, daß zwei konsekutive ihrer Flächenelemente eine Kugel gemeinsam haben”,

or

“Curvature lines are characterized in a Lie-invariant fashion by the property that two their consecutive contact elements share a sphere”.
Blaschke means two infinitesimally close contact elements, but in the Discrete Differential Geometry this can be taken literally:
Definition. Discrete curvature line parametrized surface is a map

\[\mathbb{Z}^2 \rightarrow \{ \text{contact elements of } \mathbb{R}^3 \} \]

such that any two neighboring elements share a sphere. These spheres (associated with the edges of \(\mathbb{Z}^2 \)) are curvature spheres.

Questions:

- Relation of this Definition to circular and conical nets?
- Integrability?
Spheres are represented as points of $\mathbb{P}(\mathbb{R}^{4,2})$. Basis of $\mathbb{R}^{4,2}$:

\[e_1, \ldots, e_6, \quad \langle e_i, e_j \rangle = \begin{cases}
1, & i = j \in \{1, 2, 3, 4\} \\
-1, & i = j \in \{5, 6\} \\
0, & i \neq j
\end{cases}, \]

\[e_0 = \frac{1}{2}(e_5 - e_4), \quad e_\infty = \frac{1}{2}(e_5 + e_4), \]

so that

\[\langle e_0, e_0 \rangle = \langle e_\infty, e_\infty \rangle = 0, \quad \langle e_0, e_\infty \rangle = -\frac{1}{2}. \]
Lie model of Lie geometry

- Oriented sphere with center $c \in \mathbb{R}^3$ and signed radius $r \in \mathbb{R}$:
 $$\hat{s} = c + e_0 + (|c|^2 - r^2)e_\infty + re_6.$$

- Oriented plane $\langle v, x \rangle = d$ with $v \in S^2$ and $d \in \mathbb{R}$:
 $$\hat{p} = v + 0 \cdot e_0 + 2de_\infty + e_6.$$

- Point $x \in \mathbb{R}^3$:
 $$\hat{x} = x + e_0 + |x|^2e_\infty + 0 \cdot e_6.$$

- Infinity ∞:
 $$\hat{\infty} = e_\infty.$$

All these points lie in the Lie quadric $\mathbb{P}(\mathbb{L})$, where

$$\mathbb{L} = \{ \xi \in \mathbb{R}^{4,2} : \langle \xi, \xi \rangle = 0 \}.$$

Lie sphere transformations are projective transformations of $\mathbb{P}(\mathbb{R}^{4,2})$ which preserve the Lie quadric $\mathbb{P}(\mathbb{L})$.

Yuri Suris

On organizing principles of DDG
Further,

- Contact element \((x, P)\): \(\text{span}(\hat{x}, \hat{p}) = \ell \subset \mathbb{P}(\mathbb{L})\), an *isotropic* line.

Therefore, our definition turns into:

Definition. Discrete curvature line parametrized surface is a discrete congruence of isotropic lines

\[\ell: \mathbb{Z}^2 \to \{\text{isotropic lines in } \mathbb{P}(\mathbb{L})\} \]

such that any two neighboring lines intersect.
Discrete line congruences

Thus, we are in the framework of *discrete line congruences* [Doliwa, Santini, Mañas ’00], i.e., maps

\[\ell : \mathbb{Z}^2 \rightarrow \{ \text{lines in } \mathbb{RP}^N \} \]

such that any two neighboring lines intersect.

Features:

- Multidimensionally consistent (integrable).
- Line congruences can be restricted to (Lie) quadric.
- Focal surfaces of discrete line congruences (consisting of intersection points of neighboring lines) are Q-nets.
Curvature line net. Projective model

LAGUERRE

LIE

MÖBIUS

Yuri Suris

On organizing principles of DDG
Curvature line net. Euclidean model
Circular and conical nets. Relation

[Bobenko, Suris ’06], [Pottmann ’06]

► Given a conical net P there exists a two-parameter family of circular nets x such that (x, P) is curvature line parametrized.

► Given a circular net x there exists a two-parameter family of conical nets P such that (x, P) is curvature line parametrized.
Circular and conical nets. Relation

[Bobenko, Suris ’06], [Pottmann ’06]

- Given a conical net P there exists a two-parameter family of circular nets x such that (x, P) is curvature line parametrized.
- Given a circular net x there exists a two-parameter family of conical nets P such that (x, P) is curvature line parametrized.
Circular and conical nets. Relation

[Bobenko, Suris ’06], [Pottmann ’06]

- Given a conical net P there exists a two-parameter family of circular nets x such that (x, P) is curvature line parametrized.
- Given a circular net x there exists a two-parameter family of conical nets P such that (x, P) is curvature line parametrized.